
Comprehensive Examination

Department of Physics and Astronomy

Stony Brook University

January 2017 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Some of the problems may cover multiple pages. Use one exam book for each problem,
and label it carefully with the problem topic and number and your ID number.

Write your ID number (not your name!) on the exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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Classical Mechanics 1

A rod in a ring

A rod slides without friction in a hoop of inner radius a experiencing earths gravitational
acceleration, g. The hoop is fixed to the floor by a small pin that does not influence the
motion. The rod subtends an angle of 120o (or 2⇡/3 radians) as shown below.

Pin

Rod

Hoop

a

2⇡/3

(a) (9 points) Write down the Lagrangian of the system and solve for the frequency of
small oscillations.

(b) (3 points) For small oscillations with a maximum angle of ✓o, what is the maximum
force on the pin? Draw a sketch (or sketches) showing the position of the rod and the
direction of the force on the pin when the magnitude of the force is maximal.

(c) (6 points) Now assume that the maximum oscillation angle ✓o is small, but large
enough that the first non-linear corrections become important. Determine the period
of oscillation including the first dependence on ✓

0

. (Hint: note the identity cos(3x) =
4 cos(x)3 � 3 cos(x).)

(d) (2 points) For the non-linear oscillations described in the last item, the motion is
periodic with period ⌧ but it is not sinusoidal. The angle as a function of time can be
expanded as a Fourier series

✓(t)

✓o
=

1X

n=�1
cne

i2⇡n(t/⌧) (1)

Qualitatively sketch the power spectrum (i.e. |cn|2 as a function of n) for oscillations
in the linear and weakly non-linear regimes.
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Solution

(a) The moment of inertia around the center of mass of the rod is given

I
cm

=

m

L

Z L/2

�L/2

dxx2

=

1

12

mL2 (2)

Here L = 2a sin(60o) = 2a (
p
3/2) = a

p
3 is the length of the rod. Then I

cm

=

1

4

ma2.
Then using the parallel axis theorm

I = Icm +md2 (3)

=

1

4

ma2 +
1

4

ma2 (4)

=

1

2

ma2 (5)

where we have identified d ⌘ a cos(60o) = (a/2), as the distance from the center of
mass of the rod to the center of the circle.
The Lagrangian of the system is

L =

1

2

I ˙�2 �mgd(1� cos�) , (6)

=

1

2

I ˙�2 � 1

2

mga(1� cos�) . (7)

The equation of motion is

� @t

✓
@L

@ ˙�

◆
+

@L

@�
= 0 , (8)

or
I ¨� = �1

2

mga sin� . (9)

Then for small oscillations we have

¨� = �mga

2I
� , (10)

yielding the resonance frequency

!2

o =

mga

2I
=

g

a
. (11)

(b) The center of mass moves with trajectory

x = (d sin�(t),�d cos�(t)) , (12)

where we have taken the origin to be the center of the circle. Differentiating twice, we
find acceleration of the center of mass

m¨

x ' m (d¨�, 0) = �md!2

o (�(t), 0) . (13)
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The (mass ⇥ acceleration) of the center of mass in the x direction is the external force
by the pin on the rod-hoop system. The force on the pin is minus this,

F x
max

= md!2

o✓0 . (14)
Thus, taking positive angle as counter-clockwise, the force points in the positive x
direction when the angle has reached its maximum.
The maximum force is

F x
max

= m
⇣a
2

⌘⇣g
a

⌘
✓o =

mg✓o
2

. (15)

(c) Returning to
¨� = �!2

o sin� , (16)
We expand sin� = �� �3/6 and we aim to solve

¨� = �!2

o�+

!2

o

6

�3 . (17)

To this end we substitute a solution of the form
� = (✓o � �) cos(⌦t) + � cos(3⌦t) , (18)

into Eq. (17). Here � is a small parameter. We find

� ⌦2

(✓o � �) cos(!t)� �(3⌦)2 cos(3⌦t) = �!2

o [(✓o � �) cos(⌦t) + � cos(3⌦t)]

+

!2

o

6

((✓o � �) cos(⌦t))3 , (19)

where we have approximated the last term by its lowest harmonic only. Using

cos(3x) = 4 cos(x)3 � 3 cos(x) or cos(x)3 =
1

4

cos(3x) +
3

4

cos(x) , (20)

we find from the first harmonic in Eq. (19) that

�⌦2

=� !2

o +
!2

o

6

✓
3

4

✓2o

◆
. (21)

Thus, the angular frequency of oscillation is

⌦ ' !o

✓
1� ✓2o

16

◆
, (22)

and the period is

⌧ =

2⇡

⌦

' 2⇡

!

✓
1 +

✓2o
16

+ . . .

◆
. (23)

(d) The amplitude of the third harmonic is significantly smaller. From the third harmonic
in Eq. (19) we find

� 9!2

o� = �!2

o� +
!2

o

6

1

4

✓3o , (24)

yielding

� = � ✓3o
6 · 4 · 8 = �1

3

✓
✓o
4

◆
3

. (25)

Qualitatively, the power spectrum is shown in Fig. 1.
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Classical Mechanics 2

Stability of a symmetric top

The Lagrangian of a symmetric top rotating around its fixed lowest point on the axis of
symmetry can be expressed in terms of the Euler’s angles �, ✓,  as

L =

I

2

�
˙✓2 + ˙�2

sin

2 ✓
�
+

Ik
2

�
˙ +

˙� cos ✓
�
2 �Mgl cos ✓ ,

where M is the mass of the top, I = I? + Ml2, with l being the distance between the
rotation center and the center of mass above it; Ik, I? – the two principal moments of inertia
of the symmetric top, for the rotation, respectively, along the axis of symmetry and an axis
orthogonal to it, and the axis z used in the definition of the Euler’s angles points vertically
up.

(a) (6 points) Find expressions for the two integrals of motion (besides the energy E) and
identify the physical nature of these integrals. Briefly (in one sentence for each) state
explicit physical reason for their conservation.

(b) (6 points) With the two integrals of motion from part (a), the problem reduces effec-
tively to a problem with one degree of freedom. Derive an expression for the energy of
this one-dimensional problem using the integrals of motion.
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(c) (8 points) Assume that the top rotates around its axis with the angular velocity ⌦.
Using the result of (b), find the condition on ⌦ which ensures that a rotating top in
the vertical position (i.e. ✓ ' 0) is stable.
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Solution

(a) The two of the Euler’s angles � and  do not enter the Lagrangian. The corresponding
Lagrange equations imply then that their generalized momenta are conserved:

@L
@ ˙�

= I ˙� sin2 ✓ + Ik
�
˙ +

˙� cos ✓
�
cos ✓ ⌘ Lz ,

@L
@ ˙ 

= Ik
�
˙ +

˙� cos ✓
� ⌘ Lk .

The first of these quantities, Lz, has the meaning of the projection of the angular momentum
on the z axis and, physically, is conserved because the system is symmetric with respect
to rotation around this axis. The second quantity, Lk, is the projection of the angular
momentum on the symmetry axis of the top and is conserved because the torque created by
the gravity force is orthogonal to this axis for any orientation of the top.

(b) The total energy E of the top is

E = T + U =

I

2

�
˙✓2 + ˙�2

sin

2 ✓
�
+

Ik
2

�
˙ +

˙� cos ✓
�
2

+Mgl cos ✓ .

Equations for the integrals of motion, Lz and Lk, allow us to express angular velocities ˙�

and ˙ in the expression for E in terms of ✓,

˙� =

Lz � Lk cos ✓
I sin2 ✓

, ˙ =

Lk
Ik

� Lz � Lk cos ✓
I sin2 ✓

cos ✓ ,

and obtain the energy E(✓) for the dynamics of ✓:

E(✓) =
I

2

˙✓2 +

�
Lz � Lk cos ✓

�
2

2I sin2 ✓
+Mgl cos ✓ +

L2

k
2Ik

.

(c) To analyze the stability of the vertical position of the top, ✓ ' 0, one needs to examine
the behavior of the effective potential Ueff (✓) in the energy E(✓) at the point ✓ = 0.

Ueff (✓) =

�
Lz � Lk cos ✓

�
2

2I sin2 ✓
+Mgl cos ✓ .

For vertical orientation of the top, Lz = Lk ⌘ L, and

Ueff (✓)
���
✓'0

=

L2✓2

8I
�Mgl

✓2

2

+ const .

We see that the potential has a minimum at ✓ = 0, i.e. the vertical position of the top is
stable is

L2

4I
> Mgl , i.e. ⌦ > 2

(IMgl)1/2

Ik
.
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Classical Mechanics 3

Time as a canonical variable

In special relativity, space and time are treated on equal footing. In this problem we refor-
mulate classical mechanics in this way. We parametrize both the space coordinates qi of a
point particle, but also the time t, as functions of a new time variable ✓, so qi = qi(✓) and
t = t(✓). Thus ✓ parametrizes the space-time path xµ

(✓) = (ct(✓), qi(✓)) of the point particle.

(a) (2 points) If L(qi, q̇i, t) is the Lagrangian of a system with coordinates qi = qi(t), show
that the Lagrangian L✓ for the corresponding system with ✓ as the time variable is
given by

L✓(q(✓), t(✓), q
0
(✓), t0(✓)) = t0L(q, q0/t0, t)

where t0(✓) = dt/d✓ and q0(✓) = dq/d✓.

(b) (2 points) Show that the momentum conjugate to t in the new formulation is given by
pt = �H where H = H(p, q, t) is the ordinary Hamiltonian. Show that the momentum
conjugate to q is unchanged in the new formulation. So now, phase space is 4 + 4

instead of 3 + 3 dimensional.

(c) (2 points) Derive the two Euler-Lagrange equations of motion for L✓. Show that they
are equivalent to the equation of motion for L.

(d) Consider a nonrelativistic point particle in ordinary classical mechanics with Lagrangian
L = T � V and a potential V that does not explicitly depend on time t.

(i) (3 points) Derive the Noether charge for time translational invariance.
(ii) (3 points) Now consider the corresponding Lagrangian L✓. Is there a correspond-

ing Noether charge for ✓-translational invariance?

(e) Now consider the Lagrangian for a relativistic point particle with mass m and electric
charge e, coupled to ordinary electromagnetic fields Aµ(q, t).

(i) (4 points) Construct the Hamiltonian H of ordinary classical mechanics with
Aµ(q(t), t).

(ii) (4 points) Construct the Hamiltonian H✓ with Aµ(x(✓)) with xµ
= (ct(✓), q(✓)).
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Time as a canonical variable

In special relativity, space and time are treated on equal footing. In this problem we refor-
mulate classical mechanics in this way. We parametrize both the space coordinates qi of a
point particle, but also the time t, as functions of a new time variable ✓, so qi = qi(✓) and
t = t(✓).

(a) If L(qi, q̇i, t) is the Lagrangian of a system with coordinates qi = qi(t), show that the
Lagrangian L✓ for the corresponding system with ✓ as the time variable is given by

L✓ = t0L(q, q0/t0, t)

where t0 = dt/d✓ and q0 = dq/d✓.
Solution: The equations of motion follow from the Euler-Lagrange variation of the
action. Hence

S =

Z
L dt =

Z
L✓ d✓.

It follows that L✓ = t0L, where t0 = dt/d✓. The variables in L✓ are q(✓) and t(✓), so we
must replace q̇ = dq/dt by q0/t0 = (dq/d✓)/(dt/d✓). So altogether

L✓(q(✓), t(✓), q
0
(✓), t0(✓), ✓) = t0(✓)L (q(✓), q0(✓)/t0(✓), t(✓)) .

Note that there is no explicit dependence on ✓.

(b) Show that the momentum conjugate to t in the new formulation is given by pt = �H
where H = H(p, q, t) is the ordinary Hamiltonian. Show that the momentum conjugate
to q is unchanged in the new formulation. So now, phase space is 4+4 instead of 3+3

dimensional.
Solution: The momentum conjugate to t(✓) is

pt =
@

@t0
L✓ =

@

@t0
(t0L(q, q0/t0, t))

=L(q, q0/t0, t) + t0
@

@t0
L(q, q0/t0, t)

=L(q, q0/t0, t)� q0
@

@q0
L

=L� q̇
@

@q̇
L = L� q̇p

=�H(p, q, t) where p = p (q(t(✓)), q0(✓)/t0(✓), t(✓)).

We used that q0 @
@q0L = q̇ @

@q̇
L because q0 @

@q0 counts the number of q0 in L, and q̇ @
@q̇

counts
the number of q̇ in L. They are clearly equal.
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The momentum conjugate to q(✓) is

pq =
@

@q0
L✓ =

@

@q0
(t0L(q, q0/t0, t))

=t0
@

@q0
L(q, q0/t0, t)

=t0
✓
1

t0
@

@q̇
L(q, q̇, t)

◆

=

@

@q̇
L(q, q̇, t)

where q̇ in the last term stands for q0/t0.

(c) Derive the two Euler-Lagrange equations of motion for L✓. Show that they are equiv-
alent to the equation of motion for L.
Solution: The Euler-Lagrange equation for t(✓) reads

0 =

d

d✓

@L✓

@t0
� @L✓

@t

=

d

d✓

@

@t0
(t0L)� @

@t
(t0L)

=

d

d✓

✓
L� q̇

@

@q̇
L

◆
� t0

@

@t
L

=

d

d✓
(�H(p, q, t))� t0

@

@t
L

=t0
d

dt
(�H)� t0

@

@t
L.

We used the chain rule to replace d/d✓ by t0d/dt. This vanishes in Lagrangian dynamics
where dH/dt = @H/@t = �@L/@t.
The Euler-Lagrange equation of motion for q(✓) reads

0 =

d

d✓

@

@q0
L✓ � @

@q
L✓

=

d

d✓

@

@q0
(t0L)� @

@q
(t0L)

=

d

d✓

✓
t0
@

@q0
L

◆
� t0

@

@q
L

=

d

d✓

@

@q̇
L� t0

@

@q
L

=t0
✓

d

dt

@

@q̇
L� @

@q
L

◆
.

After dividing by t0, this is the equation of motion for q(t) and L.
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(d) Consider a nonrelativistic point particle in ordinary classical mechanics with Lagrangian
L = T � V and a potential V that does not explicitly depend on time t. Derive the
Noether charge for time translational invariance. Now consider the corresponding La-
grangian L✓. Is there a corresponding Noether charge for ✓-translational invariance?
Solution: Under time translations, each particle transforms as �x(t) = d

dt
x(t). Then

�L =

d
dt
L, and the Noether charge becomes

@L

@ dx
dt

dx

dt
� L = pẋ� L = H.

So the Hamiltonian is the generator of time translations.
The Lagrangian L✓ does not depend explicitly on ✓. Hence under ✓-translations, �x =

x0
=

dx
d✓

and �L✓ =
d
d✓
L✓. Then the Noether charge for ✓ translation is (with xµ

= (ct, q))

@L✓

@ dxµ

d✓

dxµ

d✓
� L✓ = pµ

dxµ

d✓
� L✓ = H✓.

(e) Now consider the Lagrangian for a relativistic point particle with mass m and elec-
tric charge e, coupled to ordinary electromagnetic fields Aµ(q, t). Construct first the
Hamiltonian H of ordinary classical mechanics, and then the Hamiltonian H✓.

Solution: L = �mc2
r
1� v2

c2
+

e

c
Aµ

dxµ

dt
, with x0

= ct.

(As a check on signs, note that L = T � V and V = �e

c
A

0

dx0

dt
= �eA

0

= e� which is
correct.)
The Hamiltonian H is given by ~p ˙~x� L where

~p =

m ˙~xq
1� v2

c2

+

e

c
~A.

Then

H =

mv2q
1� v2

c2

+mc2
r

1� v2

c2
� eA

0

=

q
(mc2)2 + (~pc� e ~A)2 � e�

0

.

On the other hand, L✓ is given by

L✓ =t0L = �mc

s

c2
✓
dt

d✓

◆
2

�
✓
d~x

d✓

◆
2

+

e

c
Aµ

dxµ

d✓

=�mc

s

�
✓
dxµ

d✓

◆
2

+

e

c
Aµ

dxµ

d✓
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Then
pµ =

@

@(dxµ/d✓)
L✓ =

mcp�(dxµ/d✓)2
dxµ

d✓
+

e

c
Aµ

H✓ =pµ
dxµ

d✓
� L✓

=

mcdx
µ

d✓

dx
µ

d✓q
� �dxµ

d✓

�
2

+

e

c
Aµ

dxµ

d✓
+mc

s

�
✓
dxµ

d✓

◆
2

� e

c
Aµ

dxµ

d✓
= 0.

Hence the Hamiltonian for a system in which time is a canonical variable vanishes!
This is, in fact, true for any system, relativistic or not.
Going back to the definition of the momenta

pµ � e

c
Aµ

= mc

dxµ

d✓����
dxµ

d✓

����

where
����
dxµ

d✓

���� =

s

�
✓
dxµ

d✓

◆
2

, we see that the momenta are not all independent, but

satisfy a constraint ⇣
pµ � e

c
Aµ
⌘⇣

pµ � e

c
Aµ

⌘
= �(mc)2.

There is an extension of the canonical formalism, by Dirac, for constrained Hamiltonian
systems. It explains that the constraint on the momenta generates a gauge invariance
of the action

R
L✓ d✓.
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Electromagnetism 1

Magnetic field on the surface of a star

A star (roughly modeled on the Crab Pulsar) has mass M of 1.4M� (or 1.4⇥2⇥10

30

kg)
and radius R of 10 km. It rotates (non-relativistically) with a period ⌧ = 2⇡/! of 33 milli-
seconds. The period slowly decreases due to the emission of electromgnetic radiation. The
change in period per time is, |⌧̇ | = 4.0⇥ 10

�13.
Model the star as a uniformly magnetized sphere spinning around the z-axis, with a

magnetization M lying in the x�y plane.

z

x

y

M

�

(a) (7 points) Determine the total magnetic dipole moment of the star mo = M 4

3

⇡R3 in
terms of ⌧̇ .

(b) (6 points) Determine the magnitude of the magnetic field at the north pole of the
star. Check that your expression is dimensionally correct, and make a rough order of
magnitude estimate for the magnetic field in Tesla.

Parts (c) and (d) are indpendent of parts (a) and (b); refer to the solution of part (a) as mo.

(c) (5 points) Determine the electric field at the north pole of the star as a function of
time. (Neglect the slow decrease of the rotational period with time.) Hint: what is the
vector potential of the star?

(d) (2 points) Numerically estimate the ratio of the energy density in the magnetic field
to the energy density in the electric field at the north pole of the star.
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Solution

(a) The decrease in rotational energy of the star is the result of magnetic dipole radiation

� d

dt

✓
1

2

I!2

◆
= P (1)

Here P is
P =

1

4⇡c3
2

3

¨

m

2 (2)

is the energy lost due to magnetic dipole radiation.
Now m is harmonic

m(t) =mo(cos(!t)ˆx+ sin(!t) ˆy) , (3)
=mo Re e

�i!t
(

ˆ

x+ iˆy) , (4)

and we find after time averaging

P =

1

4⇡c3
1

3

!4m2

o|ˆx+ iˆy|2 . (5)

With !̇2

= �!3⌧̇/⇡ (which follows from ! = 2⇡/⌧ and the moment of inertia of a
sphere I = (2/5)MR2, we find

1

2

✓
2

5

MR2

◆
!3|⌧̇ |
⇡

= P (6)

Solving for mo we find

mo =

r
6

5

R

✓
Mc3⌧̇

!

◆
1/2

(7)

(b) Outside of the sphere and in the radiation zone, the magnetic field at the north pole is
just that of a time dependent magnetic dipole:

B(t) =
3n(n ·m(t))�m(t)

4⇡r3
. (8)

On the north pole of the star n =

ˆ

z and n ·m(t) is zero. Thus

|B(t)| = |�m(t)|
4⇡R3

(9)

=

mo

4⇡R3

(10)

Substituting the magnetic moment from part (a), and converting to SI units, BHL =

BSI/
p
µo, we find

B =

1

4⇡

r
6

5

✓
µoMc2

R3

◆
1/2 ✓

c⌧

R(2⇡)

◆
1/2

(⌧̇)1/2 (11)
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The factor r
µoMc2

R3

(12)

has units of Tesla, since [µo] = T 2

m

3/J and Mc2/R3 has dimension of J/m3. The
remaining factors are dimensionless. Substituting numbers

M =2.8⇥ 10

30

kg µ =

4⇡

10

⇥ 10

�6T 2

m

3/J (13)

⌧ =3.3⇥ 10

�2

s R =1.0 ⇥ 10

4

m (14)
⌧̇ =4.0⇥ 10

�13 c =3⇥ 10

8

m/s (15)

we find
B = 3.9⇥ 10

8

T (16)

A rough estimate is found by keeping powers of 10 in Eq. (11)

B ⇠
✓
10

�6 ⇥ 10

30 ⇥ (10

8

)

2

(10

4

)

3

⇥ 10

8 ⇥ 10

�2

10

4

⇥ 10

�14

◆
1/2

Tesla ⇠
p
10⇥ 10

8

Tesla (17)

(c) The vector potential of the magnetized sphere is

A =

m(t)⇥ ˆ

r

4⇡r2
(18)

The electric field is
E = �1

c
@tA (19)

The dipole moment and its derivative are

m(t) =moe
�i!t

(

ˆ

x+ iˆy) , (20)
˙

m(t) =!moe
�i!t

(�iˆx+

ˆ

y) . (21)

Then for ˆ

r =

ˆ

z (i.e. at the north pole of the star), and r = R we find

E(t) = � !mo

4⇡R2c
e�i!t

(�iˆx+

ˆ

y)⇥ ˆ

z (22)

Working out the elementary cross products (i.e. ˆ

x⇥ ˆ

z = �ˆ

y and ˆ

y⇥ ˆ

z =

ˆ

x) and taking
the real part we find

E(t) =� !mo

4⇡R2c
e�i!t

(�iˆx+

ˆ

y)⇥ ˆ

z (23)

=� !mo

4⇡R2c
[sin(!t) ˆy + cos(!t)ˆx] (24)

(d) We can estimate the ratio of energy densities by noting that

E ⇠ !R

c
B . (25)
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as expected on general grounds in the near field, quasi-static, regime. The dimensionless
factor is small, and controls the quasi-static approximation

!R

c
⇠ 6⇥ 10

�3 . (26)

The ratio of energy densities is

uM

uE

=

B2

E2

⇠
⇣ c

!R

⌘
2

⇠ 2.5⇥ 10

4 (27)
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Electromagnetism 2

Torques in Relativity

After the Michelson-Morley experiment of 1887, there was another experiment to measure
the velocity of the earth through the aether: the Trouton-Noble experiment of 1903. It
seemed to show that Maxwell’s theory of electromagnetism is inconsistent. In this problem
we will study a simplified version of this experiment and show how special relativity removes
this inconsistency.

A neutral square loop of wire with sides of length a carries a current I. The square lies
flat in the xy plane and is centered at the origin. Directly below the square is an infinite
line of positive charge with charge per length �o. The line is parallel to the x-axis, but
is displaced by a distance a below the origin in the negative z direction (see below). The
positive charges in the infinite line move to the right with velocity v, producing a net current
Io = �ov. The neutral square can rotate around the x-axis

y

+++++

a

a

z

x

I

I
o

= �v

(a) (4 points) Calculate the net torque on the square due to the line of charge.

(b) (6 points) An observer moving to the right along the x-axis with velocity v measures
a charge density in the square loop. Determine the charge per length in all four legs
of the square loop. Make a sketch illustrating the distribution of charges in each leg.

(c) (3 points) Qualitatively explain the origin of the net torque according the right moving
observer of part (b).

(d) (3 points) Determine the torque according to the right moving observer of part (b).

(e) (4 points) Compare the torques computed in parts (a) and (d). Are they equal? How
does the Lorentz force per volume (i.e. f = ⇢E +

J
c
⇥ B) transform under Lorentz

transformation. Transform the Lorentz forces per volume in part (a) to explain results
of part (d).

18
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x

F
B

I
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✓

F
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a/2
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D
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B

� = �
o

/�

z

x

y

a

a/�

Figure 1: (a) The magnetic forces and geometry in the lab frame. The x-axis comes out
of the page. (b) The geometry of the square in the boosted frame, together with the charge
density in each wire.

Solution

(a) Fig. 1(a) shows a head-on view of the square loop of wire with the x-axis coming out
of the page. The magnetic field from the line of moving charge (with current Io) is

B� =

Io/c

2⇡⇢
, (1)

which is later evaluated at

⇢o ⌘
p
(a)2 + (a/2)2 =

p
(5/4) a . (2)

There are two torques around the x-axis due to the magnetic forces FB on the legs
of the square (leg A and C as shown in Fig. 1). The net torque is directed along the
x-axis and has magnitude

⌧ =2rFB sin(✓) (3)

=2

⇣a
2

⌘✓I

c
`B

◆
sin(✓) , (4)

=2

⇣a
2

⌘✓I

c
a
(Io/c)

2⇡⇢o

◆
a

⇢o
, (5)

=

IIo
c2

a3

2⇡⇢2o
. (6)

(b) There are four legs of the square A,B,C,D as shown in Fig. 1. The four-current in
the rest frame of the square takes the form

Jµ
= (c⇢, j) = (0, j) . (7)
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since the square is neutral in the rest frame, ⇢ = 0. Making a boost

Jµ
= Lµ

⌫J
⌫ . (8)

with L0

3

= ���
c⇢ = ���jz . (9)

For a current carrying wire the current per area is jz = Iz/A, and we will quote the
charge per length � = ⇢A. Thus

� = ���(Iz/c) (10)

In the four cases we find

- Wire A:
Iz = I �A = ���(I/c) (11)

- Wire B:
Iz = 0 �B = 0 (12)

- Wire C:
Iz = �I �C = +��(I/c) (13)

- Wire D:
Iz = 0 �D = 0 (14)

(c) In the boosted frame the torque arises because of the electrostatic attraction and
repulsion of the wires A and C which are now charged. In particular there is an
attractive coulomb force between wire A and the line of charge, and a repulsive coulomb
force between wire C and the line of charge.

(d) To compute the torque in the moving frame we also need the linear charge density of
the infinitely long wire. In this case the wire is not electrically neutral and J0

= c�o/A,
and Jz

= Iov/A Then
AJ0

= �AJ0 � ��AJz , (15)

and thus

�o =��o � ��(Io/c) , (16)
=��o � ��2� , (17)

=

�o
�

. (18)

The charge per length is modified by a factor of 1/�, which reflects the length contrac-
tion of the infinite wire. The electric field from a line of charge is

E⇢ =
�o
2⇡⇢

(19)
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Then, since transverse distances are not changed under boosts, the torque on wire A
is

⌧A =rF sin(✓) (20)

=

a

2

 |QA|�o
2⇡⇢o

�
a

⇢o
(21)

where QA is the magnitude of the charge in leg A. Remembering that a square of
length a is length contracted under boost – see Fig. 1

QA = �A

✓
a

�

◆
= ��a(I/c) (22)

and thus

⌧A =

a

2


(�(I/c)a)(�o/�)

2⇡⇢o

�
a

⇢o
(23)

Multiplying by a factor of two to account for wire C and recalling that ��o = Io/c the
total torque is

⌧A =

IIo
2⇡c2

a3

�⇢2o
(24)

(e) The torques in parts (a) and (d) are not equal. The Lorentz force per volume transforms
as part of a four vector

fµ
= F µ

⌫

J⌫

c
(25)

The four-force is
fµ

= (f 0,f) = (E · J/c, ⇢E +

J

c
⇥B) (26)

In this case the forces per volume in part (a) (the magnetic forces per volume shown in
Fig. 1(a)) are transverse to the x-axis, and are therefore unmodified by a boost along
the x-axis. However the square is length contracted by a factor of �, and therefore the
net force (not the force per volume) is reduced by a factor of � in legs A and C.
The torque is similarly reduced by a factor of �. The moment arms involved in com-
puting the torque are transverse to the x-axis and are therefore unmodified by the
boost. Only the reduction of the net force reduces the net torque.
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Electromagnetism 3

A conducting plate in a magnetic field

A thin rectangular nonmagnetic metal plate with dimensions L⇥ d⇥ t has mass density
⇢, and conductivity �. The bottom edge of the plate is held fixed, but the plate is free to
rotate around the z-axis (see below). Charge can flow on and off the plate through two
leads of negligble resistance at either end of the plate. The plate sits in a constant magnetic
field directed along the x-axis (B = B ˆ

x), and experiences the Earth’s gravitational pull
(g = �g ˆ

x) as shown below. For the analysis below assume that the length L is very large,
so that the plate is essentially infinitely long. Also assume that the thickness t is very small,
so that the plate is essentially two dimensional.

B

(a) (5 points) Assume plate rotates in a counter-clockwise fashion around the z axis (in-
creasing ✓ as shown in the figure): (i) sketch how the current flows in the plate. Explain
your reasoning. (ii) sketch a free body diagram showing the magnetic and gravita-
tional forces on the plate.

(b) (8 points) Find an equation for the plate’s angle ✓(t) as a function of time.

(c) (3 points) Specialize this equation to the case ✓ ⌧ 1 and find the small angle solution
for ✓(t), given the initial conditions ✓(0) = ✓

0

⌧ 1 and ˙✓(0) = 0.

(d) (4 points) For the typical values given below, show that the angle increases approx-
imately as e�t after an initial transient. Calculate the time constant 1/� in seconds.
Assume that d = 1m, ⇢ = 10

4

kg/m3, � = 10

8

(⌦m)

�1, B = 1T, and g = 10m/s2, and
✏o = 8.85 ⇥ 10

�12

Nm

2/C2
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Figure 1: A free body diagram showing the magnetic and gravitational forces as well as other
vectors.

Solution

(a) This solution uses MKS units. If the plate rotates with increasing ✓, the current which
is given by

J = �v ⇥B (1)

is directed along the z axis (into the page in Fig. 1). The magnetic force FB is, by
the right hand rule, directed in the y-direction. The gravitational force points directly
downward in Fig. 1. The

(b) The current is
J = �E0

= �(v ⇥B) = �r ˙✓B cos(✓) ˆ

z .

Then the force follows

dF = Jd3x⇥B = �r ˙✓B2

cos(✓)d3x ˆ

y .

The torque due to the magnetic force is

⌧EM =

Z
r⇥ dF = Lt ˆz

Z
�r2 ˙✓B2

cos

2

(✓) dr = � ˙✓B2

(d3/3)Lt cos2(✓) ˆ

z .

The gravitational torque is

⌧g = (d/2)Mg sin(✓)(�ˆ

z) = �⇢g(d2/2)Lt sin(✓) ˆ

z .
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Taking torques positive in the �ẑ direction for increasing ✓ we find the equation of
motion

⇢g(d2/2)Lt sin(✓)� � ˙✓B2

(d3/3)Lt cos(✓) = I ¨✓ ,

where
I =

Z
⇢r2d3x = ⇢(d3/3)Lt ,

is the moment of inertia. So the equation of motion is

¨✓ +
�B2

⇢
cos

2

(✓) ˙✓ � 3g

2d
sin(✓) = 0 . (2)

(c) Restricting the motion to small ✓, the equation of motion becomes

¨✓ + b ˙✓ + c✓ = 0

where
b =

�B2

⇢
and c = �3g

2d

Assuming exponential solutions of the form ✓ = Ae�t, we solve the quadratic equation

�2 + b� + c = 0

to find the two homogeneous solutions of the differential equation

� = � b

2

± b

2

h
1� 4c

b2

i 1
2
.

From the initial conditions, we find

✓ =
✓
0

1� �2
�1

h
e�2t � �

2

�
1

e�1t
i
. (3)

(d) Substituting the numerical values for the parameters, we find

b =
�B2

⇢
= 10

4s�1 and c = �3g

2d
= �15s�2 .

Since 4c/b2 = �6⇥ 10

�7, we amy expand the square root and find to a good approxi-
mation

�
1

= �b = �10

4s�1 and �
2

= �c

b
= +1.5⇥ 10

�3s�1 .

Examining the signs of �
1

and �
2

, we see that the second solution e�2t is increasing in
time, while the first solution e�1t is (rapidly) decreasing in time. Further �

2

⌧ |�
1

|, and
therefore the second term in Eq. (3) is a tiny transient. Thus, we may approximate
Eq. (3)

✓ =
✓
0

1� �2
�1

h
e�2t � �

2

�
1

e�1t
i
' ✓

0

e�2t . (4)

The time constant for the motion is 1

�2
= 667s, about 10 minutes.
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Quantum Mechanics 1

Quantum mechanics of a charged rod

A rod of length l and uniform mass distribution rotates around its center in the xy-plane.
The rod has mass M . Two charge +Q and �Q are fixed at the end of the rod.

(a) (5 points) Describe this system quantum mechanically by finding its eigenfunctions
and eigenvalues. Is the spectrum degenerate and why?

(b) (5 points) A constant weak electric field E = Eˆ

x lying in the plane of rotation is
applied. Find the new energies and eigenfunctions.

(c) (5 points) For a constant but strong electric field E = Eˆ

x, find an approximate wave
function and energy for the ground state.

(d) (5 points) If at time t = 0 a weak time dependent electric field is applied E(t) =

2cos(!t)E, find the probability for the transition from the ground state to any excited
state.
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Solution: I. Zahed

a. In the xy-plane, the eigenvalue problem in polar coordinates is

� ~2
2I

@2

@✓2
'0

m(✓) = E0

m'
0

m(✓) (1)

with the moment of inertial for a fixed length rod I = Ml2/12. This is a free motion on S1,
with 'm(2⇡ + ✓) = 'm(✓). Thus, the spectrum

'0

m(✓) =
eim✓

p
2⇡

E0

m =

~2m2

2I
(2)

with m = 0,±1, .... Each state is doubly degenerate due to the invariance of the Hamiltonian
under time reversal symmetry.

b. The Hamiltonian (1) is changed to

H = �~2
2I

@2

@✓2
�QlEcos(✓) (3)

Although '±(✓) are degenerate, the dipole interaction is still diagonal in this subspace since

h�m|V (✓)|+mi =
Z

2⇡

0

(�QlE)cos(✓)
e2im✓

2⇡
= 0 (4)

and we can use standard non-degenerate perturbation theory. To first order the energies do
not shift

E1

m = hm|V (✓)|mi =
Z

2⇡

0

(�QlE)cos(✓) = 0 (5)

but the wavefunctions shift

'1

m(✓) =
X

n 6=m

hn|V (✓)|mi
E0

m � E0

n

'0

n(✓) (6)

The dipole matrix elements are

hn|V (✓)|mi = � 1

2⇡
QlE (�m�n+1

+ �m�n�1,0) (7)

and therefore to first order

Em = E0

m + 0

'm = '0

m +

IlQE

~2
p
2⇡

✓
ei(m+1)✓

1 + 2m
+

ei(m�1)✓

1� 2m

◆
(8)
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c. For a strong electric field, the dipole is close to its classical limit of total alignment.
Thus, (3) can be expanded around ✓ = 0,

H ⇡ �~2
2I

@2

@✓2
�QlE

✓
1� ✓2

2

◆
(9)

The spectrum is harmonic with !
0

= lQE/I. The ground state is

E
0

=

1

2

~!
0

'
0

(✓) =
⇣a
⇡

⌘ 1
4
e�a✓2/2 (10)

with a2 = I2!
0

.

d. For a weak interaction, we can use first order time-dependent perturbation theory.
The transition probability amplitude from the ground state to any excited state is

A
0!n =

1

i~

✓Z 1

0

hn|V (✓)|0i ei!tdt+ c.c.

◆
(11)

Using (7) and keeping only the absorption part (the emission part does not contribute) we
have for the probability

P
0!n = |A

0!n|2 =
✓
lQE

2⇡

1

~! � ~2/2I

◆
2

�n,±1

(12)
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Quantum Mechanics 2

Approximations of an anharmonic oscillator

The purpose of this problem is to compare various estimates for the ground state energy
of the anharmonic oscillator. For that, consider the Hamiltonian

H =

p2

2m
+

1

2

m!2x2

+ �x4 ⌘ H! + �x4 (13)

a. (3 points) For a weakly anharmonic oscillator use dimensional and physical reason-
ing to estimate (i) the typical size of the ground state wave function and (ii) the shift in the
ground state energy due to the anharmonic term. Explain your reasoning.
b. (3 points) Use first order perturbation theory to determine the ground state energy of
the weakly anharmonic oscillator.
c. (6 points) If  ! denotes the ground state wavefunction of the harmonic oscillator Hamil-
tonian H! (see eq. (13)), use  

⌦

as a variational ansatz to determine the optimal variational
frequency ⌦(m,!,�) and corresponding variational energy E(m,!,�) for the ground state
of the anharmonic Hamiltonian. Compare to the results in b.

d. (3 points) Write the classical equation of motion corresponding to the anharmonic
potential in (13), and approximately solve the equation with a single harmonic ansatz,
x(t) = A cos(⌦t), i.e. determine the oscillation frequency ⌦ as a function of A. For what
value of A does classical oscillation frequency equal the variational frequency ⌦ in c.? Com-
pare your result to the estimate of part a.
e. (5 points) Use the WKB approximation to evaluate the energy of the ground state of
the anharmonic oscillator to first order in �. How does your result compare to the results in
b, c and why?
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Solution:

a. The typical size x
0

of the ground state of a harmonic oscillator is found by comparing
the kinetic and potential terms

~2
2mx2

0

⇠ 1

2

m!2x2

0

(14)

or

x
0

⇠
r

~
m!

(15)

This is just an estimate. It can be made more precise by noting that for the harmonic
oscillator the virial theorem says that hKEi = hPEi, which is a statement that the ground
state is a minimal uncertainty wave packet. Recalling that the ground state energy is 1

2

~!,
we can find ⌧

1

2

m!2x2

�
=

~!
4

, (16)

and the variance in position is therefore

�2

=

⌦
x2

↵
=

1

2

x2

0

. (17)

The correction to the energy is of order

�E ⇠ �x4

0

. (18)

b. The canonical units are e
0

= ~! and x
0

=

p
~/m!. The ground state energy and

wavefunctions are

E0

0

=

e
0

2

 

0

(x) =

✓
1

⇡x2

0

◆ 1
4

e
� x

2

2x20 . (19)

This can be remembered by recalling that the ground state wave function squared is a
normalized Gaussian with variance of �2

| 
0

(x)|2 = 1p
2⇡�2

e�
x

2

2�2 . (20)

The first order shift in the energy is

E1

0

= E
0

+

⌦
0|�x4|0↵ = ~!

2

+

3

4

�x4

0

(21)

c. The variational energy can be obtained from
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E(⌦) =

⌧
p2

2m
+

1

2

m!2x2

+ �x4

�

=

~⌦
2

+

m

4

(!2 � ⌦2

)x2

⌦

+

3�

4

x4

⌦

(22)

and minimized through dE/d⌦ = 0 fixes ⌦ through

⌦

2 � !2 � 6�~
m2

⌦

= 0 (23)

with a solution to first order in �

⌦ =

✓
!2

+

6�~
m2

⌦

◆ 1
2

⇡ ! +

3�~
m2!2

(24)

Inserting this value back into (22) gives the variational ground state energy

E(m,!,�) ⇡ ~!
2

+

3

4

�x4

0

(25)

The variational estimate is identical with the result in a. which is exactly the lower bound
of the variational analysis.

d. The classical anaharmonic equation is

˙ẋ+ !2x = �4�

m
x3 (26)

Using the single harmonic ansatz x(t) = Acos(⌦t) the solution reads

(!2 � ⌦2

)Acos(⌦t) = ��A
3

m
(3cos(⌦t) + cos(3⌦t)) ⇡ �3�

m
A3

cos(⌦t) (27)

which in the single harmonic approximation valid to leading order in � we have

⌦ ⇡ ! +

3�

2m!
A2 (28)

By choosing A =

p
2~/m! in (28) the optimal variational frequency in (24) equals the

classical oscillation frequency in (28). In this way, the quantum state  
⌦

for the anaharmonic
oscillator estimate corresponds to classical harmonic motion with fixed amplitude. We also
note that this value of A (i.e.

p
2~/m!) is of order the estimate of the harmonic oscillator

length of part a.

d. The energy levels in the WKB approximation are fixed by
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Z x+

x�

p(x)dx =

✓
n+

1

2

◆
h (29)

The turning points are fixed by the condition p(x±) = 0 with

p(x) = (2m(E � V (x)))
1
2 (30)

Using the canonical units defined in a we re-write (29) as

Z X(�)

0

dxQ(x,�) ⌘
Z x+(�)

x0

0

dx
�
✏n(�)� x2 � �↵x4

� 1
2
=

✓
n+

1

2

◆
⇡~
2

(31)

with ↵ = 2x4

0

/e
0

, x
+

(0)/x
0

= 1 and ✏n(�) = En(�)/e0/2. To first order in � we have
Z X(0)

0

dxQ(x, 0) +X 0
(0)Q(X(0), 0) + �

Z X(0)

0

Q0
(x, 0) ⇡

✓
n+

1

2

◆
⇡~
2

(32)

The second contribution vanishes since Q(X(0), 0) = 0 and can be dropped. The first
contribution can be rescaled to give precisely the right hand side through

E0

n

E0

0

Z
1

0

(1� x2

)

1
2
=

✓
n+

1

2

◆
⇡~
2

(33)

The third contribution can be rescaled to give the first order WKB correction

E1

n

E0

0

= ↵

✓
E0

n

E0

0

◆
2

R
1

0

x4/
p
1� x2

R
1

0

1/
p
1� x2

(34)

which gives the WKB spectrum to leading �

En ⇡ E0

n + E1

n ⇡
✓
n+

1

2

◆
~! +

3

8

�x4

0

�
4n2

+ 4n+ 1

�
(35)

For the ground state

E
0

⇡ ~!
2

+

3

8

�x4

0

(36)

which is exact in leading order and below the perturbative ground state a.
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Quantum Mechanics 3

Cyclic quantum evolution and Berry phases

Consider a Hamiltonian ˆH 0
(�(t)) that depends on time through a slowly varying pa-

rameter �(t). (For example H 0 could describe the spin Hamiltonian of a neutron in a time
dependent magnetic field.) The eigenstates |✏n(�)i and eigenvalues ✏n(�) of H 0 are all slow
functions of time through the parameter �(t). Any state of the system | (t)i can be ex-
panded in terms of the instantaneous eigenstates of ˆH 0, i.e. | (t)i =P'n(t) |✏n(�)i.

(a) (6 points) Assume that the system starts in |✏
0

(�)i and subsequently evolves in a single
eigenstate, i.e. | (t)i = '(t) |✏

0

(�)i. The parameter �(t) is cyclically varied over a
time T so that �(T ) = �(0):

(i) Determine the final state | (T )i of the system given its initial condition | (0)i.
(ii) Show that | (T )i contains a nonvanishing phase � (known as the Berry phase)

that is independent of the period T . Express the Berry phase in terms of the
Berry connection, A ⌘ i~h✏| d

d�
|✏i.

Now consider a quantum mechanical particle. A time independent Hamiltonian ˆH 0
(r)

describes the internal degrees of freedom of the particle (e.g. its spin state). Now ˆH 0 varies
slowly in space, but does not vary in time. Its eigenstates |✏n(r)i and eigenvalues ✏n(r) also
vary slowly in space, but not in time.

(b) (6 points) Assume that the full wave function in coordinate and “spin” space takes the
form | (r, t)i = '(r, t) ⌦ |✏

0

(r)i at all times. Analyze the time evolution of | (r, t)i
under the full Hamiltonian ˆH =

ˆ

p

2/2m+

ˆH 0 and show that the Schrödinger equation
for '(r, t) involves the effective Hamiltonian

ˆH' =

1

2m
[

ˆ

p�A(r)]

2

+ V (r) + ✏
0

(r),

where V (r) =

P
n 6=0

|h✏n|r✏
0

i|2 is a scalar function of no further interest, and A(r) ⌘
i~h✏

0

(r)|r✏
0

(r)i is the Berry connection in this case.

The Hamiltonian ˆH' is analogous to the motion of a charged particle in a magnetic field. The
“magnetic field” in this case is known as the Berry curvature, B = r⇥A. Now consider a
wave packet in the set-up of part (b). The packet is localized at a central position r(t), which
slowly changes in time. At r(0) the wave packet is split into two, '

u

(ru(t)) and 'd(rd(t)),
and the two waves propagate along opposites sides of the contour (up and down as shown
below) to finally interfere at r(T ).

(c) (2 points) Use the results of part (a) (with r(t) as the adiabatic parameters) to deter-
mine the interference '⇤

u'd at r(T ) in terms of the “magnetic flux” through the contour
and the wave functions 'u and 'd at r(0).
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r(0)

ru(t)

rd(t)

r(T )

(d) (3 points) The eigenfunctions |✏n(r)i of H 0 are defined only up to an overall r-dependent
phase. If the kets are rotated by a function �(r), |✏n(r)i ! ei�(r) |✏n(r)i, how does the
Berry connection A(r) and interference of part (c) change? Explain.

The analysis in parts (a) and (c) was for a single non-degenerate eigenstate |✏
0

(r(t))i with
a slowly varying parameter r(t). Now repeat the analysis of parts (a) and (c) but assume
that at each point there are two degenerate eigenstates, |✏

0

(r(t))i and |✏
1

(r(t))i, depending
on the parameter r(t). Assume that the full wave function lies in their span, | (t)i =

'
0

(t) |✏
0

(r(t))i+ '
1

(t) |✏
1

(r(t))i.
(e) (3 points) Derive an equation of motion and effective Hamiltonian for the pair of func-

tions ('
0

(t),'
1

(t)) involving an appropriate Berry connection, Aab(r(t)) = i~h✏a|r✏bi
(where a, b=0, 1). Is adiabatic evolution possible? Explain.

Note that the Berry connection does not commute in this case. This is called non-abelian
behavior.
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Solution

(a) Starting with the Schrödinger equation ˆH 0 | (t)i = i~ d
dt
| (t)i and inserting | i='(t) |✏

0

(�)i
yields

✏
0

'(t) |✏
0

i = i~
⇣
'̇ |✏

0

i+ ' d
d�

|✏
0

i ˙�
⌘
. (37)

After left multiplication with h✏
0

| we find

i~'̇ =

✓
✏
0

(�)� i~ h✏
0

| d

d�
|✏

0

i ˙�
◆
' . (38)

The formal solution of this equation, using the definition for A = i~ h✏
0

| d
d�

|✏
0

i, is

'(T ) = '(0) exp

�i

~

Z T

0

✏
0

(�(t))dt

�
exp


i

~

Z T

0

A(�(t)) ˙�(t) dt

�
. (39)

The phase in the second exponential

1

~

Z T

0

A(�) · ˙� dt =
1

~

I
A(�) · d� , (40)

is time-independent but depends on the contour.

(b) Inserting the state | i = '(r, t) ⌦ |✏
0

(r)i into the Schrödinger equation, using ˆ

p =

�i~r, and left multiplication with h✏
0

| yields the equation

i~'̇ = � ~2
2m

⇥r2

+ 2 h✏
0

|r |✏oi · r + h✏
0

|r2 |✏
0

i⇤'+ ✏
0

' (41)

The term h✏
0

|r2 |✏
0

i can be re-written as

h✏
0

|r2 |✏
0

i = h✏
0

|r ·
 
X

n

|✏ni h✏n|
!

r |✏
0

i (42)

=

X

n

h✏
0

|r |✏ni · h✏n|r |✏
0

i (43)

= h✏
0

|r |✏
0

i2 +
X

n 6=0

| h✏n|r |✏
0

i |2 (44)

such that

i~'̇ =

"
1

2m

�
ˆ

p

2 � 2i~ h✏
0

|r |✏
0

i · ˆp� ~2 h✏
0

|r |✏
0

i2�+
X

n 6=0

| h✏n|r |✏
0

i |2
#
'
0

+ ✏
0

',

(45)
or

i~ '̇(r, t) =


1

2m
(

ˆ

p�A(r))

2

+ V (r) + ✏
0

(r)

�
'(r, t) (46)
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(c) Following the upper (lower) half of the contour from the origin to r

0, the wave functions
at this point are given by

'
(u,d)(r) = '

(u,d)(0) exp

"
i

~

Z r(T )

0(u,d)

A · dr
#

(47)

This means that the interference term '⇤
u'd is given by

'u(r(T ))
⇤'d(r(T )) = 'u(0)

⇤'d(0) exp

"
�i

~

Z r(T )

0(u)

A · dr
#
exp

"
i

~

Z r(T )

0(d)

A · dr
#
(48)

= 'u(0)
⇤'d(0) exp


i

~

Z
0

r(T )(u)

A · dr
�
exp

"
i

~

Z r(T )

0(d)

A · dr
#
(49)

= 'u(0)
⇤'d(0) exp


i

~

I
A · dr

�
(50)

= 'u(0)
⇤'d(0) exp


i

~�
�

(51)

where � is the magnetic flux,
R
B · dS, through the surface outline by the closed

contour.

(d) The transformation changes the Berry connection A

0
= A � r�(r). However, this

does not affect the results in (c) since r ⇥A

0
= r ⇥A � r ⇥ r� = r ⇥A = B,

and the magnetic flux is the same.

(e) Following the approach in (a), but now using | (t)i = '
0

(t) |✏
0

(r(t))i+'
1

(t) |✏
1

(r(t))i
leads to the equation

i~
✓
'̇
0

'̇
1

◆
=✏

0

(r(t))

✓
1 0

0 1

◆✓
'
0

'
1

◆
� i~

✓ h✏
0

|r |✏
0

i h✏
0

|r |✏
1

i
h✏

1

|r |✏
0

i h✏
1

|r |✏
1

i
◆
·
✓
'
0

'
1

◆

(52)

=✏
0

(r(t))

✓
1 0

0 1

◆✓
'
0

'
1

◆
�A ·

✓
'
0

'
1

◆
(53)

The dynamics is just that of a coupled two-level system, where overlap between the
internal states in the off-diagonal elements lead to coherent transitions between the
external wavefunctions. The evolution can only remain adiabatic in the set of the two
states, but not for the individual states within the set.
The solution to Eq. (52) is

'a(t) = e�
i

~
R
t

0 ✏0(r(t))dt Uab(r(t))'b (54)

where Uab is the time-ordered exponential

Uab =


T exp

✓
i

~

Z t

0

dt
dr(t)

dt
·A(r(t))

◆�

ab

(55)

known as a non-abelian Wilson line.
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Statistical Mechanics 1 
 
Heavy piston 
 

 A vertically positioned cylinder, whose walls are kept at constant 
temperature T, is closed with a very heavy piston of mass M (see Fig. on the 
right), and contains N >> 1 molecules of an ideal gas. Neglecting the 
external pressure, and the friction between the piston and the cylinder’s 
walls, calculate: 

 A (1 point) the equilibrium position x0 of the piston; 

 B (2 points) the frequency of small oscillations of the piston near x0; 

 C (3 points) the r.m.s. value Gx of the piston’s thermal fluctuations. 

 D (4 points) Now let the piston, moving with velocity u, also experience a drag force with the 
statistical average ¢F² = -Ku. Use this relation and the fluctuation-dissipation theorem to re-derive the 
answer to question C. 

 E (6 points) The drag force, mentioned in question D, may arise due to the molecules reflecting 
from the moving piston. Assuming that the velocity u of the piston is much lower than the typical 
molecular velocity, use the elementary kinetics and statistics of the ideal gas to calculate the drag 
coefficient K.  

 F (2 points) Formulate quantitatively the conditions of validity of your results. In particular, what 
is the condition that the oscillation process is isothermal? 

 

g

M

A

x
T

N



Solution 

 A (1 point). With the equation of state of the ideal gas, 

          NTPV  ,      (1) 

where T { kBTKelvin is temperature in energy units, and the evident relation V = xA (where A is the 
cylinder’s base area), the equation of piston’s mechanical equilibrium, 

MgPA  , 

gives the result independent of A: 

           
Mg
NTx  0 ,      (2) 

 

 B (2 points). If the piston is very heavy, the piston’s oscillations near the equilibrium are very 
slow, so that the gas temperature always have time to adjust to that of the walls. As a result, the 
oscillation process is isothermal, and Eq. (1) may be used even in dynamics, giving the following 
equation of piston’s motion: 

    Mg
xx

NTMg
x

NTMgPAxM �
�

 � � ~
0

�� ,    (3) 

where 0
~ xxx �{  is the deviation from the equilibrium position. For small oscillations ( 0

~ xx �� ) we 
may Taylor-expand the right-hand part of this equation, keep only the two leading terms, and then use 
Eq. (2) to obtain 
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where the effective spring constant 
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gM
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From here, the frequency of small oscillations is  
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 Note two curious facts. First, with N and T fixed, the oscillation frequency grows with the mass 
M of the piston (because of a faster growth of  the effective spring constant k.) Second, with Eq. (2) for 
x0, Eq. (4) may be rewritten in the form, 
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0
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x
gZ , 



which coincides with the well-known expression for the frequency of small oscillations of a point-mass 
(“mathematical”) pendulum of length x0, in the same gravity field. 

  

 C (3 points). The simplest way to calculate r.m.s. value Gx (i.e. the square root of the variance) of 
the thermal fluctuations is to apply, to the average potential energy U of these classical fluctuations, the 
equipartition theorem: 

� �
22

~
2

22 TxkxkU  { G . 

From here, 
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 Comparing this expression with Eq. (2), we see that the relative r.m.s. fluctuation obeys the well-
known equality 

11
2/1

0

�� 
Nx

xG , 

following from the independence of the individual molecules in an ideal gas. 

  

 D (4 points). Adding the viscosity term -Ku to the right-hand part of Eq. (3), 

Mgx
x

NTxM �� ��� K , 

and linearizing in small 0
~ xxx �{  just as in Task B, we get the following linear differential equation:1 

      0 �� kxxxM ��� K .     (6) 

 The fluctuation-dissipation theorem, in its classical limit, gives the following relation, 

               � � � �
T

"
S F SZ

ZF
Z  ,     (7) 

between the spectral density SF of the Langevin force, which should be placed into the right-hand part of 
Eq. (6) for the description of molecular hit randomness, 

         � � � � � �tFtFtFtFxkxxM -)(~  where,~~~~ { �� ��� K ,   (8) 

and the imaginary part of the complex generalized susceptibility of the system’s environment: 

                                                 
1 Note that this equation neglects the random (“Langevin”) force F(t) - ¢F², describing the randomness of 
individual molecular hits, and is valid only if _x_ << Gx, where Gx is the scale of piston’s fluctuations, given by Eq. 
(4) – see the discussion below. 



� �
Z

ZZF
x
F

{ , 

where the lower index denotes the Fourier component of the corresponding function of time, and x(t) is 
considered as a given function of time. 

 In our case, for small oscillations, the average molecular force is   

� � ,~~
0 xxkxFF �K�� �  

so that the relation between the Fourier components of the force and displacement is 

� � ZZ ZK xikF �� . 

Hence  

� � � � � � ,ImIm ZKZKZFZF  �� { ik"  

and Eq. (7) is reduced to 

      � � TSF S
KZ  . 

 Now writing Eq. (8) in the Fourier representation, 

� � ZZZKZ FxkiM ~2  ��� , 

and taking into account that the spectral density of any function f(t) is proportional to _fZ_2, we get 
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The variance of random fluctuations of a function of time, in our case of the piston displacement x, is 
just the integral of its spectral density over all frequencies: 
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 This integral may be readily worked out in our current case of a sufficiently low viscosity K, 
when the function under the integral has a sharp, narrow resonance peak at Z |Z0, which gives the 
dominating contribution to the integral. Near this peak, i.e. at frequencies with _Z - Z0_ << Z0, we may 
take Z2 - Z0

2 | 2Z0(Z - Z0), and ZK/M | Z0K/M, so that 
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where [ { 2M(Z - Z0)/K. This is a well-known table integral, equal to S, so that we finally get 
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thus returning to Eq. (5).  

 Note that this result is independent of the particular expression for the viscosity K, provided that 
it is sufficiently low: 

         0ZK
��

M
.      (9) 

  

 E (6 points). Let the piston move with a low velocity u. Consider a 
molecule hitting the piston, with the initial horizontal velocity vx > 0 (in the 
lab reference frame) -  see Fig. on the right. In the reference frame connected 
to the piston, this component is (vx – u). At an elastic collision, in piston’s 
reference frame the component’s modulus is conserved, so that after the 
collision it is –(vx - u) = -vx + u, and in the lab frame it is v’x = (–vx + u) + u = -
(vx – 2u). Hence the momentum transferred to the piston is -'(mvx) = -m[(-vx - 
2u) - vx] = 2m(vx - u), where m is the mass of the molecule. 

 The time interval 't between the previous collision and the analyzed 
one (at moment t) may be found from the evident kinematic equation: vx't = x(t) + x(t – 't) = 2x(t) - u't, 
giving 't = 2x(t)/(vx + u). A similar analysis of the next time interval 't’ is v’x't’ = x(t + 't’) + x(t) = 
2x(t) + u't’, so that 't’ = 2x(t)/(v’x - u). Using the v’x calculated above, this gives 't’ = 2x(t)/(vx - 3u). 
The momentum 2m(vx – u) given to the piston by the collision at time t has to be attributed equally to 
both these time intervals, so that it is equivalent to the following average force:  
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with the last transition valid if u2 << v2
x.  

 Since a particle moving initially in the opposite direction but the same ~vx~ will exert on the 
piston the similar average force, we can generalize this result as follows:  

),2( 2
xxm vuv

x
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Now this force should be averaged over the 1D Maxwell distribution 
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 The resulting average force from N molecules is 
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 The first term in the right-hand part of Eq. (9) is the usual (static) pressure force of the ideal 
classical gas (also given by Eq. (1) above), while the second term represents the damping force, always 
directed against piston’s velocity. Hence K is the required viscosity coefficient; near the equilibrium 
position of the piston,  
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 F (2 points). First, from the last result for K, and Eq. (4) for Z0, the condition (9) of low damping 
becomes simply 

MNmM ��{gas . 

Actually, this condition was already implied at writing Eqs. (3), (6) and (7) of piston’s motion, where 
the gas’ inertia was neglected.  

 Second, these equations of motion are valid only for an isothermal process (T = const), so that 
the oscillation frequency Z0 has to be much lower than 1/W, where W is the time of thermal relaxation of 
the gas in the cylinder.2) According to the equation of diffusion, 

TD
t
T 2� 
w
w , 

the reciprocal time 1/W is of the order of D/a2, where a is the smallest linear dimension of the cylinder 
(not necessarily x0). For a nearly-ideal gas, with a relatively large mean free path l >> (V/N)1/3, the 
diffusion coefficient D is of the order of lvrms = l(T/m)1/2, so that the condition is frequency smallness 
becomes3 
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 Finally, the given condition N >> 1 was repeatedly used throughout the solution. 

                                                 
2 In the opposite limit, the process is adiabatic, with a different effective spring constant. 
3 This estimate has to be altered for extremely low gas densities, when l becomes comparable with a. In this case, 
the condition depends of the character (diffusive vs. specular) of molecule’s reflection from cylinder’s walls. 



Statistical Mechanics 2 
 
Gas condensation 
 

 A closed container of volume V with a classical gas of N >> 1 indistinguishable particles. The 
inner surfaces of the container’s walls have NS >> 1 similar traps (potential wells of small size). Each 
trap can hold only one particle, in one of gS degenerate states; energy  ' > 0 is required to free the 
particle from the trap. 

 A (3 points). Assuming that the chemical potential P of the system is known, calculate the 
number Ng of particles in the gas phase (i.e. in the volume of the container). What condition should be 
imposed on Ng for the gas to behave classically? 

 B (4 points). Again assuming that the chemical potential is known, calculate the probability of 
each trap to be filled, and the full number of filled traps (i.e. of condensed particles), as functions of P. 

 C (4 points). Use the results obtained in A and B to derive the equation for the chemical potential 
of the system in equilibrium. 

 D (4 points). Solve the equation analytically in the limit of N/NS >> 1, and analyze the solution;  
in particular, calculate the gas pressure. 

 E (4 points). Solve the equation for the chemical potential in the opposite limit, N/NS << 1, and 
calculate the gas pressure in this case. 

 F (1 point). Summarizing your results, spell out the conditions at which the gas pressure is 
significantly affected by particle condensation in the traps.  

  



Solutions 

  A (3 points). For a classical gas, the probability for a particle to occupy a certain quantum state 
of energy Hn is given by the Boltzmann distribution: 
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where T { kBTK is the temperature in energy units. For a free particle, Hn = pn
2/2m, so that the total 

number of gas particles may be calculated as 
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where gV is the orbital state degeneracy (e.g., due to particle’s spin). Using the standard replacement of 
summation over the continuous-spectrum states by integration, we get 
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This is the standard Gaussian integral, equal to S1/2/4, and we finally get  
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 For the Boltzmann distribution to be valid, all probabilities Wn, including the largest one (with Hn 
= 0), have to be much smaller than 1, giving the condition -P >> T. According to Eq. (1), this means that 
Ng  has to be much less than NV(T) – which is, physically, the number of gas-phase states available at 
temperature T. 

  

 B (4 points). Let us apply the grand canonical distribution  
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,
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to a statistical ensemble of single traps, with (1 + gS) different states: one empty-trap state (N = 0), of 
certain (inconsequential) energy H0, and gS  different possible states with one trapped particle (N = 1), 
with energy (H0 - '):  
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so that the average number of filled traps (regardless of the quantum state of the trapped particle) is 
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 Note that this formula is similar to, but (if gS z 1) still different from the Fermi-Dirac distribution 
for energy (-').1  

  

 C (4 points). The total number of particles, N, has to equal the sum of the number Ng of the 
particles thermally activated into the gas phase, which is given by Eq. (1), and the number Nc of 
condensed particles, localized at the surface traps, given by Eq. (2). In the equilibrium, the values of P 
and T in all these expressions are equal, so that the particle number balance, Ng + Nc = N, gives the 
following equation: 

    � � � �^ ` N
Tg

N
T

TN
S

S
V  

��'�
�

¿
¾
½

¯
®
­

� 1/exp
exp 1 P

P .   (3) 

 This transcendent equation for P defies an exact analytical solution in the general case, but may 
be readily solved in the limits of low and high values of the N/NS  ratio.  

  

 D (4 points). Since Nc cannot be larger than NS, in the limit N >> NS most particles have to be in 
the gas phase, so that in the 0th approximation the second term in Eq. (3) may be ignored, and this 
equation is reduced to that of the ideal classical gas of N particles, giving 
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 (Remark: If necessary, we may use the last value of P to calculate the (relatively small) number 
of condensed particles: 
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As was discussed above, the ratio NV(T)/N has to be much larger than 1 to keep the gas classical. 
However, since the exponent is such a steep function, the ratio Nc/NS depends mostly on the 
condensation energy ': if it is much larger than the crossover value2 
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the first term in the denominator is negligibly small, and Nc | NS. In the opposite limit, ' << 'c, the ratio 
Nc/NS is exponentially small. Now Eq. (4) may be plugged into Eq. (3) to obtain the 1st order corrections 
to P and P, etc.) 

  

                                                 
1 Note also that Eq. (2) is valid in the (practically very important) case of donor dopants in semiconductors, with 
the ground state energy lower, by ', then the conduction band edge. (With the opposite sign under the exponent, it 
is also valid for acceptor dopants, with the ground state energy higher, by ', than the valence band edge.)  
2 The  term “crossover” rather than “critical” is used to emphasize that the transition from one regime to another 
one is a smooth transition (“crossover”) rather than a genuine (sharp) phase transition. 



 E (4 points). In the opposite limit of a relatively small number of particles, N << NS, Eq. (3) may 
be satisfied only if the second term in its left-hand part is much less than NS, i.e. at exp{-(' + P)/T} >> 
gS ~ 1, so that the equation is reduced to  
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and may be readily solved for P: 
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 Again, the ratio NV(T)/N has to be large for the gas to stay classical. However, since in our  limit 
the ratio NS/N is also large, and exp{'/T} is a very steep function, the gas pressure depends mostly on 
the condensation energy '. If the energy is much larger than the crossover value 'c given by Eq. (5), the 
number of particles in the gas phase is exponentially small, 
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(because virtually all particles are condensed on the surface traps), and so is its pressure: 
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Evidently, this result is very much different from the equation of state of a classical gas with a fixed 
number of particles. Note also a very natural trend, P v 1/NS, though the condition NS >> N used for the 
derivation of this result does not allow using it to follow the no-trap limit NS o 0. 

 In the opposite limit of low condensation energy ' << 'c, our result is again reduced to the 
pressure of an ideal classical gas of N particles, P = NT/V. This is natural, because in this limit virtually 
all particles are thermally activated into the gas phase. 

  

 F (1 point). Summarizing the above analysis, the particle condensation on the surface affects the 
gas properties substantially only if: 

 - the number NS of traps is of the order of the N (or higher), and  

 - the condensation energy is larger than the crossover value (5). 

 



Statistical Mechanics 3

The 1D Potts model

In the so-called Potts model, a uniform 1D chain of N classical spins (in the absence of
an external magnetic field) is described by the following interaction Hamiltonian:

H = �J
X

hiji
�⌘

i

,⌘
j

,with J > 0 , (1)

where J is a positive coupling constant, ⌘i is the classical spin variable at the site i, describing
the spin state, which may take integer values in the set {1, ..., q}, �a,b is the Kronecker delta
symbol; and the summation is over all pairs of adjacent spins. Consider the model with
q = 3 in thermal equilibrium at temperature T .

Do parts parts (a), (b), and (c) for finite N , and then take the limit N ! 1 for parts
(d), (e), and (f). For parts (c), (d), (e), and (f), you should give an explicit closed-form
expression, not an abstract expression involving a summation.

(a) (1 pts.) Write the general expression for the statistical sum (= partition function) Z
of the system.

(b) (2 pts.) Assuming periodic boundary conditions, express Z via the appropriate transfer
matrix.

(c) (4 pts.) Use this expression to calculate Z. (Check your work as all subsequent parts
depend on this result.)

Take N ! 1 for the remainder of the problem:

(d) (3 pts.) Calculate the free energy per site, F , and the average energy per site, E.

(e) (3 pts.) Calculate the specific heat capacity per site, C, and the entropy per site, S.

(f) (5 pts.) Calculate the values of E, C, and S in the limits T ! 0 and T ! 1.
Physically and quantitatively explain your results for E and S in both limits.

(g) (2 pts.) Does this system have a symmetry-breaking phase transition at finite temper-
ature? Prove your answer.
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Solution

(a) (1 pt.) Write the general expression for the statistical sum (= partition function) Z
of the system. Ans. Let � = 1/(kBT ), where kB is the Boltzmann constant. In general, the
partition function of a statistical system in thermal equilibrium at temperature T is

Z =

X

var.

e��H (2)

where the sum is over the values of all of the dynamical variables in the system. Let K = �J .
Then here

Z =

X

{⌘
r

}
eK

P
hiji �⌘

i

,⌘

j (3)

where {⌘r} denotes the set of all variables ⌘r with r denoting a site on the lattice. Each of
these variables ⌘r can take on values in the set {1, 2, 3}.

(b) (2 pts.) Assuming periodic boundary conditions, express Z via the appropriate
transfer matrix. Ans. Denote the transfer matrix as T , with matrix elements h⌘i|T |⌘ji.
Given the periodic boundary conditions (BC),

Z = Tr(T N
) (4)

(c) (4 pts.) Use this expression to calculate Z. Ans. Let y = eK . Then in the basis of
states (1,2,3), the transfer matrix is

0

@
y 1 1

1 y 1

1 1 y

1

A (5)

This is a real symmetric matrix, so it can be diagonalized by an orthogonal transformation
R (with RT

= R�1):

RT R�1

= Td ⌘
0

@
�
1

0 0

0 �
2

0

0 0 �
3

1

A (6)

where, as indicated, Td is a diagonal matrix, and �p, p = 1, 2, 3 are the eigenvalues of T .
Thus, T = R�1TdR. Solving the indicial equation, we find these to be �

1

= y + 2 and
�
2

= �
3

= y � 1. Using the cyclic property of the trace, Tr(AB) = Tr(BA), we have

Tr(T N
) = Tr[(R�1TdR) · · · (R�1TdR)]

= Tr(T N
d ) = (�

1

)

N
+ 2(�

2

)

N

= (y + 2)

N
+ 2(y � 1)

N (7)

(where the · · · in the first line indicate an N -fold product). Hence,

Z = (y + 2)

N
+ 2(y � 1)

N (8)
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(d) (3 pts.) Calculate the Gibbs free energy per site, G, and the internal energy per site,
E. The Gibbs free energy per site is G = �kBTf , where the dimensionless function f is

f = lim

N!1
1

N
lnZ

= ln(y + 2) (9)

so
G = �kBT ln(y + 2) (10)

Note that only the dominant eigenvalue contributes in this limit. The internal (configura-
tional) energy per site E is given by

E = �@f
@�

= �J
@f

@K
(11)

Now @/@K = (@y/@K)@/@y and (@y/@K) = y, so

E = �Jy
@f

@y
= � Jy

y + 2

(12)

(e) (3 pts.) Calculate the specific heat capacity per site, C, and the entropy per site, S.
Ans. The specific heat C = dU/dT here. Now dU/dT = �kB(K

2/J)dU/dK, so

C = kBK
2y
@

@y

⇣ y

y + 2

⌘
=

2kBK
2y

(y + 2)

2

(13)

The entropy S can be calculated from the relation G = E � TS, i.e., S = (E �G)/T =

kB�(E �G). Subsituting our results for G and E, we have

S = kB

h
� Ky

y + 2

+ ln(y + 2)

i
(14)

(f) (5 pts.) Calculate the values of E, C, and S in the low-temperature limit T ! 0 and
the high-temperature limit T ! 1. Ans. The limit T ! 1 is � ! 0, i.e., y ! 1. In this
limit,

E = �J

3

, C = 0, S = kB ln 3 for � ! 0 (15)

The limit T ! 0 with J > 0 is � ! 1 and K ! 1. In this limit

E = �J, C = 0, S = 0 for T ! 0 (16)

These results can be understood physically. In the high-temperature limit the interaction
is negligible compared to the temperature. The spins can be in any of the three states
with equal probability, 1/3. The entropy per site is then simply S = kB ln 3. Since the
neighboring spins are random, the average energy per site is just the interaction energy
between neighboring spins, times the probability that the two neighboring spins are in the
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same state. There are three such same-state configurations out of the nine possible states of
neighboring spins, and thus the energy per site is �J/3. As the temperature approaches 0,
there is local ordering of the spins, so the energy per site approaches the interaction energy
per site, �J . At T = 0 (but not at any finite temperature, regardless of how small), all of
the spins are in one of the three states and the entropy per site is therefore zero. Although
the entropy per site approaches zero continuously as T ! 0, the magnetization is identically
zero for any finite temperature, regardless of how small, and jumps discontinuously to 1 at
T = 0.

(g) (2 pts.) Does this system have a symmetry-breaking phase transition at finite temper-
ature? Prove your answer. Ans. No, this system does not have a symmetry-breaking phase
transition at finite temperature. The proof, using what is known as the Peierls argument,
goes as follows. To simplify the proof, use the fact that the boundary conditions have no ef-
fect in the thermodynamic limit and hence use free boundary conditions. Assume that there
is an incipient ordering, with a nonzero order parameter, i.e., magnetization, h⌘ii = 1 for all
i. Clearly, this would break the symmetry of the theory, under which any of the three values
of ⌘i is equally likely. We show that this incipient symmetry-breaking long-range order is not
stable under a change that minimizes the Gibbs free energy G = E�TS. We can destabilize
this incipient ordering by flipping the value of ⌘i to another value, say 2, for the interval
i � `, where 1  `  N . The cost in energy is �E = J but since we can choose ` in any of
N ways, the gain in entropy is �S = kB lnN , so the total change in the Gibbs free energy
is �G = J � kBT lnN . Since T > 0, this is always negative as N ! 1. So an incipient
ordered state is not thermodynamically stable. Therefore, there is no symmetry-breaking
phase transition of this system at finite temperature. (There is, in fact, a symmetry-breaking
phase transition at zero temperature.) Another proof that is accepted is to observe that all
of the thermodynamic functions are analytic for all T > 0, thereby precluding any phase
transition, since the latter involves nonanalyticity of thermodynamic functions.
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