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Adopted Cell Transfer (ACT) Treatment

a Tumour excised

Tumour-infiltrating
Lymphocytes(TILs)

and T-cel

T-cell expansion
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T-cell expansion
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1. Adoptive cell therapy has limitations on short-lived responses and limited efficacy in solid tumors
2.The fate of T cells can be determined in the first division after T cell priming.

Met et al. Semin Immunopathol (2019).



Need strategies to manipulate T cells before priming

Directly manipulate naive T cells

Allow flexible priming and activation of manipulated naive T cells in vivo, with

therapies that enhance priming.
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Determinants of the Tuft Cell
Lineage in Small Cell
Carcinomas

Kamil Taneja
Vakoc Lab
Cold Spring Harbor Lab
Genetics Speed Science 2024



Small Cell Carcinomas

1. Neuroendocrine
2. Tuft
3. Triple Negative/Inflammatory

Goal: Genetic and Epigenetic Requirements of the Tuft Cell Lineage
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Oncogenes
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Reprogramming Oncogenes
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Cell of Origin Model
In Vivo
Tuft Cell Specific

Universal Mutations (p53 and rb1)
+

Subtype Specific Alterations (myc, PTEN)

Transdifferentiation Model
Xenograft
Basal Cells
Oncogenic Alterations
Transdifferentiation Specific Alterations
Lineage Tracing
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Mechanisms of intestinal regeneration?

1. Homeostasis

Enteroendocrine

Cel
Goblet Cell
T Tuft Cell

|
Secretory
Enterocytes ~ Progenitor

-

Cheng and Leblond 1974, Potten et al. 1977, Barker et al. 2007, Buczacki et al. 2013, Nusse et al. 2018, Ayyaz et al. 2019, Murata et al. 2020, Cheng et al. 2019, Beyaz et al. 2016



Siepel Lab

Develop probabilistic and mathematical models to address questions 1n evolutionary
biology, human health, agriculture, and the environment

L uiz Machado
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Cancer Evolution

Gene expression

Population Genetics
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Population Genetics

Recombination breakpoints
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Development of neural network-based methods to infer Adaptive introgression
iIn Ancestral Recombination Graphs

Population Genetics

Time
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Adaptive Introgression

Gene Flow

Migration

Species 1 Species 2
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Adaptive Introgression

Positive
Selection

Migration

Adaptive Introgression
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Mechanisms of human regeneration?
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Chromosome Topology
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Dynamics of DNA
Replication in
Yarrowia lipolytica

e

Kim Hane
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Initiation of DNA Replication in Eukaryotes
@ @ ® o ) o

PDB ID:5ZR1 PDB ID:6WGG PDB ID:5V8F PDB ID:6RQC Modeled PDB ID:6FOL

1st Cdc6 and DNA threaded 1st MCM loaded 2nd MCM
ORC * MCM—Cdt1 * into MCM * 2nd ORC MCM-Cdt1 double hexamer
recruited recruited by ORC channel recruited recruited loaded
Orc6 ¢
Orc1-5
ACS2 M-M

h_ Costa A, Diffley JFX. 2022
A Annu. Rev. Biochem. 91:107-31



The Regulation of ORC in the Cell Cycle Differs
Between Eukaryotes
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Yarrowia lipolytica is Evolutionarily Far from
cerevisiae
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T Cell Exclusion in Pancreatic Ductal
Adenocarcinoma (PDA)

1. T cells are unable to enter cancer cell nests
2. The cancer is able to grow and thrive

How?



‘ Cancer .
CAF 0 cel /N~ KRT19 Tumor Periphery

‘@ T Cell i Apoptotic @ cCxcLi2
Cancer Cell

* PDA s coated with @ @ |
CXCL12 and Keratin 19 AMD3100

* CXCL12 interacts with
T cells by binding to
their CXCR4 receptors

* This interaction
inhibits CXCR3,
blocking migration
into the cancer nest

Cancer Cell Nest




The Krainer Lab is interested in:

1. Mechanisms of RNA processing,
Including splicing

Gene'speCiﬁC Antisense 2. Applying the above to therapy
OligOHUdeOtide Therapy f()r development for genetic diseases
Diffuse Midline Glioma —

Q\\\‘ Lucia Yang
Stﬁﬁﬁ?&k Speed Science 2024
Pl: Adrian Krainer
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Antisense Oligonucleotides ...as potential therapies for
(ASOs) different diseases

 ASOs have shown potential in many
diseases (e.g. spinal muscular
atrophy, cystic fibrosis, and now a

ASO variety of cancer types)

ASO
[TTTTTTT]
LI

MRNA
NEERRRRNNNNN

$
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My project then aims to...
‘ « Design and apply ASOs to target the
causative mutation for a class of

‘ ‘ « pediatric high-grade gliomas

,
“

Altered Protein Normal Protein No Protein

[ krainerlab.cshl.edu ]
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Colognato Lab % Oligodendrocytes

M|crogI|a

Astrocytes

Inhabit 20% - 40% of
most brain regions!!

Ollgodend rocytes

Neurons

Maryam (Minnie) Azmi
5t year candidate
Advisor: Dr. Holly Colognato

Created with BioRender.com



Oligodendrocytes (OLs) extend and wrap their processes
(arms) around multiple axons

e e N
W Oligodendrocytes :

\ (OLs)

Neurons
(axons)

Created with BioRender.com



OLs myelinate axons and aid neuronal survival,
differentiation, and plasticity (refinement of neurites)

Adult brain Developing brain
Myelinating OL ’ )
- =S =F
) +
]5 E v

7
' metformin

Myelinated nerve cell can j QES‘ ﬁ;
transmit electrical signals 100x
e, M., Azmi, M. A,, Umali, M.,
VI A & Colognato, H. (2023).

OL precursor cells

faster than an uncoated nerve!

Created with BioRender.com



Adaptive myelination continues throughout life!

Embarrassing
amount
of anime

&

Nail art on me
and my friends &
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The Veeramah Lab

Contemporary evolution in three-spined
stickleback in Alaska

(How does rapid local adaptation happen?)

Alexander Kwakye
Advisor: Krishna Veeramah



Veeramah Lab

* Analyses of temporal genomic data to answer specific evolutionary

guestions

PNAS

The role of emerging elites in the formation and
development of communities after the fall of the Roman
Empire

RESEARCH ARTICLE GENETICS

wf' OPEN ACCESS

A Founding of the community

B Expansion of the site 1

...... e - - ‘
® © = " e@® B . 5 e 0 e®
« me sam a
s s mom sse
= & (=]
® A - P‘s:
4 ) S
® g O & |
S @ - |
S P ?
B . -
LE [ O
G Expansion of the site II D Arival of a new population
°®@
. . ®

ORIGINAL ARTICLE

MOLECULAR ECOLOGY RVVSR I oAV

Whole genome sequencing reveals stepping-stone dispersal
buffered against founder effects in a range expanding seabird
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Predicting future from past: The genomic basis
of recurrent and rapid stickleback evolution
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How does rapid local adaptation happen?

e Understand rapid adaptation in a forward-in-time manner
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Model of rapid freshwater adaptation

Key
> Fish with few FWALs
~> Jackpot carriers

> Established FW fish
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Ceramide, a bioactive sphingolipid (SL), is known to
cause apoptosis, but the particulars of how such
ceramide-induced apoptosis is mediated remain elusive

in vitro

evidence Ceramide Cell growth
activated? /v
Ceramide /V/I’:TO RC1

Apoptosis

Biorender



Two major questions about sphingolipids (SL):

»\What regulates SL levels?

»What does ceramide regulate in order to
cause cell cycle arrest and/or apoptosis?



So far, | have discovered that FOXA1 controls the
steady-state levels of SL in breast cancer
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-Log10(Adjusted p-value)

PP2A alpha dependent

PP2A beta dependent

both PP2A alpha and beta dependent
neither PP2A alpha nor beta dependent

E0Enm

Log2(Foldchange)

What does
ceramide regulate?

Preliminary results indicate
that there are a number of
PP2A-dependent
dephosphorylation events
In response to ceramide,
iIncluding cell-cycle and
apoptosis related ones
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' Recalled cucumbers in salmonella outbreak

sickened 449, CDC says



Model of how Inflammatory Monocytes may promote
nitrate-dependent STm growth
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Adapted from McLaughlin et al. PLoS Pathogens 2019

« Specifically, | am interested
In how IMs contribute both
directly and indirectly to
the generation of host-
derived nitrate and the
subsequent expansion of
salmonella in the lumen of
the inflamed intestine.



Interpreting Bone Morphogenetic Protein Gradients in Vertebrate Development

Courtney Tello




Vertebrate development consists of complex cell signal coordination

bmp dimer
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Utilizing transplantation techniques we can get a better understanding of how progenitor cells interpret
Bone Morphogenetic Protein signal gradients in vivo
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Row, R., et al., 2016
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Microbial Regulation of Anti-tumor
Immunity in Metastatic Colorectal Cancer

Charlie Chung
Beyaz lab



Concerning facts about colorectal cancer (CRC)

—
American
TSodey | SEER stage 5-year relative survival rate

Of all cancer deaths
in people under 50, Localized 91%
colorectal is now ,

. Regional 73%
#1in men
#2 in women Distant 13%

Male Female
Knowledge gaps:

> What makes metastatic CRC an incurable disease?
O Immune evasion?
 Lack of models that recapitulate human disease?

Rate per 100,000

» What causes the rise of CRC in young adults?
d Diet?

O Obesity?

4 Stress? Pollution? Microbiome dysbiosis?

Number of deaths

Year of death Year of death

CA A Cancer J Clinicians, First published: 17 January 2024, DOI: (10.3322/caac.21820)



Microbial regulation of anti-tumor immunity in metastatic CRC

A pro-obesity HFD dampens
MHC-II expression in ISCs
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Beyaz et al. Cell Stem Cell 2021b

A pro-obesity HFD depletes
helicobacter species in the gut
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Cancer MHC-II expression is critical for requlating immune response against CRC

Cancer MHC-Il is necessary for Cancer MHC-II synergize with Cancer MHC-II is critical for
microbial anti-tumor effects immunotherapy immune response in human
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How does helicobacter species in the gut enhance cancer MHC
expression?

Lumen

Immune cell infiltration

Epithelia

metastasis inhibition
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Cancer Lipidomics lab
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Compartmentalization of Ceramide: Many
Ceramide Hypothesis
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Enzymes in PM-Ceramide metabolism

nSMasez

SM <> CermHex—Cer

\\




Identifying novel NRF2 functional binding partners in NSCLC

Speed Science session 2024
Santiago Espinosa | Vakoc Lab

09/5/23



The Vakoc Laboratory
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Select Key Publications:

RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukemia. Nature 478, 524-528 (2011).

Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nature Biotechnology. 33(6):661-7 (2015).
Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis. Cell. 170(5):875-888 (2017).

A TFIID-SAGA Perturbation that Targets MYB and Suppresses Acute Myeloid Leukemia. Cancer Cell. 33(1):13-28 (2018).
POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev. 32(13-14):915-928 (2018).
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Source: Connor Fitzpatrick



Our goal: to reveal novel mechanisms of
NRF2 function in KEAP1-mutant NSCLC

g
|_> NRF2 Target Genes
\Z\"7,\

2. To identify and biochemically characterize cancer-related NRF2 regulators

Created with BioRender.com



CULS3 is a putative coregulator of NRF2 activity in KEAP1-mutant LC

A549 CUL3 KO

PDB:5NLB

N
q
D
D
I
it

i 4 N
H) B | A

i Nuclear
Cytoplasmic Down in CUL3 KO

<

Up in CUL3 KO

ﬁ [ NRF2 Target Genes ]

<

PDB:7X5F

Created with BioRender.com
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Role of IncRNA
MALAT1 in breast
cancer

* Overexpressed in 20 cancer types

* Important in metastases of breast
cancer

Blue — Nucleus
== Red — MALAT1 FISH
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