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Goal:

* Introduce a MCMC method (Metropolis Algorithm) from the perspective of my analysis.
e Will focus on the confusions | had when | learnt it

* It won’t be fully rigorous for some contents, but the main intuitions will be provided.

* Hopefully everyone will have some ideal how and why MCMC works before the incoming seminar

Contents

* Why we use Metropolis Algorithm in the NC1PiO Analysis
* How Metropolis Algorithm works

* Example of Metropolis Algorithm sampling

Why Metropolis Algorithm works

* How step size affects the sampling

e Adaptive MCMC



Bayes’ Theorem and POD FV Water Mass

What is the POD FV water mass Upstream Water Target Central ECal

* Yue and | measured the fiducial volume (FV) water mass with scale to be
1910.4 + 10.8 kg

* Inthe NC1Pi0 analysis, we measure # of NC1PiO interactions. 1 '_.“g"""' |
* The data we observe (denoted by x) can further constrain the FV water i “"“’l‘"éffi\f\f;?]']"'li‘"r"“’F""
mass (denoted by @) by Bayes’ Theorem: e ml};;ﬂ .
P(x|6)P(6 i
P(0|x) = (x|6)P(6)
P(x) {1
P(0): Prior distribution of 6, before seeing the data x, N(1910,10.8) in this | A
case e N 1
P(0]x): Posterior distribution of @, in presence of data x. It is the information ~ HHHTITHEITIIEHETTIINNINAE
Upstream ECal Central Water Target

we have on @ after seeing the data
POD Detector



Bayes’ Theorem and POD FV Water Mass

 The data we observe (denoted by x) can further constrain the FV
water mass (denoted by 8) by Bayes’ Theorem:

P(x|8)P(0)

P(x)
P(x|0): Likelihood function, the conditional probability of x happening in
presence of 6.

P@|x) =

Treat data as an incident from a Poisson distribution with expected rate
MC(60):
Mc(g)datae—MC(B)

data!

P(x|6) =

P(x): constant, from law of total probability
P(x) = jP(xIQ)P(H)dG

Posterior distribution P(6]x) is obtained!
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Bayes’ Theorem and POD FV Water Mass

) All distributions are scaled up so they are visible
The data we observe (denoted by x) can further constrain the FV

, ) } , . Likelihood , , ,
water mass (denoted by ) by Bayes’ Theorem: b M (8)datag-MC()
P(x|0)P(6) P@) =Naslatosy  POIO =TT gag
X

Posterior distribution P(6|x) is obtained!

What is the POD FV water mass

Estimate the posterior distribution by E[0] = [ 8 - P(|x)d6 1600 1800 2000 290 2400 2500 z800

Posterior distribution

In real case, there are much more parameters (135 in my analysis) _— PO

* Cross-section of NC1PiO interaction | | [\
 Neutrino flux

Monte carlo prediction is affected by 0 = (64, ...,0135).

-

The affect on MC(8) is correlated from all the parameters
Posterior distribution P(0|x) is a multi-dimensional distribution

1700 1800 1900 2000 2100 2200 2300 2400 2



Curse of High Dimensionality and Monte Carlo
Integration

Suppose multi-dimensional posterior distribution P(§|x) is obtained

What is the POD FV water mass (cross section of NC1Pi0)
Estimate the posterior distribution by

E[6,] = j 6, - P(6]x)dd

 There’s no analytic form of P(§|x)

« Numerically if only 2 points chosen for each parameter, 213°
It is impossible to do this integration

Solution: Monte Carlo integration
« Sample from posterior distribution P(9|x) for a set of samples (81, ...,8™)

-1 : L
 Use sample mean 8; = - 101 as an approximation of E[0,]

Kolmogorov’s Strong Law of Large Numbers applies and 6, converges almost surely to E[64] as n becomes
large

L = . 1 . .
The estimation of error of 8 is proportional to N regardless of the dimension



Example of Simple Monte Carlo

TR R
IR TAR
’“:;f"?’.‘i}gg’f}‘

We need to sample from posterior distribution P(§|x) to estimate
E[61]) = [ 6, - P(8]x)d6 by sample mean §; = % n ek

1D example: P(0) = V1 — 02

Sample from a distribution:
* Generate samples from a process
e Putting samples into histogram
* Histogram converge to the distribution

Rejection Sampling (low efficiency):

* Randomly generate samples in square
* Reject samples above the distribution
Inversion Sampling

Importance Sampling

Some Process




Advantage of Metropolis Algorithm bo) = JT=5

We need to sample from posterior distribution P(§|x) to estimate .
E[6.]1=[06;- P(§|x)d§ by sample mean 8; = %Z}Ll 6 N

P(x|0)P(6)
P(x) = [ P(x|0)P(6)d6

P(§|x) =

* P(x)is also a multi-dimensional integration thus unknow.
« We don’t know the normalization constant of P(9|x).

* Previous sampling method mostly require full knowledge of target distribution
* They sometimes can be inefficient

* Metropolis Algorithm can sample from distribution without knowledge of the Metropolis
normalization constant Algorithm




How Metropolis Algorithm Works Metropolis

. . : . . Algorith
Metropolis Algorithm is a process devised to generate samples that will converge to a st

target distribution P(§|x) without knowing its normalization constant
P(x|0)P ()
P(x)

P(6|x) = 51 gz .. gn

* Choose a starting point L randomlly

. Atstept+1, generate 81 by:
1.  Propose this step o' by random sampling from a distribution q(é’ | §t) [e.g.N(ét, o)]
(ét =-0.5, 6’ =2), q(é’ | ét) proposal distribution, doesn’t have to be normal distribution, but

has to be symmetric, (0’ | 8%) =q(8¢ | 0')

P(x|0)P(0)

25+

NCHE _ p(x|6)p@n
p(@tlx)  p(xl6t)pc@t

2. Calculate acceptance ratio o =

a. Ifa>1,accept. 9t+l =0’
b. If a <1, generate random number r - Uniform[0,1]

i, Ifr<a, accept. 9t =0’
i. Ifr>a,reject. 0t =9t



-  Rejected Steps

Example Samp‘lng Steps ——  Accepted Steps

= Previous Steps

* Thisis a random distribution to be sampled with Metropolis Algorithm
e Starting from (-10, -10), g(@’ | 8%) taken as N(8%,1.5)

Step: 0




Metropolis Algorithm Samples’ Properties

Metropolis Algorithm is one of the most popular Markov Chain Monte Carlo (MCMC) algorithms
 The samples generated ( ) forms a Markov Chain, since is and is only determined by

 The samples generated 6" and are not independent, but they will become closer and closer to being
independent as m increase. The correlation between them can be determined by a quantity “autocorrelation”

1

* It usually can be shown that the sample mean 8; = - L Hli converges to the expected value E[6;] =

|6, - P(§|x)d§ with a Law of Large Numbers for dependent samples

 The samples generated ( ) will converge to the target distribution



What Causes the Samples to Converge to the Target
Distribution

The samples generated ( ) will converge to the target distribution
 The main intuitions will be provided below, it is not a rigorous proof

The crucial step is to prove that the target distribution is a stationary distribution
of the Markov Chain

. Taking steps (6%, 8172 gt*4  9t+2m) syppose they form the target
distribution P(§|x)

* The next steps ( ) will also form the target
distribution

e (Thisis not rigorous, it is usually introduced directly in terms of applying
Markov Chain transition kernel to a probability density distribution. But in the

algorithm, the Markov Chain transition is from a sample step to another
sample step, so in this way it is easier to explain)



What Causes the Samples to Converge to the Target

Dlstr|but|on

Taking steps (6¢, 812 gt+4  gt+zm)
distribution P(9|x)

* The next steps ( ) is a transition of each

of previous 9t = X to another point ()? and Y here denotes
random points in parameter space)

, suppose they form the target

e Take 2 random point X, Y in P(§|x)
* Probability density of a transition from X to
P(X->Y)=PX|x)*q(Y|X)*1 (a > 1 so always accept

* Probability density of a transition from Y to X

PO = X) = PO = g1 = (¢ = 5ibd) = POC= 1) #4010 = q@x10)

* There’s no transition between X and Y. Same can be shown for all random

points. This is called detailed balance. And thus P(§|x) is a stationary
state.

* |t can be shown that if g(¥'|X) can propose any point in parameter space
with a positive probability density, the Markov Chain will converge to the
stationary distribution.

P

f\

Summary:

Choice of q(Y|X) = q(X|Y) and acceptance
ratio a ensures the target distribution is the
stationary distribution of Markov Chain

Choice of proposal distribution g also
ensures that the Markov Chain will converge
to the stationary distribution

P(X]x)
P(Y]x)

allows us to sample without normalization
constant

Taking ratio of target distribution a =



Why Step Size Matters

* Thisis a random distribution to be sampled with Metropolis Algorithm
e Starting from (-10, -10)

-  Rejected Steps
—  Accepted Steps

= Previous Steps

Step size too small Step size too big

13




Posterior Predictive Distribution

Posterior predictive distribution: = P(X X) - P(X|9)P(H X) : o
. 5 \ Posterior distribution:
* Predictive new data X given «  Sampled from MCMC
observed data X
* What we want

Predictive data distribution:

* Give model parameter 6
e X: predictive data

Example: Take from MCMC output
. - _ _ _ - ake from output:
Obt;ln predictive data: @, X; ~ Poisson(MC_X(6;)) = .5
L ;150l.x|l'||"-l"'|"'l"'l"'l: 240 1
‘Q—tbo = _ 220
%140: Nominal MC - .00
'%120:— — 180
" o W
E E 140
80— -
= Observed ] 122
oo Data E
dil — B0
_ 40
20 |
ol | | | | | = 0
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Posterior Predictive Checks and Bayesian P-value

Need to compare observed data X ~ posterior predictive distribution (X;, X5, ..., X;,)
 |f ~comparable: model fit ok
* Else: check model

% 120 [ =
Quantitatively: N M E K
* Calculate test statistics T(X) and T(X) bl 3 I
* Bayesian p-value P = Pr(T(X) > T(X)) :Z MY S E K
* Forexample: T can be Likelihood used in MCMC sampling W E EE mae _ 8
60 %— _'- ¥ —% :
If Bayesian p-value is near O or 1 = This is bad, model misfit 50 El W
* Observed data =2 extrema of fake simulated data w0 P =035 E P

? 30I - '4'0' - I5|t'.)I - If.SIOI - I7’|0I - I8|ClI - I9|ClI - I‘It'.lltlI - I11|0I - 172;

Note: %2 fake data

This method tells if a model misfit
This method doesn’t support the model

15



Summary

* Bayes’ Theorem can be used in extraction of xsec

* Posterior distribution is multi-dimensional and hard to integrate over, and the normalization
constant is always unknow

* Use Metropolis Algorithm to sample from posterior distribution, use sample mean to approximate
the expectation value of parameters

* Metropolis Algorithm is a process devised to generate samples that will converge to a target
distribution without knowing the distribution’s normalization constant
e Stepsizeis important in sampling speed

Posterior predictive checks can tell if model misfit



Backup



Adaptive Metropolis Algorithm (Clark’s Code)

Both Yue and | use Clark’s Adaptive Metropolis Algorithm

Auto tune step size so the overall acceptance rate of all sample is 44% for one parameter or 23.4%
for five or more parameters

It uses the covariance matrix of historical and accepted samples in the multivariate normal
distribution to propose the next step.

The proposal distribution becomes closer to the target distribution comparing to multivariate
normal distribution without covariance, the proposal will be more efficient.

18
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