
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

January 2018 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Some of the problems may cover multiple pages. Use one exam book for each problem,
and label it carefully with the problem topic and number and your ID number.

Write your ID number (not your name!) on the exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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Classical Mechanics 1

The conical and the inverted pendulum.

!

l,M

✓

l,M

✓

A cos(�t)

A massive homogeneous bar of length l and total mass M is attached
to the ceiling and forced to rotate around a vertical axis with constant
angular velocity !. The point where the bar is attached to the ceiling
does not move, so the bar can only swing in a vertical plane that rotates
uniformly. The angle between the bar and the vertical axis of rotation is
✓.

1. Derive the equation of motion of ✓ for arbitrary (not only small)
values of ✓. (4 points)

2. At what rotation rate !c does the stationary solution ✓0 “ 0 become
unstable? (4 points)

3. For ! ° !c there is a stable solution with constant ✓0 ° 0. What is
the frequency of small oscillations about this solution? (4 points)

Now consider the same pendulum, but upside down (called the upside-
down pendulum, or the inverted pendulum, or the Kapitza pendulum).
The bottom of the pendulum is forced to move vertically with periodic
motion A cosp�tq. We consider now motion in a fixed vertical plane, rather
than a rotating plane. The angle ✓ measures how far the bar deviates from
the vertical position. We consider the case that A ! l, but the frequency
may become large. For given A ! l there is a critical value �crit of the
frequency such that for frequencies larger than �crit the bar does not fall
down but stays in upright position.

4. Derive the following equation of motion for small values of ✓

✓
2 ` pp ` q cos zq✓ “ 0 ; p “ ´3

2
g
l�2 ; q “ 3

2
A
l .

Here z “ �t and ✓1 denotes d✓
dz . (4 points)

5. It can be shown that at � “ �crit the function ✓pzq is periodic or
antiperiodic in z with period 2⇡. What is the value of �crit? (4 points)

Hint: expand p and ✓ into a power series of q.
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Solution

1. The kinetic and potential energy of a segment of length �x of the bar which is a
distance x away from the top of the bar are given by

T pxq�x “ 1
2

`
M
l �x

˘ “
px 9✓q2 ` px sin ✓q2!2

‰

V pxq�x “ ´
`
M
l �x

˘
gpx cos ✓q .

Then L “
≥l
0

“
T pxq ´ V pxq

‰
dx is given by1

L “ 1
6Ml

2 9✓2 ` 1
6Ml

2 sin2
✓!

2 ` 1
2Mlg cos ✓ .

The equation of motion is thus
1
3Ml

2:✓ ´ 1
3Ml

2 sin ✓ cos ✓!2 ` 1
2Mlg sin ✓ “ 0 .

2. For small oscillations about ✓0 “ 0 the equation of motion becomes
1
3Ml

2:✓ ´ 1
3Ml

2
!
2
✓ ` 1

2Mlg✓ “ 0 .

Hence the critical value of ! where instability about ✓0 “ 0 sets in is

!
2
c “ 3

2

g

l
¨

3. For sufficiently large (how large will be determined) ! there is a stationary point at
✓0 ° 0. The equation for ✓0 follows from the equation of motion by substituting :✓ “ 0.

´1
3Ml

2 sin ✓0 cos ✓0!
2 ` 1

2Mlg sin ✓0 “ 0 ñ cos ✓0 “ 3
2

g
l!2 ¨

The frequency ⌦ of small oscillations ✓ ´ ✓0 “ ⌘ about ✓0 follows from the equation of
motion by substituting :⌘ “ ´⌦2

⌘, expanding about ✓0, and substituting the value of
cos ✓0

0 “ ´1
3Ml

2⌦2 ´ 1
3Ml

2
`
cos2 ✓0 ´ sin2

✓0

˘
!
2 ` 1

2Mlg cos ✓0

“ ´1
3Ml

2⌦2 ´ 1
3Ml

2
”
2

`
3
2

g
l!2

˘2 ´ 1
ı
!
2 ` 1

2Mlg
3
2

g
l!2 ¨

Hence
1
3Ml

2⌦2 “ ´3
2
Mg2

!2 ` 1
3Ml

2
!
2 ` 3

4
Mg2

!2

“ ´3
4
Mg2

!2 ` 1
3Ml

2
!
2

⌦2 “ !
2 ´ 9

4
g2

l2!2 “ !
2

”
1 ´

`
!c
!

˘4ı
.

Hence for ! ° !c stability holds, but the frequency of small oscillations about ✓0 ° 0
is smaller than the frequency with which the pendulum rotates about the vertical axis.

1
Even for 9✓ “ 0 the kinetic energy is not

1
2Mv

2
cm (which gives

1
8Ml

2 sin2 ✓!2
), but

1

2

ˆ
M

l

˙ ª `

0
px sin ✓q2!2

dx “ 1

6
Ml

2 sin2 ✓!2
.

The difference (
1
24M`

2 sin2 ✓!2
) is due to a rotation of the bar about the vertical axis,

1
2Icm sin2 ✓!2

.
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4. Consider a small segment of the bar of length �x which is a distance x away from the
bottom of the bar. Let xptq and zptq and denote its cartesian coordinates in the lab
frame. The figure in the problem statement shows that

zptq “A cosp�tq ` x cos ✓,

xptq “ ´ x sin ✓,

and thus
9x2 ` 9z2 “

“
px 9✓q2 ` 2A�x 9✓ sinp�tq sin ✓ ` A

2
�
2 sin2p�tq

‰
.

The kinetic and potential energy of the segment are given by

T pxq�x “ 1
2

`
M
l �x

˘ “
px 9✓q2 ` 2A�x 9✓ sinp�tq sin ✓ ` A

2
�
2 sin2p�tq

‰

V pxq�x “
`
M
l �x

˘
g

“
x cos ✓ ` A cosp�tq

‰
.

Then L “
≥l
0

“
T pxq ´V pxq

‰
dx is given by (ignoring total derivatives and ✓-independent

terms)
L “ 1

6Ml
2 9✓2 ` 1

2MAl�
2 cosp�tq cos ✓ ´ 1

2Mlg cos ✓ .

The equation of motion is thus

1
3Ml

2:✓ `
`
1
2MAl�

2 cosp�tq ´ 1
2Mlg

˘
sin ✓ “ 0 .

For small oscillations about ✓0 “ 0 the equation of motion becomes (transforming
t Ñ z “ �t)

✓
2 `

´
3A
2l cos z ´ 3g

2l�2

¯
✓ “ 0

ñ ✓
2 ` pp ` q cos zq ✓ “ 0 .

5. We consider a fixed A but various �. So, the idea is to treat p and ✓ as functions of q,
and to substitute a power expansion of ppqq and ✓pz, qq into the equation of motion.

✓pz, qq “ ✓0pzq ` q✓1pzq ` q
2
✓2pzq ` ¨ ¨ ¨

ppqq “ p0 ` qp1 ` q
2
p2 ` ¨ ¨ ¨

Because ✓pz, qq is periodic or antiperiodic at the critical frequency2, all ✓0pzq, ✓1pzq, ✓2pzq, ¨ ¨ ¨
have to be periodic or antiperiodic. We get a hierarchy of relations.

✓
2pz, qq ` pppqq ` q cos zq✓pz, qq “ 0.

Order q0
: ✓

2
0pzq ` p0✓0pzq “ 0 ñ ✓0pzq “ cosp?

p0zq. (Anti)periodicity of ✓0pzq
requires p0 “ n2

4 for n “ 0, 1, 2. We take the lowest value

✓0pzq “ 1 ; p0 “ 0 .
2
As shown for example in Landau-Lifshitz volume 1 Mechanics, section 27, the solution for ✓ is of the form

pµ1qz{2⇡⇧1 ` pµ2qz{2⇡⇧2, where ⇧ipzq “ ⇧ipz ` 2⇡q and µ
1
µ
2 “ 1. Either µ

1
and µ

2
are real (instability) or

they are phases (|µ1| “ |µ2| “ 1, stability). At the critical point, the phases become real, and this occurs if

µ
1 “ µ

2 “ `1 (periodicity) or µ
1 “ µ

2 “ ´1 (antiperiodicity).
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Order q1
: ✓

2
1pzq ` p1✓0pzq ` p0✓1pzq ` pcos zq✓0 “ 0 ñ ✓

2
1pzq ` p1 ` cos z “ 0. The

solution is ✓1 “ a1 ` b1z ` 1
2p1z

2 ` cos z. (Anti)periodicity requires b1 “ p1 “ 0.
Hence

✓1pzq “ a1 ` cos z ; p1 “ 0 .

Order q2
: ✓

2
2pzq `p2✓0pzq `p1✓1pzq `p0✓2pzq ` pcos zq✓1 “ 0 ñ ✓

2
2pzq `p2 ` cos zpa1 `

cos zq “ 0. We use cos z cos z “ 1
2 p1 ` cosp2zqq. Then (anti)periodicity requires

that p2 ` 1
2 “ 0. This is the crucial relation. It implies that

ppqq “ ´1
2q

2 ` ¨ ¨ ¨ .

Substituting p “ ´3
2

g
l�2 , and q “ 3

2
A
l we find

�
2
crit “ 4gl

3A2
¨

For example, if A “ 1cm and l “ 30cm, one finds p� “ 2⇡⌫q for the critical frequency
⌫crit

⌫crit “ 1

2⇡

c
4 ¨ 103 ¨ 30

3
» 32Hz.
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Classical Mechanics 2

Nonlinear oscillations

Consider a weakly-nonlinear oscillator: a particle of mass m moving in the potential

Upxq “ m!
2
0

”
x
2

2
´ �

x
3

3

ı
,

which in the absence of nonlinearity (� “ 0) performs harmonic oscillations of frequency !0:

x
p0qptq “ a cos!0t . (1)

(a) (3 points) Determine the correction x
p1qptq of first order in � to the unperturbed oscil-

lations in eq. (1) using direct (or “naive”) perturbation theory.

(b) (6 points) Do the same for the second order correction x
p2qptq.

(c) (7 points) Find the correction x
p1qptq ` x

p2qptq up to second order in � using secular
perturbation theory, where the “zeroth-order” oscillations are represented by x

p0qptq “
a cos!t. Determine the oscillation frequency ! to order �2.

(d) (4 points) Compare the time ranges of validity of the direct and secular perturbation
theories using the solutions from parts (a) and (b), and (c), respectively.
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Solution

(a) The equation of motion satisfied by the oscillator is:

:x ` !
2
0x “ �!

2
0x

2
.

For the unperturbed solution x
p0qptq “ a cos!0t, the first-order correction x

p1qptq should
satisfy the equation

:xp1q ` !
2
0x

p1q “ �!
2
0rxp0qs2 “ �!

2
0a

2

2

“
1 ` cos 2!0t

‰
.

The solution of this equation determines x
p1qptq:

x
p1qptq “ �a

2

2

“
1 ´ 1

3
cos 2!0t

‰
.

(b) Iterating further, and keeping only the terms of the required second order in � on the
right-hand-side of the equation of motion, we get similarly the equation for the second-order
correction x

p2qptq:

:xp2q ` !
2
0x

p2q “ 2�!2
0x

p0q
x

p1q “ �
2
!
2
0a

3

6

“
5 cos!0t ´ cos 3!0t

‰
.

As for all other terms in the perturbative expansion of x, the term x
p2qptq is given by the

particular solution of this differential equation. The presence of the “resonant” terms of
frequency !0 on the right-hand-side of this equation leads to a term linear in time:

x
p2qptq “ �

2
a
3

12

“
5!0t sin!0t ` 1

4
cos 3!0t

‰
.

(c) In the asymptotic perturbation theory, one takes into account explicitly that the oscil-
lation frequency ! is affected by the nonlinearity, and, in addition to the expansion for the
coordinate x:

xptq “ x
p0qptq ` x

p1qptq ` x
p2qptq ` ... , x

p0qptq “ a cos!t ,

can also be directly expanded in the perturbation series in �:

! “ !0 ` !
p1q ` !

p2q ` ... .

The terms of the expansion for ! are then defined through the condition that there are
no resonant contributions in each order of the overall perturbation-theory expansion of the
equations of motion. Explicitly, the first order terms in the expansion of the equation of
motion are

!
2
0

!2
:xp1q ` !

2
0x

p1q “ �!
2
0rxp0qs2 ´ 2!0!

p1q

!2
:xp0q “ �!

2
0a

2 cos2 !t ` 2!0!
p1q
a cos!t ,
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and give

x
p1qptq “ �a

2

2

“
1 ´ 1

3
cos 2!t

‰
, !

p1q “ 0 .

The second-order part of the equations of motion is:

!
2
0

!2
:xp2q `!

2
0x

p2q “ 2�!2
0x

p0q
x

p1q ´ 2!0!
p2q

!2
:xp0q “ �

2
!
2
0a

3 cos!t
`
1´ 1

3
cos 2!t

˘
`2!0!

p2q
a cos!t ,

and gives:

x
p2qptq “ �

2
a
3

48
cos 3!t , !

p2q “ ´5�2a2!0

12
.

(d) The usual condition of the validity of the perturbation expansion is that the perturba-
tive corrections remain small in comparison with the zero-order term. For the asymptotic
perturbation theory, this condition does not involve time and limits only the oscillation
amplitude:

�a ! 1 ,

whereas the direct perturbation theory is only valid in the limited time interval, because of
the resonant terms:

�
2
a
2
!0t ! 1 .
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Classical Mechanics 3

The three body problem.

Consider the three body problem of the Earth–Sun system together with a satellite of
negligible mass. The masses are m1,m2 " m3. We work in the approximation that the orbit
of the Earth around the Sun is circular. Let the Earth–Sun motion take place in the px, yq
plane, and let the center of mass coordinates of the Earth–Sun system be at the origin (see
below).

m1~r1 ` m2~r2 “ 0

~r “ ~r1 ´ ~r2

+
~r1 “ m2

m ~r

~r2 “ ´m1
m ~r

+
m ” m1 ` m2 .

The goal of this problem is to determine the five Lagrangian points, which are the (co-
rotating) positions of the satelite which are stationary with respect to the rotating Earth-Sun
coordinate system.

Using a complex notation the Earth-Sun separation, ~r “ px, yq can be replaced by z “
x` 9◆y where z “ a e

9◆!t, a ” Earth–Sun distance, ! “ 2⇡
T , T “ 1 year. We have !2 “ Gpm1`m2q

a3 .
Assume that the third body also moves in the px, yq plane (see below). Using the moving
frame provided by zptq and 9◆zptq, the position of the third body can be written as:

z3ptq “ x3ptq ` 9◆y3ptq “ ↵ptqzptq ` �ptq 9◆zptq ” ⇣ptqzptq

with real ↵ and �.

m2p@q

m1pCq

zptq ” xptq ` 9◆yptq

m3 (sat)

z3ptq ” x3ptq ` 9◆y3ptq “ ⇣ptqzptq

1. Write the equations of motion for z3ptq and for ⇣ptq. (4 points)

2. Show that the condition that the satellite remains at rest with respect to the Earth–Sun
system is:

⇣ ´ m1

m

⇣ ´ m2{m
|⇣ ´ m2{m|3 ´ m2

m

⇣ ` m1{m
|⇣ ` m1{m|3 “ 0 . (2 points) (1)
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3. Show that solutions to Eq. (1) with Im⇣ ‰ 0, satisfy:

1

|⇣ ´ m2{m|3 ´ 1

|⇣ ` m1{m|3 “ 0 . (3 points)

Reinserting this result in Eq. (1) yields

1 “ 1

|⇣ ´ m2{m|3 ¨

4. Show that Earth, Sun, and equilibrium point form an equilateral triangle of side a,
and there are two possibilities, ahead or behind the Earth. These are the Lagrangian
points L4, L5. (3 points)

5. Look now for solutions of (1) with Im⇣ “ 0, i.e., along the Earth–Sun axis. By plotting
(1) show that there are three solution: L1, L2, L3. (4 points)

m1

L3 L1 L2

m2

6. Give a qualitative argument of why we should expect L1, L2, L3. (4 points)
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Solution

We assume that m2 (Sun) and m1 (Earth) are on a circular orbit. We also provide that
if a is the distance Earth–Sun, the period of revolution T (year) is given by:

T “ 2⇡

ˆ
a
3

Gpm1 ` m2q

˙1{2

Then

! “ 2⇡

T
“

ˆ
Gpm1 ` m2q

a3

˙1{2

Choose px, yq to be the plane where the motion takes place, and choose the origin at the
centre of mass:

m1~r1 ` m2~r2 “ 0

Letting ~r “ ~r1 ´ ~r2 we can easily show that

~r1 “ m2
m ~r , ~r2 “ ´m1

m ~r , m ” m1 ` m2 .

Since ~r1,~r2 are two-dimensional vectors, we can write them in terms of complex variables

zi “ xi ` 9◆yi , ~ri ¨ ~rj “ Rezi ¨ z̄j

1. Adding a third body with mass m3 in the same plane with m3 ! m1,m2, the equations
of motion following from Newton’s laws are

:~r3 “ ´Gm1

|~r13|3~r31 ´ Gm2

|~r23|3
~r32 , ~rij ” ~ri ´ ~rj .

Using complex variables again:

:z3 “ ´Gm1

|z31|3 z31 ´ Gm2

|z32|3 z32 .

We go to the frame moving with the Earth–Sun system, i.e., where they are at rest. If
zptq “ x ` 9◆y, px, yq “ ~r the vector pointing from the Sun to the Earth, we know that

zptq “ a exp 9◆!t

because by assumption the orbit is circular. Then

z1 “ m2

m
z , z2 “ ´m1

m
z .

The vectors zptq and 9◆zptq are orthogonal (notice that in components zptq “ px, yq,
9◆zptq “ p´y, xq), hence we write z3 in this basis:

z3 “ ↵ptqzptq ` �ptq 9◆zptq “ p↵ ` 9◆�qz ” ⇣ptqz .
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In this basis we write the equations of motion:

d2

dt2 p⇣zq “ p:⇣ ` 2 9◆! 9⇣ ´ !
2
⇣qz “ ´ Gm1

|⇣ ´ m2{m|3a3
´
⇣ ´ m2

m

¯
z ´ Gm2

|⇣ ` m1{m|3a3
´
⇣ ` m1

m

¯
z

where we used 9z “ 9◆!z, :z “ ´!2
z. Dividing by z and moving !

2
⇣ to the RHS, we

have:

:⇣ ` 2 9◆! 9⇣ “ !
2
⇣ ´ Gm1

|⇣ ´ m2{m|3a3
´
⇣ ´ m2

m

¯
´ Gm2

|⇣ ` m1{m|3a3
´
⇣ ` m1

m

¯
.

2. The Lagrangian points are those places at rest relative to the Sun and Earth, hence
we need to find solutions to:

:⇣ “ 9⇣ “ 0

namely:

!
2
⇣ ´ Gm1

a3

⇣ ´ m2{m
|⇣ ´ m2{m|3 ´ Gm2

a3

⇣ ` m1{m
|⇣ ` m1{m|3 “ 0 .

Using !2 “ Gpm1`m2q
a3 , we simplify the equation:

⇣ ´ m1

m

⇣ ´ m2{m
|⇣ ´ m2{m|3 ´ m2

m

⇣ ` m1{m
|⇣ ` m1{m|3 “ 0 . (2)

3. Look at the drawing. Equation (2) represents the cancellation of the centrifugal force
on m3 by the gravitational attraction of m1,m2. We look for this force to vanish along
⇣ and along the orthogonal direction, 9◆⇣.

m1
CM

m2
~r1

~r3

~r2

m3

m2
m

m1
m

L4

L5

We first look for solutions to (2) with ⇣ not collinear with m1,m2, i.e., Im⇣ ‰ 0.The
condition that the forces vanish orthogonal to ⇣, implies that we multiply (2) by 9◆⇣̄
and take the real part (scalar product), this yields:

1

|⇣ ´ m2{m|3 ´ 1

|⇣ ` m1{m|3 “ 0 .
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Hence the equilibrium points are equidistant from m1,m2. Using this condition in (2)
yields:

1 “ 1

|⇣ ´ m2{m|3 ¨

Thus pm1,m2,m3q form an equilateral triangle. In the CM frame the positions of L4, L5

are then:
⇣4,5 :

ˆ
1

2
´ m2

m
,

?
3

2

˙
,

ˆ
1

2
´ m2

m
,´

?
3

2

˙
.

4. Finally consider equilibrium positions on the Earth–Sun axis. Let ↵ “ m1
m , � “ m2

m ,

m1

L3 L1 L2

m2

m “ m1 ` m2, then we are looking for solutions of:

⇣ ´ ↵
⇣ ´ �

|⇣ ´ �|3 ´ �
⇣ ` ↵

|⇣ ` ↵|3 “ 0 , ⇣ real

It is easy to plot the LHS as a function of ⇣

´↵ �

showing that there are 3 collinear solutions.

5. The qualitative reason why L1, L2, L3 exist is as follows. If m2 is the Sun and m3 is
closer to m2 than the Earth, then m3 would go around the Sun faster than the Earth.
However, if we include the Earth’s attraction on m3, it cancels part of the Sun’s, and
hence there is an intermediate point L1, where the angular velocity is the same as
the Earth. Similar arguments apply to L2, L3 but now it is the addition of Earth’s
attraction that makes m3 at L2, L3 move faster. Thus L2 and L3 lie just outside the
orbit of the earth, while L1 lies just inside this orbit. (The distance of L1 and L2 from
the earth is about 1.5 million kilometers.)
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Electromagnetism 1

A neutral metallic sphere at rest and in motion

A small neutral metallic sphere of infinite conductivity and radius a (diameter 2a) is
separated by a transverse distance R " a from an infinitely long wire of negligible thickness,
vanishing conductivity, and charge per length � (see below).

�

R

2a

(a) (6 points) Calculate the force between the metallic sphere and the wire. (Hint: recall
that the induced electric dipole moment of a sphere in a constant electric field is p “
4⇡a3E0.) Explain the direction of the force physically, and estimate error associated
with the dipole approximation.

Now consider a different problem. A small neutral metallic sphere of radius a (diameter
2a) of infinite conductivity moves (non-relativistically) with velocity v along the wire. The
sphere is separated by a transverse distance R from a neutral wire carrying a current I0 in
the same direction.

2a

R

I0

v

(b) (5 points) There is a force between the wire and the sphere. Without using a Lorentz
transformation, qualitatively explain the origin of this force in the lab frame and esti-
mate its magnitude.

(c) (6 points) Using a Lorentz transformation, determine the electric and magnetic fields
in the frame of the sphere. What charges are responsible for the electric field in this
frame? Show quantitatively that these charges give the required electric field.

(d) (3 points) Compute the force on the metallic sphere in the sphere’s frame and compare
the result with part paq and the estimate in part pbq.
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Solution

(a) The electric field from the line of charge is in the radial direction ⇢

E⇢ “ �

2⇡⇢
. (1)

This electric field induces a dipole moment on the sphere, and then the induced dipole is in
a spatially dependent electric field and experiences a force:

Fi “ p`BiE` “ p`B`
Ei . (2)

In the current case the dipole moment is proportional to E

p “ ↵E with ↵ “ 4⇡a3 , (3)

and thus we evaluate the force at x “ ⇢ “ R (see coordinates in Fig. 1)

Fx|x“R “ ↵

2
BxE2 “ ´

ˆ
�

2⇡

˙2 8⇡a3

R3
. (4)

The force is clearly attractive as should be the case from the physical picture given in Fig. 1.
There will be corrections to this calculation of order a{R stemming from higher terms in the
multipole expansion

++++

− − − −

+++++++++++++++++++++++++++++++++++++

x = ⇢ = R

�

x̂

ẑ
ŷ

Figure 1: Induced charges on a sphere in the presence of a charged wire.

(b) The charge carriers in the moving conducting sphere experience a magnetic force due to
the magnetic field of the wire:

B� “ I0

2⇡c⇢
, FB „ q

v

c
B . (5)
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− − − −

++++

~FB

~v

~I0

Figure 2: The magnetic force FB on positive charges in the sphere is directed towards the
wire.

The charges inside the sphere separate and are transported to the surface of the sphere. The
positive charge accumulates closer to the wire, and the negative charge accumulates farther
from the wire – see Fig. 2.

This process continues until the force inside the sphere due to the induced electric field
balances the magnetic force. We may estimate the magnitude of the charge separation as
follows:

qE „ qQind

4⇡a2
„ q

v

c
B . (6)

So we estimate that the induced charge is

Qind „ a
2v

c
B . (7)

The force on the sphere in the x-direction may then estimated as the sum of magnetic forces
from the top set of charges (the negatives) and the bottom set of charges (the positives)

Fx „
`
F

´
x ` F

`
x

˘
„ Qind

v

c
BpR ` aq ´ Qind

v

c
BpRq „ Qind

v

c
B

1pRqa . (8)

Thus, the force is attractive

Fx „ a
3

´
v

c

¯2

BpRqB1pRq „ ´a
3

´
v

c

¯2
ˆ
I0

c

˙2 1

R3
. (9)

(c) When we make a boost in the � direction3 the fields transform as

Ek “Ek , (10)
Bk “Bk , (11)
EK “�EK ` �� ˆ BK , (12)
BK “�BK ´ �� ˆ EK . (13)

3
Our conventions are such that a particle at rest in a frame O moves with velocity ´� in frame O after

a Lorentz boost by �
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We may limit ourselves to a non-relativistic approximation where4

EK »EK ` � ˆ BK , (14)
BK »BK ´ � ˆ EK . (15)

More explicitly for B “ I0
2⇡cR ŷ and � “ � ẑ (see coordinates in Fig. 1) we find

E
x “ ´ v

c

I0

2⇡cR
(16)

B
y “ I0

2⇡cR
. (17)

The electric field is produced by the charges in the wire. If in the original frame the charge
density is ⇢ “ 0 and the current density is j “ I0{AK, so that the four current density is
J
µ{c “ p0, j{cq, then the transformed four current density is

ˆ
⇢

j{c

˙
“

ˆ
� ´��

´�� �

˙ ˆ
0
j{c

˙
. (18)

With the non-relativistic approximation we have

� » ´ I0

c

´
v

c

¯
, (19)

I0 »I0 . (20)

Clearly this charge density yields results consistent with Eq. (16)

E
x “ �

2⇡R
“ ´ I0

2⇡cR

´
v

c

¯
, (21)

(d) The calculation is the same as part paq with the replacement

� Ñ ´I0

c

v

c
. (22)

The force is then

F⇢ “ ´
ˆ

I0

2⇡c

˙2 ´
v

c

¯2 8⇡a3

R3
. (23)

which agrees with the estimate of part pbq.

4
It is easy to remember these formulas – If a non-relativistic particle has velocity � and Lorentz force

F “ qpE ` � ˆ Bq, then after a small boost by � its velocity is zero, but the force is unchanged F “ qE.
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Electromagnetism 2

Dispersion in collisionless plasmas with an external magnetic field

Model a cold non-relativistic collisionless plasma as a system of non-interacting classical
electrons of uniform number density n0. The electrons have charge q and mass m and are
initially at rest. The electrons sit in a stationary and uniform background of positive charges
of charge density `|q|n0, whose only role in this problem is to neutralize the overall charge
of the system. In the presence of an external electromagnetic field the electrons begin to
move according to the classical equation of motion

m
d
2x

dt2
“ qpEpt,xq ` v

c
ˆ Bpt,xqq . (1)

Consider an electromagnetic plane wave with electric field Ept,xq “ E0 e
´i!t`ik¨x propa-

gating in the plasma. The amplitude E0 is sufficiently small that the plasma is only weakly
perturbed.

(a) (3 points) Determine the current density jpt,xq induced by the plane wave. Express
your results in terms of the plasma frequency !2

p “ q2n0

m .

Hint: Work to leading order in the amplitude of the external field E0, so that an
electron’s position is constant up to small corrections proportional to E0, xptq “
x0 ` �xpt,x0q.

(b) (3 points) Determine the induced charge density ⇢pt,xq. Show that E0 is transverse
to k for generic frequency !.

(c) (5 points) Determine the permittivity of the plasma, ✏p!q, as a function of frequency.
Find a dispersion relation, kp!q, for the electromagnetic plane wave. For what range
of frequencies will the plane wave propagate in the plasma? Explain.

(d) (3 points) For ! " !p, how much does the group velocity of the wave deviate from the
vacuum speed of light?

Now place the plasma in a strong time independent and homogeneous magnetic field of
magnitude B0 pointing in z direction. We will reanalyze the dispersion relation when the
additional magnetic field is present. For circularly polarized waves with k “ kẑ in the z

direction, the the electric field take the form

E˘pt,xq “ E0✏˘e
´i!t`ikz

, with ✏˘ ” x̂ ˘ iŷ?
2

. (2)

(e) (2 points) Determine the current induced by the circularly polarized waves. Ex-
press your result in terms of the plasma frequency !

2
p and the cyclotron frequency5

5
In SI units ⌦c “ qB0{m.
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⌦c “ qB0{mc.

Hint: Assume that �xpt,x0q is proportional to ✏˘ and work to leading order in the
electric field.

(f) (4 points) Determine the dispersion relation k˘p!q of circularly polarized plane waves in
the presence of B0. Describe qualitatively how linearly polarized light at high frequency
! " !p would change upon traversing a region of weak magnetic field.
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Solution

(a) The electron coordinate is peturbed from its equilibrium position harmonically:

xptq “ x0 ` x!px0qe´i!t
looooomooooon

”�xpt,x0q

, (3)

where here and below we notate harmonic time dependence of the variables with a subscript,
e.g.

Ept,x0q “ E!px0qe´i!t
, E!px0q ” E0e

ik¨x0 . (4)

Substituting Eq. (3) into the Newtonian equations of motion and solving to first order
E0 and �x we find

´ m!
2x!e

´i!t “ qE0e
ik¨x0´i!t

, (5)

yielding

x!px0q “ ´qE0px0q
m!2

. (6)

Thus the harmonic current at point x0 is

jpt,x0q “ qn0vpt,x0q “ ´ n0q
2

m!2
p´i!E!px0qe´i!tq , (7)

“ ´ !
2
p

!2
p´i!E!px0q e´i!tq , (8)

where we have defined the plasma frequency

!
2
p ” n0q

2

m
. (9)

(b) Once the current is specified the continuity equation

Bt⇢pt,x0q ` rx0 ¨ jpt,x0q “ 0 , (10)

determines the induced charge density

⇢!px0q “k ¨ j!px0q
!

, (11)

“!
2
p

!2
ik ¨ E0e

ik¨x0 . (12)

The Gaus law gives
r ¨ E!px0q “ ⇢!px0q , (13)

yielding

ik ¨ E0 “ !
2
p

!2
ik ¨ E0 . (14)

For generic frequency this equation requires that k ¨ E0 “ 0, i.e. E0 is transverse. For the
specific frequency ! “ !p, longtidunal modes, known as plasma oscillations, are possible.
Except at this frequency, the induced charged density is zero.
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(c) The frequency dependent dielectric susceptibility is defined through the linear constitu-
tive equation

j!px0q “ ´i!�p!qE!px0q , (15)

and thus comparing Eq. (15) and Eq. (7) we find

✏p!q “ 1 ` �p!q �p!q “ ´!
2
p

!2
. (16)

In terms of � the density reads
⇢ “ ´�p!qpik ¨ E!q (17)

Given the linear constitutive relations and the Maxwell equations

r ¨ E! “⇢! , (18)

`i
!

c
E! ` r ˆ B! “j!

c
, (19)

r ¨ B! “0 , (20)

´i
!

c
B! ` r ˆ E! “0 , (21)

we deduce that
!
2

c2
✏p!q ´ k

2 “ 0 . (22)

Thus, there are nontrivial solutions for specific values of k:

kp!q “ !

c

c
1 ´ !2

p

!2
. (23)

For frequencies less than the plasma frequency, k is imaginary and the plasma does not
support travelling waves. For frequencies greater than !p travelling waves are supported.

(d) At large frequencies we have

kp!q » !

c

ˆ
1 ´ !

2
p

2!2

˙
, (24)

and we may solve approximately for !pkq

!pkq » ck

ˆ
1 ` !

2
p

2pckq2
˙

. (25)

Differentiating with respect to k we determine the group velocity

vg “ d!

dk
» c

ˆ
1 ´ !

2
p

2c2k2

˙
. (26)

Notice that the phase velocity !pkq{k is greater than the speed of light, while the group
velocity is less than the speed of light as should be the case.
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(e) Now we have a strong magnetic field in the z direction. Since the light is circularly
polarized we try the suggested ansatz

xpt,x0q “ x!px0qe´i!t✏` . (27)

The velocity is
vpt,x0q “ ´i!x!px0qe´i!✏` , (28)

and v ˆ B is proportional to

✏˘ ˆ ẑ “px̂ ˘ iŷq ˆ ẑ , (29)
“p´ŷ ˘ ix̂q , (30)
“ ˘ i✏˘ . (31)

Substituting this form into the Newtonian equations of motion

m
d
2xpt,x0q

dt
“ q

ˆ
E0pt,x0q ` vpt, xq

c
ˆ B0ẑ

˙
, (32)

we find
´ m!

2
x! “ qE0e

ikz ˘ !
q

c
B0x! , (33)

Minor manipulations yield

x! “ ´qE0e
ikz

m!

1

! ˘ ⌦c
, (34)

where ⌦c “ qB0{mc is the cyclotron frequency. The induced current is

j! “n0qp´i!x!q✏˘ , (35)

“
„

´ !
2
p

!p! ˘ ⌦cq

⇢ `
´i!E0e

ikz✏˘
˘
. (36)

(f) Following the logic of part pcq the required dispersion relation is

k˘p!q “ !

c

„
1 ´ !

2
p

!p! ˘ ⌦cq

⇢1{2
. (37)

For a ! " !p „ ⌦c we have

k˘p!q “ !

c

ˆ
1 ´ !

2
p

2!2
˘ !

2
p⌦c

2!3
` . . .

˙
, (38)

and thus to order k
´2 inclusive the dispersion relation reads

!˘pkq “ ck

ˆ
1 ` !

2
p

2pckq2 ¯ !
2
p⌦c

2pckq3 ` . . .

˙
. (39)

Because the eigen frequencies of right-handed and left handed waves are different by a small
amount, after a period of time �T the two waves will accumulate a small phase difference
„ !

2
p⌦c{pckq2�T . The linearly polarized light will appear to slowly precess in time as it

traverses the medium.
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Electromagnetism 3

A relativistic particle

A relativistic particle of charge Q moves with constant velocity v along the z axis, crossing
the origin at time t “ 0. A stationary observer sits at point O with spatial coordinates pb, 0, 0q
as shown below. The questions below ask for the fields in the rest frame of this observer, i.e.
the lab frame.

x

v

R(t)

O

b

z

(a) (4 points) Determine the vector potential in the Lorenz gauge at an arbitrary point
p~rK, zq as a function of time. Here ~rK “ px, yq denotes the coordinates transverse to
the motion.

(b) (4 points) Use part paq to determine the electric and magnetic fields at O as a function
of time. Verify that

Bpr, tq 9 vˆEpr, tq .

(c) (2 points) Find the ratio |Bpr, tq| { |Epr, tq| at point O as a function of time. When
does this ratio reach a maximum?

(d) (4 points) At time t the particle is a distance Rptq from the point O (see above). Find
the ratio of the magnitude the electric field to the corresponding Coulomb expectation,
i.e. determine

u ” |Epr, tq|
Q{R2ptq (1)

as function of time.

(i) Sketch the ratio u versus time for � " 1.
(ii) For � " 1, find the time tC when the ratio u is of order unity. Show that tC

vanishes as v{c Ñ 1.
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(e) (6 points) Now consider a annular area lying in the xy plane as shown below. The area
has inner radius b1 and and outer radius b2 with b2 " b1. Calculate the electromagnetic
energy that crosses the area as the particle passes from z “ ´8 to z “ `8.

The following integral may be useful:
ª 8

´8

dx

p1 ` x2qn “ ?
⇡
�p´1

2 ` nq
�pnq with �p1

2q “ ?
⇡ (2)

x

z

y
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Solution

(a) In the particle frame the vector potential is

A
0pxq “ Q

4⇡
b
~r
2
K ` z2

, A
ipxq “ 0 . (3)

We boost to the “lab” frame using the Lorentz transformation:

A
µpxq “pLqµ⌫A⌫pxq , (4)
x
µ “pLqµ⌫x⌫

, (5)
x
µ “pL´1qµ⌫x⌫

, (6)

where

pLqµ⌫ “

¨

˚̊
˝

� 0 0 ��

0 1 0 0
0 0 1 0
�� 0 0 �

˛

‹‹‚ , pL´1qµ⌫ “

¨

˚̊
˝

� 0 0 ´��
0 1 0 0
0 0 1 0

´�� 0 0 �

˛

‹‹‚ . (7)

Thus

A
0pxq “�A0 (8)

“ Q

4⇡

�a
~r
2
K ` �2pz ´ vtq2

(9)

A
zpxq “��A0

, (10)

“ Q

4⇡

��a
~r
2
K ` �2pz ´ vtq2

, (11)

where we used

~rK “~rK , (12)
z “�z ´ �vt . (13)

(b) Then, using a, b, c, . . . to denote transverse coordinates (so that Ea denotes pEx
, E

yq and
r
a
K denotes px, yq), we evaluate the transverse electric field:

E
a “ ´ Ba

A
0
, (14)

“ Q

4⇡

�r
a
K

p~r2K ` �2pz ´ vtq2q3{2 , (15)

Similarly for the longitudinal electric field (do this algebra and see a cancellation!) :

E
z “ ´ 1

c
BtAz ´ Bz

A
0
, (16)

“ Q

4⇡

�
3pz ´ vtq

p~r2K ` �2pz ´ vtq2q3{2
`
´�2 ` 1

˘
, (17)

“ Q

4⇡

�pz ´ vtq
p~r2K ` �2pz ´ vtq2q3{2 . (18)
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In the second line, the first term in parentheses comes from the time derivative of Az, while
the second term comes from the spatial derivative of A0. Then, we evaluate the magnetic
field B

i “ ✏
ijkBjAk

B
a “✏abzBbAz , (19)

“✏abzp�BbA0q , (20)
“✏abzp´Eb�q . (21)

where we have used that A
z “ �A

0 and Eq. (14). The longitudinal magnetic field is zero
since ✏ziz “ 0

B
z “ 0 . (22)

Thus from Eq. (19), we find
~BK “ ´ ~EK ˆ � , (23)

with � “ �ẑ. This can be written
B “ � ˆ E . (24)

Finally, we specialize these expressions to their values at the specific point O:

E
x “ Q

4⇡

�b

pb2 ` �2pvtq2q3{2 , (25)

E
z “ Q

4⇡

´�vt
pb2 ` �2pvtq2q3{2 , (26)

B
y “ Q

4⇡

��b

pb2 ` �2pvtq2q3{2 , (27)

with all other components zero.

(c) The required ratio is
|B|
|E| “ �ba

b2 ` pvtq2
(28)

Clearly this ratio reaches a maximum of � at t “ 0.

(d) Note that R2 “ b
2 ` pvtq2 so the required ratio is

u “ |E|
Q2{p4⇡R2q “ �

ˆ
b
2 ` pvtq2

b2 ` �2pvtq2
˙3{2

. (29)

(i) To understand this quantity let us plot it versus y ” pvtq{b

u “ �

ˆ
1 ` y

2

1 ` �2y2

˙3{2
. (30)

A sketch of this quantity for � “ 10 is shown below.
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(ii) For � " 1 we may approximate Eq. (30)

u “ 1

�2

ˆ
1 ` y

2

y2

˙3{2
. (31)

In order for u to be unity for � " 1, we require y ! 1 and we may replace 1 ` y
2 Ñ 1

in Eq. (31). Thus, in this limit
u » 1

�2y3
, (32)

and we find that u is unity when

y “ �
´2{3

, or tC “ b

c�2{3 . (33)

(e) To estimate the energy transported across the detector we have to integrate the energy
flux over time:

dU “
ª b2

b1

2⇡bdb

ª 8

´8
S
z
dt . (34)

The Poynting vector is

dtS
z “ cpE ˆ Bqzdt “ Q

2
�

16⇡2b3

p�vdt{bq
p1 ` p�vt{bq2q3 . (35)

Switching variables to w ” �vt{b we find

U “
ª b2

b1

p2⇡bqdb Q
2
�

16⇡2b3

ª 8

´8

dw

p1 ` w2q3 . (36)

The dimensionless w-integral gives a number of order unity, while the remaining b integration
is dominated by the lower end, yielding our estimate:

U „ Q
2
�

b1
. (37)
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The leading factor Q
2{b is required by dimension. The factor of � arises because the E

and B fields are each of order „ �Q{b2 at maximum. The Poynting vector is S 9 c�
2
Q

2{b4
at maximum. But, the duration of the pulse is only of order �t „ b{pc�q. The area is of
order A „ ⇡b

2. Thus the energy is of order U „ AS�t as given in Eq. (37). The exact
expression is

U “ 3

128

�Q
2

b1
“ 0.29

�Q
2

4⇡b1
. (38)
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Quantum Mechanics 1

A magnetic barrier

The purpose of this problem is to study charged particle scattering through a planar mag-
netic barrier. Consider a particle of mass m, charge ´e moving in the xy plane through a
magnetic strip of width d with B “ Bẑ for 0 § x § d and zero elsewhere. Choose the gauge
Ay “ Bx. The particle is incident from x † 0 and moving perpendicular to the barrier along
the x-direction.

a. (5 points) If we denote by k and kT the incident and transmitted wave numbers,
find the relationship between k and kT .

b. (3 points) Under what condition kT becomes imaginary? Give a classical justification
for this condition.

c. (6 points) What is the direction of the transmitted probability flux? Identify the direc-
tion for which the condition in b is realized.

d. (6 points) Find the reflection and transmission coefficients for the case d Ñ 0 but Bd

fixed. What are the corresponding probability fluxes?
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Solution

a. We wil choose the gauge Ax,y,z “ 0 for x † 0 and Ax,z “ 0 but Ay “ Bx for 0 † x † d

for which Bz “ B. Continuity requires Ay “ Bd for x ° d. The motion is xy-planar so the
Hamiltonian is

H “ 1

2m

ˆ
p
2
x `

´
py ` e

c
Ay

¯2
˙

(1)

The stationary states follow from

p
2
x

2m
' “ E' x † 0

ˆ
p
2
x

2m
` e

2
B

2
x
2

2mc2

˙
' “ E' 0 † x † d

ˆ
p
2
x

2m
` e

2
B

2
d
2

2mc2

˙
' “ E' x ° d (2)

The 1-dimensional scattering wave set up is

'pxq “ e
ikx ` Re

´ikx
x † 0

'pxq “ Te
ikT x

x ° d (3)

Inserting (3) for x † 0 and x ° d we obtain

E “ ~2k2

2m
“ ~2k2

T

2m
` e

2
B

2
d
2

2mc2
(4)

which leads to

kT “
ˆ
k
2 ´ m

2
!
2
d
2

~2

˙ 1
2

(5)

with the cyclotron frequency ! “ eB{mc.

b. kT becomes imaginary for m!d ° ~k. In this case, the transmitted wave is damped
for x ° d. Recall that a classical particle of velocity v in the strip undergoes a cyclotron
motion of radius R “ v{!. For R ° d or mv{! ° md the classical particle bounces back.
This is the condition for which kT becomes imaginary since mv Ñ ~k.

c. The probability current for x ° d is fixed by the transmitted wavefunction

jx “ 1

2m

`
'

˚
px' ` '

˚
p

:
x'

˘
“ |T |2 ~kT

m

jy “ 1

2m

˜
'

˚
ˆ
py ` eBd

c

˙
' ` '

˚
ˆ
py ` eBd

c

˙:
'

¸
“ |T |2 !d (6)
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We now identify

tan ✓ “ jy

jx
“ m!d

~kT
(7)

as the angle the probability current makes up with the x-direction. kT turns complex when
kT “ 0, for which ✓ “ ⇡{2. This corresponds to a current probability along the y-direction.

d. In the double limit d Ñ 0 and Bd fixed, the vector potential is a step function, Ay “ 0
for x † 0 and Ay “ Bd for x ° 0. Matching at x “ 0 gives

1 ` R “ T

ikp1 ´ Rq “ ikTT (8)

Specifically, we have

R “ k ´ kT

k ` kT

T “ 2k

k ` kT
(9)

The normalized probability fluxes are

PR “ k|R|2
k

“
ˆ
k ´ kT

k ` kT

˙2

PT “ kT |T |2
k

“ 4kkT
pk ` kT q2 (10)
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Quantum Mechanics 2

Diatomic nitrogen

When two identical atoms join to make a molecule, their valence electrons combine to form
covalent bonds, and the spins of their (identical) nuclei ~I1,2 combine to form a total nuclear
spin ~I. The states of the molecule at room temperature may be written as a direct product
of an electronic, vibrational, rotational and nuclear-spin state

| yN2 “ | pelectronicqy| pvibrationalqy| protationalqy| pnuclear spinqy.

The lowest excitation energies of these degrees of freedom obey the following hierarchy

Eelectronic " Evibrational " Erotational " Enuclear spin.

Here we consider the nitrogen molecule N2 with two identical 14
7N nuclei, each with nuclear

spin 1.

(a) (i) State the electronic configuration (i.e. s,p,d etc.) for the ground state of the nitrogen
atom and explain why the valence electrons are in different orbitals (or m-levels).
(ii) Briefly explain the concept of covalent bonds. What is the number of covalent
bonds in the N2 molecule? (iii) Estimate the values of Eelectronic and Evibrational, and
show that Eelectronic " Evibrational. (6 points)

(b) Write down the eigenfunctions and energy eigenvalues for the vibrations. What is
the symmetry of the vibrational part of the wave function of the ground state under
exchange of the two atoms? (2 points)

(c) Write down the eigenfunctions and energy eigenvalues of the rigid rotator formed by
the molecule. What is the symmetry of the rotational part of the wave function of the
ground state under exchange of the two atoms? (2 points)

(d) What are the possible values of the total nuclear spin angular momentum I of the
molecule? Neglecting any contribution of the nuclear spin to the energy what is the
degeneracy of each I? For each allowed value of the total nuclear spin I, write down
the allowed z components (magnetic quantum numbers mI). Deduce the symmetry of
each state |I,mIy upon interchanging the two nuclei. (4 points)

(e) It can be shown that the electonic part of the wave function of N2 is antisymmetric
under interchange of the two atoms. Make a rough estimate of the lowest order
rotational energies of the molecule and compare it with kBT at a temperature of 300 0

K.
Using this estimate, how much more or less likely are you to find an N2 molecule in
the first excited rotational state l “ 1 than in the ground state l “ 0? (6 points)
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(a) The electronic assignment of each 14N atom is 1s2, 2s2, 2p3. The outer orbitals are
2p3 “ 2ppx, py, pzq. No two electrons can be in the same orbital if one wants to minimize
the Coulomb repulsion between the electrons.
There are 3 covalent bonds: one electron from each atom in the px orbital, another
pair in the py orbital, and a third pair in the pz orbital. A covalent bond occurs when
the orbital parts of such pairs of electrons is symmetric. Then this pair of electrons
can come close to each other, and when that pair sits between the two atomic nuclei,
one gets strong binding.
The value of Eelectronic follows from the uncertainty relation �x�p „ ~ where �x is
equal to the size of the whole molecule, �x „ 10´8 cm, and then Eelectronic “ p

2{2me „
~2{mep�xq2 „ 2 eV.
The vibrational energies of the nuclei are a factor

a
me{mN smaller, since the Coulomb

interaction between two nuclei, and one nucleus and one electron, is the same. Using
that for a harmonic oscillator ! “

a
k{m, we get Evibrational{Eelectronic „

a
me{mN . So

Evibrational „ 1{170 ˆ 2 eV „ 1{80 eV, smaller than room temperature.

(b) The vibrations form a harmonic oscillator. The energy eigenfunctions are (proportional
to) the Hermite polynomials times a Gaussian, and the energy eigenvalues are En “
pn ` 1{2q~!. The ground state is proportional to e

´�p�Rq2 , and hence it is symmetric
under exchange of the two atoms.

(c) The rigid rotator has H “ ~L ¨ ~L{pINq where IN is the inertial moment given by
IN “ µR

2 with µ “ p1{2qMN the reduced mass, and R the internuclear distance. The
eigenfunctions are the Y

M
L p✓,�q and the energy eigenvalues are ~2LpL ` 1q{IN . The

ground state is Y 0
0 , and therefore it is also symmetric under exchange of the two atoms.

(d) The largest weight state in the I “ 2 shell is |2, 2i which is necessarily of the form
|2, 2i “ |1, 1i |1, 1i and symmetric. It is easy to guess that the shell with |1, 1i is
antisymmetric and that the shell with |0, 0i is symmetric. Indeed, for |1, 1i the only
allowed linear combinations by parity (symmetric molecule) are

|1, 1i˘ “ 1?
2

p |1, 1i |1, 0i ˘ |1, 0i |1, 1iq (11)

It is easily checked that the raising operator pI` “ I
`
1 ` I

`
2 q |1, 1i´ “ 0, which selects

the antisymmetric combination, as the symmetric one does not vanish.

(e) The values of Erotational are 1
2~

2
LpL ` 1q{pµR2q where L “ 0, 1, 2, . . . and µ “ 1

2mN is
the reduced mass of the two nuclei.From R „ 0.15 nm and mNc

2 „ 14 ˆ 1000 MeV.
For L “ 1 one obtains E „ 1

310
´15ergs „ 1

510
´3 eV. This is much smaller that the

kT “ 1
40 eV of room temperature, so the Boltzmann factor for rotational states is

essentially one.
If the total (orbital + spin) part of the electronic wave function is antisymmetric under
interchange of the atoms, the product of the other parts has to be symmetric. The
vibrational part is always symmetric, and since the 14N atoms satisfy Fermi-Dirac
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statistics (14+7=odd), the spin part of the nuclei must be symmetric/antisymmetric
if the rotational part is symmetric/antisymmetric. So the states with L “ 0 can only
have I “ 2 and I “ 0 and the total number of such states is d1 “ 1ˆ p5`1q “ 6, while
L “ 1 states can only have I “ 1 and d0 “ 3ˆ3 “ 9. Hence P pL “ 1q{P pL “ 0q “ 9{6.
(If the electronic part of the wave function were symmetric, one would find for this
ratio the value of 6.)
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Quantum Mechanics 3  
 

Two spins-½  

 Consider a two-component system which may be described by the net spin operator 21 ˆˆˆ ssS �{ , 
where � �σs ˆ2/ˆ !{j , with j = 1, 2, are the usual spin-½ vector-operators of its components. The 
interaction of the components is described by the Hamiltonian 

� �� �zz sIsIH 21 ˆ2ˆˆ2ˆˆ �� !! , 

where Î  is the identity operator, and z
jŝ  is the Cartesian component of the operator jŝ  along a certain 

axis z.  

 A (2 points). Express ket-vectors of all simultaneous eigenstates of operators 2Ŝ  and zŜ  via the 
eigenkets _n² and _p² of the operators z

jŝ . Calculate the corresponding eigenvalues of the operators 2Ŝ  

and zŜ . 

 B (4 points). Are these eigenstates, considered in part A, the stationary states of this interacting 
system? (Prove your answer.) 

 C (2 points). Suppose that the initial state of the system at t = 0 is described by the ket-vector 

� � ,
22

0
p�n

�
p�n

 D  

where each operand of the direct product describes the corresponding component of the system. 
Calculate _D(t)². 

* * * 

 Now consider the reduced density operator of the component 1, formed from the full density 
operator of the system by tracing out the degrees of freedom of the component 2:  

� � � � � �� � 22ˆ
,2

1 ��{ ¦
p n

ttt DDU . 

 D (4 points). Prove that in the z-basis, the reduced density matrix may be always expressed as 

� � � �> @σr �� tt 1
2
1ρ1 , 

where V = {Vx, Vy, Vz} is the vector of Pauli matrices, and r(t) is a time-dependent c-number vector. 

 E (6 points). For our system, with the initial state specified in C, calculate r(t), and sketch r2(t) as 
a function of time. 

 F (2 points). Calculate 1 – Tr(U1
2) as a function of time, and give an interpretation of this 

measure. At what time are the system’s components maximally entangled? 



Solutions

A. One considers s
´ ” psx ´ is

yq “ ~| ÓyxÒ | and use total S´
tot “ s

´
1 ` s

´
2 to lower |1, 1y to

|1, 0y:
|1, 0y 9 S

´
tot|1, 1y “ ps´

1 ` s
´
2 q| Òy b | Òy “ ~| Óy b | Òy ` ~| Òy b | Óy. (1)

Normalizing it, we get |1, 0y “ p| Óy b | Òy ` | Òy b | Óyq{
?
2. One can check that Given |1, 1y,

|1, 0y, and |1,´1y, the remaining state is |0, 0y “ a| Òyb Óy ` b| Óy b | Òy. Requiring this to
be orthogonal to the former three, one can solve for a and b and arrive at |1,´1y “ p´| Ó
y b | Òy ` | Òy b | Óyq{

?
2. The problem is simple enough that one does not even need to use

the formula S
´|S,my “

a
pS ` mqpS ´ m ` 1q ~|S,m ´ 1y, though of course this will give

the same answer.

B. Using the basis
 

| Ò, Òy, | Òy, Óy, | Ó, Òy, | Ó, Óy
(
, the Hamiltonian is diagonal with diagonal

elements being p0, 0, 0, 4q, i.e.,

H “ 4|Ó, ÓyxÓ, Ó| “

¨

˚̊
˝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 4

˛

‹‹‚“ 4|Stot “ 1, Sz “ ´1yxStot “ 1, Sz “ ´1|, (2)

Thus we see that H is diagonal in the |Stot, Szy basis, and the spin states of part paq are the
stationary eigenstates of the Hamiltonian.

C. The evolution operator and evolved wave function read

Uptq “

¨

˚̊
˝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e

´i4t

˛

‹‹‚, | ptqy “ p| Òyb| Òy`| Òyb| Óy`| Óyb| Òy`e
´4it| Óyb| Óyq{2. (3)

D. The reduced density matrix is a hermitian 2 ˆ 2 matrix. A complete basis for such
matrices is �x, �y, �z and the identity 1. Thus the reduced density matrix takes the form

⇢ “ c0ptq1 ` cptq ¨ � (4)

where cptq is a vector of three real numbers. In addition we must have Trr⇢s “ 1. Since the
Pauli matrices are traceless and Trr1s “ 2, we must have c0ptq “ 1{2. Thus the full density
matrix must take form

⇢ “ 1

2
p1 ` rptq ¨ �q . (5)

where rptq is a real three dimensional vector. The density matrix satisfies

Trr⇢2s § 1 (6)

with equality holding for a pure state. This restriction places a restriction on rptq.

Trr⇢2s “ 1

2

`
1 ` |rptq|2

˘
(7)
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E. First note that 2xÒ | ¨ | ptqy “ p| Òy ` | Óyq{2, and 2xÓ | ¨ | ptqy “ p| Òy ` e
´4it| Óyq{2. Thus,

we have

⇢Aptq “ 1

4

ˆ
1
1

˙ `
1 1

˘
` 1

4

ˆ
1

e
´4it

˙ `
1 e

4it
˘

“ 1

2

ˆ
1 1`e4it

2
1`e´4it

2 1

˙
, (8)

and find

rptq “p1 ` cosp4tq,´ sinp4tq, 0q{2 , (9)
|rptq|2 “p1 ` cosp4tqq{2 . (10)

F. The deviation from a pure state is quantified by

1 ´ Trr⇢2s “1

2

`
1 ´ |rptq|2

˘
(11)

which is zero for a pure state. 1´|rptq|2 “ p1´cosp4tqq{2 achieves minimum (or equivalently
the entanglement of the two particles is maximum) at t “ p1`2nq⇡{4, where n is an integer.
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Statistical Mechanics 1  
 

 

Fermi gas 
 Consider a gas of non-interacting fermions, with the Fermi energy much larger than the thermal 
energy: HF >> kBT, in thermal equilibrium.1 Under this condition: 

 

 A (6 points). Calculate the small deviation,  

� � FET �{ PD , 

of the chemical potential P of the gas from its zero-temperature value EF, in terms of the coefficients g0 
and g’ participating in the Taylor expansion of the density of states g { (dN/dE)/V near the Fermi 
surface: 
    � � FFF0 for  , EEEEEg'gg �����| , 

where E is the energy of one particle.  

 B (3 points). Estimate g0, g’ and D in terms of EF and T. 

 C (6 points). Calculate the specific heat per unit particle,  

V
V T

EC ¸
¹
·

¨
©
§
w
w

{  , 

in terms of T and 0g . 

 D (3 points). Estimate CV in terms of EF and T, and compare it with its value for the classical 
ideal gas. 

 E (2 points). Estimate the difference CP – CV, and compare it with its value for the classical ideal 
gas. 

 Hint: You may like to use the following integral:  
121

2

0

S
 

�³
f

dx
e

x
x . 

                                                 
1 This model is frequently used for the description of conduction electrons in metals, where the Coulomb field of 
electrons is substantially compensated by the virtually equal and opposite field of the nuclei. 



Solution

We will use two expressions are of fundamental importance that relate the number of
particles, N , and the energy of the system, E, to the density of states:

N “ V

ª 8

0

gp✏qnF p✏qd✏ (12)

E “ V

ª 8

0

✏gp✏qnF p✏qd✏ (13)

Here V is the volume, E is the energy of the electron system and gp✏q is the density of states
as a function of electron energy ✏. The Fermi function is

nF “ 1

e�pE´µq ` 1
(14)

where � “ 1{kBT and µ is the chemical potential (kB is the Boltzmann constant and T is the
temperature). The Fermi energy is defined as the chemical potential at zero temperature:
✏F “ µpT “ 0q. The chemical potential is determined by the condition that the number
of particles N is independent of the temperature and therefore dN{d� “ 0. The specific
heat calculation will require the temperature derivative of the energy, dE{d� “ 0. We can
express these two quantities as

dN

d�
“ V

ª 8

0

gp✏qdnF

d�
d✏ (15)

dE

d�
“ V

ª 8

0

✏gp✏qdnF

d�
d✏ (16)

We introduce the new integration variable x “ �p✏ ´ µq. The derivative of the Fermi
function can be expressed as

dnF

d�
“ d

d�

1

ex ` 1

dx

d�
“ ´e

x

pex ` 1q2
ˆ
x

�
´ �

dµ

d�

˙
(17)

Let us look at n
1
F pxq “ ´ex

pex`1q2 . First, notice that the derivative of the nF “ 1{pex ` 1q
function with respect to x is indeed equal to n

1
F . The ´n

1
F function has some interesting

properties. It has a maximum of ´n
1
F “ 1{4 at x “ 0; it has exponentially small values for

|x| °° 1; it is an even function of x. In the new variable x the lower limit of integration is
´µ{� and in the limit of low temperatures this quantity can be replaced by ´8. The area
under the curve (from x “ ´8 to x “ `8) is

≥8
´8p´n

1
F qdx “ 1. Over the broad range of x

values that we are dealing with in this problem, the ´n
1
F function looks very much like the

Dirac delta function, �pxq.
We use the Taylor expansion of the density of states around x “ 0, g “ gp✏ “ µq `

p✏´ µqdg{d✏. Since we know that the temperature dependence of µ is weak, we can use the
density of state values at µ “ ✏F , g “ g0 ` px{�qg1. We get

dN

d�
“ V

ª 8

´8

ˆ
g0 ` x

�
g

1
˙ ˆ

x

�
´ �

dµ

d�

˙
n

1
F

dx

�
(18)
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dE

d�
“ V

ª 8

´8

ˆ
x

�
` µ

˙ ˆ
g0 ` x

�
g

1
˙ ˆ

x

�
´ �

dµ

d�

˙
n

1
F

dx

�
(19)

Note that here µ and �pdµ{d�q are constants, as far as the integration is concerned. We
know that dN{d� “ 0 and that can be used to simplify the energy derivative:

dE

d�
“ V

�

ª 8

´8

x

�

ˆ
g0 ` x

�
g

1
˙ ˆ

x

�
´ �

dµ

d�

˙
n

1
Fdx (20)

because, according to Eq. 18, the other term (containing the factor µ) is exactly zero.
We have only 4 types of integrals to calculate:

≥
n

1
Fdx,

≥
xn

1
Fdx,

≥
x
2
n

1
Fdx and

≥
x
3
n

1
Fdx.

The first integral yields
≥8

´8 n
1
Fdx “ ´1 (see above). The second and the fourth is zero, due

to the symmetry of n1
F around x “ 0. For the third integral we do a partial integration and

use the result given in the help section:
ª 8

´8
x
2
n

1
Fdx “ 2

ª 8

0

x
2
n

1
Fdx “ ´4

ª 8

0

xnFdx “ ´⇡
2

3
(21)

A. For the particle number we collect all non-zero terms and make the derivative equal
to zero:

�

V

dN

d�
“ 0 “ g0�

dµ

d�
´ g

1⇡
2

3

1

�2
(22)

The chemical potential satisfies

g0�
dµ

d�
“ g

1⇡
2

3

1

�2
(23)

We solve this differential equation with the boundary condition of µpT “ 0q “ ✏F

µ “ ✏F ´ g
1

g0

⇡
2

6

1

�2
“ ✏F ´ g

1

g0

⇡
2

6
k
2
BT

2 (24)

The last part of this expression is ↵pT q.

B. To evaluate the order of magnitude of the temperature dependence, we can take

g
1{g0 « 1{✏F and we get µ “ ✏F

„
1 ´ a

´
kBT
✏F

¯2
⇢
, with the parameter a in the order of unity.

We see that indeed, the temperature dependence of the chemical potential is weak, propor-
tional to the square of the temperature. The chemical potential may increase or decrease
with temperature, depending on the sign of the first derivative of the density of states. (If
g

1 “ 0, for example in the two-dimensional electron gas, the chemical potential is indepen-
dent of the temperature in this approximation.)

C. For the specific heat calculation we have
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1

V

dE

d�
“ 1

�

ª 8

´8

x
2

�2

ˆ
g0 ´ g

1
�
dµ

d�

˙
n

1
Fdx (25)

Here the first term is much larger than the second term, that has an 1{�2 temperature
dependence, as seen from Eq. 23. Therefore

1

V

dE

d�
“ g0

�

ª 8

´8

x
2

�2
n

1
Fdx “ ´⇡

2

3

g0

�3
(26)

and

CV “ 1

V

dE

d�

d�

dT
“ ´⇡2

3

g0

�3

´1

kBT
2

“ ⇡
2

3
g0k

2
BT (27)

This is the well-known temperature-linear specific heat of metallic electrons.

D. Since g0 « 1{✏F , we can express the specific heat as CV 9kBpkBT {✏F q. For a classical
ideal gas the corresponding expression is CV “ 3

2kB, independent of temperature. The result
shows that in a Fermi gas at low temperature (kBT †† ✏F ) only a small fraction of particles
participate in the thermal response.

E. First we will argue that at low temperatures the two specific heats are very close,
CP « CV . In a most general way, C “ �Q{�T , where �Q is the heat transfer needed to
raise the temperature by �T . It follows that in most systems CP is larger than CV . As
the temperature is increased, most systems have to expand in order to maintain a constant
pressure. The work done by this expansion adds to the amount of heat transfer needed for
raising the temperature, thus CP ° CV .

However, in an ideal Fermi gas at low temperature the pressure has very little temperature
dependence as it is dominated by the pressure created by the fast-moving Fermions that
are pushed to high energy states by the Pauli principle. Therefore constant pressure is
maintained without much expansion, and CP « CV .

In a more precise way, the difference between the two quantities can be expressed as
CP ´ CV “ V T↵

2{�T , where ↵ “ 1
V

`BV
BT

˘
P

is the thermal expansion coefficient at constant
pressure and �T “ ´ 1

V

`BV
BP

˘
T

is the isothermal compressibility. For a Fermi gas at low
temperature ↵ rapidly approaches zero whereas the compressibility is constant, determined
by the re-arrangement of electronic states as the Fermions are squeezed together.

As we have shown, the first-order approximation yields CV “ AkBpkBT {✏F q, where A

is a numerical constant of the order of unity. Due to the argument outlined above, in first
order the formula for CP will be exactly the same, CP “ AkBpkBT {✏F q. The small difference
between the two quantities will appear in the next non-vanishing term of the expansion.

To get the next non-vanishing term for CV we refer back to Eq. 20. If we continue the
Taylor expansion of the density of states to the quadratic term in x, and also include the the
quadratic term in the expansion of the chemical potential, we get a more complex integral,
but the symmetry properties of the ´n

1
F function will help us to sort out the vanishing terms.
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We conclude that the next non-vanishing term in the expression of the specific heat is cubic
in T ,

CV “ kB

«
A
kBT

✏F
` B

ˆ
kBT

✏F

˙3

` ...

�
(28)

where B is a numerical constant of the order of unity.
The other specific heat will have a similar expansion, except for the numerical constant:

CP “ kB

«
A
kBT

✏F
` B

1
ˆ
kBT

✏F

˙3

` ...

�
(29)

The difference is

CP ´ CV « kBpB1 ´ Bq
ˆ
kBT

✏F

˙3

(30)

or
CP ´ CV

CV
« D

ˆ
kBT

✏F

˙2

(31)

where D is a numerical constant of order of unity. 6

Compared to the classical gas, where CP ´ CV “ kB, in the Fermi gas the difference is
much smaller, for the reasons outlined in the beginning of our discussions.

6
Please note that the exact result for the ideal Fermi gas in 3 dimensions is

CP ´CV
CV

“ ⇡2

3

´
kBT
✏F

¯2
`

O

´
kBT
✏F

¯4
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1 

Statistical Mechanics 2  
 

2D Debye model 

 Consider a 2D lattice of N >> 1 similar particles, of size LxuLy. The particles are elastically 
coupled, and can vibrate near their equilibrium positions in 2 mutually perpendicular directions. Using 
the Debye approximation, with the sound speed c, for the dispersion law of the resulting elastic waves in 
the system: 

 A (2 points). Calculate the spectral density g(Z) { dn/dZ of the modes, and their maximum 
(“cut-off”) frequency ZD.  

 B (4 points). Derive the general expression for the statistical sum (“partition function”) Z of the 
system. 

 C (2 points). Calculate approximate expressions for lnZ in the limits of high and low 
temperatures. 

 D (6 points). Calculate internal energy, specific heat and entropy of the system at high and low 
temperature limits. How do these results compare with those for the usual 3D phonon gas? 

 E (4 points). Calculate the average number ln  of phonons in the normal mode of frequency Zl, 
and its statistical variance ¢(nl - ¢nl²)2².  

 E (2 points). Calculate the total number of phonons in the system in the high-temperature and 
low-temperature limits. 

 

 Hint: Useful integrals:  

� � � � � �³³
ff

 * 
�

�|� � �
0

2

0 6
22

1
,202.1)3(1ln S]] x

x
e
xdxdxex  

(where ] (x) is the Riemann zeta function, and *(x) is the gamma function). 

 



2 

Solution: 

A) , ,	 	

Number of modes between  and  is . 

	

Total number of phonon mode is 2N:	 	

So	 	

 

B) The energy of the system is a summation of the all the quantum harmonic oscillator modes: 

, where   

  

Note that: 

 

 

So:  

 

 

Approximate the spectral as being continuous: 
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C) At very high T, ,    

  

 

 
At very low T,  is very large, 

 

 

	
D)   Hight T limit: 

 

Internal energy:  

Specific heat:  

 

 
The results for U and C are very similar to the 3D case, except a change of modes from 3N to 2N. 
	

Low T limit:  

 

Internal energy:  

( ) 

Specific heat:  



4 

 

In 3D, the internal energy at low temperature increases following temperature dependence. Here in 
2D the internal energy has a  temperature dependence. Correspondingly the specific heat also has its 
power-law temperature dependence changing from  in 3D to in 2D. 
 
 
E)  The average phonon number for mode l is: 

 

Take:  
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The statistical dispersion of the phonon number for mode l is  

 

F) Total phonon number: 

 

High temperature limit:  

 

 

 

Low temperature limit:  
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Statistical Mechanics 3  
 

 

Boltzmann equation 
 The relaxation-time approximation (RTA)1 is the following simple model for the scattering term 
in the Boltzmann kinetic equation: 

W
0ww

dt
dw �

�  , 

where w(r, p, t)d3rd3p is the mean number of particles in the phase space element d3rd3p, dw/dt is the 
full derivative of this function, w0 is its equilibrium value at the given energy and temperature, and W  is 
some effective time constant.  

 
 A (2 points). Specify w0 for the case of non-interacting Fermi-particles. 

 B (4 points). Write the RTA Boltzmann equation for a diluted gas of charged particles, placed 
into a uniform, time-independent electric field E, but otherwise free to move.  

 C (6 points). Find the stationary solution of the equation in the 1st approximation in low electric 
field, and use it to derive the general expression for the dc Ohmic conductivity V  of the gas.  

 D (4 points). Spell out the expression for V in the limits of degenerate and non-degenerate 
(classical) Fermi gases. Assuming that W  is temperature-independent, how does V depend on 
temperature in each of these limits? 

 E (4 points). Compare your results with the classical Drude formula for V, and discuss the 
physical sense of the constant W. Discuss the most evident shortcomings of the RTA model. 

 

Hint: You may like to use the following integral:  2/1

0

2/3

4
3

2
5 S[[ [  ¸
¹
·

¨
©
§* ³

f
� de . 

                                                 
1 Alternatively, this approximation is called the BGK model, after P. Bhatnager, E. Gross, and M. Krook, who 
suggested it in 1954. (The same year, a similar model was discussed by P. Welander.) 
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Solution  

 A (3 points). At equilibrium, w(r, p, t) of a gas of non-interacting particles is a product of the 
density n of the orbital states, by the spin degeneracy factor g = 2s + 1 of each orbital state (for electrons, 
which are spin-½ particles, g = 2), by the average occupancy ¢N² of each state, given by the Fermi-Dirac 
distribution:  

    
� �

,
1

1
2

12 /)(30
�

   � Te
Ngnww PHS!

    (1) 

where P is the chemical potential, T { kBTK is temperature in energy units, and H is the single-particle 
energy. For a free gas, the energy includes only the kinetic component: 

            
m

p
2

2

 H ,      (2) 

and hence does not depend on r (and t).  
 B (3 points). In the absence of scattering, the Boltzmann equation is reduced to the fundamental 
Liouville equation 

0 
dt
dw , 

which expresses the conservation of the number of particles in an elementary volume d3pd3r moving 
with the particle flow. Spelling out, in the usual way, the full derivative d/dt for this function of r, p 
(with 3 spatial equations each) and t, we get 

¦
 

 ¸
¸
¹

·
¨
¨
©

§

w

w

w
w

�
w

w

w
w

�
w
w 3

1

0
j

j

j

j

j t
p

p
w

t
r

r
w

t
w . 

Since this equality is valid in the reference frame moving, at the considered instant, with the particles, 
the partial derivatives wrj/wt are the Cartesian components vj of their velocity v. If, in addition, the frame 
is inertial, the derivatives wpj/wt are the Cartesian components Fj of the force F = qE applied to each 
particle. As a result, the Liouville equation may be written as 
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 Now adding the scattering term in its RTA form, we get the corresponding Boltzmann equation: 
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  C (3 points). If the electric field is constant, the first term in the Boltzmann equation vanishes, 
and if the gas is space-uniform, the second term vanishes as well, so that the equation is reduced to   
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Since 0~ ow  at E o 0, in the linear approximation in E we may neglect w~  in the left-hand part of this 
equation, so that it immediately yields 
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Since w0 depends on p only via its dependence on H, we may continue as  
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where the partial derivative denotes the constancy of P and T, and v { �pH  is just the particle’s group 
velocity. (In our isotropic, parabolic model given by Eq. (2), v = p/m.) 

 D (3 points). The electric current’s density may be calculated as   
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Since in the equilibrium state, with w = w0, the current has to be zero, the integral of the first term in the 
parentheses has to vanish. For the integral of the second term, plugging in Eq. (2), and taking into 
account Eq. (1), we get 

      � �
� �

� �³³ ¸̧
¹

·
¨̈
©

§

w

w
��{¸

¹
·

¨
©
§

w
w

�� pd
Nqpd

w
q 3

3

2
302

2
2

HS
W

H
W vEvvEvj

!
 

This is the famous Sommerfeld formula, valid even for materials with non-spherical Fermi surfaces. For 
our isotropic case (2), it is reduced to the Ohm law j = VE, with  
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where T is the angle between the vectors p and E. The integral over the angle is elementary and equal to 
2/3, so that using Eq. (2) to transfer the first integral from the momentum’s magnitude p to the energy H 
= p2/2m (so that dH = pdp/m, and dp = (m/p)dH { (m/2H)1/2dH ), we get   
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 E (4 points). In the limit of a degenerate Fermi gas, with the Fermi energy HF | P much larger 
than T, the Fermi distribution ¢N² switches from 1 to 0 very fast at the energy H | HF, so that (-w¢N²/wH) 
may be replaced with the delta-function G(H - HF), and Eq. (3) yields 
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In this limit, the Ohmic conductivity V is temperature-independent, besides the possible change of the 
relaxation time W. (For electron scattering dominated by impurities, W is also virtually a constant at low 
temperatures.) 

 In the opposite limit of high temperatures, T >> HF, i.e. for an essentially classical gas, the Fermi-
Dirac distribution is reduced to the exponential one, 
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With this substitution, Eq. (3) yields  
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Using the last integral,  provided in the Hint, we finally get 
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But the last fraction is just the well-known expression for the density N/V of a classical gas, so that is 
does not depend on temperature either. (Note that at higher temperatures, W in actual conductors 
typically drops with T in particular, due to the growing phonon scattering.) 

 F (2 points). Eq. (5) may be immediately rewritten as 
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But this is just the standard form of the (dc) Drude formula. Now coming back to Eq. (4), the density of 
particles in the degenerate Fermi gas may be calculated as 
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Comparing this expression with Eq. (4), we see that the latter relation is also reduced to the Drude 
formula (6). 

 As the well-known classical derivation of Eq. (6) shows, W has the sense of the average time 
interval between scatterings of a particle, leading to the loss of the additional momentum picked up by it 
from the external electric field.  

  G (2 points). The most important shortcoming of the RTA model is the independence of W of the 
direction of the momentum change 'p at scattering. As a result, in this model, the energy relaxation at 
inelastic scattering (with 'p nearly parallel to p) takes the same time as the momentum relaxation at 
elastic scattering (with 'p nearly normal to p), while in real materials these processes may have 
completely different time scales. 


