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Using Data Mining for
Predicting Outcomes
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Enables the extraction of information from large
amounts of data.

Incorporates analytic tools for data-driven decision
making.

Uses modeling techniques to apply results to future

data.

The goal is to develop a model rather than finding factors
significantly associated with the outcomes.

Incorporates statistics, pattern recognition, and
mathematics.

Few assumptions to satis(iiy relative to traditional
hypothesis driven methods.

A variety of different methods for different types of
data and predictive needs.

Able to handle a great volume of data with hundreds
of predictors.
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Why Should I Do the Data
Mining In-house?

« In-house modeling is cost effective

« Some software is free and others are onlif1 $1,000 to
$5,000 to license each year, as opposed hundreds of
thousands of dollars for a consulting firm

« Many consulting firms require a lot of man hours for
?n eﬁtlended period of set up in order to pull the data
ogether

« (Can obtain online or in-house training to teach staff
to use the data mining software

* Once the model is set up, it can easily be rerun, and
the (rinodehng can be expanded to a variety of different
needs

 If there are budget cuts, you will lose the consultants
andlall of the work, while the in-house model remains
in place
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What Do I Need to Do to Get
Started?

« Data Mining Software

Need to research software; download trial versions;
explore available training

» Access to data
Contact the IT personnel in charge of your LMS
system or other data structures you want to access.

Try to arrange for data downloads immediately, so
it is ready to be used when the software is obtained

» Storage and Data Delivery Systems

Obtain estimates for the size of the files.

Initially, external hard drives or cloud storage
should be sufficient
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Predictive Measures
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Demographics
* Gender, ethnicity, geographic residence when admitted.
Pre-college academic characteristics

« SAT scores, high school GPA, average SAT scores of the high
school (to control for high school GPA).

College academic characteristics

« Credits accepted when admitted, AP credits, number of STEM
and non-STEM courses enrolled in, area of major, enrollment
in courses with high rates of D’s, F’s, or W’s.

Transactions, service utilization, activities

« Learning management system (LMS) logins, advising visits,
tutoring center utilization, intramural and fitness class
participation.

Financial aid

« Expected family contribution, AGI, types and amounts of
disbursed aid, Pell, Tuition Assistance Program (TAP).
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Choosing Data Mining
Software

« SAS Enterprise Miner (free demos and trials on request)

« SPSS Modeler (30 day trial)

« Salford Systems, acquired by Minitab; 10-day free trial, which can be
extended to 30 days on request

« KNIME (free download)

* R (free download)

 Orange (free download)

* Weka, from the University of Waikato in New Zealand (free
download)

» Rapid Miner (10,000 records with free download; unlimited records
for higher ed)
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Training Options

SAS

Sample data, support communities, free tutorials and e-learning, courses in major
cities, live web classes

SPSS

Online courses
KNIME

Youtube videos, webinars, courses
Salford Systems

Webinars, courses offered throughout the US, private on-site instruction,
consulting

RapidMiner

E-books, whitepapers, on demand webinars
* Oranges

Online tutorial, Youtube videos
Weka

Online University of Waikato courses

* R
Online examples and tutorials
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Forrester Wave and Gartner
Magic Quadrant for Data Science
Platforms
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SAS Enterprise Miner Model
Diagram
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Nodes: Data Utilities

* Drop
Drop variables and trim size of data sets

* Impute
Missing data imputation using a variety of methods

* Interactive Binning

Quintile binning of variables that can be interactively
modified and customized

* Principal Components

Perform principal component analysis for data
reduction

e Transform Variable

Formula builder for transformations to correct
problems like non-normality, non-linearity, stabilize
variance, etc.; create interaction variables
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Node Data Functions

« Sample
Select random samples or stratified random samples from the data

 Data Partitioning

Selects random samples to use for training, validation and testing
samples

* Filter
Interactively filter subsets of data; outlier and missing data handling

« Explore

Descriptive statistics; scatter and box plots

* Cluster
Grouping of statistically similar observations

* Variable Clustering
Grouping similar variables
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Filter Node
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Assess Nodes

* Model comparison

Generates comparisons of different modeling methods to determine the
best fit and lowest error rate

* Score

Exports code that can be used to score new data
» Bagging

Bootstrap aggregation
 Boosting

Boosted bootstrap aggregation
* Credit scoring

Assigns scoring points to customer attributes
 Incremental response

Measures the impact of a treatment, e.g., impact of a response during a
promotion

 Text analysis
Some software has an additional charge for text analysis modules
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Methods: Modeling

e Decision Trees

Chi Square Automatic Interaction Detection (CHAID)
Classification and Regression Trees (CART)
Random Forests

* Linear regression

Linear regression is an available data mining modeling tool, however it is
important to be mindful of missing data and multicollinearity.

Unlike decision tree methods linear regression, will listwise delete the
missing values. Fortunately, the imputation node can handle that problem

Multicollinearity can be handled by a variable clustering node.
* Neural net

* LARS

Least angle regression
* Survival analysis

* Time series
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Methods: Validation

Need to find the correct level of model complexity.

« A model that is not complex enough may lack the flexibility to represent the
data, under-fitting.

. }Nh,en the model is too complex it can be influenced by random noise, over-
1tting.

« For example, if there are_ outliers, an overly complex model will be fit to
them. Then when the model is run on new data, it may be a poor fit. A poor
fitting model will not do a good job in making predictions using new data.

« Partitioning is used to avoid over- or under-fitting. Divide the data
into training, validation, and testing, or use K-fold cross validation.

« The training partition is used to build the model.

» The validation partition is set aside and is used to test the accuracy
and fine tune the model.

» The test partition is used for evaluating how the model will work on

new data.
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Data Partitioning
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Property
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M-fold Cross-validation
for Evaluating Model Performance

» The sample is divided into M equal groups, or folds. Many sources
recommend 10 folds if there is enough data.

» Next the model is run M times, however each time, one fold is left
out.

» For five folds, four are for training and one is for validation

 The procedure is performed M times (in this case five times), each

time leaving out a different validation sample

Train Train Validate
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Cross Validation Diagram
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PREDICTING F15 FRESHMEN GPA:
Part 1—AIll HS GPA Nodes<= 92.0
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PREDICTING F15 FRESHMEN GPA:
Part 2—AIll HS GPA Nodes > 92.0
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How Can the Results Be Used?
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The models as presented can be used to assign
students to designed interventions.

« The results were distributed to appropriate stakeholders.

« Students were assigned to interventions such as tutoring,
pairing them up with peer mentors, and sending
communications from campus advising.

The early model results can be shared with
departments to inform their advising and
intervention efforts.

The goal is to find the students who need
assistance to fulfill their potential, and reduce the
number who end up leaving due to poor
performance.
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Sample Dashboard
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Dashboards for Results

Delivery
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Drilling Down to Student Data
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Data Storage

- Initially when getting started, use an external hard
drive or cloud storage, like Google Drive.

 Uploading and downloading to a Google Drive can
be slow when down on a regular basis.

 Until a system and repository is in place,
departments and/or individuals will need to be
contacted regularly to obtain the transaction data.

This will become tedious and time consuming.
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Data Storage: Hadoop

« Hadoop platforms handle the 3 V’s of data:

Large volumes of data
A variety of data
High velocity data that has a small window of utility

« Stores data on large clusters of affordable hardware.
 Applications are divided between the machines in the
Hadoop cluster. Several computers can share the

computational workload.
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Hadoop Systems

« Hadoop distributions

Cloudera (www.cloudera.com)

EMC (www.gopivotal.com)

Hortonworks (www.Hortonworks.com)

IBM (www.ibm.com/software/data/infosphere/biginsights)
Intel (hadoop.intel.com )

MapR (www.mapr.com )

« Hadoop toolboxes—tools to use with Hadoop

implementations
Amazon ( aws.amazon.com/ec2 )
Hadapt (www.hadapt.com)
Karmasphere ( www.karmasphere.com )
WANdisco ( www.wandisco.com )
Zettaset ( www.zettaset.com )

FAR
BEYOND 27



http://www.cloudera.com/
http://www.gopivotal.com/
http://www.hortonworks.com/
http://www.ibm.com/software/data/infosphere/biginsights

‘\\\‘ Stony Brook University

Forester Wave: Big Data
Hadoop-Optimized Systems
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Questions?
Please contact me!!

Nora.Galambos@stonybrook.edu

http://www.stonybrook.edu/commcms/
irpe/reports/index.php
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