Qiang Li

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794

Condensed Matter Physics and Materials Sciences Division, Brookhaven National Laboratory, Upton, NY 11973-5000

Tel: 631-632-8081 (SBU), 631-344-4490 (BNL) Email: qiang.li@stonybrook.edu; qiangli@bnl.gov

Education

Institution and Location Iowa State University/Ames Lab, Ames, IA	0		Field of Study Physics
University of Science & Technology of China (USTC), Hefei, China	BSc	1986	Physics (CUSPEA Program -T. D. Lee)

Employment History

- 2020 SUNY Empire Innovation Professor, Department of Physics and Astronomy, Stony Brook University
- 2009 Group leader, Advanced Energy Materials Group, Condensed Matter Physics and Materials Sciences Division (CMPMSD), Brookhaven National Laboratory (BNL)
- 1998 Physicist (with tenure), CMPMSD, BNL
- 1995 98 Associate Scientist, Materials Sciences Division, BNL
- 1993 95 Assistant Scientist, Materials Sciences Division, BNL
- 1991 93 Postdoc Research Associate: Materials Sciences Division, BNL

Professional Experience (Last ten years, 2012 - Date)

- Principle Investigator (2018 present, \$1.3M/year): Managing "<u>Chiral Materials</u> and Unconventional Superconductivity" program, funded by US DOE Office of Basic Energy Science. This is the core basic science program in the Advanced Energy Materials Group. The scope of this program is to study the charge transport in topological chiral materials and superconductors.
- Co-Principle Investigator (2020 present, \$20M/year): Sub-thrust leader (2020-2021) on correlating materials and device applications for C2QA (<u>Co-design Center for Quantum Advantage</u> one of the five National Quantum Information Science (QIS) Research Centers at BNL). C2QA is working toward quantum advantage in computations for high-energy and nuclear physics, chemistry, materials science, condensed matter physics, and other fields.
- 3. Co-Principle Investigator and BNL Task Leader (2017 present, \$165K/year): Working with AMSC and managing BNL's tasks in a DOE project, titled "Enhanced

<u>2G HTS wires for electric machine applications</u>" funded by US DOE EERE. This project aims at the development of an innovative Second Generation (2G) high temperature superconducting (HTS) wire combining an extremely uniform point-defect flux pinning microstructure produced by a reel-to-reel (R2R) irradiation process along with a novel wire architecture, resulting in minimal additional manufacturing cost, but leading to a substantial reduction in the wire cost in terms of \$/kAm. The total project is funded at level of \$4.0M for three years.

- 4. Principle Investigator (2005 2018, \$714K 790K/year): Managing "Superconducting Materials" program, funded by US DOE Office of Basic Energy Science. This was the core basic science program in the Advanced Energy Materials Group. The scope of this program is to study the basic relationships between nanostructures and the macroscopic properties of superconductors.
- 5. Principle Investigator (2015 2018, \$200K/year): Managing "Chiral magnetic effect: from quark gluon plasma in RHIC to NSLS II" a BNL internal program. This Laboratory Directed Research and Development (LDRD) program explores the chiral magnetic effect in the heavy ion collision at RHIC (Relativistic Heavy Ion Collider) and to shape future directions of photon sciences through the design of challenging experiments for National Synchrotron Light Sources II (NSLS II) on the response of the chiral anomaly to optical stimulations by synchrotron X-rays.
- 6. Principle Investigator (2010 2018, \$50K/year): Managing CRADA (Corporative Research and Development Agreement) program between BNL and NYSERDA (New York State Energy Research and Development Authority) for DOE's Energy Frontier Research Center (EFRC) at BNL, "Center for Emergent Superconductivity (CES)". The scope of work is to facilitate the transition of science discovery in superconductors at CES to energy application.
- Associated Principle Investigator (2010 2017, \$147K/year): Responsible for research at BNL on critical current in superconducting materials, a research area of DOE's Energy Frontier Research Center (EFRC) at BNL, "<u>Center for Emergent</u> <u>Superconductivity (CES)</u>", funded by US DOE Office of Basic Energy Science at (\$4.0 - 5.0M/year). The managed effort is funded at \$147K/year.
- 8. **Principle Investigator and Overall Project Manager (FY2011 2016, \$3.06M)** Managing a DOE project "<u>Superconducting wires for direct- drive wind power</u> <u>generators</u>" funded by the US DOE ARPA-E (total funding \$3.06M, in which \$1.15M for BNL).

Press Release: "Next generation superconducting wires for 10MW+ direct drive wind power generator" https://www.bnl.gov/newsroom/news.php?a=24697

9. Co-Principle Investigator and BNL Task Leader (2010 – 2015, \$2.85M) Develop the concept and managing the project, with lead institute ABB, titled "<u>Superconducting</u> <u>Magnet Energy Storage (SMES) System with Direct Power Electronics Interface</u>" funded by the US DOE ARPA-E (total funding \$6.35M, in which \$2.85M for BNL)

Press Release: "Grant Funds Superconducting Magnet Energy Storage Research at Brookhaven Lab" https://www.bnl.gov/newsroom/news.php?a=111174

- 10. **Co-Principle Investigator and BNL Task Leader (2013-2015, \$560K):** Working with General Motors, LLC Warren, and managing BNL's task in a DOE project "Development of a thermoelectric generator (TEG) system to convert waste heat to electric power, with the control systems necessary to utilize that power in a vehicle." (total funding \$8.2M, in which \$560K for BNL)
- 11. Principle Investigator (2011 2014, \$60K): "Numerical Model of A Small Scale Superconducting Energy Storage System for Air and Space Applications" Memorandum of Agreement between The Air Force Research Laboratory Propulsion Directorate and Brookhaven National Laboratory
- 12. **Co-Principle Investigator** (2011-2013, \$100K/year) Responsible for a part of NSF/DOE program as an adjunct professor in the Materials Science and Engineering Department of Stony Brook University. This grant was an NSF/DOE Thermoelectrics Partnership award for "Thermoelectric Generators for Vehicular Applications"

Research Experience and Significant Expertise

Basic Science Research – Quantum information science, structure and property relationship in quantum topological materials, correlated electronic materials, superconductors, and thermoelectric materials

- Topological states and quantum phase transition
- Conventional and unconventional superconductivity
- Josephson junctions and superconducting qubits
- Topology enabled quantum information and chiral qubits
- Single crystal growth, and thin film growth by laser MBE, PLD, and CVD
- Synchrotron based crystalline structure, electronic property, and defect characterization
- High field transport property, thermodynamic property and magnetic property characterizations
- Nano-structure fabrications
- Radiation effect

Applied Research – mainly in superconductors and thermoelectrics

- Roll-to-roll process of superconducting tapes
- Roll-to-roll irradiation of superconducting wires/tapes.
- Fabrication of superconducting wires by metallurgical process
- Superconducting devices, including magnets and superconducting switches.
- Thermoelectric devices for cooling and heating

Honors/Award of Excellence

- 1) 2019 Brookhaven Science and Technology Award
- 2) R&D 100 Award for aFCL (active Superconducting Fault Current Limiter) (2015)

- 3) Fellow of American Physical Society (2013)
- 4) "New York State Leader in Superconductivity" for making important contributions to the research, development and commercialization of superconductivity in New York State, the New York State Superconductor Technology Summit (2011 Schnectady, NY)
- 5) Award for *Significant implication for DOE Energy-Related Technologies* (Nov.1991) The first place in Solid State Physics Category in the Department of Energy's 1991 Materials Sciences Research Competition for the research entitled "Superconducting Vortex Microscopy". This award was given to Douglas Finnemore based on the Ph.D thesis works of Q, Li and others
- 6) G. W. Fox Memorial Award (May 1991)

Department of Physics and Astronomy, Iowa State University, Basis of this award is excellence in graduate research. (one acceptance per year, Iowa State Univ.)

Professional Services (Last 8 years)

Member/Reviewer of proposals, program reviewer panel, or advisor board

- DOE Office of Science Basic Energy Science (BES) core programs, EFRC, and Earlier Career, EPSCoR
- DOE EERE Advanced Manufacturing Office, Vehicle Technology Office
- DOE ARPA-E more than 8 programs
- NSF Materials Engineering and Processing Div., Materials Physics Div.
- DoD DARPA Thermoelectrics program, High temperature superconductivity, Matrix program
- DoD AFRL Energy/Power/Thermal division, including the development of Superconducting Energy Storage System for Air and Space Applications
- DoD ARL Sensors and Electron Devices Directorate and Electrical Equipment, Appliance, and Component Manufacturing division (including the development of concept of Superconducting magnetic energy system for Army's tactical micro-grid)
- DoD NRL DTEC Program (Direct energy conversion)
- Canada Foundation for Innovation
- Foundation for Scientific Research Belgium
- *New York State Superconductor Technology Summit*, Westchester Community College in Valhalla, NY, Nov. 12 2010

Press Release: "Brookhaven Lab Materials Scientist Participates in Statewide Superconductivity Summit

https://www.bnl.gov/newsroom/news.php?a=22143

- The third *New York State Superconductor Technology Summit*, Albany, NY, Nov. 12 2013
- Others

Reviewer for Science, Nature journals, Phys. Rev. journals, etc

Lead organizer for MRS and E-MRS (last ten years)

- Co-organizer of 2022 Spring Materials Research Society (MRS) symposium "Superconducting Materials and Applications" Honolulu, May 2022
- Lead organizer of 2021 Spring Materials Research Society (MRS) symposium "Superconducting Materials and Applications" Seattle, April 2021
- Principle organizer "Symposium Recent Developments in Thermoelectric Materials and Applications" 2019 E-MRS Spring Meeting, Nice, France
- Lead organizer "Symposium AAA Superconducting Materials From Basic Science to Deployment" 2013 MRS Spring Meeting, San Francisco
- Lead organizer "Symposium BB thermoelectric Materials From Basic Science to Applications" 2013 MRS Fall Meeting, Boston

Plenary, Keynote, and Invited Presentations at International/National Conference/Workshops (*canceled due to COVID-19)

- 1) **Invited Speaker**: "Topological states in iron-chalcogenide superconductors for Quantum Computing" *MRS Spring Conference*, Honolulu, May 11, 2022
- Invited Plenary Speaker: "Dynamics of chiral fermions in condensed matter systems" at *Nobel Symposium on "Chiral Matters"* Stockholm, Sweden, June 28 – July 2, 2021
- 3) **Invited Plenary Speaker:** "Quantum computing with chiral fermions" at International Quantum Summer Summit, Stony Brook, August 13, 2021
- 4) ***Invited Speaker**: "Topological phases in thermoelectric materials" *International Conference on Thermoelectrics*, Seattle, June 28 July 2, 2021
- 5) **Invited Speaker**: "Effect of ion irradiation on cuprate and iron-based superconductors" *Joint 23rd Cryogenic Engineering Conference and International Cryogenic Materials Conference*, June 17, 2021
- 6) **Invited Speaker**: "Topological states and transport properties in iron chalcogenide superconductors" virtual *MRS Spring Conference*, April 18, 2021
- 7) **Invited Speaker**: "The chiral qubit: quantum computing with chiral anomaly" virtual *MRS Spring Conference*, Phoenix, AZ April. 13-17, 2020
- 8) ***Invited Speaker**: "Iron-chalcogenide superconductors: from power applications to quantum computing" 7th "International Conference on Superconductivity and Magnetism"- ICSM2020, Bodrum- Turkey, April 19 25, 2020.
- 9) ***Invited Speaker**: "The chiral qubit: quantum computing with chiral anomaly" *American Physical Society March Meeting* Denver, CO, March 2-6, 2020
- Invited Speaker: "Chiral Matters: from Quark-Gluon Plasma to Quantum Computing" *The 3rd Workshop on Functional Materials Science*, Sapporo, Japan, Dec. 18-20, 2019

- 11) **Invited Speaker**: "Effect of ion irradiation on cuprate and iron-based superconductors" *Materials Research Meeting 2019, Yokohama, Dec. 10-14, 2019*
- 12) Invited Speaker: "Chiral materials and their thermoelectric properties" *PACRIM13* the 13th Pacific Rim Conference of Ceramic Society, Okinawa, Japan, Oct. 27 - Nov. 1, 2019
- 13) **Invited Speaker**: "Electronic materials and states for the next generation quantum information technology" *Quantum Workshop: Distributed Quantum Systems Enhanced by Materials Design*, Buffalo, NY, Oct. 21-23, 2019
- 14) **Invited Speaker**: "Chiral fermion transport and their thermoelectric properties" *MRS Spring Conference*, Phoenix, AZ April. 22-26, 2019
- 15) Invited Speaker: "Chiral Fermion Transport and Terahertz Spectroscopy" Weyl Metals and Transport Workshop, the Instituto de Física Teórica, IFT-UAM/CSIC, Madrid, Spain, Feb. 11 – Feb. 15, 2019
- 16) **Invited Speaker**: "Chiral Fermion Transport and Coherent Terahertz Emission" *Plasma 2019 Workshop*, Orlando, FL, USA. January 18-21, 2019
- 17) Invited Speaker: "An Experimental Overview on Chiral Fermion Transport in Condensed Matters" Workshop on Open Problems and Opportunities in Chiral Fluids, Santa Fe NM, July. 7-9, 2018
- 18) **Invited Speaker**: "Thermoelectric Properties in Dirac/Weyl Semimetals" 8th Forum on New Materials and 14th International Conference on Modern Materials and Technologies (CIMTEC 2018), Perugia, Italy, June 10 to 14, 2018.
- 19) Invited Speaker: "A route for simultaneous increase of T_c and J_c in iron-based superconductors by low-energy proton irradiation" *6th International Conference on Superconductivity and Magnetism (ICSM2018)*, Antalya, Turkey, April 29 May 4, 2018
- 20) Invited Speaker: "Thermoelectric Properties in Dirac/Weyl Semimetals" MRS Spring Conference, Phoenix, AZ April. 2-6, 2018
- 21) Invited Speaker: "Enhanced critical current and critical temperature in cuprate and iron based superconductors by practical ion irradiation process" *MRS Spring Conference*, Phoenix, AZ April. 2-6, 2018
- 22) <u>Invited Keynote Speaker</u>: "Thermoelectric Properties in Dirac Semimetals" International Union of Materials Research Societies Conference, IUMRS-ICAM, Kyoto Aug. 27 – Sept. 1 2017
- 23) Invited Speaker: "Chiral Materials and Thermoelectrics" 12th Pacific Rim Conference on Ceramic and Glass Technology including Glass & Optical Materials Division Meeting, Waikoloa, Hawaii, May 21 - 27, 2017
- 24) Invited Speaker: "Chiral Magnetic Effect in Condensed Matter A New Route for Non-Dissipative Charge Transport at Room Temperature" 2nd International Workshop SUPERHYDRIDES, Towards Room Temperature Superconductivity: Hydrides and More, Orange, California, May 8-9 2017

- 25) **Invited Speaker:** "Chiral Magnetic Effect in Condensed Matters" <u>American Physical</u> <u>Society March Meeting</u> New Orleans, LA, March 13-17, 2017
- 26) **Invited Speaker:** "Discovery of Chiral Magnetic Effect in Condensed Matter" *International workshop on Chiral Matter -from quarks to Dirac semimetals*, Wako, Saitama, Japan December 5-8, 2016.
- 27) <u>Invited Plenary Speaker</u> "Application Driven Superconducting Wires Development and Future Prospects in US" 1st Asian ICMC-CSSJ 50th Anniversary Conference: The First International Cryogenic Materials Conference (ICMC) in Asia, and joint conference on 50-years celebration of the Cryogenics and Superconductivity Society of Japan (CSSJ). Kanazawa, Japan, Nov. 7-10, 2016.
- 28) Invited Speaker "Chiral Magnetic Effect in Condensed Matters" The Division of Nuclear Physics (DNP) Fall meeting in the American Physical Society Vancouver, BC Oct. 12-15 2016.
- 29) **Invited Speaker**: "Chiral Magnetic Effect in Condensed Matters" *XII Quark Confinement and the Hadron Spectrum*, Thessaloniki, Greece Aug. 29 – Sept. 3 2016.
- 30) Invited Speaker: "Transport Properties of Thermoelectric Materials near Quantum Critical Point (Dirac Semimetals)" 35th International Conference on Thermoelectrics (ICT/ACT 2016) Wuhan, China May 29 - June 2, 2016.
- 31) **Invited Speaker**: "Dirac semimetals and thermoelectric materials" *International Workshop on Thermoelectric Materials* Shanghai, China, May 27-28, 2016
- 32) Invited Speaker: "Ion irradiation effect on iron chalcogenide superconductors" 5th International Conference on Superconductivity and Magnetism (ICSM2016), Fethiye, Turkey, April 24 - 30, 2016
- 33) Invited Speaker: "Doubling in-field critical current in HTS coated conductors by a roll-to-roll ion irradiation process" 2016 MRS Spring Meeting & Exhibit, Phoenix, Arizona, March 28 - April 1, 2016
- 34) Invited Speaker: "Doubling in-field J_c in HTS coated conductors by a roll-to-roll ion irradiation process" ACS Electronic Materials and Applications 2016, Orlando, FL, Jan. 20-22 2016
- 35) Invited Speaker: "A Journey from Thermoelectrics to Dirac Semimetals" International Conference on Thermoelectric Materials Science (TMS2015), Nagoya University, Japan, November 9-11 2015
- 36) Invited Speaker: "Thermoelectrics, Superconductors, and Dirac Semimetals in Chalcogenides and Pnictides" 14th International Union of Materials Research Societies-International Conference on Advanced Materials (IUMRS-ICAM 2015), Jeju, Korea, October 25 -29, 2015
- 37) Invited Keynote Speaker: "Chiral Magnetic Effect in Condensed Matter Systems" Quark Matter 2015, XXV International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, Kobe, Japan, September 27 - October 3, 2015

- 38) Invited Speaker: "Atomic Displacement and Electronic Structure in the Charge-Compensated Filled Skutterudites" *International Conference on Thermoelectrics*, Dresden, Germany, June 28 – July 2, 2015
- 39) Invited Speaker: "Direct Measurements of Atomic Displacement in Thermoelectric Materials" - 11th International Conference on Ceramic Materials and Components for Energy and Environmental Applications, Vancouver, Canada, June 14 – 19, 2015
- 40) **Invited Speaker:** "Jc enhancement in 2G coated conductors by ion irradiation" *International Workshop on Coated Conductors for Applications (CCA)* 2014 Jeju, South Korea, Nov. 30 - Dec. 3 2014
- 41) Invited Keynote Speaker: "Understanding the Fundamental Science of Thermoelectric Materials – A Physicist's Perspective" 6th Chinese Thermoelectric Conference, Nanchang, China, Oct. 12-14 2104
- 42) <u>Invited Keynote Speaker</u>: "Recent progress on the RE-123 based SMES and Wind Turbine Projects in the United States" *The 15th IUMRS-International Conference in Asia (IUMRS-ICA 2014)* Fukuoka, Japan Aug. 24 – 30 2014.
- 43) Invited Speaker: "Copper Selenides Structures and Thermoelectric Properties" *The* 15th IUMRS-International Conference in Asia (IUMRS-ICA 2014) Fukuoka, Japan Aug. 24 – 30 2014.
- 44) Invited Speaker: "Superconductivity and Critical Current of Iron-Based Superconductors in High Field" <u>2014 APS March meeting</u>, Denver March 3-7 2014
- 45) **Invited Speaker:** "Iorn-based superconducting films" *MRS Spring Conference*, San Francisco, CA, April. 21-25, 2014
- 46) Invited Speaker: "Pushing the Tc-Jc-Hc2 Boundaries of Iron-Chalcogenide Superconductors" EMA 2014 meeting (Electronic Materials and Applications, American Ceramic Society), Orlando Florida, Jan. 22-24, 2014
- 47) Invited Speaker: "Superconductivity, Critical Current, and Nano-scaled Structural Defects in Iron-Based Superconductors" *MRS Fall Conference*, Boston, MA, Dec. 1-6, 2013
- 48) Invited Speaker: "Scalable, Non-equilibrium Processing of Thermoelectric Materials and Their Properties" 11th European Thermoelectric Conference, ESA/ESTEC Noordwijk, The Netherlands November 18-20 (2013)
- 49) Invited Speaker: "Copper selenides structural phase transition and thermoelectric properties" TEP-CH 2013International workshop: Synthesis and Function of Thermoelectric Materials, Dübendorf, Switzerland, September 16-19, 2013
- 50) **Invited Speaker:** "Development of SMES for large-scale energy management" *16th* US-Japan Workshop on Advanced Superconductors, Dayton, Ohio, July 9-12, 2013
- 51) Invited Speaker: "Pushing the Tc-Jc-Hc2 Boundaries of Iron-Chalcogenide Superconductors" 14th International Workshop on Vortex Matter in Superconductors, Nanjing, China, May 21 -28, 2013

- 52) **Invited Speaker:** "Superconductivity: Rising to The energy Challenges" *superconductivity symposium at the EMA 2013 meeting* (Electronic Materials and Applications, ACS) Orlando Florida, January 23-25, 2013
- 53) Invited Speaker: "Review of ARPA-E Superconductor Application Projects" 25th International Symposium on Superconductivity (ISS2012), Tokyo, Japan, Dec. 3-5, 2012
- 54) Invited Speaker: "Breaking the Thermal Conductivity Glass Limit" 2012 Materials Science & Technology Conference & Exhibition Pittsburgh, Pennsylvania, October 7-11, 2012.
- 55) Invited Speaker: "Long Term Superconducting Magnetic Energy Storage (SMES) for GRIDS, Air and Space Applications" *Applied Superconductivity Conference*, Portland, OR, Oct. 7-12 2012
- 56) Invited Speaker: "Superconductivity: Rising to the Energy Challenges" 2012 International Union of Materials Research Societies – International Conference on Electronic Materials Yokohama, Japan, Sept. 23-28 2012
- 57) Invited Speaker: "Breaking the Thermal Conductivity Glass Limit" 2012 International Union of Materials Research societies – International Conference on Electronic Materials Yokohama, Japan, Sept. 23-28 2012
- 58) Invited Speaker: "Status and Future Prospect of SMES for Grid Applications" 2012-Advanced Microgrid Concepts and Technologies Workshops, Washington DC, June 7-8, 2012
- 59) Invited Speaker: "The Future Prospects for Large Scale Applications of Fe-based Superconductors" International Conference on superconductivity and Magnetism, Istanbul, Turkey April 29-May 4 2012
- 60) **Invited Speaker:** "Superconductors for electricity transmission, storage, and generation" 2012 Spring Meeting of the New York Section of the APS, Binghamton, New York, April 20-21, 2012
- 61) **Invited Speaker:** "Films of Iron-Chalcogenide Superconductors" 2012 Villa Conference on Iron-based Superconductors, Orlando, FL, April 16-20, 2012
- 62) **Invited Speaker:** "Films of Iron-Chalcogenide Superconductors and Prospects for Large Scale Applications" *MRS Spring Meeting, San Francisco*, April 9-13, 2012
- 63) **Invited Speaker:** "Superconductivity and Thermoelectricity: Rising to the Energy Challenges" *International Symposium on Sustainability Science*, Hiroshima, Japan, March 8, 2012
- 64) Invited Speaker: "Superconducting Magnetic Energy Storage (SMES) Systems for GRIDS" Tenth EPRI Superconductivity Conference Tallahassee, Florida. October 11-13, 2011
- 65) **Invited Speaker:** "Superconductivity An Energy Carrier" *The International Conference on Novel Superconductivity*, Tainan, Taiwan Aug. 5-10 2011

- 66) Invited Speaker: "Magnetic/Superconducting Multilayer Oxides" *The International Conference on Physics Education and Frontier Physics*, Kaohsiung, Taiwan, Aug. 1 5, 2011
- 67) **Invited Speaker:** "Correlation between structure and thermoelectric properties of bulk high performance materials for energy conversion" *EMRS meeting and -MRS / MRS Bilateral Conference on Energy*, Nice, France May 9-13, 2011
- 68) **Invited Speaker:** "Superconducting magnetic energy storage (SMES) system for GRIDS" *MRS Spring Conference*, San Francisco, April 25 29, 2011
- 69) Invited Speaker: "Superconducting Iron-Chalcogenide Thin Films and Coated Conductors" *The 2011 Villa Conference on Iron Pnictide Superconductors* (VCIPS 2011) Las Vegas, April 21-25, 2011
- 70) Invited Speaker: "Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion" 2nd Thermoelectric Applications Workshop, San Diego, January 3 - 6, 2011
- 71) Invited Speaker: "Properties of Robust Thermoelectric Materials Prepared by Non-Equilibrium Synthesis Method for Energy Conversion" *3rd International Congress of Ceramics* in Osaka, Japan (organized by International Ceramic federation, Ceramic Society of Japan, American Ceramic Society) Nov. 14-18, 2010
- 72) Invited Speaker: "Superconducting Iron-Chalcogenide Thin Films and Coated Conductors" *Materials Science & Technology 2010 Conference & Exhibition*, Houston, TX, Oct. 17-21, 2010
- 73) Invited Speaker: "Growth and Properties of Thermoelectric Oxide Single Crystals and Thin Films" *The 16th International Conference on Crystal Growth (ICCG-16)* Beijing, China August 8-13, 2010
- 74) **Invited Speaker:** "Superconducting iron-chalcogenide films" *Applied Superconductivity Conference*, Washington DC, Aug. 1-6, 2010
- 75) **Invited Speaker:** "Properties of bulk non-equilibrium synthesized thermoelectric materials" *NSF Workshop on complex materials for energy applications*, Kellogg Center, Michigan State University, June 13 16, 2010
- 76) Invited Speaker: "New Avenues towards High Efficiency Thermoelectric Materials" ICAM International Workshop – Physics of Novel Energy Materials –Beijing, China May 31 – June 3, 2010
- 77) **Invited Speaker:** "Thermoelectricity and Topological Insulators" *International Workshop on High Performance Ceramics*, Hangzhou, China (May 27-30, 2010)
- 78) Invited Speaker: "Non-Equilibrium Synthesis and Characterization of Bulk High Performance Thermoelectric Materials for Power Generational and Cooling" 2009 DOE Thermoelectric Application Workshop San Diego, Sept. 29-Oct. 1 2009.
- 79) **Invited Speaker**: "Enhanced Power Factor and Reduced Lattice Thermal Conductivity in Bulk Thermoelectric Materials" *2nd International Symposium on*

Novel Thermoelectric Materials, Devices and Applications EMPA, Zurich, Switzerland, July 24, 2009.

- 80) **Invited Speaker**: "Metal-Insulator Transition and Thermoelectricity" *International Workshop of Relationships Between (Nano)structures and Thermoelectric properties*, CRISMAT Caen, France, July 22, 2009
- 81) Invited Speaker: "Novel Thermoelectric Materials" 8th Pacific rim conference on ceramic and glass technology, Vancouver, Canada. (organized by American Ceramic Society, ant Pac-Rim Country Ceramic Society) May 31-June 5, 2009.
- 82) Invited Speaker: "Novel Thermoelectric Materials: Basic Understanding and New Directions" *IUMRS (international Union of MRS) International Conference in Asia* 2008 (IUMRS-ICA2008) in Nagoya, Japan, (organized by IUMRS with MRS Japan). Dec. 9-13 2008
- 83) Invited Speaker: "Superconductivity and Thermoelectricity at the Interface of Perovskite Oxides" *Materials Science & Technology 2008 Conference*, Pittsburgh, (organized by American Ceramic Society) Oct. 5-9 2008.
- 84) **Invited Speaker**: "Thermoelectric Materials with Potential High Power Factors" *International Conference on Thermoelectrics*, Corvallis, OR, USA, (organized by International Thermoelectric Society) Aug. 3-7, 2008.
- 85) **Invited Speaker:** "Thermoelectricity and Topological Insulators" *International Workshop on High Performance Ceramics*, Hangzhou, China (May 27-30, 2010
- 86) Invited Speaker: "Fundamental Understanding of Novel Bulk Thermoelectric Materials" *EMRS Spring Conference* Strasbourg, France – (organized by European MRS Society) May 26-30 2008
- 87) Invited Speaker: "Oxides: A New Avenue for High Efficiency Thermoelectric Materials", 2nd International Symposium on Thermoelectric Materials for Power Conversion Applications (32nd International Conference on Advanced Ceramics and Composites) Daytona Beach, Florida (organized by American Ceramic Society) Jan. 27-Feb. 1, 2008
- 88) Invited Speaker: "New Avenues towards High Efficiency Thermoelectric Materials: Increasing the Power Factor First" *Materials Research Society (MRS) Fall conference* Boston, Ma, USA November 26 - 30, 2007
- 89) Invited Speaker: "Bulk Thermoelectric Materials With Nanoscale Substructure". 7th Pacific Rim Conference on Ceramic and Glass Technology, Shanghai, China. (organized by American, Australia, Japan, China, Korean Ceramic Society) Nov. 10-14, 2007.
- 90) **Invited Speaker:** "Path for improvements in superconducting materials by understanding the mechanism" *Materials Science & Technology 2007 Conference*, Detroit, by American Ceramic Society) Sept. 16-20 2007.

- 91) **Invited Speaker:** "New Directions for Bulk Thermoelectric Materials Research" *International Workshop on Electronic Structure and Functionality of Thermoelectric Materials* Reykjavik, Iceland July 30 July-August 1, 2007
- 92) **Invited Speaker:** "High-Efficiency Bulk Thermoelectric Materials With Nanoscale Substructure" *International Symposium on Nano-Thermoelectrics* Osaka, Japan, June 11-12 2007.
- 93) Invited Speaker: "Magnetic Coupling and Flux Pinning in Coated Conductors and Superconductor/Ferromagnetic Bilayers", *Materials Science and Technology 2006* Conference, Cincinnati, OH, Organized by ACerS, AIST, ASM, and TMS OCT 15-19, 2006.
- 94) **Invited Speaker:** "A new direction n thermoelectric research" 5th Joint Meeting of Chinese Physicists Worldwide and International Conference on Physics Education and Frontier Physics, Taipei, Taiwan, June 27-30, 2006.
- 95) **Invited Speaker:** "Layered Cobaltates with High Thermoelectric Power" *Materials Research Society (MRS) Fall Meeting*, Boston MA, Nov. 28-Dec. 2, 2005
- 96) Invited Speaker: "Layered Cobaltates with High Thermolectric Power" 6th Pacific Rim Conference on Ceramic and Glass Technology, organized by American Ceramic Society, Maui, Hawaii, USA September 11-16, 2005.
- 97) **Invited Speaker:** "Layered Cobaltates with High Thermoelectric Power" in The *Direct Energy Conversion Program Review and Workshop*, organized by DARPA and ONR, Coronado, CA. December 13-15, 2004.
- 98) Invited Speaker: "Testing Order Parameter Symmetry with c-Axis Twist Grain Boundary Junctions in Bi₂Sr₂CaCu₂O_{8+δ} Bicrystals" *First International Workshop on the Symmetry in Macroscopic Quantum States-Quantitative Experiments and Theory*, Augsburg, Germany. April 21-23, 2002.
- 99) **Invited Speaker:** "Bicrystal Grain Boundary Junctions and Order Parameter Symmetry" *International Conference on Superconductivity, CMR, and Related Materials, Novel Trends.* Giens, France, May 31- June 6, 2002.
- 100) Invited Speaker: "Superconducting and Microstructural Properties of MgB₂/Mg Nano-Composites" *Applied Superconductivity Conference*, Houston USA, Aug. 4-9 2002
- 101) Invited Speaker: "Bi₂Sr₂CaCu₂O_{8+δ} Bicrystal c-axis Twist Josephson Junctions-A New Phase-sensitive Probe to Superconducting Order Parameter Symmetry" <u>American Physical Society March Meeting</u>, Seattle, Washington, March 12-16, 2001.
- 102) Invited Speaker: "Electromagnetic and Microstructural Properties of Bulk Bicrystal Grain Boundaries in High Temperature Superconductors" 6th International Conference on Materials and Mechanisms of Superconductivity (M²S), and High Temperature Superconductivity, Houston, TX, USA Feb. 20 – Feb. 25, 2000.

- 103) **Invited Speaker:** "Electromagnetic and Microstructural Properties of Pure C-axis Twist Bi2212 Bicrystal Junctions" SPIE's International Conference Superconducting Superlattices II: Native and Artificial, San Diego, California, USA. July 19-24, 1998.
- 104) Invited Speaker: "Characteristics of grain boundaries in Bi(2212) bi-crystals"
 1997 Gordon Research Conference on Superconductivity", Ventura, California, USA. Jan 12-17, 1997.
- 105) Invited Speaker: "Fluctuations in the Magnetization of Quasi Two-Dimensional High-T_c Superconductors" <u>American Physical Society March Meeting</u>, Pittsburgh, PA, March 21-25, 1994
- 106) Invited Speaker: "Fluctuations in the Magnetization of High-T_c Superconductors" Workshop on the Statics and Dynamics of Vortices in Superconductors, Eugene, OR. USA Aug. 1 - 3, 1993.

Patents:

- 1) D. Kharzeeev and Q. Li "Quantum computing using chiral qubits" US patent #10,657,456 B1 (May 19, 2020)
- Martin W Rupich, Srivatsan Sathyamurthy, Qiang Li, Vyacheslav F Solovyov "Long length high temperature superconducting wires with uniform ion implanted pinning microstructures" European Patent 30020-345EP1 (April 2020).
- Martin W Rupich, Srivatsan Sathyamurthy, Qiang Li, Vyacheslav F Solovyov "Long length high temperature superconducting wires with uniform ion implanted pinning microstructures" Patent # US10242770B2 (March 26, 2019)
- 4) Vyacheslav Solovyov, Qiang Li "Radio frequency-assisted fast superconducting switch" Patent #US9837814B2 (Dec. 5, 2017)

Recent Invited Seminars and Colloquiums:

- 1) <u>Colloquium at Physics Department, University of Kansas</u> "Chiral Fermions in Condensed Matters and Quantum Computing", Lawrence, Kansas, April 15, 2019
- 2) <u>Colloquium at Physics Department, Iowa State University</u> "Chiral Magnetic Effect in Condensed Matters", Ames, Iowa, Oct. 15, 2018
- 3) <u>Condensed Matter Physics Seminar, Physics Department, University of Colorado</u> "Chiral Fermion Transport in Condensed Matters", Boulder, CO, Sept. 13, 2018
- 4) <u>Colloquium at Physics Department, Brown University</u> "Chiral Magnetic Effect in Condensed Matters", Brown University, Providence, R.I. February 26, 2018

- <u>Condensed Matter Physics Seminar, Physics and Astronomy Department, Stony</u> <u>Brook University</u> "Chiral Magnetic Effect in Condensed Matters", Stony Brook, NY, Sept. 27, 2017
- 6) <u>Physics Department Colloquium, University at Buffalo</u> "Chiral Magnetic Effect in Condensed Matters", Buffalo, NY, Sept. 21, 2017
- 7) <u>Physics Department Colloquium, University of Central Florida</u> "Chiral Magnetic Effect from Quark Gluon Plasma to Condensed Matters", Orlando, FL, Oct. 21, 2016
- 8) <u>Ulher Symposium, Physics Department, University of Michigan</u>, "A Journey from Superconductivity to Chiral Magnetic Effect" Ann Arbor, Michigan, Oct. 7, 2016
- Los Alamos National Laboratory, Condensed Matter Science Colloquium, "Chiral Magnetic Effect from Quark Gluon Plasma to Condensed Matters" Los Alamos, June 15, 2016
- 10) <u>Center for Quantum Matters Distinguished Lecture and Seminar of Physics</u> <u>Department, Stony Brook University</u> "Discovery of the Chiral Magnetic Effect in Condensed Matters", SBU, Simons Center Lecture Hall 102, Stony Brook University. Feb. 12, 2016
- 11) <u>Invited Lecture at Toronto Thermoelectric Summer School, University of Toronto,</u> "Fundamental Understanding of Thermoelectric Materials" Toronto, Canada, July 11 2014.

Publications:

Books and book chapters

- 1) "Thermoelectric Energy Conversion Theories and Mechanisms, Materials, Devices, and Applications" edited by R. Funahashi, L. Chen, M. Gao, E. Guilmeau, Q. Li, and Y. Miyazaki, Elsevier (2020).
- 2) "Microstructure of superconducting MgB₂" Y. Zhu, Q. Li, L. Wu, V.Volkov, G. Gu, and A.R. Moodenbaugh, a chapter in: *Studies of High Temperature Superconductors: Advances in Research and Applications*, V.38, pp. 423-442, A.V. Narlikar, Ed., Nova Science Publishers, Huntington, NY, 2002.
- "Effect of Vortex and Critical Fluctuations on the Magnetization of High T_c Superconductors" Q. Li, a chapter in the book "*Physical Properties of High Temperature Superconductivity V*", edited by D. M. Ginsberg, World Scientific, 1996).

Publications in peer-reviewed Journals:

(https://scholar.google.com/citations?user=cGZ5fwYAAAAJ&hl=en H-index 52) Google Scholar: total citation numbers > 12800

Corresponding author Q. Li underlined)

1) A. Gourgout, M. Leroux, J. Smirr, M. Massoudzadegan, R. Lobo, D. Vignolles, C. Proust, H. Berger, Q. Li, G. Gu, C. Homes, A. Akrap, and B. Fauqué, "Magnetic

freeze-out and anomalous Hall effect in ZrTe₅" *npj Quantum Materials* **7** 71 (July, 2022)

- 2) N. Aryal, X. Jin, Q. Li, M. Liu, A. M. Tsvelik, W. Yin, "Robust and tunable Weyl phases by coherent infrared phonons in ZrTe₅" *npj Computational Materials* **8**, 113 (2022). (May, 2022)
- C. Cho, P. Wang, F. Tang, S. Park, M. He, R. Lortz, G. Gu, Q. Li, and L. Zhang "Thermal transport properties and some hydrodynamic-like behavior in threedimensional topological semimetal ZrTe₅", *Phys. Rev.* B 105, 085132 (February, 2022)
- 4) **Q. Li** "Dynamics of chiral fermions in condensed matter systems" Qiang Li (to appear in the Proceedings of Nobel Symposium on Chiral Materials, Dec. 28, 2021)
- 5) J. M. Tranquada, M. P. M. Dean, and Q. Li, "Superconductivity from Charge Order in Cuprates" *J. Phys. Soc. Jpn.* **90**, 111002 (2021)
- 6) F. Tang, P. Wang, M. He, M. Isobe, G. Gu, Q. Li, L. Zhang, and J. H. Smet "Two-Dimensional Quantum Hall Effect and Zero Energy State in Few-Layer ZrTe₅", *Nano Lett.* 21, 14, 5998 (July, 2021)
- 7) A. Sapkota, T. C. Sterling, P. M. Lozano, Yangmu Li, Huibo Cao, V. O. Garlea, D. Reznik, Qiang Li, I. A. Zaliznyak, G. D. Gu, and J. M. Tranquada, "Reinvestigation of crystal symmetry and fluctuations in La₂CuO₄" *Phys. Rev.* B **104**, 014304 (July, 2021).
- 8) S. Galeski, T. Ehmcke, R. Wawrzyńczak, P. M. Lozano, K. Cho, A. Sharma, S. Das, F. Küster, P. Sessi, M. Brando, R. Küchler, A. Markou, M. König, P. Swekis, C. Felser, Y. Sassa, Q. Li, G. Gu, M. V. Zimmermann, O. Ivashko, D. I. Gorbunov, S. Zherlitsyn, T. Förster, S. S. P. Parkin, J. Wosnitza, T. Meng & J. Gooth, "Origin of the quasi-quantized Hall effect in ZrTe₅" *Nature Communications* **12**, 3197 (May, 2021).
- P. Kim, C. Huang, Y. Luan, L. Wang, Z. Liu, J. Park, L. Luo, P. M. Lozano, G. Gu, D. Turan, N. Yardimci, M. Jarrahi, I. E. Perakis, Z. Fei, Q. Li, and J. Wang,
 "Terahertz Nano-Imaging of Electronic Strip Heterogeneity in a Dirac Semimetal" ACS Photonics 8, 1873 (May, 2021)
- Z. Xie, X. Wei, S. Cao, Y. Zhang, S. Yan, G. D. Gu, Q. Li, and J. Chen "Electronelectron interactions and weak antilocalization in few-layer ZrTe₅ devices", *Phys. Rev.* B 103, 155408 (April, 2021)
- N. Aryal, X. Jin, Q. Li, A. M. Tsvelik, and W. Yin "Topological phase transition and phonon-space Dirac topology surfaces in ZrTe₅" *Phys. Rev. Lett.* **126**, 016401 (2021)
- 12) L. Luo, D. Cheng, B. Q. Song, L.-L. Wang, C. Vaswani, P. M. Lozano, G. Gu, C. Huang, R. J. H. Kim, Z. Liu, J.-M. Park, Y. Yao, K. M. Ho, I. E. Perakis, Q. Li and J. Wang "A Light-induced Phononic Symmetry Switch and Giant Dissipationless Topological Photocurrent in ZrTe₅" *Nature Materials* 20, 329–334 (2021)

News article from Stony Brook University

<u>News Release from Brookhaven National Laboratory</u> <u>News Release from DOE Ames Lab</u> <u>News article from Physics World</u> <u>Nature Materials' News and Views article</u>

- 13) P. Zhang, R. Noguchi, K. Kuroda, C. Lin, K. Kawaguchi, K. Yaji, A. Harasawa, M. Lippmaa, S. Nie, H. Weng, V. Kandyba, A. Giampietri, A. Barinov, Q. Li, G. D. Gu, S. Shin, and T. Kondo "Observation and control of the weak topological insulator state in ZrTe₅", *Nature Communications* **12**, 406 (Jan. 2021)
- 14) P. M. Lozano, G. D. Gu, J. M. Tranquada, and **Q. Li** "Experimental evidence that zinc impurities pin pair-density-wave order in La_{2-x}Ba_xCuO₄", *Phys. Rev. B* **103**, L020502 (Jan., 2021)
- S. Galeski, X. Zhao, R. Wawrzyńczak, T. Meng, T. Förster, P. M. Lozano, S. Honnali, N. Lamba, T. Ehmcke, A. Markou, G. Gu, W. Zhu, J. Wosnitza, C. Felser, G. F. Chen, J. Gooth "Unconventional Hall response in the quantum limit of HfTe₅" *Nature Communications* 11, 5926 (2020)
- 16) B. Salzmann, A. Pulkkinen, B. Hildebrand, T. Jaouen, S. N. Zhang, E. Martino, Q. Li, G. Gu, H. Berger, O. V. Yazyev, A. Akrap, and C. Monney ,"Nature of native atomic defects in ZrTe₅ and their impact on the low-energy electronic structure" *Phys. Rev. Materials* **4**, 114201 (November 2020).
- 17) A. Sapkota, Y. Li, B. L. Winn, A. Podlesnyak, G. Xu, Z. Xu, K. Ran, T. Chen, J. Sun, J. Wen, L. Wu, J. Yang, Q. Li, G. D. Gu, J. M. Tranquada "Electron-phonon coupling and superconductivity in the doped topological crystalline insulator" Physical Review B 102 (10), 104511 (2020)
- Y. Zhang, M. W. Rupich, V. Solovyov, Q. Li, A. Goyal "Dynamic behavior of reversible oxygen migration in irradiated-annealed high temperature superconducting wires" Scientific reports 10 (1), 1-8 (2020)
- T. Ozaki, L. Wu, G. Gu, Q. Li "Ion irradiation of iron chalcogenide superconducting films" Superconductor Science and Technology 33 (9), 094008 (2020)
- 20) C. Vaswani, L.-L. Wang, D. H. Mudiyanselage, Q. Li, P. M. Lozano, G. D. Gu, D. Cheng, B. Song, L. Luo, R. H. J. Kim, C. Huang, Z. Liu, M. Mootz, I. E. Perakis, Y. Yao, K. M. Ho, and J. Wang, "Light-Driven Raman Coherence as a Nonthermal Route to Ultrafast Topology Switching in a Dirac Semimetal" Phys. Rev. X 10, 021013 (2020)

Press Release: "New Discovery Helps Close the Gap Towards Optically-Controlled Quantum Computation" https://www.bnl.gov/newsroom/news.php?a=117158

- 21) **<u>O. Li</u>**, "Thermoelectrics with a twist" Nature Materials 18 (12), 1267-1268 (2019)
- 22) Y. Li, J. Terzic, P. G. Baity, Dragana Popović, G. D. Gu, Q. Li, A. M. Tsvelik and J. M. Tranquada1, "Tuning from failed superconductor to failed insulator with magnetic field" Science Advances 5, 6, eaav7686 (2019)

- D. Kharzeev and <u>Q. Li</u> "The Chiral Qubit: quantum computing with chiral anomaly" arXiv:1903.07133 US Patent 10,657,456 (2020)
- 24) C. Zhang, W. Zhao, S. Bi, C. Rouleau, J. Fowlkes, W. Boldman, G. Gu, Q. Li, G. Feng, P. Rack, "Low Temperature Charging Dynamics of Ionic Liquid and Its Gating Effect on FeSe_{0.5}Te_{0.5} Superconducting Films" ACS Applied Materials & Interfaces ACS Appl. Mater. Interfaces 11, 19, 17979 (2019)
- T. Ozaki, J. Jaroszynski, and <u>O. Li</u>, "Two-fold Reduction of J_c Anisotropy in FeSe_{0.5}Te_{0.5} Films Using Low-energy Proton Irradiation" IEEE Transactions on Applied Superconductivity 29 5, (Aug. 2019) (DOI: 10.1109/TASC.2019.2900615)
- 26) C. Zhang, X. He, H. Chi, R. Zhong, W. Ku, G. Gu, J. M. Tranquada, and <u>O. Li</u> "Electron and hole contributions to normal-state transport in the superconducting system Sn_{1-x}In_xTe" Phys. Rev. B **98**, 054503 (August 2018)
- 27) R. Zhong, J. A. Schneeloch, H. Chi, Q. Li, G. Gu, J. M. Tranquada "Evidence for magnetic-field-induced decoupling of superconducting bilayers in La_{2-x}Ca_{1+x}Cu₂O₆" Phys. Rev. B 97, 134520 (April 2018)
- 28) T. Ozaki, L. Wu, C. Zhang, W. Si, Q. Jie, <u>O. Li</u>, "Enhanced critical current in superconducting FeSe_{0.5}Te_{0.5} films at all magnetic field orientations by scalable gold ion irradiation" Superconductor Science and Technology **31**, 024002 (2018)
- 29) C. S. Lewis, D. Moronta, M. W. Terban, L. Wang, S. Yue, C. Zhang, Q. Li, A. Corrao, S. J. L. Billinge, and S. S. Wong "Synthesis, characterization, and growth mechanism of motifs of ultrathin cobalt-substituted NaFeSi₂O₆ nanowires" CrystEngComm 20, 223-236 (2018)
- 30) Y. Hu, N. Chen, J. P. Clancy, J. R. Salvador, C. Y. Kim, X. Shi, Q. Li, Y. J. Kim "Local structure investigation of Ga and Yb dopants in Co₄Sb₁₂ skutterudites" Physical Review B 96, 224107 (Dec. 2017)
- 31) V Solovyov, and **Q. Li** "Radio frequency-assisted fast superconducting switch", US Patent 9,837,814 (2017)
- 32) X. Shi, I. K. Dimitrov, T. Ozaki, G. Gu, and <u>Q. Li</u> "Quasi-two-dimensional fluctuations in the magnetization of La_{1.9}Ca_{1.1}Cu2O_{6+δ} superconductors" Physical Review B 96, 184519 (Nov. 2017)
- 33) S. Li, Y. Gan, J. Wang, R. Zhong, J. A Schneeloch, Z. Xu, W. Tian, M. B. Stone, S. Chi, M. Matsuda, Y. Sidis, Ph. Bourges, Q. Li, G. Gu, J. M. Tranquada, G. Xu, R. J. Birgeneau, J. Wen "Suppression of the antiferromagnetic order when approaching the superconducting state in a phase-separated crystal of K_xFe_{2-y}Se₂" Physical Review B 96, 094503 (Sept. 2017)
- 34) R. D. Zhong, J. A. Schneeloch, Q. Li, W. Ku, J. Tranquada, and G. Gu "Indium substitution effect on the topological crystalline insulator family (Pb_{1-x}Sn_x)_{1-y}In_yTe: Topological and superconductivity properties" Crystals 7, 55; doi:10.3390/cryst7020055 (Feb. 2017)

- 35) Z. G. Chen, R. Y. Chen, R. D. Zhong, J. A. Schneeloch, C. Zhang, Y. Huang, F. Qu, R. Yu, Q. Li, G. Gu, and N. L. Wang "Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe₅" PNAS 114, 819 (Jan. 2017), *doi/10.1073/pnas.1613110114*
- 36) H. Chi, C, Zhang, G, Gu, D. E. Kharzeev, X. Dai, and <u>Q. Li</u>, "Lifshitz transition mediated electronic transport anomaly in bulk ZrTe₅" New J. Phys. 19 015005 (Jan. 2017); doi:10.1088/1367-2630/aa55a3
- 37) <u>O. Li</u> and D. E. Kharzeev, "Chiral Magnetic Effect in Condensed Matter Systems" Nuclear Physics A 956 107–111(Dec. 2016); doi: 10.1016/j.nuclphysa.2016.03.055
- 38) C. Zhang, W. Si, and <u>O. Li</u>, "Doubling the critical current density in superconducting FeTe_{0.5}Se_{0.5} thin films by low temperature oxygen annealing" Appl. Phys. Lett. 109, 202601 (Nov. 2016); doi: 10.1063/1.4967879
- 39) T. Ozaki, L. Wu, C. Zhang, J. Jaroszynski, W. Si, J. Zhou, Y. Zhu, and <u>Q. Li</u>, "A route for a strong increase of critical current in nanostrained iron-based superconductors" Nat. Commun. 7, 13036 doi: 10.1038/ncomms13036 (Oct. 6, 2016).

Press Release: "Enhancing the Superconducting Properties of an Iron-Based Material" https://www.bnl.gov/newsroom/news.php?a=111878

- 40) H. Chi, G. Tan, M. G. Kanatzidis, Q. Li, and C. Uher "A low-temperature study of manganese-induced ferromagnetism and valence band convergence in tin telluride" Applied Physics Letters **108**, 182101 (2016); doi: 10.1063/1.4948523
- 41) M. W. Rupich, S. Sathyamurthy, S. Fleshler, Q. Li, V. Solovyov, T. Ozaki, U. Welp, W. K. Kwok, M. Leroux, A. E. Koshelev, D. J. Miller, K. Kihlstrom, L. Civale, S. Eley, and A. Kayani, "Engineered Pinning Landscapes for Enhanced 2G Coil Wire", IEEE Trans. on Appl. Supercond. 26, 6601904 (2016)
- <u>Q. Li</u>, D.E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A.V. Fedorov, R.D. Zhong, J.A. Schneeloch, G.D. Gu, T. Valla "Chiral Magnetic Effect in ZrTe₅" Nature Physics 12, 550–554 (Feb. 2016) DOI: 10.1038/NPHYS3648. arXiv:1412.6543 (2014)

Press Release: "Chiral Magnetic Effect Generates Quantum Current" https://www.bnl.gov/newsroom/news.php?a=111811

- 43) Y. Zou, X. Q, C. Zhang, S. Ma, W. Zhang, Y. Li, T. Chen, X. Wang, Z. Chen, D. Welch, P. Zhu, B. Liu, Q. Li, T. Cui, and B. Li "Discovery of Superconductivity in Hard Hexagonal ε-NbN" Sci. Rep. 6, 22330 (2015); doi: 10.1038/srep22330 (2016).
- 44) V. F. Solovyov and Q. Li "Application of active quenching of second generation wire for current limiting" Physica C **519** 130 (Dec. 2015)
- 45) X. Shi, J. Yang, L. Wu, J. R. Salvador, C. Zhang, W. L. Villaire, D. Haddad, J. Yang, Y. Zhu, and <u>O. Li</u> "Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites" Sci. Rep. 5, 14641; doi: 10.1038/srep14641 (Oct 12,2015)

- 46) I. K. Dimitrov, X. Zhang, V. F. Solovyov, O. Chubar, and <u>Q. Li</u>, "Rapid and Semianalytical Design and Simulation of a Toroidal Magnet Made With YBCO and MgB₂ Superconductors" IEEE Transactions on Applied Superconductivity, 25, No. 5, 5701208 (Oct. 2015)
- W. Si, C. Zhang, L. Wu, T. Ozaki, G. Gu, and <u>O. Li</u> "Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe" Appl. Phys. Lett. **107**, 092601 (Sept. 2015)
- 48) R. Y. Chen, S. J. Zhang, J. A. Schneeloch, C. Zhang, Q. Li, G. D. Gu, and N. L. Wang "Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe₅" Phys. Rev. B 92, 075107 (Aug. 2015)
- 49) R. Zhong, X. He, J. A. Schneeloch, C. Zhang, T. Liu, I. Pletikosi´c, T. Yilmaz, B. Sinkovic, Q. Li, W. Ku, T. Valla, J. M. Tranquada, and G. Gu "Surface-state-dominated transport in crystals of the topological crystalline insulator In-doped Pb_{1-x} Sn_xTe" Phys. Rev. B **91**, 195321 (May 29, 2015)
- 50) A. Tiano, G. C. Papaefthymiou, C. S. Lewis, J. Han, C. Zhang, Q. Li, C. Shi, A. M. Abeykoon, S. J. L. Billinge, E. Stach, J. Thomas, K. Guerrero, P. Munayco, J. Munayco, R. B. Scorzelli, P. Burnham, A. J. Viescas, and S. S. Wong, "Correlating Size and Composition-Dependent Effects with Magnetic, Mössbauer, and Pair Distribution Function Measurements in a Family of Catalytically Active Ferrite Nanoparticles", Chem. Mater., 27(10), 3572–3592 (May 6, 2015).
- 51) W. Si, C. Zhang, X. Shi, T. Ozaki, J. Jaroszynski, and <u>Q. Li</u>, "Grain boundary junctions of FeSe_{0.5}Te_{0.5} thin films on SrTiO₃ bi-crystal substrates" Appl. Phys. Lett. **106**, 032602 (Jan. 22, 2015)
- 52) J. Wang, R. Zhong, S. Li, Y. Gan, Z. Xu, C. Zhang, T. Ozaki, M. Matsuda, Y. Zhao, Q. Li, G. Xu, G. Gu, J. M. Tranquada, R. J. Birgeneau, and Jinsheng Wen, "Substitution of Ni for Fe in superconducting Fe_{0.98}Te_{0.5}Se0.5 depresses the normal-state conductivity but not the magnetic spectral weight" Phys. Rev. B **91**, 014501 (Jan. 5, 2015)
- 53) X. Shi, X. Shi, Y. Li, Y. He, L. Chen, and <u>Q. Li</u>, "Enhanced power factor of higher manganese silicide via melt spin synthesis method" J. of Appl. Phys. **116**, 245104 (Dec. 30, 2014)
- 54) Y. Sun, Y. Tsuchiya, S. Pyon, T. Tamegai, C. Zhang, T. Ozaki, and <u>O. Li</u>
 "Magneto-optical characterizations of FeTe_{0.5}Se_{0.5} thin films with critical current density over 1 MA.cm⁻²" Supercond. Sci. Technol. 28 015010 (Dec. 3, 2014)
- 55) H. Hu, Y. Zhu, X. Shi, Q. Li, R. Zhong, J. A. Schneeloch, G. Gu, J. M. Tranquada, and S. J. L. Billinge, "Nanoscale coherent intergrowth like defects in a crystal of

 $La_{1.9}Ca_{1.1}Cu_2O_{6+\delta}$ made superconducting by high-pressure oxygen annealing" Phys. Rev. B **90**, 134518 (Oct. 28, 2014)

- 56) Y. M. Dai, A. Akrap, J. Schneeloch, R. D. Zhong, T. S. Liu, G. D. Gu, Q. Li, and C. C. Homes, "Spectral weight transfer in strongly correlated Fe_{1.03}Te" Phys. Rev. B 90, 121114 (R) (Sept. 30, 2014)
- 57) V. F. Solovyov, L. Wu, M. Rupich, S. Sathyamurthy, X. Li, and Q. Li "Two-stage epitaxial growth of vertically-aligned SnO₂ nano-rods on (001) ceria" Journal of Crystal Growth. **408** 107-111 (Sept. 20, 2014)
- 58) H. Chi, H. Kim, J. Thomas, G. Shi, K. Sun, M. Abeykoon, E. Bozin, X. Shi, Q. Li, X. Shi, E. Kioupakis, A.Van der Ven, M. Kaviany, and C. Uher, "Low-temperature structural and transport anomalies in Cu₂Se" Phys. Rev. B 89, 195209 (May, 2014)
- 59) V. F. Solovyov, T. Ozaki, A. Atrei, L. Wu, A. Al-Mahboob, J. T. Sadowski, X. Tong, D. Nykypanchuk and Q. Li "Highly efficient solid state catalysis by reconstructed (001) Ceria surface" Sci. Rep. 4, 4627; DOI:10.1038/srep04627 (April 10, 2014).
- 60) J. Wen, S. Li, Z. Xu, C. Zhang, M. Matsuda, O. Sobolev, J.-T. Park, A. Christianson, E. Bourret-Courchesne, Q. Li, G. Gu, D. Lee, J. M. Tranquada, G. Xu, and R. J. Birgeneau "Enhanced low-energy magnetic excitations via suppression of the itinerancy in Fe_{0.98-z}Cu zTe_{0.5}Se_{0.5}" Phys. Rev. B 88, 144509 (Oct. 2013).
- 61) L. Wu, Q. Meng, C. Jooss, J. C. Zhang, H. Inada, D. Su, Q. Li, Y. Zhu "Origin of Phonon Glass–Electron Crystal Behavior in Thermoelectric Layered Cobaltate" Advanced Functional Materials DOI: 10.1002/adfm.201301098 23 5728 (2013).
- 62) R. D. Zhong, J. A. Schneeloch, X. Y. Shi, Z. J. Xu, C. Zhang, J. M. Tranquada, Q. Li, and G. D. Gu "Optimizing the superconducting transition temperature and upper critical field of Sn_{1-x}In_xTe" Phys. Rev. B (Rapid Communications) 88, 020505(R) (July 2013)
- 63) V. F. Solovyov, Q. Li "Fast high-temperature superconductor switch for high current applications" Appl. Phys. Lett. **103** 032603 (June 2013)
- 64) Z. Stegen, Su Jung Han, Jie Wu, A. K. Pramanik, M. Hücker, Genda Gu, Q. Li, J. H. Park, G. S. Boebinger, and J. M. Tranquada, "Evolution of superconducting correlations within magnetic-field-decoupled La_{2-x}Ba_xCuO₄ (x=0.095)", Phys. Rev. B 87, 064509 (2013)
- 65) W. Si, S. Han, X. Shi, S. N. Ehrlich, J. Jaroszynski, A. Goya, and <u>Q. Li</u>, "High current superconductivity in FeTe_{0.5}Se_{0.5} -coated conductors at 30 tesla" Nature Commun. 4:1347 doi: 10.1038/ncomms2337 (2013).

Press Release: "Breakthrough Iron-based Superconductors Set New Performance Records" https://www.bnl.gov/newsroom/news.php?a=111485

66) V. F. Solovyov, Q. Li, M. Rupich, S. Sathyamurthy, and X. Li, "New Pinning Strategies for Second-Generation Wires" IEEE Trans. on Appl. Supercon., **23**, 6600905, (2013)

- 67) V. F. Solovyov, I. Dimitrov, and Q. Li, "Growth of thick YBa₂Cu₃O₇ layers by barium fluoride" Supercond. Sci. and Technol. **26** 013001 (2013)
- 68) H. Liu, X. Shi, M. Kirkham, H. Wang, Q. Li, C. Uher, W. Q. Zhang, and L. D. Chen "Structure-transformation-induced abnormal thermoelectric properties in semiconductor copper selenide" Materials Letters **93** 121 (2013)
- 69) Q. Jie, S. J. Han, I. Dimitrov, J. M. Tranquada, and <u>Q. Li</u>, "Transport properties of stripeordered high Tc cuprates" Physica C **481**, 46–54 (Nov. 2012)
- 70) V. F. Solovyov, Q. Li, W. Si, B. Maiorov, T. Haugan, J. Driscoll, H. Yao, Q. X. Jia, and E. D. Specht, "Influence of defect-induced biaxial strain on flux pinning in thick YBa2Cu3O7 layers" Phys. Rev. B 86, 094511 (2012)
- Q. Jie, R. Hu, E. Bozin, A. Llobet, I. Zaliznyak, C. Petrovic; and <u>Q. Li</u>, "Electronic thermoelectric power factor and Metal Insulator transition in FeSb₂" Phys. Rev. B 86, 11521 (2012)
- 72) H. Z. Arham, C. R. Hunt, W. K. Park, J. Gillett, S. D. Das, S. E. Sebastian, Z. J. Xu, J. S. Wen, Z. W. Lin, Q. Li, G. Gu, A. Thaler, S. Ran, S. L. Bud'ko, P. C. Canfield, D. Y. Chung, M. G. Kanatzidis, and L. H. Greene, "Detection of orbital fluctuations above the structural transition temperature in the iron pnictides and chalcogenides" Phys. Rev. B 85, 214515 (2012)
- 73) C. Homes, M. Hucker, Q. Li, Z. J. Xu, J.S. Wen, G.D. Gu, and T. M. Tranquada, "Determination of the optical properties of La_{2-x}Ba_xCuO₄ for several dopings, including the anomalous x=1/8 phase" Phys. Rev. B 85, 134510 (2012).
- 74) H. L. Liu, X. Shi, F.F. Xu, L. L.Zhang, W. Q. Zhang, L. D. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, "Copper ion liquid-like thermoelectrics" Nature Materials 11 422-425 (May 2012)

Press Release: "Liquid-like Copper Ion Material Aids Conversion of Heat to Electricity" https://www.bnl.gov/newsroom/news.php?a=22930

- 75) T. A. Tyson, T. Yu, S. J. Han, M. Croft, G. D. Gu, I. K. Dimitrov, and Q. Li, "Local structure of the superconductor K_{0.8}Fe_{1.6+x}Se₂: Evidence of large structural disorder" Phys. Rev. B 85 024504 (2012)
- 76) J. Tao, D. Niebieskikwiat, Q. Jie, M. A. Schofield, L. J. Wu, Q. Li, and Y. M. Zhu, "Role of structurally and magnetically modified nanoclusters in colossal magnetoresistance PNAS, **108** 20941 (2012)
- 77) H. F. Hu, J. M. Zuo, M. Zheng, J. N. Eckstein, W. K. Park, L. H. Greene, J. S. Wen, Z. J. Xu, Z. W. Lin, Q. Li, and G. D. Gu, "Structure of the oxygen-annealed chalcogenide superconductor Fe_{1.08}Te_{0.55}Se_{0.45}O_x" Phys. Rev. B **85** 064504 (2012)
- 78) J. Wen, Q. Jie, Q. Li, M. Hücker, M. v. Zimmermann, S. Jung Han, Z. Xu, D. K. Singh, R. M. Konik, L. Zhang, Genda Gu, and J. M. Tranquada, "Uniaxial linear resistivity of superconducting La_{1.905}Ba_{0.095}CuO₄ induced by an external magnetic field" Phys. Rev. B 85, 134513 (2012)
- 79) J. Wen, Z. Xu, G. Xu, Q. Jie, M. Hücker, A. Zheludev, W. Tian, B. L. Winn, J. L. Zarestky, D. K. Singh, T. Hong, Q. Li, Genda Gu, and J. M. Tranquada, "Probing the connections between superconductivity, stripe order, and structure in La_{1.905}Ba_{0.095}Cu_{1-y}Zn_yO₄" Phys. Rev. B **85**, 134513 (2012)

- <u>Q. Li</u>, Weidong Si and Ivo K Dimitrov, "Films of iron chalcogenides superconductors", Rep. Prog. Phys. 74 124510 (Dec. 2011).
- 81) V. F. Solovyov, Q. Li, Y. Chen, A. Guevara, T. Shi, and V. Selvamanickam "Nucleation of ReBa₂Cu₃Ox (Re = rare-earth) during the high-rate metal-organic chemical vapor deposition growth" J. Appl. Phys. **110** 123904 (Dec. 2011).
- 82) S. J. Moon, C. C. Homes, A. Akrap, Z. J. Xu, J. S. Wen, Z.W. Lin, Q. Li, G. D. Gu, and D. N. Basov "Incoherent c-Axis Interplane Response of the Iron Chalcogenide FeTe_{0.55}Se_{0.45} Superconductor from Infrared Spectroscopy" Phys. Rev. Lett. **106**, 217001 (May 2011)
- J. Zhou, Q. Jie, L. Wu, I. Dimitrov, and <u>Q. Li</u> "Nanostructures and defects in nonequilibrium-synthesized filled skutterudite CeFe₄Sb₁₂" Journal of Material Research, 26 1842 (Aug. 2011)
- 84) W. Si, J. Zhou, Q. Jie, I. Dimitrov, V. Solovyov, P. D. Johnson, J. Jaroszynski, V. Matias, C. Sheehan, and <u>Q. Li</u>, "Iron-chalcogenide FeTe_{0.5}Se_{0.5} coated superconducting tapes for high field applications", Applied Physics Letters **98**, 262509 (July 2011).
- 85) H. Hu, J. Zuo, J. Wen, Z. Xu, Z. Lin, Q. Li, G. D. Gu, W. K. Park, and L. H. Greene, "Phase separation in the iron chalcogenide superconductor Fe_{1+y}Te Se_{1-x}" New Journal of Physics **13** 053031 (May 2011)
- 86) C. C.Homes, A. Akrap, J. Wen, Z. Xu, Z. Lin, Q. Li, and Genda Gu, "Optical properties of the iron-chalcogenide superconductor FeTe_{0.55}Se_{0.45}" J. of Phys. and Chem of Solids, 72 505, (May 2011)
- 87) M. E. Manley, S. Shapiro, Qiang Li, A. Llobet, and M. E. Hagen, "Lattice dynamical origin of peak thermoelectric performance in AgPb_mSbTe_{2+m} observed by inelastic neutron scattering" J. Appl. Phys. **109** 083722 (April 2011).
- 88) W. Liu, Q. Jie, Q. Li, Z. Chen, and B. Li, "Synchrotron X-ray study of filled skutterudites CeFe₄Sb₁₂ and Ce_{0.8}Fe₃CoSb₁₂" Physica B **406** 52–55 (Jan. 2011)
- 89) Vyacheslav F. Solovyov, Katherine Develos-Bagarinao, Q. Li, Wei-Dong Si, Li-Jun Wu, Juan Zhou, Harold Wiesmann, and Jie Qing, "Strong pinning in thick YBa₂Cu₃O₇ layers mediated by catalysis of a new long-period metastable cuprate phase", Journal of Applied Physics **108**, 113912 (Dec. 2010).
- 90) W. Si, Q. Jie, L. Wu, J. Zhou, G. Gu, P. D. Johnson, and <u>Q. Li</u> "Superconductivity in epitaxial thin films of Fe_{1.08}Te:O_x" Phys. Rev. B **81**, 092506 (2010)
- 91) I. K. Dimitrov, M. E. Manley, S. M. Shapiro, J. Yang, W. Zhang, L. D. Chen, Q. Jie, G. Ehlers, A. Podlesnyak, J. Camacho, and <u>Q. Li</u>, "Einstein modes in the phonon density of states of the single-filled skutterudite Yb_{0.2}Co₄Sb₁₂" Phys. Rev. B **81**, 17431 (2010)
- 92) V. Solovyov, K. Develos-Bagarinao, Q. Jie, J. Zhou, and Q. Li, "Nature of YBa₂Cu₃O₇ nucleation centers on ceria buffers" Supercond. Sci. Technol. **23** 014008 (2010)
- 93) J. Wen, G. Xu, Z. Xu, Z. Lin, Q. Li, Y. Chen, S. Chi, G. Gu, and J. M. Tranquada, "Effect of magnetic field on the spin resonance in FeSe_{0.5}Te_{0.5} as seen via inelastic neutron scattering" Phys. Rev. B 81, 100513(R) (2010)
- 94) C. C. Homes, A. Akrap, J. S. Wen, Z. J. Xu, Z. W. Lin, Q. Li, and G. D. Gu, "Coupling of spin and orbital excitations in the iron-based superconductor FeSe_{0.5}Te_{0.5}" Phys. Rev. B 81, 220502(R) (2010)

- 95) Z. Xu, J. Wen, G. Xu, Q. Jie, Z. Lin, Q. Li, S. Chi, D. K. Singh, G. Gu, and J. M. Tranquada, "Disappearance of static magnetic order and evolution of spin fluctuations in Fe_{1+δ}Se_xTe_{1-x}" Phys. Rev. B 82, 104525 (2010)
- 96) J. Wen, G. Xu, Z. Xu, Z. Lin, Q. Li, W. Ratcliff, G. Gu, and J. M. Tranquada, "Short-range incommensurate magnetic order near the superconducting phase boundary in Fe_{1+δ}Se_xTe_{1-x}" Phys. Rev. B 80, 104506 (2009)
- 97) <u>**Q. Li**</u>, Z. Lin, and J. Zhou, "Thermoelectric materials with potential high power factors for electricity generation" J. of Electronic Materials, **38** 1268 (2009)
- 98) X. Ke, C. Chen, J. Yang, L. Wu, J. Zhou, Q. Li, Y. Zhu, and P. R. C. Kent, "Microstructure and a Nucleation Mechanism for Nanoprecipitates in PbTe-AgSbTe₂" Phys. Rev. Lett. **103**, 145502 (2009)
- 99) W. Si, Z. Lin, Q. Jie, W. Yin, J. Zhou, G. Gu, P. D. Johnson, and <u>Q. Li</u>, "Enhanced superconducting transition temperature in FeSe_{0.5}Te_{0.5} thin films" Appl. Phys. Lett. 95, 052504 (2009)
- 100) V. F. Solovyov, D. Abraimov, D. Miller, Q. Li, and H. Wiesmann, "Correlation between YBa₂Cu₃O₇ nuclei density and the grain orientation of the CeO₂ buffered Ni–W template of the second-generation superconducting wire" J. Appl. Phys. **105** 113927 (2009)
- 101) T. A. Tyson, Z. Chen, Q. Jie, Q. Li, and J. T. Tu, "Local Structure of thermoelectric Ca₃Co₄O₉" Phys. Rev. B **79**, 024109 (2009)
- 102) W. Wang, Z. Wang, J. Tang, S. Yang, H Jin, G. Zhao, and Q. Li, "Seebeck Coefficient and thermal conductivity in doped C60" J. Renewable and Sustainable Energy, 1, 023104 (2009)
- 103) J. Tang, W. Wang, G. Zhao and Q. Li, "Colossal positive Seebeck coefficient and low thermal conductivity in reduced TiO₂" J. Phys. Condens. Matter **21** 205703 (2009)
- 104) L. Wu, J. Zheng, J. Zhou, Q. Li, J. Yang, and Y. Zhu, "Nanostructures and defects in thermoelectric AgPb₁₈SbTe₂₀ single crystal", J. Appl. Phys. **105**, 094317 (2009)
- 105) W. Wong-Ng, Z. Yang, Y. F. Hu, Q. Huang, N. Lowhorn, M. Otani, J. A. Kaduk, and Q. Li "Thermoelectric and structural characterization of Ba₂HoCu_{3-x}CoO_{6+y}", J. Appl. Phys. **105** 063706 (2009)
- 106) N. D. Lowhorn, Q. Jie, Q. Li, et. al, "Round-robin measurements of two candidate materials for a Seebeck coefficient Standard Reference Material" Appl. Phys A 94 231–234 (Rapid Communication) (2009)
- 107) J. M. Tranquada, G.D Gu, M Hücker, Q. Jie, H. J. Kang, R. Klingeler, Q. Li, N. Tristan, J.S. Wen, G. Y. Xu, Z. J. Xu, J. Zhou, M. v Zimmermannet, "Evidence for unusual superconducting correlations coexisting with stripe order in La_{1.875}Ba_{0.125}CuO₄" Phys. Rev. B 78, 174529 (2008)
- 108) V. F Solovyov, Q. Li, H. Wiesman n, P. Oleynikov, and Y. Zhu, "Strong influence of the YBa₂Cu₃O₇ grain size on critical current densities of thick YBa₂Cu₃O₇ layers made by a metal–organic deposition process" Supercond. Sci. Technol. **21** 125013 (2008)
- 109) H. J. Noh, H. Koh, S.-J. Oh, J.-H. Park, H.-D. Kim, J. D. Rameau, T. Valla, T. E. Kidd, P. D. Johnson, Y. Hu and Q. Li, "Spin-orbit interaction effect in the electronic structure of Bi₂Te₃ observed by angle-resolved photoemission spectroscopy" Europhysics Letters, **81** 57006 (2008).

- 110) <u>Q. Li</u>, M. Hucker, G. D. Gu, A. M. Tsvelik, and J. M. Tranquada, "Two-Dimensional Superconducting Fluctuations in Stripe-Ordered La_{1.875}Ba_{0.125}CuO₄" Phys. Rev. Lett. **99**, 067001 (2007)
- 111) **Q. Li** and Z. Ye, "Quantitative Magneto-Optical Imaging for Superconducting Thick Films and Tapes" Journal of Electronic Materials, **36**(10), 1288 (2007)
- 112) W. Wong-Ng, M. D. Vaudin, M. Otani, N. D. Lowhorn, Y. F. Hu, Q. Li, B. He, "Texture and phase analysis of a Ca₃CO₄O₉/Si (100) thermoelectric film" Journal of Applied Physics **102**, 033520 (2007)
- 113) Z. Yusof Z, B. O. Wells, T. Valla, P. D. Johnson, A. V. Fedorov, Q. Li, S. M. Loureiro, R. J. Cava, "Angle-resolved photoemission study of the metal-insulator transition in bismuth cobaltates" Phys. Rev. B 76 165115 (2007)
- 114) V. F. Solovyov, H. J. Wiesmann, L. Wu, Q. Li, L. D. Cooley, M. Suenaga, B. Maiorov, and L. Civale, "High critical currents by isotropic magnetic-flux-pinning centres in a 3 μmthick YBa₂Cu₃O₇ superconducting coated conductor" Supercond. Sci. Technol. **20** L20– L23 (2007)
- 115) G. D. Gu, M. Hucker, Y.-J. Kim, J. Tranquada, Q. Li, and A. R. Moodenbaugh, "Single Crystal Growth and Superconductivity of (La_{1-x}Sr_x)₂CaCu₂O₆₊₆", J. Crystal Growth 287, 318-322 (2006).
- 116) G. D. Gu, M. Hucker, Y.-J. Kim, J. Tranquada, H. Dabkowska, G. M. Luke, T. Timusk, B. G. Gaulin, Q. Li, and A. R. Moodenbaugh, "Single Crystal Growth and Superconductivity of (La_{1-x}Ca_x)₂CaCu₂O_{6+δ} ", Journal of Physics and Chemistry of Solids **67**, 431-434 (2006).
- 117) M. Suenaga and Q. Li, "Effects of magnetic substrates on ac losses of YBa₂Cu₃O₇ films in perpendicular ac magnetic fields" Appl. Phys. Lett, **88**, 262501 (2006)
- 118) C. C. Homes, S.V. Dordevic, G. D. Gu, Q. Li, T. Valla, and J. M. Tranquada, "Charge Order, Metallic Behavior, and Superconductivity in La_{2-x}Ba_xCuO₄ with x=1/8" Phys. Rev. Lett., 96, 257002 (2006).
- 119) D. A. Fischer, A. R. Moodenbaugh, Q. Li, G. D. Gu, Y. Zhu, J. W. Davenport, W. O. Welch, and H. Su, Soft X-Ray Absorption Spectroscopy of the MgB2 Boron K Edge in an MgB₂/Mg composite" Modern Physics Letter B 20 1-10 (2006).
- 120) K. H. Kang, L. H. Lewis, Y. Hu, Q. Li, A. R. Moodenbaugh, Y. S. Choi, "Magnetic and transport properties of MnBi/Bi nanocomposites", J. Appl. Phys. **99** 08N703 (2006).
- 121) V. F. Solovyov, H. J. Wiesmann, Q. Li, D. O. Welch and M. Suenaga, "Three and four μm thick YBa₂Cu₃O_{7-δ} layers with high critical-current densities on flexible metallic substrates by the BaF₂ process" J. Appl. Phys. **99** 013902 (2006)
- 122) Z. Ye, <u>Q. Li</u>, W. D. Si, M. Suenaga, and P. D. Johnson, "Response of fractal penetration of magnetic flux to disorder landscape in superconducting films" Phys. Rev. B 72 134514 (2005)
- 123) Z. Ye, <u>Q. Li</u>, W. D. Si, Y. Zhu, and P. D. Johnson, "Enhanced Flux Pinning in YBa₂Cu₃O_{7-δ} films by Nano-Scaled Substrate Surface Roughness" Appl. Phys. Lett. 87 122502 (2005)
- 124) Y. F. Hu, E. Sutter, W. Si, and <u>Q. Li</u>, "Thermoelectric properties and microstructure of caxis oriented Ca₃Co₄O₉ thin films on glass substrates" Appl. Phys. Lett. **87** 171912 (2005)
- 125) Y. F. Hu, W. D. Si, E. Sutter, and <u>Q. Li</u>, "In situ growth of c-axis oriented Ca₃Co₄O₉ thin films on Si" Appl. Phys. Lett. **86** 082103 (2005)

Press Release: "Scientists Grow Thermoelectric Cobaltate Thin Films on Silicon" https://www.bnl.gov/newsroom/news.php?a=110281

- 126) <u>Q. Li</u>, M. Suenaga, S. R. Foltyn and H. Wang, "J_c(H) Crossover in YBCO Thick Films and Bi2223/Ag Tapes with Columnar Defects" IEEE trans. on Applied Superconductivity, 15, 2787 (2005)
- 127) Z. Ye, <u>Q. Li</u>, W. D. Si, and P. D. Johnson, "Critical Current Density Enhancement in YBa₂Cu₃O₇₋₈ Thin Films by Twin Domains of LaAlO₃ Substrates" IEEE trans. on Applied Superconductivity, **15**, 3013 (2005)
- 128) Z. Ye, <u>Q. Li</u>, Y. F. Hu, A. V. Pogrebnyakov, Y. Cui, X. X. Xi, J. M. Redwing, and Qi Li, "Magneto-Optical Imaging Studies of Flux Propagation in Ultra-Pure and Carbon-Doped MgB2 Thin Films" IEEE trans. on Applied Superconductivity, **15**, 3273 (2005)
- 129) M. Suenaga, J. R. Clem and S. R. Foltyn, "A new measurement method for ac losses in circular disks of superconducting films in perpendicular magnetic fields," IEEE trans. on Applied Superconductivity, 15, 2812 (2005).
- 130) K. H. Kang, L. H. Lewis, Y. Hu, Q. Li, A. R. Moodenbaugh, Y. S. Choi, "Large magnetoresistance in rapidly solidified bismuth", J. Appl. Phys. **98** 73704 (2005).
- 131) Z. Ye, Q. Li, Y. F. Hu, A. V. Pogrebnyakov, Y. Cui, X. X. Xi, J. M. Redwing, and Qi Li, "Electron scattering dependence of the dentritic magnetic instability in MgB₂", Appl. Phys. Lett, 85, 5284 (Nov. 2004)
- 132) Z. X. Ye, Qiang Li, M. Suenaga, and V. F. Solovyov, "Magneto-optical studies of YBCO thick films in the critical state", in the book of "Magneo-Optical Imaging" T. H. Johansen, Ed., (Kluwer, London, p175-182, May 2004).
- 133) L. D. Cooley, Kyongha Kang, R. F. Klie, Qiang Li, A. M. Moodenbaugh, and R. L. Sabatini, "Formation of MgB₂ at low temperatures by reaction of Mg with B₆Si" Supercon. Sci. and Tech., **17**, 942, 2004
- 134) <u>Q. Li</u>, M. Suenaga, Z. Ye, S. R. Foltyn, and H. Wang, "Crossover of thickness dependence of critical current density J_c(T, H) in YBa₂Cu₃O₇ thick films" Appl. Phys. Lett. 84, 3528 (2004).
- 135) M. Suenaga, Q. Li, Z. Ye, S. R. Foltyn, M. Iwakuma, K. Toyota, F. Funaki, S. R. Foltyn, H. Wang, and J. R. Clem, "Thickness dependence of ac losses in circular disks of YBa₂Cu₃O₇ films in perpendicular magnetic fields" J. Appl. Phys. **95**, 208 (2004).
- 136) M. Suenaga, V. F. Solovyov, Q. Li, Z. Ye, and H. J. Wiesmann, M. Iwakuma, M. Fukui, K. Toyota, and F. Funaki, T. H. Johansen, D. V. Shantsev, and J. R. Clem, "ac losses in circular disks of thin YBa₂Cu₃O₇ films in perpendicular magnetic fields" J. Appl. Phys. 94, 502 (2003)
- 137) <u>Q. Li</u>, G. D. Gu, and Y. Zhu, "High critical current density in robust MgB₂/Mg nanocomposites" Appl. Phys. Lett., vol. 82, 2103, (2003)
- 138) Z. Ye, Q. Li, G. D. Gu, J. J. Tu, W. N. Kang, Eun-Mi Choi, Hyeong-Jin Kim, and Sung-Ik Lee, "Magneto-Optical Studies of Critical States in c-axis Oriented MgB₂ Thin Film and Bulk MgB2/Mg Nano-composites" IEEE trans on Appl. Supercon. 13, 3722, (2003)
- 139) <u>Q. Li</u>, L. Wu, Y. Zhu, A. R. Moodenbaugh, G. D. Gu, M. Suenaga, Z. X. Ye, and D. A. Fischer G. D. Gu, and Y. Zhu, "Comparative Studies of MgB₂/Mg Nano-Composites and Press-Sintered MgB₂ Pellets" IEEE trans on Appl. Supercon. **13**, 3051, (2003)

- 140) C. C. Homes, J. M. Tranquada, Q. Li, A. Moodenbaugh, V. Prebeines and D. J. Buttrey,
 "Mid-infrared conductivity from Mid-gap States associated with charge stripes" Phys. Rev. B 67, 184516 (2003)
- 141) C. C. Homes, Q. Li, P. Fournier, and R. L. Greene, "Infrared optical properties of Pr₂CuO₄" Phys. Rev. B **66**, 144511 (2002).
- 142) Y. Zhu, A.R. Moodenbaugh, T. Vogt, Q. Li, D.A. Fischer, et.al. "Unraveling the Symmetry of the Hole States near the Fermi Level in the MgB₂ Superconductor" Phys. Rev. Lett. **88**, 247002, (2002).
- 143) S. H. Lee. J. Tranquada, K. Yamada, D. J. Buttey, Q. Li, S. W. Cheong, "Freezing of a Stripe Liquid" Phys. Rev. Lett. 88 126410, (2002)
- 144) T. Valla, P. D. Johnson, Z. Yusof, B. Wells, Q. Li, S. M. Loureiro, R. J. Cava, M. Mikami, Y. Mori, M. Yoshimura, and T. Sasaki, "Coherence-incoherence and dimensional crossover in layered strongly correlated metals", Nature 417 627 (2002).
- 145) Z. Yusof, B. O. Wells, T. Valla, P. D. Johnson, Q. Li, C. Kendziora, Sha Jian, and D. G. Hinks, "Quasiparticle Liquid in the Highly Overdoped Bi₂Sr₂CaCu₂O₈₊₆" Phys. Rev. Lett. 88, 167006 (2002).
- 146) P. D. Johnson, T. Valla, A. Fedorov, Z. Yusof, B.O. Wells, Q. Li, A.R. Moodenbaugh, G.D. Gu, N. Koshizuka, C. Kendziora, Sha Jian, and D.G. Hinks, "Doping and Temperature Dependence of the Mass Enhancement Observed in the Cuprate Bi₂Sr₂CaCu₂O_{8+δ}" Phys. Rev. Lett. **87**, 77007, (2001)
- 147) <u>Q. Li</u>, Y. Zhu, V. F. Solovyov, H. J. Wiesmann, and M. Suenaga, "Superconducting and Microstructural Properties of [001] Tilt YBa₂Cu₃O_{7-δ} Thick Film Grain Boundaries on SrTiO₃ Bicrystal Substrates" IEEE Tran. on Applied Superconductivity **11** 3876, (2001)
- 148) X. H. Zeng, A. Sukiasyan, X. X. Xi, Y. F. Hu, E. Wertz, Qi, Li, W. Tian, H. P. Sun, X. Q. Pan, J. Lettieri, D. G. Schlom, C. O. Brubaker, Z. Liu, Q. Li, "Superconducting Properties of Nanocrystalline MgB₂ Thin Film Made by an *in situ* Annealing Process." *Appl. Phys. Lett.* **79**, 1840 (2001)
- 149) Y. Zhu, L. Wu, V. Volkov, Q. Li, G. Gu, A. R. Moodenbaugh, M. Malac, M. Suenaga, J. Tranquada, "Microstructure and Structural Defects in MgB₂ Superconductors". *Physica* C, 356, 239, (2001)
- 150) <u>Q. Li</u>, Y. N. Tsay, M. Suenaga, G. D. Gu and N. Koshizuka, "A Direct Probe of Superconducting Order Parameter Symmetry in Bi₂Sr₂CaCu₂O_{8+δ} Using Bicrystal c-axis Twist Josephson Junctions" *Physica* C, **341-348**, 1407, (2000)
- 151) Q. Li, Y. N. Tsay, M. Suenaga, Y. Zhu, G. D. Gu and N. Koshizuka, "Electromagnetic and Microstructural Properties of Bulk Bicrystal Grain Boundaries in Bi₂Sr₂CaCu₂O_{8+δ} Superconductors" *Physica* C, 341-348, 1665, (2000)
- 152) T. Valla, A. V. Fedorov, P. D. Johnson, Q. Li, G. D. Gu, and N. Koshizuka, "Temperature Dependent Scattering Rates at the Fermi Surface of Optimally Doped Bi₂Sr₂CaCu₂O₈₊₈." *Phys. Rev. Lett.* 85, 828, (2000)
- 153) R. C. Budhani, Chaitali Roy, L. H. Lewis, Q. Li, A. R. Moodenbaugh, "Magnetic Ordering and Granularity Effects in La_{1-x}Ba_xMnO₃" *J. of Applied Physics* vol. **87**, 2490, (2000)
- 154) Q. Li, Y. N. Tsay, Y. Zhu, M. Suenaga, G. D. Gu and N. Koshizuka, "Supercurrent Transport across [001] Twist Grain Boundaries in Bi₂Sr₂CaCu₂O_{8+δ} Bicrystals" Superconductor Science and Technology, **12** 1046, (1999)

- 155) Q. Li, Y. N. Tsay, R. A. Klemm, M. Suenaga, G. D. Gu and N. Koshizuka,
 "Bi₂Sr₂CaCu₂O_{8+δ} c-Axis Twist Josephson Junctions: A New Phase-Sensitive Test of Order Parameter Symmetry" *Phys. Rev. Lett.*. 83, 4160, (1999)
- 156) T. Valla, A. V. Fedorov, P. D. Johnson, b. o. Wells, S. L. Hulbert, Qiang Li, G. D. Gu, and N. Koshizuka, "Evidence for Quantum Critical Behavior in the Optimally Dopped Cuprate Bi₂Sr₂CaCu₂O₈₊₆" *Science*. 285, 2110, (1999)
- 157) Q. Li, Y. N. Tsay, Y. Zhu, M. Suenaga, G. Wirth, G. D. Gu, and N. Koshizuka, "Comparative Studies of Irreversibility Lines and Critical Current in Heavy Ion Irradiated Bi₂Sr₂CaCu₂O_{8+δ} Bicrystals with [001] Twist Grain Boundaries" *IEEE transaction on Applied Superconductivity*, 9, 2026, (1999)
- 158) Y. N. Tsay, Q. Li, Y. Zhu, M. Suenaga, K. Shibutani, I. Shigaki, and R. Ogawa, "Transport Properties of Bi₂Sr₂CaCu₂O_{8+δ} Bicrystals with [100] Tilt Grain Boundaries" *IEEE transaction on Applied Superconductivity*, 9, 1622, (1999)
- 159) T. Chiba, Q. Li, S. P. Ashworth, M. Suenaga, and P. Haldar "Angular dependence of ac losses at power frequencies for a stack of Bi2223/Ag tapes", *IEEE transaction on Applied Superconductivity*, 9, 2143-2146, (1999)
- 160) A. V. Fedorov, T. Valla, P. D. Johnson, Qiang Li, G. D. Gu, and N. Koshizuka, "Temperature Dependent Studies of Optimally Doped Bi₂Sr₂CaCu₂O₈₊₆" *Phys. Rev. Lett.*. 82, 2179, (1999)
- 161) Q. Li, Y. N. Tsay, M. Suenaga, G. Wirth, G. D. Gu, and N. Koshizuka, "Superconducting Transport Properties of 2.2 GeV Au-Ion Irradiated c-Axis Twist Bi₂Sr₂CaCu₂O_{8+δ} Bicrystals" Appl. Phys. Lett. 74, 1323, (1999)
- 162) T. Chiba, Y. L. Wang, R. L. Sabatini, Qiang Li, L. J. Wu, M. Suenaga, P. Haldar, K. Noto, "Enhanced Critical Current in Bi₂Sr₂CaCu₂O₁₀/Ag Tapes by a Low-Temperature Intermediate Heat Treatment" *Physica C* **308**, 40 (1998)
- 163) K. Krishana, N. P. Ong, Q. Li, G. D. Gu, N. Koshizu, "Evidence for a new transition in Bi₂Sr₂CaCu₂O₈ from quasi-particle heat transport in field" Journal of Physics and Chemistry of Solids **59** (10-12): 2088-2090 (1998)
- 164) Y. Zhu, Qiang Li, Y. N. Tsay, and M. Suenaga, "Structure Origin of Robust Superconducting Behavior at Twist Boundaries in Bi₂Sr₂CaCu₂O₈₊₈" *Phys. Rev.* B 57, 8601 (1998)
- 165) <u>Q. Li</u>, M. Suenaga, T. Kaneko, K. Sato, and Ch. Simon, "Collapse of Irreversibility Field of Superconducting Bi₂Sr₂Ca₂Cu₃O_{10+δ}/Ag Tapes with Columnar Defects" (*Appl. Phys. Lett.***71**, 1561, (1997).
- 166) Y. Zhu, L. Wu, J. L. Wang, Q. Li, Y. N. Tsay, and M. Suenaga, "Structural Characterizations of Bi₂Sr₂CaCu₂O_{8+δ} Twist Boundaries Using Advanced Transmission Electron Microscopy" *Microsc. Microanal* 3, 423, (1997).
- 167) K. Krishana, N. P. Ong, Q. Li, and G. D. Gu, "Plateaus Observed in the Field Profile of the Thermal Conductivity in the Superconductor Bi₂Sr₂CaCu₂O₈" *Science*, **277**, 83, (1997)
- 168) Q. Li, Y. N. Tsay, Y. Zhu, M. Suenaga, G. D. Gu, and N. Koshizuka, "Electromagnetic Properties of High Angle [001] Twist Grain Boundaries in Bi₂Sr₂CaCu₂O_{8+δ} Bicrystals," *IEEE transaction on Applied Superconductivity*, 7, 1584 (1997).

- 169) <u>Q. Li</u>, Y. N. Tsay, M. Suenaga, G. D. Gu, and N. Koshizuka, "Superconducting Coupling along the c-Axis of the [001] Twist Grain Boundaries in Bi₂Sr₂CaCu₂O_{8+δ} Bicrystals," *Physica* C, 282, 1495, (1997).
- 170) <u>Q. Li</u>, Y. N. Tsay, Y. Zhu, M. Suenaga, G. D. Gu, and N. Koshizuka, "Large *T_c* Depression at Low Angle [100] Tilt Grain Boundaries in Bulk Bi₂Sr₂CaCu₂O_{8+δ} Bicrystals" *Appl. Phys. Lett.*, **70**, 1164, (1997).
- 171) Q. Li, Y. Fukumoto, Y. Zhu, M. Suenaga, T. Kaneko, K. Sato, and Ch. Simon, "Effect of Columnar Defects on Reversible Magnetization of Superconducting Bi₂Sr₂Ca₂Cu₃O_{10+δ}". *Phys. Rev.* B, *Rapid Communications* vol. 54, R778 (1996).
- 172) Y. Fukumoto, Y. Zhu, Qiang Li, H. J. Wiesmann, M. Suenaga, T. Kaneko, K. Sato, K. Shibutani, T. Hase, S. Hayashi, Ch. Simon "The Dimensionality and Pinning of Magnetic Vortices in the c-axis Aligned Bi₂Sr₂CaCu₂O_{8+δ} and (Bi,Pb)₂Sr₂Ca₂Cu₃O_{10+δ}/Ag Tapes Irradiated by 5.8 Gev Pb Ions" *Phys. Rev.* B, **54**, 10210, (1996).
- 173) T. Jacobs, S. Sridhar, Qiang Li, G. D. Gu, and N. Koshizuka. "In-Plane and c-Axis Microwave Penetration Depth of Bi₂Sr₂CaCu₂O₈₊₆ Crystals" *Phys. Rev. Lett.*, **75**, 4516, (1995)
- 174) Q. Li, H. J. Wiesmann, M. Suenaga, L. Motowidlow, and P. Haldar, "Vortex Solid-Liquid Phase Transition, J_c Limiting Factor, and Vortex Pinning Force in Superconducting Bi₂Sr₂Ca₂Cu₃O₁₀/Ag Tape" (*IEEE transaction on Applied Superconductivity*, 5, 1713, (1995).
- 175) K. Fukumoyo, Qiang Li, Y. L. Wang, M. Suenaga, and P. Haldar, "Very Low Level Residual Resistivity in Silver-Shealthed (Bi,Pb)₂Sr₂Ca₂Cu₃O₁₀/Ag Tapes " *Appl. Phys. Lett*., 66, 1827, (1995)
- 176) <u>Q. Li</u>, H. J. Wiesmann, M. Suenaga, L. Motowidlow, and P. Haldar, "Low temperature vortex state of high-T_c superconductor Bi₂Sr₂Ca₂Cu₃O₁₀ in high magnetic fields" *Phys. Rev.* B, **51**, 701, (Rapid Communication) (1995)
- 177) <u>**Q. Li**</u>, H. J. Wiesmann, M. Suenaga, L. Motowidlow, and P. Haldar, "Vortex Phase Diagram and Jc limiting Factor in High-T_c Bi₂Sr₂Ca₂Cu₃O₁₀/Ag Superconducting Tape", *Appl. Phys. Lett.*, **66**, 637, (1995)
- 178) J. Tang, Q. Li and K. A. Gschneidner Jr "Superconductivity in LaCd₂". *Journal of Alloys and Compounds*, **224**, 249 (1995).
- 179) M. Suenaga, Q. Li, Y. Fukumoto, K. L. Sabatini, Y. L. Wang, H. J. Wiesmann, L. Motowildo, and P. Hadlar "Some Aspects of Critical Currents in Ag sheathed Bi₂Sr₂Ca₂Cu₃O₁₀ Composites: A Summary" in *J. Advances in Superconductivity*, (Springer-Verlag, Tokyo, 1995).
- 180) <u>Q. Li</u>, M. Suenaga, G. D. Gu, and N. Koshizuka, "Angular Dependence of Fluctuation-Induced Magnetization of Single Crystalline Bi₂Sr₂CaCu₂O₈ near T_c" *Phys. Rev.* B, **50**, 6489, (1994)
- 181) <u>Q. Li</u>, H. J. Wiesmann, M. Suenaga, L. Motowidlow, and P. Haldar, "Observation of Vortex Glass to Liquid Transition in the High-T_c Superconductor Bi₂Sr₂Ca₂Cu₃O₁₀" *Phys. Rev.* B, 50, 4256, (Rapid Communication) (1994)
- 182) <u>Q. Li</u>, M. Suenaga, Qi. Li, T. Freltoft, "Sample Size Effect on the Determination of the Irreversibility line of High-T_c Superconductors" *Appl. Phys. Lett.*, **62** 250, (1994).

- 183) <u>**Q. Li**</u>, K. Shibutani, M. Suenaga, I. Shigaki, and R. Ogawa, "Reversible Magnetizations of $Bi_2Sr_2Ca_1Cu_2O_8$ Single Crystals at 30 K \leq T < T_c" *Physica* B, **194**, 1501, (1994).
- 184) L. Bulaevslii, J. H. Cho, M. P. Maley, P. Kes, Qiang Li, M. Suenaga, and M. Ledvij, "Effect of Quantum Fluctuations of Vortices on the Reversible Magnetization in high-T_c superconductors" *Phys. Rev.* B **50** 3507-3510 (1994)
- 185) M. Suenaga, Qiang Li, K. L. Sabatini, S. Hayoashi, R. Ogawa, Y. Kawate, L. Motowildo, and P. Hadlar "A Mechanism for Resistive Dissipation in Ag sheathed Bi₂Sr₂Ca₁Cu₂O₈ and Bi₂Sr₂Ca₂Cu₃O₁₀" *J. Advances in Superconductivity*. Vol. **IV**, p. 541, *edited* by Fujita and Y. Shiohara, (Springer-Verlag, Tokyo, 1994)
- 186) K. Kishio, J. Shimoyama, T. Kimura, Y. Kotaka, K. Kitazawa, Qiang Li, M. Suenaga, "Carrier Doping and Interlayer Coupling in HTCS Single Crystal" *Physica C*, 235-240, 2775, 1994.
- 187) S. Oxx, Balam A. Wilemsen, Qiang Li, K. Shibutani, I. Shigaki, R. Ogawa, And S. Shridar, "Penetration Depth and Microwave Surface Resistance of Bi₂Sr₂Ca₁Cu₂O₈ single Crystals" *Physica C*, 235-240. 889, (1994).
- 188) <u>Q. Li</u>, M. Suenaga, L. Bulaevslii, T. Hikata, and K. Sato, "Thermodynamics of Superconducting Bi₂Sr₂Ca₂Cu₃O₁₀ in the Critical fluctuation region near H_{c2}(T) line", *Phys. Rev.* B, 48, 13865, (1993).
- 189) <u>Q. Li</u>, K. Shibutani, M. Suenaga, I. Shigaki, and R. Ogawa, "Critical fluctuations in the Magnetization of Bi₂Sr₂Ca₁Cu₂O₈ near H_{c2}(T) line" *Phys. Rev. B*, 48, 9877, (1993).
- 190) <u>**Q. Li**</u>, M. Suenaga, T. Kimura, and K. Kishio, "Reversible Magnetic Properties of $(La_{1-x}Sr_x)_2CuO_4$ Single Crystals with $0.05 \le x \le 0.10$ " *Phys. Rev.* B, **47** 11384, (1993).
- 191) **Q. Li**, M. Suenaga, T. Kimura, and K. Kishio, "Magnetic Penetration Depth of (La_{1-x}Sr_x)₂CuO₄ Single Crystals" *Phys. Rev.* B, **47** 2854 (1993).
- 192) <u>Q. Li</u>, M. Suenaga, T. Hikata, and K. Sato, "Large Magnetic Field Induced Fluctuation Effects in Superconducting Bi₂Sr₂Ca₂Cu₃O₁₀ Tape" *IEEE Transactions on Applied Superconductivity*, Vol. **3**, 1240, (1993).
- 193) K. Shibutani, Qiang Li, M. Suenaga, L. Motowildo, and P. Haldar, "Limiting Factors for Critical Current Densities in Bi₂Sr₂Ca₂Cu₃O₁₀-Ag Composite at Elevated Temperatures" *Appl. Phys. Lett.*, 63 3515, (1993)
- 194) S. C. Sanders, J. Sok, D. K. Finnemore, and Q. Li, "Thermally activated hopping of a single Abrikosov vortex" *Phys. Rev.* B **47** 8969, (1993).
- 195) <u>Q. Li</u>, M. Suenaga, T. Hikata, and K. Sato, "Two Dimensional Fluctuations in Magnetization of Bi₂Sr₂Ca₂Cu₃O₁₀" *Phys. Rev.* B, 46, 5857, (Rapid Communication) (1992)
- 196) <u>Q. Li</u>, M. Suenaga, J. Gohng, D. K. Finnemore, T. Hikata, and K. Sato, "Reversible Magnetic Properties of C-Axis Oriented Superconducting Bi₂Sr₂Ca₂Cu₃O₁₀" *Phys. Rev.* B, 46, 3195, (Rapid Communication), (1992)
- 197) Z. Tesanovic, L. Xing, L. Bulaevslii, Q. Li, and M. Suenaga "Critical fluctuation in the thermodynamics of quasi-two-dimensional type-II superconsuctors" (*Phys. Rev. Lett.*, 69 3563, Dec. 1992)
- 198) J. W. Ekin, D. K. Finnemore, T. A. Miller, Q. Li, J. Tenbrink, and W. Carter, "Effect of Axial Strain on the Critical Current of Ag-Sheathed Bi-Based Superconductors in Magnetic Fields up to 25 T" *Appl. Phys. Lett.*, **61** 858 (1992).

- 199) D. K. Finnemore, M. Xu, Q. Li and J. E. Ostenson, "Flux Pinning and Critical Currents in Superconductor-Normal Metal Composites" *J. Advanced Science*, **4**, 18, (1992)
- 200) J. Polonka, Ming Xu, A. I. Goldman, D. K. Finnemore, and Qiang Li, "Melting and Freezing of Bi-Sr-Ca-Cu-O Compounds" *Supercond. Sci. Technol.*, **5** S157-S170 (1992)
- 201) Q. Li, J. E. Ostenson, M. M. Feng, D. K. Finnemore, "Robust Superconducting Tapes Based on Bi₂Sr₂Ca₂Cu₃O_{10+δ}" *Appl. Phys. Lett.*, **59** 2895, (1991)
- 202) Q. Li, J. E. Ostenson, D. K. Finnemore "High Strain Tolerant Superconducting Wires Made of Bi₂Sr₂Ca₁Cu₂O_{8-δ} and Ag mixture" *J. Appl. Phys.*, **70** 4392, (1991)
- 203) Q. Li, J. R. Clem, and D. K. Finnemore. "Nucleation and Motion of an Isolated Abrikosov vortex" *Phys. Rev.* B 43 12843, (1991)
- 204) Q. Li, and D. K. Finnemore "Abrikosov Vortex Memory Based on A Single Vortex", *IEEE Transactions on Magnetics*, 27 2913 (1991).
- 205) J. Polanka, Ming Xu, Qiang Li, D. K. Finnemore and A. I. Goldman, "In situ X-ray investigation of the melting of Bi-Sr-Ca-Cu-O Phase" *Appl. Phys. Lett.*, **59** 3640, (1991)
- 206) K. Togano, H. Kumakura, J. Kase, Qiang Li, J. E. Ostenson, and D. K. Finnemore, "Strain Tolerance of Doctor Blade Processed Bi₂Sr₂Ca₁Cu₂O_{8-δ} tapes" J. Appl. Phys., **70**, 6966, (1991)
- 207) T. A. Miller, J. E. Ostenson, Qiang Li, L. A. Schwartzkopf, and D. K. Finnemore, "Strain Tolerant Microfilamentary Conductors of Bi₂Sr₂Ca₁Cu₂O₈₋₆" *Appl. Phys. Lett.*, **58** 2159, (1991)