Biomass Feedstock-based Technology/

Professor Devinder Mahajan

NYS SBDC/NYSERDA The Directions of Renewable Energy Shaping The Future of Business on Long Island

June 8, 2011

*<u>dmahajan@notes.cc.sunysb.edu</u>

VANCED ENERGY

World Energy Consumption- Projected

Figure 2. World marketed energy use by fuel type

Data source: US DOE- EIA (2010)

Worldwide CO₂ Emissions

Data source: US DOE- EIA (2010)

Sectors that directly affect the public

Direct

- Cars: Gasoline, diesel
- Home heating: Natural gas or Oil
- Electricity

Distributed

- Jet fuel
- Diesel: Trucks, buses (transport food delivery, etc)

Topics Covered

Topic1: Biofuels: definition and backgroundTopic 2: 1st Generation biofuelsTopic 3: 2nd Generation biofuelsTopic 4: New York State InitiativesTopic 5: Relevance to Long Island Initiatives

Topic 1

Biofuels: Definition and Background

Background

<u>Definition</u>: Fuels derived from CO₂-net neutral feedstocks.

Impact Sectors

- Transportation
- Utilities
- Manufacturing

Gasoline Consumption:YearBillion gallons20073722009346

Goal: Replace 75% oil imports by 2025.

<u>Topic 2</u> 1st Generation Biofuels

- Bioethanol
- Biodiesel

Biofuels

Target Fuel	<u>2005</u> (billi	<u>2012</u> ion gallons/yea	<u>2025</u> ar <u>)</u>
Bioethanol [U.S.]*	5	7.5	60
Biodiesel [U.S.]**	0.6	1.3 (2008)	
Bioethanol [Brazil]**	4.5		

*Corn based **Data from NBB ***Sugarcane based (45% of the world total).

Topic 3

2nd Generation Biofuels

Drivers

U.S. Energy Independence and Security Act of 2007:

136 billion L of renewable biofuels by 2022

- corn-based ethanol: 57 billion L
- At least 61 billion L from cellulosic

EPA Ruling- 01/21/2011

- Vehicles 2001 or later: up to 15% ethanol

Feedstocks

- Biogas
- Algae
- Cellulosic Materials

Biogas: A Natural Source of Bio-methane

Animal	Animal weight (lbs)	Total manure & urine (gal/day)	Biogas production* ft ³ /head/day
Dairy Cow	1400	12.5	46.4
Beef Feeder	800	6.1	27.6
Market Hog	135	1.35	3.9
Poultry Layer	4	0.032	0.29

<u>Advantages</u>

- Readily biodegradable organic matter content of manure.
- Reduction of odor by 50-98%.
- Reduction of pathogens by 90%.

MSW

Composition

- 70-80% of MSW is "organic"
- Landfills: 55% US waste

 3 lbs person⁻¹ day⁻¹
 50% CH₄, 50% CO₂
 6.2-270 m³ tonne⁻¹
 (3.1-135 m³ person⁻¹ yr⁻¹)
- Other processing feasible
- Source separation advantageous

Advantages

- For a landfill: reduces GHG impact, odor control
- Other processes: residues may have value

Anaerobic Digestion (ASD) Process

Courtesy: M. Smith, USDA, 2009

Biogas Composition

Component	Content	
CH ₄ *	55-70 % by vol.	
CO ₂ *	30-45% by vol.	
H ₂ S*	200-4000 ppm by vol.	
NH ₃ **	0-350ppm	
Humidity***	Saturated	
Energy Content*	20-25 MJ/m ₃	

*RISE-AT (Regional Information Service Center for South East Asia on Appropriate Technology), 1998. Review of current status anaerobic digestion technology for treatment of municipal solid waste.

** Strik, D.P.B.T.B. et al., 2006. A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and mare slave Process Biochemistry 41, 1235-1238

*** Rakičan, 2007. Biogas for farming, energy conversion and environment projection

Courtesy: M. Smith, USDA, 2009

Biogas: Challenges

 Economical method to extract bio-methane from biogas.

Algae- A natural source of Bio-oils

Ref.: Pienkos et al., IEEE Spectrum November 2010

What is Algae?

- Algae are microscopic organisms that are oil factories.
- Algae uses sunlight to make oils: CO₂ → Sugars → Oils
- Oil yields vary with algae strain (~30,000) but can bas high as 50%.
- Soybean: 500 L oil/hectare/year
- Algae: 9,000 47,000 L oil/hectare/ year
- Oil is very similar to vegetable oils.
- Energy density: similar to gasoline whereas ether is lower.

Algae- Advantages

- Algae can be grown using land and water unsultable plant or food production, unlike some other firster second-generation biofuel feedstocks.
- Select species of algae produce bio-oils through natural process of photosynthesis — requiring or sunlight, water and carbon dioxide.
- Algae have the potential to yield greater volumes (2000 gallons) of biofuel per acre per year of product than other biofuel sources. Other sources yield lower
- Palm: 650 gallons
- Sugar cane: 450 gallons
- Corn: 250 gallons
- Soy: 50 gallons

Algae- Advantages

- Algae highly productive. Large quantities of algae can be grown quickly, and screened rapidly.
- Bio-oils from photosynthetic algae could be used manufacture a full range of fuels: gasoline, diesel and jet fuel.
- Growing algae consume carbon dioxide; this provides greenhouse gas mitigation benefits.

Algae Production-I: Open Shallow Ponds

Algae Production-II: Photobioreactors

Algae Production-III: Fermentors

- Can be grown in stainless steel tanks but not via photosynthesis.
- Add sugars, very similar to ethanol

Not of interest.

Bio-Oil form Algae: Challenges

Present technology: , 2010 \$: 10 - 35 / gallon oil equivalent

- Screening for novel strains that can grow quick efficiently.
- Minimize water losses during growth (re.: open ponds)
- Minimize: 1) growth of useless competitors (weeds 2) pathogens, and 3) predators.
- Dewatering after growth: 1 g algae/L water
- Product focus: diesel, gasoline and jet fuel

Projection (2020): \$75 - \$100 / barrel

Who is interested?

- Over 100 start-ups (~\$150 million venture funds).
 - Algenol, Aurora Algae, Sapphire Energy, Solazyme, Solix Biofuels
- ConocoPhillips, Chevron, ExxonMobil, Ro Dutch Shell.
- Product focus: diesel, gasoline and jet re

Cellulosic Materials

Biomass Feedstock

"Billion ton" study (USDA/DOE)

<u>Agriculture</u>: Corn stover, wheat straw, soybean residue, <u>manure</u>, switchgrass, other energy crops.

<u>Forest</u>: Forest thinnings, fuelwoods, logging residues, wood processing and paper mill residues, urban wood wastes.

Biomass: Structural Units

Typical compositionCarbohydrates/Sugars:75%Lignin:25%

HO CHON HO CHO

<u>Cellulose</u>: Polymer and cross-linkages among glucose units.

<u>Hemicellulose</u>: 5, 6 carbon sugars, sugar acids, acetyl esters- more complicated the cellulose.

Lignin: Phenolic polymers- impart strengthat plants.

"Biorefinery" Concept

Biomass to Fuels

Thermochemical Route: Syngas Platform

Challenge

Total Carbon Utility with Product specificity

- Atom Economy .

Approach

Combine new Process Engineering and Process Chemistry concepts.

Process Chemistry

Liquid Phase Low Temperature (LPLT) concept - Single-site or Nano catalysis

Process Engineering

Heat management

- Microchannel Reactors

Topic 4 New York State Initiatives

Renewable Fuels Roadmap and Sustainable Biomass Fuels Supply

Released 2010 http://www.nyserda.org/publications/re ewablefuelsroadmap/default.asp

Renewable Fuels Roadmap and Sustainable Biomass Fuels Su

Released 2010

http://www.nyserda.org/publications/renewablefue

- NYSERDA (NYS Energy Research and Development Authority)
- NYSDEC (NYS Dept. of Environmental Conservation)
- NYSDAM (NYS Dept. of Agriculture and Markets
NYS Roadmap Highlights

- Assesses the prospects for the expansion of biofuel, production in New York State, focusing on resource availability and economic and environmental impacts
- <u>Topics covered</u>:
 - Biodiesel
 - Biofuels
 - Cellulosic ethanol
 - Competing uses
 - Conversion technology
 - Feedstock
 - Greenhouse gas emissions
 - Life cycle analysis
 - Renewable energy
 - Sustainability
 - Transportation fuels

Key Issues Considered: 11

1. Stakeholder Input: Vision Document and Stakeholder Inpu Workshops.

- 2. Analysis of Sustainable Feedstock Production Potential
- 3. Feedstock Transportation and Logistics
- 4. Life Cycle Analysis and Public Health Assessment of Bioto Production, Transportation, and Use in New York State
- 5. Technologies for Biofuels Production
- 6. Biofuel Industry Economic Impacts and Analysis.
- 7. Worker Training and Business Research Infrastructure Biofuel Industry in New York.
- 8. Sustainability Criteria.
- 9. Selected Future Production Pathways in New York.
- 10. Policy Analysis and Inventory of Existing Relevant State Federal Policies.
- 11. Biofuels Markets in New York State & Integration in the Northeast Region and Competition for Biomass Resources.

Expanding Biofuels in NYS

Scenarios considered: 3-

Scenario 1: "Big Step Forward"

- Focus on large (90 MGY) biofuel production plan
- Rapid development of lignocellulosic feedstock resources is assumed on available rural lands;
- Total New York production of renewable gasoline substitutes would reach 508 MGY.
- Under this scenario, New York meets about 5.6% of projected gasoline consumption with home grows biofuels.

Expanding Biofuels in NYS

Scenario 2: "Giant Leap Forward"

- Some cropland is used for biofuel production.
- Assumes that 2nd generation lignocellulosic bioretineries (biochemical and thermochemical systems) are ready for commercial deployment.
- Large lignocellulosic biorefinery clusters (average capacity 354 MGY) exist in a centralized collection/distribution system.
- Total New York liquid biofuel production including derived ethanol would reach 1,449 MGY.
- New York could meet about 16% of its projected transportation gasoline consumption with home biofuels.

Expanding Biofuels in NYS

Scenario 3: "Distributed Production"

- Same feedstock production and similar conversion technology as in Scenario 2.
- This scenario reflects a more decentralized fuel production industry with no individual biorefinery capacity exceeding 60 MGY, except for the existing grain ethanol biorefineries
- Total New York liquid biofuel production including gr derived ethanol would reach 1,449 MGY.
- New York could meet about 16% of its projected transportation gasoline consumption with home pro biofuels.

Biomass Capacity

- Of the State's 18.5 million acres forest lands, near million acres is producing or is capable of producing woody biomass.
- New York agricultural industry currently produces of million dry tons biomass annually and produces and 9.5 Mdt/year of biomass from forests.
- The current forest products industry uses 2.5 Md/ Corn provides the greatest amount of biomass from single agricultural crop in the State (60%) and much this is used by the New York dairy industry.

Biofuel Production Technologies

- Fifteen current technologies were evaluated for converting solid biomass to liquid fuels.
- The Roadmap summarized process descriptions cur development status, and estimated economic and performance attributes for the year 2020.
- Only 3 are currently in commercial use.
- By 2020, the total capacity for lignocellulosic ethanol is estimated to be between 508 and 1,449 million gallons

Topic 5 Long Island Initiatives

Facilities

Research Facility

- New York State funded \$45 million at SBU.
 - Build the Advanced Energy Research & Technology Center (AERTC)
- NSF C-BERD will be housed in this building.

Characterization Facilities

- Center for Functional Nanomaterials (CFN)
 - A U.S. Department of Energy (US DOE) \$85 million facility at BNL.

Stony Brook University R&D Park

AERTC: An Energy Efficient Building

Leadership in Energy & Design (LEED) Certification

Criteria

- Design
- Construction
- Operation

Levels (based on 100 points) in LEED 2009

- Platinum (80+)
- Gold (60-79)
- Silver (50-59)

AERTC: An Energy Efficient Building

LEED Features

- <u>Construction phase</u>: Requires materials within 500 full radius- provided jobs within local communities
- <u>Operation</u>:
 - <u>Water system</u>. Run rainwater is collected and use for non-drinking purposes.
 - <u>Power savings</u>. Sensors for lighting throughour.
 - Solar supplement. Shades to minimize AC usage
 - <u>AC</u>. 4 Ice slabs at night for peak shaving and daytime use of AC. Chilled water for AC.
 - Parking Lot. 30kW solar panels to provide LED
- Provide charging station for 4 electric vehicles (A new US DOE grant).

Renewable R&D at Stony Brook

Green Buildings

- CEWIT
- AERTC

Electric Delivery Systems

- Smart Grid

Green Energy Projects

- Solar
- Biomass to Biofuels
- Geothermal

Carbon Capture Systems Coupled with Fossil Fuels

- CCS

Electric Delivery System: Smart Grid

Key Elements

- Security
- Reliability
- Renewable fuel choice and integration
 - Solar
 - Biofuels from biomass processing
 - Wind
- Sustainability

Long Island's Smart Energy Corridor

A Collaborative Project

<u>SBU PI:</u> Professor E. Feinberg, AMS Dept.

Farmingdale State College

State University of New York

A

Renewable Fuels for Smart Grid-Liquids Smart grid and renewable fuels integration **Focus** • Skid-mounted (small scale) renewable fuel plants • Focus: Transportation and power peak-shaving fuels Liquid • Source: Biomass derived biofuels via pyrolysis and thermochemical routes. **Fuels** - Gasoline, diesel, ethanol, methanol and butanol.

Renewable Fuels for Smart Grid- Biogas

		197
	 Biogas- a natural source of energy. Capturing fugitive methane has two advantages: 	
Why	- Minimize methane release to the atmosphere.	
Biogas?	Greenhouse factor: CH ₄ (17); CO ₂ (1)	
	- Simultaneously reduce imported natural gas	
		2
Approach	 Biogas assessment and potential on Long Island Regional and Global application Biogas upgrading to pipolino quality gas 	
	 Biogas upgrading to pipeline quality gas 	

R

Biogas on Long Island: Existing & Potential Source

Biogas vs. Natural Gas

Compound Name	Chemical	Biogas (%)	Natural Gas
	Formula		(%)
Methane	CH_4	50-75	70-90
Carbon Dioxide	CO ₂	25-50	0-8
Nitrogen	N ₂	0-10	0-5
Hydrogen	H ₂	0-1	Trace
Hydrogen Sulfide	H ₂ S	0-3	0-5
Oxygen	O ₂	0-2	0-0.2
Ethane	C_2H_6		
Propane	C ₃ H ₈	Trace	0-20%
Butane	$C_{4}H_{10}$		

Biogas Sources

- Landfills
 - MSW, C&D, and Yard Waste
- Wastewater Treatment Plants
 - Sewage sludge
- Agricultural Residues
 - Plant waste and animal manure

Landfills

Facility	Brookhaven	110 Sand Company	Blydenburgh	Oceanside	
Total Landfill Area (acres)	150	116	30.5	190	
Area Used for Gas Collection (acres)	120	116	30.5	160	
Number of Flares	2	1	2	-	
Total Gas Collected (ft ³)	601,940,000	624,320,000	306,400,000	110,440,000	
Energy Produced (MW-hrs)	64	-	-	3,617	

Landfills

Landfill Name	County	Waste in Place (tons)	Opening Year	Closing Year	Landfill. Owner
E. Hampton SLF	Suffolk	1,000,000	1942	1993	Town of E. Hampton
Holtsville SLF	Suffolk	-	1939	1974	Town or Brookhaven
North Sea LF	Suffolk	1,102,714	1963	1995	Town of Southampton
Port Washington LF	Nassau	2,161,000	1983	1991	North Hempstead

MSW

3.5 million tons of waste produced annually

- -1 million tons is recycled
- 1.5 million tons is incinerated
- -1 million tons is transported off island

According to NYS, 65% of the waste stream is composed of degradable items in the form of paper and organics.

Source: Tonjes, D.J. Stony Brook University

Material	erial Dry Weight Yield (ml of		Total CH ₄ Yield		
	(ton)	CH ₄ /dry g)†	(billion ft ²)		
Coated Paper	14,570	84.4	0.04		
Office Paper	22,466	217.3	0.16		
Newspaper	14,570	74.33	0.03		
Corrugated	60,895	152.3	0.30		
Others	181,326	74.33	0.43		
Food Scraps	54,570	300.7	0.53		
Yard Trimming	9,760	69.2	0.03		
Wood	8,900	62.6	0.07		
	Total				

† Eleazer, W.E. et al. Environmental Science & Technology 1997

C&D

Facility	Amount of Waste	CH ₄ Yield (billion ft)			
	(tons)	A			
Blydenburgh	Wood – 34,612	0.07			
	Cardboard – 8,340	0.04			
110 Sand Company	Wood – 248,435	0.50			
	Cardboard – 59,865	0.29			
Brookhaven	Wood – 105,297	0.21			
	Cardboard – 25,493	0.12			
То	1.23				

11

Yard Waste

365,000 tons of yard waste annually

- Estimated 170 million ft^3 of CH_4 per year

	AD vs. LF	AD vs. WC	WC vs. LE
Energy	+380,000	+407,910	-30,546
Production			
(mmBTU/yr)			
GHG Emissions	-134,379	-93,470	+42,075
(tons/yr CO ₂ eq.)			
NO _x (tons/yr)	-53.8	-55.4	+1.7
SO _x (tons/yr)	-75.4	82.2	+6.83
PM-10 (tons/yr)	-64.4	-56.0	-8.4
VOC (tons/yr)	-9.5	-4.2	-5.2
Lead (lbs/yr)	-194.7	-205.0	+10.4
	1011	_	

AD: Anaerobic digestion; LF: Landfilling without energy recovery; WC: Open window composting. Source: Haight, M. Waste Science & Technology 2005.

WWTPs

- 34 WWTPs located on Long Island
 - 12 in Nassua County; 22 in Suffolk County

Facility Name	County	Authority Name	Actual Flow (mgd)	Potential Electric Capacity (kW)
Long Beach WPC Plant	Nassau	Long Beach DPW	5	122
Bay Park STP & SD#2	Nassau	Nassau County DPW	53	1178
Cedar Creek STP & SD#3	Nassau	Nassau County DPW	57	1268

On average a WWTP will process 450 L per day of wastewater per person served

The total solids present in average sanitary wastewater is 800 mg/L

An estimated 207,406 tons of sludge is processed yearly by WWTPs on Long Island

Source: Hammer, M. J Waste and Wastewater Technology 2001

Assume volatile solids are 75%.

- Assume 50% reduction in volatile solids after digestion.
- Assume 16 cubic feet of gas produced per Ib of volatile solids destroyed.

Estimated gas production: 2.5 x 10⁹ ft³

Source: Hammer, M. J Waste and Wastewater Technology 2001

35,682 acres of farmland on Long Island

- 75% is cultivated for crops
- 25% used for pastures, woodland, and other usage.
- On farm compositing is the most common method used for waste disposal.

883 x 10⁶ ft³

Source: Weiland, P. Applied Biochemistry and Biotechnology, 2003.

Conclusion

Total biogas potential
 = 7.7 billion cubic feet
 = 2.3 Twh of electricity

= 12% of total electricity generated by LIPA

Conclusion

Potential Source	Currently Exploited	Current/Potential CH₄ Yield (billion)	Optimal Use	Technology Barriers
Sludge	No	2.49 ft ³	Pipeline quality gas	ADs are needed
LGRF	Yes	1.64 ft ³	Electricity	Upgrading Technology
MSW	No	1.29 ft ³	Pipeline quality gas	AD; Upgrading technology
C&D	No	1.23 ft ³	Pipeline quality gas	Upgrading technology
Agriculture Waste	No	0.88 ft ³	On-site usage; Electricity	ADs are needed
Yard Waste	No	0.17 ft ³	On-site usage	ADs are peeded

MA

Center for Bioenergy Research and Development (CBERD)

C-BERD

Founding Members

Kansas State University (K-State) North Carolina State University (NCSU) South Dakota School of Mines and Technology (SDSMT) Stony Brook University (SBU) University of Hawaii (UH)

Total industry membership: 25

CBERD Mission

Mission:

- To train students at all levels.
- Develop renewable energy technologies working with industry.

