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Selected Sample and Side Band Sample
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NC 1𝝅𝟎
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CC 𝝅𝟎
CC 𝝅"/$
CC Other
External to P0D

46.0% (5814 events)

1.8% (230 events)
     3.2% (409 events)
     8.0%(1026 events)
     16.4% (2084 events)
     9.8% (1252 events)
     6.4% (817 events)
     4.9% (627 events)
     3.4% (427 events)
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Side Band

8.4% (529 events)

0.6% (41 events)
     3.4% (218 events)
     13.7%(867 events)
     17.9% (1131 events)
     16.3% (1030 events)
     24.7% (1561 events)
     13.6% (859 events)
     1.5% (93 events)

Failing µ decay cut

P6T P0D water-in MC Events P6T P0D water-in MC Events



Bayes’ Theorem and Model Parameters
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• The data we observe (denoted by x) can constrain our model 
parameters (denoted by 𝜃) by Bayes’ Theorem:

𝑃 𝜃 𝑥 =
𝑃 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑥)
	

Given the data we measured, the 
probability density distribution of 
our model parameters

Our prior knowledge on the model 
parameters (e.g. from previous 
measurement, other literature )

Constant, from law of total probability

𝑃 𝑥 = 	%𝑃 𝑥 𝜃 𝑃 𝜃 𝑑𝜃



Bayes’ Theorem and Extended Binned Likelihood
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• The data we observe (denoted by x) can constrain our model 
parameters (denoted by 𝜃) by Bayes’ Theorem:

𝑃 𝜃 𝑥 =
𝑃 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑥)
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• Observed data and Monte Carlo prediction
MC as a function of 𝜃

• s is the POT scaling factor between Mote 
Carlo and Data

• Only 1 bin shown here as an example for 
likelihood

What we want to discuss today.
Likelihood: 
1. Given that our model parameters 

are true
2. The probability density distribution 

of observing the data we obtained

Standard treatment: treat data as an incident from a Poisson 
distribution with expected rate 𝑁$%/𝑠:

𝑃(𝑥|𝜃)	=
(𝑁$%/𝑠)&"#$#𝑒'&%&/)

𝑁!*+*!



Defect of Extended Binned Likelihood

4

• The data we observe (denoted by x) can constrain our model 
parameters (denoted by 𝜃) by Bayes’ Theorem:

𝑃 𝜃 𝑥 =
𝑃 𝑥 𝜃 𝑃(𝜃)

𝑃(𝑥)
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Standard treatment: treat data as an incident from a Poisson 
distribution with expected rate 𝑁$%/𝑠:

𝑃(𝑥|𝜃)	=
(𝑁$%/𝑠)&"#$#𝑒'&%&/)

𝑁!*+*!

Monte Carlo sample is a finite sample, 𝑁$% 	does not strictly represent 
the population expectation 𝑁,
• There’s a statistical fluctuation between	𝑁$% and 𝑁,

𝑁$%(𝜃) / s

• Observed data and Monte Carlo prediction
MC as a function of 𝜃

• s is the POT scaling factor between Mote 
Carlo and Data

• Only 1 bin shown here as an example for 
likelihood



Solution: Derive it with Bayes’ Theorem
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• From the law of total probability

𝑃 𝑥 𝜃 = ∫𝑃(𝑥|𝑁!"#$) ∫𝑃 𝑁!"#$ 𝑁% 𝑃 𝑁% 𝜃 𝑑𝑁% 𝑑𝑁!"#$ 
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• Observed data and Monte Carlo prediction
MC as a function of 𝜃

• s is the POT scaling factor between Mote 
Carlo and Data

• Only 1 bin shown here as an example for 
likelihood



Solution: Derive it with Bayes’ Theorem
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• From the law of total probability

𝑃 𝑥 𝜃 = ∫𝑃(𝑥|𝑁!"#$) ∫𝑃 𝑁!"#$ 𝑁% 𝑃 𝑁% 𝜃 𝑑𝑁% 𝑑𝑁!"#$ 
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𝑁	+-./: Data Truth Expectation
Poisson distribution:

𝑃 𝑥 𝑁+-./ =
𝑁+-./&"#$#

𝑁!*+*!
𝑒'&$'()

Apply Bayes’ Theorem again:

𝑃 𝑁, 𝜃 =
𝑃 𝜃 𝑁, 𝑃(𝑁,)

𝑃(𝜃)
1. 𝑃(𝑁,): only information we 

have is that 𝑁,  is finite, assume 
a uniform distribution between 
[0, large number]

2. 𝑃(𝜃): constant
3. 𝑃 𝜃 𝑁, : Poisson distribution

𝑃 𝜃 𝑁, =
𝑁,&%&

𝑁$%!
𝑒'&*

N1: Monte Carlo Truth Expectation

Recall the condition: Given that our model 
parameters are true.

We expect N1 to equal N	#234
P 𝑁+-./ 𝑁, = 	δ(𝑁+-./ − 𝑁,/𝑠)

𝑁$%(𝜃) / s

• Observed data and Monte Carlo prediction
MC as a function of 𝜃

• s is the POT scaling factor between Mote 
Carlo and Data

• Only 1 bin shown here as an example for 
likelihood



Coincidence with Binominal Distribution
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• From the law of total probability

𝑃 𝑥 𝜃 = ∫𝑃(𝑥|𝑁!"#$) ∫𝑃 𝑁!"#$ 𝑁% 𝑃 𝑁% 𝜃 𝑑𝑁% 𝑑𝑁!"#$ 
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• Observed data and Monte Carlo prediction
MC as a function of 𝜃

• s is the POT scaling factor between Mote 
Carlo and Data

• Only 1 bin shown here as an example for 
likelihood

1
𝑢𝑏

1
𝑃(𝜃)

𝑠
𝑠 + 1

𝑁5*+* + 𝑁$% !
𝑁5*+*! 𝑁$%!

(
1

𝑠 + 1)
&+#$#(

𝑠
𝑠 + 1)

&%&

Binominal distribution with total number of events 𝑁5*+* + 𝑁$%
Two out comes:
1. Data

• 𝑃 𝑑𝑎𝑡𝑎 = 6
)76

• Number of outcome: 𝑁5*+*
2. MC

• 𝑃 𝑚𝑐 = )
)76

• Number of outcome: 𝑁$%



Bayesian Likelihood with Monte Carlo Stat Err
Extended binned likelihood: − lnℒ!"#" = 𝑁$%/𝑠 −	𝑁$#"# + 𝑁$#"# ln

%!"#"
&%&/)

Approximated Barlow-Beeston (from TN-395): − lnℒ!"#" = 𝑁&'"()* −	𝑁$#"# + 𝑁$#"# ln
%!"#"
%$%
#&'( +

(,-.))

01*
)

§ &
𝛽, + 𝑁23𝜎-, − 1 𝛽 − 𝑁./0/𝜎-, = 0

	(𝜎- = ∑𝑤,/𝑁23 ) à 𝛽 à 𝑁120345 = 𝛽𝑁23

Bayesian likelihood: − lnℒ!"#" = 𝑁23 +	𝑁$#"# + 1 ln 1 + .
!
− 𝑁23 ln 1 + %!"#"

%+,
+ 𝑁$#"# ln

%!"#"
%-/!5%!"#"/!

§ When s is large: −ln	ℒ6787 ≈
.
! + 𝑁23/𝑠 + 𝑁$#"#/𝑠	 −	𝑁$#"# + 𝑁$#"# ln

%!"#"
%+,/!5%!"#"/!

§ Similar idea as Barlow-Beeston, account for likelihood data vs. truth & mc vs. truth

Comparison
Approximated Barlow-Beeston likelihood is derived in frequentist inference, and with assumptions
§ 𝛽 follows normal distribution, 𝜎, approximated as a constant (assumed in implementation)
§ In frequentist inference, maximum likelihood is wanted, solve for 𝛽
These are valid and reasonable in frequentist inference, and even an almost acceptable approximation in Bayesian inference.

Bayesian Likelihood (the Bayesian and accurate way)
§ Entirely derived from Bayes’ theorem
§ Assumes 𝑁9 follows a uniform distribution (no prior information on it except the upper bound)
§ Can be thought of as data constrains 𝑁9, and 𝑁9 constrains model  
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Bayesian Likelihood (TN under finalization)
• A detailed TN has been written describing and 

deriving the likelihood

• T2K-TN-454

• Next slides will show some example of MCMC 
sampling results from this likelihood

9
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MCMC Sampling Results for My Bayesian Likelihood
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S = 0.1 S = 10 Extended Binned Likelihood



MCMC Sampling Results for My Bayesian Likelihood
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As expected, no constraint to xsec parameters, MCMC is sampling the prior distribution of them

Thinking about following cases separately
• Extended binned likelihood: Data constrains the generated MC, assuming no MC stat fluctuation
My Bayesian Likelihood: data constrains the truth histogram à the truth histogram constrains model (parameter)
• S = 0.1, Monte Carlo sample is small, we know less about where the parameter is
• S = 10, Monte Carlo sample is large, we know better about where the parameter is
• S = 10, still a little wider (std dev) comparing to extended binned likelihood, which is from MC stat fluctuation
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