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Why Use Data Mining?

• Enables the extraction of information from large amounts of data.

• Incorporates analytic tools for data-driven decision making.

• Uses modeling techniques to apply results to future data.

– The goal is to develop a model, not only to find factors 
significantly associated with the outcomes.

• Incorporates statistics, pattern recognition, and mathematics.

• Few assumptions to satisfy relative to traditional hypothesis driven 
methods.

• A variety of different methods for different types of data and 
predictive needs.

• Able to handle a great volume of data with hundreds of predictors.
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Data Mining Terminology

Decision tree methods/algorithms:
CHAID and CART

Bagging and Boosting

Regression algorithms:
LARS and LASSO

Diagnostics measures:
ROC Curves

Gini Coefficient and Gini Index

Model testing and improvement:
Cross-validation
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Receiver Operating Characteristic 
(ROC) Curves

• Used to discriminate between binary outcomes.

• Originally used during WWII in signal detection to distinguish

between enemy and friendly aircraft on the radar screen. In the

1970’s it was realized that signal detection theory could be useful

in evaluating medical test results.

• ROC curves can evaluate how well a diagnostic test can correctly

separate results into those with and without a disease. It can be

used for other types of binary outcomes, such as models

predicting retention and graduation.

• The area under the ROC curve is used to evaluate how well a

model correctly discriminates between the outcomes.
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ROC Curves

The greater the area under the ROC curve, the better the discrimination 
between positive and negative outcomes.  It is imperative to examine both 
the true positive and false positive rates, not just the percentage of 
correct predictions.

Sensitivity: True positive rate—

probability of a positive result when the 

disease is present or the outcome 

occurs.  a/(a+c)

Specificity: True negative rate—

probability of a negative result when the 

disease is not present or the outcome 

does not occur. d/(b+d)

False positive rate: 1 - specificity
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ROC Curve:
Cutpoints
• The sensitivity and specificity vary with the cutpoints of 

the diagnostic test or the predicted probability of a logistic 

model.  A ROC curve can be created by plotting the true 

and false positive rates at different model cutpoints.

• As the sensitivity increases the specificity decreases.

• The area under the ROC curve indicates how well the test 

discriminates between positive and negative outcome 

groups.

• AUC = 0.5 indicates no ability to discriminate between 
groups.

• Compare ROC curves to determine the model that 
does the best job at discriminating between groups. 0
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Gini Coefficient
The Lorenz Curve was developed by the economist 

Max Lorenz in 1905 to represent the distribution of 

wealth and the Italian statistician Corrado Gini 

developed the Gini Coefficient in 1912 as a measure 

of income inequality.

The x-axis is the cumulative population proportion.  

The y-axis is the cumulative income.   Each point on 

the Lorenz curve gives the proportion of income (y 

value) possessed by the corresponding proportion of 

the population.  For example on the curve to the right, 

70% of the population has only 40% of the wealth.

The closer the Lorenz curve is to the diagonal, the 

more equal the income distribution.
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Gini Coefficient
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The Gini Coefficient is 1 minus twice the area 

under the Lorenz Curve.

In predictive modeling the Gini Coefficient is 

used to evaluate the strength of a model, in 

which case a greater Gini coefficient is better.  
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Gini Index:
An Impurity Measure
The Gini Index is used for selecting the best 

way to split data between nodes in decision 

trees by measuring the degree of impurity of 

the nodes. When there are only two 

categories the maximum value for the Gini 

Index  = 0.5, indicating the greatest degree 

of impurity.

𝐺𝑖𝑛𝑖 𝑡 = 1 − σ𝑖=0
𝑐−1 𝑝 𝑖|𝑡 2

c = the number of classes, t represents the node 

and p is the probability of group i membership.

A word of caution:  Sometimes the Gini Coefficient is 

referred to as the Gini Index.

For two categories—x axis: group 1 probability, 
y axis: Gini Index
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Gain Chart

Jaffery T., Liu SX.  Measuring Campaign 
Performance using Cumulative Lift and Gain 
Chart.  SAS Global Forum 2009. 

Gain and lift are often used to evaluate 
models used for direct marketing, but they 
can be used to compare decision tree models 
for other uses, as well.
The diagonal line represents random response 
with no model.  To evaluate the effectiveness 
of a model, the data are sorted in descending 
order of the probability of a positive response, 
often binned by deciles.   The cumulative rate 
of a positive response rate at each decile is 
evaluated.
In the example 70% of the positive responses 
came from the first three deciles or 30% of the 
subjects.
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Lift Charts
The cumulative lift chart evaluates how many 
times better the model performs compared to 
having no model at all.  Considering the example 
on the previous slide at the third decile, 30% of 
the subjects accounted for 70% of the total 
responses.  70/30 = 2.33, so the model performs 
2.33 times better than having no model.
Lift and gain charts are used to compare models 
and to determine whether using a particular 
model is worthwhile.  If this example was for a 
direct mailing, we would expect that 70% of the 
total responses could be obtained by sending the 
mailing to just 30% of the sample.

Jaffery T., Liu SX.  Measuring Campaign 
Performance using Cumulative Lift and 
Gain Chart. SAS Global Forum 2009. 
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Linear Regression in a
Data Mining Environment

• Linear regression is an available data mining modeling tool, however it 

is important to be mindful of missing data and multicollinearity.

• Decision tree methods are able to handle missing values by combining 

them with another category or placing them in a category with other 

values.  They can also be replaced by using surrogate rules.  Linear 

regression, on the other hand, will listwise delete the missing values.

• When using data having dozens or even hundreds of potential 

predictors it could happen that not much data remains.

• It is important to note the number of observations remaining in your 

model and consider using an imputation method provided by the 

software package if listwise deletion is a serious problem. 
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Clustering

• With a large volume of predictors, it would 

be difficult and time consuming to evaluate 

all of the potential multicollinearity issues.

• Clustering can be used to group highly 

correlated variables.

• In each cluster, the variable with the 

highest correlation coefficient can be 

retained and entered into the modeling 

process, and the others are eliminated.
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LASSO:
Least 
Absolute 
Shrinkage 
and 
Selection 
Operator

The LASSO algorithm shrinks the independent variable 

coefficients and sets some of them to zero to simplify the model.

Ordinary Least Squares regression equation:

𝑦 = 𝑥0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛

The sum of the squared residuals is minimized in OLS 

regression.  However, LASSO requires that this minimization is 

subject to the sum of the absolute values of the coefficients 

being less than or equal to some value t, which is referred to as 

a tuning parameter.

෍
𝑗
𝛽𝑗 ≤ 𝑡

The constraint forces some coefficients to be set to zero and 

results in a simpler model.  As the tuning parameter increases 

to a very large value, it approaches the OLS regression model.  

It is important to test a range of values for t.
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LARS:
Least 
Angle 
Regression

The LARS procedure is an efficient method 

computationally and begins the like ordinary least squares 

regression by adding the predictor xi with the highest 

correlation to y.  Next the coefficient  βi is increased (or 

decreased if βi is negative) until some other predictor xk is 

just as correlated with the residuals as is xi. The coefficient 

of that predictor is increased until that predictor is no 

longer the one most correlated with the residual r. “At this 

point LARS parts company with Forward Selection. Instead 

of continuing along xj1, LARS proceeds in a direction 

equiangular between the two predictors until a third 

variable xj3 earns its way into the ‘most correlated’ set. 

LARS then proceeds equiangularily between xj1,x j2 and xj3, 

i.e. along the ‘least angle direction’, until a fourth variable 

enters, etc.”1

1Efron B, et al., Least Angle 
Regression.  2002. 
retrieved from 
http://web.stanford.edu/~
hastie/Papers/LARS/Least
Angle_2002.pdf
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Bagging:
Bootstrap 
Aggregating

• Bootstrapping is used to form datasets

• We have M datasets by sampling with replacement

• A separate tree is created using each of the M datasets.

• The improved final model is a combination or average of the M

decision trees.
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AdaBoost: Adaptive Boosting
• The decision tree is fit to the entire training set.

• Misclassified observations are weighted to encourage correct 
classification.

• This is done repeatedly with new weights assigned at each iteration to 
improve the accuracy of the predictions.

• The result is a series of decision trees, each one adjusted with new weights 

based on the accuracy of the estimates or classifications of the previous tree.

• Although boosting generally results in an improved model, because the results 

at each stage are weighted and combined into a final model, there is no 

resulting tree diagram.

• Scoring code is generated by the software package allowing the model to 
be used to score new data for predicting outcomes.
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BFOS CART Method
Breiman, Friedman, Olshen, Stone

Classification and Regression Trees

• The method does an exhaustive search for the best binary split.

• It splits categorical predictors into two groups, or finds the optimal binary 

split in numerical measures.

• Each successive split is again split in two until no further splits are possible.

• The result is a tree of maximum possible size, which is then pruned back.

• For interval targets the variance is use to assess the splits;  For nominal targets the 
Gini impurity measure is used.

• Pruning starts with the split that has the smallest contribution to the model

• The missing data is assigned to the largest node of a split

• Creates a set of nested binary decision rules to predict an outcome.



‘-

19

CHAID: Chi-squared Automatic Interaction 
Detection

Unlike CART with binary splits evaluated by misclassification measures, the 

CHAID algorithm uses the chi-square test (or the F test for interval targets) to 

determine significant splits and find independent variables with the strongest 

association with the outcome.  A Bonferroni correction to the p-value is 

applied prior to the split.

It may find multiple splits in continuous variables, and allows splitting of data 

into more than two categories.

As with CART, CHAID allows different predictors for different sides of a split.

The CHAID algorithm will halt when statistically significant splits are no longer 

found in the data.
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Data Partitioning
• Partitioning is used to avoid over- or under-fitting. The data are divided into three

parts: training, validation, and testing.
• The training partition is used to build the model.
• The validation partition is set aside and is used to test the accuracy and fine tune the

model.
• The prediction error is calculated using the validation data.
• An increase in the error in the validation set may be caused by over-fitting. The

model may need modification.
• Often 60% is used for training the model and 40% is used for validation--or 40%

for training, 30% for validation, and 30% for testing
• Problem: What if the sample size is small? E.g., predicting freshmen retention

where the retention rate is usually around 90% and there are 3,000 freshmen.
That means that the training sample may only have around 180 students who
are not retained to develop a model that may have 50 or more predictors. Using
K-fold cross validation is the answer.
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K-fold Cross-validation
for Evaluating Model Performance

Why use k-fold cross-validation?

It works with limited data.

• The initial steps are the similar to traditional data analysis.

• The entire dataset is used to choose the predictors.

• Cross-validation is used to evaluate the model, not to develop 
the model.

• The error is estimated by averaging the error of the K test 
samples.
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K = 2

K = 3

K = 4

K = 5

For each Ki the entire dataset was divided into 5 equal parts

5-Fold Cross Validation Plan
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5-Fold Cross Validation Plan
For each Ki the entire dataset was divided into 5 equal parts
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Cross Validation Results: Average Squared Error (ASE) Results for 
Five Data Mining Methods to Predict Freshmen GPA

K Folds

Validation 

ASE

Training     

ASE

Validation 

ASE

Training     

ASE

Validation 

ASE

Training     

ASE

Validation 

ASE

Training     

ASE

Validation 

ASE

Training     

ASE

1 0.333 0.363 0.394 0.427 0.444 0.355 0.421 0.335 0.374 0.396

2 0.353 0.358 0.425 0.423 0.479 0.325 0.432 0.330 0.477 0.388

3 0.377 0.351 0.429 0.432 0.508 0.312 0.472 0.325 0.515 0.363

4 0.391 0.351 0.436 0.433 0.510 0.304 0.495 0.304 0.522 0.376

5 0.422 0.343 0.525 0.393 0.511 0.345 0.515 0.312 0.561 0.371

Average 

ASE 0.375 0.353 0.442 0.422 0.490 0.328 0.467 0.321 0.490 0.379

Gradiant Boosting BFOS-CART CHAID Decision Tree Linear Regression

ASE = (Sum of Squared Errors)/N
Gradient boosting had the smallest average ASE followed by CART. Gradient boosting and BFOS-
CART, on average, had the smallest differences between the validation and training errors.  The 
CART method was chosen for the modeling process—Had relatively low ASE. Gradient boosting, 
without an actual tree diagram, would make the results more difficult to explain.
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Portion of CART Tree for HS GPA<=92.0

LMS logins per non-STEM crs, wk 2-6 >=11.3 or 
missing

Avg. SAT of the HS         
CR >570

SAT Math CR 
>1360

AP 
STEM 

Crs>=1 

Avg. 
GPA = 
3.63

N = 46

AP 
Stem 

Crs = 0

Avg. 
GPA = 
3.20

N = 23

SAT Math CR 
<=1360

Highest  
DFW 
STEM 
Crs. 

Rate>= 
17%

Avg. 
GPA = 
2.92

N= 34

Highest 
DFW 
STEM 
Crs. 
Rate 
<17%

Avg. 
GPA = 
3.25

N=94

Avg. SAT of the HS 
CR<=570

Logins per 
STEM crs, 

wk 2-6 
>=32.2

SAT 
Math 
>=680

Avg. 
GPA = 
3.35

N=78

SAT 
Math<
680 or 
miss.

Avg. 
GPA = 
3.09 

N = 121

Logins per 
STEM crs, 

wk 2-6 <32.2

Non-
STEM 

crs logs 
> = 3 or 

miss.

Avg. 
GPA = 
2.94   

N = 371

Non-
STEM 

crs
logins 

<3

Avg. 
GPA = 
2.53

N = 57

LMS logins per non-STEM crs, wks 2-6<11.3

Avg. SAT of the HS         
CR >=540

AP  STEM 
Crs. >=1

STEM 
crs logs 

Wk. 
1>=5 or 

miss.

Avg. 
GPA = 
3.21

N = 64

STEM 
crs logs

Wk 1   
< 5

Avg. 
GPA = 
2.69

N=16

AP STEM  
Crs =  0 

STEM 
logs 

Wk. 1 
>=5 or 
miss.

Avg. 
GPA = 
2.75

N = 73

STEM 
crs logs 
Wk. 1 

<5

Avg. 
GPA = 
2.12

N= 18

Avg. SAT of the HS 
CR < 540

Logs per 
STEM crs, wk
2-6 >=5.3 or 

miss

STEM 
crs logs 

Wk 1 
>=1 or 
miss.

Avg. 
GPA = 
2.62

N = 305

STEM 
crs

kogs
Wk 1    
= 0

Avg. 
GPA = 
1.94

N = 25

Logs per 
STEM 

crs. wk
2-6 < 
5.3

Avg. 
GPA = 
1.59

N = 13


