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Abstract 

Data mining is used to develop models for the early prediction of freshmen GPA. Since 

student engagement has long been associated with student success, the use of service utilization 

and transactional data is examined along with more traditional student factors.  Factors entered 

into the data mining models include advising visits, freshmen course-taking activity, interactions 

with the college learning management system, and college activity participation, along with SAT 

scores, high school GPA, demographics, and financial aid. In models predicting first semester 

freshmen GPA, factors associated with students' interactions with the campus environment were 

stronger predictors than SAT scores. 

 

 

Introduction 

The goal is to develop a model to predict at risk first-time full-time freshmen as early as 

possible in their college careers in order to assist them with interventions.  Traditional methods 

of logistic and linear regression are often good at identifying factors significantly associated with 

an outcome, but are not always able to make accurate predictions.  Linear and logistic regression 

have one set of predictors to model the outcomes of all of the students in the data and do not 

assign separate sets of predictors to students having very different characteristics.  For example, 
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first-time freshmen entering college with high SAT scores may have very different retention and 

college GPA predictors than those entering with a low high school GPA and low SAT scores.  

Inevitably, when using any model, some students will be incorrectly assigned, with some 

students miss-identified as being at risk or students at risk being not being identified as such by 

the model.  There is an allocation trade-off when resources are expended on students not really in 

need of interventions or when students who would potentially benefit from interventions do not 

receive them.  Methods capable of more accurate predictions will result in more effective 

utilization of resources, and higher retention and graduation rates.  For that reason the decision 

was made to explore data mining, because it offers a variety of methods for utilizing different 

types of data, there are few assumptions to satisfy relative to traditional hypothesis driven 

methods, and it is able to handle a great volume of data with hundreds of predictors. 

At our institution poor academic performance by first-time full-time freshmen in the first 

semester has a negative impact on graduation and retention outcomes.  Figure 1 illustrates that 

only 11% of students in the lowest GPA decile graduate in four years, and less than 29% of 

students in that group graduate in six years.  For the second decile the four year rate increases to 

26% and the six year rate improves to 53%.  Those rates, though higher, are still very low 

relative to the top half of the freshmen class. 

Approximately 30% of first-time full-time freshmen received a GPA below 2.5 in their 

first semester (Figure 2).  Almost 84% of those students returned in year two, however by the 

next year the retention rate had dropped substantially with only 64% returning for year three and 

only 48% graduating in six years.  In contrast over 77% of students receiving a GPA of 2.5 or 

greater in their first semester graduated in six years. 
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Figure 1.  Four and Six Year Graduation Rates of First-Time Full-Time Freshmen by GPA 

Deciles* 

 

*The fall freshmen cohorts of 2006 through 2008 were combined. 

 

Figure 2.  Comparison of Graduation and Retention Rates of First-time Full-time Freshmen by 

First Semester GPA Above and Below 2.5. 

 

   *The fall freshmen cohorts of 2006 through 2008 were combined. 
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Even when evaluating results for students above and below 3.0 the differences are 

dramatic (Figure 3).  Only 34% of students with a first semester GPA below 3.0 (approximately 

the median) graduated in four years, which is almost 27 percentage points lower than students 

above the median. 

 

Figure 3.  Comparison of Graduation and Retention Rates of First-time Full-time Freshmen by 

First Semester GPA Above and Below 3.0.  

 

   *The fall freshmen cohorts of 2006 through 2008 were combined. 
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transactional data such as learning management system (LMS) logins and service utilization such 

as advising and tutoring center visits with other more traditional measures in an attempt to 

identify at risk students before any grades appear on their transcripts. 

 

Literature Review 

The study has cast a wide net in terms of assembling a variety of data for use in studying 

academic, social, and economic factors to determine elevated risk of a low GPA, which can 

translate to increased risk of early attrition or longer time to degree.  Consistent with the 

retention study of Tinto (1987), we evaluate many types of data representing students’ 

interactions with their campus environment to determine if higher levels of campus engagement 

are predictive of improved freshmen outcomes.  These measures of engagement include 

interactions with the learning management system, intramural sports and fitness class 

participation, and academic advising and tutoring center visits.  It appears that students who are 

identified to be at risk in their first term and remain at the institution, continue to be at risk, with 

greater numbers leaving in the subsequent term (Singell and Waddell 2010).  This is consistent 

with the results at our institution which are presented in Figures 1, 2, and 3.  Methods capable of 

more accurate predictions will result in more effective utilization of campus resources, and 

higher retention and graduation rates.  Course-taking behavior is also important, particularly 

math readiness.  Herzog (2005) found math readiness to be “more important than aid in 

explaining freshmen dropout and transfer-out during both first and second semesters.”  Herzog 

also focused on both merit and need-based aid and the role that interaction of aid and academic 

preparedness plays in student retention.  Living within a 60 mile radius of the institution, the 

percent of students at a high school who take the SAT, along with the percentage at the high 
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school receiving free lunches was explored by Johnson (2008) underlining the need to examine 

the role of the secondary school and socio-economic factors in developing a model.  Persistence 

increases among students closer to the institution and not surprisingly, decreases among those 

who were from schools having a high percentage of students receiving free school lunches.  The 

role of differing stop-out patterns exhibited by grant, work-study, and loan recipients (Johnson 

2010) demonstrated that grants have the highest positive effect on persistence, but its effect 

decreases more than that of loans after controlling for other factors.  Resource utilization was 

studied (Robbins et al. 2009) using a tracking system.  Services and resources were grouped into 

academic services, recreational resources, social measures and advising sessions, with all but 

social measures demonstrating positive associations with GPA even after controlling for other 

demographic and risk factors.  These papers have demonstrated that researchers are examining a 

range of factors in studying and modeling risk.  This research underlines that fact that student 

success is the result of complex interactions between student engagement, academic service 

utilization, financial metrics, and demographics, which are combined with student academic 

characteristics that include high school GPA and SAT scores.  Data mining is ideal for 

developing a model with a large diverse number of predictors. 

 

Data Sources 

 An attempt was made to include as many types of data as possible, so learning 

management system logins, not previously explored by our institution were included.  Building 

the dataset began with the traditional measures such as demographics (gender, ethnicity, and 

geographic area of residence when admitted), to which were added high school GPA and SAT 

scores.  In order to control for high school GPA, the average SAT scores of the high schools 
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were incorporated.  Because we are modeling the freshmen GPA at the mid-semester point, in 

terms of college academic characteristics we only have available the fall semester courses in 

which the students are enrolled, the area the major, whether a major has been declared, and how 

many college credits were accepted by the institution upon admission.  The number of AP credits 

received was also captured, with those credits separated into STEM and non-STEM totals. 

 To explore the effect of high failure rate courses on student outcomes, courses with 

enrollments of 70 or more students having 10% or more D, F, or W grades were identified and 

categorized as STEM or non-STEM courses.  The total number of high DFW-rate courses, and 

the highest DFW rate for each student (by STEM indicator) was included in the model.  The 

percentage of freshmen in each DFW course was also tabulated and that percentage for the 

corresponding course was additionally added.  The rationale for examining the percentage of 

freshmen in these difficult courses is that if the courses are populated by large numbers of upper 

level students, it may make the course even more difficult for freshmen who are less 

experienced. 

Since student engagement has long been associated with student success, the use of service 

and academic utilization data was included to determine if it resulted in improved models.  

Student interactions with the university’s learning management system, academic advising, 

tutoring center visits, intramural sports, and fitness classes, have been incorporated in the 

analysis to evaluate the association of GPA with students’ engagement in the university 

environment.  

Much of the data pertaining to interactions with student services and learning management 

system logins has not been stored long term.  In fact the LMS login data was not available for 

any fall semester prior to fall 2014.  As a result, part of the data mining process has included the 
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initial collecting, saving, and storing of the data.  Programs are being developed to automate the 

formatting and aggregation of the transactional data so it can easily be merged with student 

records and utilized in the data mining process.  For modeling use of the LMS logins, only one 

login per course per hour was counted, so an individual course can have at most 24 logins per 

day.  This eliminated multiple logins that occurred just few minutes and sometimes a few 

seconds apart.  Further, the courses were categorized as STEM or non-STEM.  Next the STEM 

and non-STEM logins were totaled for week 1 and separately for weeks 2 through 6.  Finally the 

STEM and non-STEM logins were divided by their respective STEM and non-STEM course 

totals to obtain per-course login rates. 

Financial aid data was also assembled.  The measures that were captured are the expected 

family contribution, adjusted gross income (AGI), types and amounts of disbursed aid (athletics 

aid, loans, grants, scholarships, and work-study).  Pell Grants and the Tuition Assistance 

Program (TAP) recipients were also added to the model. 

Because the data mining initiative is new and many data sources are being collected and 

explored for the first time, research and evaluation of the methods for summarizing and using the 

data in the model is ongoing.  The expectation is that additional data sources will be added.  A 

detailed list of the data elements can be found in the appendix. 

 

Methodology 

Different models were compared to find the ones that provide the most accurate 

prediction of the first semester GPA with the lowest average squared errors (ASE)1 .   In 

developing data mining models it is advisable to partition the data into training and validation 

                                                           
1 ASE = SSE/N or ASE = (Sum of Squared Errors)/N 
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sets.  The training set is used for model development, then the model is run on the validation set 

to check its accuracy and calculate the prediction error. It is also important to avoid developing 

an overly complex model, overfitting.  If the model is too complex it can be influenced by 

random noise, and if there are outliers an overly complex model may be fit to them.  

Unfortunately, when using such a model on new data its ability to accurately predict the 

outcomes will be diminished.  One way of detecting overfitting is to compare the ASE of the 

training and validation data.  A large increase in the ASE when running the model on the 

validation data may be a sign of overfitting. However, with less than 3,000 subjects and over 50 

variables to predict the GPA’s of the bottom 20% of the class, setting aside 40% of the data as is 

typical for a validation set, is not practical because it would not leave enough of the lower GPA 

students for building the model.  As an alternative, k-fold cross validation was used.  It works 

with limited amounts of data, and its initial steps are similar to traditional analysis. The entire 

dataset is used to choose the predictors and the error is estimated by averaging the error of the k 

test samples.  In subsequent years, when more than one semester of LMS data has been 

collected, the easier to implement training-validation-partitioning method can be used. 

To implement k-fold cross validation, the dataset is divided into k equal groups or folds.  

In this case five folds were used.  Four groups are taken together and are used to train the data 

and one is used for validation.  The procedure is repeated five times, each time leaving out a 

different set for validation as in Figure 4.  The model error is estimated by averaging the errors 

of the five validation samples.  
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Figure 4:  K-fold cross-validation sampling design. 

 

 

 Five different modeling methods were tested and compared using k-fold cross validation.  

A general data mining diagram for running a modeling method with k-fold cross validation can 

be seen in Figure 5.  Filters can be applied to select the proper groups for the validation and 

training sets for each fold, then the training and validation sets are sent to the modeling nodes 

where the same modeling method is run for each of the five training sets.  The model is then run 

on each validation set for calculating the error.  A model comparison node provides the relevant 

model evaluation statistics for each of the five folds. 

The five different methods used to develop predictive models were:  CHAID2 (chi-square 

automatic interaction detection), BFOS-CART (the classification and regression tree method; 

Breiman, Friedman, Olshen, and Stone, 1984), a general decision tree, gradient boosting, and 

linear regression.   Each model was developed to predict the first semester GPA of the first-time 

                                                           
2 The CHAID and CART methods have been closely approximated by using Enterprise Miner settings.  SAS Institute Inc. 2014.  

SAS® Enterprise Miner™ 13.2: Reference Help.  Cary, NC: SAS Institute Inc. p. 755-758. 
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full-time fall 2014 freshmen cohort.  The average squared errors (ASE) of the five validation 

samples for each method were averaged and compared with the average errors of the training 

samples to check for overfitting and to find the method with the smallest error. 

 

Figure 5.  A general data-mining diagram for running 5-fold cross-validation to evaluate the 

accuracy of a model. 

 

 With the exception of linear regression, the methods tested were decision tree-based 

methods.  The CART method begins by doing an exhaustive search for the best binary split.  It 

then splits categorical predictors into a smaller number of groups or finds the optimal split in 

numerical measures.  Each successive split is again split in two until no further splits are 

possible.  The result is a tree of maximum possible size, which is then pruned back 

algorithmically.  For interval targets the variance is used to assess the splits; for nominal targets 

the Gini impurity measure is used.  Pruning starts with the split that has the smallest contribution 



12 
 

to the model and missing data is assigned to the largest node of a split.  This method creates a set 

of nested binary decision rules to predict an outcome. 

Unlike CART with binary splits evaluated by the variance or misclassification measures, the 

CHAID algorithm uses the chi-square test (or the F test for interval targets) to determine 

significant splits and finds independent variables with the strongest association with the 

outcome.  A Bonferroni correction to the p-value is applied prior to the split.  CHAID may find 

multiple splits in continuous variables, and allows splitting of categorical data into more than 

two categories.  This may result in very wide trees with numerous nodes at the first level.  As 

with CART, CHAID allows different predictors for different sides of a split.  The CHAID 

algorithm will halt when statistically significant splits are no longer found in the data. 

The software was also configured to run a general decision tree that does not conform or 

approximate mainstream methods found in the literature.  To control for the large number of 

nodes at each level, the model was restricted to up to four-way splits (4 branches), as opposed to 

CHAID which is finds and utilizes all significant splits and CART which splits each node in two.  

The F test was used to evaluate the variance of the nodes and the depth of the overall tree was 

restricted to 6 levels.  Missing values were assigned to produce an optimal split with the ASE 

used to evaluate the subtrees.  The software’s cross validation option was selected in order to 

perform the cross validation procedure for each subtree.  That results in a sequence of estimates 

using the cross validation method explained earlier to select the optimal subtree. 

The final tree method was gradient boosting which uses a partitioning algorithm 

developed by Jerome Friedman.  At each level of the tree the data is resampled a number of 

times without replacement.  A random sample is drawn at each iteration from the training data 

set and the sample is used to update the model.  The successive resampling results in a weighted 
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average of the re-sampled data.   The weights assigned at each iteration improve the accuracy of 

the predictions.  The result is a series of decision trees, each one adjusted with new weights to 

improve the accuracy of the estimates or to correct the misclassifications present in the previous 

tree.  Because the results at each stage are weighted and combined into a final model, there is no 

resulting tree diagram.  However, the scoring code that is generated allows the model to be used 

to score new data for predicting outcomes. 

The final method tested was linear regression.  The discussion that follows highlights 

some of the difficulties in implementing linear regression in a data mining environment.  

Decision tree methods are able to handle missing values by combining them with another 

category or using surrogate rules to replace them.  Linear regression, on the other hand, will 

listwise delete the missing values.  Data in this study was obtained from multiple campus 

sources, and as such, many students did not have any records for some predictors.  For example, 

students who did not apply for financial aid will have missing data on financial aid measures, a 

small percentage of the entering freshmen do not have SAT scores, and some students may not 

have courses utilizing the LMS.  These measures result in an excessive amount of data being 

listwise deleted.  The software has an imputation node that can be configured to impute missing 

data.  For this study the distribution method was used whereby replacement values are calculated 

from random percentiles of the distributions of the predictors.  There are many imputation 

methods and a thorough study of missingness for such a large number of variables is very time 

consuming.  If the linear regression method appeared promising, other imputation methods 

would be explored and studied in greater detail.  Another issue of concern in the linear regression 

analysis was multicollinearity.  That is another issue that can take time to address thoroughly.  

For this analysis clustering was employed to reduce multicollinearity.  With a large volume of 
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predictors, it would be difficult and time consuming to evaluate all of the potential 

multicollinearity issues, so the software clustering node was used to group highly correlated 

variables.  In each cluster, the variable with the highest correlation coefficient was retained and 

entered into the modeling process, and the others were eliminated. 

Results 

Gradient boosting had the smallest average ASE followed by that of CART (Table 1).  

Additionally, gradient boosting and BFOS-CART, on average, had the smallest differences 

between the validation and training errors.  Those absolute errors were both approximately 0.02, 

while for the other methods it was greater than 0.1.  Gradient boosting had the lowest average 

Table 1.  Average Squared Error (ASE) Results for the Five Data Mining Methods 

 

validation error, 0.375, while CHAID and linear regression had the highest at 0.49.  Though 

gradient boosting had the lowest average validation ASE, the CART method was chosen for the 

modeling process.  Close inspection of the CART results did not show evidence of any problems 

with the fit of the model, and it had a relatively low average ASE.  The main reason for choosing 

the CART model is that gradient boosting, without an actual tree diagram, would make the 
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results much more difficult to explain, use, and visualize.  Having a set of student characteristics 

assigned to each node, as well as the ability to graphically display the decision tree adds to the 

utility of the CART model.  Once the CART method was selected, the model was run again 

using all of the data, and scoring output was created. 

The score distribution table, Figure 2, which is part of the decision tree output allows us to 

view the frequencies of the model predictions.  Twenty bins, the prediction ranges, are created by 

evenly dividing the interval between the lowest and highest predictions, 1.30 and 3.76.  (Intervals 

without students are not listed.)  The model score is calculated by taking the mid-point of the 

prediction range.  The average GPA column contains the average GPA of the N students in the 

data that fall within the given range.  The table can aid us in choosing GPA cut points for 

different interventions since it shows the number of students at the various prediction levels. 

Table 2.  Score Distribution Table 
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Table 3.  Variable Importance Table. 
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Table 3 lists the relative importance measure for variables that were entered into the 

modeling process.  The relative importance measure is evaluated by using the reduction in the 

sum of squares that results when a node is split, summing over all of the nodes.3  In the variable 

importance calculation when variables are highly correlated they will both receive credit for the 

sum of squares reduction, hence the relative importance of highly correlated variables will be 

about the same.  For that reason some measures may rank high on the variable importance list, 

but do not appear as a predictors in the decision tree. 

On Table 3 high school GPA is highest on the variable importance list for predicting 

freshmen GPA when modeled mid-semester, followed by whether or not a student received a 

scholarship.  Next are AP STEM and non-STEM courses accepted for credit, and then LMS 

system logins.  A student’s combined SAT Math and Critical Reading Exam Score is 15th on the 

list just behind the high school average score for the combined SAT Math, Critical Reading, and 

Writing exam.  Some other measures that exceeded SAT scores in relative importance are 

whether a student has a declared major, and the geographic area of residence when admitted. 

The decision tree generated by the model is presented in two parts in Figures 6 and 7.  The 

CART method, employing only binary splits as previously discussed, selected high school GPA 

for the first branch of the tree modeling first semester freshmen GPA.  High school GPA was 

split into two nodes, less than or equal to 92.0, and greater than 92.0 or missing.  Figure 6 

displays the portion of the decision tree with high school GPA less than or equal to 92.0 and 

Figure 7 has the portion of the tree with high school GPA greater than 92.0 or missing. 

 

                                                           
3 .  SAS Institute Inc. 2014.  SAS® Enterprise Miner™ 13.2: Reference Help.  Cary, NC: SAS Institute Inc. p. 794. 
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Figure 6.  Part 1 of the CART Decision Tree Model Predicting Freshmen GPA for Students 

Having a High School GPA <= 92.0. 

 



19 
 

Figure 7.  Part 2 of the CART Decision Tree Model Predicting Freshmen GPA for Students 

Having a HS GPA > 92.0 or missing. 
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The next branch for the lower high school GPA group is the non-STEM course LMS 

logins during weeks 2 through 6.  Average high school SAT scores appear at the next level.  

Figure 7 displays the section of the tree having the students with a high school GPA greater than 

92.0 or missing.  A small number of students, some of them international students, do not have a 

high school GPA in their records.  The CART algorithm has combined those observations with 

the node having high school GPA > 92.0.  In that way, those observations remain in the model 

and are not listwise deleted as they would be in a standard linear regression analysis.  The next 

two levels are different than those for the lower high school GPA students.  The next split after 

high school GPA is whether the students received a scholarship or not.  For those who received a 

scholarship another high school GPA node follows that splits the students into groups above and 

below 96.5, while for those without a scholarship LMS non-STEM logins during weeks 2 

through 6 is most important 

Examining both sections of the tree in Figures 6 and 7, we see that LMS logins factored 

in numerous splits confirming that students’ interactions with the college environment plays a 

role in their academic success.  We also observe the differences in the decision rules for students 

in the higher high school GPA group as compared to the students in the lower high school GPA 

group. 

The actual GPA predictions can be found in the nodes in the right-most column of the 

tree and are the average GPA’s of the students represented by the characteristics of each 

particular node.  The characteristics associated with the GPA predictions can be ascertained by 

tracing the paths from the high school GPA node on the left to the desired average GPA node on 

the right.  For example, to determine the characteristics for the students represented in the top 

right average GPA = 3.63 node in figure 6, we have students with high school GPA < =92, LMS 
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logins per non-STEM course in weeks 2 to 6 >= 11.3 or missing, high school average SAT 

critical reading > 570, SAT Math – Critical Reading combined score > 1360, and finally, 

receiving credit for 1 or more AP STEM courses.  The prediction, 3.63, is the actual average 

GPA of students in the fall 2014 cohort having the characteristics just listed.  Hence, we can say 

that students with characteristics represented in the final nodes have, on average, the GPA that is 

listed in the node. 

The average GPA nodes have been color-coded to assign estimated risk to the GPA 

levels.  The red nodes have average GPA’s of 2.20 or less and are at the highest risk of receiving 

a low GPA  The orange nodes represent high risk students and on average have GPA’s of above 

2.20 to 2.75.  Yellow nodes with average GPA’s of above 2.75 to 3.0 represent moderate risk, 

white nodes represent neutral risk with average GPA’s ranging from above 3.0 to below 3.5, and 

the green nodes are low risk students who, on average, have GPA’s of 3.5 and above.  The given 

risk levels can be adjusted based on university outcomes and the number of students assigned to 

various planned interventions. 

Conclusion 

It is clear from studying the decision tree model that weaker students from high schools with 

lower average SAT scores, who additionally are interacting with the LMS at diminished rates are 

over-represented in the lower GPA groups.  The model can assist in identifying these students 

before the end of the semester so they can be assigned to interventions that may help to improve 

their outcomes.  Since enrollment in courses with higher failure rates is also a factor appearing in 

the decision tree, developing a pre-orientation model could assist advisors in steering some 

students from course loads that may be excessively burdensome.  The model results can also be 

shared with departments to inform their advising and intervention efforts.  Automated methods 
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for easily sharing the results are being planned.  The goal is to find the students who need 

assistance in fulfilling their potential, thereby reducing the number who end up leaving due to 

poor performance. 
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Appendix 

 

Variable List 

Demographics 

Gender 

Ethnicity 

Area of residence at time of admission: Suffolk County, Nassau County, New York City, 

other NYS, other US, International 

 

Pre-college Characteristics 

High School GPA 

College Board SAT Averages by High School 

Average High School Critical Reading 

Average High School SAT Math 

Average High School SAT Critical Reading + Math 

SAT:  Math, Critical Reading, Writing, Math+Critical Reading 

 

College Characteristics 

Number of AP STEM courses accepted for credit 

Number of AP non-STEM courses accepted for credit 

Total credits accepted at time of admission 

Total STEM courses 

Total STEM units 

Total Non-STEM courses 

Total No-STEM units 

Class level  

Dorm Resident 

Intermural Sports Participation 

Fitness Class Participation 

Honors College 

Women in Science and Engineering 

Educational Opportunity Program 

Stony Brook University Math and Writing Placement Exams 

College of student’s major or area of interest:  Arts and Sciences, Engineering, Health Sciences, 

 Marine Science, Journalism, Business 

Major Group:  business, biological sciences health sciences, humanities and fine arts, 

physical sciences and math, social behavioral science, engineering and applied sciences, 

journalism, marine science, undeclared, other 

Major type:  declared major, undeclared major, area of interest 

High DFW Rate Courses: enrollment >= 70, percent DFW >=10% 

Total high DFW STEM units 

Total high DFW non-STEM units 

Highest DFW rate among the DFW Courses in which the student is enrolled 

Highest DFW rate among the DFW Courses in which the student is enrolled 
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Proportion of freshmen in a student’s highest DFW rate STEM course 

Proportion of freshmen in a student’s highest DFW rate non-STEM course 

Type of math course: high school level, beginning calculus, sophomore or higher math 

 

Financial Aid Measures 

Aid disbursed in the Fall 2014 – Spring 2015 academic year 

Total grant funds received 

Total Loans recorded by the Financial Aid Office 

Total scholarship funds received 

Total work study funds received 

Total athletics aid received 

Athletic aid, grant, loan, PLIS loan, subsidized/unsubsidized loan, scholarship, work study, TAP, 

Perkins, Pell indicators 

Adjusted Gross Income 

Federal Need 

Federal Expected Family Contribution 

Dependent status 

 

Services/Learning Management System (LMS) 

Advising Visits/Tutoring Center Usage 

Tutoring center appointment no shows 

Number of STEM Course Center Visits, weeks 1 to 6 

Number of non-STEM Course tutoring Center visits, weeks 1 to 6 

Advising Visits during week 1 

Advising visits during weeks 2 – 6 

Course Management System Logins 

F14_Stem_Login_N 

F14_NonStem_Login_Week1_N 

Non-STEM course related logins during weeks 2 - 6 

Non-STEM Course related logins during week 1 

STEM Course related logins during week 1 

STEM Course related logins during weeks 2 to 6 

Number of STEM course logins per STEM course using the CMS, weeks 2 – 6. 

Number of non-STEM course logins per non-STEM courses using the CMS, weeks 2 – 6. 

 


