
Measuring the anti-quark contribution

to the proton spin using parity violating W production

in polarized proton proton collisions

A Dissertation presented

by

Ciprian Gal

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Physics

Stony Brook University

August 2014



Stony Brook University
The Graduate School

Ciprian Gal

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Abhay Deshpande - Dissertation Advisor
Professor, Department of Physics and Astronomy

Dmitri Tsybychev - Chairperson of Defense
Professor, Department of Physics and Astronomy

Tom Allison
Professor, Department of Physics and Astronomy

Martin Purschke
Physicist, Brookhaven National Laboratory

Jianwei Qiu
Senior Physicist, Brookhaven National Laboratory

Brookhaven Professor, C.N. Yang Institute for Theoretical Physics

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii



Abstract of the Dissertation

Measuring the anti-quark contribution

to the proton spin using parity violating W production

in polarized proton proton collisions

by

Ciprian Gal

Doctor of Philosophy

in

Physics

Stony Brook University

2014

Since the 1980s the spin puzzle has been at the heart of many experi-
mental measurements. The initial discovery that only ∼30% of the spin of
the proton comes from quarks and anti-quarks has been refined and cross
checked by several other deep inelastic scattering (DIS) and semi inclusive
DIS (SIDIS) experiments. Through measurements of polarized parton distri-
bution functions (PDFs) the individual contributions of the u, d, ū, d̄, quarks
have been measured. The flavor separation done in SIDIS experiments re-
quires knowledge of fragmentation functions (FFs). However, due to the
higher uncertainty of the anti-quark FFs compared to the quark FFs, the
quark polarized PDFs (∆u(x), ∆d(x)) are significantly better constrained
than the anti-quark distributions (∆ū(x), ∆d̄(x)). By accessing the anti-
quarks directly through W boson production in polarized proton-proton col-
lisions (ud̄ → W+ → e+/µ+ and dū → W− → e−/µ−), the large FF un-
certainties are avoided and a cleaner measurement can be done. The parity
violating single spin asymmetry of the W decay leptons can be directly re-
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lated to the polarized PDFs of the anti-quarks. The W± → e± measurement
has been performed with the PHENIX central arm detectors at

√
s = 510

GeV at the Relativistic Heavy Ion Collider (RHIC) and is presented in this
thesis.

Approximately 40 pb−1 of data from the 2011 and 2012 was analyzed and
a large parity violating single spin asymmetry for W± has been measured.
The combined data for 2011 and 2012 provide a single spin asymmetry for
both charges:

• W+: −0.27± 0.10(stat)± 0.01(syst)

• W−: 0.28± 0.16(stat)± 0.02(syst)

These results are consistent with the different theoretical predictions at the
1σ level.

The increased statistical precision enabled and required a more care-
ful analysis of the background contamination for the this measurement. A
method based on Gaussian Processes for Regression has been employed to
determine this background contribution. This thesis contains a detailed de-
scription of the analysis together with the asymmetry results and future
prospects.
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1 Introduction

This thesis is focused on the single spin asymmetry of electrons and positrons
measurement in the PHENIX central arms.

The first chapter introduces Quantum Chromodynamics (QCD) and gives
a motivation for this measurement. Following the chronological developments
a series of both theoretical and experimental breakthroughs in the field are
discussed. QCD is a perfect example how experiment and theory work hand
in hand to provide insights and push understanding further. After initial ex-
perimental discovery of larger number of fundamental particles, theoretical
models give an elegant way to explain all the new particles by introducing
a set of new fundamental particles called quarks. The development of deep
inelastic scattering provided a confirmation of the model but also give evi-
dence that it is still incomplete. The momentum fractions carried by quarks
turned out to be insufficient to account for the total momentum of hadrons.
Like the quarks, the gluon was predicted by theory and shortly after dis-
covered by experiments setting the basis for what is now the description of
the strong interaction (QCD). Further refinements of the parton momentum
distribution function measurements eventually lead to taking into account
of the spin direction of these partons. Again experimental evidence collided
with theoretical predictions when the expectation that the spin 1/2 quarks
make up most of the proton spin was disproven. This last conundrum (called
the Spin Puzzle) is still being investigated to this day. Here is where the
measurement presented in this thesis provides some insights to constrain the
anti-quark polarized parton distribution functions.

The second chapter focuses on the experimental setup at the Relativistic
Heavy Ion Collider (RHIC) and PHENIX central arm spectrometer. RHIC
is, as it’s name suggests a heavy nuclei collider. It was the place of the discov-
ery of the quark gluon plasma and has made strides towards describing the
properties of this new state of matter. Along side the heavy ion program,
through polarizations of the proton proton collisions (originally needed as
a refference for the heavy nuclei collisions), a whole new physics program
has been added. This chapter presents a general description of the produc-
tion and acceleration of the polarized proton beams in RHIC. Following, the
PHENIX experimental subsystems are detailed with a particular focus on
how they are used for this measurement. The PHENIX central arms provide
excellent electron energy resolution however the lack of 2π coverage in the θ
polar angle makes this measurement a challenging one.
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The third chapter gives a detailed description of the measurement pro-
cedure and results. It is separated into three parts: a) the data obtained
in 2011 and 2012, b) the detector status and behavior during the data tak-
ing periods and c) the measurement procedures and results. The first part
gives information on two of the three components needed for a single spin
asymmetry measurement: relative luminosity and beam polarization. The
second part of the data analysis shows quality assurance plots from the main
detector subsystems needed for this measurement. The last, and most chal-
lenging, component needed for the asymmetry measurement (the polarization
separated yields) is presented in the third part. The transverse momentum
spectrum of the electron/positron is obtained with the telltale appearance of
a Jacobian peak. Finally the background dilution factor and final asymmetry
values for this measurement are obtained.

The last chapter of this thesis focuses on a discussion and interpreta-
tion of the results. Theoretical predictions are presented for the single spin
asymmetry and the prospects of constraining the anti-quark polarized parton
distributions functions are discussed.

A series of appendices that support this thesis (but are not necessary for
this measurement) can be found at the end of this thesis.

1.1 Quantum Chromodynamics

Being the two constituent parts of nuclei, protons and neutrons make up
almost all of the mass of the known matter in the universe. As such, having
a full understanding of their properties and interactions is essential to our
knowledge of the physical world.

With the advent of high energy (at the time) particle accelerators, the
1950s and 1960s saw a myriad of new fundamental particles being discov-
ered (collectively called the Particle Zoo). These particles, dubbed hadrons,
had similar properties with protons and neutrons however they had different
masses or charges. All of this suggested the existence of an underlying sym-
metry. Gell-Mann and Zweig, in 1964 [9], introduced the constituent quark
model. It suggested that all of these hadrons, including the proton and neu-
tron, were in fact composite particles made out of elementary particles called
quarks. These quarks had what some considered strange properties. They
had fractional electric charge (in terms of electron charge) and could be com-
bined in either pairs of quark anti-quark to produce what was called a meson,
or in three quarks to produce a baryon. The proton and neutron were differ-
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entiated only by the replacement of a quark in the three quark composition
(proton having a up-up-down (uud) configuration while the neutron being
made out of udd quarks).

This underlying symmetry in the model was an SU(3) symmetry between
the lightest three quarks: u (up quark), d (down quark) and s (strange
quark). This symmetry holds to a large degree due to the very small differ-
ences between the masses of these quarks. The theory proved to be a great
success, providing a clear explanation of the charge and magnetic moment of
hadrons.

Experimental evidence for the existence of quarks was obtained through
Deep Inelastic Scattering (DIS) experiments (the first being an experiment at
SLAC in 1969 [10]). However, together with this came the realization that the
momenta carried by charged particles (quarks) could only account for about
half of the total proton momentum. Shortly after, Feynman proposed the
parton model, where charged particles (quarks) were mediated by massless
photon-like particles, which could explain the rest of the momentum of the
proton. The photon-like particles, called gluons, mediated the interactions
between color-charged particles. For example, gluons could split into quark
anti-quark pairs, a quark and an anti-quark could annihilate to produce a
gluon and a quark could radiate or observe a gluon and change its color
charge. However, unlike the photon which is chargeless, the gluon has it’s
own color charge, meaning it can couple to other gluons.

The introduction of gluons and quark anti-quark pairs meant that quarks
can be separated into two categories. The first type is called sea quarks, be-
cause through annihilation and pair production quarks appear and disappear
inside hadrons all the time, forming something similar to a sea. The second
is called valence quarks, quarks that would remain inside the proton if all
possible pairs of quark anti-quark would produce gluons.

The color-SU(3) symmetry of the parton model, and the dynamics that it
describes are the basis for Quantum Chromodynamics (QCD). QCD is part of
the Standard Model for particle physics (one of the most successful theories
to date). However, one question remained. There were no experimental
measurements that showed the existence of colored objects, all of the particles
measured so far had been color neutral. The answer to this color confinement
comes from the theory behind QCD. A large part of this theory has parallels
in Quantum Electrodynamics (the quantum theory of electromagnetism),
however there are some significant differences. On top of the color charge of
the gluon mentioned before, the most important difference is the fact that the
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coupling for the strong force αs increases as the distance between interactiong
partons becomes larger. This means that if a quark somehow is pushed a
large distance (the dimension of a hadron size) away from the other quarks
or gluons the energy in the field is sufficient to produce a quark anti-quark
pair neutralizing the color charge of the newly formed system. Production
of color neutral hadrons from quarks or gluons is called hadronization. The
opposite case happens when quarks are very close together, each quark being
asymptotically free.

Another consequence of the increase of αs with distance is restrictions on
how predictions can be made from QCD. In QED all calculations of ampli-
tude integrals that involve intermediate vertices (other vertices except the
initial and final scattering vertices) contain an additional factor of the cou-
pling constant. The smallness of the coupling constant (α = 1/137), means
that these intermediate states can be truncated and calculations can be made
up to a desired precision in powers of alpha. However, in QCD, αs increases
with distance, meaning that at large distances the coupling will be equally
as important. In order for predictions to be made many intermediate states
need to be considered. This is not possible right now, and so a framework of
perturbative calculations (pQCD) is used where only short distance interac-
tions are taken into account where αs is small. Another way to think about
this is related to the energy of an interaction. The energy scale µ2 needed to
probe at a small distance is very high. This means that αs increases as the
energy scale decreases. Usually an energy scale of µ2 �1 GeV is considered
safe for pQCD calculations (because αs � 1).

In order to be able to make accurate predictions these nonperturba-
tive components of the calculations need to be handled somehow. This is
where the Factorization Theorem comes into play. It states that processes
can be separated cleanly into two parts: a) an initial state large distance
part described by parton distributions functions and b) a small distance per-
tubartive, calculable part, which (like in QED) can be calculated to varying
degrees of precision in terms of powers of αs. For example in the typical DIS
diagram shown in figure 1 the initial state of the proton is characterized by
a momentum parton distribution function (P µ) and a polarized parton dis-
tribution function (S) to give the spin information of the quarks and gluons.
The amplitude of the interaction that happens at small distances between
a particular parton (quark or gluon characterized by xP µ and spin λ) with
the lepton (characterized by 4-momentum kµ and spin λl), through a virtual
photon (γ∗) can be calculated using our current theoretical uncerstanding.
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The nonperturbative component is obtained from experimental data and
is assumed to be universal. That is, the distributions of partons (and their
momenta) inside a proton are the same no matter what type of experiment
you perform. This assumption has proved correct so far, but further experi-
ments are being designed to test it.

1.2 Parton Distribution Functions

As stated above, the initial state of the hadron that is studied cannot be
calculated precisely from first principles. Experimental measurements have
been performed to study these initial states. The most effective have been
the DIS experiments, where a large momentum is transferred from a lepton
(generally an electron/muon, but DIS experiments with neutrino beams have
also been performed) to a stuck quark or gluon, giving it enough energy to
break away from the rest of the hadron (as is schematically drawn in figure
1). Great descriptions of DIS can be found in many textbooks or review
articles (for example see [11] or [12]). A brief discussion is given here with
the salient information for this thesis.

Figure 1: Deep inelastic scattering schematic (figure 1.2 in [1]).

By measuring cross sections of lepton on hadron targets, access can be
gained to structure functions for that particular hadron. These structure
functions depend on the energy exchange between the lepton and struck
parton (Q2) and the momentum fraction of the total hadron momentum (P )
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carried by the struck quark (x). These variables are generally defined as:

Q2 ≡− q2 (1)

x ≡ Q2

2P · q
(2)

where q is the 4-momentum transferred from the lepton to the quark (it can
be measured from the difference between the initial and final state lepton).

The F1(x,Q
2) and F2(x,Q

2) structure functions are frame invariant and
dimensionless and can be written as:

F2(x,Q
2) = 2xF1(x,Q

2) = x
∑
f

e2f (qf (x) + q̄f (x)) (3)

where f is the flavor of the quark being summed over, e2f is the charge and
qf (x) is the momentum distribution for a quark of flavor f inside the hadron.
These momentum distributions, called parton distribution functions (PDF),
are exactly what is needed to be able to make predictions in hard scattering
processes. Similarly to the definition of quark PDFs, gluon PDFs can be
defined, although they are not directly accessible to DIS experiments (the
colorless photon does not interact directly with the chargeless gluon, needing
an intermediate quark resulting in processes that are suppressed by αs).

A set of simple relations can be obtained by integrating over the momen-
tum fractions of the partons inside a proton:∫ 1

0

x

(∑
f

(qf (x) + q̄f (x)) + g(x)

)
dx = 1 (4)

∫ 1

0

(u(x)− ū(x)) dx = 2 (5)∫ 1

0

(
d(x)− d̄(x)

)
dx = 1 (6)∫ 1

0

(qh(x)− q̄h(x)) dx = 0 (7)

where qh is representative for all the other quarks besides u and d. The first
equation (4) states that all of the momentum of the proton can be found
by summing up all the fractional momenta of the partons. The last three
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equations are just an indication of the uud valence quark structure of the
proton.

A representative set of the world data for the structure function F p
2 for

the proton can be seen in figure 2.
The proton PDFs can be extracted from this data for a particular com-

bination of (x,Q2). Using the DGLAP ([13–15]) set of equations one can
relate PDFs at a particular Q2 to PDFs at any different Q′2 scale. These
equations make use of perturbativly calculable splitting functions (that give
information on how the gluon splits into a quark anti-quark or gluon pair,
or how a quark radiates a gluon). This process is called evolution and is a
consequence of the pQCD framework.

Evolution allows for another type of analysis to be done with the DIS
data. A so-called global analysis can be performed on the data by constrain-
ing a PDF functional form using most of the world available data at the
same time (even though this data may be at largely different values of x and
Q2). An example of one such fit is presented in figure 3. The NNLO in the
figure stands for Next to Next to Leading Order, which is the precision in
αs at which the perturbative calculations were made (in this case all Feyn-
man diagrams that contain at most two QCD vertices have been taken into
account).

A simple extension for the DIS experiments is to measure not only the
scattering electron but also some hadrons in the final state (see part b. of
figure 4). This is called semi inclusive deep inelastic scattering (SIDIS) and it
can provide information regarding the flavor of the struck quark (for example
finding a kaon in the final state gives information about the strange quark
distribution in the original hadron). However, these measurements have to
take into account the probability that a particular struck quark (or gluon) will
produce a particular hadron in the final state. These probabilities are called
fragmentation functions (FFs) and they are mainly obtained from electron
positron scattering. As such, an additional experimental uncertainty has to
be taken into account when determining PDFs. A thorough description of
SIDIS experiments can be found in [16].

A final experimental technique used in the determination of PDF is scat-
tering between two hadrons (see part c. of figure 4). An added complication
here is that both of the participants in the hard scattering process are par-
tons. These experimental results produce information not only of one PDF
but a convolution between the PDFs of the participants in the hard scatter-
ing process. The particles measured in this case are all from the final state
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Figure 2: Representative sample of world F p
2 structure function data for the

proton. [2].

(bringing with them FFs and their uncertainties). Furthermore, the momen-
tum fraction x and the scale Q2 are unknown. It is common practice to use
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Figure 3: MSTW NNLO PDFs from global fit at Q2 of 10 GeV (left) and
10000 GeV (right). [2].

Figure 4: Three types of experiments used to determine the internal structure
of the proton: a) DIS b) semi inclusive DIS c) hadron hadron scattering
(figure 1.2 in [1]).

the transverse momentum of the final state measured object (hadron, lepton,
photon or jet) as the scale of the interaction. However, one big advantage
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of the having hadron hadron collisions is the direct coupling of a gluon from
one hadron to a quark or gluon from the other hadron, making this type of
experiment ideal for measurements of gluon PDFs.

1.2.1 Polarized PDFs

In addition to having a measurements on the momentum distributions of
partons inside hadrons, information on the spin contributions of these partons
to the particular hadron can be obtained. This can be achieved by simply
polarizing the lepton beam and target (most (SI)DIS experiments are fixed
target experiments). By summing over the polarization states one can easily
obtain the unpolarized PDFs as discussed so far. Besides the unpolarized
structure functions (F1 and F2) discussed until now, by taking the helicities
of the beam and target into account one gets access to polarized structure
functions g1 and g2. While the unpolarized structure functions are sums of the
quark and anti-quark momentum distributions (3), the polarized structure
functions g1 can be written as:

g1 =
1

2

∑
q

e2q
(
q+(x)− q−(x)

)
=

1

2

∑
q

e2q∆q(x). (8)

Again, the eq is the charge of a quark (the sum is over both quarks and anti-
quarks). q+(x) is the number density for a quark/anti-quark that has the spin
oriented in the same direction as the spin of the hadron (opposite direction
for q−(x)). Equation 8 shows that in fact g1 is the helicity difference between
quark density numbers. The structure function g2 relates to transverse spin
orientation of partons inside a longitudinally polarized nucleon and is beyond
the scope of this thesis.

Access to the polarized PDFs generally can be obtained through mea-
surements of asymmetries between cross sections for specific processes when
the beam and target polarizations are aligned or anti aligned. By relating
these initial beam and target polarizations to the polarizations of the virtual
photon being absorbed (in DIS and SIDIS measurements) and the polariza-
tion of the parton inside the nucleon that is being investigated one can show
that an asymmetry of the type:

A(x,Q2) =
σ+ − σ−

σ+ + σ−
(9)
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where σ− is the measured cross section for events when the parton was an-
tiparallel to the nucleon spin, is in fact ([17]):

A(x,Q2) =
g1(x,Q

2)

F1(x,Q2)
. (10)

With an appropriate parametrization of F1 (that can be obtained with
from a global fit of world unpolarized data), the structure function g1 can be
obtained.

Using this basic experimental technique, the EMC collaboration reported
in 1989 [3] that the spin contribution of quarks (∆Σ) to the proton spin was

∆Σ = 0.120± 0.094 (stat)± 0.138 (syst) (11)

clearly disagreeing with the current theoretical predictions (see figure 5). At
the time, this disagreement was dubbed the spin crisis, triggering a flurry of
theoretical and experimental work in the field.

Figure 5: The integral of the g1 structure function as a function of x ranges
from the EMC 1989 experiment ([3]) together with a prediction level needed
for the Ellis-Jaffe sum rule.

The theoretical prediction belonged to John Ellis and Robert Jaffe [18]
and attempted to decompose the spin of the proton (and neutron) into con-
tributions coming from quarks alone. Since then a series of experiments have
confirmed and refined the EMC measurements. The current measurements
put the contributions of quarks to the spin of the proton at about 30%. In
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parallel to the experimental effort, a large amount of theoretical work has
been put in to fully decompose the spin of the proton in contributions coming
from quarks, gluons, and their respective angular momenta:

Sp =
1

2
=

1

2
∆Σ + Lq + ∆G+ Lg (12)

where the spin is in units of angular momenta (~ = 1.05457×10−34 m2kg/s),
∆Σ is the contribution of the spin 1/2 quarks, ∆G is the contribution from
gluons and Lq (Lg) are the orbital angular momentum components coming
from the quarks(gluons).

A fully gauge invariant way to separate these components has eluded
the community for a long time, however recent developments by Hatta and
collaborators [19] seem to provide the answer. A nice review of the current
theoretical status of spin decomposition can be found in [20].

Similar to global analyses performed for the unpolarized PDFs, the world
data from polarized DIS, SIDIS and proton proton scattering has been used
to obtain polarized PDFs (see figure 6 for an example together with two
different uncertainty calculation methods presented in the hashed and solid
bands).

As one would expect, from the extensive measurements done with DIS
experiments, the

∑
f ∆q + ∆q̄ = ∆Σ are quite well constrained, while the

rest of the PDFs require more data to decrease the uncertainty in these fits.
Comparing the polarized PDFs with their unpolarized counter-parts one can
see a large difference in the constraints. Overall, all the polarized PDFs
would benefit from additional data, however obtaining data at low x and
high Q2 is experimentally challenging.

1.3 Anti-quark polarized distribution functions

The main focus of this measurement is the investigation of anti-quark po-
larized parton distribution functions by making use of the parity violating
nature of the W production in proton proton scattering. From figure 6, it
can be seen that overall the uncertainty in the anti-quark polarization is
the dominant component in the quark + anti-quark polarzied PDFs at the
top of the figure. The fits presented contain only data from DIS and SIDIS
measurements, with the latter being the ones that give any constraints on
the anti-quark polarized PDFs. However, as mentioned before, these mea-
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Figure 6: The current world knowledge on polarized PDFs aggregated with
the use of the DSSV global analysis [4].
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surements have to carry with them the uncertainties from poorly known
fragmentation functions1.

An approach that circumvents the fragmentation problem altogether, is
to access the polarized quark and anti-quark distributions through W boson
production and subsequent decay into leptons in longitudinally polarized
proton proton collisions.

1.3.1 W boson production and decay

Using the factorization theorem, the W boson production cross section in a
proton proton collision at leading order can be written as:

σ(pp→ WX) =

∫
dx1dx2

∑
a,b

qa(x1, Q
2)q̄b(x2, Q

2)σ̂(ab→ W ) (13)

where x1 and x2 are the momentum fractions of quarks a and b, qa(x,Q
2) is

the PDF for the quark of flavor a and σ̂(ab→ W ) is the cross section for the
two quarks to produce a W boson. Because of the large W mass the scale of
the process Q2 = M2

W .
The cross section of the two quarks producing a W boson is:

σ̂(ab→ W ) = 2π|Vab|2
GF√

2
M2

W δ(s−M2
W ) (14)

where |Vab|2 is the Cabbibo-Kobayashi-Maskawa (CKM) matrix element for
quarks a and b, GF is the Fermi constant and s is the center of mass energy
of the process s = (pa + pb)

2.
Introducing the rapidity of the W(yW ):

yW =
1

2
ln

(
EW + PW
EW − PW

)
=

1

2
ln

(
x1
x2

)
(15)

together with the previous equations one can obtain a differential cross sec-
tion for the W+ (at leading order):

dσ

dyW
= K

√
2πGF

3
x1x2[ cos2 θC

(
u(x1)d̄(x2) + d̄(x1)u(x2)

)
+ (16)

sin2 θC (u(x1)s̄(x2) + s̄(x1)u(x2))]

1Experimental measurements are being done to get a better handle on these uncer-
tainties. For example see the proceedings in [21] or thesis in [22].
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where K is a factor that includes first order QCD corrections and θC is the
Cabbibo angle. A similar equation can be obtained for the W− differential
cross section by taking the hermitian conjugate of equation 16. Note that
the second term in equation 16 is suppressed by a factor of approximately 18
due to the Cabbibo angle and can be ignored for a first order approximation.

At PHENIX the decay channel that is used for the W measurement is the
lepton channel. A forward measurement is done through the W→ µ decay
channel, while the measurement for this thesis is performed in the PHENIX
central arm with the W→e channel. The W→ qq̄′ decay channels will be
buried under a large QCD background (for example pp→jets). Out of all
the W decays approximately 10% are through the electron channel studied
in this thesis.

Switching the focus from production to decay the following paragraphs
will show how the quark and anti-quark polarized PDFs can be accessed from
a decay electron asymmetry.

Figure 7: Tracking the momentum and helicity for the W production and
subsequent decay [5].

Because of the parity violating nature of the W coupling there are a couple
of conclusions that can be drawn when the W was produced in a polarized
proton proton collision (like in the case of this thesis). Because of the V − A
structure the W will only be formed from a left handed quark (u or d) and
right handed anti-quark (d̄ or ū). As can be seen in figure 7 the longitudinal
momentum of the W will always be in the direction of the quark momentum
(as it is expected that the quark will most likely be a valence quark with a
higher fractional momentum). Because the W is a spin 1 particle and the
quark is left handed the W will also be left handed (meaning that it will
be polarized antiparallel to it’s momentum). Again because of the parity
violating nature of the coupling, the W+(W−) will couple in its decay with
right handed (left handed) positrons (electrons). Taking the example of the
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W+, because it is left handed, the polarization of the positron necessarily
must be opposite to the direction of the W momentum. Moreover, since the
positron has to be right handed, it means that it will preferentially decay in
the direction opposite to the W+ momentum. A similar argument can be
made for the decay of the electron in the W− case, where the decay would
happen prefferentially in the same direction as the W− momentum.

This statement can be written mathematically as a differential cross sec-
tion in terms of the W rapidity and lepton scattering angle θl:(

d2σ

dyWd cos θl

)
W+

∼ u(x1)d̄(x2)(1− cos θl)
2 + d̄(x1)u(x2)(1 + cos θl)

2 (17)(
d2σ

dyWd cos θl

)
W−
∼ d(x1)ū(x2)(1 + cos θl)

2 + ū(x1)d(x2)(1− cos θl)
2 (18)

However, because of the detector configuration, the rapidity of the W
cannot be measured since the neutrino momentum cannot be determined.
Several studies have been performed by theoretical groups that showed that
a direct relation can be made between longitudinal momentum fraction <
x1,2 > of the partons, and the decay lepton rapidity yl (for reference see [23]
and references within). The study in [23] used the Monte Carlo software
CHE (Collisions at High Energy). By accessing the kinematics of all the
particles, including the decay electron and the W boson, and taking into
account QCD corrections coming from qq̄′ → Wg and qg → Wq′ a high
degree of correlation was found between the lepton rapidity and longitudinal
momentum fractions of the interacting quarks. An approximate relation can
be written as:

〈x1〉 =
MW√
s
eyl/2 and 〈x2〉 =

MW√
s
e−yl/2. (19)

1.3.2 Parity violating single spin asymmetries

By taking into account all the possibilities that a W+ can be produced from
a longitudinally polarized proton proton collision an asymmetry can be ob-
tained that will give access to polarized parton PDFs. Generally two types
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of asymmetries can be defined:

AL =
σ+ − σ−
σ+ + σ−

(20)

ALL =
(σ++ + σ−−)− (σ−+ + σ+−)

(σ++ + σ−−) + (σ−+ + σ+−)
(21)

for a single polarized beam a single spin asymmetry (20), and for two polar-
ized beams (21) a double spin asymmetry. 2The σ+ indicates the condition of
the beam in a collision (in a two polarized beam condition, the polarizations
of the second proton are summed over), with the + being positive proton
helicity and − being negative proton helicity. In the case of the double spin
asymmetry the term σ++ represents the polarization state of the two collid-
ing proton bunches. These spin separated cross sections can be written in
terms of the efficiencies, number of recorded events (N++ for example), and
luminosities (L++):

AL =
N+/(L+ε+)−N−/(L−ε−)

N+/(L+ε+) +N−/(L−ε−)
(22)

ALL =
( N++

L++ε++
+ N−−

L−−ε−−
)− ( N−+

L−+ε−+
+ N+−

L+−ε+−
)

( N++

L++ε++
+ N−−

L−−ε−−
) + ( N−+

L−+ε−+
+ N+−

L+−ε+−
)

(23)

where the term ε+− includes the reconstruction, bias and acceptance fac-
tors to record an event during a + − collision. As discussed in subsection
2.1.1 the alternating spin patterns in the beams allow for these detector effi-
ciencies to be the same for different spin pattern collisions, and can be safely
canceled out. The differences in the luminosities for each bunch still need to
be taken into account as discussed in 3.1.4. The N−+ terms are the number
of recorded events and are referred to as spin separated yields in this thesis.

Knowing that the spin separated cross sections and that the overall cross
section can be written as σ0 = σ++ + σ−+ + σ+− + σ−−, one can rewrite
the asymmetry equations to obtain the spin separated yields in polarized

2Since the two asymmetries give similar information and the single spin asymmetry
provides higher statistical accuracy only the single spin asymmetry has been calculated in
this thesis.
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collisions as a function of single (AL) and double spin (ALL) asymmetries:

σ++ =
N++

L++

= σ0(1 + AL(P1 + P2) + ALLP1P2)

σ+− =
N+−

L+−
= σ0(1 + AL(P1 − P2)− ALLP1P2)

σ−+ =
N−+
L−+

= σ0(1− AL(P1 − P2)− ALLP1P2)

σ−− =
N−−
L−−

= σ0(1− AL(P1 + P2) + ALLP1P2) (24)

All the possibilities to produce a W+ from a polarized proton beam are
presented in figure 8. Since for this analysis the single spin asymmetry is
the variable of interest, only one of the protons is shown as polarized. The
top panel of figure 8 has the quark coming from the polarized proton (case
a) and the bottom has the anti-quark (case b). Taking equations 17 and 18
(for the decay direction of the lepton) and following case a), the asymmetry
probes the u quark polarized PDF:

Ae
+

L =
u−+(x1)d̄(x2)(1− cos θl)

2 − u−−(x1)d̄(x2)(1− cos θl)
2

u−+(x1)d̄(x2)(1− cos θl)2 + u−−(x1)d̄(x2)(1− cos θl)2
= −∆u(x1)

u(x1)
.

(25)
Similarly for case b), the probed PDF belongs to the d̄:

Ae
+

L =
d̄+−(x1)u(x2)(1 + cos θl)

2 − d̄++(x1)u(x2)(1 + cos θl)
2

d̄+−(x1)u(x2)(1 + cos θl)2 + d̄++(x1)u(x2)(1 + cos θl)2
=

∆d̄(x1)

d̄(x1)
. (26)

However, since one cannot know for certain if the quark or anti-quark
came from the polarized proton, the asymmetry probes a convolution of the
two cases above:

Ae
+

L =
∆d̄(x1)u(x2)(1 + cos θl)

2 −∆u(x1)d̄(x2)(1− cos θl)
2

d̄(x1)u(x2)(1 + cos θl)2 + u(x1)d̄(x2)(1− cos θl)2
. (27)

For e− one just needs to interchange u and d in equation 27 and carefully
attend to the lepton decay direction:

Ae
−

L =
∆ū(x1)d(x2)(1− cos θl)

2 −∆d(x1)ū(x2)(1 + cos θl)
2

ū(x1)d(x2)(1− cos θl)2 + d(x1)ū(x2)(1 + cos θl)2
. (28)

18



Figure 8: W+ production in polarized proton proton collisions [6].

1.4 W Jacobian peak

As seen previously, the differential W cross section can be written with re-
spect to the lepton decay angle (θl) as:

dσW±

d cos θl
∼ (1∓ cos θl)

2. (29)

Considering that at leading order the transverse momentum of the elec-
tron is pT = MW/2 sin θl, a differential cross section with respect to p2T can
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be calculated:

dσW±

dp2T
=
d cos θl
dp2T

dσW±

d cos θl

=
1

2

4

M2
W

1√
1− 4p2T/M

2
W

dσW±

d cos θl

∼ 2

M2
W

(1∓ cos θl)
2√

1− 4p2T/M
2
W

∼ 2

M2
W

1 + cos θ2l ∓ 2 cos θl√
1− 4p2T/M

2
W

∼ 2

M2
W

(
1 + 1 + 4p2T/M

2
W√

1− 4p2T/M
2
W

∓ 2

)

∼ 4

M2
W

1 + 2p2T/M
2
W√

1− 4p2T/M
2
W

. (30)

Figure 9: Shape for electrons pT spectrum coming from W decays.

Equation 30 has a pole at pT = MW/2 (referred to as a Jacobian peak),
which leads the decay electron/positron pT spectrum to have a specific shape
as can be seen in figure 9. The extra constant term was dropped in the last
line as it is insignificant compared to the divergence. This divergent behavior
of the differential cross section makes sense, as one would expect that the
decay of the W boson into two leptons, while at rest, should happen with
the vast majority of electrons having transverse momentum of approximately
half the W mass. However, in practice this shape will be smeared because of
the resolution of the detectors measuring the decay electrons (see figure 60
for an example of a smeared Jacobian).
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2 RHIC and PHENIX

2.1 The Relativistic Hadron Ion Collider

The Relativistic Heavy Ion Collider is the largest of several accelerators lo-
cated in Brookhaven National Laboratory. Its main purpose is to deliver
high intensity beam collisions for two experiments: the Pioneering High En-
ergy Nuclear Interactions eXperiment (PHENIX) and the Solenoidal Tracker
At RHIC (STAR). It can deliver several species of ion beams: protons,
deuterons, copper, gold or uranium. Unlike all the other species of ions,
proton beams have an added specificity, in that they are polarized. The data
presented in this thesis was obtained from proton proton collisions at

√
s =

500 and 510 GeV at the RHIC facility.
The process to obtain polarized proton beams starts with the Optically-

Pumped Polarized H- Ion Source (OPPIS)[24]. A source of hydrogen atoms
provides a 2.8 ∼ 3.0 keV beam, which is converted with the use of a optically
pumped Rb vapor cell through a Sona transition, into electron-polarized hy-
drogen atoms. The next step in the process involves using the Sona-transition
(hyperfine interaction) to transfer the polarization from the electron to the
proton. Using a He gaseous cell the hydrogen atoms are ionized. The final
beam from the OPPIS has approximately 87% polarization.

Figure 10: The RHIC accelerator complex and polarimetry locations.
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The full RHIC accelerator complex can be seen in figure 10. A detailed
description of the accelerator complex and RHIC operations can be found in
[25] and references within. For the purposes of this thesis a short description
will be given.

The polarized beam from the OPPIS is picked up by the LINAC that
delivers it, accelerated to 200MeV, to the Booster. Here the beams are
further accelerated to ∼2GeV but with special care to maintain the polar-
ization. Further on, the Alternating Gradient Synchrotron (AGS) gets the
2GeV beam and injects bunches of approximately 109 protons into RHIC
with ∼25GeV. These bunches are then further accelerated to 250(255 in Run
2012)GeV. The instantaneous luminosity is increased through squeezing (de-
creasing the transverse cross section of the beam), in the RHIC rings. RHIC
has 120 fillable bunches, numbered from 0 to 119. The last 9 bunches in each
beam are left empty to enable clean dumping of the beam (these bunches
are called the ’abort gap’). Furthermore, a set of 2 bunches are left empty
in each beam corresponding to bunches 38-39 for the blue beam and 78-79
for the yellow beam. A set of 109 filled bunches in each beam is called a fill.
Normally, fills are maintained in collision for approximately 8 hours before
being dumped and the RHIC rings filled again. The beam gets used up as
time progresses through the fill with the number of protons in the beams
slowly decaying from collisions and from loss as the beam passes through the
ring. Furthermore, the polarization has been shown to have a decay during
the fill of approximately 2% per hour. The 8 hour value was determined by
taking into account the accelerator performance in filling the rings, the num-
ber of collisions delivered to the experiments and the polarization decay in a
fill. The increase in collisions from getting a new fill is generally greater than
the number of collisions lost from the downtime related to filling the rings.
At each interaction point a bunch from one beam collides with a bunch from
the other beam (called a crossing). For PHENIX the blue beam bunch 0 col-
lides with the yellow beam bunch 0 (called crossing 0 in this analysis), lining
up the abort gaps in the two beams and providing the maximum number of
collisions. After the ring has been filled and the beam has been stabilized
the experiments are allowed to ramp up detectors and take data. PHENIX
takes data in ∼1 hour chunks (called runs).

Since these beams are polarized, special care has to be taken in order to
maintain the bunch polarization. In both the AGS and RHIC rings, Siberian
Snakes[26] are used to avoid spin depolarizing resonances. They are helical
magnets that rotate the spin of the bunch vertically by 180◦. The depolariz-
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ing resonances are small kicks from the left(right) that tilt the spin direction
of the bunch to the right(left). As it passes through the snake, the vertical
flip of the spin transforms this left(right) kick into a right(left) kick, which
as the beam is accelerated further in the ring is canceled out by the original
left(right) kick. The RHIC ring contains two Siberian Snake so that overall
the effect on the spin direction for the experiments is canceled. This setup
provides stable vertically polarized beams for the experiments.

Figure 11: The position coordinates and spin direction of a proton beam as
it passes through a Siberian Snake.

The path through one of these snakes can be seen in figure 11. As it can
be seen, the snakes affect not only the polarization direction but also the
path of the beam. An ideally calibrated snake will reposition the beam at
the output at the same (x,y) coordinates as it was received at the input.

Besides the two full snakes each experiment has one half snake before and
one half snake after the interaction point called Spin Rotators. Their purpose
is to rotate the beam polarization from vertically polarized to longitudinally
polarized (the spin direction is same/opposite as the beam momentum) or
radially polarized (the spin direction is perpendicular to the beam momen-
tum butt in the horizontal direction). The data presented in this thesis was
obtained from longitudinally polarized collisions. The fine tuning of the Spin
Rotator magnet currents is performed by the Collider Accelerator Depart-
ment at RHIC with feedback and spin direction measurements done by each
individual experiment. For this thesis, significant work has been done in this
respect (please find the detailed method and analysis results in Appendix B).
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2.1.1 Polarimetry

In addition to the components described so far, that are needed to develop
and maintain polarization, a vital component of the RHIC accelerator com-
plex is the capability to measure and monitor the polarization throughout
the acceleration and collision process. To achieve this, RHIC has a dedicated
interaction point at 12 o’clock (as can be seen at the top of figure 10). Here,
two types of polarimeter measurements are done. The first is a highly accu-
rate, poor statistics measurement with a hydrogen gas jet (HJet - detailed
description can be found in [27]). This polarimeter works by injecting a po-
larized hydrogen gas in the beam pipe where it scatters after collisions with
protons in the beam. The remaining gas is then measured upon exit from the
beam pipe with a Breit-Rabi polarimeter. The polarized protons from the
HJet scatter at nearly perpendicular angles, with respect to the beam axis,
where they are measured using silicon detectors. These detectors allow for
the measurement of a left-right asymmetry for either the beam or the target,
and since the HJet polarization is known from the Breit-Rabi polarimeter,
an absolute measurement of the beam polarization can be performed. The
main uncertainty for this measurement is due to the formation of molecu-
lar hydrogen which can dilute the asymmetry. This uncertainty has been
estimated in previous RHIC runs to < 2%.

Figure 12: Silicon Detector placement with respect to the target and beam
for the proton Carbon polarimeter.
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However since the interactions between the target gas and the beam give a
low rate (∼ 30 kHz [28]), many fills worth of data would be required to get to
a polarization uncertainty of ∼5%. The second type of polarimeter compen-
sates this through a high rate (∼ 20 million events per second) measurement
of elastic proton carbon scattering (pC)[29]. This high rate is achieved by
scanning the beam with a thin carbon sheet (width of approximately 20nm)
multiple times during the fill. The scattered carbon is then detected by an-
other set of silicon strip pixel detectors. The arrangement of the detectors
can be seen in figure 12. The detectors in the direction perpendicular to the
targets are sufficient to determine the left-right asymmetry, with the other
2 sets used for systematic uncertainty corrections. The asymmetry gives a
relative measurement of the beam polarization, which are then scaled by the
absolute HJet measurement. Besides the polarization measurement these
polarimeters provide a profile of the polarization of the beam in both hor-
izontal and vertical directions by performing vertical and horizontal scans.
The profile is then used in determining the final polarization values for each
beam and each fill.

In order to minimize systematic uncertainties, CAD provides different
polarization patterns for each beam. For 2011 and 2012 the configurations
that were used can be seen in figure 13. All of the beam bunches are filled by
repeating the pattern in the figure regardless if the bunch is filled or not (even
the abort gap and the bunches at 38, 39 positions are taken into account).

Figure 13: The eight spin patterns available for the blue and yellow beams
during the 2011 and 2012 data taking.

As can be seen, the permutations take care of anomalies coming from

25



even/odd crossing (by always having one beam reversing patter after the
first 4 crossings), blue/yellow beam differences (by having patterns switched
between yellow and blue beams e.g. P1-4 vs P5-8) or positive/negative po-
larized bunches (by reversing the polarization for crossings e.g. P2 vs P3).

2.1.2 Accelerator performance

The accelerator performance is rated on two criteria: the number of collisions
provided to the experiments and the quality of these collisions. The first
criterion can be quantified using luminosity which can be generally defined
as the number of events divided by the inelastic cross section for the collision
species. In 2011 the accelerator achieved an instantaneous luminosity of
∼ 1.6 10−32 cm−2s−1. Directly related to the number of collisions is also the
number of ions in the ring (intensity), which for 2011 was 1.8 1011 protons
for 109 bunches[30]. Similarly for 2012, the instantaneous luminosity reached
∼ 2.0 10−32 cm−2s−1[31] with a peak intensity of 6.2 1011 protons in the ring
for 109 bunches.

For this analysis the detectors used for the measuremnt also need to be
taken into account for the calculation of the accelerator performance. A
description of the integrated luminosity is given in section 3.1.3. The results
for 2011 and 2012 can be seen in table 1.

Secondly, the quality of the beam is primarily determined by the amount
of polarization the experiments receive. A detailed description of how the
luminosity averaged polarizations were obtained can be found in section 3.1.5.

Overall, the accelerator performance, as far as this analysis is concerned,
is determined by the quantity that directly links to the statistical uncertainty
of the single spin asymmetry to be measured. This uncertainty is inversely
proportional to the polarization delivered (P ) and directly proportional to
the square root of the integrated luminosity. Thus we can define a figure of
merit (FOM) as in equation 31

FOM = P 2

∫
Ldt (31)

Table 1 gives this FOM for 2011 and 2012.
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Year Average polarization Integrated Luminosity [pb−1] FOM [pb−1]
2011 0.50 16.0 4.0
2012 0.56 23.7 7.4

Table 1: Table of the achieved FOM in 2011 and 2012.

2.2 The PHENIX Detector

One of the two major detectors at RHIC, PHENIX [32], was designed to
have excellent detection capabilities for leptons, photons and hadrons. The
data acquisition system is capable to take data in both high multiplicity
events during heavy ion collisions and high event rate during proton proton
collisions. Special triggers are used for rare events. As can be seen from figure
14 there are two major sections for PHENIX, the central arms (dedicated
to measuring electrons, photons or hadrons) and muon arms (dedicated to
measuring muons and hadrons). Additionally there are two sets of global
detectors at very high pseudorapidity3 used for luminosity measurements
and triggering.

The PHENIX coordinate system is centered at in the middle of the beam
pipe with the z axis running parallel to the beam direction and the y coor-
dinate going up into the vertical direction.

All of the detector systems in PHENIX are well described in different
papers (see table 2 for specific references). In this thesis only descriptions
of the relevant parts for this analysis are presented. This analysis uses the
central arm detectors exclusively which will be detailed in the subsections
below. A list of the detector systems used can be found in table 2, together
with the η and φ coverage.

2.2.1 Global detectors

The main global detector in PHENIX, the Beam Beam Counter (BBC), is
located at approximately 144 cm from the interaction vertex around the
beam pipe. Each BBC consists of 64 quartz crystals that produce Čherenkov
radiation which is then picked up by photomultiplier tubes. Its main purpose

3Pseudorapidity is defined using the angle θ with respect to the beam axis as:

η = − ln

(
tan

θ

2

)
(32)
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Figure 14: The PHENIX detector configuration during the 2012 data taking
period. During the 2011 data taking the Forward Silicon Vertex detector was
not yet installed. The top panel shows a cross section in the (x,y) plane of
the central arms, while the bottom panel shows a cross section of the muon
arms in the (x,z) coordinates.

28



Detector Name η ∆φ
BBC [33] 3.1 < |η| < 3.9 2π
ZDC [33] 6 < |η| 2π

EMCal [34] −0.35 < η < 0.35 2xπ/2
DC/PC [35] −0.35 < η < 0.35 2xπ/2

Table 2: Table of the PHENIX detector systems used in this analysis together
with references and η and φ coverage.

is to determine the interaction time and location along the z axis. The time
of the interaction is used by the triggering system to limit the time window
in which events are accepted for recording.

The second set of global detectors are the Zero Degree Calorimeters
(ZDC). They sit at approximately 18 meters from the interaction point and
are behind the DX dipole magnets which separate the blue and yellow beams
into their individual beam pipes. They are hadronic calorimeters that mea-
sure neutral particles at very high pseudorapidities (forward particles). It is
formed out of three Tungsten layers, each with a interaction length λI of 1.7.
Between the first and second module a Shower Max Detector (SMD) can be
found. It consists of 7 vertical and 8 horizontal scintillator strips that give
the x and y positions respectively. Since most of the photon showers are fully
contained in the first sector the SMD should in principle detect only neutron
positions in the ZDC.

For this analysis the BBC weas used for the relative luminosity calculation
(as is described in subsection 3.1.4) and the integrated luminosity calculation
(as is described in subsection 3.1.3). The ZDC was exclusively used in the
Local Polarimetry analysis (as described in appendix B).

2.2.2 Electromagnetic calorimeter (EMCal)

For this analysis, the main detector is the PHENIX EMCal. It determines
the energy and hit position of electromagnetic showers from photons and
electrons. The EMCal is comprised of six Lead-Scintillator (PbSc) sectors
and two Lead-Glass (PbGl) sectors. Each sector spans an area of ∆φ = 22.5o.
Each of the PbSc sectors has 36×72 towers. Each of these towers has a
dimension of 5.5×5.5cm2 and 66 sampling cells composed of 1.5 mm lead
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and 4 mm scintillator tiles. This gives each tower 18 radiation lengths 4

(X0), or 0.85 λI . By comparison, the PbGl sectors have a higher granularity
with 48×96 towers per sector, each of these towers being 4.0×4.0cm2. It
is made up of a homogenous lead glass Čherenkov radiator corresponding
to 14.4 X0 (or 1.1 λI). For both types of calorimeter a set of 2×2 towers is
summed together and read out through one ASIC chip. The information from
36 ASIC chips [34] (6×6) is read out by one Front-end Electronics Module
(FEM). ‘ The energy resolution for the calorimeters was measured with test
beam data and was determined to be:

σE
E

=2.1%⊕ 8.1%√
E

for PbSc (33)

σE
E

=0.8%⊕ 5.9%√
E

for PbGl (34)

Each year the calorimeter sectors are carefully calibrated for each indi-
vidual collision species.

2.2.3 Triggering

The whole PHENIX triggering system is described elsewhere[36], however a
short description of the trigger used in this analysis is given below. Because
the rareness of the events that are of interest, a trigger was used in the
PHENIX Local Level 1 triggering system (LVL1) to record all events that
have a high probability to contain a W decay. This trigger is called the
ERT4×4 and is defined as a high energy deposit trigger in the EMCal. Using
the 2×2 sum energy information from the FEMs the LVL1 system calculates
overlapping sums for 2×2 groups (4×4 towers, see figure 15) and compares
them to a set threshold. If the sum in any of the 4×4 group of towers is larger
than the threshold a signal is sent to the Data Acquisition (DAQ) system to
record the event. For the data that is used in this analysis a trigger threshold
of ∼5.6 GeV was used. This trigger operated at ∼100 Hz for the 2011 and
2012 data taking periods.

The grouping into 4×4 towers with overlapping sums is required to in-
crease the efficiency of the trigger. In the case where a particle hits the center
of an EMCal tower it deposits ∼80% of its energy in that tower and the rest

4A radiation length is the mean distance traveled by an electron after which it remains
with only 1/e of its initial energy. The energy loss occurs through interaction with the
material through the bremsstrahlung mechanism.
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Figure 15: The PHENIX ERT triggering system sketch ( figure 2.22 in [7]).

in neighboring towers. However, a particle hitting the corner of a tower de-
posits only ∼20% of it’s energy in that tower. The case where a particle
showers at the edge of a 2×2 tower group is taken into account through the
use of the overlapping sum. The edges of each sector are summed up with
the connecting edges from neighboring sectors. The efficiency for the ERT
trigger was studied for this thesis and the results can be seen in section 3.2.3.

A second trigger was used for the calculation of the relative and integrated
luminosities. As mentioned before, the BBC is the main global detector for
PHENIX. As such, it provides the minimum requirement for the DAQ system
to register a collision as an event(MinBias). By having at least one tube fired
in both the BBCs, the collision vertex can be determined (through a timing
measurement) and a trigger decision can be sent further on to the DAQ.
There are three types of triggers based on this minimum requirement: a) a
no vertex trigger accepting any coincidence between the BBCs, b) a normal
trigger accepting events that have a z vertex only between ± 30 cm from the
PHENIX origin and c) a narrow vertex accepting events that have a z vertex
only between ± 10 cm from the PHENIX origin.
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2.2.4 Tracking

The PHENIX central arm tracking system [35] consists of Drift Chambers
(DCs) and Pad Chambers (PCs). They reconstruct charged particle tracks
using their bending in the central arm magnetic field.

2.2.4.1 Central Arm Magnets The central arm magnet [37] produces a
uniform magnetic field with

∫
B ·dl=1.15 Tm parallel to the beam. This field

dies off sufficiently at a distance R >200 cm for proper DC operations. This
is done by using two pairs of concentric copper coils which can be operated
independently to provide different field configurations near the interaction
point. For the data that is analyzed in this thesis the coils were operated
such that the largest possible field strength was available to separate the
high momentum electrons. The stability of the magnetic field was monitored
(with a set of fixed Hall probes) throughout the data taking process and no
changes were seen at the level of 0.1%.

2.2.4.2 Drift Chambers and Pad Chambers The DCs (labeled DC
in figure 14 are multi-wire chambers filled with equal mixture of Argon and
Ethane, located between 2.02 and 2.46 m radially from beam pipe, separated
into two arms. Each arm consists of 20 sectors, each of those covering 4.5◦

in azimuth. The most important information obtained from the DC is the
r − φ coordinates of a track provided by two sets of wires that run parallel
to the beam (called X1 and X2 planes). Each wire provides a resolution in
r− φ of ∼165µm and an efficiency better than 99%. The resolution for high
energy tracks (as are used in this analysis) was determined to be 1.4 mrad
(more details can be seen in appendix 3.2.2).

The PCs[38] are a set of multi-wire proportional chambers with cathode
readout that provide the z coordinate and thus are essential to the pattern
recognition in the PHENIX tracking system. Each cathode is segmented into
an array of pixels each with a cell area of 8.4×8.4 mm2. Out of the three
PCs present in PHENIX, this analysis makes use of the set present on the
outside of the DCs in the r direction (PC1) (see figure 14). The z position
resolution for PC1 was determined to be 1.7 mm.

Since the PHENIX tracking detectors sit outside of the magnetic field as
described above, a special technique is required to determine the momentum
of tracks. A sketch of this can be seen in figure 16. Because there is only
residual magnetic field, tracks in the DC region are nearly straight (full line
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Figure 16: A sketch of the DC α determination technique (figure 3.7 in [1]).

in figure 16). A second line (vector) is determined by connecting the track
vector at the mid point of the DC with the vertex point. The angle between
these two lines gives a quantity called α which is inversely proportional with
momentum (p) as:

pT ∼
92 [GeV]

α [mrad]
(35)

With the z information provided by the PC1, the full momentum of the
track can be determined.
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3 Data Analysis

As described in the introduction section 1.3.2, the quantity of interest in this
analysis is the single spin asymmetry from electron/positron candidates, that
can be written as:

AL =
1

PB

N+

L+ − N−

L−

N+

L+ + N−

L−

, (36)

for each beam in RHIC. PB is the polarization of that particular beam,
N± is the yield when the helicity of that beam was positive or negative
respectively, and L± is a luminosity normalization factor for those respective
helicity configurations. Because of the rarity of the events that are being
looked at (out of ∼ 3.7 · 107 ERT triggered collisions for the whole 2012 run,
one spin pattern gets at most 30 signal events), it is unfeasible to calculate an
asymmetry as a function for each fill in RHIC. What is done in this analysis
is to use the whole data set and collect events for each spin pattern and use
equation 36 to calculate an asymmetry for the overall yields.

This chapter is structured as follows: a general overview of the collected
data together with the detector configurations for 2011 and 2012 is followed
by a characterization of the polarization conditions in the two runs. Further
on a detailed description of detector quality assurance cross checks performed
and data reduction is given. Although not required for this result, a general
integrated luminosity calculation is presented. Next, the relative luminosity
factors present in equation 36 are determined. Finally the analysis cuts,
background estimation and asymmetry calculation are presented.

3.1 2011 and 2012 runs

3.1.1 Beam energies

In 2011, the beam energy was identical to the first measurement in 2009 of
the electron/positron asymmetry from W decays with

√
s = 500 GeV [39].

However starting with 2012 the energy was increased by 5 GeV per beam
in an effort to avoid depolarizing resonances and maintain a high level of
beam polarization for a longer period of time during a fill. The increase to√
s = 510 GeV has a minimal effect on the the asymmetry results. This

lead to the possibility to combine the data from 2011 and 2012 into on single
measurement.
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3.1.2 PHENIX detector configuration

Because of the flexibility to open up the PHENIX detector after every run,
improvements and upgrades are done almost every year to be able to extend
the measurement capability of the detector. Between the measurement in
2009 and the data collected in 2011 and 2012 the Hadron Blind Detector
(HBD) was taken out of PHENIX and replaced with a Silicon Vertex Detector
(VTX). The VTX covers the whole acceptance in front of the central arms,
where this measurement was done. The new material together with the
support and electronics resulted in an increase in the radiation length by
a factor of 3 (from X/X0 =3.3% to X/X0 =13.5%). This new detector
configuration led to a series of studies and development of different analysis
cuts to tackle the extensive background from conversions (see 3.3.2.7 for
more details). The VTX detector was commissioned in 2011 and as such the
information that it could have provided did not span the whole data set.

In 2012, the forward vertex tracker (FVTX) was added to PHENIX. It
covers an area between 20 < |z| < 39 cm. For this analysis events are ac-
cepted that are in |z| < 30 cm from the nominal PHENIX origin, so the
added material from the FVTX provided even further increase in conver-
sion background. However, the analysis procedure determined for 2011 was
deemed robust enough to tackle this increase. The FVTX was designed to
detect muon tracks that can then be closely measured with the PHENIX
muon arms. Together with the VTX it can determine the collision vertex,
however, the calibrations were not performed in time for this analysis.

3.1.3 Integrated Luminosity

Generally, luminosity can be defined as:

L =
events

σpp→Xinelastic · εeff
(37)

where σpp→Xinelastic is the inelastic cross section in proton proton collisions, and
εeff is the efficiency with which a particular detector will see a signal in any
given collision. Because the quantity of interest is an asymmetry (as can be
seen from equation 36), the inelastic cross section and efficiency cancel out
and just the number of events seen by the detector (in this case the EMCal)
for each spin pattern is important.
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Since the inelastic cross section for the EMCal is unknown, for this anal-
ysis, luminosity was calculated using the BBC as a proxy:

L =
events

σBBC
· rejection (38)

Where the different components are:
• σBBC is the BBC minimum bias cross-section (taken to be 32.5 mb−1

as was determined in the 2009 vernier scan)
• events is the number of events that triggered the ERT 4×4 trigger and

had a BBC vertex that was within ± 30 cm
• rejection is calculated by dividing the number of BBC MinBias trig-

gered events (within zBBC < 30cm) in a PHENIX run by the number
of BBC MinBias events that also had the ERT trigger fired

All the runs that were available in the official PHENIX data production
were used. The results for 2011 and 2012 were 16.7 pb−1 and 23.7 pb−1,
respectively.

3.1.4 Relative luminosity

Since each bunch in RHIC is filled independently, one cannot assume that
the luminosity delivered by each pattern is the same. This means that filling
bunches with different spin directions can result in a bias being introduced
in the final result. For this reason a measurement of the relative difference
between the spin dependent luminosities (L±) is done (called relative lumi-
nosity). The relative luminosity has been calculated using a scaler from the
BBC which fires when there is a collision that satisfies |zBBC | < 30 cm for the
entire 2011/2012 data taking period, resulting in an average over the whole
run (for example in 2012 each spin pattern had ∼ 3 · 109 MinBias events in
the |zBBC | < 30 region).

Run BY:+ + BY:− + BY:+ − BY:− −
2011 1.000 1.001 0.990 0.985
2012 1.000 1.013 0.996 0.996

Table 3: Table with relative luminosity values from 2011 and 2012.

Table 3 shows the counts from the scaler as a function of different spin
patterns: the first column is for the Blue beam having positive helicity +
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and Yellow beam having positive helicity +, the second is for Blue − Yellow
+ and so on. Since the asymmetry measurement requires only the relative
luminosity difference between different spin patterns, the number of Min-
Bias triggers for the ++ pattern was used as a reference and each pattern’s
MinBias trigger count was divided by it. The results are then used in the
asymmetry calculation detailed in 3.3.5. The systematic uncertainty from
the relative luminosity calculation has been determined and is much smaller
than the statistical uncertainty in this measurement.

3.1.5 Beam polarziation

As mentioned above, the asymmetry is calculated for the whole data set at
once. Since the polarization values of each beam fluctuate with each new fill
in RHIC a method was employed to determine the average of the blue/yellow
beam polarization. This is achieved by using a luminosity weighted proce-
dure. Counting the 4×4 ERT triggered events (Nrun), in a 30 cm vertex cut,
the average polarization for each beam can be calculated as:

P̄ =

∑
runs Prun ·Nrun∑

runsNrun

(39)

Each RHIC fill (and by extension all the PHENIX runs from that fill),
has an officially released value for beam polarization given by the RHIC
polarimetry group[40] and a related uncertainty. The uncertainty is given by
the usual uncertainty propagation:

∆P̄ =

√√√√(∑
runs

∂P̄

∂Prun
∆Prun

)2

+
∑
runs

(
∂P̄

∂Nrun

∆Nrun

)2

(40)

∆P̄ =
1∑
iNi

·

√√√√∑
i

(Ni∆Pi)
2 +

∑
i

(∑
j Nj · (Pi − Pj)∑

j Nj

∆Ni

)2

(41)

The uncertainty was obtained by taking the maximum of the uncertainties
determined through regular uncertainty propagation for each beam. The
mean values and uncertainties used in the analysis are presented in table 4.
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Run 2011 Run 2012
Blue Beam 0.509 ± 0.056 0.550 ± 0.046

Yellow Beam 0.500 ± 0.056 0.570 ± 0.046

Table 4: Table of luminosity weighted polarization value used in this analysis.

3.2 Data reduction and quality assurance

There are several reasons why a PHENIX run should not be analyzed. The
most important case is when one of the detectors involved in the measure-
ments was not on, had a problem with the voltages provided or data collec-
tion electronics. This would make that particular detector provide corrupt
information and either not detect particles that actually hit it or creates
fake signals in the data. A second reason would be that the trigger used to
collect the events was not functioning as designed and gave too many/few
triggers per minimum bias event. This will increase the likelihood of hav-
ing background or fake events in the final result, and although cross checks
and cuts are performed on the events in the analysis it is undesirable to
keep these runs. Finally, since all of the information will eventually be used
to calculate an asymmetry the spin pattern information that exists for each
crossing has to be accurate. It can happen that the information received from
the Collider-Accelerator Department is inaccurate or that it gets corrupted
during processing it into the PHENIX databases.

These three cases are going to be discussed in the following pages with
plots and comments on runs that were taken out of the analysis.

3.2.1 EMCal quality assurance

The EMCal contains 24768 towers that, as in any detector, can be dead (it
returns no energy deposits all the time), hot (it returns energy deposits even
though there was no hit in the actual detector) or cannot be calibrated due
to lack of statistics. A tower is noisy (or hot) due to noise in the electronics
collecting the signal from the towers. Towers like these lead to fake signals
or bad reconstructions of cluster energies in the EMCal software. To clean
up the data the towers that fall in any of these three categories are excluded
from the reconstruction and analysis.
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3.2.1.1 Calibration Before the hits in the EMCal are passed through
the clustering algorithm to determine the energy deposited by each parti-
cle, a calibration for each tower has to be performed. The first step of the
calibration is to determine the hit frequency for each tower and outliers are
marked as either hot or dead. These towers are not calibrated and not used
in the clustering procedure by adding them to a warnmap. Simply put, the
rest of the calibration is an iterative procedure, in which at each step a large
amount of runs is analyzed to determine a neutral pion invariant mass peak.
The peak for an uncalibrated tower will be away from the nominal π0 mass
and so for each tower a scale factor is determined to correct it. These scale
factors are then taken into account in next pass over for the clustering algo-
rithm. This procedure is iterated until the scale factors converge to 1. Even
through the iterative procedure some towers cannot be calibrated. For the
2011 calibration 167 (0.67% of the total towers) towers were left uncalibrated,
while in 2012 that number was only 105(0.42% of the total towers). In both
runs 1840 towers that are on the edge of the EMCal sectors were considered
as uncalibrated and excluded in the clustering algorithm.

Figure 17: Number of hits as a
function of tower ID number for
2011 data.

Figure 18: Histogram of number of
channels as a function of fire rate
for 2011 data.

3.2.1.2 Analysis Warnmap All the clusters that are found to be dead,
hot or uncalibrated during the initial calibration procedure are not used in
the clustering algorithm. Additionally, an independent warnmap for clusters
that have energies larger than 8 GeV is determined before performing the
analysis. Figures 17, 18, 19, 20, show the number of hits per channel and
the frequency of a particular number of hits in each sector of the EMCal.
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Figure 19: Number of hits as a
function of tower ID number for
2012 data.

Figure 20: Number of channels
as a function of fire rate for 2012
data.

For the towers with an ID number higher than 15552, the number of hits per
tower is smaller due to the higher segmentation of the PbGl EMCal sectors.

Figure 21: Final warn channel map for the EMCal in 2011. Blue represents
good towers, all other colors represent towers that were excluded from the
analysis.
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Figure 22: Final warn channel map for the EMCal in 2012. Blue represents
good towers, all other colors represent towers that were excluded from the
analysis.

The hit frequency distributions were fit with a Gaussian distribution and
it was decided that a channel that had a value more 3σ above the mean of
the distribution would be deemed hot.

The 8 towers around a hot channel, that was deemed hot, are also masked
off for the analysis. This is because clusters centered in towers that neighbor
hot towers will have a bias in the reconstructed energy. Additionally, since
the calibration of towers on the edge of each EMCal sector cannot be well
performed, there is an one channel edge that is excluded from the analysis
in each sector.

Figures 21 and 22 show the result of the masking on the EMCal. Colors
different from blue (value 1 on the z axis) represent excluded towers (each
other color represents some problem with the tower).

3.2.1.3 Excluded runs Another test that was performed on the data
was to count the number of clusters in the EMCal for each run. This number
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Figure 23: Left Panel: reconstructed EMC clusters (with basic cuts) divided
by ERT trigger count as a function of run index, before run exclusion, for
2011 data. Right panel, histogram of the left panel.

Figure 24: Left Panel: reconstructed EMC clusters (with basic cuts) divided
by ERT trigger count as a function of run index, after run exclusion, for 2011
data. Right panel, histogram of the left panel.

alone will fluctuate depending on the integrated luminosity accumulated in
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the run, but if divided by the 4×4 ERT trigger, it will give an indication
regarding the state of the detector. If the number of clusters is lower than the
average it may be an indication that either the EMCal did not register enough
clusters (maybe because of some problems with the detector or electronics)
or that the trigger was firing too often (the second possibility is checked by
looking at the number of reconstructed tracks in the DC, see below). In this
analysis the runs where the EMCal reports higher number of clusters than
the average are of particular interest. In these cases, it is more likely that
clusters will be associated with tracks from the DC/PC system and end up
in the final spectrum as background.

Figure 25: Left Panel: reconstructed EMC clusters (with basic cuts) divided
by ERT trigger count as a function of run index, before run exclusion, for
2012 data. Right panel: histogram of the left panel.

Figures 23 and 25 show the number of reconstructed clusters with basic
cuts (|zrec| < 30, DC matching) divided by the number of ERT triggers in a
run as a function of run index (what number in the data set this particular
chunk of data is) before the quality assurance had been performed. Runs that
showed a significant difference from the mean of the distribution were inves-
tigated on a case by case basis. The hardware status was checked through
monitoring plots PHENIX keeps for each run. Furthermore, the data taking
logbook entries related to that run number were checked for any anomalies.
Most of the runs that had higher than normal cluster rates were found to
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Figure 26: Left Panel: reconstructed EMC clusters (with basic cuts) divided
by ERT trigger count as a function of run index, after run exclusion, for 2012
data. Right panel: histogram of the left panel.

have electronics or hardware problems leading to them being dropped from
the analysis. Figures 24 and 26 show the number of clusters divided by num-
ber of ERT triggers after runs were excluded. In figure 25 it can be seen that
in the 2012 data there were run periods (index <15 and around index 40)
that did not have any EMC cluster information. Through the investigation,
it was discovered that the central arm detectors were not included in the
data taking stream for those runs. These runs were excluded as well as can
be seen in figure 26.
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3.2.2 DC/PC quality assurance

The quality assurance for the DC/PC system is done with magnetic field off
runs. These runs are performed regularly (about once every week) during
normal data taking operations, or after one of the PHENIX arms is moved
for maintenance. Data is collected with the whole detector and calibrations
are performed using the straight tracks (i.e. tracks that are straight from the
collisions point) that go through the DC/PC tracking system.

The calibration consists in determining the offset that the DC/PC system
has with respect to the collision point (a detailed explanation of the beam
offset calibration procedure can be found in appendix C). These offsets are
then used in the PHENIX track reconstruction software as the collision point
for track fitting.

3.2.2.1 Pair tracks The regions close to the anode wires in the DC are
prone to creating ghost tracks because of left-right ambiguity within ± 2mm
distance from the anode wires. Tracks that are reconstructed in these regions
should be excluded. To properly identify these regions one can look at the
number of hits as a function of φ in pair tracks. Pair tracks are defined as
two tracks that have opposite sign of α and are within 0.01 in φ. The results
of this analysis can be see in figures 27 and 28 for the two DC arms.

Figure 27: EAST arm Figure 28: WEST arm.

Figure 29: All DC reconstructed tracks (black) and pair tracks(red) as a func-
tion of φ. The blue lines are calculated anode wire positions from equations
42 and 43.

The blue lines in the figures 27 and 28 are the anode wire positions
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calculated using the equations determined in previous PHENIX analyses:

East: DC board # =
3.725− φDC + 0.00895cos(φDC + 0.716)

0.0196
(42)

West: DC board # =
0.570 + φDC − 0.0174cos(φDC + 0.973)

0.0198
(43)

Using the relations in the equations 42 and 43 a variable was created
for each track by taking the decimal values for each track’s φ coordinate
(dcboard). A cut was implemented to remove these problem regions. The
anode wire regions can be found in the regions : 0.05 < dcboard < 0.90 for
the west arm, 0.1 < dcboard < 0.95 for the east arm.

Figure 30: Left Panel: reconstructed DC tracks divided by ERT trigger count
as a function of run index, before run exclusion, for 2011 data. Right panel:
histogram of the left panel.

3.2.2.2 Excluded runs Similarly to what was described in the case of
the EMCal, the DC/PC tracking system can be checked by looking at the
number of reconstructed tracks divided by the 4×4 ERT triggers for each run.
Figures 30 and 32 show the number of clusters divided by the ERT triggers in
a run, before run exclusion for the 2011 and 2012 data respectively. Figures
31 and 33 show the situation after run exclusion. Note that the runs that
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Figure 31: Left Panel: reconstructed DC tracks divided by ERT trigger count
as a function of run index, after run exclusion, for 2011 data. Right panel:
histogram of the left panel.

Figure 32: Left Panel: reconstructed DC tracks divided by ERT trigger count
as a function of run index, before run exclusion, for 2012 data. Right panel:
histogram of the left panel.
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Figure 33: Left Panel: reconstructed DC tracks divided by ERT trigger count
as a function of run index, after run exclusion, for 2012 data. Right panel:
histogram of the left panel.

cause most concern (the ones that seem to provide large number of tracks
than the average) are removed through the quality assurance process.

A total of 27 were removed from a total of 404 runs for the 2011 data set.
For the 2012 data, the EMCal and DC quality assurance removed 30 runs
out of a total of 309.
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3.2.3 Trigger quality assurance

The trigger performance was check for consistency throughout the data tak-
ing period by analyzing the trigger rate (number of events per second) from
the PHENIX database. However, in order to be fully confident in the data,
the trigger efficiency was also calculated.

The method used for this trigger efficiency calculation was developed by
Kensuke Okada[41] for a previous PHENIX analysis. It provides a way to
use triggered data to get the efficiency in an unbiased way. A simple example
is an away side study: since PHENIX has two arms, events with triggers in
one arm can be identified and all the clusters in the opposite arm can be
analyzed and considered as not containing any bias.
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Figure 34: PbSc west
2011 data
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Figure 35: PbSc east
2011 data
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Figure 36: PbGl 2011
data
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Figure 37: PbSc west,
ERT4×4
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Figure 38: PbSc east
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Figure 39: PbGl

By identifying the location of clusters that fired the 4×4 trigger an analy-
sis can be performed on the clusters that were at least two sectors away from
the trigger sector. By using standard photon cuts developed in PHENIX
an invariant mass was calculated for photons that were 25 cm or less apart.
This last requirement was used to ensure that the two photons would fall
into the same 4×4 trigger tile. Neutral pions were identified by selecting on
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Figure 40: Left: Spectrum for π0s with an ERT4×4 trigger (red) and all
π0s in each sector for EMCal Sector 4. Right: Efficiency calculated as the
fraction of π0s with an ERT4×4 trigger to the total number of π0s for sector
4.

the invariant mass of the two photons to be within 0.03 GeV of 0.137 GeV5.
The efficiency was obtained by dividing the number of π0s that had fired the
trigger by the total number of π0s.

From the 2011 data statistics were not sufficient when this study was
completed (during the data taking period) so the trigger efficiency was cal-
culated for PbSc (east and west) and PbGl separately (as can be seen in
figures 34 through 39). In 2012 the study was done with the full dataset so a
sector by sector analysis was completed (as can be seen in figure 40 for one
sector). The rest of the sectors show similar results and the figures can be
found in appendix E The results show that the trigger is fully efficient by 10
GeV for both PbSc and PbGl.

3.2.4 Spin information quality assurance

The spin pattern information of the two beams is collected by PHENIX and
stored in the spin database. Before the analysis retrieves this information

5The difference from the actual π0 mass is a standard procedure in PHENIX to take
care of smearing from the detector.
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checks need to be performed to ensure this data is correct. Both the data
from 2011 and 2012 have been through a series of cross checks consisting of:

• Confirm the data exists in the database for a particular run number.

• Polarization values and patterns are consistent with the officially re-
leased values from C-AD and the RHIC polarimetry group.

• The spin patterns are consistent for both beams throughout a fill. Once
RHIC has been filled, under normal running conditions, there is no
change in the spin pattern for all the runs taken by PHENIX in that
fill.

The spin database quality assurance removed 23 runs from the 2011 data,
leading to a total of 50 runs (∼12% of the total number of runs). Similarly
for the 2012 dataset 20 runs had corrupted information in the spin database
leading to a total of 50 removed runs (∼16% of the runs).

3.3 Measurement of single spin asymmetries

As described in subsection 2.2 on the PHENIX detector, the lack of 2π cov-
erage in φ leads to some different choices regarding the identification of W
decays compared to other hadron detectors. Generally, a missing energy
method is employed, whereas the transverse momentum of all particles is
measured and events are selected where there is a significant imbalance com-
ing from the escaped neutrino. However, for this analysis the method that
lead to the original W boson discovery is used. By measuring the transverse
momentum (pT ) of the charged leptons (electron/positron) in the PHENIX
central arms, an excess over the QCD background should appear peaked
at ∼40 GeV (half of the W mass). After several cuts designed to remove as
much background as possible the region between 30 and 50 GeV is used for an
asymmetry calculation. The background fraction in this region is estimated
through several methods and used as a dilution to get the final asymmetry.

The following subsections contain details regarding each step of this pro-
cedure. However, first a closer look at what kind of events could mimic signal
but are in fact background is in order.
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3.3.1 Backgrounds

As specified before the signal needed for this measurement is constituted of
electrons and positrons (e±) coming from W decays. These decays produce a
specific pT spectrum with a Jacobian peak shape (see figure 42 or 41 for the
shape of the green curve). Most of the signal is situated at pT between 30 and
50 GeV (which is designated as the signal region). As specified before the
signal needed for this measurement is constituted of electrons and positrons
(e±) coming from W decays. These decays produce a specific pT spectrum
with a Jacobian peak shape (see figure 42 or 41 for the shape of the green
curve). Most of the signal is situated at pT between 30 and 50 GeV (which
is designated as the signal region).

Figure 41: Signal and background
contributions to electron pT spec-
trum.

Figure 42: Signal and background
contributions to positron pT spec-
trum.

However there are other processes that contribute to electrons/positrons
yield (background):

• Photon conversions: these conversions, produced specifically at the end
of the magnetic field will have a tracking signature that looks like a high
momentum track because of the lack of bending in the magnetic field.
Furthermore, the increase in tracks in the DC/PC will increase the
likelihood that a cluster in the EMCal will be able to be matched.

• Cosmic rays: this type of background affects primarily the EMCal
where large energy deposits will trigger the data acquisition and be
saved as a possible W event. Combining this with the possibility to
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match this cluster with a track in the DC/PC, gives another sources of
possible background.

• Accidental matching between the EMCal and DC/PC: besides the two
cases discussed above, there is always the possibility that one cluster
in the EMCal that fired the trigger will find a match in the DC/PC
system and pass some of the cuts.

• Z → e+ + e− decays: The first of the irreducible background and the
one with the largest contribution in the signal region, the Z decay elec-
tron/positron cannot be distinguished from W decay electrons/positrons.

• Drell-Yan processes: in this process, similar to what process that is
being investigated, two quarks annihilate, but instead of producing a
W they produce a virtual photon that will then decay into a pair of
leptons.

• W → τ + X → e + X ′ decays: since this process produces a high
energetic electron as the final product, it cannot be distinguished from
the actual signal.

• heavy quark decays: similar to the previous three cases the electrons
that come from these types of decays are indistinguishable, with the
current experimental setup, from actual W events.

The last four items are irreducible background and cannot be identified
because of limited φ coverage and inability to tag τs or heavy quarks. To
increase the signal to background ratio in the 30 to 50 GeV region several
cuts are applied to the data. Figures 41 and 42 show the most important
background contributions from simulation (obtained from [42]). It can be
seen that the largest contribution to in the 30 to 50 GeV region (where the
signal is maximized) is from Z/γ decays, with a smaller contribution from
c/b decays.

Unlike the signal that is being investigated the background is not expected
to show any measureable asymmetry.

3.3.2 Analysis cuts

A list of the cuts used in this analysis are presented below:
• Offline cluster cut of 8 GeV and warnmap exclusion
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• DC matching
• reconstructed z vertex < ±30 cm
• Removal of events with tracks near DC anode wires
• Removal of events with tracks that have αDC within ± 0.001 rad
• Relative isolation variable smaller than 10%
As explained in the triggering section(2.2.3) because of the rarity of the

process that is being investigated the data had a special trigger as a high
energy deposit in the EMCal. The data in this thesis is a subset of events
that had this particular trigger. The following paragraphs will give a detailed
description of the cuts above that remove background events.

Figure 43: pT spectrum for electron candidates after applying the 8GeV
cluster requirement and warnmap for 2012 data.

3.3.2.1 EMCal cluster selection The analysis is performed by looping
over all the clusters in an event that had a 4×4 ERT trigger associated with
it. As a first cut, clusters that have an energy than is lower that 8 GeV
are removed. Although the desired data is predominantly in the 30 to 50
GeV region, the region between 10 and 20 GeV is used as a background
control region. Furthermore, clusters that are centered on towers that are
in the warnmap (as described in 3.2.1) are also dropped as they have a high
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probability to contain bad information. The rest of the clusters are considered
signal candidates and go through the rest of the analysis. Figure 43 shows
the pT spectrum for electron candidates after applying these requirements.

Figure 44: pT spectrum for electron candidates after matching to the DC (in
light blue) for 2012 data.

3.3.2.2 DC matching For each candidate cluster, a match is attempted
with tracks reconstructed from the DC/PC. The tracks have to have enough
points in the both regions of the DC (both X1 and X2) and a matching hit
in PC1. Furthermore, only tracks that have at least a 3 GeV momentum
are considered6. If there are any tracks that meet the requirements, the one
with highest momentum that has a projection on the EMCal that is smaller
than 0.02 radians in φ is selected for the match. Figure 44 shows the effect
on the pT spectrum for electron candidates with the additional DC matching
requirement.

6Although the DC/PC has excellent momentum resolution for tracks below 1 GeV
tracks, this resolution degrades quickly with higher momentum tracks. The 3 GeV mo-
mentum requirement is there to remove low momentum tracks from consideration and
decrease accidental matches.
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Figure 45: The reconstructed z vertex from the EMCal/DC extrapolation vs
the BBC z vertex for 2011 data.

3.3.2.3 Reconstructed Z Vertex Although, as described in the detec-
tor section, the BBC usually provides a vertex position for most analyses
in PHENIX, the resolution it provided was not good enough for this case.
The drop in resolution for the BBC is directly related to multiple collisions,
when the BBC just provides an average z vertex between all the vertexes
happening in that beam crossing. Instead, the position information from the
EMCal (each cluster has x,y,z information) and from the DC/PC associated
track (DC provides x,y and PC the z coordinate) is used to extrapolate back
to the collision point providing a reconstructed z vertex.

As a cross check the zrec from the EMCal/DC system is plotted against
the zBBC obtained from the BBC. Figure 45 shows a very good correlation
between the two variables.

The equation used for this reconstruction is:

zrec = zPC −
zPC − zEMCal

rDC −
√
x2EMCal + y2EMCal

· rDC (44)

where rDC = 220 cm is the radius at the midpoint of the DC (the radius at
which the (φ, θ) are returned).
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Figure 46: pT spectrum for electron candidates in a ±30 cm reconstructed z
vertex (in light yellow) for 2012 data.

In order to ensure proper coverage for both the EMCal and DC/PC a
reconstructed z vertex of |zrec| < 30 cm was imposed on candidates (approx-
imately 70% of the collisions happen withing ±30 cm). Figure 46 shows the
effect on the pT spectrum for electron candidates with the additional zrec
requirement.

3.3.2.4 DC anode wires As explained in section 3.2.2 the region around
DC anode wires are not reliable for track reconstruction as it has a high
chance of creating ghost tracks. To remove these areas a cut was developed
and implemented in the analysis. Figure 47 shows the effect on the pT spec-
trum for electron candidates with the anode wires removed on top of the
previous cuts.

3.3.2.5 DC resolution and charge disambiguation The sign of the
charge for the electron candidates is established by the DC through the mea-
surement of αDC . The resolution for this variable was determined by deter-
mining the width of the αDC distribution for field off runs after the correction
from the beam shift has been applied. Figure 48 shows the αDC distribution
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Figure 47: pT spectrum for electron candidates with anode wire regions re-
moved (in dark blue) for 2012 data.

for one field off run. In order to remove small momentum tracks (that de-
grade the resolution due to multiple scattering), for this study only tracks
that have a match in the EMCal are used. The histogram was fit with a
double Gaussian (one for the actual tracks and one for the remaining low
energy tracks) and the third parameter (p2) gives the resolution: 1.4 mrad.

With the αDC resolution on hand and knowing that the relation between
αDC and momentum is approximately 92 [GeV]/α ≈ p an estimate of the
charge contamination can be made. Figure 49 shows this estimation. Two
Gaussian distributions are plotted taking into consideration the correct frac-
tion of W+ to W− (a factor of 4 was chosen). The mean of the distribution is
αDC = 2.3 mrad (which corresponds to a 40 GeV track) and the width of the
distribution is the resolution determined above. Because of the resolution
of the DC there will be tracks that have a misidentified charge. By remov-
ing regions around 0 mrad, this charge misidentification can be minimized.
Figure 49 shows 3 scenarios for small αDC removal with the percentages of
remaining tracks with the correct charge after small αDC removal.

By cutting out abs(α) < 0.001 rad, there is a contamination of 0.3% for
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Figure 48: The αDC distribution together with a double Gaussian fit.

Figure 49: Charge misdentification study with percentages of remaining
tracks that are misidentified after small αDC removal.

the positive charges and 4.3% for the negative charges. Figure 50 shows the
effect on the pT spectrum for electron candidates with small αDC removed as
discussed in above.

3.3.2.6 Relative isolation cut The relative isolation cut is the largest
discriminator of background in this analysis. It is defined by taking the
sum of all the EMCal energy deposits (except the candidate energy) and DC
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Figure 50: pT spectrum for electron candidates with the small αDC removed
(in red) for 2012 data.

momenta in a cone of radius R =
√

∆φ2 + ∆η2 = 0.4 around the candidate.
Dividing the sum by the energy of the candidate gives the relative isolation
cut variable.

The cone size and cut level for the relative isolation cut was determined
through a study on the 2011 dataset. The data was analyzed and the rel-
ative isolation cut variable was calculated at 12 radii (from 0.05 to 0.60 in
increments of 0.05). For each of these calculations pT spectra were generated
for relative isolation cut levels ranging between 0.01 to 0.5. 0.5 cut level
means that the cone around the candidate contains half or less of the energy
of the candidate. For each spectrum the background and signal fractions
were determined with the use of a power law functional form (α/pβT ), for the
background, and the use of a jacobian peak shape for the signal7 (see 3.3.4
for simulation details).

7Even though later during the course of the analysis it was established that the power
law is not a good descriptor for the background shape, the low statistics of the 2011 dataset
make the estimate for this study sufficient.
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To determine the optimal cut level a standard significance was used:

S =
signal√

signal+background
(45)

Figure 51: Significance as a function of cone size (x axis) and isolation cut
(y axis) for multiple cone sizes.

The results of this study can be seen in figures 51, 52 and 53. Figure
51 shows the significance as a function of cone size (on the x axis) and as
a function of relative isolation cut (on the y axis). Although there is no
large difference between cone sizes around 0.4, it does contain the largest
significance as defined above. Moreover, studies done in previous analyses
resulted in the use of an identical cone size. The limited η range available to
PHENIX makes it difficult to argue for any larger cone size.

Figure 52 shows the signal yield in red and estimated background yield in
blue for a fixed cone size of 0.4. It can be seen that after a relative isolation
cut of approximately 10% the signal counts remain approximately stable
while the background fraction increasing more and more. Figure 53 gives the
the significance calculated for each isolation cut level. As expected very small
relative isolation cut reduces not only the background but also the signal, thus
decreasing the overall significance. There is no clear maximum significance
in the plateau around 10%. However since signal fraction decreases for lower
values, 10% was chosen as the most aggressive cut that still preserves most
of the signal.
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Figure 52: Signal (red) and back-
ground estimation (blue) for a
cone size of 0.4 and different rel-
ative isolation cuts.

Figure 53: Significance as a func-
tion of relative isolation cut (for a
cone size of 0.4).

Figure 54: Left panel: simulated Jacobian peak without relative isolation
cut (red) and with relative isolation cut (blue) for negative charges. Right
panel: ratio of spectrum with isolation cut to spectrum without the isolation
cut together with constant fit.

Using the simulation setup that is described in more detail in 3.3.4 W
events are generated in PYTHIA and then passed through a realistic detector
simulator (GEANT). These events are then passed through the same recon-
struction and analysis chain as the real data. The resulting decay electron
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Figure 55: Left panel: simulated Jacobian peak without relative isolation
cut (red) and with relative isolation cut (blue) for positive charges. Right
panel: ratio of spectrum with isolation cut to spectrum without the isolation
cut together with constant fit.

spectrum can be seen in figure 60 for W+ and W− respectively. Because
the Z decay electrons are the largest contribution to the signal, this decay
channel is simulated as well and resulting PYTHIA cross section weighted
spectrum can be seen in figure 61. The effect of the relative isolation cut
on these signal events, for the selected cone size and cut level, can be seen
in figures 55 and 54 for the positive and negative charged particles respec-
tively. The left panel of each figure shows the pT spectrum before isolation
cut (in red) and after the cut (in blue). The right panel of the figures shows
the result of dividing each histogram with an isolation cut by the histogram
without any isolation cut together with a constant fit in the region that is
considered signal in this analysis (30 to 50 GeV). These plots clearly show
that the isolation cut has only a marginal effect on the signal with ∼94%
and ∼92% of the signal remaining the sample after the cut for the positive
and negative charges, respectively.

Figure 56 shows the effect on the pT spectrum for electron candidates
with the relative isolation cut applied on top of previous cuts. As expected
the relative isolation cut removes the largest fraction of background.
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Figure 56: pT spectrum for electron candidates with relative isolation cut
applied (in green) for 2012 data.

3.3.2.7 VTX conversions After the data taking period in 2009 the
Hadron Blind Detector was replaced with the Vertex Detector (VTX). This
increased the radiation length in between the beam pipe and the DC approx-
imately by a factor of 3. This implies a significant increase in the photon
conversion background. In order to be able to identify these conversions two
new variables are introduced to the analysis, φV and mee (this study was
originally done for a previous PHENIX paper [43]).

The invariant mass of the electron-positron pair (mee) coming from a
conversion will be proportional to the distance from the nominal interaction
region where the conversion happens. This is because the DC reconstruction
assumes that all tracks are from the interaction region and so the momentum
is not reconstructed correctly for conversions.

The φV variable is basically the angle between the plane of the pair and
the perpendicular plane to the direction of the magnetic field. It can show
what pairs are consistent with a conversion opening up in the PHENIX mag-
netic field. It is defined as:

φV =

(
p1 × p2
‖p1 × p2‖

× p1 + p2
‖p1 + p2‖

)
·
(

(p1 + p2)×B
‖(p1 + p2)×B‖

)
(46)
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where p1 and p2 are the 3-momenta of the two tracks that are considered
for pairing and B is the magnetic field vector. For this calculation the mag-
netic field strength is not as important as the direction, so it was chosen to
be (0,0,1). φV takes values between 0 and π, with conversions having values
close to 0.

Using simulated π0 with photon conversions, the φV vs mee phase space
is scanned for an area belonging to the VTX material and an area belonging
to the support electronics.

Figure 57: Small φV and mee phase space on the left hand side. Monte Carlo
radius and z conversion vertex information on the right hand side.

As the only physics process turned on in the simulation, the φV vs mee

phase space can be scanned to identify regions that are from conversions in
the VTX layers and the VTX Big Wheels support structure. Figure 57 shows
small φV and mee region (where conversions are expected) on the left hand
side while the the right hand side shows the Monte Carlo radius R and z
conversion vertex information. Both the VTX layers and support electronics
can be seen in the right panel. Selecting on either one reveals that the region
between 0.05 and 0.15 GeV for mee is mainly from conversions in the VTX
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material and the region between 0.15 and 0.35 GeV is from the support
electronics. As expected the support electronics being further away from the
collision point give a larger invariant mass for the pair. Applying the relative
isolation cut on these simulated identified conversions results in a more than
99% removal of conversion pairs.

3.3.3 pT spectra and yields

Using the cuts that were discussed in the previous subsection the pT spectra
for 2011 and 2012 were obtained as can be seen in figures 58 and 59 respec-
tively. As expected in the region between 30 and 50 GeV there is a significant
excess over the background.

Figure 58: pT spectra for positive (left) and negative (right) charges for 2011
data.

For the final result in this analysis, the single spin asymmetry, the spin
separated counts are required. Taking the number of counts in the signal
region (30 to 50 GeV) for both 2011 and 2012 each event can be separated
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Figure 59: pT spectra for positive (left) and negative (right) charges for 2012
data.

into one of four categories depending on the blue and yellow beam helicities
for that event: ( + + for blue beam positive helicity and yellow beam positive
helicity, − + for blue beam negative helicity and yellow beam positive helicity
and + − and − − for the other two combinations). Table 5 shows the yields
separated by these spin crossings for the positive and negative charges for
both years.

Although the background fraction is calculated in the signal region (as
described below) a measurement has to be done to estimate the asymmetry
of the background. Similarly to what was done for the signal region, the spin
separated background yields are extracted from the data and presented in
table 6 (the background region is defined between 10 and 20 GeV).
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Run/Charge BY:+ + BY:− + BY:+ − BY:− −
2011/W+ 12 17 15 25
2011/W− 8 7 7 5
2012/W+ 21 27 23 33
2012/W− 16 15 8 8

Table 5: Spin separated yields in the 30 to 50 GeV region for 2011 and 2012
data.

Run/Charge BY:+ + BY:− + BY:+ − BY:− −
2011/W+ 193 196 205 208
2011/W− 171 171 156 169
2012/W+ 90 93 93 104
2012/W− 71 77 75 69

Table 6: Spin separated yields in the 10 to 20 GeV region for 2011 and 2012
data.

3.3.4 Background estimation

In order to obtain the final asymmetry value using the events in the 30 to 50
GeV region, a careful study of the background contamination of this signal
region is needed. Several methods were attempted for this analysis which will
be presented below. All of these methods make use the fact that the region
between 10 and 20 GeV is background dominated. By characterizing this
background through a functional form (as is the case for the power law and
modified power law) and making use of a simulated signal shape, the entire
pT spectrum can be fit. The main descriptor for the background, Gaussian
Process Regression (GPR) uses the pT spectrum between 10 and 22 GeV to
characterize the background shape and then extrapolate in the signal region.
This extrapolated shape is also tested with the simulated signal shape against
the entire spectrum.

3.3.4.1 Simulation To support this analysis a multistage Monte Carlo
simulation chain was produced using the software structures already in place
for PHENIX. There are three steps involved in this simulation:
• particle generation through the standard PYTHIA package (version

6.4.21 was used)
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• detector response was simulated with the use of a GEANT-based pack-
age which has all the PHENIX central arm detectors configured
• reconstruction of the simulated detector signals through the same soft-

ware chain as real data
Besides the single particle π0 simulations used for studying the VTX con-

versions (discussed in 3.3.2.7), the most important simulation produced was
that of the signal8. W± bosons were simulated with only the e± decay chan-
nels turned on. The vertex distribution was centered on the PHENIX origin
(0,0,0) and with a realistic Gaussian distribution width (0.02,0.02,38.63) that
was obtained from data. The analysis code used for the real data was used on
the simulated events and the resulting W± pT spectra can be seen in figure
60.

Figure 60: Simulated W pT spectra for positive charges (left) and negative
charges (right).

8Although attempts were made to simulate the entire background, the lack of an
appropriate hadronic response for the PHENIX calorimeter made the resulting simulations
to not agree with the data.
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However, as noted before there is no real way to differentiate between
decay electrons coming from Ws or Z/γ∗. Since Z/γ∗ are the largest contri-
bution in the signal region, they were simulated as well and the cross section
weighted pT spectra were obtained (as can be seen in figure 61).

Figure 61: Simulated combined W and Z pT spectra for positive charges (left)
and negative charges (right).

This signal shape (figure 61) is used together with the background char-
acterizations explained below for a final fit of the data in each case.

3.3.4.2 Power Law Several functional forms were attempted to charac-
terize the background shape in both the background dominated region (10 to
20 GeV) and the signal region (where it was summed with the Jacobian peak
discussed above). For the 2011 data analysis, a simple power law appeared
to provide a reasonable ansatz:

fp :=
α

pβT
(47)
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where α and β are parameters that can be extracted from a fit to the data.
The results of a simultaneous fit of the power law and Jacobian peak over

the entire pT spectrum can be see in figure 62 for both positive (left hand
side) and negative (right hand side) charges. The fit function used was

Fp :=
α

pβT
+ γ · Jacobian (48)

where Jacobian is the contents of the simulated shape at each pT point. All
throughout this thesis fits are performed using the standard ROOT anal-
ysis package with a χ2 minimization procedure derived from the MINUIT
package.

Figure 62: Power law fit together with Jacobian peak shape fit to the 2011
pT spectra for positive charges (left) and negative charges (right).

The fit result can be seen in figure 62 with the data in black 9, the overall
fit (background and signal) in red, Jacobian peak shape in green and the
power law background estimate in black with a red band for the uncertainty

9The y-axis represents the number of counts in each bin divided by the width of the
bin.
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estimate. Below each plot is a χ distribution (difference between data and
fit divided by the uncertainty on the data) showing the uncertainty scaled
difference between data and fit. The starting point for the fit was varied
(starting at 12 and 14 GeV) and the resulting 2 central value curves were all
consistent with the initial 10 GeV fit.

However, when this method was attempted for the 2012 data it was
quickly discovered that the power law was not a good descriptor for the
data. As can be seen from figure 63 the different fit curves for the variation
of the starting point of the fit provide very different results for both charges.
The χ distribution on the bottom is for the 10 GeV fit. Not only did the
background contributions have a large variation (going from 35 counts to
15 counts for the W+ for the 10 GeV fit and 15 GeV fit), but also the fit
parameters that resulted were very different (the β parameter in equation 47
was 5.2±0.4 for the 12 GeV fit and 4.0±0.2 for the 14 GeV fit).

Figure 63: Power law fits together with Jacobian peak shape fit to the 2012 pT
spectra for positive charges (left) and negative charges (right) with different
starting positions.
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3.3.4.3 Gaussian Process Regression A new method was needed to
describe the background shape. A normal regression fit can be thought of
as prior knowledge over parameters (through the functional form). However,
since in this case there was no apriori knowledge for this functional form,
the focus was shifted to prior knowledge over functions. There are a few
minimal expectations regarding a function that describes the background in
this analysis:

• it should be smooth (the derivatives for these functions should not be
discontinuous)

• it should be steeply falling

• and it should agree with the data

Such constraints can be imposed through the use of a Gaussian Process
for Regression (GPR). A short introduction to the topic, with the necessary
information for this analysis and an example will be given here (a more
thorough description can be found in appendix A and the references within).
Using the GPR one can select a whole class of functional forms through
a kernel (or covariance) function which will give the differentiability of the
functions that will be checked against the data. This kernel function usually
has a set of parameters (called hyperparameters) that give it flexibility and
can be determined from the input data (in this case the 10 to 22 GeV region
was used because it is a background dominated region). The kernel function
is a two point function that gives the degree of correlation between two points.

For this analysis the standard Radial Basis Function is employed:

k(xj, xi) = σ2
f exp

(
−(xi − xj)2

2l2

)
+ σ2

i δ(xi, xj), (49)

where xi is the x coordinate for point i, σi is the statistical uncertainty on
point i, δ(xi, xj) is the Kronecker delta and σf and l are the hyperparameters
for this covariance function. σf gives a normalization for the covariance that
will be of appropriate size compared to the uncertainties of the input points. l
gives the characteristic length after which the correlation between two points
decreases by ∼68%.

Besides the input points, a set of query points is determined that span the
whole region of interest (by equally spacing them between the end points of
the region). By calculating this kernel function for all the combinations
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for the input points and output points, a covariance matrix is obtained
which through the mathematical description provided in A.3 can be used
to uniquely determine the hyperparameters. This determination is done by
minimizing the differences between the data and the predictions and by se-
lecting the simplest model (with the smallest covariance matrix determinant).

An intuitive way to think about the GPR is that it selects functions
that agree reasonably well with the data through the covariance matrix. For
example given the points in figure 64, a prediction is needed in the region
between -1.6 and 0.1. By using the covariance matrix to provide the correct
correlation throughout the range, functions can be sampled as can be seen
in figure 65.

Figure 64: Example input points for GPR.

In figure 65 the red points are the input points, the black (and blue error
bars) points are the GPR predictions and the green lines are functions that
are sampled to agree reasonably well with the data. As can be seen most
functions stay quite close to the data, but from time to time one function
that has a large deviation is sampled.

By sampling over a large number of times one can obtain something like
what is shown in figure 66. Again, the red points are the input data and the
black line is the central value prediction of the GPR. The color histogram in
the background is the result of filling each bin whenever a function that was
sampled satisfies the condition y = f(x) with (x,y) being the coordinates
of that particular bin. As can be seen, most of the functions pass through
points that are very close to the data. Not only this, but by taking slices at
each x coordinate one would obtain an one dimensional Gaussian, with the
mean as the prediction for that point and the width as the uncertainty.

Using this method the background shape was extracted for both positive
and negative charges for the 2011 and 2012 data. Figures 67 and 68 show
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Figure 65: Sampling a few functions from data using the GPR on the example
points.

Figure 66: Sampling 50 000 functions gives a prediction at each point in x.

the result of the GPR determination in the region between 9 and 65 GeV.
Although the GPR method performs very well for interpolation problems
(see discussion in section 45 of [44]) special care has to be taken when using
this method to extrapolate to regions that are far away from the data. In
this case the extrapolation region is ∼20 units in pT from the data (taking
the midpoint between 30 and 50 GeV).
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Figure 67: Background shape determination for positive (left) and negative
(right) charges using the GPR for 2011 data.

A good indicator for how appropriate this method is in a particular range
is the characteristic length parameter l. As specified before the characteris-
tic length gives the distance at which the correlation between two points is
smaller by ∼68% compared to the self correlation of one point. This means
that this method does not identify long range patterns in data. Furthermore,
if a prediction is requested at distances that are far away from available data
the GPR will return a value of 0 with a set uncertainty (as can easily be
calculated from the mathematical description in A.3). The characteristic
length is determined from the minimization of function (equation 64) that
takes into account deviations from available data and model complexity. As
such, for each dataset the procedure implemented for this analysis will give
out the hyperparameters that best minimize this function. The initial char-
acteristic lengths obtained for the 2011 and 2012 data were around 30 units
in pT . Even though these distances would cover the range of interest, a more
robust way to perform the analysis is to include the information at higher
pT , where there were no counts in the spectra. As can be seen from figures
67 and 68 two points were added as input for the GPR at 61 and 63 GeV
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Figure 68: Background shape determination for positive (left) and negative
(right) charges using the GPR for 2012 data.

with 0 counts and an uncertainty of 1. The resulting hyperparameters can
be seen in table 7 together with the integral of the background contribution
in the 30 to 50 GeV region for each year and each charge.

Run/Charge σf l
∫ 50

30
GPR dpT

2011/W+ 11.15 48.83 2.3 ± 2.2
2011/W− 10.82 45.71 1.4 ± 1.4
2012/W+ 6.37 31.43 2.50 ± 2.5
2012/W− 10.82 45.71 5.5 ± 4.7

Table 7: GPR hyperparameters and background contributions.

The background shape for each of case was tested against the data to-
gether with the simulated Jacobian peak. The results together with the χ
distribution can be seen in figures 69 and 70 for 2011 and 2012 respectively.
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Figure 69: GPR background and simulated signal shape fit to the 2011 data.
Left: positive charges, Right: negative charges.

The fits in 69 and 70 show a very good consistency of the signal and
background shapes to the data as can be seen from the χ2 value being close
or smaller to 1 for all but the 2011 negative charge fit. However, for this
particular fit the largest contributions to the χ2 are the two low bins around
40 GeV, where the dominant contribution is from signal events.
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Figure 70: GPR background and simulated signal shape fit to the 2012 data.
Left: positive charges, Right: negative charges.

3.3.4.4 Gaussian Process Regression cross checks Two cross checks
have been performed on the GPR background estimation method. The first
cross check consists of producing fake data by sampling a known background
shape and signal. In this way the background contamination in the 30 to 50
GeV region is known beforehand and can be directly compared to the GPR
estimate. Using the ROOT functionality to sample a certain number of
events from a known shape, fake background events were randomly selected
from a power law shape (the red points in the left panel of figure 71).

Using the simulated Jacobian shape signal events are sampled (the crosses
in the left panel of figure 71). Adding these two histograms together gives
the fake data as can be seen in the right panel of figure 71. Using the same
methodology as was described above (selecting the data between 10 and 22
GeV as the input for the GPR and making predictions all the way to 55
GeV) gives a background estimate that can directly be compared to the in-
put. Since the sampling of the background is done randomly, a series of 1000
samples were taken and processed. For each sample the GPR estimated num-
ber of counts are subtracted from the known background and plotted in the
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Figure 71: Left: fake background (red) and signal randomly extracted from
known distributions. Right: the sum of the two histograms on the left.

left panel of figure 72. The uncertainty of each point is the uncertainty from
the GPR estimate. As expected, the values fluctuate statistically around 0.

Figure 72: Left:For each iteration of the study the difference between the
actual background value and the GPR result. Right: Uncertainty scaled
distribution for the difference between actual background value and the GPR
result together with Gaussian fit.

If this was truly a statistical fluctuation, putting the deviations from
the actual background scaled by the uncertainty given by the GPR into a
histogram should give a Gaussian distribution with a mean of 0 and a σ of
1. This test can be seen in the right panel of figure 72. The resulting fit
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with a Gaussian function shows that this distribution has a mean at −0.19
and a σ of 0.7. This indicates that the uncertainties from the GPR are in
fact overestimated. While the mean is not at 0, the overestimation of the
uncertainty covers for this systematic effect.

A second, more classical, cross check was performed by using a functional
form to describe the background. Through trial and error, a modified power
law function (as in equation 50) was obtained that was consistent with the
data for 2011 and 2012. Furthermore, this modified power law produced
consistent results when varying the starting position of the fit.

fSp :=
1

pα+β·log pTT

(50)

Figure 73: Modified power law function fit together with simulated Jacobian
peak for positive (left) and negative (right) charges in 2011 data.
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Figure 74: Modified power law function fit together with simulated Jacobian
peak for positive (left) and negative (right) charges in 2012 data.

The fit together with the simulated signal shape and χ distribution can
be seen in figures 73 74 for the 2011 and 2012 data respectively. The fit
variation for starting the fit at different points (10 GeV for the band, 12 and
14 GeV for the cross checks) can be seen for the 2012 data in figure 75.
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Figure 75: Modified power law function fit to 2012 data with different starting
points.

The fit parameters from equation 50 together with background contribu-
tion estimated in the region between 30 and 50 GeV from the modified power
law can be found in table 8.

Run/Charge α β
∫ 50

30
mPwrL dpT

2011/W+ −7.88± 0.22 2.37± 0.08 1.7± 1.2
2011/W− −8.11± 0.24 2.48± 0.09 1.01± 0.85
2012/W+ −7.23± 0.16 2.09± 0.06 7.2± 1.3
2012/W− −6.73± 0.18 1.93± 0.07 7.7± 1.3

Table 8: Modified power law fit parameters and background contributions.

A comparison was done between the two background estimation methods
(GPR and modified power law fit) and the result can be seen in figure 76
and 77 for the 2011 and 2012 data respectively. The overlapping uncertainty
bands of these two methods show good agreement. Even though the agree-
ment is reasonable, a systematic uncertainty was obtained from the difference

83



Figure 76: Comparison of GPR and modified power law background shapes
for positive (left) and negative (right) charges in 2011 data.

between the central values for background estimation coming from these two
methods, as explained in 3.3.5.2.
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Figure 77: Comparison of GPR and modified power law background shapes
for positive (left) and negative (right) charges in 2012 data.

3.3.5 Asymmetry Calculations

At this point all the necessary components needed to calculate the single
spin asymmetry are on hand. By taking the yields that were presented in
table 5, the polarization values from table 4 and with the relative luminosity
numbers in table 3 the asymmetry values can be calculated using equations
22 and 23. For each W charge the single spin asymmetries can be calculated
independently for each beam (since for single spin asymmetries the polariza-
tion values of the other beam are averaged by taking the sum). The double
spin asymmetries, as the name implies, takes the polarization of both beams
into account and as such there is only one value for each W charge.

From table 10 it can be seen that all the background asymmetries are
consistent with 0. This means that the background does not bring any asym-
metry contamination, but only dilutes the signal asymmetry. An explanation
of how the background fraction is taken into account is given in 3.3.5.2.

3.3.5.1 Maximum likelihood AL Since the spin separated counts are
quite low (in table 5 the lowest number of counts is the 2011 W− − −
pattern at 5 counts) a better way to properly estimate the asymmetries and
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Signal
Run/Charge AL,blue AL,yellow ALL

2011 W+ −0.40± 0.23 −0.36± 0.24 0.24± 0.47
2011 W− 0.22± 0.38 0.21± 0.38 −0.14± 0.75
2012 W+ −0.27± 0.18 −0.18± 0.17 0.13± 0.31
2012 W− 0.07± 0.27 0.55± 0.24 0.08± 0.47

Table 9: Asymmetry values for the signal region for 2011 and 2012 data.

Background
Run/Charge AL,blue AL,yellow ALL

2011 W+ −0.017± 0.069 −0.072± 0.070 0.01± 0.13
2011 W− −0.041± 0.076 0.037± 0.077 0.08± 0.15
2012 W+ −0.049± 0.055 −0.030± 0.053 0.047± 0.096
2012 W− −0.069± 0.066 0.035± 0.064 −0.04± 0.12

Table 10: Asymmetry values for the background region for 2011 and 2012
data.

uncertainties is to take into account Poissonian statistics. Using the spin
separated cross sections from equation 24 a maximum likelihood function
can be obtained as in equation 51.

L = P(σ++, N++) · P(σ−+, N−+) · P(σ+−, N+−) · P(σ−−, N−−) (51)

where P(σ++, N++) is the Poisson distribution with mean σ++ and N++ num-
ber of events.

Through these spin separated cross sections and the equations in 24 the
single spin asymmetry AL, double spin asymmetry ALL and overall cross
section can be obtained. As an example, equation 52 (the cross section when
the blue beam has positive helicity and the yellow beam has negative helicity)
contains σ0 as the overall cross section (a parameter that is not of interest in
this analysis), P1,2 is the polarization of the blue or yellow beam respectively,
and the AL and ALL are the two quantities of interest (single and double spin
asymmetries). In each of the other 3 equations the AL and ALL are the same
quantity, making it possible that by scanning a phase space for AL, ALL and
σ0 one can find the maximum probability for these parameters.

σ+− =
N+−

L+−
= σ0(1 + AL(P1 − P2)− ALLP1P2) (52)
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Figure 78: 2012 W+ Signal single
spin asymmetry.

Figure 79: 2012 W+ Background
single spin asymmetry.

Figures 78 and 79 show the 1 dimensional projections of the 2012 W+

maximum likelihood phase space scan for the single spin asymmetries in the
case of the signal region and background region respectively. The rest of the
figures for the 2012 W− and the 2011 data can be found in appendix D. For
each asymmetry the phase space scan projection was fit with a Gaussian and
the mean of the distribution was selected as the central value while the width
was used as the uncertainty of that asymmetry.

A summary of the results can be found in figures 80 and 81 for the 2011
and 2012 data respectively. The black points correspond to the asymmetry
values that can be found in tables 9 and 10 while the red points correspond
to the maximum likelihood calculated values. The single spin asymmetries
for the signal region can be found in table 11.

Run W+ W−

2011 −0.36± 0.16 0.19± 0.24
2012 −0.21± 0.12 0.29± 0.18

Table 11: Single spin asymmetry values for the signal region using the Max-
imum Likelihood calculation method.

3.3.5.2 Background dilution factor As mentioned before the fact that
the background has no measurable asymmetry means that it only dilutes the
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Figure 80: Single and double spin asymmetries for W± single and background
regions for 2011 data. Blue shows classical asymmetry calculation values
while red shows the Maximum Likelihood values.

asymmetry when present in the signal region. For example if the signal region
contained 100 signal counts with asymmetry of 1 and 100 signal counts with
asymmetry of 0, the calculated asymmetry would come out as 0.5. The final
asymmetry values are calculated using equations 53 and 54 (putting the 1/2
dilution factor in these equations would make the example asymmetry go to
the actual value of 1).

AL,f =
1

β±
AL,old (53)

∆AL,new = AL,new ·

√(
∆β

β

)2

+

(
∆AL,old
AL,old

)2

(54)

where AL,old are the values presented in table 11. The results for the final
single spin asymmetries are presented in table 12.

Using the background estimation from the modified power law (table 8)
and performing all the calculations again, a systematic was obtained from
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Figure 81: Single and double spin asymmetries for W± single and background
regions for 2012 data. Blue shows classical asymmetry calculation values
while red shows the Maximum Likelihood values.

the difference between the central values calculated with the GPR and the
modified power law background estimations. This systematic uncertainty
can be seen together with the statistical uncertainty in table 12.

Run W+ W−

2011 −0.37± 0.17(stat)± 0.01(syst) 0.20± 0.26(stat)± 0.01(syst)
2012 −0.22± 0.12(stat)± 0.01(syst) 0.33± 0.20(stat)± 0.02(syst)

Table 12: Single spin asymmetry values for the signal region using the Max-
imum Likelihood calculation method.

As mentioned before, since the difference in beam energies between the
two runs has a minimal effect on the asymmetries the two data sets have been
combined using an uncertainty weighted average. The estimated systematic
uncertainties for the two runs have been added in quadrature to provide a
final systematic uncertainty. The results can be found in table 13.
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Charge AL
W+ −0.27± 0.10(stat)± 0.01(syst)
W− 0.28± 0.16(stat)± 0.02(syst)

Table 13: Single spin asymmetry values for combined data sets using the
values from table 12.
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4 Discussion and Conclusions

The analysis in this thesis has been performed on the 2011 and 2012 data
collected by PHENIX at

√
s = 500 and 510 GeV respectively. The extraction

of large longitudinal parity violating single spin asymmetries from W decay
electrons and positrons has been presented. Using the Gaussian Processes
for Regression, a novel aproach for the determination of the background
dilution factor has been developed and implemented in the PHENIX analysis
framework. Two cross checks for the background shape determined from
the GPR have been performed: a) the GPR background shape together
with a simulated Jacobian peak have been shown to agree very well with
the data b) an functional form ansatz was used for the background shape,
providing results that were consistent with the GPR determination within
uncertainties. Nevertheless, the small difference was taken as a systematic
uncertainty.

Figure 82 shows the asymmetry results for the three data sets available
(the published 2009 PHENIX result in black, the 2011 and 2012 data from
this thesis in red and blue respectively). The boxes around the points repre-
sent the systematic uncertainties estimated for each data set. As explained
before, because of the experimental imposibility to remove the Z to e± decay
electrons/positrons, the asymmetries presented are for W + Z decay elec-
trons/positrons.

These asymmetries are compared with global analysis predictions per-
formed under different conditions. The GRSV global analysis [45] is an early
analysis performed on DIS and SIDIS data. It provides two different scenarios
for the sea quarks. The standard (GRSV std) has a symmetric sea between
the quarks and anti-quarks, while the GRSV valence (GRSV val) presents
the case when the sea SU(2) symmetry is broken. A more recent global anal-
ysis, DSSV [4], analyzes an updated set of DIS and SIDIS data and takes
into account for the first time proton proton collision data10. Furthermore,
by replacing the DSS fragmentation functions and taking into account other
fragmentation functions for the SIDIS data the global analyses can present
the level of variation coming from this type of parametrization. As such,
in figure 82 the DNS kre shows the results of the global analysis prediction
using the KRE fragmentation functions [46], while the DNS kkp is the re-

10As explained previously in the introduction section, the effect of proton proton colli-
sions on the anti-quark distributions is minimal. The largest impact so far as been on the
gluon spin contribution.
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Figure 82: Single spin asymmetries for W+ + Z(left) and W− + Z(right)
compared with theoretical predictions for the 2009 (black), 2011 (red) and
2012 (blue) data sets.

sult using the KKP fragmentation functions [47]. Both of these predictions
were made using the DSSV global analysis framework. All the predictions
presented take into account the Z contribution to the asymmetry.

As can be seen from the figure 82 the low statistics from the 2009 data set
have been significantly improved with the 2011 and 2012 data. Furthermore,
the asymmetry central values have moved in a region that is more consistent
with the theoretical predictions obtained from the global analysis of previous
DIS and SIDIS data.

The 2011 and 2012 results have been combined in order to obtain smaller
statistical uncertainties and thus be able to compare better with the theo-
retical predictions. These combined data points can be seen in figure 83.

Although both the W− and W+ asymmetries are not centered with the
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Figure 83: Single spin asymmetries for W++Z(left) and W−+Z(right) com-
pared with theoretical predictions for the 2011 and 2012 data sets combined.

theoretical prediction in figure 83, the data is consistent with the theoreti-
cal predictions within uncertainties. This deviation will most likely have a
significant impact on the central value of the best fit in future global analyses.

The measurement in this thesis has obtained for the first time a confir-
mation of large parity violating asymmetries at a level of 2.8σ and 1.8σ away
from 0 for the W+ and W− respectively.

Similar measurements performed by the STAR collaboration show con-
sistency with this measurement [48].

4.1 Future prospects

In 2013 a considerably larger data set has been obtained by the PHENIX
collaboration (approximately 3 times larger than the 2011 and 2012 data
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set combined). An analysis modeled on the measurement presented in this
thesis is being performed with preliminary results already obtained at the
time of writing of this thesis. The results show very good consistency with
the measurements in this thesis and with the theoretical predictions.

As mentioned before, PHENIX has the capability to perform measure-
ments of these parity violating asymmetries at forward and backward ra-
pidities through the muon decay channel. These asymmetries will have a
larger impact on the polarized PDFs of the anti-quarks because they access
directly the anti-quark distributions [6]. The impact of the RHIC data (with
results from both PHENIX and STAR) can be seen in figure 84. The current
(with only DIS and SIDIS data) global analysis uncertainty on the anti quark
polarzied PDFs can be seen in yellow, while the uncertainty with projected
RHIC proton proton data can be seen in red. Clearly, the uncertainty band
in the range where these measurements are performed (x ∼MW/

√
s = 0.16)

will be significantly reduced with the inclusion of the W asymmetry data.

Figure 84: Polarized anti quark PDFs with DIS, SIDIS (in yellow) versus
projection of all of the world data including RHIC proton proton collision
data at the end of the program (in red)[8].
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A Fitting with Gaussian Process Regression

A.1 Introduction

A standard problem in statistics, known as regression, is the interpola-
tion/extrapolation of information from a set of data points. This is generally
done by assuming a functional form for the data and fitting the parameters
of that functional form using either χ2 or maximum likelihood. While these
methods are well established and used extensively they have some shortcom-
ings and there are certain types of problems for which they are not well
suited. One such problem appears when there is no prior knowledge about
the functional form or there is no reason to pick one functional form over an-
other. In this appendix a method to tackle this type of problem and obtain
a prediction at any point with appropriate uncertainties is presented.

Gaussian processes are a specific type of stochastic process where the vari-
ance of each of the random variables comprising the process is Gaussian. An
important feature of stochastic processes is that, mathematically, they sam-
ple over the space of functions similar to how a random variable samples over
a set space of possible outcomes. In defining the variances to be Gaussian,
the space of possible functions is narrowed and the math needed to specify
the process is simplified. Specifically, with this requirement of Gaussian un-
certainties, the expectation of the process can be defined entirely in terms
of a mean function and a covariance function similar to how the Gaussian
distribution is defined purely by a mean and a variance.

In mapping the Gaussian process to the task of regression, the data points
are interpreted as places where the “sampled” functions to go “near” or
through. And by relying on Bayes’ theorem, the data itself decides how
“close” to the data points and the sampled functions need to be (for a given
function to be assigned a probability of being in the 1σ band). This is a
technique known as Automatic Relevance Determination or ARD.

It should be noted that the Gaussian process treatment of regression is
not a silver bullet for all problems and it has its limitations, but for certain
problems it can give a smooth functional form for complicated data complete
with uncertainties with limited assumptions on the functional form underly-
ing the data.

First a mathematical description of the method is presented, followed by
an example examples using the developed implementation.
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A.2 Data: From 1 to N to Infinity...

As a bridge to the mathematics of Gaussian processes, a pedagogical expla-
nation of data and functions from a stochastic process viewpoint is given.
When one is presented with a graph of a single data point, with Gaussian
uncertainties, one implicitly (or explicitly) views that data point and its un-
certainty as representing a Gaussian distribution. The data point can repre-
sent a series of measurements or, more aptly, for nuclear and particle physics,
it represents a single measurement of a rate of a Poisson process and the un-
certainty represents the expected variance of that rate for having measured
the number of events you measured. Either way though, it really represents
a 1-dimensional Gaussian probability distribution for the true quantity given
the measured quantity, i.e. if one were to randomly sample from that distri-
bution (or continue to make identical measurements), one would get a data
point in that uncertainty band roughly 70% of the time.

Next lets imagine one has a plot with 2 data points again with Gaus-
sian uncertainties. With 2 data points add an additional complication is
presented; the data points can be related or not related. If these two data
points are not related in any way, they just represent 2 independent Gaus-
sian probability distributions or more simply, they just represent a single
2-d Gaussian distribution with no covariance (see figure 85). If the 2 data
points are related though (i.e. correlated), then, when one point tends in
one direction the other point must move according to how these points are
related and vice-versa. And since they are probabilistic and Gaussian, one
can view these two data points as being a 2-d Gaussian distribution with a
non-diagonal covariance matrix (see figure 86). Another way to visual the
data is to imagine the range of each measurement (typically the y-axis) as
representing an independent axis for the Gaussian to vary along; therefore,
for 2 data points one naturally gets a 2-d Gaussian.

To summarize a bit, one data point with Gaussian uncertainty represents
a 1-d Gaussian distribution. Two data points with Gaussian uncertainties
represent one 2-d Gaussian distribution, possibly with a non-diagonal co-
variance matrix representing how the data points move with one another.
By extending this to N data points with Gaussian uncertainties, one could
similarly represent this data with an N-dimensional Gaussian distribution,
with the N × N covariance matrix representing how the data should move
together.

So far, everything presented so far in this section is discrete, but there
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Figure 85: Two independent
Gaussian distributions.

Figure 86: Two correlated Gaus-
sian distributions.

is no reason that the motivation above only needs to apply to discrete data
points. Moving from discrete to continuous, one also moves from random
variables to stochastic processes. By having an uncountable infinity of data
points, with uncertainties (which also can go to zero or nearly zero), one
could represent this as an infinite dimensional Gaussian distribution with
an infinite-by-infinite covariance matrix. Rephrasing, one could say that
an uncountable infinity of data points is just a function and the uncount-
able infinity of uncertainties is also just a function. This is how functions
arise as the sampled distribution for Gaussian processes (or uncountably infi-
nite dimensional Gaussian distributions). Furthermore, a infinite-by-infinite
covariance matrix is just another way of saying that it is a function of 2
variables. Therefore, a Gaussian processes is just an infinite dimensional
Gaussian distribution with a covariance function.

A.3 Mathematical Description

A great description of the method can be found in [44], [49] or [50]. In
standard nonlinear regression, given a set of n data points (situated at xi
with responses yi), such that

yi = f(xi) +N (0, σ2
i ), (55)

where N is a normal distribution with 0 mean and σi uncertainty, one tries
to get information about the function f , and after, make predictions at any
other point xn+1.
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As intuited in the before, in a GP the relation between data points is
codified through the covariance function (or kernel). A detailed description
of different types of kernels can be found in chapter 4 of [49]. In this appendix
and in the implementation the Radial Basis Function (RBF) kernel will be
discussed.11

k(xj, xi) = σ2
f exp

(
−(xi − xj)2

2l2

)
+ σ2

i δ(xi, xj), (56)

where σi is the uncertainty on point i, δ(xi, xj) is the Kronecker delta and σf
and l are hyperparameters for this covariance function. Note that the uncer-
tainties from each point contribute only when we calculate the covariance of
a point with itself.

Through the choice of form and the hyperparameters, the kernel has en-
coded in it the prior information about the function type: how much one
point can influence another (through the characteristic length l), the am-
plitude of this correlation (through the σf parameter) and how smooth the
function should be (through the differentiability of the function at 0).

Using the definition in equation 56 one can encode the covariance infor-
mation from the data set into a matrix K:

K =

 k(x1, x1) · · · · · · k(x1, xn)
... k(xi, xj)

. . .
...

k(xn, x1) · · · · · · k(xn, xn)

 .
This is a n×n matrix that will have elements on the diagonal be the largest
and decrease (according to the characteristic length) as one moves to elements
that are farther away (signifying that elements that have a large distance in
x will influence each other less).

The next step is to calculate a prediction for a single point x∗. As before
one can use equation 56 to describe the covariance of the prediction point
with all the data and with itself by constructing two more objects:

K∗ = [k(x∗, x1), · · · , k(x∗, xn)] (57)

K∗∗ = k(x∗, x∗) (58)

Extending the n-dimensional Gaussian distribution by adding the predic-
tion point produces the response vector for our data (y1, · · · , yn, y∗). Then,

11However all of the math and derivations are equally valid for other kernels
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the joint distribution can be written as:[
y
y∗

]
∝ N

(
0,

[
K KT

∗
K∗ K∗∗

])
.

One of the most important features of a multivariate gaussian distribution
is that any marginal distribution is in turn Gaussian. Looking at figure 86
making a vertical cut by setting the value of the x axis one is left with an 1
dimensional Gaussian distribution for the y axis. In the same way one can
set the values of the input data (n points) and what is left is the conditional
probability distribution for the prediction. This is called the conditional
probability of y∗ given the original data y and takes the following form (see
Appendix A.2 of [49]):

P (y∗ | y) =
P (y∗,y)

P (y)
∼ N (K∗K

−1y, K∗∗K
−1KT

∗ ), (59)

where the mean and variance will be the prediction:

ȳ∗ = K∗K
−1y (60)

var(y∗) = σ2
y∗ = K∗∗ −K∗K−1KT

∗ (61)

The procedure relies on the covariance matrix K being invertible. Having
only two of n data points being fully correlated will result in a singular matrix
with a determinant of 0, which will make this procedure fail. Another note to
make is that the uncertainty on the points depends only on the kernel (with
it’s parameters and the uncertainties from the points) and the distance of
our prediction from the rest of the data.

This method can be as easily implemented with any number of prediction
points (without increasing the computational time significantly) by replac-
ing x∗ with a m size vector of points, K∗ by a mxn matrix and K∗∗ by a
mxm matrix; allowing one to make any number of predictions in a certain
x range. Furthermore the uncertainty obtained before is now replaced by a
covariance matrix that gives, besides the uncertainty of each point (on the
main diagonal), the correlations between the different points.

There is one thing that has been overlooked so far: what the best hyper-
parameters (θ) for the kernel function are. It can easily be seen that if the
kernel parameters are not well suited for the problem the result that comes
out will be useless. As is presented in detail in the references (for exam-
ple subsection 45.5 in [44]) minimizing the the negative log of the posterior
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probability over the kernel parameters with respect to the data gives the
optimal parameters. This conditional probability of θ given the data (x,y),
P (θ | x,y), can be expressed using Bayes’ Theorem as:

P (θ | x,y) =
P (θ)P (y | θ,x)

P (x,y)
(62)

We can see here that only one terms varies with our parameters: P (y | θ,x).
For a random variable x with responses y, that can be described by a

normal distribution x ∼ N (µ,Σ) with µ being the mean and Σ being the
variance (which can be shown to be the covariance function for a multivariate
gaussian [51]) the probability density is known to be (as you can see in
Appendix C of [51]):

P (µ,Σ) = (2π)−n/2(det Σ)−1/2 exp

(
−(y − µ)TΣ−1(y − µ)

2

)
(63)

Considering the mean to be 0 one can derive the log of this density:

logP (y | x,θ) = −1

2

(
yTK−1y + log(detK) + n log 2π

)
(64)

The first term in equation 64 gives penalties for models that do not agree
with the data, the second gives penalties for complex models while the third
is constant.

In order to implement the optimization procedure the first and second
derivatives for the RBF kernel were calculated. The first derivative of equa-
tion 64 is:

∂

∂θ
(− logP (y | x, θ)) = −1

2

(
yTK−1

∂K

∂θ
K−1y − Tr

(
K−1

∂K

∂θ

))
(65)

The second derivative is:

∂2

∂θi∂θj
(−2 logP (y | x, θ)) = yTK−1

∂K

∂θi
K−1

∂K

∂θj
K−1y

+ yTK−1
∂K

∂θj
K−1

∂K

∂θi
K−1y

− yTK−1
∂2K

∂θi∂θj
K−1y − Tr

(
K−1

∂K

∂θi
K−1

∂K

∂θj

)
+ Tr

(
K−1

∂2K

∂θi∂θj

)
(66)
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Equations 65 and 66 are used in implementation to be able to derive the
optimal hyperparameters by using a modified steepest descent algorithm.

A.4 Warped Gaussian Process Regression

As is described in [52], data that spans several orders of magnitude which
has large varying uncertainties (and as a result different variances) may not
be well described by a Gaussian Process. In this case a better solution is to
transform the data through a function f , getting new points zi = f(yi, ψ),
and perform the GPR on the new dataset (ψ is the vector of parameters
that determine the transformation). A standard warping in the statistical
literature is to take the log of the data and assume the uncertainties will be
Gaussian; bringing the uncertainties that go directly into equation 56 to the
same size.

More generally, the only requirement for f is that it should be monotonic
and the example presented in [52] is the neural-net style sum of tanh function:

f(y, ψ) =
M∑
i=1

ai tanh(bi(y + ci)) (67)

,where M is the number of steps in the sum that needs to set beforehand.
In each part of the sum ai will set the size of the steps, bi sets the steepness
and ci sets the offset of the step. This will allow the the integration of the
warping function parameters in the optimization of the GPR, with a new log
likelihood equation:

− logP (yN | x, θ, ψ) =
1

2
[f(yN)TK−1f(yN)

+ log(| K |) +N log 2π −
N∑
i=1

log
∂f(y)

∂y
] (68)

The uncertainty for the unwarped points can be calculated by making
used of the covariance matrix that results from the GPR. In order to get
the unwarped covariance matrix one simply needs to make use of standard
error propagation. If one has y∗i = f(yi, ψ) then the covariance term between
points i and j will be:

covi,j =
∂f(yi, ψ)

∂y∗i
cov∗i,j

∂f(yj, ψ)

∂y∗j
(69)
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where,cov∗i,j is the warped covariance term for points i and j. In the particular
case where the data is warped using log, the unwarped data and uncertainty
will be:

yi = exp(y∗i ) (70)

covi,j = exp(y∗i )cov
∗
i,j exp(y∗j ) (71)

σ2
i = exp(y∗i ) (σ∗i )

2 exp(y∗j ) (72)

A.5 General Problem

The example that that is shown here has been taken from [53] and it’s main
purpose is to prove that the implementation is consistent with results from
other sources. Figure 87 shows the set of 6 points with uncertainties that we
can find in [53].

Figure 87: Input data for example. Figure 88: Predictions for example.

As explained above, one of the strong points of the GPR is that one
can make predictions for a whole set of points at the same time. Figure 88
shows 1000 point between -1.7 and 0.3 each with its own uncertainty giving
an overall 1σ uncertainty band (one can equally as easy construct a 95%
confidence interval by increasing the size of the uncertainty bars by 1.96).
The optimized parameters coming out of the implementation are very close
to the ones obtained in [53].
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B Local Polarimetry

Since the stable beam position in the RHIC ring is transversely polarized,
in order to obtain longitudinal polarization the beam is passed through a
set of spin rotators. Since the rotation of the spin direction depends quite
a bit on the position of the beam in the beam pipe the spin direction must
be monitored and measured constantly. The local polarimetry (performed
by each of the experiments) measures the direction of a polarized beam by
using the forward neutron asymmetry (as defined by equation 73).

AN =
√
A2
LR + A2

UD (73)

Using the Zero Degree Calorimeter (ZDC) along with the Shower Maxi-
mum Detector(SMD)[33] as a neutron counter one can define left-right, up-
down, and phi asymmetries as:

ALR/UD,b/y = 1
Pb/y
·
√
N↑

L/U
N↓

R/D
−
√
N↑

R/D
N↓

L/U√
N↑

L/U
N↓

R/D
+
√
N↑

R/D
N↓

L/U

(74)

where b/y stands for the blue or yellow beams and N↑R/D is the number of

neutrons hitting the right/down part of the detector when the spin direc-
tion is up. This asymmetry can be calculated for the north or south detector
representing the forward and backward asymmetries. Similarly the phi asym-
metries were calculated using a phi segmentation of the face of the SMD.

Figure 89: Phi forward raw asymmetry for the yellow beam as a function of
phi angle for the transverse running.

In RHIC 2009 run PHENIX ran with longitudinal polarized beams. A
calibration measurement was done with the spin rotators off to get a baseline
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for the left-right, up-down and phi asymmetries (see figure 89 for an example
of forward transverse phi asymmetry). During the longitudinal (physics)
running a small bandwidth of the data-acquisition (∼200 Hz) was reserved for
the local polarmetry measurement. This data was aggregated for the whole
Run and the three asymmetries mentioned above were calculated again.

With the asymmetries measured for both the transverse and the longitu-
dinal periods one can calculate the transverse component as:

PT
P

=

√(
ALR,long
AN,trans

)2

+

(
AUD,long
AN,trans

)2

(75)

and subsequently the longitudinal component:

PL

P
=

√√√√1−

(√(
ALR,long

AN,trans

)2
+
(
AUD,long

AN,trans

)2)2

(76)

Because the beam can shift it’s position on the face of the ZDC when the
spin rotators are turned on (and during the course of the whole Run), a study
was performed to estimate a systematic error for the longitudinal component
of beam. Four points were selected off-center and for each of these points the
left-right and up-down asymmetries were calculated for both the transverse
and longitudinal running periods, giving a longitudinal component for each.
In order to obtain the central value for this measurement it was assumed
that the beam was centered on the face of the ZDC, and the spread of the
four off-center points gave size of the systematic uncertainty.

The final results for the Blue beam and the Yellow beam during the RHIC
2009 run are as follows:

• (0.994 ± +0.006
−0.008(stat) ± +0.003

−0.010(syst)) Blue Beam

• (0.974 ± +0.014
−0.018(stat) ± +0.019

−0.035(syst)) Yellow Beam

For the 2011 and 2012 data runs a similar procedure was performed during
the beam commissioning in an effort to minimize the transverse component of
the beam polarization. The results for the remaining transverse components
were:

• (0.060 ± 0.004) 2011 Blue Beam

• (0.054 ± 0.002) 2011 Yellow Beam
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• (0.061 ± 0.006) 2012 Blue Beam

• (0.070 ± 0.008) 2012 Yellow Beam

C DC beam offset calibration

The αDC is determined during the reconstruction phase of the data process-
ing. Because of the importance of this parameter for the analysis in this
thesis, special care has been take in 2011 and 2012 to have the best possible
resolution for it. As can be seen from the left panel of figure 90 αDC is deter-
mined as the angle between a straight track from the interaction vertex and
the straight track going through the DC at 220 cm (the mid-point of the DC
system). If the vertex position is shifted in either x or y (as is depicted in the
right panel of figure 90) the straight track that is assumed by the DC during
reconstruction is wrong and can provide a smaller or larger αDC depending
on the situation.

Figure 90: Left: Alpha determination diagram for the PHENIX Drift Cham-
bers. Right: Cartoon explaination of beam offset and it’s impact.

This effect is corrected through the analysis of zero field runs (data taking
periods where the magnetic field of the PHENIX Central Arms is turned off).
During the 2011 and 2012 data taking periods, besides weekly zero field runs,
additional field off runs were taken every time one the PHENIX central arms
was moved for maintenance. Each zero field run was analyzed and beam
offsets were determined for each period of time. These parameters were then
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hard coded into the reconstruction software. For depiction purposes the
analysis on a single zero field run is explained below.

As can be seen from the right panel of figure 90 there is a clear relation
between the offset of the beam in the x and y plane and the αDC determined
at each φ coordinate. These deviations are called dx and dy. The relation
between these parameters is:

αDC =
dx

220
sinφ+

dy

220
cosφ (77)

where 220 is the nominal DC radius in cm. For both arms an independent
analysis is performed and dx, dy offset parameters are determined.

Figure 91: αDC vs φ in the east arm for a zero field run before (left) and
after (right) applying the beam offset corrections (left).

Figures 91 and 92 show αDC before the correction were applied (on the
left hand side) and after the corrections were applied (on the right) for one
of the zero field runs. Before the beam offset parameters were applied a clear
dependence of αDC with φ can be seen. As expected after the correction, this
dependence vanishes. The fluctuation that can be seen in both the before
and after panels are due to DC card mis alignment. Through studies made
by the DC experts it was determined that these small mis alignments would
not have a large effect on the analyses and can be safely ignored. The large
deviations that be seen (for example in figure 92 at φ of approximately -0.1)
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Figure 92: αDC vs φ in the west arm for a zero field run before (left) and
after (right) applying the beam offset corrections (left).

are due to severe card mis alignments. For the 2011 data (where this zero
field run is from) excluding these sections of the DC does not an effect on
the asymmetry analysis in this thesis. For the 2012 data, the DC experts
performed a recalibration that corrected these large fluctuations.

For the 2011 data taking period 11 distinct periods were established for
which beam offset parameters were determined. Similarly for the 2012 data
7 periods with their respective zero field runs were determined and analyzed.

D Maximum Likelihood plots

The maximum likelihood probability projection plots can be found below in
figures 93 through 107 for the 2011 and 2012 data, double and single spin
asymmetries and signal and background regions.

E Trigger Efficiency Plots
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Figure 93: 2011 W+ Signal single
spin asymmetry.

Figure 94: 2011 W+ Signal double
spin asymmetry.

Figure 95: 2011 W− Signal single
spin asymmetry.

Figure 96: 2011 W− Signal double
spin asymmetry.
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Figure 97: 2011 W+ Background
single spin asymmetry.

Figure 98: 2011 W+ Background
double spin asymmetry.

Figure 99: 2011 W− Background
single spin asymmetry.

Figure 100: 2011 W− Background
double spin asymmetry.
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Figure 101: 2012 W+ Signal single
spin asymmetry.

Figure 102: 2012 W+ Signal dou-
ble spin asymmetry.

Figure 103: 2012 W− Signal single
spin asymmetry.

Figure 104: 2012 W− Signal dou-
ble spin asymmetry.
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Figure 105: 2012 W+ Background
single spin asymmetry.

Figure 106: 2012 W+ Background
double spin asymmetry.

Figure 107: 2012 W− Background
single spin asymmetry.

Figure 108: 2012 W− Background
double spin asymmetry.

112



Figure 109: Left: Spectrum for π0s with an ERT4×4 trigger (red) and all
π0s in each sector for EMCal Sector 0. Right: Efficiency calculated as the
fraction of π0s with an ERT4×4 trigger to the total number of π0s for sector
0.
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Figure 110: Left: Spectrum for π0s with an ERT4×4 trigger (red) and all
π0s in each sector for EMCal Sector 1. Right: Efficiency calculated as the
fraction of π0s with an ERT4×4 trigger to the total number of π0s for sector
1.
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Figure 111: Left: Spectrum for π0s with an ERT4×4 trigger (red) and all
π0s in each sector for EMCal Sector 2. Right: Efficiency calculated as the
fraction of π0s with an ERT4×4 trigger to the total number of π0s for sector
2.
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Figure 112: Left: Spectrum for π0s with an ERT4×4 trigger (red) and all
π0s in each sector for EMCal Sector 3. Right: Efficiency calculated as the
fraction of π0s with an ERT4×4 trigger to the total number of π0s for sector
3.
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Figure 113: Left: Spectrum for π0s with an ERT4×4 trigger (red) and all
π0s in each sector for EMCal Sector 5. Right: Efficiency calculated as the
fraction of π0s with an ERT4×4 trigger to the total number of π0s for sector
5.
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Figure 114: Left: Spectrum for π0s with an ERT4×4 trigger (red) and all
π0s in each sector for EMCal Sector 6. Right: Efficiency calculated as the
fraction of π0s with an ERT4×4 trigger to the total number of π0s for sector
6.

118



Figure 115: Left: Spectrum for π0s with an ERT4×4 trigger (red) and all
π0s in each sector for EMCal Sector 7. Right: Efficiency calculated as the
fraction of π0s with an ERT4×4 trigger to the total number of π0s for sector
7.
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