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Abstract of the Dissertation

Double Longitudinal Helicity Asymmetries in
Pion Production from Proton Collisions,

Studies of Relative Luminosity Determination,
and the Impact on Determination of the

Gluon Spin in the Proton

by

Andrew Manion

Doctor of Philosophy

in

Physics

Stony Brook University

2014

Abhay Deshpande

Polarized proton-proton collisions at RHIC are being used to study
the origin of proton spin, which arises from the spin and orbital
angular momentum of its constituent quarks and gluons. Mea-
surements at the PHENIX experiment at

√
s = 200 GeV of Aπ

0

LL,
the double longitudinal helicity asymmetry in neutral pion produc-
tion, are used in global analyses of world polarized scattering data,
where they are particularly important in constraining the sector
of gluon polarization. These measurements have ruled out max-
imal gluonic spin contributions and are consistent with a small
or zero contribution. In the latest measurements, the statistical
precision of the data has reached the systematic limit, prompting
investigation into the largest of the systematic uncertainties, the
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determination of relative luminosity. Details of the 2009 measure-
ment at PHENIX of Aπ

0

LL and its inclusion in the global analysis will
be presented along with recent studies on systematic uncertainties,
including a 2012 study that varied the angles of the beams in the
PHENIX interaction region.
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Chapter 1

Introduction to Spin Structure

Under the valence quark model used to classify hadrons and determine their
quantum numbers, the proton is composed of two up quarks and one down
quark. This arrangement could also easily explain the half-integer proton spin.
A more thoughtful accounting called the naive quark model [33] assumed that
due to relativistic effects [56] it was instead the total angular momentum of
the quarks that gave rise to the proton spin. In other words, the spin of the
proton could be expressed as the total angular momentum of the quarks

Sp =
1

2
=

1

2
∆Σ + Lq, (1.1)

where ∆Σ is the quark spin contribution and Lq the contribution from the
quark orbital angular momentum. In this model, the expectation for ∆Σ was
0.6. However, early experiments sensitive to only the quark content in the
proton, such as that by the European Muon Collaboration with the result in
Fig. 1.1, showed that the quark spin fell short of 0.6 and in fact the picture
was more complicated.

In the more complicated picture, the total proton spin can be classified
in terms of quark and gluon spin (∆Σ and ∆G, respectively) and angular
momentum (Lq and Lg, respectively) contributions as

Sp =
1

2
=

1

2
∆Σ + ∆G+ Lq + Lg, (1.2)

according to the Manohar-Jaffe sum rule[42]. Several more recent global fits
[21, 27, 40, 47] of Deeply-Inelastic Scattering (DIS) data have confirmed that
the quark spin contribution, ∆Σ, falls short of the total, yielding 25-35% of the
proton spin depending on the assumptions used (for instance, whether SU(3)
symmetry is enforced).
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Figure 1.1: Integral of the polarized structure function gp1 for the proton (see
Subsection 1.2.1), which falls short of the expected value if ∆Σ = 0.6.

Polarized proton collisions at the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Laboratory allow access to ∆G through processes
directly involving gluons in the context of spin (unlike lepton-hadron scattering
experiments which are only sensitive to the gluon via scaling violations and
photon-gluon fusion). Recent theoretical work is also proceeding to understand
the orbital angular momentum contributions and how they can be measured
[39, 46]. The determination of ∆G via global analysis of these data prior
to the data presented herein can best be summarized by the result of the
2008 DSSV global analysis. That determination of ∆G is shown in Fig. 1.2,
which determined the integral ∆G

[0.05,0.2]

DSSV08 = 0.005+0.129
−0.164 in the Bjorken-x

range [0.05, 0.2].
In this thesis, we will discuss the access of ∆G through polarized proton-

proton scattering producing a final state neutral pion, including the addition
of new data from the PHENIX experiment. There are significant experimen-
tal challenges in measurements of proton-proton collisions, chief among them
the determination of the luminosity in different collisions, or relative luminos-
ity. Therefore, there will also be significant discussion of and studies into the

2



Figure 1.2: 2008 DSSV global analysis determination of the gluon polarization
in a limited Bjorken-x range (see Subsection 1.2.1).

systematic uncertainty on relative luminosity.

1.1 Spin Asymmetries Illustrated

Cross-sectional spin asymmetries, whether measured for interactions of fun-
damental particles or for collections of fundamental particles, are important
quantities for accessing spin information experimentally. As a brief introduc-
tion, several of these asymmetries are illustrated here in Figs. 1.3 and 1.4.

momentum

spin

ALL 
assumed 

>0 

x-
section

(a)

momentum

spin

AL 
assumed 

>0 

x-
section

(b)

Figure 1.3: Illustration of (a) interactions giving rise to a positive double-
spin asymmetry ALL, and (b) interactions giving rise to a positive single-spin
asymmetry AL.
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momentum

spin

AN 
assumed 

>0 

production 
rate

Figure 1.4: Stereoscopic (cross-eyed) illustration of azimuthal asymmetry in
forward particle production, or AN .
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1.2 (Polarized) Deeply Inelastic Scattering

Deeply inelastic scattering is the last stage in increasingly fine position and
time resolution of nucleon structure via electromagnetic scattering with a lep-
ton. The degree of resolution is approximately determined by the invariant
magnitude of the momentum transfer |q| and the energy transfer ν:

∆x ∼ ~
|q|
,

∆t ∼ ~
ν
. (1.3)

With ν ≈ 0 and sufficient |q|, elastic lepton-nucleon scattering, as in Fig. 1.5,
can be used to probe the charge radius of the proton, which is approximately
exponentially distributed with a standard deviation 0.88± 0.01 fm (although
recent muonic hydrogen spectroscopy has given a surprisingly different answer
[14]). As |q|c is increased to order 1 GeV, and, more importantly, ν is on order

lepton

k’

lepton

k

proton

p

proton

p’

virtual

photon 

q = k’-k

Figure 1.5: Feynman diagram showing the one photon exchange contribution
to elastic scattering of a lepton with a proton.

of 100 MeV, nuclear resonances can be excited via inelastic scattering, such as
the ∆+ state as shown in Fig. 1.6. This is the regime of nuclear spectroscopy,
and such excitations quickly decay to produce baryons and mesons in what
is known as “electroproduction.” The existence of such states indicates that
nucleons are made up of distinct constituents interacting via some force very

5



much stronger than the electromagnetic force. When |q|c and ν both exceed

lepton

k’

lepton

k

proton

p

virtual

photon 

q = k’-k

Δ+

(1232)

proton

π0

Figure 1.6: Feynman diagram showing the one photon exchange contribution
to scattering of a lepton with a proton that produces a resonant ∆+(1232)
state, which is unstable and will decay, for example, to a proton and a π0.
The entire process is referred to as “meson electroproduction.”

∼ 1 GeV, the regime of deeply inelastic scattering is reached, and the sub-
structure of the nucleon is finally resolved. At sufficiently fine position and
time resolution, nucleons appear to the lepton as a collection of free quarks,
from which the lepton elastically scatters (Fig. 1.7). In the proton rest frame,
neglecting the mass of the electron, the differential cross-section for deeply in-
elastic scattering is given as a function of scattering angle in terms of “proton
structure functions” W1,2,

d2σ

dQ2dν
=

πα2

4k2sin4(θ/2)

1

kk′
[
W2cos2(θ/2) + 2W1sin2(θ/2)

]
(1.4)

with k and k′ the initial and final energy of the scattered electron (k0−k′0 ≡ ν),
and Q2 = −q2. In the following section we will see how these structure func-
tions can be understood in terms of the simple elastic electron-quark scatter-
ing.

1.2.1 Bjorken-x and PDFs

Figure 1.8 depicts to first order the Quantum Electrodynamics (QED) process
of elastic scattering between a lepton and a quark. Supposing the quark carries
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lepton

k’

lepton

k

proton

p
hadrons
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q = k’-k

parton

x
  

p

Figure 1.7: Feynman diagram showing the one photon exchange contribution
to deeply inelastic scattering of a lepton with a proton, which is actually elastic
scattering with a quark contained within the proton.

three momentum xp and has mass xM (whereM is for now just an unidentified
constant), and that the quark is free (on shell) before and after the elastic
scattering, we have that

(xp)2 = (xp + q)2 = (xM)2, (1.5)

lepton

k’

lepton

k

quark

virtual

photon 

q = k’-k

quark

x
  

p

Figure 1.8: Feynman diagram for single photon exchange in elastic lepton
quark scattering.
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where q is the four-momentum transfer. Taking the latter equality and ex-
panding the square gives

(xM)2 = (xp)2 + q2 + 2xp · q
(xM)2 = (xM)2 + q2 + 2xp · q
−q2 = 2xp · q. (1.6)

−q2 is usually redefined as Q2 to remove the minus sign. Switching to the
proton rest frame, we can evaluate the invariant 2xp · q:

2xp · q = 2xM(k0 − k′0) ≡ 2xMν. (1.7)

Using this with the previous equation, we can solve for x

x =
Q2

2Mν
(1.8)

This quantity is referred to as “Bjorken x,” and is interpreted as the fraction
of a proton’s momentum p a free quark within the proton carries. It can then
be shown [36] that M is to leading order equal to the proton mass.

Elastic scattering of an lepton with an individual quark of index i in the
quark rest frame, neglecting the lepton mass, is given by

d2σi

dQ2dν
=

πα2

4k2sin4(θ/2)

1

kk′

[
e2
i cos2(θ/2) + e2

i

Q2

4m2
i

2sin2(θ/2)

]
× δ(ν −Q2/2mi),

(1.9)
where ei, mi are the charge and mass of the quark and the delta function
enforces the elastic scattering condition ν = Q2/2mi. To relate this to the
proton structure functions W1,2, we must integrate this distribution over the
probability qi(x) to find quark i in the proton with momentum fraction x,
called a “parton distribution function” or PDF, and then sum over quark
flavors. This results in the relations

W2 =
1

ν

∑
i

e2
ixqi(x)

W1 =
1

2M

∑
i

e2
i qi(x). (1.10)
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These structure functions are often expressed in an alternate version

F2 = νW2 =
∑
i

e2
ixqi(x)

F1 = MW1 =
1

2M

∑
i

e2
i qi(x). (1.11)

Measurements of these structure functions allow the extraction of PDFs, such
as in Fig. 1.9. Also determined in the extractions is the PDF for gluons, g(x),
which can for example be accessed through scaling violations (see Section 1.3.3)
and p+ p̄ scattering.

There are also analogous structure functions in polarized DIS, referred to
as g1 and g2. There forms are similar to the F s. For instance,

g1 =
∑
i

e2
i∆qi(x), (1.12)

where ∆ denotes a difference between quark polarization with respect to the
nucleon spin, referred to as a “polarized parton distribution function,” or
pPDF. The quark polarization terms in g1 can be accessed experimentally
via production asymmetries, for example the asymmetry in longitudinally po-
larized lepton scattering on a longitudinally polarized nucleon target

A =
dσ+− − dσ++

dσ+− + dσ++
, (1.13)

which is differential in the rapidity (η) of the scattered lepton. This asymmetry
can be expressed in terms of two virtual photon asymmetries as [16]

A = D(A1 + ηA2), (1.14)

where D is a depolarization factor for the virtual photon and can be calculated
from the kinematics of the interaction and the known ratio of longitudinal
to transverse photoabsorption cross sections. If η is sufficiently small in the
kinematic range of the experiment, A becomes essentially proportional to A1,
which is the asymmetry between cross-sections for virtual photoabsorption
with respect to the total angular momentum of the virtual photon-nucleon
system along the incident lepton direction:

A1 =
σ1/2 − σ3/2

σ1/2 − σ3/2

. (1.15)

A1 can be expressed in terms of the polarized and unpolarized structure func-
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tions as

A1 =
g1 −

(
2Mx
ν

)
g2

F1

, (1.16)

where M is the nucleon mass. With high enough energy transfer ν, A1 becomes

A1 ≈
g1

F1

=

∑
i ei∆qi(x)∑
i eiqi(x)

(1.17)

Thus measurement of A and knowledge of D allows the extraction of the sum
of quark pPDFs relative to the sum of PDFs. If some particle is tagged in the
final state in what is referred to as semi-inclusive DIS, or SIDIS, the weighting
over and sensitivity to different flavors in the sum can be changed. pPDFs
can be extracted from global analyses to such scattering data, including the
corresponding pPDF for gluons, ∆g(x). One such pPDF extraction is shown
in Fig. 1.10.

Figure 1.9: From [52]. Parton distribution functions determined from a global
analysis of DIS and p+ p̄ scattering data.
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Figure 1.10: From [21]. “This Fit” refers to the BB2010 result from the
reference. Polarized parton distribution functions for u-valence quarks, d-
valence quarks, gluons and anti-quarks determined from a global analysis of
DIS scattering data. The yellow shaded bands are the 1σ uncertainty.
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1.3 (Polarized) Proton+Proton Scattering

1.3.1 Asymptotic Freedom and pQCD

The theory of quantum chromodynamics, or QCD, explains the strong force,
mediated by gluons, between color charged objects called quarks and, unlike
in QED, even between the force mediating gluons themselves. This force con-
fines quarks into inseparable color neutral bound states, and is too strong to
be handled with a perturbative approach, unless we probe the bound state at
sufficiently high energy and momentum transfer, as in DIS. At these high en-
ergies and correspondingly short distances is where asymptotic freedom takes
over, and the strong force becomes weak enough to treat with perturbative
calculations. Given the strength of the strong force at some scale µ2, the
strength of the strong force at a given Q2 can be found to first order from the
equation

αS(Q2) =
αS(µ2)

1 + αS(µ2)bln(Q2/µ2)
, b =

33− 2Nf

12π
(1.18)

which describes the “running” of the strong coupling constant, connecting it
between different values of momentum transfer. Nf is the number of active
(above threshold) quark flavors. Any Nf ≤ 16 makes b positive, and as there
are only 6 total flavors of quarks in QCD, αS(Q2) will decrease with increasing
Q2, as opposed to QED where b is negative. The qualitative reason for this
is that while, like electron-positron vacuum pair screening in QED, QCD has
screening from quark-antiquark vacuum pairs, QCD also has colored gluons,
which produce an antiscreening effect that wins out for Nf ≤ 16.

1.3.2 Factorization

To make the connection between the parton-level theoretical predictions of
pQCD and experimental results for scattering with an extended collection
of partons, a scheme called “factorization” is used. In pQCD factorization,
partonic cross-sections are convoluted with PDFs. In this way, scattering with
a nucleon is treated as a statistical average over scattering with individual
partons distributed within that nucleon. For example, the total p + p cross-
section can be written as

σp+p =
∑
ab

fa(θ1, µ
2
F )⊗ fb(θ2, µ2

F )⊗ σa+b(θ1, θ2, µ
2
F , µ

2
R), (1.19)

where fa and fb are the PDFs for parton types a and b in protons 1 and 2,
θ1 and θ2 describe the kinematics of these partons, and σa+b is the partonic
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cross-section for a + b. µ2
F is the initial factorization energy scale, and µ2

R is
the renormalization energy scale of the pQCD calculation.

If a specific final state hadron is probed in the interaction, a final state
parton may need to be specified in the parton-level pQCD cross-section, in
which case another phenomenological function, called a “fragmentation func-
tion” needs to be added to describe the probability for the final state parton
to “fragment” into the specified final state hadron. With this addition, the
equation for factorization becomes

σp+p→h+X =
∑
abc

fa(θ1, µ
2
F )⊗fb(θ2, µ2

F )⊗σa+b→c+X(θ1, θ2, θ3, µ
2
F , µ

2
R, µ

2
FF )⊗Dh

c (θ3, θh, µ
2
FF ).

(1.20)
A kinematic term for the final state parton c has been added (θ3), as well as
one for the final state hadron h (θh). The fragmentation function Dh

c describes
the probability for the parton c to fragment into hadron h, and depends on an
additional energy scale µ2

FF .
In order to test the applicability of factorization to ourALL results, PHENIX

has previously published π0 cross sections [2, 5]. These cross sections, along
with others at

√
s = 200 GeV for η mesons, jets [1] and direct photons [10], are

well described by the theory within its uncertainties, based on the method of
varying the choice of scales by a factor of two. In the publication [4], the im-
pact of this theoretical scale uncertainty with respect to PHENIX Aπ

0

LL results
is examined, with the conclusion that it is important and should be considered
in future global analyses.

Factorization can also be applied to polarized scattering. In that case, a
difference in helicity dependent cross-sections, ∆σp+p→h+X , would be factorize
as

∆σp+p→h+X =
∑
abc

∆fa(θ1, µ
2
F )⊗∆fb(θ2, µ

2
F )⊗∆σa+b→c+X(θ1, θ2, θ3, µ

2
F , µ

2
R, µ

2
FF )⊗Dh

c (θ3, θh, µ
2
FF ),

(1.21)
where we now have differences in helicity dependent PDFs and helicity depen-
dent cross-sections, the latter still calculable in pQCD. In some cases spin may
also need to be taken into account in the fragmentation function, but not in
cases where the fragmentation is to a spin-0 state, as in the case of neutral
pion production.

1.3.3 QCD Evolution

An important effect needs to be included in the electron-parton scattering of
DIS or the parton-parton scattering term of p + p factorization. That effect
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x

zx zx
x

Figure 1.11: Example Feynman diagrams of quark-quark and quark-gluon
scattering (the specific interaction is hidden in the blank circle), along with
the pieces for collinear radiation that can be substituted in (with appropriate
rotation).

is the splitting of the initial state partons into collinear parton pairs that
cannot be experimentally distinguished from a single particle. Examples of
such “collinear emission” are shown at lowest order in Fig. 1.11. Since we
are only interested in the condition in which this extra vertex produces a
collinear particle, we attach for each vertex a factor of αSln(Q2/µ2), where
µ is the momentum scale at which nonperturbative effects are factorized. In
practice, this contribution is absorbed into the parton distribution functions
instead of being attached to the electron-parton or parton-parton scattering
term. With this choice, the extra collinear emission terms act as a kernel for
PDF evolution in what are known as the DGLAP (Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi) equations:

d

dlogQ
g(x,Q) =

αS(Q2)

π

∫ 1

z

dz

z

(
Pgq(z)

∑
f

[q(
x

z
,Q) + q̄(

x

z
,Q)] + Pgg(z)g(

x

z
,Q)

)
d

dlogQ
q(x,Q) =

αS(Q2)

π

∫ 1

z

dz

z

(
Pqq(z)q(

x

z
,Q) + Pqg(z)g(

x

z
,Q)

)
d

dlogQ
q̄ =

αS(Q2)

π

∫ 1

z

dz

z

(
Pqq(z)q̄(

x

z
,Q) + Pqg(z)g(

x

z
,Q)

)
(1.22)
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Pqq(z) =
4

3

(
1 + z2

(1− z)+

+
3

2
δ(1− z)

)
,

Pgq(z) =
4

3

(
1 + (1− z)2

z

)
,

Pqg(z) =
1

2

(
z2 + (1− z)2

)
, and

Pgg(z) = 6

(
(1− z)

z
+

z

(1− z)+

+ z(1− z) +

(
11

12
− nf

18

)
δ(1− z)

)
(1.23)

where nf is the number of flavors and 1
(1−z)+ is defined such that∫ 1

0

dz
f(z)

(1− z)+

≡
∫ 1

0

dz
f(z)− f(1)

(1− z)
(1.24)

This evolution also applies to the polarized PDFs. One of the consequences
of these evolution equations is that ∆G, which cannot be accessed at leading
order in DIS, can be extracted via comparing quark PDFs at different scales.
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Figure 1.12: Example evolution starting at a scale of 1 GeV2 with the proton
spin entirely due to the down valence quark (i.e. dv(x) = 1

2
. The effects on the

down valence distribution (dv) are shown as well as those on the gluon (g(x))
and strange quark ([s+ s̄](x)) distributions.
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1.3.4 Fragmentation Functions

Final state partons in a DIS or pQCD interaction are not colorless, and so
cannot exist unconfined. They instead fragment into hadrons, and this process
can be phenomenologically described using “fragmentation functions,” which
are similar to the parton distribution functions used to describe the probability
to find a certain parton within a hadron. A fragmentation function Dh

c (z, µ2
FF )

describes the probability for parton c to fragment into a hadron or hadrons
including hadron h, where hadron h carries fraction z of parton c’s momentum.
µ2
FF is the fragmentation scale. One way to extract fragmentation functions

is through e+e− scattering to hadrons, as in Fig. 1.13, although this does not
allow quark and antiquark fragmentation functions to be distinguished due to
there being both a quark and its anti-quark in the pre-fragmentation final state.
A more complete analysis of e+e− annihilation, DIS, SIDIS and p+p scattering

q

q

q

q D
q

h

h

e-

e+

q

q

γ

q

q

D
q

h

h

D
g

h

hg

Figure 1.13: Examples of the role of fragmentation functions in the production
of hadrons in electron-positron annihilation.

by DSS [28] allows better separation of the fragmentation functions, including
those for identified pions, such as with the π+ fragmentation functions in
Fig. 1.14. As with PDFs, fragmentation functions are defined so as to absorb
final state collinear singularities, and so they also have evolution equations,
outlined in [28].
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Figure 1.14: From [28]. Fragmentation functions for different partons into a
final state containing a π+.
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1.3.5 From Aπ0

LL to ∆G

Ultimately, we want to use measurements of ALL to extract polarized PDFs
for the proton. To that end, we note that the asymmetry in production of a
final state hadron h, is just

AhLL ≡
∆σp+p→h+X

σp+p→h+X
. (1.25)

Thus, by including fragmentation function measurements and pQCD calcula-
tions of partonic cross-sections, we will be able to extract from our measure-
ments of various AhLL polarized PDFs such as ∆g(x, µ2

F ).

σ 
a+b→c

ΔqΔg ΔgΔg

Figure 1.15: Leading order contributions to the partonic scattering term in
factorization for neutral pion production.

Figure 1.15 shows the leading order contributions to the partonic cross
section term (σa+b→c+X) in the factorization expression for neutral pion pro-
duction. Thus, to leading order, we should expect Aπ

0

LL to behave as the linear
combination

Aπ
0

LL ∼ cqg∆g∆q
∆σg+q→g+q

σg+q→g+q
+ cqq∆q∆q

∆σq+q→q+q

σq+q→q+q
. (1.26)

The partonic helicity asymmetry terms like ∆σq+q→+q

σq+q→+q are calculable in pQCD
and are shown in Fig. 1.16. Figure 1.17 also shows the gluon Bjorken-x range
sampled by inclusive π0 measurements at a given pT .
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Figure 1.16: From [22]. Partonic double longitudinal helicity asymmetries as
a function of partonic center-of-mass scattering angle.
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Figure 1.17: From [4]. Distribution of gluon Bjorken-x sampled in three π0 pT
bins for the process p+ p→ π0 +X at

√
s = 200 GeV, calculated to NLO in

pQCD.
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Chapter 2

Experiment

In this chapter the facility and detectors used to measure Aπ
0

LL will be intro-
duced. This includes the Relativistic Heavy Ion collider, RHIC, which provides
collisions of polarized protons at up to 6 interaction points, one of which houses
the PHENIX experiment.

2.1 RHIC

RHIC consists of two intersecting storage ring synchrotrons, designated Blue
and Yellow, in each of which as many as 120 polarized proton bunches can
be accelerated to an energy of 255 GeV per proton. In the 2009 run, RHIC
was typically operated with 109 out of 120 bunches filled in each ring. The
rings intersect in 6 locations such that the bunches collide with a one-to-one
correspondence. This allows an unambiguous definition of 120 “crossings” per
revolution at each experiment, with a 106 ns separation. At PHENIX, there
were 107 crossings in which both bunches were filled, as well as 4 crossings with
only the bunch in one ring filled to enable estimates of beam background.

The stable polarization direction in RHIC is vertical. The polarization for
each bunch can be aligned or anti-aligned with this vertical axis at injection,
allowing for variation over all four possible polarization combinations within 4
crossings, or 424 ns. To reduce false asymmetries related to coupling between
the polarization patterns and the bunch/crossing structure, four different po-
larization vs. bunch patterns, hereafter refered to as “spin patterns,” were
used, defined by flipping all polarizations in one or both beams in the base
pattern. The patterns were cycled after each successful beam store, or “fill”.

The beam polarization was measured several times per fill using a fast
relative polarimeter which detects elastic scattering off of a thin carbon target
that is moved across the beam. This polarimeter can determine both the

21



amplitude of the polarization and any variation across the width of the beam
(see 2.1.3). In order to normalize this relative measurement, the absolute
polarization is measured over the entire running period via scattering of the
beam with a continuously-running polarized gas-jet target (see 2.1.3).

Figure 2.1: From [11]. Diagram of the RHIC/AGS Facility Complex.

2.1.1 Polarized p+p Operation

From Source to Accelerator

Each polarized proton bunch in RHIC start as a single pulse of polarized H−

ions from the Optically Pumped Polarized Ion Source (OPPIS), produced at
a rate of 7.5 Hz. Initially, there are about 9× 1011 ions in each pulse at 80%
polarization. The H− ions are accelerated to 200 MeV by a radio-frequency
quadrupole followed by a 200 MHz LINAC. The ions are then passed through a
stripping foil that removes the electrons, and the remaining polarized protons
are captured into single bunches in the low energy booster ring where they
are accelerated to about 2 GeV. Next each proton bunch passes to the main
Alternating Gradient Synchrotron (AGS) ring where it is accelerated to about
23 GeV before being passed through a spin transparent transfer line into the
main RHIC synchrotron ring. The process, which has about 50% intensity
transmission efficiency, is repeated until all the bunches in the Blue and Yellow
RHIC beams are filled, at which point the bunches can be accelerated to a
variety of energies including 31, 100, and 250 GeV.
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Figure 2.2: From [11]. Diagram of the components that create and accelerate
the polarized proton beam before injection into RHIC.

Spin Pattern

The spin pattern at RHIC is set at the level of the pulses from OPPIS. In
practice, any pattern can be chosen, although more frequent changes slow
the total injection time. Being able to measure all of the double and single
spin asymmetries dictates the pattern chosen, as does the constraint to see
all physically distinct patterns cycled within a short time period to reduce
the introduction of systematic uncertainties from changing beam conditions.
Fig. 2.3 shows the spin patterns used in RHIC for the 2009 run, with the
bunches used to calculate particular asymmetries highlighted.

Siberian Snakes and Spin Rotators

The Lorentz equation for orbital motion of a charged particle in a vertical
magnetic field B⊥ is

dp

dt
= p×

[
− e

γmc
B⊥

]
, (2.1)
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Figure 2.3: The spin patterns used in the 2009 run, with bunches used to
calculate single spin asymmetries (left plot) and double spin asymmetries (right
plot) in even crossings circled. The full patterns are a repetition of what is
shown over all 120 bunches (excluding bunches intentionally left empty).

which translates to a precession frequency of e
γmc

B⊥. The stable polarization
direction in the vertical RHIC holding magnetic field is vertical. If the direction
happens to be slightly off axis, the spin S of the protons will process according
to the Thomas-BMT equation [19], which in the absence of an electric field
and at near light speed (1/γ ≈ 0), simplifies to

dS

dt
= S×

[
− ea
mc

B⊥

]
, (2.2)

where a = (g − 2)/2 is the “magnetic moment anomaly” of the proton. This
means the protons spin will precess about the vertical axis at a frequency
ea
mc
B⊥. The ratio of this frequency to that of orbital motion,( ea

mc
B⊥

)
/

(
e

γmc
B⊥

)
= aγ ≡ νspin (2.3)

is called the spin tune. If νspin = n, where n is an integer, protons will period-
ically encounter any given point in the ring with a specific phase in their spin
precession. Therefore, if at a given point in the ring there is some imperfection
in the magnetic field that perturbs the precession, the perturbation will add
constructively over multiple orbits and degrade the overall polarization of the
beam in what is referred to as an “imperfection resonance.”

Another concern is betatron oscillations, wherein the beam periodically
deviates from its design orbit as it circles the ring. As with the spin tune,
a “betatron tune” νbeta can be defined by taking the ratio of the betatron
oscillation frequency to that of orbital motion. In the simplest example, be-
tatron oscillations occur in a constant vertical magnetic field when the beam
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follows any of the other stable orbits transversely offset from the design orbit.
These other orbits will intersect the design orbit at two points, resulting in
a betatron tune of 1. In practice, there exist non-integer betatron tunes in
a synchrotron, both in the vertical and horizontal plane, due to the periodic
placement of magnets around the ring, referred to as the “magnetic lattice”.
Such deviations of the beam cause a depolarizing resonance when the spin
tune matches the betatron oscillations or is an integer multiple of the mag-
netic lattice spacing. This type of resonance is referred to as an “intrinsic
resonance.”

Figure 2.4: From [11]. A non-scale diagram of the RHIC ring showing the
placement and handedness of the Siberian snake and spin rotator helical dipole
magnets. Handedness of the four helical dipole magnets in each snake and
rotator are labeled, and the polarization direction in each region of the ring is
shown.

As a solution to this problem, RHIC employs “Siberian Snakes,” each snake
a set of four helical dipole magnets that creates a magnetic field perpendicular
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to the spin vector, causing it to rotate. There are two full snakes in each ring
in RHIC, and their positions are shown in Fig. 2.4. Each snake rotates the po-
larization vector by 180◦ around separate axes perpendicular to the (vertical)
polarization axis, as in Fig 2.5. The net effect is to cause a 180◦ precession
about the polarization axis so that the effects of depolarizing resonances are
canceled on successive passes around the ring. There is also a partial snake
in the AGS to cancel resonances, albeit over a greater number of cycles. Fig-
ure 2.6 shows the improvement in polarization retention across an intrinsic
resonance with the RHIC snakes.

Figure 2.5: From [55]. The path and polarization direction of a polarized
proton bunch passing through a full Siberian snake.

As seen in Fig. 2.4, there are also spin rotators on opposite sides of each IR.
The spin rotators have the same design as the snakes but the handedness and
magnetic field strength of each component helical dipole differs from those in
the snakes so that instead of causing a net 180◦ rotation about the polarization
axis, the spin rotators before the IR can change the polarization direction from
vertical to horizontal. After passage through the zero-field IR, this operation
is undone by the partner spin rotators opposite the IR.
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Figure 2.6: From [11]. The upper plot shows the relative proton bunch polar-
ization vs. a scan across an intrinsic depolarizing resonance with the RHIC
Siberian snakes ON. The lower plot is the same scan with the snakes OFF,
which reveals many other weaker depolarizing resonances. The unit G corre-
sponds to the magnetic moment anomaly that is called a above.
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2.1.2 Monitoring

Beam Position Monitors

80°

69cm

beam

r
θ

Figure 2.7: Cross-sectional sketch of the relevant design parameters in a single-
plane RHIC stripline BPM.

There are hundreds of “stripline” Beam Position Monitors (BPMs) located
around RHIC, used to measure the beam position at the ring’s various mag-
nets, points of βmax, and at opposing sides of the experimental IRs. Some are
of the single-plane design shown in Fig. 2.7, while others, like those surround-
ing the IRs, are dual-plane BPMs which are essentially two single-plane BPMS
superimposed with one rotated 180◦ around the beam axis. The striplines that
give the detector its name (depicted as the grey arcs in Fig. 2.7) are wire EDM
cut from 316L stainless-steel tubing, and extend 23 cm along the beam axis.
The signal is generated from the difference in the image current between two
striplines, which depends on the displacement of the beam. The image current
density induced by a pencil beam of current Ibeam in a metal plate at radius
a and azimuthal angle φ is given in terms of the transverse coordinates of the
beam (r, θ) as (from [35])

jim(φ) =
Ibeam
2πa

(
a2 − r2

a2 + r2 − 2ar · cos(φ− θ)

)
, (2.4)

and the current in a plate covering an azimuthal angle α is

Iim =

∫ +α/2

−α/2
a · jim(φ)dφ. (2.5)
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The ratio of such an image current to the beam current is plotted versus
the beam location in Fig. 2.8(a) using the RHIC BPM parameters as given
in Fig. 2.7. The response becomes less sensitive to the beam angle at small
displacements. As shown in Fig. 2.8(b), the change in signal with angle are a
few parts in 106 or less for displacements along the BPM plane of up to 900 µm,
which is far smaller than the calibration and signal transmission uncertainties.

The location of the BPM electrical center is determined in-situ by means of
a calibration antenna, shown with the BPM assembly in Fig. 2.9. Reading the
antenna signal in the BPM gives the position of its electrical center relative to
the antenna’s electrical center, which is then related to survey measurements of
the antenna electrical center relative to its external fiducials. This calibration
procedure determines the BPM electrical center to σ = 50 µm. The roll
accuracy cannot be measured in-situ and was calibrated before installation to
about σ = 1 mrad. There is also a dependence of the measurement on the
signal frequency. It varies by about 50 µm from 1 MHz to 100 MHz, and
is attributed to reflections at imperfect terminations and coupling to other
electronics in the room.
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Figure 2.8: (a) Prediction for the difference in image current between the two
strips shown in Fig. 2.7 relative to the beam current as a function of the beam
position, calculated from Eqs. 2.4 and 2.5. (b) Relative change in signal for a
beam at angle θ = 0 and a beam at angle θ = π/4 with equal displacements
δplane in the BPM measurement plane, out to the typical maximum beam
displacement in a Vernier scan [32] of 900 µm.

Each plane of the two dual-plane PHENIX BMPs have designations that
refer to their position relative to the IR and which beam they measure. The
DX.7B,Y BPMs are on the South side of the IR, and the DX.8B,Y BPMs are
on the North side. “DX” refers to their location at the DX magnets. An
example of the readings from all of the BPMs for the

√
s = 200 GeV Run in

2009 are shown in Fig. 2.10. These values can be combined in various ways to
give the angles of the beams or collision axis through the IR, as will be done
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Figure 2.9: From [24]. Top view of a Beam Position Monitor with antenna
installed.

in Section 4.4.

Figure 2.10: Raw BPM data in the 2009 run at
√
s = 200 GeV.
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Wall Current Monitors

The RHIC wall curent monitor, or WCM, system measures the longitudinal
profile of proton or heavy-ion bunches in the RHIC rings. This information is
useful for such reasons as calculating the machine luminosity and determining
the longitudinal emittance (spread in momentum and time) of the beam. The
system operates similar to the design shown in Fig. 2.11, with the single-turn
secondary rotated around the longitundinal axis to form a case for the ferrite
core. There are three WCMs at RHIC, two at the 2 o’clock position (one
for each ring), and an additional WCM at the 4 o’clock position where the
singals from counter-rotating bunches in the two rings cancel, which can aid
in adjusting the collision point.

Figure 2.11: Left: Simple device for measuring a beam current, from [60]. It
consists of a ferrite ring inductor with a single turn. Right: Equivalent circuit,
with additional elements for a case to isolate the detector from outside noise.
From [48].

If a beam image current passes through the center of the toroid, the induced
voltage across the single-turn secondary winding will be given according to
Lenz’s law as the difference in flux from the beam current ib and the flux due
to the compensating current driven in the secondary winding is,

vS = L

(
dib
dt
− dis

dt

)
. (2.6)

Substituting is = vS/R and using a Fourier transform to the frequency domain,
which, acting on the time derivatives, brings out a factor jω, where j =

√
1,
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we arrive at

Vs(ω) = jωL

(
Ib −

Vs(ω)

R

)
, (2.7)

which can be solved as

Vs(ω) = jωL · Ib(ω)

1 + jωL/R

= ωL · Ib(ω) · ωL/R + j

1 + (ωL/R)2
. (2.8)

The magnitude of the response is then∣∣∣∣Vs(ω)

Ib(ω)

∣∣∣∣ =
ωL√

1 + (ωL/R)2
. (2.9)

Fig. 2.12 shows this response plotted vs. frequency, with typical parameters
similar to those for the RHIC WCMs. The frequecy range from the 1/

√
2

point is close to what is quoted for the RHIC WCMs, about 3 kHz to 6 GHz
[25].
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Figure 2.12: Response of the WCM design shown in Fig. 2.11 versus frequency,
given the parameters shown in the legend. The corner frequency, where the
response drops from its maximum by a factor 1/

√
2, is also marked on the

plot.

During typical in-store operation, WCM readings of the entire 120 bunch
profile are taken approximately every 5 minutes. As an example, a superposi-
tion of the WCM readings for the first 10 bunches in the blue beam are shown
in Fig. 2.13, both for the 2009 and the 2012 RHIC run.
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Figure 2.13: Example WCM readings of the first 10 bunches in the yellow ring.
(a) shows a reading from the 2009

√
s = 200 GeV RHIC run, and (b) shows

a reading from the 2012
√
s = 510 GeV RHIC run. The stark difference in

bunch shape is due to the introduction of the 9 MHz RF system in the 2011
run.

2.1.3 CNI Polarimetry

Both types of polarimeters in RHIC operate on the basis of Coulomb-Nuclear
Interfecence, or CNI, a phenomenon that takes place in proton-proton elas-
tic scattering at small momentum transfer where Coulomb and Nuclear cross
sections become comparable in size. To see how spin dependence comes into
play, consider the five independent scattering amplitudes for longitudinally
polarized protons:

Φ1 = 〈+ + |M |+ +〉
Φ2 = 〈+ + |M | − −〉
Φ3 = 〈+− |M |+−〉
Φ4 = 〈+− |M | −+〉
Φ5 = 〈+ + |M |+−〉, (2.10)

where +,− denote the helicity each proton. The remainder of the 16 possible
amplitudes can be related to the above via parity invariance of the electro-
magnetic and strong forces, and by exchanging the labeling of the protons in
the initial or final state (of these, 7 are equal to Φ5, which gives it a relative
weighting of 4 in the total cross-section). These amplitudes can be expressed
in terms of an electromagnetic amplitude plus some hadronic amplitude, offset

33



by the “Coulomb phase” δ:

Φj = Φem
j + e−iδΦh

j . (2.11)

The single-spin asymmetry AN can be expressed ([23]) in terms of δ and the
ratio of the single-spin-flip amplitude to the non-spin-flip amplitudes

r5 =
mp√
−t

2Φ5

Im(Φ1 + Φ3)
, (2.12)

where mp is the mass of the proton and t is the square of the momentum
transfer. These terms are important to describe the shape and exact magnitude
of AN , but the theory still predicts non-zero AN if r5 and δ are set to zero.
The theoretical prediction for AN in p + p and p + C processes is shown in
Fig. 2.14.

The RHIC polarimeters measure energy and time-of-flight of the elastic re-
coil protons or carbon, for which the kinetic energy follows the non-relativistic
relation

Emeas + Eloss =
m

2
× L2

(tmeas + t0)2
(2.13)

with calibration factors Eloss and t0. Fitting the time vs. energy distribution to
this function allows these elastic events to be distinguished from background.
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Figure 2.14: Analyzing power (AN) of the CNI process for elastic p + p and
p+ C scattering for a 250 GeV proton beam. From [41]

35



H-Jet Polarimeter

Figure 2.15: Diagram of the hydrogen-jet polarimeter. From [61]

A diagram of the Hydrogen-jet polarimeter is shown in Fig. 2.15, details
of which are given in [61]. Located at the 12 o’clock position, its purpose is
to provide a vertically polarized atomic hydrogen beam for scattering with
the vertically polarized RHIC beams. The first stage of the system is the
polarized atomic hydrogen beam source, which dissociates diatomic hydrogen
with an RF field operating nominally at 21.6 MHz and 200 − 300 W. The
atomic hydrogen is then cooled to cryogenic temperatures below 100 K as it
escapes out a nozzle headed towards the RHIC beam. After leaving the nozzle,
the atomic hydrogen beam passes through a magnetic field gradient provided
by four sextupole magnets. The hyperfine splitting of hydrogen produces four
quantum states, which, as detailed in [51], simplify in the presence of the
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typical 1.6− 1.7 T sextupole field strength to

|1〉 = |e ↑, p ↑〉
|2〉 = |e ↑, p ↓〉
|3〉 = |e ↓, p ↓〉
|4〉 = |e ↓, p ↑〉. (2.14)

The field gradient acts as a Stern-Gerlach device for the electron polarization
and sweeps states |3〉 and |4〉 from the beam, leaving only states |1〉 and |2〉,
which differ in proton spin direction. The hydrogen beam is then focused by
two additional sextupole magnets and subject to an RF field that selectively
causes a transition from |1〉 to |3〉 (Weak Field Transition) or from |2〉 to |4〉
(Strong Field Transition), depending on the desired target proton spin state.
Thus the hydrogen beam enters the scattering chamber with a uniform vertical
proton polarization and scatters at a 90◦ angle with the RHIC beam.

After scattering, the hydrogen beam enters the Breit-Rabi polarimeter
chamber. This chamber also has sextupole magnets in a Stern-Gerlach setup,
which further reduces the beam into just one of the states in Eq. 2.14 before
it strikes an ion-gage beam detector that measures the beam intensity. By
switching between different combinations of the weak and strong field transi-
tions, these intensity measurements can be used to extract the relative state
populations and RF transition efficiencies, and this information can be used
to find the target polarization, which is about 96%, as described in [51].

The Hydrogen-jet polarimeter gives a very accurate reading of the RHIC
beam polarization due to the fact that the interaction is dominated by p + p
scattering and thus knowledge of the spin asymmetry AN in the interaction is
not required. In fact, the beam polarization can be determined directly from
the ratio of the raw production asymmetry with respect to the RHIC beam
εbeamN and the raw production asymmetry with respect to the atomic hydrogen
beam, εtargetN , as long as the hydrogen beam polarization, Ptarget, is known:

Pbeam = − ε
beam
N

εtargetN

× Ptarget, (2.15)

which follows from the ANs being equal.
The raw asymmetries εN are measured for elastic p + p scattering by se-

lecting elastic recoil protons using time of flight and energy measurements in
six silicon strip detectors. The detectors are parallel to the H-jet/RHIC beam
scattering plane, with three on each side. The measurements determine Pbeam
to 6− 8% statistical uncertainty per fill, given an event rate of about 30 kHz.
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The diameter of the H-jet beam is about 7 mm and the entire assembly can be
shifted by 10 mm so that the H-jet beam scatters on only the yellow or blue
RHIC beam, which are separated by about 10 mm at the 12 o’clock interaction
region. The net polarization of the H-jet beam is cycled between up, zero, and
down in intervals of 300, 30, and 300 seconds.

The dominant systematic uncertainties in the measurement are due to con-
tamination of the H-jet beam by molecular (diatomic) hydrogen, and scatter-
ing of the H-jet beam with RHIC beam gas background. Diatomic hydrogen
has zero net proton polarization and also does not register on the ion gauge
detector in the Breit-Rabi polarimeter, so it enters as a dilution factor on the
net polarization,

Pjet = (1− δ)PBreit-Rabi (2.16)

where δ is the admixture of molecular hydrogen in atomic equivalent units
and is estimated to be δ = 3% ± 2%. Scattering with the beam gas may
also produce an asymmetry, which modifies the effective AN measured in the
detectors.

AeffN = (1− r)AN + rAbgrN , (2.17)

where r is the fraction of beam gas background, with a typical r ≈ 5%. Knowl-
edge of AbgrN is consistent with zero, so this contribution also acts as a dilution
factor [53].

p-Carbon Polarimeter

There are two pCarbon polarimeters in RHIC, one for each ring. A schematic
layout of one is shown in Fig. 2.16. The polarized proton beams scatter on
an unpolarized carbon ribbon of approximate dimensions 2.5 cm × 10 µm ×
25 nm. Bunch by bunch polarization can be measured to about 4% statistical
uncertainty with typical rates of 20 MHz. Usually four two-minute measure-
ments are made per fill, which allows the polarization decay time to be sam-
pled. The ribbons can also be scanned in different orientations across the beam
to measure vertical and horizontal polarization profiles, with a positioning ac-
curacy for the ribbon of ±0.5 mm, limited by the ribbon straightness. The
measurement opperates under the sample principle as the H-jet polarimeter,
except that the Carbon ribbon is not polarized and the composition obviously
does not match that of the proton beam. Therefore the analyzing power AN
in the measurement does not cancel and the polarization must be expressed
in terms of the raw asymmetry εN as

Pbeam =
εN
AN

. (2.18)
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To remove unertainty from the knowledge of AN in p-Carbon CNI scattering,
the measurement must therefore be normalized to the lower statistics H-jet
measurement over a sufficiently long time scale, usually the entire Run-Year.

Figure 2.16: Schematic layout of the p-Carbon polarimeter. From [11]

To measure the asymmetry in recoil Carbon atoms, the detector employs
6 silicon strip detectors placed at 18 cm from the ribbon target. All hits with
energy and ToF above a certain threshold are recorded. The layout of these
detectors is shown in Fig. 2.16.

2.2 PHENIX

The PHENIX detector [8] consists of two forward muon arms and two central
arms, the latter of which are shown in Fig. 2.17. The central arms each cover
a pseudorapidity range of |η| < 0.35 and have azimuthal coverage of ∆φ = π

2
.

The PHENIX central magnet consists of two coils which provide a field-integral
of up to 1.15 Tm in |η| < 0.35 when they are run with the same polarity, as was
done in 2005 and 2006. In 2009, the two central coils were run with opposite
polarity to create a field free region near the beam pipe for the newly installed
Hadron Blind Detector [13], which is not used in the present analysis and has
a negligible effect on π0 and η meson decays as a conversion material. From a
radius of 2–5 m, which is outside the magnetic field region, there are several
tracking and PID detectors that are not used in this work. At a radius of
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approximately 5 m, there is a thin multiwire proportional chamber called the
pad chamber (PC3) followed immediately by an electromagnetic calorimeter
(EMCal), both of which are used here. The coordinate system used to describe
the PHENIX detector has a z-axis along the beam direction. Along this axis
at forward rapidity are the Beam Beam Counters (BBC), which can be used
to measure the z-vertex, and the Zero Degree Calorimeters (ZDC).

Figure 2.17: Beam view of the PHENIX central arm in 2009 [7]. Tracking
detectors include the Drift Chambers (DC) and Pad Chambers (PC). The
EMCal consists of two separate subsystems, the Lead Scintillator (PbSc) and
the Lead-Glass Cherenkov Radiator (PbGL).
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2.2.1 Zero Degree Calorimeters and Shower Max De-
tectors

Figure 2.18: From [9]. Two views of a single module in the PHENIX Zero
Degree Calorimeter (ZDC). Each arm of the detector has three such modules,
with the Shower Max Detector (SMD) located between the first and second
modules (see Fig. 2.19).

The PHENIX Zero Degree Calorimeter is illustrated in Fig. 2.18. The ZDC
consists of two arms (one is shown in Fig. 2.19) located |z| = 18 m from the
interaction point (IP) along the beam axis, covering |η| > 6. Each arm is
composed of three modules of tungsten-scintillator sandwich calorimetry with
a total of 5 nuclear interaction lengths. As the arms lie beyond the bending
magnets, which serve to separate the two beams outside the experimental area
but also sweep away charged particles from the interaction, the ZDC primarily
triggers on neutrals. A ZDC trigger requires a minimum energy deposit in each
arm of nominally 20 GeV.

The Shower Max Detector (SMD) is located behind the first ZDC module
in each arm. Its position roughly coincides with the depth in hadronic shower
development in the ZDC where the particle multiplicity is maximal. Each arm
of the SMD has two layers of scintillator strip hodoscopes. The SMD is read
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out in 7 strips of width 15 mm in the horizontal direction, and 8 strips of
width 20 mm in the vertical direction. The normal to the SMD face makes a
45 degree angle with the beam axis, which makes the effective vertical strip
width about 14 mm.

Figure 2.19: One of the arms of the PHENIX Zero Degree Calorimeter (ZDC).

2.2.2 Local Polarimetery

Local polarimetry at PHENIX is used to determine the degree of longitudinal
polarization in the PHENIX IR. After a long shutdown or significant changes
to the machine parameters, PHENIX runs with the spin rotator magnets (see
2.1.1) off (i.e. with the polarization direction vertical in the IR) for some time
to establish with the ZDCs a baseline measurement of the single transverse spin
asymmetry AN of forward neutron production [6]. Then, when the rotators
are turned on for longitudinal running, the remaining transverse component
of each beam can be measured as

fT ≡
PT
P

=
AN,rotators on
A
N,rotators off

(2.19)

and the corresponding longitudinal component is given by

fL ≡
PL
P

=

√
1−

(
PT
P

)2

. (2.20)
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Figure 2.20: (a) View of a single quartz crystal and photomultiplier tube
assembly. (b) One arm of the BBC, which holds 64 of the assemblies in (a).
Both figures from [12].

2.2.3 Beam-Beam Counters

The main role of the PHENIX Beam-Beam Counters, or BBC, is to measure
the time and z-vertex of a p+ p or heavy-ion collision by sampling hard scat-
tering at forward rapidity, 3.0 < |η| < 3.9. There are two arms to the BBC,
each located 144 cm from the IP. One arm of the BBC is shown in Fig 2.20.
It has an outer diameter of 30 cm and surrounds the beam pipe with 1 cm of
clearance. Each arm is composed of 64 assemblies of quartz crystal, which act
as Čerenkov radiators, in front of a photomultiplier tubes. Each group of 8
elements is controlled by a single power supply. The average timing resolution
for each individual assembly under real experimental conditions is 52 ps with
a standard deviation of 4 ps. If one PMT fires on each arm, with the initial
time of the collision defined as t0 = (tN + tS)/2 this translates into a timing
resolution of 37 ps.
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2.2.4 EMCal

The PHENIX Electromagnetic Calorimeter, or EMCal, employs two separate
detector technologies that operate on different principles. Six out of the eight
EMCal sectors (called the Lead Scintillator or “PbSc”) are Shashlik calorime-
ters based on scintillation calorimetry, while the remaining two (called the
Lead-Glass or “PbGl”) are based on Čerenkov radiation calorimetry, which
makes them significantly less responsive to hadrons.

The components of a PbSc calorimeter “module” are detailed in Fig 2.21.
Each of the 3,888 modules contains 4 optically isolated “towers,” which define
the lateral segmentation of the calorimeter at 5.535 × 5.535 cm2 per tower.
The modules are grouped into 18×36 module arrays called “sectors,” of which
there 6 total. These sectors are not contiguous, and thus there is an acceptance
edge at the perimeter of each. There is also a unit of “supermodule” defined
for the PbSc, which is a 6x6 collection of modules. Each tower has a depth
of 66 sampling cells, each cell a 0.4 cm layer of Polystyrene scintillator plus a
0.15 cm layer of lead. The lead acts as an absorber to produce electromagnetic
showers, which trigger the release of scintillation light in the scintillator. To
collect the scintillation light, 36 wavelength-shifting fibers pierce each layer,
running the depth of the calorimeter and terminating at a photomultiplier
tube. Other parameters of the calorimeter are summarized in Table 2.1. A
PbGl “supermodule,” a group of 6 × 4 towers with a common calibration
system, is shown in Fig. 2.22. Each tower is 4 × 4 cm2, which again defines
the lateral segmentation of the detector. There are a total of 2 PbGl “sectors”
in the EMCal, each a collection of 192 supermodules in a 12× 16 array. This
makes the PbGl sectors approximately the same size as the PbSc sectors, with
sector areas of approximately 2× 4 m2 each. Each PbGl tower is a solid block
of TF1-type lead-glass individually wrapped in 12-micron thick aluminized
mylar to reflect the Čerenkov radiated light and direct it to a photomultiplier
tube at the end of the block. The index of refraction of the mylar is 1.648.

Both the PbSc and PbGl are designed to measure the total energy of
an electromagnetic shower, with active depths of 18.8 and 14.3 radiation
lengths, respectively. The nominal energy resolutions from test-beam data
are 8.1%/

√
E[GeV]⊕ 2.1% and 6.0%/

√
E[GeV]⊕ 0.9% [15]. They also have

sufficient lateral tower segmentation (∆η ∼ 0.01, 0.008 and ∆φ ∼ 0.01, 0.008
rad., for the PbSc and PbGl respectively) to measure not only the position
but also the transverse distribution of an electromagnetic shower, with a typ-
ical shower contained in a 3x3 array of EMCal towers. The segmentation is
also sufficient to avoid pile-up at the highest RHIC p + p rates and in the
high-multiplicity environment of heavy ion collisions.

The relative time-of-flight (ToF) for showers can also be measured with the
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Figure 2.21: Partial cross-section diagram of a single Lead Scintillator module.
The “leaky” optical fiber used for calibration can be seen at the core of the
module. From [15].

EMCal with a timing resolution of about 0.7 ns (relative to the initial collision
time t0 measured by the BBC). This measurement can be used to reduce the
contribution from hadrons and other backgrounds that are out of time from
the expected arrival for a photon.
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Figure 2.22: Exploded view of a Lead Glass supermodule (16 individual tow-
ers). The LED assembly at the beam-facing side is used for energy calibration.
From [15].
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2.2.5 EMCal Trigger

To record a significant sample of events containing a π0 meson with large
transverse momentum (pT ), a high energy photon trigger is used. A trigger
tile is defined as a 2× 2 array of EMCal towers, and, for the π0 analysis, the
energy in a 2 × 2 array of tiles (or 4 × 4 towers) is summed and compared
to the trigger threshold. To reduce loss at the edge of a tile, the groups of
4 × 4 towers overlap. For the

√
s = 200 GeV π0 analysis, we use two trigger

thresholds, one at 1.4 GeV, called the 4 × 4c and one at 2.1 GeV, called the
4× 4a. For π0s, these are maximally efficient at meson energies of > 4 GeV/c
and > 6 GeV/c, respectively. Due to separate circuits for triggers in odd and
even bunch crossings resulting in a small variation in the threshold energy,
all analysis is performed separately for even and odd crossing data, except at
sufficiently high energies where the trigger efficiency is constant.

2.2.6 EMCal Offline Energy Calibration

Tower-by-Tower Calibration

A separate high voltage is supplied to each supermodule in the PbSc and
PbGl, which is adjusted on a short time scale to calibrate the response to a
UV laser (in the case of the Pbsc) or an LED (in the case of the PbGl). To
account for tower-by-tower differences in the EMCal response, an offline energy
calibration must be performed. For each event, target towers are identified as
those centered in a cluster with energy greater than 0.8 GeV. All possible
pairings are then made with other clusters in the EMCal with energy greater
than 0.3 GeV and with a pair pT > 1 GeV/c. A shower shape cut is also
used on the clusters to remove hadrons. The data for the calibration must
be accumulated over a significant portion of the Run Year to get sufficient
statistics to histogram the π0 mass peak in each tower. Once the peak position
is measured for each tower, that tower’s energy is scaled by a “calibration
coefficient” factor that would put the π0 mass peak at 137 MeV, which is the
nominal position expected in the EMCal due to energy smearing effects. Since
the individual tower energy is not the total energy of the cluster, the calibration
must be iterated to converge on final values for the calibration coefficients. The
effect of the tower-by-tower calibration on the π0 peak position and width are
shown in Figures 2.23 and 2.24.

Run-by-Run Calibration

Since the above calibration covered the entire 2009 Run for each tower (in
order to have adequate statistics), an additional run by run calibration was
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Figure 2.23: 2009
√
s = 200 GeV π0 peak position for each sector in the EMCal

before and after the EMCal tower-by-tower calibration. Sectors E0 and E1 are
the PbGl.

peak width
0 0.0050.010.0150.020.0250.030.0350.040.0450.05

to
w

er
s

1

10

210

W0W0

peak width
0 0.0050.010.0150.020.0250.030.0350.040.0450.05

to
w

er
s

1

10

210

W1W1

peak width
0 0.0050.010.0150.020.0250.030.0350.040.0450.05

to
w

er
s

1

10

210

W2W2

peak width
0 0.0050.010.0150.020.0250.030.0350.040.0450.05

to
w

er
s

1

10

210

W3W3

peak width
0 0.0050.010.0150.020.0250.030.0350.040.0450.05

to
w

er
s

1

10

210

E0E0

peak width
0 0.0050.010.0150.020.0250.030.0350.040.0450.05

to
w

er
s

1

10

210

E1E1

peak width
0 0.0050.010.0150.020.0250.030.0350.040.0450.05

to
w

er
s

1

10

210

E2E2

peak width
0 0.0050.010.0150.020.0250.030.0350.040.0450.05

to
w

er
s

1

10

210

E3E3

Figure 2.24: 2009
√
s = 200 GeV π0 peak width for each sector in the EMCal

before and after the EMCal tower-by-tower calibration. Sectors E0 and E1 are
the PbGl.
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required for each EMCal sector. Cluster energies from a given sector were
multiplied by 137 MeV divided by the peak position measured in the stability
check. Those details can be found in the next subsection.

EMCal stability

The EMCal stability is checked by fitting the π0 peak position, width, and
background fraction under the π0 peak. This check is done run-by-run and
sector-by-sector, with the spurious outlier runs (judged using Chauvenet’s Cri-
terion) excluded from the analysis. π0s with pT between 2.0 and 3.0 GeV/c
are used here and the selection of π0s by various cuts is the same as the main
analysis. The background fraction NBG

Nπ0+NBG
is calculated within a ±25 MeV/c2

window around the π0 mass peak.
Figures 2.25 through 2.27 show the π0 peak position, π0 peak width, and

background contributions as a function of run number.
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Figure 2.25: Run dependence of π0 mass peak position in EMCAL for all
sectors. The last two plots show the aggregated PbSc and PbGl.
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Figure 2.26: Run dependence of π0 mass peak width in EMCAL for all sectors.
The last two plots show the aggregated PbSc and PbGl.
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Figure 2.27: Run dependence of background fraction under π0 mass peak in
EMCAL for all sectors. The last two plots show the aggregated PbSc and
PbGl.
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2.2.7 Pad Chamber 3

Figure 2.28: From [44]. Top Left: Readout geometry of the Pad Chambers.
Nine non-adjacent pixels are read out at once. Top Right: Pixel layout with
some readout groups highlighted, and an example of three pixels that consti-
tute a “cell” are outlined in black. Bottom: Side view of a Pad Chamber.

PHENIX has Pad Chamber (PC) detectors in each arm at varying radii for
the tracking of charged particles. They are single plane multiwire proportional
chambers with one of the two cathodes segmented into fine pixels, which sense
an induced charge from avalanches of positive ions onto the wires. Some
diagrams of the PC design are shown in Fig. 2.28. The position resolution
in the PCs is set by “cell” size, with a cell being a group of three pixels.
The pixels are “ganged” together in non-adjacent groups of nine to reduce
the number of readout channels. The condition for a valid hit is satisfied
when an avalanche is sensed by three “gangs” that cover a given cell. This
triple coincidence requirement reduces background. The PCs have a very high
efficiency, > 99.5% at plateau.

The last layer in the PC system, the PC3, sits directly in front of the
EMCal in each arm, and is thus very useful for vetoing charged tracks that
leave an energy deposit in the EMCal. The cells in the PC3 are 1.7× 1.7 cm2,
which is significantly smaller than the position resolution of any EMCal tower.
The exact two dimensional position resolution depends on whether a hit is
contained within a single cell or split between two cells. In the former case,
the resolution is simulated at 4.9 mm along the direction of the wires, and
6.1 mm across the wires. In the latter case, the resolution improves and is
3.2 mm along the wires and 4.8 mm across [49]. The third position coordinate
is provided by the PC3 radius.

53



2.3 STAR Scalers

There are 3 STAR scaler boards at the PHENIX experiment, so named be-
cause they were initially designed for use in the STAR collaboration. Each
scaler board has 24 inputs plus a clock, and keeps a separate count for all
224 correlations of input signals, with 40 bits of memory each [26]. On each
board, 7 inputs need to be reserved for the crossing counter, since there are
120 crossings and 27 = 128 is the next largest number. That leaves 17 inputs
open for counting various other correlations, although one of those is usually
reserved for the DAQ busy bit so that live or raw rates can be calculated.
At PHENIX, these scalers are incremented and read out over one run. To
time in the STAR scalers, fine and coarse delays can be set. The course delay
corresponds to the beam clock, typically about 106 ns. The fine delay is 1/8
of the coarse delay.
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Chapter 3

Analysis

3.1 π0 Reconstruction

In order to count the number of neutral pions, a two photon invariant mass
spectrum is constructed from all combinatorial EMCal cluster pairings using
the relation for a decay into two massless photons,

m2
γγ ≡ 2E1E2(1− cosθ), (3.1)

where E1 and E2 are the energies of the two clusters and θ is the angle between
the two vectors from the decay vertex to the EMCal clusters. The branching
ratio for the π0 → γ + γ decay is more than 99%, so such a reconstruction
should include almost all of the π0 that decay into the EMCal acceptance. The
mean decay time for a π0 is about 9 × 10−17 seconds, which means it decays
after traveling about 26 nm and the collision vertex can be assumed equal to
the decay vertex for our analysis.

3.2 Asymmetry Calculations

A double longitudinal spin asymmetry in production of some final state is
defined in terms of cross sections:

ALL =
σ++ − σ+−

σ++ + σ+−
, (3.2)

where the indices denote the helicity configuration of the initial state (++
being like helicity, and +− being unlike helicity). Experimentally, measur-
ing ALL as written in Eq. 3.2 is not feasible due to the sizable systematic
uncertainties in any cross section measurement, and the small asymmetries
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expected. However, we may make use of the relation

σ =
(N
ε

)

L
(3.3)

, where N is the particle yield in the detector, ε is the efficiency times accep-
tance of the detector, L is the p + p luminosity. Using Eq. 3.3 and assuming
efficiency times acceptance is constant across different helicity combinations,
ALL can be expressed as

ALL =
1

PBPY

N++ −RN+−

N++ +RN+−
(3.4)

where N is the observable yield in the given helicity state and PB(Y ) is the
polarization of the Blue (Yellow) beam. R is the relative luminosity between
helicity states, and is defined as

R =
L++

L+−
(3.5)

where the luminosity is measured in each helicity state. The uncertainty in
ALL calculated this way is

(∆ALL)2 =

(
1

PBPY

2RN++N+−

(N++ +RN+−)2

)2
((

∆N++

N++

)2

+

(
∆N+−

N+−

)2

+

(
∆R

R

)2
)

+

((
∆PB
PB

)2

+

(
∆PY
PY

)2
)
A2
LL (3.6)

According to Section 3.2.2, we may neglect the fill-by-fill uncorrelated system-
atic uncertainty in the polarization terms. We may also neglect the fractional
statistical uncertainty on R since it is much smaller than that of the yield
terms. Then, since there is no fill-to-fill uncorrelated relative luminosity sys-
tematic uncertainty, we need not carry it through our fill-by-fill calculations.

As noted, by writing ALL in this way we are assuming that all acceptance
and efficiency corrections are helicity and crossing independent. The detector
acceptance and reconstruction efficiencies do not change on the scale of hun-
dreds of nanoseconds, which is the typical time between helicity flips in RHIC.
Therefore, this assumption is safe. In the case of the trigger efficiency, this
assumption does not hold due to the design of the trigger circuit: odd and
even crossings use separate circuits due to the trigger reset time of ∼ 140 ns
being longer than the time between bunches, and these separate circuits can
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have different effective thresholds. The analysis is therefore done separately
for odd and even crossings for pT < 7 GeV/c. Above this pT , the triggers are
maximally efficient and there is no observed dependence on the trigger circuit.

Similarly, for R, we do not measure the luminosity recorded in each helicity
state, but instead the number of MB triggered events, again assuming that
efficiency and acceptance cancel in the ratio. The accuracy of this assumption,
as well as the assumption that the MB trigger has no inherent asymmetry, are
discussed in Chapter 4. The latter leads to the largest systematic uncertainty
in the determination of ALL.

As seen in Fig. 3.1, the two-photon mass yield in the π0 mass peak region
(solid raspberry shading) consists of both signal and background. The asym-
metry measured in this region, AS+B

LL , contains both the signal asymmetry,
ASLL, and the asymmetry in the background component, ABLL. The relation-
ship between these three asymmetries in the mass peak region can be written
as

ASLL =
AS+B
LL − wBGABLL

1− wBG
(3.7)

where wBG is the background fraction in the peak region. For the π0, we define
the peak region as 112 < mγγ < 162 MeV/c2, which corresponds to roughly
2σ about the mean of the mass peak at low pT . The peak position does not
correspond exactly to the known mass values for the mesons due to energy
smearing effects in the EMCal.

The background fraction wBG is extracted from a fit to the mass range near
the π0 mass peak of 50−300 MeV/c2. The fit function is a Gaussian to describe
the mass peak and a third order polynomial to describe the background. wBG
is defined as the integral of the background polynomial in the mass peak range
[m1,m2] divided by the total yield in this same range:

wBG =

∫ m2

m1
(a+ bm+ cm2 + dm3)

binwidth ∗ Yield[m1,m2]

. (3.8)

Variations of the initial fit parameters and range showed no significant modifi-
cation to wBG except in the 12−15 GeV/c pT bin, where modifying the binning
led to a 5% change in Aπ

0

LL/σAπ0LL
, attributable to the difficulty in fitting the

low-statistics background in this pT range (see Subsection 3.5.2). Average
background fractions for the different pT bins are listed in Tables A.1 and A.2.

The background asymmetry in the peak region cannot be directly mea-
sured, but if the background asymmetry is constant as a function of mγγ, then
a measurement in the sideband regions on either side of the peak can be used
instead. Figure 3.2 shows the asymmetry as a function of mass in the back-
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ground region near the π0 peak for several pT bins. No indication of a mass
dependence in the background asymmetry is seen. However, as discussed in
Subsection 3.5.5, a small systematic uncertainty is evaluated for Aπ

0

LL to ac-
count for any mass dependence. To include any possible mass dependence,
as well as to increase the statistics of the background asymmetry , the yields
in sidebands on both sides of the peak region are summed to calculate back-
ground asymmetry. The sideband regions are shown in Fig. 3.1 in blueberry,
and are defined as 47 < mγγ < 97 MeV/c2 and 177 < mγγ < 227 MeV/c2.

Yields for peak and sideband regions as well as background fractions can
be found in Tables A.1 and A.2 in Appendix A.3.

Figure 3.1: Two photon invariant mass distribution. Raspberry area, 112
MeV< Mγγ < 162 MeV/c2, is used for π0 plus background asymmetry mea-

surements (Aπ
0+BG
LL ); Blueberry, 47 MeV/c2 < Mγγ < 97 MeV/c2 and 177

MeV/c2 < Mγγ < 227 MeV/c2, for ABGLL

ALL, as written in Eq. 3.4, is calculated for peak and background sidebands
in each RHIC fill. Due to the variation in trigger electronics discussed above,
the analysis is done separately for even and odd crossings. For each of the four
spin patterns, ASLL is calculated using Eq. 3.7 with the statistically-weighted-
average over fills of AS+B

LL and ABLL. The eight results (four spin patterns
for even crossings and four spin patterns for odd crossings) are compared for
consistency, and then combined to arrive at the final ASLL.
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Figure 3.2: ALL vs. mγγ for the background region near the π0 mass peak for
three pT bins: 1 − 1.5 GeV/c (black circle), 2 − 2.5 GeV/c (red square) and
3− 3.5 GeV/c (blue triangle), for a single spin pattern in odd crossings. The
peak region ALL is not shown. No mγγ dependence is found.
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Figure 3.3: Relative Luminosity vs. fill number as measured by the BBCs for
(a) even and (b) odd crossings separately for each spin pattern: P1 = Red, P2
= Yellow, P3 = Green, P4 = Blue.

3.2.1 Relative Luminosity

Relative luminosity is calculated as the ratio between the number of BBC
triggered events in same helicity crossings to the number in opposite helicity
crossings. In order to correspond to the binning of the EMCal cluster data, it
is separated into even and odd crossings. Figure 3.3 shows relative luminosity
as a function of fill number for odd and even crossings separately.

3.2.2 Polarization

Polarization, as measured by the p-Carbon polarimeter and normalized to the
H-jet polarimeter over the entire running period (see 2.1.3), is provided to the
experiments by the CNI-pol group. For 2009

√
s = 200 GeV running, the av-

erage beam polarizations were 56% for the Blue beam and 55% for the Yellow
beam, for a product PBPY = 0.31. The overall relative scale uncertainty on the
product PBPY was 6.5%, with 4.8% of that considered correlated with other
RHIC running years. The fill-by-fill values and uncertainties can be found in
[38]. Only fill-by-fill statistical uncertainties and the systematic global scale
uncertainty are included in the analysis. The fill-by-fill uncorrelated system-
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atic uncertainty in Run9 200 GeV was 7.2% for both beams. It is mostly
yellow-blue beam correlated so for a double-spin asymmetry it becomes more
like 14.4% for the product PBPY . With 135 fills in the Run9 analysis, this
14.4% scales as 14.4%/

√
135 ≈ 1% when compared to the global systematic

uncertainty on PBPY of 8.8%, and so we may neglect it for convenience. Fig-
ure 3.4 plots each beam polarization vs. runnumber, using the fill-by-fill values
along with the decay rates provided by the CNI-pol group. The changes in
polarization from fill to fill are much larger than the run-to-run changes within
a fill, motivating the division of the analysis into fill-groups.
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Figure 3.4: Polarization of each beam vs. runnumber, with statistical un-
certainty, which was calculated from the fill-by-fill polarization values and
polarization decay rates provided by the CNI-pol group. The deviation from
fill-to-fill is much larger than the decay from run to run within a fill.

3.2.3 Local Polarimetry Scaling

For the 2009 RHIC run at
√
s = 200 GeV, the fraction of the polarization in

the transverse direction, f = PT/P , was measured to be

• fBL = 0.994 + +0.006
−0.008

(stat) + +0.003
−0.010

(syst) for the blue beam and

• fYL = 0.974 + +0.014
−0.018

(stat) + +0.019
−0.035

(syst) for the yellow beam
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where the systematic uncertainty comes from considerations of detector ac-
ceptance and imprecise knowledge of the collision axis with respect to the
ZDCs.

Given these numbers, we must scale our final Aπ
0

LL by a factor 1.03 and
include an additional global scaling uncertainty of√(

δfBL
fBL

)2

+

(
δfYL
fYL

)2

=

√√√√( +0.007
−0.013

0.994

)2

+

(
+0.024
−0.039

0.974

)2

=
+2.6%

−4.2%
(3.9)

where combining of the asymmetric errors has been done by treating the + and
− errors separately and assuming the systematic error is uncorrelated between
the blue and yellow beam.

3.2.4 Uncertainties on Counting

Prescales

Some data taken in the 2009 run had the ERT triggers prescaled. We therefore
scale up all counts taken during these runs by a factor a ≡ prescale + 1.
To illustrate the range of possible uncertainties when counting a prescaled
quantity, we present the following extremes:

• Consider a counting experiment in which the experimenter counts events
passing a specific selection criteria “by twos”, that is, for every second
event passing the criteria, the experimenter records one tally mark. At
the end of the experiment, if the experimenter has exactly N tally marks,
she knows that there were either 2N or 2N + 1 events passing the selec-
tion criteria. Given Poisson statistics, the statistical uncertainty on the
number of events passing the criteria is (neglecting the +1)

√
2N .

• Now take the case where the experimenter again records “by twos” events
passing some selection criteria, but this time looks within said events to
find N events passing an additional, completely uncorrelated criteria.
An example would be counting with a prescale “events coinciding with
a clock tick” and then looking within this sample for “events with a π0.”
In this case, the uncertainty on the number of events that would have
passed the second selection without the initial prescale would be 2

√
N .

This is because the prescale and our measurement N in the prescaled
sample have no correlation, and so we cannot combine the information
to reduce the relative error.
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So we see that when up-scaling counts taken with a prescale, how we handle
the uncertainty depends on to what extent our first and secondary selection
criteria are correlated.

In this analysis, we have taken for our run-by-run counting uncertainties
the conservative estimate of a

√
N . That this overestimates the statistical

uncertainty can be seen by comparing the bunch shuffling plots of Subsection
3.5.7 for 4 × 4c triggers with 4 × 4a triggers, the latter of which was never
prescaled in the 2009 run.

Event Multiplicity Uncertainty Enhancement Factor

To be consistent with previous ALL analyses in PHENIX, an uncertainty en-
hancement factor, referred to internally as a “k-factor,” is used to account
for cluster pair multiplicities in a given event. The standard derivation is as
follows: we have some number of cluster pairs, Nγγ, and we wish to find the
uncertainty on this number. It can be related to the number of events Nev via

Nγγ =
Nev∑
i=1

ki = k̄Nev, (3.10)

where ki is the pair multiplicity in each event, and k̄ is the average multiplicity
over all events. Then, assuming the number of events and the multiplicity per
event are uncorrelated, linear error propagation gives

σ2
Nγγ = N2

evσ
2
k̄ + k̄2σ2

Nev . (3.11)

This may not be a good assumption if the event trigger shares some require-
ment with the cluster pair selection, which it does in our case: one cluster
in each pair is required to have been capable of triggering the event. In this
case, a higher average multiplicity per event means the trigger is more likely
to fire on each collision and we should accumulate a greater number of events,
a clear correlation. Still, we will proceed with it, since it turns out to be a
more conservative choice and also to keep in line with previous analyses. An
alternate derivation, which arrives at a much different conclusion, is given in
Appendix A.1 Now we need σ2

k̄
which is equal to 1

Nev
σ2
k. Using also simple

poisson statistics for Nev, i.e. σ2
Nev

= Nev, Eq. 3.11 becomes

σ2
Nγγ = Nevσ

2
k + k̄2Nev = Nev(k̄

2 + σ2
k). (3.12)
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Using the definition of the variance,

σ2
k = k̄2 − k̄2, (3.13)

Eq. 3.12 can be rewritten
σ2
Nγγ = Nevk̄2, (3.14)

and using the relation Nev = Nγγ/k̄, we find

σNγγ =

√
k̄2

k̄
Nγγ. (3.15)

3.3 EMCal Clusters

A variety of variables are stored for “clusters” in the EMCal, which are groups
of neighboring towers sharing the energy distributed by some particle travers-
ing the detector. A typical electromagnetic cluster is completely contained
within a 3 × 3 array of towers. For each cluster, the information stored in-
cludes

• The x, y, and z position of the cluster,

• The total energy of the cluster including a correction assuming the cluster
shape is electromagnetic,

• The Time of Flight (ToF) of the cluster as measured by the EMCal,

• The probability that the cluster is a photon, based on the agreement of
the cluster profile with that expected for a true electromagnetic shower,
and

• The distance from the cluster to the nearest hit in the PC3, in cylindrical
coordinates (z and φ).

Two of these quantities, the energy and ToF, require offline calibration af-
ter the data has been recorded to adjust for gain and timing settings of the
detector.

3.3.1 Warn/Deadmap

Hot (noisy) and dead towers, as well as towers with failed energy calibration
are excluded from the analysis. In particular, towers on the outer edge of each
sector are not calibrated and are thus excluded.
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Any cluster centered on an excluded tower is excluded from the analysis.
Thus, in order to prevent a cluster centered on a good tower but extending
into a bad tower from being analyzed, a 3x3 block centered on each primary
excluded tower is also excluded. 3x3 was chosen because a typical photon
shower is not more than three towers in diameter. Table 3.1 lists the non-edge
and edge excluded towers by sector. In all, ∼10% of the non edge EMCal was
masked.

sector masked non-edge towers masked edge towers total towers
W0 169 (6%) 416 ( 16%) 2592
W1 104 (4%) 416 ( 16%) 2592
W2 199 (7%) 416 ( 16%) 2592
W3 379 (15%) 416 ( 16%) 2592
E0 940 (20%) 560 ( 12%) 4608
E1 270 (6%) 560 ( 12%) 4608
E2 332 (13%) 416 ( 16%) 2592
E3 171 (7%) 416 ( 16%) 2592

PbSc 1364 (9%) 2496 ( 16%) 15552
PbGl 1210 (13%) 1120 ( 12%) 9216
Total 2574 (10%) 3616 ( 15%) 24768

Table 3.1: Number of non-edge (hot, dead and uncalibrated) and edge masked
towers from the warn map study. The number in parenthesis is the percentage
of the total.
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3.4 Cuts

3.4.1 Shower Profile Cut

In reconstruction, the distribution of a cluster’s energy across EMCal towers
is compared to the expected distribution of a photon, and the result of this
comparison is stored in a variable named “prob photon.” Values closer to
one indicate better agreement with the expected distribution; hadron showers
are likely to have a value near zero. In this analysis, as in previous π0 cross
section and ALL analyses, we cut clusters with “prob photon” < 0.02, in both
the PbSc and PbGl.

3.4.2 Minimum Cluster Energy

A minimum energy cut is applied to all clusters to reduce combinatorial back-
ground from very low energy clusters. In all analyses from 2003 to 2006,
clusters with energy below 0.1 (0.2) GeV in PbSc (PbGl) were discarded. It
is the same here.

3.4.3 Time of Flight

A particular hardware-based effect that became apparent with increases in
the instantaneous luminosities delivered to the experiments in 2009 involved
the readout electronics for the EMCal. When a trigger fires, the signal in
each EMCal tower is compared with an analog-buffered value from 424 ns, or
four crossings, earlier. Due to the long decay time of an EMCal signal, any
energy deposit occurring in the three previous crossings is read out. Pileup
is negligible due to the fine lateral segmentation of the EMCal, so only the
combinatorial background is affected. In the 2009 run, the likelihood for a
collision in at least one of three previous crossings was significant at about
22%. One cut in particular that can reduce this effect is the ToF cut.

The ToF for a given EMCal cluster is given relative to t0, the initial time
of the collision as measured by the BBC. Photon candidates in this analysis
are required to reach the EMCal within +8

−6 ns of the expected ToF for a pho-
ton, which removes low energy hadrons and other out of time clusters but also
reduces the contribution of clusters from previous crossings. Although the cir-
cular buffering in the EMCal readout makes the ToF measurement insensitive
to timing offsets that are multiples of the beam-crossing period, the fact that
different crossings have independent t0 effectively smears the ToF distribution.
This is the dominant effect in increasing the likelihood of previous-crossing
clusters to have a ToF outside the cut window.
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This background can be studied in more detail by analyzing specific sets
of crossings that follow one- or two-bunch empty crossings and therefore con-
tain a smaller number of previous-crossing clusters. We define the following
crossing selections for study based on the number of previous crossings that
can contribute clusters given a four-crossing (current plus three) memory:

• +0: The three previous crossings are empty

• +1: One of the three previous crossings is filled

• +2: Two of the three previous crossings are filled

• +3: All three previous crossings are filled.

• +3b: Same as +3 but spaced further from empty crossings.

Figure 3.5 shows the efficiency of (fraction of events passing) the ToF cut
on the various selections. The efficiency decreases as the selection moves away
from the empty crossings and the previous-crossing cluster background in-
creases, indicating that the ToF cut is more effective at removing this specific
type of background than the total background. Also, from selection +0 to
+3, the relative efficiency in the π0 peak region decreases by about 0.5% com-
pared to a decrease of roughly 3% in the high mass background efficiency. The
smaller change for the peak region is due to the trigger cut (see next section)
removing true mesons from previous crossings. As expected, there is no signif-
icant change in cut efficiency between selections +3 and +3b since the buffer
encompasses only three previous crossings.

3.4.4 Charge Veto

Another method to remove charged hadrons is to veto photon candidates with
associated (charged particle) hits in the PC3. However, in order not to unnec-
essarily remove real photons that pair-converted before the EMCal, but outside
of the magnetic field, a special cut was developed for the 2003 analyses [20]
and re-evaluated for the 2009 analysis.

We define two vectors: (1) the vector starting at the event vertex and
pointing to a cluster in the EMCal and (2) the vector pointing from the vertex
to the nearest hit in the PC3. The angle between these vectors is defined as
θCV , the charge veto angle. The diagram in Fig. 3.6 shows schematically how
this angle is defined for three distinct cases, which can be classified according
to the relative magnitude of θCV :
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Figure 3.5: (a) Efficiency of ToF cut, with the minimum energy, trigger, and
offline z-vertex cuts already applied, for different crossing selections defined in
the text, and for a pT range of 2 − 4 GeV/c. The energy asymmetry cut has
not been applied here, and the decreased efficiency in the higher mass region
is due to the larger background fraction. (b) Ratio of the histograms in (a) to
the histogram with crossing selection +3b.
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θCV∼0 

(a) 

θCV 

(b) 

θCV 

(c) 

Figure 3.6: Schematic (not to scale) of the hits in the PC3 (transparent grid)
and the related θCV from three particle classes which leave clusters in the
EMCal (solid grid behind PC3): (a) photons which convert outside on the
magnetic field prior to the EMCal, and have very small θCV , (b) charged
hadrons which bend in the magnetic field, and so have moderate sized θCV ,
and (c) photons which do not convert, and are randomly associated with a
different particle’s PC3 hit, and therefore are likely to have large θCV . Courtesy
of Kieran Boyle.
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1. Small θCV : e+e− pairs from photon conversions outside of the magnetic
field region can still form a single cluster if their opening angle or the
conversion’s distance from the EMCal is small. In this case we may
find an associated PC3 hit directly in front of the cluster, but we can
still reconstruct the original photon from the energy deposited. Thus we
should retain clusters with small θCV .

2. Moderate θCV : For hadrons that travel through (and bend in) the inner
magnetic field region, it is not possible to draw a straight line connecting
the EMCal cluster, PC3 hit and collision vertex. Thus there will be some
finite θCV associated with these particles which we wish to exclude from
the analysis.

3. Large θCV : The phase space for combinatorial association of an EMCal
cluster with an unrelated PC3 hit increases linearly with tan(θCV ). Thus
random association dominates this region and we should not throw out
these clusters.

To exclude clusters associated with PC3 hits from hadrons while retaining
photons which convert near the EMCal, an energy dependent cut based on
the θCV is applied.

After applying all other cluster cuts to PbSc clusters, each reconstructed
pair invariant mass was assigned to the (energy, θCV ) bin of both of its clusters,
and a θCV interval was chosen as a function of cluster energy such that the
exclusion of PbSc clusters in this interval minimized the statistical uncertainty
on π0 ALL. The resulting θCV intervals are shown in Fig. 3.7 for clusters in the
PbSc. Due to their decreased response to hadrons, no additional benefit for
the charge veto cut on top of the other cuts was found for the PbGl sectors,
and thus no charge veto cut was applied to those.

The invariant mass distribution near the π0 mass peak reconstructed using
clusters in the PbSc is shown in Fig. 3.8 for different θCV requirements. It is
clear that the signal to background for π0 is significantly larger for clusters
with a moderate θCV , due to hadron contamination in the photon candidates.
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Figure 3.7: θCV as a function of cluster energy in the EMCal PbSc. Clusters
in the red cross-hatched region are excluded from the analysis. For Ecluster >
1.9 GeV, no distinction between the regions is possible due to the inverse
relationship between bend radius and energy for hadronic tracks.
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of invariant mass (calculated assuming both clusters are photons), in the PbSc
only and for Ecluster < 1.9 GeV.
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3.4.5 Trigger

As we are using a triggered data set, we must be sure that we understand our
trigger bias. In other words, we want to avoid counting π0s in p+p→ π0 +C+
X events where C is some other particle or particles and C fires the trigger.
Unless inclusive C + π0 production has the same asymmetry as inclusive π0

production, counting such events would pollute our asymmetry measurement.
We should require that the π0 itself triggered the event, but in practice we
make the weaker requirement that the ERT supermodule containing the central
tower of the higher energy cluster in each pair has the ERT4x4c (below pT =
4 GeV/c) or ERT4x4a (above pT = 4 GeV/c) trigger bit set. This requirement
has been shown to be equivalent to requiring the π0 trigger the event, and the
same procedure has been followed in all previous π0 cross section and ALL
measurements.

3.4.6 Minimum Statistics

The highest pT bins are larger than 1 GeV/c wide so that there are enough
statistics to assume Gaussian uncertainties in the calculations. For the “peak”
region calculation, fills where

N++ +N+− < 30 (3.16)

for a given (even/odd,pT ) bin were excluded from that bin’s analysis. The cut
was done this way so that, with high probability, N++ and N+− would have
more than 10 counts each and be distributed according to Gaussian statistics.
Cutting instead on N++ < 10||N+− < 10 could introduce bias because it would
preferentially cut fills where, for instance, the helicity with lower production
rate fluctuated downward. For the “sideband” region calculation, the condition
for exclusion was

N++ < 1||N+− < 1 (3.17)

in order to avoid divide-by-zero errors in the uncertainty calculations. At high
pT where sideband counts drop below 10 per fill, the background fraction is
small enough that we need not worry about the deviation from Gaussian statis-
tics. Note that fills were allowed to be analyzed for the sideband calculation
but not the peak, and vice-versa.
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3.5 Systematic Uncertainties/Cross-Checks

3.5.1 Event Overlap in EMCal Readout

Before the time of flight cut was applied, there was some systematic difference
between the different fill patterns in the fill-by-fill ALLs, especially at low pT .
The effect was more pronounced in the background than in the signal data.
We attribute this effect to the way in which the EMCal stores cluster energy
information. The effect was not noticeable in the 2005 and 2006 runs due to
the lower luminosities.

The EMCal effectively stores cluster energy information for four crossings.
When an event is written out, all clusters from the current beam crossing are
recorded as well as those from any of the previous 3 crossings. This means
that the combinatorial background includes di-photon pairs where one photon
may be from a previous crossing (the cut in Subsection 3.4.5 insures that the
higher energy photon comes from the current crossing). As the luminosity
increases, the likelihood of an EMCal energy deposit in one of the previous
crossings increases and thus so does this combinatorial background.

On average, these previous “ghost” clusters will contribute equally to each
bunch crossing, as long as the bunches preceding each bunch share the same
characteristics. But with the typical empty bunches in the collider, a select few
filled bunches see fewer “ghost” clusters than others. Luminosity fluctuations
correlated to specific bunches could also cause a systematic difference in the
number of ghost clusters for each bunch, although at a much smaller level.
Thus we consider only the effect of the first case, empty bunches, on the
asymmetries.

To understand how empty bunches can affect asymmetries, consider the
first eight bunches (0-7) after the abort gap in a fill. For now assume a spin
pattern of +−+−−+−+ for the blue beam and ++−−++−− for the yellow
beam (RHIC spin pattern P1). There should be no collisions in the abort gap,
and so crossing 0 will only have clusters from crossing 0, i.e. no “ghost” cluster
background. Crossing 1, on the other hand, will inherit “ghost” clusters from
crossing 0. Crossing 2 will have contributions from crossings 0 and 1. Crossings
3-8 will all have “ghost” clusters from three previous crossings. If there is no
inherent asymmetry, then in each crossing we would expect to measure Nreal

clusters. In addition, each crossing will have on average Nghost clusters from
any of the previous three crossings that are filled. Then we have, before the
trigger bit check, Nreal(Nreal − 1) pairs in crossing 0, (Nreal + Nghost)(Nreal +
Nghost − 1) for crossing 1, (Nreal + 2Nghost)(Nreal + 2Nghost − 1) for crossing
2, and (Nreal + 3Nghost)(Nreal + 3Nghost − 1) for crossings 3-8. If our relative
luminosity detector does not suffer the same effect, then it is obvious that we
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will see a significant false asymmetry. In this simple case, the false asymmetry
would be 4Nghost/Ntot. If the spin pattern were P2 (blue: − + − + + − +−,
yellow: + + − − + + −−), then the asymmetry would be negative with the
same magnitude. Thus, for this effect we should find that patterns P1 and
P4 (P4 is P1 with both beams’ patterns flipped) should have the same false
asymmetry. P2 and P3 should also share the same asymmetry, the negation
of that for P1 and P4.

In Run 9, bunches 38, 39, 78, 79, and 111-119 were either empty-empty
or empty-filled. Therefore bunches 0-3, 40-43, and 80-83 would see varying
amounts of ghost clusters. As the spin pattern is a multiple of 8, and these
bunches are separated by 40 bunches, the impact on the asymmetry goes
according to the above example.

The spin pattern in RHIC is cycled with each new fill between the four
possible patterns. Thus, to avoid mixing these false asymmetries, we do four
separate analyses for the four groups of fills. This way we ensure that we
are subtracting the correct ABGLL from Aπ

0+BG
LL when we calculate the final re-

sult. After subtracting the sideband asymmetries, the results for are consistent
within statistical uncertainties.

3.5.2 Rebinning Study

To investigate the robustness of the background fraction calculation, the entire
final analysis was re-run with the binwidth doubled in every invariant mass
histogram. The one and only component of the analysis affected by this change
is the fit to the π0 mass peak, which enters the calculation through Equation
3.8. Table 3.2 lists the result. The impact is negligible, even in the last bin
where it is largest but only 2.1% of the statistical uncertainty.
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pT bin (GeV/c) ∆Aπ
0

LL/δA
π0

LL

1-1.5 0.00%
1.5-2 −0.01%
2-2.5 0.00%
2.5-3 0.00%
3-3.5 0.00%
3.5-4 0.00%
4-5 −0.01%
5-6 0.07%
6-7 0.13%
7-9 −0.19%
9-12 −0.36%
12-15 2.10%

Table 3.2: Change, relative to the statistical uncertainty, in final Aπ
0

LL values
from a doubling of the binwidth in all invariant mass histograms.
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3.5.3 pT Smearing Study

To test the effects of pT smearing from the energy resolution of the EMCal,
we can take a functional form for ALL such as the DSSV08 fit (see Chapter 5)
and apply a pT dependent Gaussian smearing. To determine the degree of
pT smearing to apply, we relate the π0 pT to the individual EMCal cluster
energies:

pπ
0

T ≈ Eγ1 + Eγ2 = 2〈Eγ〉,
δpπ

0

T

pπ
0

T

≈ 1√
2

(
δEγ
Eγ

)
, (3.18)

where we have neglected the longitudinal momentum of the clusters, a reason-
able assumption in the central arm EMCal. Then, taking the nominal energy
resolution for the PbSc given in [15] of

8.1%/
√
E[GeV]

⊕
2.1% (3.19)

and using Equations 3.18 we get a π0 pT resolution of

8.1%/
√
pT [GeV/c]

⊕
1.5% (3.20)

The smearing can then be applied by multiplying this relative uncertainty by
pT and using it as the standard deviation in a Gaussian distribution,

ALLp
′
T =

∫
dpTN(pT )G(pT − p′T )ALL(pT )∫

dpTN(pT )G(pT − p′T )
, (3.21)

where N(pT ) gives the pT spectrum. The results of such a smearing applied
to the DSSV08 global analysis result for Aπ

0

LL are shown in Figure 3.9. The
smearing has a negligible effect when compared to the DSSV08 uncertainty
band.
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Figure 3.9: A sampling of points from the pT -smeared DSSV08 best-fit along
with the original DSSV08 best-fit and uncertainty band. The difference is too
negligible to discern on the plot.
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3.5.4 Single Spin Asymemtries

A single spin asymmetry is defined as

AL ≡
σ+ − σ−
σ+ + σ−

R =
L+

L−
(3.22)

and is calculated using

AL =
1

PBeam

N+ −RN−
N+ +RN−

R =
L+

L−
(3.23)

where σ+ (σ−) is the cross section of positive (negative) helicity bunches for one
beam (the other beam is summed over) and PBeam is the polarization for that
beam. If the collider is filled such that there is a net correlation between the
two beams’ spins, a double-spin asymmetry contribution would be introduced.
This is not the case for, e.g., the blue beam if

R++to+− = R−+to−− = 1, (3.24)

where the blue beam is listed before yellow in the indices. This is close enough
to the reality in RHIC. Note that the spin pattern was changed in the 2006
Run and beyond so that AL is always measurable, which was not the case in
the 2005 Run.

The analysis is similar to the ALL analysis, with Eq. 3.23 substituted for
Eq. 3.4. The final results are given in Appendix A.4 and Tables 3.3 and 3.4.
The consistency of these asymmetries with zero is an important cross-check,
since finiteness would indicate parity violation of the strong force, which has
so far never been observed.

3.5.5 Difference Between Sideband Asymmetries

The asymmetry in the background under the π0 mass peak cannot be mea-
sured directly. Therefore, the asymmetry in the sideband regions shown in
blueberry in Fig. 3.1 is measured and assumed to have an ALL equal to that
of the background under the π0 mass peak. To test the assumption that the
background asymmetry is roughly constant in the region around the π0 mass
peak, the asymmetry in each sideband is independently measured to see that
they are consistent.

For potential use as a systematic uncertainty on the sideband asymmetries,
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pT (GeV) Yellow Aπ
0

L ∆Aπ
0

L ∆Aπ
0

L ∆Aπ
0

L chisq/dof
1-1.5 2.63E-4 7.26E-4 1.27E-4 7.37E-4 1.87084/7
1.5-2 7.88-5 4.47E-4 6.83E-5 4.52E-4 7.56794/7
2-2.5 4.64E-4 4.44E-4 4.11E-5 4.46E-4 4.66156/7
2.5-3 -9.31E-4 5.67E-4 2.77E-5 5.68E-4 7.19575/7
3-3.5 1.11E-3 8.03E-4 2.14E-5 8.03E-4 6.64841/7
3.5-4 -6.32E-4 1.17E-3 1.85E-5 1.17E-3 1.55308/7
4-5 2.17E-3 1.39E-3 1.81E-5 1.39E-3 13.0832/7
5-6 3.93E-4 2.59E-3 1.69E-5 2.59E-3 5.69042/7
6-7 -1.42E-3 4.53E-3 1.61E-5 4.53E-3 9.89388/7
7-9 5.44E-3 6.30E-3 1.58E-5 6.30E-3 14.2641/7
9-12 1.04E-2 1.27E-2 0.00E+0 1.27E-2 0.0380221/1
12-15 2.00E-2 3.83E-2 0.00E+0 3.83E-2 0.481514/1

Table 3.3: π0 AL Yellow from Run9, with associated errors. Data with pT <
4 GeV/c are triggered using , while data with pT > 4 GeV/c are triggered
using . The value is calculated for a constant fit to the eight individual results
(even/odd⊗spin pattern) where NDF= 7.

we define a quantity

δAsyst ≡
p0

2

(
1− P (χ2 > χ2

p0=0)
)
. (3.25)

Here p0 is determined from a χ2 fit across pT to ABG1
LL −ABG2

LL with uncertainties√
σ2
BG1 + σ2

BG2. P (χ2 > χ2
p0=0) represents the probability of having a χ2 value

exceeding the χ2 that results from fixing p0 = 0. A factor in the uncertainty like(
1− P (χ2 > χ2

p0=0)
)

is necessary to quantify our uncertainty as to whether or
not there is actually a systematic effect; if p0−0 is not statistically significant,(
1− P (χ2 > χ2

p0=0)
)

is small and we avoid unnecessarily adding statistical
fluctuations to our uncertainty.

BG Asymmetry Comparison Plots

Background asymmetries are plotted vs. invariant mass and pT in Appen-
dices A.5 and A.6. As an additional check, we compare the “sideband” method
of determining ABGLL to a method using linear fitting of ABGLL vs. invariant pho-
ton mass. The results of the two methods are compared in Fig. 3.5.5.
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Figure 3.10: ALL calculated with two different methods, the regular sideband
method, and a fitting method
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pT (GeV) Blue Aπ
0

L ∆Aπ
0

L ∆Aπ
0

L ∆Aπ
0

L chisq/dof
1-1.5 2.11E-4 7.25E-4 8.23E-5 7.29E-4 3.331/7
1.5-2 -2.82E-4 4.46E-4 4.37E-5 4.48E-4 4.00816/7
2-2.5 4.32E-5 4.43E-4 2.57E-5 4.43E-4 4.28771/7
2.5-3 7.34E-4 5.65E-4 1.71E-5 5.65E-4 7.32024/7
3-3.5 3.97E-4 8.00E-4 1.33E-5 8.00E-4 5.43012/7
3.5-4 -2.69E-3 1.17E-3 1.14E-5 1.17E-3 6.06213/7
4-5 -2.23E-4 1.38E-3 1.11E-5 1.38E-3 6.70389/7
5-6 -1.37E-3 2.57E-3 1.02E-5 2.57E-3 4.6227/7
6-7 1.57E-3 4.50E-3 9.63E-6 4.50E-3 7.4015/7
7-9 -2.47E-4 6.26E-3 9.51E-6 6.26E-3 5.05028/7
9-12 -4.75E-3 1.26E-2 0.00E+0 1.26E-2 0.00155783/1
12-15 5.53E-2 3.78E-2 0.00E+0 3.78E-2 2.3457/1

Table 3.4: π0 AL Blue from Run9, along with associated errors. Data with
pT < 4 GeV/c are triggered using , while data with pT > 4 GeV/c are triggered
using . The value is calculated for a constant fit to the eight individual results
(even/odd⊗spin pattern) where NDF= 7.

Fill Pat. p0 ∆p0 P (χ2 > χ2
p0=0) SB Syst. Uncert.

P1 -8.14E-4 2.10E-3 9.38E-1 3.56E-4
P2 -8.69E-5 2.15E-3 5.39E-2 -3.88E-5
P3 5.96E-4 2.34E-3 1.65E-1 2.00E-4
P4 2.66E-3 2.04E-3 6.13E-1 -3.01E-4

Table 3.5: For even crossings, systematic uncertainties due to differences in
sidebands, along with the parameters used to compute them

Fill Pat. p0 ∆p0 P (χ2 > χ2
p0=0) SB Syst. Uncert.

P1 2.64E-3 2.17E-3 4.82E-2 1.19E-3
P2 -9.46E-4 2.21E-3 5.10E-1 9.30E-6
P3 1.68E-3 2.35E-3 2.38E-1 4.40E-4
P4 2.81E-3 2.07E-3 5.13E-1 -3.71E-5

Table 3.6: For odd crossings, systematic uncertainties due to differences in
sidebands, along with the parameters used to compute them
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Figure 3.11: ALL calculated with three different signal ranges in the two photon
mass spectrum.

3.5.6 Other Crosscheck Asymmetries

ALL from Varying Mass Window

The invariant mass range used to define the “peak” region was varied to see
if there was any effect on Aπ

0

LL. Figure 3.5.6 shows Aπ
0

LL pT for three different
“peak” mass ranges. The background “sideband” regions were the same for all
three cases. No significant effect is seen when varying the “peak” mass range.

ALL and AL in EMCal Sub-Detectors

To look for a possible detector-related systematic, we compare the PbSc and
PbGl detectors that make up the EMCal. We do so with both double (ALL)
and single (AL) spin asymmetries. If such a systematic effect were from ghost
clusters, we would expect to see the largest effect in AL blue, according to
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Figure 2.3 in Subsubsection 2.1.1. No noticeable difference is seen in AL of
the blue beam in Appendix A.4.Since such an effect is not noticeable, so we
conclude that our analysis cuts were sufficient to remove the ghost clusters.
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Figure 3.12: ALL calculated in PbSc and PbGl separately, along with in the
full detector

3.5.7 Bunch Shuffling

Bunch shuffling is a boot-strapping technique used to extract the statistical
uncertainty on ALL in a model-independent way, i.e. no assumptions about
underlying statistical distributions need be assumed. The results of bunch
shuffling can be checked to see if they agree with the results of our equa-
tions for calculating the uncertainty on ALL. The result of such a comparison
could point to an unknown systematic uncertainty or an overestimation of the
statistical uncertainties.

The typical bunch shuffling procedure employed relies on the smallness of
our asymmetries compared to the fractional error on the yield in any given
crossing. The spin pattern is completely randomized, separately for each fill,
and then fill-by-fill ALL is recalculated based on the new patterns. This pro-
cedure is repeated a large number of times, in our case 10,000, and inferences
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Figure 3.13: Student T-scores between ALL calculated in PbSc and PbGl
separately.
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can be drawn from the results of the 10,000 shuffles. We do not constrain the
relative luminosity in the shuffling, so, for example, if only one crossing were
assigned “same” helicity, the relative luminosity would be < 0.01.

We compare statistical uncertainties from bunch shuffling to those calcu-
lated from error propagation via Equation 3.6 in each fill by way of the χ2

distribution, since it has a clear quantitative interpretation. Specifically, we
fit ALL versus fill for each sample with each fill’s error calculated according to
Equation 3.6, which gives one χ2 value per iteration of the bunch shuffling. We
can then check that the χ2/NDF (number of degrees of freedom) distribution
agrees with the theoretical expectation.

The resulting χ2/NDF distributions for Aπ
0+BG
LL and ABGLL are shown in

Figs 3.14 and 3.15 for all combinations of even and odd crossings with the
four fill patterns. For pT < 4.0 GeV/c, where some runs are prescaled, the χ2

distribution is lower than expected. When we switch the error computation
from our conservative estimate of a

√
N to

√
aN (see Subsubsection 3.2.4), χ2

shifts up, indicating that our conservative prescale accounting over-estimates
the statistical uncertainty. The bunch shuffling result for pT < 4.0 is shown in
Figure 3.16.

Also, at high pT bunch shuffling shows some divergence from the expected
distribution for the background regions. This can be understood as an effect
due to low (non-Gaussian) statistics.
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Figure 3.14: Bunch Shuffling χ2 distributions for peak (left) and sideband
(right) regions in even, all fill patterns combined (last two bins are even+odd).
The red line is the expected distribution.
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Figure 3.15: Bunch Shuffling χ2 distributions for peak (left) and sideband
(right) regions in odd, all spin patterns combined (last two bins are even+odd).
The red line is the expected distribution.
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Figure 3.16: Bunch Shuffling χ2 distributions for triggered events in the lower
pT bins, to demonstrate that the uncertainties were over-estimated in the
triggered sample due to the conservative choice described in Section 3.2.4.
The red line is the expected distribution.
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Chapter 4

Systematic Uncertainty on
Relative Luminosity

4.1 Bunch Fitting

With high enough statistics to assume Gaussian probabilities in each crossing,
bunch fitting can be used. The bunch fitting formula is r±i = c(1± εLL), where
the sign differs from ++ to +− bunches. Chi-squared is given by∑

i+

(c(1 + εLL)− r+
i )2

σr+i
+
∑
i−

(c(1− εLL)− r−i )2

σr−i
. (4.1)

Taking the derivatives with respect to c and εLL and setting them to zero
results in

∂χ2

∂εLL
= 0 =

∑
i+

(c(1 + εLL)− r+
i )

σr+i
−
∑
i−

(c(1− εLL)− r−i )

σr−i
,

∂χ2

∂c
= 0 =

∑
i+

(1 + εLL)(c(1 + εLL)− r+
i )

σr+i
+
∑
i−

(1− εLL)(c(1− εLL)− r−i )

σr−i

These equations can be conveniently rewritten using the following defini-
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tions:

S+ =
∑
i+

1

σ2
r+i

,

S− =
∑
i−

1

σ2
r−i

,

S+
r =

∑
i+

r+
i

σ2
r+i

,

S+
r =

∑
i−

r−i
σ2
r−i

.

With these definitions we have

0 = c(1 + εLL)2S+ + c(1− εLL)2S− − (1 + εLL)S+
r − (1− εLL)S−r ,

0 = c(1 + εLL)S+ − c(1− εLL)S− − S+
r + S−r .

We now solve both of these equations for c. We get

c =
(1 + εLL)S+

r + (1− εLL)S−r
(1 + εLL)2S+ + (1− εLL)2S−

,

c =
S+
r − S−r

(1 + εLL)S+ − (1− εLL)S−
.

Setting the two equations equal, we can solve for εLL:

εLL =
S+
r S
− − S−r S+

S+
r S
− + S−r S

+
(4.2)

which when substituted into the above equation for c yields:

c =
S+
r S
− + S−r S

+

2S+S−
(4.3)

We now calculate the uncertainty in each of these parameters. To do this,
note that derivatives with respect to r+

i only affect S+
r , and r−i S−r . Also, by

the chain rule,

∂S+
r

∂r+
i

=
1

σ2
r+i

, (4.4)

and similarly for −. Using this, we find

92



σ2
c =

1

4

(
1

S+
+

1

S−

)
(4.5)

σ2
εLL

=
4(S+S−)2

(S+
r S
− + S−r S

+)4

(
(S+

r )2S− + (S−r )2S+
)
. (4.6)

4.2 Coincidence Counting Method

The standard method for calculating relative luminosity before the 2009 run
was to use bunch fitting on the ratio

ri =
N i
ZDC

N i
BBC

, (4.7)

where NZDC and NBBC are simply the number of times the two arms of each
detector fired in coincidence in a given crossing i. Bunch fitting this quantity
is equivalent to measuring the raw asymmetry of BBC triggers with respect to
ZDC triggers, and polarization scaling is then applied fill-by-fill to find ARLL.
We choose the ZDC for comparison because, in addition to having a different
geometrical acceptance, it samples a significantly different class of events than
the BBC. The BBC fires predominantly on charged particles and is dominated
by low-pT soft physics, whereas the ZDC samples mainly diffractive physics
and, due to its location behind the accelerator’s bending magnets, which sweep
away most charged particles, fires on neutrons, photons, and hadronic showers
from scattered protons interacting with the machine elements. The asymme-
tries in the different physics sampled by the ZDC and the BBC cannot be
directly calculated. However, comparing these two detectors with different
physics sensitivities increases the likelihood that any non-zero asymmetries
would be apparent.

This standard “coincidence” method was applied to the 2009 data at
√
s =

200 GeV [45]. The resulting value for that year along with 2005 and 2006 is
shown in Table 4.1. The systematic uncertainty comes from a crossing-by-
crossing correction that was made to account for the ZDC online z-vertex
smearing of approximately 30 cm. To be conservative, the ARLL value found
plus its total uncertainty is used as the systematic uncertainty on any physics
ALL measurement. The reason for the increased value of ALL in 2009 with
respect to the previous years has been investigated and will be described in
the coming sections, but no satisfactory explanation has been found.
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Run Year
ARLL

(10−3)
∆ARLL(stat+syst)

(10−3)
2005 0.42 0.23
2006 0.49 0.25
2009 1.18 0.21

Table 4.1: Measured value of ARLL in
√
s = 200 GeV ~p + ~p running in the

given years. ARLL plus its uncertainty is used as the total shift uncertainty for
any physics asymmetry result using the BBC as a relative luminosity monitor.
The run-year-correlated part of the uncertainty is taken to equal the maximal
overlap in ARLL across years: 0.42 × 10−3. The remaining part of each year’s
ARLL plus its statistical uncertainty is taken as a run-year uncorrelated part.

4.3 Rate Safe Method

As instantaneous luminosity has increased at RHIC, multiple collisions in one
beam crossing have become more likely, and the use of a detector coincidence
(such as the “AND” of the BBC arms) as a luminosity monitor has become
less valid. This is because a simple detector coincidence is a “binary” result
that conveys no direct information about how many times the detector was
hit by particles from the collision. However, by modeling the probability of
triggering the detector over many crossings of the beam, we can indirectly
extract this information. In effect, we change our assumption from 0 = no
collision, 1 = 1 collision to 0 = no collision, 1 = (≥ 1 collision) and extract
the true hit rate in the detectors from the probabilities for these events.

Detection Probabilities in a Two-Arm Detector

In deriving the probabilities for a two-arm detector such as the BBC to detect
a given event, it is useful to first make the following definitions:

• λ: average number of events that are physically capable of triggering
both arms of the detector.

• λN(S): average number of events that are NOT physically capable of
triggering both arms of the detector, only the North(South) arm.

• εN(S): efficiency×acceptance for the North (South) arm for detecting λ.

• εN(S)
N(S): efficiency×acceptance for detecting λN in the North arm (λS in

the South arm).
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Now we consider the probability distribution for the true number of colli-
sions of type λ in one crossing. If there are of order ∼ 1011 protons in each
bunch, the number of possible collisions in one crossing is of order ∼ 1022.
Since we know from experience that the number of collisions actually occur-
ring in each crossing is much less than ∼ 1022 (typically of order 1), we can
safely assume the number of collisions follows a Poisson distribution with an
average number λ,

PDS(i) =
λie−λ

i!
, (4.8)

where i is the number of collisions. Given this probability distribution, we
can calculate the probability that kS of these collisions are seen by the South
arm of our detector (regardless of whether or not the multiple collisions are
distinguishable in the detector readout).

PDS(kS) =
∞∑
i=kS

(
i

kS

)
εkSS (1− εS)i−kS PDS(i). (4.9)

There are appropriate factors for detecting kS collisions and not detecting
i−kS others, along with a factor

(
i
kS

)
for the number of ways this can happen.

The sum starts at kS since if there are kS distinct hits detected (neglecting, for
the moment, random noise), we can be sure there were at least kS collisions.

By pulling kS factors of λ out of the sum and re-indexing, one can show
that the probability for kS collisions is also a Poisson distribution:

PDS(kS) =
∞∑
i=kS

i!

kS!(i− kS)!
εkSS (1− εS)i−kS

λie−λ

i!

=
1

kS!
εkSS λ

kSe−λ
∞∑
i=kS

1

(i− kS)!
(1− εS)i−kS λi−kS

=
1

kS!
εkSS λ

kSe−λe(1−εS)λ

=
(εSλ)kS e−εSλ

kS!
. (4.10)

From Equation 4.10 we can proceed to derive the joint probability distri-
bution PDS(kS, kN) for seeing kS collisions in the South arm and kN in the

95



north arm. First, note that

PDS(kS, kN) = PDS(kN |kS)PDS(kS)

=

(
∞∑

i=kN

(
i

kN

)
εkNN (1− εN)i−kN PDS(i|kS)

)
PDS(kS).(4.11)

PDS(i|kS) is the probability that there were i collisions given that we measured
kS hits. Using Bayes’ theorem, we can express

PDS(i|kS) =
PDS(kS|i)PDS(i)

PDS(kS)
. (4.12)

PDS(kS|i) is just

PDS(kS|i) =

(
i

kS

)
εkSS (1− εS)i−kS Θ(i− kS), (4.13)

where the step function ensures the detector arm does not see more distinct
hits then there are collisions.

Substituting Equations 4.12 and 4.13 into 4.11, we arrive at

PDS(kS, kN) =
∞∑

i=max(kS ,kN )

(
i

kS

)(
i

kN

)
εkSS ε

kN
N (1− εS)i−kS (1− εN)i−kN PDS(i).

(4.14)
Note that the step function, along with the original lower limit on the sum of
kS, can be accounted for by setting the lower limit to max(kS, kN). For the
special case PDS(kS = 0, kN = 0) this formula reduces to

PDS(kS = 0, kN = 0) = eεSεNλ−εSλ−εNλ = e−εN (1−εS)λe−εSλ. (4.15)

Allowing Single-Sided Events

We now consider single-sided events, which by our definition are only capable
of triggering one detector. The distributions describing the number of such
collisions in a crossing are again Poisson, this time with average numbers λS
and λN . The probability of seeing kS distinct time hits in the south detector,
for instance, is the same as before:

PSS(kS) =

(
εSSλS

)kS e−εSSλS
kS!

. (4.16)
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Most importantly, the probability for seeing zero hits is e−ε
S
SλS . The probability

of detecting a total of zero hits in the south detector, both from single and
double-sided events, is then

P (kS = 0) = PDS(kS = 0)PSS(kS = 0)

= e−εSλ+εSSλS . (4.17)

Note that the samples these two distributions apply to do not overlap and so
the (non-)events are independent. Similarly, the probability of detecting zero
collisions in the two-sided detector is given by

P (kS = 0, kN = 0) = PDS(kS = 0, kN = 0)PSS(kS = 0)PSS(kN = 0) = eεSεNλ−εSλ−εNλ−ε
S
SλS−ε

N
NλN .

(4.18)

Removing Single-Sided Events

The utility of these three separate probability distributions becomes apparent
when we consider the function

ln(P (kS = 0, kN = 0))− ln(P (kS = 0))− ln(P (kN = 0)) = εNεSλ, (4.19)

or, since P (kS = 0) = 1− PS, P (kN = 0) = 1− PN , and P (kS = 0, kN = 0) =
1−POR, where PS, PN , and POR are the probabilities of south, north, and OR
triggers,

ln(1− POR)− ln(1− PS)− ln(1− PN) = εNεSλ. (4.20)

Only events and backgrounds capable of causing true coincidence in the two
detectors contribute to this quantity. Furthermore, it completely takes into
account the effects of multiple collisions. If εS and εN are not spin dependent
(which is an assumption of the present method for calculating relative lumi-
nosity) this quantity can be used to calculate the relative luminosity, although
it will not include a vertex cut requirement.

Measurement and Statistical Uncertainty

As is always the case in experiments, it is not possible to know our true
parameters exactly; we must estimate PN , PS, and POR from the data. The
way to do this is to look at a set number of unbiased events (i.e. all events)
and count the number of triggers within that sample. Since the probability
of a trigger in any given crossing is significant, we cannot approximate the
uncertainty on the number of triggers with a Poisson distribution and must
use the full binomial distribution. The probability distribution for the number
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of OR triggers in Nclock events, for example, is

P (NOR = n) =

(
Nclock

n

)
P n
OR (1− POR)Nclock−n . (4.21)

The standard deviation in this case is
√
NclockPOR(1− POR), and the mean is

NclockPOR. We can see that estimating the sample mean by the actual number
of OR triggers, NOR, is equivalent to estimating POR as NOR/Nclock. The

estimate for the standard deviation of NOR is then
√
NOR(1− NOR

Nclock
).

In propagating our errors through Equation 4.20, it is easiest to reformulate
the equation in terms of non-overlapping counts NN !S, NS!N , and NAND in
order to elimate the necessity for correlation terms:

εNεSλ = ln(1−PN !S−PS!N−PAND)−ln(1−PS!N−PAND)−ln(1−PN !S−PAND).
(4.22)

Then one can proceed with the usual linear propagation of errors.

Correction Results

Figure 4.1 shows the relative difference between the two-arm coincidence rate
and εNεSλ for the full z-vertex in the 2009

√
s = 200 GeV and the 2011√

s = 500 GeV runs. The latter had much higher rates, and so the correction
is much stronger. For the BBC, the dominant effect is multiple collisions,
and thus εNεSλ is higher than the coincidence rate. For the ZDC, accidental
coincidences from λN and λS dominate, so εNεSλ is lower than the coincidence
rate. The figures can be thought of as showing the fractional “over-counting”
or “under-counting” of the simple coincidence trigger.
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Figure 4.1: Relative difference between the measured trigger rate and the
quantity εNεSλ plotted for all beam crossings in the 2009 and 2011 runs.
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Rate Safe Relative Luminosity from the 2009
√
s = 200 GeV Run

The average χ2/d.o.f. when bunch-fitting all fills with the εNεSλ method is
about 1.3, versus 5.9 for the coincidence method. After bunch-fitting all of
the fills to produce εLL using either the coincidence or εNεSλ method, the
results can be fit across fills to constant functions to extract four asymmetries,
one for each spin pattern. Figure 4.2 plots these raw asymmetries for both
methods, visually displaying them as normal distributions with mean and
sigma from the fit results. Spin patterns P1 and P4 are equivalent for a
double-spin asymmetry, as are P2 and P3, which dictates the grouping of the
values. Using the εNεSλ method instead of the coincidence method reduces
the spread in the spin patterns from around 1 × 10−3 to 2.5 × 10−4. The
leftover spread could potentially be attributed to bunch width variations (see
Section 4.5), although it is not yet clear. When scaled by the polarization, as

LL∈-0.001 -0.0005 0 0.0005 0.001 0.0015

P1(coinc.)

P2(coinc.)

P3(coinc.)

P4(coinc.)

)λ∈∈P1(

)λ∈∈P2(

)λ∈∈P3(

)λ∈∈P4(

Figure 4.2: Results for the raw ZDC to BBC asymmetry in the 2009
√
s =

200 GeV run, both with the coincidence method, and with the εNεSλ method.

in Fig. 4.3, the uncertainty-weighted-average across the four spin patterns of
the full-vertex εNεSλ calculated relative luminosities is

ARLL = 1.11± 0.05× 10−3, (4.23)

which is in agreement with the 30 cm vertex coincidence value in Table 4.1.
This strongly indicates that the increased value of the relative luminosity sys-
tematic in the 2009 run is not due to rate or bunch width effects.
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Figure 4.3: Results for the polarization scaled ZDC to BBC asymmetry ARLL
in the 2009

√
s = 200 GeV run with the εNεSλ method.
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Rate Safe Relative Luminosity from the 2011
√
s = 500 GeV and

2012
√
s = 510 GeV Runs

When bunch fitting is applied to the
√
s = 500 GeV runs, it fails for the

coincidence method due to the strength of the rate effects. Figure 4.4 shows
the resultant χ2/d.o.f. distribution from trying to bunch-fit with the coinci-
dence method, along with the result for the εNεSλ method, which is still poor.
Figures 4.5 and 4.6 show the result of the εNεSλ method for these two runs.
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Figure 4.4: χ2 per degree of freedom in the 2011
√
s = 500 GeV run, both

with the coincidence method and with the εNεSλ method. Also shown is the
expected χ2 distribution for the given degrees of freedom.

Four additional spin patterns were added in the 2012 run. In both cases the
raw asymmetry values average much closer to zero, with similar spread to the
2009 values at

√
s = 200 GeV. One potential explanation may be that the

remaining transverse component of the polarization was kept as small as pos-
sible in these runs, generally always < 5% (although final numbers are not yet
available for the 2011 and 2012 runs) of the total polarization in both beams,
compared to 11% and 23% of the total polarization in 2009. Of course it could
also be that it is a true physics asymmetry that is simply smaller at higher√
s. Future longitudinal running at

√
s = 200 GeV with a smaller transverse

polarization component would help clarify this point.
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Figure 4.5: Results for the raw ZDC to BBC asymmetry in the 2011
√
s =

500 GeV run with the εNεSλ method. Bunch-fitting fails for the coincidence
method because the rate effects are too severe.
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Figure 4.6: Results for the raw ZDC to BBC asymmetry in the 2012
√
s =

510 GeV run with the εNεSλ method. Bunch-fitting fails for the coincidence
method because the rate effects are too severe.
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4.4 Beam Geometry + Transverse Polariza-

tion Effects

4.4.1 Simple Model: Colinear Beam Angles and ε++to−−

In this subsection we propose a simple model that can generate a variety of
false asymmetries given transversely polarized beam components and an offset
or angle of the beams relative to a nominal detector axis. Consider Fig. 4.7,
which shows various geometries for beams through a zero-field region. Any
complex beam geometry can be expressed as a linear combination of these
configurations, which we call “colinear angles,” “offsets,” and “boosts.” The

● Nominal

● Collinear Angle:

● Offset:

● Boost:

Figure 4.7: Any straight-line beam geometries through the interaction region
can be decomposed into the components illustrated here .

existence of a transverse spin asymmetry to which our detector is sensitive
means that the production of particles to the right of any forward going beam
will be suppressed, with a corresponding excess in production to the left. If
the beam is angled, offset, or boosted perpendicular to the transverse polar-
ization axis, the left and right sides will see a modified detector acceptance,
as is shown in Fig. 4.8 for a colinear beam angle. We can express this result-
ing left-right acceptance inbalance as an “acceptance modification factor” in
terms of some small parameter δ assuming the beam geometry is small. It is
immediately clear that a variety of asymmetries will be generated, including
an asymmetry that would seemingly violate parity invariance of the strong
interaction (ε++ to −−), one that would violate 180◦ rotational invarance of
the experiment (ε+− to −+), and two double-spin asymmetries with the helic-
ity of one beam held constant (ε++ to +− and ε−− to −+). All of the helicity
combinations used to calculate these asymmetries are highlighted in Fig. 4.8.
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Figure 4.8: Single and double-spin contributions to false asymmetries with a
colinear beam angle. The blue and red shadings in an example “detector”
indicate the level of left-right particle production with respect to the beam
polarizations, which are in or out of the page. Blue shading indicates a sup-
pression in production, and red the corresponding excess. The overall effect of
the colinear angle and AN on particle production into the detector acceptance
is summarized above each detector arm as an“acceptance modification factor”
in terms of the small parameter δ.
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Let us consider only this case of colinear beam angles with transverse beam
polarization. The total beam polarization need not be 100%, in fact, lets
generalize it to be P1 in the rightward moving beam and P2 in the leftward
moving beam (according to the diagrams in Figure 4.8). Then, summing up
the polarization-weighted contributions from all possible diagramsin terms of
the acceptance modification factors, we calculate for ε++to−−

ε++to−− ≈ P1(1− P2)
(1 + δ)− (1− δ)
(1 + δ) + (1− δ)

+ (1− P1)P2
(1 + δ)− (1− δ)
(1 + δ) + (1− δ)

+ P1P2
(1 + δ)2 − (1− δ)2

(1 + δ)2 + (1− δ)2

+ (1− P1)(1− P2) ∗ 0

≈ P1(1− P2)δ + (1− P1)P2δ + P1P22δ

= (P1 + P2)δ, (4.24)

where δ could actually be replaced by δ(θ), since it depends on the colinear
beam angle θ.

Thus, our prediction for the size of our false ε++to−− is

(P1 + P2)δ(θ). (4.25)

Predictions for all of the asymmetries, whose derivations are analgous, are
tabulated in Table 4.2. We see that colinear angles produce the seemingly

Geometry ε++to−− ε+−to−+ ε++to+− ε−−to−+

Colinear Angle (PB + PY )δ 0 PY δ −PY δ
Offset 0 (PB + PY )δ −PY δ PY δ
Boost 0 (PB + PY )δ −PY δ PY δ

Table 4.2: Model predictions for the various asymmetries.

parity violating and double spin asymmetries, while offsets and boosts both
produce seemingly 180◦ rotation voilating asymmetries, along with double spin
asymmetries with the opposite sign of those produced with colinear angles. In
the next section, we use our simulation to confirm this linear dependence on
polarization and to estimate the function δ(θ).
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Figure 4.9: (a) Simulation assumed neutron cross-section shape vs. xF , and
(b) Actual measurements of the neutron cross-section vs xF , a preliminary
version of [6].

4.4.2 Simulation

To test the hypothesis, a simulation was designed to collide beams at various
angles and offsets, and then produce neutrons (for the ZDC) and charged tracks
(for the BBC) at random collision points according to distributions measured
in various experiments. The trajectories of these neutrons and charged tracks
were then checked for intersection with the ZDC and BBC geometries. The
simulation did not require energy or quantum number conservation in the
collision.

First, it should be emphasized that this simulation was done specifically
for
√
s = 200 GeV. With that clear, following are the neutron cross-section

shape distributions used, along with the motivating measurements. A neutron
cross-section shape was assumed in simulation as a function of xF , as well
as that measured at various

√
s by ISR [34] (including also three points at

200 GeV by PHENIX), shown in Figure 4.9. Also assumed was a correlated
cross-section shape vs. pT and φ, shown in Figure 4.10. The function plotted
is

pT e
−4.8pT (1− 0.43pT cos(φ)) . (4.26)

This cross-section shape also depends on the spins of the beams through step
functions that can reverse the sign of the cosine term (not shown here). The
motivation for the above is a pT e

−4.8pT cross-section dependence measured by
ISR and the PHENIX AN measurement and its pT dependence, shown also in
Figure 4.10. Distributions for charged tracks for the BBC are also included
in the simulation, but they are irrelevant for two reasons: we traditionally
have not seen an AN in the PHENIX BBC, and angles and boosts have less
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Figure 4.10: (a) Simulation assumed neutron cross-section shape vs. pT and
φ, and (b) the motivating PHENIX measurement, a preliminary version of [6].

effect on the BBC due to it’s relative closeness (compared to the ZDC) to the
interaction point. So, in our simulation, the BBC acts as a relative luminosity
monitor with R = 1. Thus, we do not bother showing the charged track
distributions here. For the bunches collided we assume simple but realistic
Gaussian shapes, the x, y, and z profiles of which are shown in Figures 4.11
and 4.12.

Figure 4.13 of our simulation results shows ε++to−− as a function of colinear
beam angle θ for the case of 100% polarization. We see immediately that
δ(θ) is very well described by a linear function. If we fit the case with 100%

Figure 4.11: Bunch shapes in x and y assumed in the simulation.
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Figure 4.12: Bunch shape in z assumed in the simulation.

Figure 4.13: ε++to−− vs. colinear beam angle from simulation for 100% trans-
verse beam polarization. Red line is a fit.
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Figure 4.14: εPV vs. colinear beam angle for transverse polarizations of 60,
40, and 10%. The green lines are all taken from the above fit in Figure 4.13
for 100% polarization and scaled by P, thus showing linear dependence on
polarization in our simulation.
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Figure 4.15: Plot from [58], p. 75, figure 6.21. The plot on the lefthand side
is used to estimate the fraction of neutrons in the ZDC.

polarization to the function mθ, we find that

ε++to−− ≈ 2δ(θ) = mθ, (4.27)

with m = −0.044 mrad−1 Plotting this function with the other polarization
cases (Fig. 4.14), we see that our linear dependence on P is also confirmed by
the simulation.

One last thing to note is that the simulation included only neutron distri-
butions. The actual asymmetry we measure will be different, because the ZDC
also detects ample numbers of photons and secondary particles from protons
scattering off of the beam pipe. Most conservatively, we can assume that only
the neutron component contributes to our AN , and then dilute our AN by
the fraction of hits in the ZDC that are neutrons, fneutronZDC . This fraction was
measured in simulation in [58], see Figure 4.15. Reading off the axis of the
plot, we get

• 470 photons for every

• 260 protons,

• 380 neutrons, and

• 30 + 20 + 10 = 60 other particles,

giving
fneutronZDC ≈ 380/1170 = 0.32. (4.28)
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Thus, the simulation predicts that, conservatively,

ε++to−− ≈ fneutronZDC mPθ, (4.29)

with m = −0.044 mrad−1 and fneutronZDC ≈ 0.32. If the polarizations of the two
beams are unequal, we would expect

ε++to−− ≈ fneutronZDC m
(PB + PY )

2
θ, (4.30)

or
ε++to−− ≈ −7.04(PB + PY )θ (4.31)

with θ in radians.

4.4.3 Run12
√
s = 200 GeV Angle Scan

Special Fills

Table 4.4.3 provides the breakdown of the special RHIC fills provided for our
scan:

Fill Spin Pattern Intended Change of Angle from Nominal
16497 P8 ∆ = 0 (but beams steered to be collinear)
16498 P8 ∆ = 0 (but beams steered to be collinear)
16502 P5 ∆ = 120 urad
16504 P5 ∆ = 120 urad
16505 P5 ∆ = 120 urad
16506 P5 ∆ = -120 urad
16507 P5 ∆ = -120 urad
16509 P5 ∆ = -120 urad
16511 P5 ∆ = 0 (not steered collinear)
16534 P5 ∆ = 60 urad (boy we had to push hard for this one!)

BPM data

In order to have data granularity on the run-by-run level, we used the Beam
Position Monitors (BPMs) to measure beam angles and offsets. They are
read out every four seconds. We took various averages of the BPM data over
PHENIX DAQ runs as plotting values, and the standard deviation over said
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Figure 4.16: Illustration of collinear and boost angle calculations with the blue
and yellow beam angles.

runs as the uncertainty on these values. From the difference of readings on
the DX.7 and DX.8 BPMs (which are on opposite sides of the IR) we can get
the angles through the IR of the blue and yellow beams.

θB = atan

(
(DX.7B −DX.8B)

lDX

)
≈ (DX.7B −DX.8B)

lDX

θY = atan

(
(DX.7Y −DX.8Y )

lDX

)
≈ (DX.7Y −DX.8Y )

lDX
, (4.32)

where lDX is the distance from the nominal interaction point to the DX BPMs.
These angles can then be combined to get “collinear angles” and “boost

angles” as illustrated in Figure 4.16. Offsets, on the other hand can calculated
by averaging (DX.7B−DX.8B)/2 and (DX.7Y −DX.8Y )/2, and then can be
put on the same “footing” as boosts by dividing by lZDC , the distance from
the interaction point to the ZDCs.
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Figure 4.17: Raw “parity violating” asymmetry plotted vs. the horizontal
(transverse to the supposed vertical polarization direction) collinear beam an-
gle, polarization included.

4.4.4 Results vs. Collinear Angle

We first plot the results of the angle scan vs. the collinear beam angle, since
changing this angle, in the direction perpendicular to the supposed polariza-
tion, was the goal of the study. The reduced chi-squared of a linear fit of
ε++to−− vs. polarization weighted collinear angle, in Fig. 4.17, is not unrea-
sonable at 1.17. Polarization values are from CNI offline analyses. The slope
for this fit is −10.83 ± 0.50 rad−1, which differs from the simulation result of
−7.04 rad−1 by only 54%, a reasonable difference considering the simulation
was conservative and simplistic. The other unphysical asymmetry, ε+−to−+,
which is equivalent to rotating the experiment by 180◦, was not expected to
change as offsets and boosts were not scanned. This asymmetry is shown in
Fig. 4.18. Its slope with respect to offsets and boosts is consistent with that
of ε++to−− with respect to collinear angle, albeit with less significance. The
remaining (non-independent) asymmetries that can be reconstructed from the
data are the single spin asymmetries for the yellow and blue beams with the
opposite beam spin held constant. They are shown in Figures 4.19 and 4.20.
As predicted by the model, each pair of asymmetries has an equal and oppo-
site dependence on the collinear angle, but the average is not zero. In fact,
it is about 2× 10−3, which is consistent with the εTT found in the rest of the
2012 transverse run at

√
s = 200GeV. Thus the collinear angle scan study

still leaves this non-zero asymmetry unexplained. However, insights into the
180◦ rotation and parity violating asymmetries prevents us from having to
add additional systematic uncertainties to our result. For instance, ε++to−− is
1.4× 10−3 when the BPMs read “zero” collinear angle. If this were attributed
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Figure 4.18: Raw “180 degree rotational” asymmetry plotted vs. the hori-
zontal beam offset (normalized to the ZDC distance) plus the boost angle,
polarization included.

to a true parity violating asymmetry at 60% transverse polarization, it would
result in

APV = 3.9× 10−3, (4.33)

a significant violation of parity invariance in the strong interaction, which
would deal a serious blow to the credibility of the experiment. Instead, we can
satisfactorily explain it with our beam geometry plus transverse single spin
asymmetry effect.
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Figure 4.19: Blue beam asymmetries (−− to +− and ++ to −+). The slopes
are equal and opposite as predicted by the model, but not the y-intercepts.
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Yellow Beam Asymmetries
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Figure 4.20: Blue beam asymmetries (++ to +− and −− to −+). The slopes
are equal and opposite as predicted by the model, but not the y-intercepts.
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4.4.5 Rate Safe Relative Luminosity from the 2012
√
s =

200 GeV Transversely Polarized Run

The remainder of the 2012
√
s = 200 GeV transversly polarized run is useful for

measuring the double spin ZDC to BBC asymmetry with a very high transverse
component to the polarization. These raw asymmetries calculated with the
εNεSλ method are shown in Fig. 4.21, for which there are four additional spin
patterns, added late in the run. This run indeed produced a much higher raw
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Figure 4.21: Results for the raw ZDC to BBC asymmetry in the 2012
√
s =

200 GeV transversely polarized run with the εNεSλ method. Four additional
spin patterns (P5-P8) were added towards the end of the run. P1, P4, P5 and
P8 are all equivalent for a double spin asymmetry, as are P2, P3, P6 and P7.

asymmetry (now labeled εTT to reflect the transverse polarization):

εTT = 1.74± 0.23× 10−3, (4.34)

where the value is calculated as the error weighted average of the spin pattern
results in Fig. 4.21 and the standard deviation of the spin patterns about
the mean has been added linearly to the uncertainty. Scaled by the online
polarization values (no final values are available at this time) PB = 0.61 and
PY = 0.55, this translates to a whopping

ATT = 5.17± 0.67× 10−3, (4.35)

lending credence to the idea that the transverse polarization may be playing
some role in the ZDC to BBC asymmetry. We can also plot εTT throughout the√
s = 200 GeV runs vs. various combinations of the transverse polarization
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component in those runs, as in Fig. 4.22. If εTT were produced via a single
spin effect, we would expect it to scale as the average transverse polarization
of the two beams, or if it were a double spin effect, with the product of the
polarizations. The results, however, are unclear, and although the asymmetry
increases with the transverse polarization component, there is no evidence of
a linear relationship.
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Figure 4.22: The raw double spin ZDC to BBC asymmetry from the 2005,
2006, 2009, and 2012 runs plotted vs. functions of the transverse polarization
component in those runs. All but the 2012 data are from Table 4.1, and for
the 2012 transverse run no final polarizations or errors are yet available. The
εTT of the 2012 data points is the average of the spin patterns in Fig. 4.21,
with the standard deviation of the pattern means added linearly to the total
uncertainty on εTT .

As a final note, Fig. 4.23 shows εTT plotted vs. runnumber. A clear
reduction in the scatter of the fill-by-fill values is seen around run 360500,
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which happens to correspond to the time at which the Collider Accelerator
Department turned off automatic orbit corrections to the beams. Also, the
average value of the raw asymmetry increases at this point. This suggests
beam orbit or geometry may also play a role in generating an εTT .
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Figure 4.23: Results for the raw ZDC to BBC asymmetry in the 2012
√
s =

200 GeV transversely polarized run with the εNεSλ method versus runnumber.
The sudden change in the scatter of the points around Run 360500 corresponds
to the time at which the Collider Accelerator Department turned off automatic
orbit corrections.
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4.5 Bunch Fitting Wall Current Monitor Data

Bunch fitting can also be used “un-normalized,” that is, without uncertainties,
to look for pattern dependent deviations from some average quantity. Fitting
to the formula r±i = c(1 ± ε), as in 4.1, the raw asymmetry ε returned is
interpretable as the pattern dependent deviation from the average, normalized
to the average itself. Figure 4.24 shows the results of this procedure applied to
the standard deviations within certain z-vertex ranges of the 2009 wall current
monitor data. An example of these standard deviations plotted vs. crossing
is given in Fig. 4.25, normalized to crossing zero. To produce these plots, the
beam separated wall current monitor data introduced in 2.1.2 was convoluted
to produce a plot of of the collision distribution versus z, as in Fig 4.26. β∗

effects from the focusing of the beam at the IP were included. Then the z = 0
position was calibrated to offline BBC z-vertex measurements, after which the
standard deviation of the WCM distributions within certain z ranges could be
bunch-fit.

The results of the bunch fitting are quite interesting, showing that there
is no significant double spin dependence in the WCM measured bunch width
within 50 cm, but there is when calculated within 100 cm, although since the
average of of the spin pattern separated results is about 0, it can be attributed
to a coincidental alignment of the bunch structure with the bunches selected
for a double spin asymmetry analysis (think Fig. 2.3 of 2.1.1), an effect similar
to the EMCal previous crossing memory effect of 3.5.1. Since the effect is
negligible in 50 cm, it could not affect our 2009 π0 result, but it could cause
some of the bifurcation in the relative luminosity results and in any analysis
with a loose z-vertex cut.
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Figure 4.24: Unnormalized bunch fitting applied to the standard deviation
of the convoluted WCM distributions within the z-vertex ranges given in the
plots.
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Figure 4.25: The standard deviation of the convoluted WCM distributions
within two different z-vertex ranges plotted vs. crossing, normalized to cross-
ing 0.
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π0 ALL values as a function of pT for the 2009 data set are shown in Fig-
ure 5.1 and the values are given in Table 5.1. These results are now published
in [7]. The results are compared with previously published results from 2005 [2]
and 2006 [4], with which they are consistent. The relative luminosity system-
atic uncertainty for the 2009 data set is shown only in the inset of Fig. 5.1
but applies to all of the points. The polarization uncertainties discussed above
are not shown on the data points but are listed in the legend. The results are
consistent in all cases.
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Figure 5.1: ALL vs. pT for π0 mesons for the 2005 (red circle), 2006 (blue
square) and 2009 (black triangle) PHENIX data sets.

In Fig. 5.2, the 2005, 2006 and 2009 results have been combined for the π0,
taking into account the year-to-year uncorrelated polarization uncertainties
and assuming that the relative luminosity uncertainty year-to-year correlation
is the maximal overlap in ARLL across years, 0.42 × 10−3. The year-to-year
correlated part of the polarization uncertainty is given in the legend.

The π0 asymmetries are consistent with the best fit of a global analysis
of DIS data that allows at the input scale only quark contributions to ALL:
the GRSV-zero scenario, which assumes ∆g(x, µ2) = 0 at an NLO input scale
µ2 = 0.40 GeV2 [37]. This consistency can be quantified relative to the related
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Figure 5.2: Points are the combined ALL vs. pT for π0 mesons from 2005
through 2009 with the statistical uncertainty. The pT correlated systematic
uncertainty given by the gray bands is the result of combining the year-to-year
uncorrelated parts of the systematic uncertainties on relative luminosity and
polarization. The year-to-year correlated parts are given in the legend. Plotted
for comparison are several expectations based on fits to polarized scattering
data, with uncertainties where available.

GRSV-std scenario, in which the gluon polarization is not fixed (nor is it
well constrained). The difference between these two scenarios in a statistical-
uncertainty-only comparison to the combined π0 data in the 2–9 GeV/c pT
range is (∆χ2)GRSV/N.D.F ≡ ((χ2)GRSV-std − (χ2)GRSV-zero) /N.D.F = 18.9/8,
a 4.3-sigma change. If all of the points are increased by the total systematic
uncertainty to move them closer to the GRSV-std curve, the change is 3.3/8
or 1.8 sigma, indicating that the PHENIX π0 data still prefer the GRSV-zero
scenario.

More recent NLO global analyses of DIS-only data by Blümlein and Böttcher
(BB10) [21] and Ball et. al. (NNPDF) [17, 18], and of DIS+SIDIS data by
Leader et. al. (LSS10) [47] also allow the gluon polarization to be fit by the
data, but the analyses vary in ways that affect determination of ∆g(x, µ2).
The most significant of these differences is the BB10 assumption of a flavor-
symmetric sea versus the separation of flavor-specific distributions made pos-
sible in LSS10 by the SIDIS data. This affects the gluon determination not
only because of the constraint on the total polarization, but also because the
analyses use functional forms for the initial pPDFs such as

x∆fi(x, µ
2) = Nix

αi(1− x)βi(1 + γi
√
x+ ηix) (5.1)

and consequentially must relate parameters between the sea and gluon dis-
tributions to enforce positivity (|∆fi(x, µ2)| ≤ fi(x, µ

2)) and to fix poorly-

127



constrained parameters.
Another issue with making a choice of functional form for ∆g(x, µ2) is that,

even with inclusion of present ~p+ ~p data, there are no existing measurements
that can test the validity of the functional form in the low-x region. For
analyses like BB10 and LSS10 that do not include ~p + ~p data, this problem
extends to determination of ∆g in the medium and large-x regions as well. The
NNPDF analysis of DIS data avoids bias introduced in choosing a functional
form for the PDFs by using neural networks to control interpolation between
different x values. For example, ∆g(x, µ2) is parameterized as

∆g(x, µ2) = (1− x)mx−nNN∆g(x), (5.2)

with NN∆g(x) a neural network parameterization determined by scanning
functional space for agreement with 1000 randomly distributed replicas of the
experimental data. The low- and high-x terms are included for efficiency, and
in order to ensure that they do not bias the fit, m and n are chosen from a
random interval for each experimental data replica such that this interval is
wider than the range of effective exponents for the limiting low and high-x
behavior after the neural network terms have been included.

Fig. 5.2(b) includesAπ
0

LL predictions based on the BB10, LSS10, and NNPDF
polarized PDF determinations. For BB10 and LSS10, we evolved their pub-
lished polarized PDFs to various µ2 using the QCD-PEGASUS package [59]
and used these to calculate the pT dependent polarized cross-section for inclu-
sive π0 production with code based on [43] that uses the DSS NLO fragmen-
tation functions [28]. The unpolarized cross-section for the denominator was
calculated via the same two-step process starting from the CTEQ-6 PDFs [54].
The BB10 uncertainty band was calculated using the Heissian method with
a set of polarized PDFs obtained from the parameter covariance matrix in
the BB10 publication. The NNPDF prediction was provided by that group,
using their polarized PDFs supplemented by preliminary W boson asymme-
try measurements from the STAR experiment [50, 57]. Neither the BB10 nor
NNPDF prediction accounts for uncertainties in the determination of the π0

fragmentation functions.
One feature of the predictions is that the BB10 uncertainty band is smaller

than the NNPDF band at pT ≈ 3 GeV/c but quickly exceeds it as pT increases.
Likewise, as can be seen in Ref. [18], at an input scale of 4 GeV2, the uncer-
tainty on the BB10 prediction for ∆g, which neglects bias from the choice of
functional form, is smaller than that for NNPDF at low-x but exceeds it as

x increases. Future inclusion of the PHENIX Aπ
0

LL into the NNPDF analysis
may provide some insight into whether or not this is due to a bias in the choice
of functional form at medium-x, particularly in the RHIC range of [0.05, 0.2].
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The DSSV08 global analysis [29], which is also based on the pPDF parame-
terizations of Eq. 5.1, includes, in addition to DIS and SIDIS data, preliminary
versions of the RHIC data presented in [1, 3, 4]. The results of that analy-
sis, which yields a much more accurate determination of ∆g(x), are compared

with Aπ
0

LL in Fig. 5.2(a). An updated version of the DSSV08 analysis was
also run to include final versions of the RHIC data through 2006 [1, 3, 4]

along with the final Aπ
0

LL results presented here. The updated fit obtained

∆G
[0.05,0.2]

DSSV08 = 0.06+0.04
−0.06(∆χ2 = 1)+0.11

−0.15(∆χ2 = 9), where the ∆χ2 = 9 uncer-

tainties roughly correspond to the 2% change in ∆χ2/χ2
min used to determine

the uncertainties in the DSSV08 global analysis. The full ∆χ2 curve from
our updated analysis is shown as the central curve in Fig. 5.3(b). Fig. 5.3(a)
shows the contribution from PHENIX data to that curve, and that data prefers
∆G

[0.05,0.2]

PHENIX = 0.07+0.05
−0.08(∆χ2 = 1).
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5.1 Theory Fits

5.1.1 Plotting Theory Fits vs. Aπ0

LL

Most groups performing extractions of polarized PDFs from polarized SIDIS,
DIS, and/or p+p data, such as [21], quote in their publications polarized PDF
parameters and associated uncertainties. If the pPDFs can be cast in one of
the forms

x∆fi(x, µ
2
0) = Nipi,1x

pi,2(1− x)pi,3 [1 + pi,5x
pi,4 + pi,6x]

x∆fi(x, µ
2
0) = Nipi,1x

pi,2(1− x)pi,3
[
1 + pi,4

√
x+ pi,5x+ pi,6x

3/2
]

(5.3)

and the covariance matrix for the parameters is provided, the results can
be converted to an Aπ

0

LL (or ALL for some other final state if fragmentation
functions are available) vs. pT curve with an uncertainty band using pPDF
evolution code from [59] and parton cross-section plus fragmentation function
calculation code from [43]. The procedure starts with decorrelating the pPDF
parameters.

In order to find an independent set of parameters x, i.e. ones with zero
covariance, we need to diagonalize the covariance matrix C ≡ E(xxT ):

D = P−1CP, (5.4)

where the columns of P are the linearly independent eigenvectors of C
and D is a diagonal matrix made up of the associated eigenvalues. Since the
covariance matrix C is by definition symmetric, the matrix P is orthogonal
and P−1 = P T . The equivalent transformation for a set of pPDF parameters
is then

y = PTx. (5.5)

We can apply this transformation to the best-fit parameters µ as λ ≡
PTµ. Assuming the data y are normally distributed, we can then produce an
uncertainty band for ALL. There are two commonly used methods for doing
so:

• Monte-Carlo Method:

Simulate a large sample by distributing each element of y from a normal
distribution with mean from λ and variance from D. This sample can
transformed back to the original basis by multiplying by P, after which it
can be fed through the evolution and cross-section/fragmentation func-
tion codes to produce a distribution of ALL values at various pT points.
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The variance of these ALL distributions can then be extracted and used
to draw a pT dependent uncertainty band. This is essentially the method
used by the NNPDF collaboration [18].

• Hessian Method:

This method requires the creation of n “+” sets and n “−” sets, where
n is the number of free parameters in the global analysis. For each +(−)
set, one element of y is fixed at one standard deviation above(below) its
mean value, while the remainder are set equal to their mean value. Each
of the 2n sets is then run through the evolution and cross-section/fragmentation
function code to produce sets of A+

LL and A−LL curves. The positive and
negative uncertainty bands are then computed as

∆A+
LL =

√√√√ n∑
i=1

[
max

(
A+
LL(i)− AcentralLL , A−LL(i)− AcentralLL , 0

)]2
∆A−LL =

√√√√ n∑
i=1

[
max

(
AcentralLL − A+

LL(i), AcentralLL − A−LL(i), 0
)]2
, (5.6)

where AcentralLL is determined from the published best-fit parameters. This
procedure was applied to the results of [21] to produce the “BB10” curve
in Figure 5.2.

5.1.2 Systematics in Global Analysis

Systematic uncertainties for the RHIC dataset were not included in the DSSV08
analysis. However, the PHENIX relative luminosity systematic uncertainty

now exceeds the statistical uncertainty on Aπ
0

LL in the lowest pT bins. To un-
derstand the impact of this on the fit result, we shifted the PHENIX

√
s =

200 GeV data up and down by the systematic uncertainties given in the final
column of Table 5.2, while ignoring the systematic uncertainties of all other
datasets. As demonstrated in Fig. 5.3, this changes the global best-fit value to
0.12 or 0.02, with the value preferred by the PHENIX data changing to 0.17
or −0.03. It is therefore necessary to include this uncertainty in future global
analyses in order to get accurate determinations of ∆G.

The relative luminosity systematic uncertainty is even more impactful when
the preliminary 2009

√
s = 200 GeV STAR jet asymmetry results [31] are
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Figure 5.3: (a) Contribution of the combined PHENIX data at
√
s = 200 GeV

to the global χ2 of the DSSV08 analysis using only statistical uncertainties.
The different curves show the effect of shifting only the PHENIX data points
up or down by their total systematic uncertainty, which is pT correlated. (b)
The effect of shifting only the PHENIX

√
s = 200 GeV data points on the

DSSV08 global χ2.

added to the global analysis. With no relative luminosity systematic uncer-
tainty included, the fit would seem to indicate a significantly non-zero ∆G
in the RHIC Bjorken-x range. However, when the values are shifted down
by the relative luminosity systematic uncertainty, zero lies within a statistical
uncertainty ∆χ2 = 1.

5.1.3 Conclusions

Three years worth of Aπ
0

LL measurements by PHENIX have put significant
constraints on the gluon’s contribution to the proton spin. When including
other RHIC data, as in the upcoming DSSV global analysis [30], statistical-
uncertainty-only analysis points to a significantly non-zero ∆G in the measured
range. However, it has been demonstrated herein that this conclusion is incor-
rect, and that the relative luminosity uncertainty needs to be included in any
global analysis, to say nothing about theoretical uncertainties that may have
been missed or ignored. Ultimately, to get a truly satisfactory answer on ∆G,
measurements need to be made at lower Bjorken-x, such as with an Electron
Ion Collider. Nonetheless, the current answer provided by RHIC data could
be greatly improved by understanding and eliminating the relative luminosity
systematic uncertainty on the existing data. The studies herein have gone
part way down that path, but there are many unanswered questions that need
additional data or insight to answer.
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Figure 5.4: (a) Contribution of the STAR data at
√
s = 200 GeV to the global

χ2 of the DSSV08 analysis using only statistical uncertainties. The different
curves show the effect of shifting only the 2009 STAR data points up or down
by their (preliminary) relative luminosity systematic uncertainty of 2.9×10−3,
which is pT correlated. (b) The effect of shifting only the 2009 STAR data
points on the DSSV08 global χ2.
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Appendix A

Appendices

A.1 Alternative Approach to k-Factors

Suppose we measure Nγγ di-photon pairs in Nev events (In this case we do
not require a di-photon for the trigger. Think, for example, di-photon pairs in
minimum bias events). The joint probability distribution for these quantities
is

P (Nγγ = k and Nev = n) = P (Nγγ = k|Nev = n)P (Nev = n). (A.1)

P (Nev = n) is a simple Poisson distribution. P (Nγγ = k|Nev = n) can be
derived from the fact that number of di-photon pairs in each single event
follows a Poisson distribution, and thus P (Nγγ = k|Nev = n) is that of a sum
of Poisson variables. So we have

P (Nγγ = k and Nev = n) =
(nλγγ/ev)

ke−(nλγγ/ev)

k!

λneve
−λev

n!
. (A.2)

where λγγ/ev is the expected number of di-photon pairs per event, and λev is
the expected number of events. If we want the distribution for Nγγ regardless
of Nev, we sum the joint probability distribution over n.

P (Nγγ = k) =
λkγγ/ev
k!

e−λev
∞∑
n=0

nkλnev
(
e−λγγ/ev

)n
n!

=
λkγγ/ev
k!

e−λev
Tk(λeve

−λγγ/ev)

e−(λeve
−λγγ/ev )

, (A.3)
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where Tk(x) is a Touchard polynomial, defined as

Tk(x) = e−x
∞∑
n=0

xnnk

n!
. (A.4)

We can use this result to calculate the variance for Nγγ. First we need E(Nγγ).

E(Nγγ) =
∞∑
k=0

k
λkγγ/ev
k!

e−λev
Tk(λeve

−λγγ/ev)

e−(λeve
−λγγ/ev )

=
λγγ/eve

−λev

e−(λeve
−λγγ/ev )

∞∑
k=1

λ
(k−1)
γγ/ev

(k − 1)!
Tk(λeve

−λγγ/ev)

=
λγγ/eve

−λev

e−(λeve
−λγγ/ev )

∞∑
k=0

λkγγ/ev
k!

Tk+1(λeve
−λγγ/ev) (A.5)

To reduce this formula, we will need the following identity:

∞∑
k=0

tk

k!
Tk+1(x) = xe−xetexe

t

, (A.6)

which can be derived by re-inserting the definition for T and explicity carrying
out the summation. Using this identity with the above, we arrive at

E(Nγγ) =
λγγ/eve

−λev

e−(λeve
−λγγ/ev )

∗
(
λeve

−λγγ/eve−(λeve
−λγγ/ev )eλγγ/eve(λeve

−λγγ/ev )e
λγγ/ev

)
= λγγ/evλev, (A.7)

as expected. Now we calculate E(N2
γγ). Following the steps in Equation A.7,

we can reduce it to

E(N2
γγ) =

λγγ/eve
−λev

e−(λeve
−λγγ/ev )

∞∑
k=0

(k + 1)λkγγ/ev
k!

Tk+1(λeve
−λγγ/ev) (A.8)

From here we break apart (k + 1). The 1 gives us the same result as before
(λγγ/evλev), and for the k term we pull out another factor of λγγ/ev and re-index,
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resulting in

E(N2
γγ) = λγγ/evλev +

λ2
γγ/eve

−λev

e−(λeve
−λγγ/ev )

∞∑
k=0

λkγγ/ev
k!

Tk+2(λeve
−λγγ/ev) (A.9)

To sum, we use a result similar to Equation:

∞∑
k=0

tk

k!
Tk+2(x) = (1 + xet)xe−xetexe

t

(A.10)

Plugging this into the above, we again get massive cancellations like before.
The factor (1 + xet) = 1 + λev, and so

E(N2
γγ) = λγγ/evλev + λ2

γγ/evλev(1 + λev) (A.11)

The variance is then

E(N2
γγ)− E(Nγγ)

2 = λγγ/evλev + λ2
γγ/evλev, (A.12)

or, estimated from the measurement,

σ2
Nγγ = Nγγ +

N2
γγ

Nev

. (A.13)

Since the measured Nγγ would be the same if a di-photon trigger requirement
were added in addition to the minimum bias trigger for an event (as long as all
di-photons were required to meet the same requirement as the trigger), σNγγ
must also be numerically equal in this case. So, for example, in the π0ALL
analysis where we require a minbias trigger in coincidence with an ERT trigger
for our event sample, and also require (essentially) that all di-photon pairs
contain a photon that triggered the ERT, we should calculate σNγγ in this
way.

A.2 Systematics in Global Analysis

In general, for fits to data where each point is not describable as a normally
distributed random variable independent from the other points (e.g., the mea-
surement follows the product distribution, or there is a correlated systematic
uncertainty), the method of minimizing χ2, which is based on this assumption,
can not be expected to lead to accurate, unbiased determination of the fit un-
certainties. Therefore, some other procedure, such as a maximum likelihood
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estimation, should be used.
Nonetheless, some global analyses still use the χ2 method, perhaps because

their first incarnations ignored systematic uncertainties and thus the analysis
code was written around the acceptable χ2 treatment of the statistical errors.

It has been noted [S. Baker and R. D. Cousins, ‘Clarification of the Use of
Chi-Square and Likelihood Functions in Fits to Histograms’ Nucl. Instrum.
Meth. A221 437 (1984)] that for a set of n independent normal random vari-
ables {xi} with expectation values given by a set of functions {yi(θ)} with
parameters θ, the χ2 function is related to the log likelihood function by

χ2 = −2ln(L(θ|{xi})/L0), (A.14)

where L0 is essentially a normalization term, found by setting the {xi}
equal to the yi(θ)}. The full derivation is as follows:

L(θ|{xi}) =
1

(2π)n/2
∏

i σi
e
−

∑
i
(xi−yi(θ))

2

2σ2
i

⇒ L0 =
1

(2π)n/2
∏

i σi

⇒ ln(L(θ|{xi})/L0) = ln(e
−

∑
i
(xi−yi(θ))

2

2σ2
i )

= −
∑
i

(xi − yi(θ))2

2σ2
i

= −1

2
χ2 (A.15)

One can use this relation to construct a χ2 function for any likelihood
function, however, there is no guarantee that the resultant χ2 will follow the
χ2 distribution.

Consider the case of a normalization factor that applies across all data
points with expected value 1 and uncertainty ε. This can be achieved in prac-
tice by multiplying each datapoint by the expectation value of the normaliza-
tion, in which case ε corresponds to the relative uncertainty on the unfactored
normalization. We can use the following likelihood function:

L(θ|{xi}) = P (α)P ({xi}|α, θ), (A.16)

where α encapsulates deviation of the normalization factor from 1. If we
assume both probability distributions are normal, this function becomes
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L(θ|{xi}) =

[
1√
2πε

e−
(1−α)2

2ε2

][
1

(2π)n/2
∏

i σi
e
−

∑
i
(xi−αyi(θ))

2

2σ2
i

]
,

L0 =

[
1√
2πε

] [
1

(2π)n/2
∏

i σi

]
(A.17)

where, again, ε is equal to the fractional normalization uncertainty σN/〈N〉
since we pulled out a factor 〈N〉 to make 〈α〉 = 1. The corresponding χ2

function is then

χ2 =
(1− α)2

ε2
+
∑
i

(xi − αyi(θ))2

σ2
i

. (A.18)

To handle a correlated systematic shift across all data values, assumed to be
uniformly distributed with expected value 0 and standard deviation 2δ/

√
12,

one would use the likelihood function

L(θ|{xi}) = [U(−δ, δ)]

[
1

(2π)n/2
∏

i σi
e
−

∑
i
(xi−αyi(θ))

2

2σ2
i

]
,

L0 =

[
1

2δ

] [
1

(2π)n/2
∏

i σi

]
(A.19)

and a corresponding χ2 function

χ2 =

{∑
i

(xi−(yi(θ)−β))2

σ2
i

|β| < δ

∞ |β| > δ
(A.20)

If the shift uncertainty is instead distributed normally with standard devi-
ation δ, the corresponding χ2 function would be

χ2 =
β2

δ2
+
∑
i

(xi − (yi(θ)− β))2

σ2
i

. (A.21)

PHENIX ALL measurements have multiple sources of normalization and
shift uncertainties, which can be categorized as follows:

• (A, εA) Year-to-year fully correlated part of the normalization uncer-
tainty. To the extent that non-linear effects can be ignored, εA is equal
to the fractional uncertainty on the polarization, since ∆ 1

PBPY
≈ ∆PBPY

(PBPY )2

from linear error propagation.
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• (αy, εα,y) Year-to-year uncorrelated part of the normalization uncertainty.

• (B, δB) Year-to-year fully correlated part of the relative luminosity shift
uncertainty, considered uniformly distributed according to U(−δB, δB).
δB is set to the maximal overlap of each years measurement, neglecting
correlation between δB and {εα,y}.

• (βU ,y, δβU ,y) Remaining part of each year y’s relative luminosity shift un-
certainty after subtraction of the correlated part. Considered uniformly
distributed.

• (βN ,y, σβN ,y) Shift due to the statistical uncertainty on each years rela-
tive luminosity systematic uncertainty measurement, which is normally
distributed.

One should note that normalization uncertainties also apply to the shift
uncertainties, multiplying both the parameters, B, βU ,y, βN ,y, and the uncer-
tainties, δB, δβU ,y, δβN ,y so that any explicit dependence is canceled. The
likelihood function for including all of these uncertainties is of the form

P (A)P ({αy})P (B|A)P ({βU ,y}|A, {αy})P ({βN ,y}|A, {αy})P ({xi}|A, {αy}, B, {βU ,y}, {βN ,y}).
(A.22)

The corresponding χ2 function is

(A− 1)2

ε2A
+
∑
y

(αy − A)2

ε2α,y
+
∑
y

β2
N ,y

σβ2
N ,y

+
∑
y

∑
i∈{pT }

(xi − Aαy(yi(θ)− βU ,y − βN ,y) + AB)2

σ2
i

(A.23)
for |B| < δB, where, again, we have neglected the correlation between δB

and {εα,y}, which would only be explicit in the last term. The treatment of the
normalization uncertainties as a product Aαy is justified by noting that for a
product of independent normally distributed random variables with means 1,
the variance is ε2A+ε2α+ε2Aε

2
α, for which ε2A+ε2α, the total quoted normalization

uncertainty in each year, is a close approximation.

A.3 Di-photon Yields and Background Frac-

tions

Below are tables giving the di-photon yields in the signal and sideband regions,
as well as the background fraction in the peak region.
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A.4 Single Spin Asymmetries
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Figure A.1: AL Yellow calculated in PbSc and PbGl separately, along with in
the full detector
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Figure A.2: Student T-scores between AL Yellow calculated in PbSc and PbGl
separately.
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Figure A.3: AL Blue calculated in PbSc and PbGl separately, along with in
the full detector
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Figure A.4: Student T-scores between AL Blue calculated in PbSc and PbGl
separately.
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pT (GeV) Fill Pat. Peak Yield SB Yield % Background

1-1.5

P1 5797652 4930912 48.9559
P2 5502569 4718944 49.2596
P3 4375075 3727233 48.9348
P4 5627497 4795432 48.8715

1.5-2

P1 8148556 4832443 33.7167
P2 7800500 4654951 33.8748
P3 6134114 3637125 33.7481
P4 7828349 4625577 33.6399

2-2.5

P1 5628976 2240478 22.894
P2 5420461 2169783 23.0129
P3 4231147 1690131 22.8918
P4 5385276 2141393 22.8433

2.5-3

P1 2798721 792482 16.498
P2 2703051 769945 16.5963
P3 2104619 597493 16.5879
P4 2676033 756543 16.5094

3-3.5

P1 1255717 282611 13.3338
P2 1215351 274097 13.3415
P3 945997 212117 13.2013
P4 1199321 269042 13.2846

3.5-4

P1 558260 109093 11.4973
P2 539371 106252 11.699
P3 418297 82335 11.6615
P4 531294 104174 11.6208

4-5

P1 326942 62718 11.4589
P2 316236 61510 11.401
P3 245537 46897 11.27
P4 311385 60379 11.4876

5-6

P1 91144 15807 10.5607
P2 88322 15366 10.4602
P3 68484 11725 10.3526
P4 86983 15159 10.5733

6-7

P1 29156 4668 9.87413
P2 28454 4636 10.341
P3 22039 3519 9.81363
P4 27878 4681 10.2087

7-9

P1 15325 2389 9.70437
P2 14557 2432 10.4375
P3 11336 1768 9.7381
P4 14699 2432 10.4218

9-12

P1 14003 1982 9.19464
P2 12412 1777 9.00282
P3 12412 1777 9.00282
P4 14003 1982 9.19464

12-15

P1 1437 200 5.85028
P2 1079 206 5.09793
P3 1079 206 5.09793
P4 1437 200 5.85028

Table A.1: Di-photon yields and Background Fractions for Even Crossings.
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pT (GeV) Fill Pat. Peak Yield SB Yield % Background

1-1.5

P1 5559198 4731529 48.8578
P2 5249344 4506614 49.2795
P3 4412889 3761371 48.9953
P4 5558672 4713832 48.8218

1.5-2

P1 7781353 4603277 33.5954
P2 7510003 4477320 33.8278
P3 6140818 3636843 33.6993
P4 7745274 4576277 33.603

2-2.5

P1 5367614 2134592 22.9129
P2 5229458 2094799 23.0265
P3 4219662 1683983 22.9518
P4 5332466 2117408 22.8398

2.5-3

P1 2670465 756873 16.5296
P2 2609588 742183 16.6142
P3 2091641 591908 16.5295
P4 2645575 748587 16.5296

3-3.5

P1 1199359 269671 13.2612
P2 1172322 264236 13.3266
P3 936355 210078 13.3062
P4 1186368 265108 13.2271

3.5-4

P1 530093 103710 11.617
P2 520880 102180 11.6295
P3 414343 81441 11.6665
P4 526235 102720 11.6552

4-5

P1 311466 59936 11.457
P2 305196 58660 11.3703
P3 243569 47141 11.3327
P4 308590 59735 11.3851

5-6

P1 87102 15100 10.6201
P2 85676 14775 10.6227
P3 67817 11926 10.6923
P4 85750 14922 10.5702

6-7

P1 27815 4709 10.3118
P2 27167 4537 9.94944
P3 21579 3579 10.3567
P4 27756 4476 10.1391

7-9

P1 14444 2318 10.168
P2 14145 2208 9.76079
P3 11337 1811 10.0488
P4 14540 2331 10.0433

9-12

P1 14003 1982 9.19464
P2 12412 1777 9.00282
P3 12412 1777 9.00282
P4 14003 1982 9.19464

12-15

P1 1437 200 5.85028
P2 1079 206 5.09793
P3 1079 206 5.09793
P4 1437 200 5.85028

Table A.2: Di-photon yields and Background Fractions for Odd Crossings
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A.5 Plots of Background Asymmetry vs. In-

variant Mass
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Figure A.5: BG ALL’s mass for fill pattern 1 in even crossings (left) and odd
crossings (right)
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Figure A.6: BG ALL’s mass for fill pattern 2 in even crossings (left) and odd
crossings (right)
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Figure A.7: BG ALL’s mass for fill pattern 3 in even crossings (left) and odd
crossings (right)
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Figure A.8: BG ALL’s mass for fill pattern 4 in even crossings (left) and odd
crossings (right)
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Figure A.9: Histograms of Student T-scores between background sidebands.
There is one score for each pT bin.
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A.6 Plots of Background Asymmetry vs. pT
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Figure A.10: BG ALL pT for fill pattern 1 in even crossings (left) and odd
crossings (right)
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Figure A.11: BG ALL’s pT for fill pattern 2 in even crossings (left) and odd
crossings (right)
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Figure A.12: BG ALL’s pT for fill pattern 3 in even crossings (left) and odd
crossings (right)
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Figure A.13: BG ALL’s pT for fill pattern 4 in even crossings (left) and odd
crossings (right)
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