
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

Spring 2022 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Use one exam book for each problem, and label it carefully with the problem topic and num-
ber and your ID number.

Write your ID number (not your name!) on each exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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Classical Mechanics 1
A bead on a driven ring

A small bead slides freely on a ring of radius a in the earths gravitational field. The face of
the ring is at an angle φ(t) with respect to the x-axis, and is driven harmonically with small
amplitude φ0 and rather high frequency ω, i.e. φ(t) = φ0 cos(ωt).

(a) (6 points) Determine the Lagrangian of the system without approximation, and find
the equations of motion.

(b) (4 points) Determine the (effective) equation of motion for the bead on a time scale
which is long compared to 1/ω.

Hint: Assume that θ is approximately constant over the time scale set by 1/ω, and
average the equation of motion over the rapid oscillations. Neglect terms of order φ4

0.

(c) (6 points) Consider a bead at the bottom of the ring. Show that this configuration is
unstable when the frequency is greater than ωc. Determine ωc.

(d) (4 points) Determine the steady state position of the bead for ω > ωc. Take the limit
of your result for asymptotically large ω, and describe the result physically.
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Solution:

(a) We have

L =
1

2
m(ẋ2 + ẏ2 + ż2)−mgz . (1)

Taking the usual coordinate system

z =− a cos θ , (2)
x =a sin θ cosφ , (3)
y =a sin θ sinφ , (4)

we find
L =

1

2
ma2(θ̇2 + sin2 θφ̇2) +mga cos(θ) . (5)

Using φ = φ0 cos(ωt) and sin2 ωt = 1
2
− 1

2
cos(2ωt) we find

L =
1

2
ma2(θ̇2 + ω2φ2

0 sin2 θ sin2(ωt)) +mga cos(θ) , (6)

=
1

2
(ma2)θ̇2 − V0(θ)− V1(θ) cos(2ωt) . (7)

(8)

Here
V0 = −mga cos θ − 1

4
(ma2)(ωφ0)2 sin2 θ , (9)

and
V1 =

1

4
(ma2)(ωφ0)2 sin2 θ . (10)

The equation of motion take the form

(ma2)θ̈ = −∂V0

∂θ
− ∂V1

∂θ
cos(2ωt) . (11)

(b) We can simply average over the oscillations to find the mean equations of motion

(ma2)θ̈ =− ∂V0

∂θ
− ∂V1

∂θ
cos(2ωt) , (12)

'− ∂V0

∂θ
. (13)

Here we have neglected the so called ponderamotive potential is

Ueff(θ) =
1

4(ma2)(2ω)2

(
∂V1

∂θ

)2

, (14)

which is of order φ4
0.
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(c) The effective equation of motion takes the form

(ma2)θ̈ = −∂V0

∂θ
. (15)

The minimum of V0 is at θ = 0 provided the frequency is not too large. Expanding V0 at θ
zero gives

V0 = −mga+ θ2

[
mga

2
− (ma2)(ωφ0)2

4

]
+ . . . . (16)

Whenever the term in square brackets is negative, θ = 0 will be a maximum and not a
minimum. The critical frequency is

ω2
c = 2

(
g

aφ2
0

)
(17)

(d) Differentiating we have
∂V0

∂θ
= 0 , (18)

we find
mg sin θ − 1

2
ma2(ωφ2

0) sin θ cos θ = 0 . (19)

So we find finally

cos θ =
ω2
c

ω2
, (20)

which clearly only makes sense for ω > ωc. For ω � ωc the cos θ = 0 and θ ' π/2. Clearly,
this should be the case as the centrifugal force becomes very large for ω →∞.
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Classical Mechanics 2
A cylinder on a sliding ramp

A solid cylinder of mass m and radius R starts from rest at height H, and rolls without
slipping down a ramp of mass m0 = 2m. The ramp slides without friction to the right in
response to the motion of the cylinder.

(a) (4 points) Write down a set of coordinates to describe the motion of the cylinder and
the ramp. Write down a Lagrangian of the system using these coordinates.

(b) (8 points) Find the angular velocity of the cylinder and the velocity ramp just before
the cylinder reaches the bottom.

(c) (8 points) Determine the normal force between the cylinder and the ramp.

Hint: Use a Lagrange multiplier to enforce the condition that the cylinder remains on
the slope.
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Solution:

(a) The base of the cylinder at x0. The center of mass cooridnates of the cylinder are

(X, Y ) = (x0 +Rφ cos θ + const, Rφ sin θ + const) (1)

The kinetic energy is the velocity of the center of mass plus the rolling energy.

(Ẋ, Ẏ ) = (ẋ0 +Rφ̇ cos θ, Rφ̇ sin θ) (2)

The Lagrangian is

L =
1

2
(2m)ẋ2

0 +
1

2
m(ẋ0 +Rφ̇ cos θ)2 +

1

2
m(Rφ̇ sinφ)2 +

1

2
Iφ̇2 −mgRφ sin θ (3)

=
1

2
3mẋ2

0 +mẋ0Rφ̇ cos θ +
1

2
(mR2 + I)φ̇2 −mgRφ sin θ (4)

where I = 1/2mR2.

(b) The x0 variable is cyclic leading to the conservation law

2mẋ0 +m(ẋ0 +Rφ̇ cos θ) = P0 (5)

which is clearly identified as the total x momentum of the system. In the current setup,
where P0 = 0, we have

− R cos θφ̇

3
= ẋ0 (6)

The energy is conserved as well leading

E =
1

2
3mẋ2

0 +mẋ0Rφ̇ cos θ +
1

2
(mR2 + I)φ̇2 +mgRφ sin θ (7)

=
1

6
m cos2 θ(Rφ̇)2 − 1

3
m(Rφ̇)2 cos2 θ +

3

4
m(Rφ̇)2 +mgRφ sin θ (8)

=
1

12
m
(
9− 2 cos2 θ

)
(Rφ̇)2 +mgRφ sin θ (9)

The total value of the energy is E = mgH and at the bottom the φ is zero, yielding

Rφ̇ = −
√

12gH

9− 2 cos2 θ
(10)

We have the speed of the ramp which is

ẋ0 =
cos θ

3

√
12gH

9− 2 cos2 θ
(11)

(c) We can use the method of multipliers or other means. The Lagrangian is

L =
1

2
(2m)ẋ2

0 +
1

2
m(ẋ0 +Rφ̇ cos θ)2 +

1

2
mẏ2 +

1

2
Iφ̇2 −mgy + λ(y −Rφ sin θ) (12)
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Finding the equation of motion we have

3mẍ0 +mRφ̈ cosφ =0 (13)

m(ẍ0 +Rφ̈ cos θ)R cos θ +
1

2
mR2φ̈ =− λR sin θ (14)

mÿ =−mg + λ (15)
y =Rφ sin θ (16)

Combining the equations we use ẍ0 = −R cos θφ̈/3, and Rφ̈ = (−g + λ/m)/ sin θ So

mR2φ̈

(
2

3
cos2 θ +

1

2

)
= −λR sin θ (17)

Or

(mg − λ)
(2

3
cos2 θ + 1

2
)

sin2 θ
= λ (18)

So solving for λ

λ =
mgu

1 + u
u ≡

2
3

cos2 θ + 1
2

sin2 θ
(19)

The Lagrange multiplies is the N cos θ (as is clear from Eq. 15) leading finally to

N =
1

cos θ

(
mgu

1 + u

)
(20)
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Classical Mechanics 3
Ion trapping

Consider a positively charged particle of charge q and mass m is placed in a electrostatic
potential

Φ(x, y, z) =
V0

L2

(
z2 − 1

2
ρ2
)
, (1)

where ρ =
√
x2 + y2 is the cylindrical radius. There is a magnetic-field of magnitude B0 in

the z direction.

(a) (1 point) Without the magnetic field, explain why the motion of the charged particle
near the origin is unstable, i.e. the radius increases without bound.

(b) (5 points) Now include the magnetic field. Write down the Lagrangian of the system.

Hint: For this problem it is convenient to take the gaugeA = 1
2
B0(−y, x, 0). Parametrize

the strength the magnetic field by the cyclotron frequency ωB ≡ qB/mc.

(c) (2 points)Show the equation of motion for the z coordinate is harmonic, and determine
the oscillation frequency ωz. Show from the equation of motion that the “z energy”
(i.e. Ez = 1

2
mż2 + 1

2
mω2

zz
2) is constant.

(d) (3 points) Determine the other integrals (or constants) of the motion.

(e) (5 points) For a sufficiently strong magnetic field B0 > Bcrit, the particle’s motion is
bounded between ρmin and ρmax :

(i) Determine Bcrit.

(ii) Find ρmin and ρmax in terms of ωz, ωB, and the integrals of motion.

Hint: Use energy considerations to analyze the motion.

(f) (4 points) Determine the fixed radius ρ0 of circularly cylindrical orbits. Find the
angular velocity ω0 of these orbits in terms of the integrals of the motion. Answer the
following:

(i) Is the motion clockwise or counter-clockwise when viewed from above?

(ii) For B0 � Bcrit, describe qualitatively the circularly cylindrical motion of the
trapped charged particles.
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Solution:

(a) This is clear the potential is a saddle point U(x, y, z) = qϕ(x, y, z) and not a minimum.

(b) The Lagrangian is

L =
1

2
m(ẋ2 + ẏ2 + ż2)− qV0

L2

(
z2 +

1

2
(x2 + y2)

)
− qB0

2mc
(ẋy − ẏx) (2)

=
1

2
m(ρ̇2 + ρ2φ̇2 + ż2)− qV0

L2

(
z2 − 1

2
ρ2

)
+

1

2
mωBρ

2φ̇ (3)

(c) The equation of motion is

mz̈ = −2qV0

L2
z (4)

So the associated oscillation frequency is

ω2
z =

2qV0

mL2
(5)

To show that energy is constant we use the elementary argument

z̈ =
dvz
dt

(6)

We multiply both sides by vz yield

1

2
m
d

dt
v2
z = −mω2

z

d

dt
z2 (7)

So we find
1

2
mv2

z +
1

2
mω2

zz
2 = const (8)

(d) There is the total energy

E =
1

2
m(ρ̇2 + ρ2φ̇2 + ż2) +

1

2
mω2

z

(
z2 − 1

2
ρ2

)
(9)

and the angular momentum

pφ = mρ2φ̇+
1

2
mωBρ

2 (10)

The energy can be written

E =Ez +
1

2
mρ̇2 +

(
pφ − 1

2
mωBρ

2
)2

2mρ2
− 1

4
mω2

zρ
2 (11)

E =Ez − 1
2
pφωB +

1

2
mρ̇2 +

p2
φ

2mρ2
+

1

8
m(ω2

B − 2ω2
z)ρ

2 (12)
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(e) Define ε ≡ E − Ez + 1
2
pφωB. Then energy conservation is

ε =
1

2
mρ̇2 + Veff(ρ) (13)

where

Veff(ρ) =
p2
φ

2mρ2
+

1

8
m
(
ω2
B − 2ω2

z

)
ρ2 (14)

The potential is concave up if ωB >
√

2ωz. The turning points are when ρ̇ = 0

ε =
p2
φ

2mρ2
+

1

8
m∆ω2ρ2 (15)

Which is a quadratic equation for ρ2

m∆ω2(ρ2)2 − 2ερ2 +
p2
φ

4m
= 0 (16)

So
ρ2 =

1

m∆ω2

[
ε±

√
ε2 − (1

2
∆ωpφ)2

]
(17)

(f) The circular orbits are at the minimum of the effective potential

−
p2
φ

m2ρ3
0

+
1

4
m∆ω2ρ=0 (18)

So

ρ0 =

(
2pφ
m∆ω

)1/2

(19)

The angular velocity is

ω0 = φ̇ =
pφ
mρ2

− 1

2
ωB (20)

=
1

2

(
ω2
B − 2ω2

z

)1/2 − 1

2
ωB (21)

'− ω2
z

2ωB
(22)

So the motion is clockwise (φ̇ is negative) . We have used here that ωB � ωz, which follows
since B0 � Bcrit. Since ω0 � ωz in magnitude. We have periodic motion in the z direction,
which is accompanied by slow clockwise precession of the circular orbit.
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Electromagnetism 1
Counter rotations of a charged sphere

Consider a stationary sphere of radius R. The sphere consists of two hemispheres that are
held together on the xy plane. The electric potential inside the sphere is given

φ = Cr3 cos θ , (1)

where C is a positive normalizing constant, r ≡
√
x2 + y2 + z2, and θ is the polar angle.

(a) (4 points) Find the charge density inside the sphere.

(b) (5 points) Find the leading order potential and electric field far from the sphere. Qu-
latitatively sketch the electric field lines.

Now the two hemispheres are set to counter-rotate with a constant angular velocity ω around
the z axis, i.e. the top hemisphere rotates with ω = ωẑ, and the bottom hemisphere rotates
at ω = −ωẑ.

−ω ẑ

ω ẑ

(c) (6 points) Determine the magnetic vector potential (in the Coulomb gauge) far from
the sphere.

Finally, the two hemispheres are set to counter rotate as in the previous item, but with a
time dependent angular velocity ω(t) = ω0 cos(Ωt), with Ω small.

(d) (5 points) Find the induced electric to first order in Ω. (i) Over what range in radius
is your result a small correction to (b)? (ii) Qualitatively sketch the electric field lines
associated with this correction.
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Solution:

(a) We write φ = C(x2 + y2 + z2)z. Evaluating the Laplacian we have

ρ

ε0
= −∇2φ = (2C + 2C + 6C)z = −10Cz (2)

(b) The system clearly has an electric dipole pointing along ẑ. Evaluating the dipole moment

p =

[∫
sphere

ρ(z)z dV

]
ẑ (3)

Noting that
∫
z2 dV = 1

3

∫
r2 dV we find

pz =− 10Cε0
3

∫ R

0

r2 (4πr2dr) (4)

=− 2

3
(4πε0)CR5 (5)

Generally the potential outside the sphere takes the form

φ =
∑
`

(
A`r

` +
B`

r`+1

)
P`(cos θ) (6)

In particular, the ` = 1 terms have the following form

φ =
1

4πε0

pz cos θ

r2
− Ezr cos θ (7)

where pz is determined by B1, and Ez is determined by A1.

We demand continuity of the electric field at the surface

Er = −∂φr
∂r

∣∣∣∣
r=R

(8)

Eθ = −1

r

∂φ

∂θ

∣∣∣∣
r=R

(9)

From the potential inside the sphere we have

Er =− 3CR2 cos θ (10)
Eθ =CR3 sin θ (11)

From the potential outside the sphere

Er =
1

4πε0

2pz cos θ

R3
+ Ez cos θ (12)

Eθ =
1

4πε0

pz sin θ

R3
− Ez sin θ (13)
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Comparing these terms we have

pz = −2

3
(4πε0)CR5 Ez = −5

3
CR2 (14)

So to summarize, the electric field outside the sphere involves the dipole field and a
constant electric field in the negative z direction

E =
1

4πε0

3r̂(p · r̂)− p
r3

+ Ezẑ (15)

where the dipole moment is p = pzẑ and both pz and Ez are negative in our conventions,
and are given by Eq. (14)

(c) The dipole term in the vector potential is given by

A =
µ0

4π

m× n

r2
, (16)

where m is the magnetic dipole moment

m =
1

2

∫
(x′ × J)dV (17)

In spherical coordinates, taking θ as polar angle, current density is given by

J = ρv (18)

= −10Cε0ωr
2 sin θ| cos θ|φ̂. (19)

Noting that x′ = rr̂ in spherical coordinates and r̂ × φ̂ = −θ̂, and dV = r2 sin θdrdθdφ, and
decomposing θ̂ in terms of Cartesian components (θ̂ = cos θ cosφx̂ + cos θ sinφŷ − sin θẑ),
the expression for m can be directly integrated to give

m = −5

6
πCε0ωR

6ẑ (20)

Substitute m in Eqn. 16 (which is evaluted using the right-hand rule)

A = − 5

24c2
C
R6

r2
ω sin θ φ̂ (21)

where we used c2 = 1/ε0µ0. The intuition here is that the vector potential follows the
currents, which are flowing in the negative azimuthal direction.

(d) We can consider the source terms for E = −∇φ− ∂tA as a superposition of two effects:
the charge distribution, which does not change in time, resulting in φ as expressed in part
(b) & the induced electric field, Eind, which constitutes the correction to the result of part
(b).

Eind = −∂tA (22)

=
5

24c2
C
R6

r2

dω

dt
sin θφ̂ (23)

= − 5

24c2
C
R6

r2
ω0Ω sin(Ωt) sin θφ̂ (24)
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Figure 1: Electric field lines at t = 0 due to the sphere. At t = 0 there is an electrostatic
dipole field. We also note that the magnetic field lines are qualitatively similar to the dipole
electric field, as the sphere has a magnetic dipole moment in the negative z direction. The
induced fields (shown in red) are in the azimuthal direction, and have a qualitatively different
character. At t = 0 the current flow due to the motion of the sphere is clockwise (when viewed
from above) and is decreasing in magnitude. The induced electric field tries to prevent this
waning current and is therefore also clockwise. One can also use Lenz’ law – the magnetic
flux through the red loops is decreasing, and the displacement currents (the induced electric
field) tries to reenforce the magnetic field.

The electrostatic field from part (b) is

EES = −∇φ (25)

= −2

3
C
R5

r3
(2 cos θr̂ + sin θθ̂) (26)

A figure showing the field lines is shown in Fig. 1 Comparing the amplitude scaling of
the two components,

Eind � EES (27)
R6

r2c2
ω0Ω� R5

r3
(28)

r � c2

Rω0Ω
(29)

Thus we see that the induced electric field is small compared to the electrostatic field provided
we don’t look too far away from the source. We require that the length is smaller than a
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characteristic length L0, r � L0. This characteristic length L0 is set by a combination of the
wavelength λ ∼ c/Ω of the emitted radiation, and the nonrelativistic character of the source
which has v/c where v = Rω0, which naturally makes magnetic effects small compared to
the electric ones. The characteristic length is of order

L0 ∼
λ

(v/c)
(30)
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Electromagnetism 2
Strips with a boost

Consider an infinite set of long metal strips filling the xy plane as shown below. The strips
have width L and the spacing between the strips is negligible. The strips are held at alter-
nating potentials ±V0 as shown below.

part (c)

(a) (7 points) Determine the potential φ(x, z) everywhere above the xy plane.

Hint: Use separation of variables to show that the solution takes the form of a series
expansion:

φ(x, z) =
∑
k

(Ak cos(kx) +Bk sin(kx))Zk(z) . (1)

Determine the allowed values of k, the functional form of Zk(z), and the coefficients,
Ak and Bk.

(b) (2 points) For z � L, determine the dominant term in the expansion developed in (a).
Explain your reasoning with a sentence or two.

Now consider a charge particle of mass m and charge q which moves relativistically along the
x-axis at a height h far from the plates, h � L. The electric field is weak, and the particle
moves approximately in a straight line with almost constant velocity v0 in the x direction.
The Lorentz frame with this velocity (relative to the lab) is F ′ and has coordinates (t′, r′).

(c) (6 points) For z′ � L, determine the electric the electric and magnetic fields as a
function of space and time in F ′, i.e. E′(t′, x′, z′) and B′(t′, x′, z′). Explicitly show the
dependence on the primed coordinates.
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(d) (5 points) Determine the particle’s acceleration in F ′ when the particle is ultra-
relativistic (with v0/c nearly one). What is the time-averaged power radiated by the
charged particle in F ′?
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Solution:

(a) We use separation of variables looking for trial solution

φ(x, z) = X(x)Z(z) , (2)

Separating variables we have from (−∇2φ)/φ = 0

1

X

−d2X

dx2
+

1

Z

−d2Z

dz2
= 0 . (3)

or
d2X

dx2
= −k2X ,

d2Z

dz2
= k2Z , (4)

with k constant. Given the periodicity of in x we must have

X = An cos(knx) +Bn sin(knx) kn =
2πn

2L
. (5)

Given that the boundary conditions at z = 0 are odd we can limit ourselves to the sin terms
with n odd. The solutions in z are e±knz and we limit ourselves to the decreasing solution.
Putting together the ingredients the solution is

φ =
∑
n∈odd

Cn sin(knx)e−knz . (6)

To determine the coefficients we match the boundary conditions at z = 0. Using∫ 2L

0

sin(knz) sin(kmz) =
2L

2
δnm , (7)

and the boundary condition at z = 0

φ = V0(1− 2θ(L)) . (8)

We have for n an odd integer

Cn =
2

L

∫ L

0

V0 sin(nπx/L)dx , (9)

=
4V0

πn
. (10)

The final resul is then

φ(x, z) =
∑
n∈odd

4V0

πn
sin(nπx/L)e−nπz/L . (11)

(b) At large z only the first term in the sum is dominant leading to

φ =
4V0

π
sin(πx/L)e−πz/L (12)
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(c) We first find the electric field in the lab frame

Ex =− ∂xφ = −4V0

L
cos(πx/L)e−πz/L , (13)

Ez =− ∂zφ =
4V0

L
sin(πx/L)e−πz/L . (14)

Then we compute fields in the new frame using a Lorentz transformation. The Lorentz
transformation rules are

F µν(X) = Λµ
ρΛν

σF
µν(X) , (15)

Or in non-covariant form

E⊥ =γE⊥ − γβ ×B⊥ , (16)
B⊥ =− γβ ×E⊥ + γB⊥ , (17)
E‖ =E‖ , (18)

B‖ =B‖ . (19)

The coordinates X = (ct, x) and X = (ct, x) are related as follows

Xµ = Λµ
ρX

ρ , (20)

or
Xµ = (Λ−1)µρX

ρ . (21)

So if the lab frame coordinates are (t, x), the particle frame coordinates are

t =γ0ct+ γ0v0x , (22)
x =γ0v0t+ γ0x , (23)
z =z . (24)

Putting together the ingredients we have

Ex =− 4V0

L
cos(πγ (v0t+ x)/L) e−πz/L , (25)

Ez =γ
4V0

L
cos(πγ(v0t+ x)/L) e−πz/L , (26)

By =γ
4V0

L
cos(πγ(v0t+ x)/L) e−πz/L . (27)

Discussion: For large γ, the x components can be neglected and the electric and magnetic
fields are transverse. The field configuration is that of a left moving plane wave of light. The
time averaged Poynting flux is

S ≡ c
2

(
γ4V0e

−πh/L

L

)2

(28)

The direction of the Poynting flux is in the negative x direction.
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(d) The particle is at x = 0 and is moving slowly in this frame, so the v ×B part of the
Lorentz force can be neglected. The acceleration is simply a = qE/m. So

a =γq
4V0

Lm
e−πh/L cos(πγv0t/L) ẑ (29)

The radiated power is simply given by the Larmour formula

P =
2

3

(
q2

4π

)
a2

c3
(30)

Putting together the ingredients we have finally

P =

[
8π

3

(
q2

4πmc2

)2
]
S (31)

The term in square brackets is easily identified as the Thomson cross section of the charged
particle. Thus the total power radiated is simply the cross section times the total energy
flux.

20



Electromagnetism 3
Two loops

Consider a pair of conducting loops centered at the origin as shown below. The large loop
(loop A) lies in the xy-plane, has radius a, and carries current I. The small loop (loop B)
lies in the xz-plane, has radius b, and carries current I ′. Loop B is free to rotate around the
x axis.

A schematic of the xz plane and the cylindrical components of ~B is shown below1.

(a) (2 points) What is the magnetic field at the center of loop A?

(b) (4 points) What torque is needed to keep loop B at rest? Assume that b� a.

(c) (5 points) To refine the estimate of (b), find the z-component of the magnetic field due
to loop A close to the origin, Bz(ρ, z). (You may want to use ~∇ · ~B = 0, and a Taylor
expansion.)

(d) (5 points) To refine the estimate of (b), find the ρ-component of the magnetic field due
to loop A close to the origin, Bρ(ρ, z). (You may want to use ~∇× ~B = 0, and a Taylor
expansion)

(e) (4 points) At next to leading order in b/a, what torque is needed to keep loop B at
rest?

1Here ρ =
√
x2 + y2 denotes the cylindrical radius.
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Solution

(a) The magnetic field at the center of the loop is given by the Biot-Savart law

~B(0) =
1

c

∫ ~I × d~l
a2

=
2πaI

ca2
ẑ =

2πI

ca
ẑ . (1)

(b) To keep the loop b at rest we need to apply a torque

~τ = ~µ× ~B(0) =

(
1

c
πb2I ′ ŷ

)
× ~B(0) =

2πII ′b2

c2a
x̂ , (2)

where ~µ is the magnetic moment of a small loop of current.

(c) To refine the estimate in (2), we need to evaluate more accurately the ~B field across the
small loop of radius b induced by the large loop of radius a. For that we need the mechanical
torque relation

~τ =

∫
~r × 1

c
(I ′d~l′ × ~B) , (3)

To evaluate the integral we parametrize a point in loop b in cylindrical coordinates (r̂, φ̂)
with φ the angle with the z-axis,

~r = br̂ d~l′ = bdφφ̂ ~B = Bz ẑ +Bρρ̂ (4)

with ρ̂ the radial unit vector for cylindrical coordinates for the lop a in the xy-plane, so that
the net torque along the x-direction τx is

τx =
I ′b2

c

∫ 2π

0

dφ cosφ(cosφBz + sinφBρ) . (5)

We need to evaluate Bz and Bρ due to loop a. For that, we first note that since ∇ · B = 0,
Gauss law applied with a small cylindrical box of height dz and radius ρ in the xy-plane
around the origin gives

0 =

∫
∂box

d~S ·B ≈ πρ2(Bz(0, z + dz)−Bz(0, z) + 2πρdzBρ(ρ, z)

≈ πρ2dz
∂Bz(0, z)

∂z
+ 2πρdzBρ(ρ, z) (6)

which ties Bz to Bρ,

Bρ(ρ, z) ≈ −
ρ

2

∂Bz(0, z)

∂z
. (7)

Now, we second note that near loop b we have ~∇× ~B = 0, which in cylindrical coordinates
means

∂Bz(ρ, z)

∂ρ
=
∂Br(ρ, z)

∂z
≈ −ρ

2

∂2Bz(0, z)

∂z2
(8)
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after using (7). Along the z-axis, Bz(0, z) due to loop a is readily obtained using the Biot-
Savart law

Bz(0, z) =
1

c

∫ (~I × ~dl

r2

)
z

=
2πa2I

c(a2 + z2)
3
2

≈ 2πI

ca

(
1− 3z2

2a2

)
. (9)

(d) Inserting (9) into (7-8) gives the magnetic fields near the b-loop

Bρ(ρ, z) ≈
3πIρz

ca3
=

3πb2Isinφcosφ

ca3
,

Bz(ρ, z) ≈
2πI

ca

(
1− 3z2

2a2

)
+

3πIρ2

2ca3
=

2πI

ca

(
1− 3b2cos2φ

2a2

)
+

3πb2Isin2φ

2ca3
. (10)

where we expressed the coordination (ρ, z) on the b loop using ρ = bsinφ and z = bcosφ.

(e) The refined torque at next to leading order is finally

τx ≈
πb2II ′

ac2

∫ 2π

0

dφ

(
2cos2φ− 3b2cos4φ

a2
+ 3

(
1

2
+ 1

)
b2cos2φsin2φ

2a2

)
,

=
2π2b2II ′

ac2

(
1− 9b2

16a2

)
. (11)
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Quantum Mechanics 1
Quantum Mechanics (Moving wall)

A one-dimensional quantum particle of mass m is initially in the bound state of an attractive
δ-functional potential −(~2κ/m)δ(x), where κ is a positive constant. A hard (impenetrable)
wall is being moved very slowly from x = −∞ towards the well, i.e. the total potential that
acts on the particle is

U(x) =

{
−(~2κ/m)δ(x) , x > −R ,
∞ , x < −R .

where −R is the very slowly time dependent position of the wall, R > 0. Everywhere in
this problem, you can use the basic “zero-order” adiabatic approximation, neglecting any
corrections to it.

(a) [3 points] Write down the general form of the instantaneous wavefunction ψ(x) of the
particle in three different regions of coordinate x: X < −R, x ∈ [−R, 0], x > 0, and
all the relevant boundary conditions ψ(x) should satisfy.

(b) [3 points] From the conditions in part (a) derive the equation that determines the
instantaneous energy E(R) of the bound state.

(c) [4 points] Analyze the equation obtained in (b) to find the energy E0 of the bound
state of the particle without the wall, and the leading correction to E0 when the wall
is far away (R is large).

(d) [4 points] Find the distance Re between the wall and the well at which the particle
escapes from the well.

(e) [3 points] Compute the force F acting on the wall as a function of the distance R, when
R is large.

(f) [3 points] Analyze as quantitatively as you can the behavior of the force for R → Re.
Draw qualitatively the dependence F (R) for all R.

24



Solution

(a) In all regions with zero potential, we have two negative-energy (unnormalized) solutions
e±qx with E = −~2q2

2m
, q > 0. For the bound state, ψ(x) → 0 at x → ∞, i.e., only e−qx is

admissible for x > 0.
For x < −R, where the potential is infinite, the wavefunction should vanish, ψ(x) = 0.

Since ψ(x) is continuous everywhere, ψ(x = −R) = 0, meaning that for x ∈ [−R, 0], the
appropriate combination of the two negative-energy solutions is sinh q(x+R). Therefore, in
the two regions where it is nonvanishing, the wavefunction should have the form:

ψ(x) =

{
A sinh q(x+R) , x ∈ [−R, 0] ,
Be−qx , x > 0 .

Integrating Schrödinger equation over x around x = 0, one obtains the condition ψ(x)
should satisfy at the delta-functional potential: ψ′(x = +0) − ψ′(x = −0) = −2κψ(x = 0).
Together with the continuity of the wavefunction this gives the condition for the amplitudes
A and B:

A sinh qR = B , (2κ− q)B = qA cosh qR .

(b) Dividing the first equation for the amplitudes by the second one, one obtains the equation
for the wavevector q that dereminse the energy of the bound state

tanh qR =
q

2κ− q , E(R) = −~2q2

2m
.

This equation for q can also be expressed equivalently as

q = κ(1− e−2qR) .

(c) If R is infinitely large, from the equations in (b), we get q = κ, i.e. E0 = −~2κ2
2m

. When
R is large but finite, one can solve these equation by iterations. The first iteration gives

q = κ(1− e−2κR) .

This mean that for large R (more precisely, if κR� 1) we have for the energy

E(R) = −~2κ2

2m

(
1− 2e−2κR

)
.

(d) The exact relation defining the energy of the bound state

q = κ(1− e−2qR)

does not have a solution if R is sufficiently small. Making a sketch of both sides of this
equation [or the first equation in part (b)] one sees that the plots intersect (solution exists)
only if R > Re, where

Re =
1

2κ
.
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(e) Since the energy of the particle in the bound state can change only due to the work done
by the moving wall, and the force F on the wall is the opposite of the force on the particle,
F is related to E(R) as −F (−dR) = dE, i.e., we obtain it by differentiating the energy of
the ground state with respect to R:

F (R) =
dE

dR
.

In the regime of large R,

F =
d

dR

[
−~2κ2

2m

(
1− 2e−2κR

)]
i.e.,

F = −2~2κ3

m
e−2κR .

(f) As we know from part (d), for R → Re, the energy of the bound state vanishes, q → 0.
Taking the limit q → 0 in the equations of part (b), and keeping only the terms not smaller
than q2, one sees that the equations for q are reduced in this limit to

q = κ(2qR− 2(qR)2) ,

and have the solution
q =

1

R
(1− 1

2κR
) =

1

R2
(R−Re) .

This means that the energy of the bound state decreases as (R − Re)
2 as R → Re, and the

magnitude of the force F vanishes linearly with R: F ∝ (R−Re).

Qualitative plot: the force is negative for −∞ < R < Re, zero at R > Re and vanishes
at R → −∞ and at R ≥ Re. Since F → 0 as R → Re, the function F (R) is continuous
everywhere, and has a maximal absolute value at R ∼ #/κ.
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Quantum Mechanics 2
Hard-sphere scattering

A flux J (with units 1/(m2 s)) of particles of mass m, and energy E = ~2k2/(2m)
propagates in the positive z direction. The particles are scattered by the hard-wall sphere of
radius a which creates a central potential V (r) with the center at the origin of the coordinate
system:

V (r) =

{
∞ , r < a ,
0 , r > a .

(1)

This problem discusses the calculation of the s-wave total cross-section σ0 for this scattering
process.

(a) (3 pts) Write down the wavefunction ψ(z), z = r cos θ, which describes the incident
particles, and the total wavefunction ψ(r, θ) for the scattering process as a whole, where
r and θ are the standard coordinates of the spherical coordinate system with the origin
at the center of the potential. Normalize the incident wavefunction in a way that directly
corresponds to the particle flux J .

(b) (4 pts) Separate out the part ψ0(r) of the incident wavefunction ψ(z) which describes
the particles with angular momentum l = 0 relative to the potential center. [Hint: One way
of doing this is to take the average over all possible directions characterized by angle θ.]

(c) (3 pts) What is the general solution ψ(r) of the Schrödinger equation with l = 0 in
the region with vanishing potential (outside the sphere)?

(d) (4 pts) Impose the appropriate boundary condition on the total wavefunction to find
the l = 0 scattering amplitude f .

(e) (4 pts) Calculate the total probability flux Jsc that represents the particles scattered
by the scattered, that is carried by the wavefunction found above. Find then the s-wave
total cross-section σ0.

(f) (2 pts) Find the limit of σ0 at low energies E of the incident particles (when the s-
wave scattering is dominant) and provide a very brief (no more than 2 sentences) qualitative
interpretation of σ0 in this limit.
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Solution

(a) Particles propagating with momentum ~k in the positive z direction are described by
the plane wave

eikz.

As one can check immediately, to have this wavefunction describe directly the particle flux
J , the normalization factor should be

√
J/v, where v = ~k/m is the particle velocity, i.e.,

the incident part of the wavefunction is

ψ(z) =
(mJ
~k

)1/2

eikz.

Scattering by a central potential process produces the wave that is cylindrically symmetric
with respect to rotation around the z-axis (i.e., independent of the polar angle φ) and
propagating away from the center, so that the total wavefunction can be written as

ψ(r, θ) =
(mJ
~k

)1/2(
eikr cos θ +

f(θ)

r
eikr
)
.

(b) To take the average over all possible directions characterized by angle θ one needs to
take the following integral:

〈...〉 =
1

2

∫ π

0

dθ sin θ... .

Taking this integral of the incident wavefunction, one gets:

ψ0(r) =
1

2

∫ π

0

dθ sin θeikr cos θ =
1

2

∫ 1

−1

dxeikrx =
sin kr

kr
.

As should be, this expression coincides with the spherical Bessel functions j0(kr).

(c) As we know, the substitution ψ(r) = u(r)/r reduces the radial part of the three-
dimensional Schrödinger equation to the one-dimensional Schrödinger equation for u(r). This
means that for vanishing angular momentum, the general solution of the three-dimensional
Schrödinger equation in the region without potential is

ψ(r) =
1

r

(
A sin(kr) +B cos(kr)

)
,

where A and B are some constants dependent on the boundary conditions the wavefunction
should satisfy.

(d) For s-wave scattering, the amplitude f(θ) in the scattered part of the wavefunction
in part (a) reduces to a constant, independent of θ: f(θ) = f . Comparing then the general
form of the wavefunction in part (c) to the form the wavefunction should have in the s-wave
scattering process as discussed in parts (a) and (b), we see that the total wavefunction should
be:

ψ(r) =
(mJ
~k

)1/2(sin kr

kr
+
f

r
eikr
)
,
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One more condition this wavefunction should satisfy for the hard-sphere scattering is that
it should vanish on the surface of the sphere where the potential is infinite:

ψ(r = a) = 0 .

This condition gives for the scattering amplitude f :

f = −sin ka

k
e−ika.

(e) To calculate the radial part jr of the probability flux, one needs to take the radial
part d/dr of the gradient and use the standard expression for the probability flux carried by
the wavefunction ψ(r):

jr(r) =
−i~
2m

(
ψ∗dψ/dr − ψdψ∗/dr

)
=
J |f |2
r2

.

Since this flux is independent of the angle θ, we obtain the total scattered flux multiplying
jr with the area of a sphere 4πr2

I = 4πJ |f |2 = 4πJ
sin2 ka

k2
.

The total scattering cross-section is the ratio of the scattered flux to the incident flux:

σ0 = Jsc/J = 4π
sin2 ka

k2
.

(f) In the limit of low energies, k → 0, and expression for σ0 reduces to

σ0 = 4πa2 .

We see that at low energies, solution of the Schrödinger equation is isotropic, so that the
sphere scatters uniformly in all directions. This means that the scattering cross-section
equals the total surface area of the sphere, not the cross-section area πa2.
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Quantum Mechanics 3
Wigner molecule

Two identical charged quantum particles with spin-1/2, mass m, and coordinates x1 and
x2 in one dimension, interact through the Coulomb repulsion, so that the particle Hamilto-
nian is:

H =
p2

1

2m
+

p2
2

2m
+

κ

|x1 − x2|
, (1)

where p1,2 are the particle momenta, and κ is the coefficient in the Coulomb potential.

(a) (4 pts) Introduce the center-of-mass coordinate R, the relative coordinate r = x1−x2,
and the corresponding momenta P and p. Make sure that the new variables satisfy canonical
commutation relations. Demonstrate this explicitly. Express the Hamiltonian H in terms
of the new variables. What the separation of the Hamiltonian into two independent parts
means for the wavefunctions ψ(x1, x2) of the two particles?

(b) (5 pts) Assume now that the particles are confined to move on a ring with a perfect
circle geometry and circumference L = 2πR, i.e., the one dimensional coordinates are now
measured along the circle, x1,2 ∈ [0, L] as shown below.

Take the ring to be embedded in a regular three dimensional empty space, and the
Coulomb interaction is now κ/r with r = |~r1 − ~r2|. (i) Determine the configuration of x1, x2

that minimizes the interaction potential. (ii) Find the frequency ω of small oscillations
around this minimum, assuming that the potential is strong, which makes it possible to
adopt a quadratic approximation for the potential. (iii) What is the criterion for the validity
of the harmonic approximation in the quantum mechanical problem?

(c) (5 pts) In this regime, strong Coulomb repulsion results also in the interaction between
the spins ~S1 and ~S2 of the two electrons, producing the spin Hamiltonian

HS = λ~S1 · ~S2 ,

where λ is some small energy, λ � ~ω. What are the eigenstates and eigenenergies of this
Hamiltonian?

(d) (2 pts) Describe the effect spin states have on the symmetry of the coordinate part
ψ(x1, x2) of the particle wavefunction.

(e) (4 pts) Taking into account the results of part (d), find the rotational energy spectrum
of the molecule in different eigenstates of the spin Hamiltonian HS, for the two lowest energy
states of the harmonic oscillator describing the molecule bending degree of freedom r.
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Solution

(a) For R = (x1 + x2)/2 and r = x1 − x2, the conjugate momenta are P = p1 + p2 and
p = (p1 − p2)/2. This choice of coefficients ensures that, as should be, the coordinates and
momenta satisfy the canonical commutation relations:

[r, p] = [R,P ] = i~ , [r, P ] = [R, p] = 0 .

Inverting the relations between the new and the old momenta,

p1 =
P

2
+ p , p1 =

P

2
− p ,

one find the Hamiltonian in terms of the new variables:

H =
P 2

4m
+
p2

m
+

κ

|r| .

As usual, the effective mass for the center-of-mass motion is 2m, while for the relative motion
– m/2. Since the Hamiltonian

(b) To minimize the repulsion potential V (r), the particles should be separated by the
largest distance possible. On a circle, this means the opposite points of any diameter. In
terms of the coordinate r = x1 − x2,

r =
L

2
mod (L).

Taking into account the reduced mass m/2 for the relative coordinate r, one gets for the
frequency of the small oscillations around this minimum:

ω =
√

2k/m , k = V ′′(r)|r=L/2 .

If the ring is embedded in a regular empty space, the distance between the two particles on
a circle can be calculated like this:

r = [~r 2
1 + ~r 2

2 − 2~r1 · ~r2]1/2 = a[2 + 2 cosφ]1/2 ,

where ~r are the position vectors of the two particles, a is the radius of the circle (a = L/2π),
and φ is the angle of the deviations of the relative positions of the two particles from the
straight diameter, r − L/2 = aφ. This gives,

V (r) =
κ

r
=

κ

a[2 + 2 cosφ]1/2
.

Calculating the second derivative of this expression at φ = 0, we get finally

V ′′(r)|r=L/2 =
κ

8a3
, ω =

1

2a

( κ

ma

)1/2

.
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Quadratic approximation is legitimate, if the higher-order terms in the expansion of
the potential are small. For 1/r potential, this condition is satisfied if the characteristics
amplitude x of the oscillations is much smaller that the typical magnitude of the coordinate
r, which in our case is given by a. The amplitude x of the oscillations can be estimated
as the characteristic value of the oscillating coordinate in the ground state of a harmonic
oscillator of frequency ω and mass m/2, and we get:

~
ωm
� a2, i.e.

~2

ma2
� κ

a
.

(c) The operator of the scalar product of the two spins, ~S1 · ~S2, can be expressed through
the operator of the magnitude of their sum ~S = ~S1 + ~S2:

~S1 · ~S2 =
1

2

(
~S2 − ~S2

1 − ~S2
2

)
=

1

2
[s(s+ 1)− 3/2] ,

where in the second equation we took into account that ~S2
1 = ~S2

2 = 3/4. This equation
implies that the eigenstates of the spin Hamiltonian HS are the eigenstates |sm〉 of the total
spin ~S, and the corresponding eigenvalues depend only on its magnitude s. Addition of two
spins 1/2 produces a “triplet” of states with s = 1, and one “singlet” state with s = 0. Thus,
the triplet states

|11〉 = |↑↑〉 , |10〉 =
1√
2

[|↑↓〉+ |↓↑〉] , |1,−1〉 = |↓↓〉

are the eigenstates of the spin Hamiltonian with the eigenenergy λ/4, while the singlet state

|00〉 =
1√
2

[|↑↓〉 − |↓↑〉]

is the eigenstate of the spin Hamiltonian with the eigenenergy −3λ/4. As usual, the arrows
|↑〉 and |↓〉 denote here the z-components ±1/2 of the individual spins.

(d) The wavefunctions of the particles with spin 1/2 should be antisymmetric with respect
to permutation of the particles coordinates. As can be seen in part (c), the triplet eigenstates
of teh sp[in Hamiltonian are symmetric while the singlet state antisymmetric with respect
to the interchange of the two spins. This means that the coordinate part ψ(x1, x2) of the
wavefunction should be antisymmetric with respect to the interchange of x1 and x2 for the
triplet spin states, i.e.,

ψ(x1, x2) = −ψ(x2, x1) ,

and symmetric for the singlet state:

ψ(x1, x2) = ψ(x2, x1) .

(e) Rotational energy spectrum of the molecule is produced by its motion as a whole,
described by the coordinate R. Since this motion is free, the energy of this motion is just
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the kinetic energy. In terms of the momentum P conjugate to R and the mass 2m of this
motion that were obtained in part (a), this energy is given by the usual expression:

E =
~2P 2

4m
.

Here the wavevector P is determined by the periodicity conditions on the molecule rotation.
For the configuration with the two particles fixed at the ends of a straight diameter, one
obtains the same state of the molecule, when the diameter goes through half of the full
rotation, i.e., when

R→ R + L/2 .

Note that the two identical particles of the molecule are interchanged as a result of this
rotation through half of the circle. This means that the total wavefunction of the molecule
should change, i.e., as we know from part (d), the coordinate part of the wavefunction should
change sign in the triplet and be identical in the singlet spin states. If the bending mode
of the molecule is in the ground state, the r-part of the wavefunction is preserved in this
process, and only the R-part, which for free rotation, is the “plane wave” eiPR, can change
sign. This means that for the spin triplet, possible values of P are given by the condition

eiPL/2 = −1 , ⇒ P =
2π

L
(2n+ 1) , n− integer .

Therefore, for spin triplet, the rotational energy spectrum of the molecule is:

En =
1

m

(π~
L

)2

(2n+ 1)2 .

For spin singlet,

eiPL/2 = 1 , ⇒ P =
2π

L
(2n) , n− integer ,

and the rotational energy spectrum is:

En =
1

m

(π~
L

)2

(2n)2 .

If the bending mode of the molecule is in the first excited state, rotation by L/2 inverts
the direction of bending, i.e., inverts the argument of the wavefunction of this mode. Since
the first excited state of the harmonic oscillator is odd, this means that the r-part of the
wavefunction changes sign in the process, and the relation between the symmetry of the
R-part of the wavefunction and the spin states is inverted in comparison to the situation
above for the unexcited bending mode. As a result, the two rotational energy spectra found
above are interchanged in this case, the odd momenta P ∝ (2n + 1) happen in the singlet,
while the even ones, P ∝ (2n), – in the triplet spin states.
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Statistical Mechanics 1
Consider a d-dimensional electron gas, with N electrons inside a hypercubic box of length
L.

(a) (2 points) Show that the number of single particle states with energy between ε and
ε+ dε (i.e. the density of states) is

g(ε) dε = αV ε
d
2
−1dε (1)

where α is a constant, and V = Ld is the d-dimensional spatial volume. Determine the
constant α and calculate the Fermi energy εF at zero temperature. You should leave
the constant as α in what follows.

Hint: The volume of a d-dimensional sphere of radius R is πd/2Rd/Γ(d/2 + 1). Note
the relation Γ(x+ 1) = xΓ(x) and the specific values Γ(1) = 1 and Γ(1

2
) =
√
π.

(b) (4 points) Calculate the zero temperature pressure and the isothermal compressibility
κT (0) of the d-dimensional electron gas2. Express your results in terms of the mean
particles density n = N/V and εF .

(c) (8 points) At low temperatures T � εF calculate the chemical potential of the d-
dimensional electron gas, the mean total energy, the specific heat CV , and the variance
of energy fluctuations. You may find the Sommerfeld expansion useful:∫ ∞

0

H(ε)

eβ(ε−µ) + 1
dε '

∫ µ

0

H(ε)dε+
π2

6β2

dH(ε)

dε

∣∣∣∣
ε=µ

(d) (6 points) Consider the 3d case at zero temperature. A hole with area A opens on the
surface of the box. (i) Calculate the electric current flowing out of the hole just after it
opens. (ii) Show that the effective electrical resistance of the opening is proportional
to ratio λ2

F/A, where λF = pF/h is the Fermi wavelength.

2The compressibility is defined as the inverse of the bulk modulus, κT (0)−1 ≡ −V (∂P/∂V )N,T=0
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a) (2 points) We suppose our system is enclosed in a d-dimensional hypercubic box of side L and 
impose as a boundary condition that wavefunctions vanish at the walls. Under these conditions 
the allowed values of the momentum are 𝑝 = (𝜋ℏ/𝐿	)𝑛, where 𝑛 is a vector of d positive 
integers, in terms of which the single-particle energy is  𝜖 = |𝑛|!	𝜋!	ℏ!/2𝑚𝐿!		. The number 
of allowed states with energy less than or equal to ϵ is 2"# times the volume of a d-dimensional 

sphere of radius R = 22𝑚𝐿!𝜖/𝜋!ℏ! , which is 2𝜋
!
" 	𝑅$/𝑑𝛤($

!
)	 . Thus we have       

 

                                      g(ϵ) = %
!#

$
$&
(𝑉$(𝑟)) =

%
!#

$
$&
9 !'

!
"(!

$)($/!)
: = 𝑐𝑉𝜖

!
""% 

𝛤	is the Gamma functions  

                                      𝛤(𝑥 + 1) = 𝑥𝛤(𝑥) = 𝑥 ∫ ∫-
. 𝑢/"%𝑒"0	𝑑𝑢																											𝑥 > 0 

Fermi energy: ∫ 𝑔(𝜖)𝑑𝜖1$
. = 𝑁 

So:                                     𝑐𝑉 !
$
𝐸2
!
" = 𝑁  and   𝐸2 = G$3

!45
H
"
! 

 

b) (4 points) An idea Fermi gas is most conveniently treated using the grand canonical ensemble. 
The partition function is 

                              𝛧 = ∏ ∑ 𝑒6
"78&%,'"9:	<%,'	%

<%,'=.6,? = ∏ G1 + 𝑒6
"78&%,'"9:H6,? 	 

The index s = ± %
!
 labels spin states. If the single-particle energy is independent of spin (and 

here we take 𝜖 = |𝑝|!/2𝑚  for particles of mass 𝑚 ), then for a gas in a container of 
macroscopic size the pressure and number density can be written as  

𝑃 =
𝑘𝑇
𝑉 𝑙𝑛𝑍 =

𝑘𝑇
𝑉 S 𝑑𝜖𝑔(𝜖) ln(1 + 𝑒6

"78&%,'"9:)
-

.
 

n =
〈𝑁〉
𝑉

=
1
𝑉
(
𝜕(ln 𝑍)
𝜕(𝛽𝜇)

0
!,#

=
1
𝑉
1 𝑑𝜖𝑔(𝜖)

1
𝑒𝑝
𝛽(𝜖−𝜇) + 1

∞

0
 

At zero temperature the occupation numbers are n(ϵ) = (𝑒7(&"9) + 1)"% = 𝜃(𝜖2 − 𝜖)	 

𝑛 =
𝑐
𝑑/2 𝜖2

$/! 

𝑃 =
2
𝑑
1
𝑉S 𝑑𝜖𝑔(𝜖)𝜖𝑛(𝜖) =

𝑐

G𝑑2H (
𝑑
2 + 1)

𝜖2
$
!G% =

𝑛𝜖2
𝑑
2 + 1

-

.
 

The isothermal compressibility can now be found as: 

κH(0)"% = −𝑉 Y
𝜕𝑃
𝜕𝑉[3,I=.

= 𝑛
𝑑𝑃
𝑑𝑛 =

2
𝑑 Y
𝑑
2 + 1[ 𝑃 =

2
𝑑 𝜖2𝑛 



Alternatively, the same result may be obtained by making use of the thermodynamic relation 
GJ9
J3
H
I,5

= 5
3"K(

 ,  𝜅I 	(0) =
5

3"L)*)+M,-.,/

= %
<"

$<
$&$

= $
!<&$

 

 
 
(c) (8 points) mean energy:  

〈𝐸〉 = −
𝜕 ln(𝑍)
𝜕𝛽 ≈ −

𝜕
𝜕𝛽S 𝑑𝜖𝑔(𝜖) ln G1 + 𝑒6

"78&%,'"9:H
-

.
= S 𝑑𝜖𝑔(𝜖)

a𝜖6,? − 𝜇c

G1 + 𝑒6
78&%,'"9:H

-

.

≈ S 𝑑𝜖𝑔(𝜖)(𝜖 − 𝜇)
9

.
+
𝜋!

6
1
𝛽!
[𝑔(𝜖)(𝜖 − 𝜇)]′9 +⋯ =.. 

 
Specific heat:  

𝑑〈𝐸〉
𝑑𝑇 ≈

𝜋!

3 𝑘N!𝑇 k𝑐𝑉𝜖
$
! − 𝑐𝑉𝜖

$
!"%𝜇l ′9 =

𝜋!

3 𝑘N!𝑇 k𝑐
𝑑
2 𝑉𝜇

$
!"% − 𝑐𝑉 Y

𝑑
2 − 1[𝜇

$
!"%l

=
𝜋!

3 𝑘N!𝑇𝑐𝑉𝜇
$
!"% 

 
Energy fluctuations:  

= −
𝜕! ln(𝑍)
𝜕𝛽! ≈

𝜋!

3
1
𝛽O
[𝑔(𝜖)(𝜖 − 𝜇)]′9 =

𝜋!

3 𝑘NO𝑇O𝑐𝑉𝜇
$
!"% 

 
 
(d) (6 points) We can assume the opening is in the x-y plane. We need to compute the flow 
along the z-direction through the opening. At T=0, the electron occupation per unit volume is 
2 for 𝑝 < 𝑝2, and zero otherwise. The number of electrons with velocity within 𝑑O�⃗� is:	!P

0$0QR⃗
T0

. 

The number of electrons with velocity 𝑣 which hits the area A is then:	𝐴𝑣cos(𝜃)∆𝑡 !P
0$0QR⃗
T0

. 

The induced current along the z-direction is: 𝑑𝐼 = 𝑒𝐴𝑣cos(𝜃) !P
0$0QR⃗
T0

. The total current is then: 

𝐼 = S𝑒𝐴𝑣cos(𝜃)
2𝑑O�⃗�
ℎO = S 𝑑𝑣S 𝑑𝜃S 𝑑𝜑2𝑒𝐴𝑣cos(𝜃)

𝑚O𝑣!

ℎO sin	(𝜃)
!'

.

'/!

.

U!1$P

.
 

 
 

𝐼 =
2π𝑒𝐴𝑚
ℎO 𝐸2! 

 
Effectively this corresponds to a resistance: 𝑅 = 5

V
= 1$

W
T0

!XWYP1$
" =

T0

!XW"YP1$
 

𝑅 =
ℎO

π𝑒!𝐴𝑝2!
=
𝜆2!

𝐴
ℎ
π𝑒! 

 



Statistical Mechanics 2
Ising chain in 1d

The Hamiltonian for the Ising model in zero external magnetic field may be written as

H = −J
∑
〈i,j〉

σiσj (1)

where the classical Ising spin variable σi = ±1 on each site i, and 〈ij〉 denotes nearest-
neighbor pairs of sites. Consider this model in thermal equilibrium at temperature T on a
one-dimensional lattice in the thermodynamic limit. Take the ferromagnetic case, J > 0.
Derive exact expressions for the following:

(a) (10 points) the specific heat per spin C;

(b) (5 points) the spin-spin correlation function 〈σ0σr〉, where r is a position on the lattice;

(c) (5 points) and the (zero-field) magnetic susceptibility χ per spin.
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Solution

The Hamiltonian for the Ising model in zero external magnetic field may be written as

H = −J
∑
〈i,j〉

σiσj (2)

where the classical Ising spin variable σi = ±1 on each site i, and 〈ij〉 denotes nearest-
neighbor pairs of sites. Consider this model in thermal equilibrium at temperature T on a
one-dimensional lattice in the thermodynamic limit. Take the ferromagnetic case, J > 0.
Derive exact expressions for (i) the specific heat per spin, C; (ii) the spin-spin correlation
function 〈σ0σr〉, where r denotes a position; and (iii) the (zero-field) magnetic susceptibility
χ per spin.

Let β = 1/(kBT ) and denote βJ ≡ K and the total number of sites as N . (i) The
partition function for this model is

Z =
∑
σn

e−βH =
∑
σn

∏
ij

eKσiσj (3)

and the free energy per site is A = −kBTf , where f is the dimensionless quantity

f = lim
N→∞

1

N
lnZ (4)

Using the identity eKσiσj = coshK(1 + vσiσj), where v ≡ tanhK, we can write Z as

Z = (coshK)N
∑
σn

∏
ij

(1 + vσiσj) (5)

Quantities calculated in the thermodynamic limit do not depend on the boundary conditions,
so, without loss of generality, we may take periodic boundary conditions. Then, by an explicit
calculation,

Z = (2 coshK)N(1 + vN) = (2 coshK)N + (2 sinhK)N (6)

A different way to get this result is via a transfer matrix method. In a spin basis (+,−) the
transfer matrix T is

T =

(
eK e−K

e−K eK

)
(7)

Then
Z = Tr(T N) = λN1 + λN2 (8)

where λj, j = 1, 2 are the eigenvalues of T . We calculate

λ1 = 2 coshK, λ2 = 2 sinhK (9)

which yields the same result as in Eq. (6). Now taking N → ∞ and using the fact that
0 < v < 1 for finite temperature, we have

f = ln(λ1) = ln(2 coshK) (10)
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(Zero or infinite temperatures can be approached as a limit from finite temperatures.)
The internal energy per site is

U = −∂f
∂β

= −J tanhK (11)

The specific heat per site here is

C =
dU

dT
= −kBβ2dU

dβ
=

kBK
2

cosh2K
(12)

(ii) The spin-spin correlation function is

〈σ0σr〉 = Z−1
∑
σn

σ0σre
−βH =

∑
σn
σ0σr

∏
ij(1 + vσiσj)∑

σn

∏
ij(1 + vσiσj)

(13)

An explicit evaluation yields 〈σ0σr〉 = vr + vN−r. Taking N → ∞ and using the fact that
0 ≤ v < 1, we find

〈σ0σr〉 = vr = (tanhK)r (14)

(iii) We will present two ways to solve this problem. One way is to insert a magnetic field
term in the Hamiltonian, so that H → H−H∑i σi, where H denoes the external magnetic
field. Denote βH ≡ h. Then calculate the transfer matrix, which is

T =

(
eK+h e−K

e−K eK−h

)
(15)

with eigenvalues

λ1,2 = 2eK
[

coshh± (sinh2 h+ e−4K)1/2

]
(16)

Then we calculate Z = Tr(T N) and f as before, and then compute the magnetization
M(H) = ∂f/∂h. Finally, one calculates the zero-field susceptibility χ ≡ limH→0 ∂M/∂H.
Following this procedure, we obtain

M(H) =
sinhh

[sinh2 h+ e−4K ]1/2
(17)

and
χ = βe2K (18)

The other way to do the problem is calculate χ as the normalized sum over all spin-spin
correlation functions,

β−1χ =
∑
r

〈σ0σr〉

= 1 + 2
∞∑
r=1

vr = −1 + 2
∞∑
r=0

vr

= −1 +
2

1− v =
1 + v

1− v = e2K (19)

which yields the same result as in (18).

39



Statistical Mechanics 3
Beads on a rod

1 2 N

Consider N � 1 identical hard beads of diameter b and mass m moving freely on a rod of
length L between two end-caps. Treat the beads as classical non-relativistic particles. All
collisions between the beads are elastic and instantaneous. The internal heat capacity is c
for every bead and negligible for the rod and endcaps. The beads are in thermal equilibrium
at temperature T .

(a) (4pt) Write a partition function for the beads as a product of integrals, Z = ZpZx,
over their momenta pk and coordinates xk. Be sure to include the limits of integration
over the coordinates.

(b) (4pt) Calculate the integral over the momenta and show that the integral over the
coordinates is equal to

Zx =
1

N !
[L−Nb]N

Hint: it may be beneficial to change the integration variables to yk, where xk = yk +
(k − 1)b.

(c) (4pt) Calculate the force ~F required to keep the endcap(s) in place if they were allowed
to move as well.

(d) (4pt) Find the rate of collisions of the left bead and the endcap.

(e) (4pt) Now assume that the beads are thermally insulated, and the left endcap is slowly
moved to the right, so that the rod length is decreased to L′ < L. Find how the force
F depends on L.
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Solution

(a) Since each bead can move freely between collisions, their energy is

E =
∑
k

p2
k

2m
(1)

and the nearest-neighbor beads coordinates are constrained as

0 ≤ x1 , x1 + b ≤ x2 , x2 + b ≤ x3 , . . . , xN ≤ L− b . (2)

The partition function is then Z = ZprZx, where

Zp =

∫ N∏
k=1

dpk
2π~

e−
p2k

2mT =

(
mT

2π~2

)N/2
= λ−NT (3)

and

Zx =

∫ L−Nb

0

dx1

∫ L−(N−1)b

x1+b

dx2

∫ L−(N−2)b

x2+b

dx3 · · ·
∫ L−b

xN−1+b

dxN (4)

(b) After changing the variables to yk = xk − (k − 1)b in Eq. (4), the coordinae integral
becomes

Zx =

∫ L−Nb

0

dy1

∫ L−Nb

y1

dy2

∫ L−Nb

y2

dy3 · · ·
∫ L−Nb

yN−1

dyN =

∫
0≤y1≤···≤yN≤(L−Nb)

∏
k

dyk (5)

This integral is equal to 1/N ! part of an N -dimensional hypercube with side (L−Nb), and

Zx =
1

N !
[L−Nb]N . (6)

This can be shown by adding all integrals with N ! possible permutations of yk, which results
in independent integration over each 0 ≤ yk ≤ (L−Nb).

(c) The force F is the 1-dimensional equivalent of the pressure, therefore

F = −
(
∂Ψ

∂L

)
T

(7)

where the free energy Ψ is (using N � 1 and Stirling’s formula)

Ψ = −T logZ = −T
[
−N logN + 1 +N log(L−Nb)−N log λT

]
= −NT

[
log
( L
N
− b
)

+ 1 log λT

]
.

(8)

Therefore
F = −

(
∂Ψ

∂L

)
T

=
NT

L−Nb . (9)
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(d) The number of collisions can be calculated from the force F and the average momen-
tum transferred to the endcap in a single collision,

Ṅcoll =
F

2mv
, (10)

where the average bead velocity is given by the 1-dimensional Maxwell’s distribution,

v = C

∫ ∞
0

dv |v| e−mv2

2T = C
T

m
, (11)

and C is the normalization constant,

C−1 =

∫ ∞
0

dve−
mv2

2T =

√
πT

2m
. (12)

Thus, the rate of collisions is

Ṅcoll =
N

L−Nb

√
πT

8m
. (13)

(e) The described process is completely analogous to adiabatic compression of a one-
dimensional ideal gas with “volume” L−Nb:

F (L′) = F (L)

(
L−Nb
L′ −Nb

)γ
, (14)

where γ is the ratio of heat capacities at constant “pressure” F and “volume” L:

γ =
cF
cL
,

cL = c+
1

2
,

cF = cL + 1 =
3

2
.

In the expression above, the cL heat capacity is equal to the internal capacity c plus half-
degree of freedom per equipartition theorem, and cF is larger than cL due to the “equation
of state” (9).
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