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Freshmen GPA Predictions

« Goal: Predict 2016 fall freshmen GPA’s at three timepoints during their first
semester
« 1) End of orientation; 2) End of week 3; 3) End of week 6
« Summary of data
« Demographics
» Gender, ethnicity, geographic area of residence when admitted.
» Pre-college academic characteristics
» SAT scores, high school GPA, average SAT scores of the high school (to control
for high school GPA), Common Application data
» College academic characteristics
» Credits accepted when admitted, AP credits, number of STEM and non-STEM
courses enrolled in, enrollment in high DFW courses, area of major
« Transactions, service utilization, activities
« Learning management system (LMS) logins, advising visits, tutoring center
utilization, intramural and fithess class participation, recreation center usage.
* Financial aid
» Expected family contribution, AGlI, types and amounts of disbursed aid, Pell,
Tuition Assistance Program (TAP)
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One- and Two-year Retention of First-time Full-time Freshmen
by First Semester GPA Deciles
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Model Background

* The initial model for predicting freshmen GPA's was developed in 2015-16 using
only one year of data.

« The fall 2014 freshmen cohort data was used to predict the first semester GPA’s
of the fall 2015 freshmen cohort. Learning management system (LMS) logins
were to be incorporated, however the login data were not being archived, so
there was no possibility of using multiple years of data.

* One model was developed to predict first term GPA's at week six of the first
semester.

* Five data mining models were developed using different methods, including
CART, CHAID, and gradient boosting.

« Gradient boosting, CART, and CHAID had the lowest average squared errors, in
that order.

« The CART model was the method selected for predicting the fall 2015 freshmen
GPA's, because gradient boosting does not yield an easy to use and understand
algorithm, coupled with the fact that the gradient boosting model did not result in
a substantial error rate improvement.
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Development of Current Model

Fall 2014 and fall 2015 first-time full-time freshmen cohort data were
used to predict the fall 2016 GPA's. N= 5,664 (after 34 students who
withdrew prior to the end of the term were removed).

The extensive modeling work on the fall 2014 cohort data was utilized to
motivate the development of the three new models

5,000 plus observations are not enough for partitioning into training and
validation sets to avoid over-fitting the model, so K-fold cross validation
was used instead.

In K-fold cross validation, the data are subdivided into K equal groups.
K-1 groups are for training and the remaining group is for validation. This
is done K times. Each time a different group is used for the validation
set. Often, five folds are used.

Models were compared using averaged squared errors.
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5-Fold Cross Validation Plan

For each K;the entire dataset was divided into 5 equal parts

K=2 Validate

K=3 Validate

K=4 Validate
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CART Method:
Classification and Regression Trees

« The method does an exhaustive search for the best binary split.
* It splits categorical predictors into a smaller number of groups or

finds the optimal split in numerical measures.

» Each successive split is again split in two until no further splits are
possible.

* The resultis a tree of maximum possible size, which is then pruned
back.

» For interval targets the variance is used to assess the splits; For
nominal targets the Gini impurity measure is used.

* Pruning starts with the split that has the smallest contribution to the
model

« The missing data is assigned to the largest node of a split

* CART creates a set of nested binary decision rules to predict an
outcome.
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CHAID Method:

Chi-squared Automatic Interaction Detection

Unlike CART with binary splits evaluated by misclassification
measures, the CHAID algorithm uses the chi-square test (or
the F test for interval targets) to determine significant splits
and find independent variables with the strongest
association with the outcome. A Bonferroni correction to the
p-value is applied prior to the split.

It may find multiple splits in continuous variables, and allows
splitting of categorical data into more than two categories.
As with CART, CHAID allows different predictors for different
sides of a split.

The CHAID algorithm will halt when statistically significant
splits are no longer found in the data.
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Cross Validation Results: Average Squared Error (ASE) for
Freshmen GPA Models at Three Timepoints

Day 1 Model (CHAID) Week 3 (CART) Week 6 (CART)
Validation| Training |Validation| Training [Validation| Training

K Folds ASE ASE ASE ASE ASE ASE

1 0.46 0.41 0.44 0.46 0.43 0.46

2 0.48 0.41 0.45 0.44 0.43 0.44

3 0.50 0.40 0.45 0.46 0.44 0.43

4 0.51 0.40 0.45 0.43 0.46 0.43

5 0.56 0.39 0.51 0.43 0.51 0.42

Average
ASE 0.50 0.40 0.46 0.44 0.45 0.44

ASE = (Sum of Squared Errors)/N

FAR
BEYOND 9




Q\\\‘ Stony Brook University
Fall Semester Day 1:
First Term GPA CHAID Model
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Fall Semester
Week 3: First
Term GPA CART
Model
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Fall Semester Week 6:
First Term GPA CART Model, Part 1

HS GPA <= 94.0 portion of tree
Students Suggested Midterm Report = e (ip;;;z.gs continues in next
for Interventions none or missing » } slide
e O e HS GPA > 94.0 Continuation of
N = 4308 >94. ontinuation o
[ Avg. GPA<2.5 ] Avg. GPA = 3.08 . Avg. GPA = 3.38 Tree where HS
& >=2.0 N= 4524 Midterm Report: N = 1641 GPA >94.0
1 or more classes ——— .
Avg. GPA Avg. GPA = 2.31
<2.0 N= 214

Midterm Report:
Midterm course feedback from participating professors.
Predictive data only available for Fall 2015
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Fall Semester Week 6:
First Term GPA CART Model, Part 2

Total DFW Crs.

Students Suggfested Crndits <4
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<2.0 Previous Slide » Wk. 6 >=32 : N= 56
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Avg. GPA = 2.95 per Crs. LMS N =424
Logins Wk. 3
N = 2667 h o
>=7.8 or missing
Avg. GPA =3.04
N = 2097
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How Can the Results be Used?

 The model as presented can be used to assign students
to designed interventions.

* The results were distributed to appropriate stakeholders.

+ Students were assigned to interventions such as tutoring, pairing
them with peer mentors, and sending communications from
campus advising.

« The early model results can be shared with departments
to inform their advising and intervention efforts.

 The goal is to find the students who need assistance to
fulfill their potential, and reduce the number who end up
leaving due to poor performance.
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Sample Model Dashboard
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Sample Dashboard Filters
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QU stony Brook Universiy Drilling Down to Student Records
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Summary of Alert System Development and Use
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1.

Identify data sources on campus and begin the process of
collecting, archiving and recoding.

Don’t skimp on model development. Be sure to hold out data
for validating the model.

Plan a system to distribute the model results and lists of
students suggested for interventions.

Work with stakeholders to track interventions.

Campus service data being collected is not only useful to
determine if students are having improved outcomes, but can
be used to study campus service utilization, like tutoring and
advising.
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