
Comprehensive Examination

Department of Physics and Astronomy

Stony Brook University

January 2016 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take less than 45
minutes.

Some of the problems may cover multiple pages.
Use one exam book for each problem, and label it carefully with the problem topic and
number and your name.

You may use, with the proctor’s approval, a foreign-language dictionary. No other mate-

rials may be used.
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Classical Mechanics 1

Orbits of planets

As you know, the orbits ~r(�) of planets are ellipses, but, as you will see, the orbits ~v(�)
in velocity space are circles! If one adds a perturbation �

r2
to the 1

r
potential, the ellipses

start to precess, and the circles become a kind of epicycles. In this problem we prove these
statements, and construct exact solutions for the potential

V (r) = �↵
r
+

�

r2
(↵ > 0, � � 0) . (1)

Consider a point particle with mass m and negative energy E = �|E| in this potential.

a) (2 points) First prove that ~er = �d~e
�

d�
, where ~er is the unit vector along the radius and

~e� the unit vector orthogonal to ~er in the direction of increasing � (see the figure)

x

y
~er

�~e�
~r(�)

Set � = 0. Then prove that
d~v

d�
= �

d~e�
d�

. (2)

What is the constant �?

b) (4 points) It follows from (2) that ~v(t) = ~w + �~e�(t) with constant ~w. By taking the
scalar product of this equation with ~e�, show that one obtains elliptical orbits given
by r(�) (see definition below⇤). Hint: Express v� ⌘ ~v(t) · ~e�(t) in terms of polar
coordinates, and choose a coordinate system such that ~w lies along the positive y-axis.

⇤
An ellipse (x/a)

2
+ (y/b)

2
= 1 can be parametrized in polar coordinates relative to the focus by r(�)

r(�) =

b

2

a+ c cos�

,

where c =

p
a

2 � b

2
is the distance between the (x, y) origin and the focus. The angle � and radius r(�) are

indicated in the figure.
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c) (4 points) On the other hand, show that ~v(�) describes circles. Draw pictures of these
elliptical and circular orbits and locate in these pictures the angle �.

d) (2 points) Now consider the case that � > 0. Derive the relation

1

2

mṙ2 +
�
A
r
� B

�
2

= E

2 . (3)

What are A, B and E? Set
p

m
2

ṙ = E sin f(t) ;
�
A
r
� B

�
= E cos f(t). Is this always

possible?

e) (4 points) Show that ˙f(t)
˙�

=

df
d�

= ! = constant. Show that the orbits r(�) are now
ellipses with precession.

f) (4 points) Find the equation which generalizes (2) to the case when � is nonvanishing.
How would you solve this equation?
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Solutions

a) m ˙~v = � ↵
r2
~er where ~er is the unit vector along the radius. With mr2 ˙� = l = angular

momentum, we get
˙~v
˙�
= �↵

l
~er =

↵

l

d~e�
d�

because ~er = �d~e
�

d�
. (Proof: ~er = (cos�, sin�, 0) and ~e� = (� sin�, cos�, 0), so

d~e
�

d�
= �~er.) Clearly � =

↵
l
.

b) We evaluate v� = r ˙� = ~w.~e�+
↵
l
. Hence l

mr(t)
= w cos�(t)+ ↵

l
if we choose a coordinate

system such that ~w lies along the positive y-axis. This is an ellipse. (The equation for
an ellipse in general is given by 1

r
=

a+c cos�
b2

and in our case a
b2

=

m↵
l2

and c
b2

=

mw
l

.)

c) Squaring ~v(�) � ~w =

↵
l
~e� with constant ~w, we obtain (~v � ~w)2 =

�
↵
l

�
2. These are

circles, with the origin at ~w and radius ↵
l
.

y

x�(t)
r(t)

vy

vx

�(t)
~v(t)

~w

If � = 0, the velocity is maximal, so the point (a, 0) on the ellipse corresponds to the
north pole of the circle.

d) The energy is given by 1

2

mṙ2 + 1

2

mr2 ˙�2 � ↵
r
+

�
r2

= E, hence

1

2

mṙ2 + 1

2

l2

mr2
+

�

r2
� ↵

r
= E , or

1

2

mṙ2 +
�
A
r
� B

�
2

= E

2 ,

with A2

= � +

l2

2m
, B =

↵
2A

, and E

2

= E +

↵2

4A2 . If a2 + b2 = E

2 one can always write
a = E sin f(t) and b = E cos f(t).
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e) Taking the time derivative of the relation with cos f(t), gives

�A

r2
Ep
m/2

sin f(t) = �E

˙f(t) sin f(t) , so

˙f
˙�
=

df

d�
=

A

l

p
2m ⌘ ! =

r
1 +

2m�

l2
.

Then f = !� and
�
A
r
� B

�
= E cos!�. If ! 6= 1 (� 6= 0), this is an ellipse with

precession: if � runs from 0 to 2⇡, the cosine is no longer periodic.

f) The relation for ˙~v
˙�
=

d~v
d�

is no longer a total derivative. Instead, one finds

m ˙~v =

✓
� ↵

r2
+

2�

r3

◆
~er ,

d~v

d�
=

↵

l

d~e�
d�

� 2�

lr

d~e�
d�

.

Since the term with � is not a total derivative, this is not a circle.

If one substitutes the equation for 1

r
one obtains an equation that is easy to solve

 
dv

x

d�
dv

y

d�

!
=


↵

l
� 2�

l

✓
E cos!�+B

A

◆� � cos�

� sin�

!
,

or more explicitly

dvx
d�

=

✓
�↵

l
+

2�B

lA

◆
cos�+

�E

lA

�
cos(! + 1)�+ cos(! � 1)�

�

dvy
d�

=

✓
�↵

l
+

2�B

lA

◆
sin�+

�E

lA

�
sin(! + 1)�� sin(! � 1)�

�
.

The first terms on the right-hand side give again a circle, but the second terms give
two counter-precessing ellipses. Their sum constitutes a complicated kind of epicycle
motion.

Comment 1: For these precessing ellipses it is still true that the total energy E is propor-
tional to a, and for fixed E, the maximal value of l is obtained for circular motion.
However for given angular momentum, there is an upper bound on the eccentricity
which excludes linear motion. To prove these statements we recall the equation of
motion and its solution:

d2u

d�2

+ !2u =

↵m

l2
with !2

= 1 +

2m�

l2
and u =

1

r

) u = A+B cos(!�) ; !2A =

↵m

l2
.
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The energy is given by

E =

1

2

mṙ2 + 1

2

mr2 ˙�2 � ↵
r
+

�
r2

=

l2

2m

"✓
du

d�

◆
2

+ !2u2

#
� ↵u

✓
where u =

1

r

◆

=

l2

2m

⇥
!2A2

+ !2B2

⇤� ↵A =

l2

2m
!2

⇥�A2

+B2

⇤
.

On the other hand, the semi-major axis follows from a
b2

= A, B =

c
b2

, so 1

b2
= A2�B2,

and a =

A
A2�B2 . Then E depends indeed only on a (and ↵, but not on b or �)

E = � l2

2m
!2 · A

a
= � ↵

2a
.

The angular momentum is most easily evaluated when cos(!�) = 1, because then
1

2

mṙ2 = 0, and the velocity has only a �-component

l = mv�r (at � = 0) =

m

A+B

s
2

m

✓
E +

↵

r
� �

r2

◆

Using 1

r
= A+B =

a+c
b2

=

1

a�c
, we get

l =
p
2m (a� c)

s

E +

↵

a� c
� �

(a� c)2

=

p
2m
p

E(a� c)2 + ↵(a� c)� � =

p
2m

r
1

2

↵a� � � ↵c2

2a
.

Clearly, for fixed a (for fixed energy), l is maximal if c = 0, so for circular orbits. The
value of c is bounded by

c2  a2 � 2a�
↵

.

Apparently, the repulsive potential �
r2

keeps the point particle away from the point
r = 0 so that c can not become too large (not equal to a). Thus linear motion (motion
along the x-axis) is excluded.

Comment 2: Conservation laws correspond to symmetries and vice-versa (the Noether
theorem). Because Kepler orbits are 1-dimensional, but the orbits for � 6= 0 are 2-
dimensional (in the sense that the precessing ellipses fill up a disk in the xy plane), there
should be precisely one extra conserved quantity for � = 0. The vector ~w = ~v� �~e� is
conserved but that seems to yield 3 extra conserved quantities instead of one. Why is
there only one extra conserved quantity? The vector ~w lies in the xy plane if ~J is along

6



the z-axis and also is constant. Thus there is, after all, only one more extra conserved
quantity. We cannot take C = ~a · (~v � �~e�) as generator of symmetries because we
should encode in C the knowledge that the motion is in a plane (for simplicity the xy

plane). So consider instead

C = ~a ·
⇣
~J ⇥ ~w

⌘
= ~a ·

⇣
~J ⇥ ~v � ~J ⇥ �~e�

⌘
with ~J = J~ez .

One can compute the infinitesimal transformation law �xi which is generated by C

and then one finds that the Lagrangian transforms into a total derivative: �L =

dF
dt

.
�xi

= {C, xi} where { , } are Poisson brackets with {xi, pj} = �ij. Using ~ez ⇥~e� ⌘ �~er,
we get

C = ai✏ijk
�
✏jmnxmpn

� pk

m
+ ↵

~a · ~x
r

= a · p x · p

m
� a · x p2

m
+ ↵

a · x
r

.

So
�xi

= {C, xi} = �aix · p

m
� a · p xi

m
+ 2a · x pi

m
.

Now �L =

@L
@~x

· �~x+

@L
@~v

· �~v =

dF
dt

and �~v =

d
dt
�~x. So

�L =

✓
@L

@xk
� d

dt

@L

@ẋk

◆
�xk

+

d

dt

✓
@L

@vk
�xk

◆
.

The quantity C =

@L
@vk
�xk � F = pk�x

k � F is on-shell conserved: dC
dt

= 0 if the
Euler-Lagrange equations @L

@xk

� ṗk = 0 hold. So

F = pk�x
k � C = �2a · p x · p

m
+ 2a · x p2

m
� a · p x · p

m
+ a · x p2

m
� ↵

a · x
r

= �3a · p x · p
m

+ 3a · x p2

m
� ↵

a · x
r

.

Direct evaluation of F would be very tedious.

Comment 3: Richard Feynman tried to reproduce Newton’s pre-calculus (!) proof that
the velocity orbits of planets are circles in a lecture for freshman and sophomores at
Caltech in 1964. (The lecture audiotape was lost and then later found and published.)
Unknown to him, Maxwell had already proven this in his little book “Matter and
Motion” in 1877. But Maxwell refers to Hamilton, who coined the term hodograph for
velocity diagrams. Before Hamilton already Laplace, and before him Bernoulli, had
studied aspects of this problem.
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Classical Mechanics 2

A bead on a hoop

A bead of mass m is constrained to move (without friction) on a hoop of radius R. The hoop
rotates with constant angular velocity ! around the vertical axis. The bead is subjected to
the force of gravity at the surface of the Earth.

a) Write down the Lagrangian for the system and the Lagrangian equations of motion.
[4pts]

b) Find any constants of motion that may exist. Construct the Hamiltonian. Is it equal to
the energy in the fixed (i.e. non-rotating) frame? Is the fixed-frame energy conserved?
[2pts]

c) Find the critical angular velocity ⌦ below which the bottom of the hoop is a position
of stable equilibrium. Find the stable equilibrium positions for both ! < ⌦ and ! > ⌦.
[7pts]

d) Calculate the frequencies of small oscillations around the positions of stable equilib-
rium. [7pts]
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Solution

a) The motion of the bead is one-dimensional. We can use as generalized coordinate its
angular position ✓ along the hoop, measured from the center of the hoop, with ✓ = 0

at the bottom and ✓ = ⇡ at the top. In terms of cylindrical coordinates ⇢, ', z in the
inertial frame of the Earth (with origin at the center of the hoop) the position of the
hoop is given by (choosing the time origin t = 0 when ' = 0):

z = �R cos ✓ , ⇢ = R sin ✓ , ' = !t . (1)

The Lagrangian is

L = T � V =

1

2

m(⇢̇2 + ⇢2'̇2

+ ż2)�mgz

=

1

2

mR2

(

˙✓2 + !2

sin ✓2) +mgR cos ✓ . (2)

The Lagrangian equation of motion is

@L
@✓

� d

dt

@L
@ ˙✓

= 0

R2

¨✓ �R!2

sin ✓ cos ✓ + g sin ✓ = 0 . (3)

We have chosen to evaluate the Lagrangian in the inertial system of the Earth. Alter-
natively, one may use the non-inertial system attached to the hoop. In that case, the
velocity has only the component along the hoop, so the kinetic energy is

Tnon�in =

1

2

mR2

˙✓2 , (4)

but one must introduce an additional term in the potential to account for the fictitious
centrifugal force,

Vnon�in = �mgR cos ✓ �mR2!2

sin ✓2 . (5)

The result for L = Tnon�in � Vnon�in is of course the same as (2)

b) Since @L/@t = 0, ˙✓@L/@ ˙✓ � L is conserved,

˙✓
@L
@ ˙✓

� L =

1

2

mR2

˙✓2 � 1

2

mR2!2

sin ✓2 �mgR cos ✓ = constant . (6)

This conserved quantity can be identified with Tnon�in+Vnon�in, but it is not the same
as T + V .

The momentum conjugate to ✓ is

p✓ =
@L
@ ˙✓

= mR2

˙✓ , (7)
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and the Hamiltonian

H = p✓ ˙✓ � L =

p2✓
2mR2

� 1

2

mR2!2

sin ✓2 �mgR cos ✓ , (8)

which coincides of course with the conserved quantity (6). The fixed-frame energy has
a different sign in front of the term with sin ✓2 and is thus not conserved.

c) At equilibrium, ˙✓ = ¨✓ = 0 so

sin ✓(!2

cos ✓ � ⌦

2

) = 0 , where ⌦

2 ⌘ g

R
. (9)

If ! < ⌦, the only solutions come from sin ✓ = 0, and they are ✓ = 0 and ✓ = ⇡. If
! > ⌦, in addition to ✓ = 0, ⇡ we also have an equilibrium position as

cos ✓ =
⌦

2

!2

=

g

R!2

. (10)

Let ✓
0

be an equilibrium position, and take ✓ = ✓
0

+ ↵ where ↵ is small. To linear
order in ↵, the equation of motion is

↵̈ + (⌦

2

cos ✓
0

� !2

cos 2✓
0

)↵ = 0 . (11)

Using cos 2✓
0

= 2 cos

2 ✓
0

� 1, this can also be written as

↵̈ +

⇥
cos ✓

0

(⌦

2 � 2!2

cos ✓
0

) + !2

⇤
↵ = 0 . (12)

For ! < ⌦, the coefficient of ↵ is positive for the equilibrium at ✓
0

= 0 and negative for
the equilibrium at ✓

0

= ⇡. This shows that for ! < ⌦ the bottom of the hoop (✓ = 0)
is a stable equilibrium position, while the top of the hoop (✓ = ⇡) is unstable.

For ! > ⌦ both ✓ = 0 and ✓ = ⇡ are unstable. On the other hand, for the additional
equilibrium position at cos ✓

0

= ⌦

2/!2, the coefficient of ↵ is
1

!2

�
!4 � ⌦

4

�
> 0 , (13)

so the equilibrium is stable.

To summarize, the stable equilibrium positions are ✓ = 0 for ! < ⌦ and ✓
0

=

arccos ⌦

2/!2 for ! > ⌦.

d) The angular frequency !0 of small oscillations around a point of stable equilibrium ✓
0

is found by looking at the coefficient of ↵ in the linearized equation (11),

!0
=

p
⌦

2

cos ✓
0

� !2

cos 2✓
0

. (14)

For ✓
0

= 0 (stable equilibrium for ! < ⌦) this gives

!0
=

p
⌦

2 � !2 . (15)

For ✓
0

= arccos ⌦

2/!2 (stable equilibrium for ! > ⌦) this gives

!0
=

p
!2 � ⌦

4/!2 . (16)
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Classical Mechanics 3

Magnetic mirrors

✓
1

y

x

✓
2

Ay(x, z) = 0 Ay(x, z) 6= 0

y

x

✓
2

✓
1

Ay(x, z) 6= 0Ay(x, z) = 0

Fig. 1: Planar view of the system. The z-axis is perpendicular to the plane with êz = êx⇥ êy.

A relativistic electron (charge e = �|e|, rest mass m) with mechanical momentum

~p = p
0

(êx · sin ✓1 + êy · cos ✓1) (1)

propagates from free space with zero magnetic field (and zero vector potential) at x < 0 into
a time-independent magnetic field (see Fig. 1). The magnetic field has no y-component and
is due to a vector potential which has only a y-component:

~A = êyAy(x, z) ; ~B =

~r⇥ ~A ;

~B = êxBx(x, z) + êzBz(x, z) .

At z = 0 the magnetic field is perpendicular to the x� y plane.

a) (2 points) Show that a trajectory of an electron located at z = 0 with its momentum
in x� y plane (as in equation (1)) will stay in x� y plane.

b) (5 points) Construct the relativistic Hamiltonian of the system and the canonical mo-
mentum of the particle. Is the Lagrangian, or the action, or the Hamiltonian Lorentz
invariant? Exlain. (Hint: Recall that the Lagrangian of a point particle in an external
electromagnetic potential is

L = �mc2
p
1� ~v2/c2 � e'(~x(t)) +

e

c
~v · ~A(~x(t)) (2)
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where ~v is the particle velocity, ' is the electrostatic potential, and ~A is the vector
potential.)

c) (4 points) Obtain two integrals of the motion for the problem described above. Using
these two integrals of the motion, derive an effective 1D Hamiltonian for motion in the
x-direction of the following form:

H⇤
=

p2x
2m⇤ + U(x) .

Find an expression for m⇤ and for U(x) in terms of the integrals of the motion and
Ay(x).

Hints: (1) One of these invariants is generic for any motion in a magnetic field, while
the other is specific to this system’s translation symmetry. (2) Write the equations of
motion for x-components using the full Hamiltonian and substitute the two invariants
into these equations. Compare these equations with those from the effective Hamilto-
nian to define m⇤ and U(x).

d) (5 points) Using the two integrals of the motion show that this system is indeed a
“mirror” for trajectories in the x� y plane, namely, an electron with initial momentum
(1) is reflected such that angle of the incoming and outgoing electron in the figure are
equal:

✓
2

= ✓
1

.

e) (5 points) Again, for a trajectory in x � y plane, find an equation for the depth of
penetration for the cases illustrated in Fig. 1(a) and Fig. 1(b). Solve this equation for
the field of a quadrupole with field gradient G:

~B = G (êxz � êzx) ; x > 0 .

Which signs of G correspond to the trajectories in Fig. 1(a) and Fig. 1(b)?
(Denote the charge of the electron by e, where e = �|e|.)
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Solution

a) The charged particle initially in the xy-plane (left), will stay in the same plane (right) if
(e = �|e|)

Fz =
e

c

⇣
~v ⇥ ~B

⌘

z
=

e

c
(vxBy � vyBx) = 0 (3)

which is the case if Bx,y = 0.

b) The relativistic Lagrangian is

L = �mc2

 
1�

˙~x
2

c2

! 1
2

+

e

c
~A · ˙~x ⌘ �mc2

�
+

e

c
~A · ˙~x (4)

with ~A = Ay(x, z)ŷ. The canonical momentum is

~
⇧ = �m ˙~x+

e

c
~A ⌘ ~p+

e

c
~A (5)

The Hamiltonian follows canonically as

H =

~
⇧ · ˙~x� L = �mc2 =

�
m2c4 + ~p2c2

� 1
2 (6)

Time translational invariance of the external vector potential implies energy conservation
H = constant ⌘ E (first integral of motion), while y-translational invariance of the external
vector potential implies ⇧y = constant ⌘ p

0

cos✓
1

(second integral of motion). With this in
mind, we may re-write (6) as

H ! H2

2E
⌘ p2x

2m⇤ + U(x) (7)

with

m⇤
=

E

c2
= m

✓
1 +

p2
0

m2c2

◆ 1
2

U(x) =
1

2E

✓
m2c4 +

⇣
p
0

cos✓
1

� e

c
Ay

⌘
2

c2
◆

(8)

c) The (squared) energy and momentum integrals of motion can be re-written respectively
in the form

p2x + p2y = p2
0

! px = ± �p2
0

� p2y
� 1

2
= ±p

0

sin✓
1

py = p
0

cos✓
1

(9)
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The +✓
1

solution corresponds to the entering charge, and the �✓
1

solution corresponds to
the exiting charge. Hence the mirror solution ✓

1

= ✓
2

upon deflection.

d) The charge will stop propagating in the x-direction at x = xmin when px =

q
p2
0

� p2y = 0.
This occurs when

py = ±p
0

= p
0

cos✓
1

� e

c
Ay(xmin, z = 0) = 0 (10)

or

Ay(xmin, z = 0) =

cp
0

e
(⌥1 + cos✓

1

) (11)

For the quadrupole magnetic field ~B = G(x̂z � ẑx) we have ~A(x, z) = �G
2

(x2

+ z2)ŷ. Upon
insertion in (11) we obtain

xmin2

=

2cp
0

eG
(±1� cos✓

1

) (12)

Thus the two solutions

G > 0 xmin =

✓
2cp

0

|e||G|(1 + cos✓
1

)

◆ 1
2

Fig.1a

G < 0 xmin =

✓
2cp

0

|e||G|(1� cos✓
1

)

◆ 1
2

Fig.1b (13)
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Electromagnetism 1

Radiation from a relativistic electron

Consider a relativistic electron (of charge e) traveling with an initial speed vo along the
z-axis. At time t = 0 it slows down to a stop over a time ⌧ while moving along the z-axis

v(t) = vo

✓
1� t

⌧

◆
, 0  t  ⌧ . (1)

Recall that the electric field in the far field radiated from a point charge following a trajectory
with position x(t), and velocity v(T ) = x

0
(t) is

E

rad

(t, r) =
e

4⇡c2


n⇥ (n� �)⇥ a

R (1� n · �)3
�

ret

, (2)

where all quantities in square brackets are evaluated at the retarded time, T (t, r) (which
you will define below). The other symbols are defined as n ⌘ (r � x(T ))/|r � x(T )|,
R ⌘ |r � x(T )|, and � = v/c.

(a) (3 points) Define the retarded time and compute the derivatives @T/@t and @T/@ri

(b) (3 points) The radiation field E

rad

is derived from the Liénard-Wiechert potentials

'(t, r) =
e

4⇡


1

R(1� n · �)
�

ret

, (3)

A(t, r) =
e

4⇡c


v

R(1� n · �)
�

ret

. (4)

Using far field approximations, show that the Lorenz gauge condition is satisfied by
these potentials.

(c) (6 points) For the decelerating electron described above, compute:

(i) the energy radiated per solid angle per retarded time.

(ii) the energy radiated per solid angle per time.

Describe in what physical situations you would be interested in (i) and (ii) respectively.
Use no more than two sentences to describe each case.

(d) (4 points) Now consider a relativistic electron with initial energy of 1GeV.

Examining your results of part (c), you should find that at t = 0 the radiation is initially
emitted (predominantly) at a characteristic angle. Give an order of magnitude estimate
for this angle. Explain your estimate by pointing to specific terms in your formulas
from part (c).
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(e) (4 points) Determine the total energy per solid angle emitted as the electron decelerates
to a stop.
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Solution

(a) The retarded time is the time that light was emitted at the source such that it arrives
at space-time observation point (t, r). It satisfies the implicit equation

t� T = |r � x(T )|/c . (5)

Differentiating

1� @T

@t
=� (r � x(T ))`

|r � x(T )| v`(T )/c
@T

@t
, (6)

1� @T

@t
=� n · �(T )@T

@t
. (7)

Thus
@T

@t
=

1

1� n · �(T ) . (8)

Similarly,

� @T

@rk
=

(r � x(T ))`

|r � x(T )|
✓
�`k � vo(T )`

c

@T

@rk

◆
. (9)

Thus
@T

@rk
=

�nk

(1� n · �(T )) . (10)

(b) The Lorenz gauge condition reads

1

c
@t'+ @iA

i
= 0 . (11)

In the far field we neglect differentiating 1/R and n which lead to subleading terms in
1/R. Then in the far field we differentiate

1

c
@t' =

e

4⇡Rc2
n · a

(1� n · �)2
@T

@t
, (12)

=

e

4⇡Rc2
n · a

(1� n · �)3 . (13)

Similarly,

@iA
i
=

e

4⇡Rc2


ai

(1� n · �)
@T

@ri
+

�i

(1� n · �)2 (n · a) @T
@ri

�
, (14)

=

e

4⇡Rc2

 �n · a
(1� n · �)2 +

�n · �
(1� n · �)3 (n · a)

�
, (15)

=

e

4⇡Rc2

 �n · a
(1� n · �)3

�
. (16)

So we verify that
1

c
@t'+ @iA

i
= 0 . (17)

17



(c) In this case � ⇥ a = 0, |n⇥ n⇥ a| = a sin(✓), and thus the magnitude of E is

E =

e

4⇡Rc2
a sin ✓

(1� �(T ) cos ✓)3
(18)

So the energy per time per solid angle

dW

dtd⌦
= lim

r!1
c|rE|2 (19)

=

e

(4⇡)2c3
a2 sin2 ✓

(1� �(T ) cos ✓)6
(20)

where a = vo/⌧ , and �(T ) = �o(1�T/⌧). The energy per retarded time per solid angle
is

dW

dTd⌦
=

dW

dtd⌦

dt

dT
(21)

=

e2

(4⇡)2c3
a2 sin2 ✓

(1� �(T ) cos ✓)5
(22)

The energy per time is useful if you want to know whether a remote detector will burn
up. The energy per retarded time is useful if you want to calculate how much energy
is lost to radiation over a given element of a particles trajectory, dx = v(T )dT .

(d) We see that the denominator function, 1� �o cos ✓, is approaching zero at small angle
since �o ' 1. Expanding �o ' 1� 1

2�2 and cos ✓ ' 1� ✓2

2

,

1

1� n · � ' 1

1

2�2
o

+

✓2

2

=

2�2o
1 + (�o✓)2

. (23)

So the characteristic angle is ✓ ⇠ 1/�o. For a 1GeV electron, � ' E/mec
2 ⇠ 2000. So

✓ ⇠ 1/2000.

(e) The total energy is
dW

d⌦
=

Z ⌧

0

dT
dW

dTd⌦
. (24)

So with the result of Eq. 21 we have

dW

d⌦
=

e2

(4⇡)2c3
(a2 sin2 ✓)

Z ⌧

0

dT
1

(1� �o(1� T
⌧
) cos ✓)5

, (25)

=

e2

(4⇡)2c3
⌧(a2 sin2 ✓)

4�o cos ✓

"
�1

(1� �o(1� T
⌧
) cos ✓)4

#⌧

0

, (26)

=

e2

(4⇡)2c3
⌧(a2 sin2 ✓)

4�o cos ✓


1

(1� �o cos ✓)4
� 1

�
. (27)
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In the ultra relativistic limit we have

1

1� �o cos ✓
' 1

1

2�2
o

+

✓2

2

=

2�2o
1 + (�o✓)2

, (28)

and thus
dW

d⌦
' e2a2⌧

(4⇡)2c3
4�2o


(�o✓)

2

(1 + (�o✓)2)4

�
. (29)
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Electromagnetism 2

Induction and the energy in static magnetic fields

Consider a closed circuit of wire formed into a circular coil of n turns with radius a, resistance
R, and self-inductance L. The coil rotates around the z-axis in a uniform magnetic field H

directed along the x-axis (see below).

(a) (b)

O θ

ω

O

a
HH

Figure 1: (a) side view; (b) top view.

a) (6 points) Find the current in the coil as a function of ✓ for rotation at a constant angular
velocity !. Here ✓(t) = !t is the angle between the plane of the coil and H (the x-axis).

b) (4 points) Find the externally applied torque that is needed to maintain the coil’s uniform
rotation.

c) Because of the time-dependent currents induced in the coil, electromagnetic waves are
radiated. Briefly answer the following questions:

(i) (2 points) What is the frequency of the radiation? Explain.

(ii) (2 points) What is the the polarization of the radiated waves propagating along the
positive z-axis? Explain.

d) (6 points) Compute the total power radiated by the rotating coil of wire.

Note: in all parts you should assume that all transient effects have died away.
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Solution:

a) Let I be the current in the coil, we have

E = IR = �L
dI

dt
� 1

c

@�H

@t
, (1)

where the flux is given by �H = ⇡a2 nH sin ✓(t) with ✓(t) = !t. With these phase conven-
tions, the area vector of the loop points in the negative ˆ

y direction at t = 0 and in the ˆ

x

direction at !t = ⇡/2. Thus the circulation of a positive current at t = 0 is specified with
the right hand rule with the thumb pointing in the negative ˆ

y direction.
From Eq. (1), we have the differential equation for the current,

L
dI

dt
+RI = �⇡a

2

c
nH ! cos(!t) , (2)

and corresponding solution as

I(t) = �⇡a
2 nH !

c

1

2


ei!t

R + i!L
+

e�i!t

R� i!L

�

= �⇡a
2 nH

c

!p
R2

+ !2L2

cos(!t+ �) , (3)

where the phase � = tan

�1

(�!L/R).

b) The rotating coil has a magnetic dipole moment, µ(t) = I(t) ~A(t)/c. With the conventions
of the previous part we have

µ(t) =mo cos(!t+ �) (� sin(!t)ˆx+ cos(!t) ˆy) . (4)

where

mo ⌘
✓
⇡a2n

c

◆
2

!p
R2

+ !2L2

H . (5)

The torque on the loop is µ⇥H, and an external torque of ⌧
ext

= �µ⇥H is needed to keep
the coil rotating at a constant angular velocity is (with H = H ˆ

x) :

⌧

ext

(t) = moH cos(!t+ �) cos(!t) ˆz (6)

c)

(i) From the solution in part (b), we see that the current induces a magnetic moment
which is oscillating in time. Writing the magnetic moment in complex notation (with
the understanding that the physical quantity corresponds to the real part) we see that

µ(t) =
1

2

moe
�2i!t�i�

(�iˆx+

ˆ

y) + const , (7)
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where we have neglected a constant vector,

const =

mo

2

ei� (�iˆx+

ˆ

y) , (8)

which does not contribute to the radiation. We see that the frequency of the radiation
is 2!.

(ii) The polarization must be transverse to the ˆ

z, i.e. ˆz · ✏⇤ = 0. Given the fact that the
rotating magnetic moment does not prefer the x or y axes, the only two possible choices
are right or left handed circularly polarized light. The magnetic moment is rotating
around the z axis according to the right hand rule and the magnetic field will follow
this orientation. Thus the light traveling on the z-axis will be circularly polarized with
positive helicity (i.e. right handed).

d) A general formula for magnetic dipole radiation for a harmonic dipole moment µ(t) =

me�i!t is

P =

1

4⇡
|m|2 !

4

3c3
. (9)

with m a complex vector.
Adapting this formula to the problem at hand we have the replacements

! ! 2! m ! mo

2

(�iˆx+

ˆ

y) , (10)

yielding

P =

2

⇡
m2

o

!4

3c3
(11)
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Electromagnetism 3

Two current sheets under Lorentz boosts

Consider two large square sheets of conducting material (with sides of length L separated by
a distance d, d ⌧ L) each carrying a uniform surface current of magnitude Ko. (The total
current in each sheet is Io = KoL.) The current flows up the right sheet and returns down
the left sheet. The mass of the sheets is negligible. The sheets are mechanically supported
by four electrically neutral columns of mass M

col

and cross sectional area A
col

(three shown).
Neglect all fringing fields.

z

L

d

x

y

Ko Ko

(a) (3 points) Write down the electromagnetic stress tensor ⇥

µ⌫
em

covariantly in terms of
F µ⌫ and compute all non-vanishing components of F µ⌫ and ⇥

µ⌫
em

both in between and
outside of the two sheets.

(b) (1 point) Compute the total rest energy of the system (or M
tot

c2) including the con-
tribution from the electromagnetic energy.

(c) (3 points) Determine the electromagnetic force per area on the current sheets (magni-
tude and direction) and the components of the mechanical stress tensor in the columns,
⇥

00

mech

and ⇥

yy
mech

(use the coordinates system in the figure). You can assume that the
stress is constant across the cross sectional area of the columns.
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(d) (6 points) Now consider the system according to an observer moving relativistically
with velocity � = v/c up the z-axis.

(i) Determine the electric and magnetic fields (magnitudes and directions) using a
Lorentz transformation. Check that the direction of the Poynting vector measured
by this observer is consistent with physical intuition.

(ii) Determine the charge and current densities in the sheets according to this ob-
server. Are your charges and currents consistent with the fields computed in the
first part of (d)? Explain.

(e) (7 points) Now consider the system according to an observer moving relativistically
with velocity � = v/z to the right along the y-axis (use the coordinate system shown
in the figure).

(i) Determine the total mechanical energy in the columns according to this observer.

(ii) Determine the total electromagnetic energy according to this observer.

(iii) Determine the total energy of this configuration. Is your result for the total energy
consistent with part (b)? Explain.

Comment: There is of course stress in the sheets. But, since it does not have a yy

component the stress in the sheets can be neglected in this problem.
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Solution

(a) The stress tensor is
⇥

µ⌫
em

= F µ↵F ⌫
↵ + ⌘µ⌫

��1

4

F 2

�
. (1)

The only nonzero field component is the x component of the magnetic field. Using boundary
conditions or Ampère’s rule

n⇥ (B

out

�B

in

) =

Ko

c
ˆ

z , (2)

we find
Bx =

Ko

c
, (3)

in between the sheets and zero outside the sheets. Thus only non-zero component of F µ⌫ is

F 23

=

Ko

c
. (4)

The non-zero temporal components of ⇥µ⌫
em

are

⇥

00

em

=

1

2

B2

=

1

2

(Ko/c)
2 (5)

The spatial components of ⇥µ⌫ are expressed in terms of the magnetic fields as:

⇥

ij
em

= �BiBj
+

�ij

2

B2 . (6)

So the non-zero spatial components are

�⇥

xx
em

= ⇥

yy
em

= ⇥

zz
em

=

1

2

(Ko/c)
2 . (7)

(b) The total energy is a sum of the rest energy of the columns and the electromagnetic
energy (the energy density in Eq. (5) times the volume)

M
tot

c2 = 4M
col

c2 +
⇥
L2d 1

2

(Ko/c)
2

⇤
(8)

(c) The force per area on the sheets is the discontinuity in the stress tensor. For a normal
ni pointing from “in" to “out" the force is

F j

A
= �ni(⇥

ij
out

�⇥

ij
in

) , (9)
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and therefore, for the problem at hand, the electromagnetic force per area is
✓
F y

A

◆
= ⇥

yy
em

=

1

2

(Ko/c)
2 . (10)

This is the force per area on the right sheet and is directed outward. The force per area on
the left sheet is also directed outward

✓
F y

A

◆
= �1

2

(Ko/c)
2 . (11)

Note: the is exactly half of what would get for surface current in a uniform magnetic field
of Ko/c (the field in between the sheets). Indeed, the force on the currents in the right sheet
can be interpreted as arising from the fields generated by the currents in the left sheet. This
left-sheet-generated field strength is 1

2

Ko/c.
The net total force on the sheets is zero (otherwise the configuration would not be stable).

Thus, the electromagnetic force is balanced by the mechanical forces in the columns. The
mechanical force per area in the four columns is therefore

⇥

yy
mech

= �
1

2

L2

(Ko/c)
2

4A
col

, (12)

where the factor of four accounts for the four columns. The mechanical energy density in
the columns is

⇥

00

mech

=

M
col

c2

A
col

d
. (13)

(d) Now we will boost the configuration. � is the velocity of the new observer, � = � ˆz.

(i) To determine the boosted fields we note the transformation rules

Ek =Ek , (14)

E? =�E? + �� ⇥B? , (15)

and

Bk =Bk , (16)

B? =�B? � �� ⇥E? , (17)

and thus in this case we have

Ey
= ��(Ko/c) , (18)

Bx
= �(Ko/c) . (19)

The direction of E ⇥B is in the negative z direction. This makes sense – according
to an observer moving the positive z direction the fields have a net momentum in the
negative z direction.
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(ii) To boost the currents we first record the four components of the current of the right
sheet in the original frame

Jµ
= (J0, Jx, Jy, Jz

) = (0, 0, 0, Ko/�) , (20)

where � is the infinitesimal width of the sheets. J0 is proportional to the surface
charge density �:

J0

= �c/� , (21)

and is zero in the original frame. Under boost we have

Jµ
= Lµ

⌫J
⌫ . (22)

This, together with the entries of the boost matrix

Lµ
⌫ =

0

BBB@

� ���
1

1

��� �

1

CCCA
, (23)

yields for the right sheet

� =� ��Ko/c , (24)

Kz/c =�Ko/c . (25)

The left sheet has Jz
= �Ko/(c�) and therefore the boosted charges and currents

differ in sign

� =+ ��Ko/c , (26)

Kz/c =� �Ko/c . (27)

We can check our result by recognizing that the electric field in the y direction in the
boosted frame that of a parallel plate capacitor with surface charges +� and �� on
the left and right sheets:

Ey
= � = ��Ko/c . (28)

This agrees with the first part of (d). The magnetic field in the x direction is similarly

Bx
= Kz/c = �Ko/c , (29)

and also agrees with the first part of (d).
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(e) We will now compute the total energy in the boosted frame, � =

ˆ

y. It is important to
recognize that the mechanical stress tensor must also be boosted according to the general
rule:

⇥

µ⌫
= Lµ

⇢L
⌫
�⇥

⇢� (30)

(i) The energy density in the columns is

⇥

00

mech

=�2⇥00

mech

+ (���)2⇥yy
mech

(31)

Integrating over the volume of the columns we find the total energy density. In this
integration the separation between the sheets is length contracted d ! d/� yielding
for the four columns

Z

V

d3r⇥00

mech

=A
col

d

�


4�2

M
col

c2

dA
col

� 4�2�2

1

2

(Ko/c)
2L2

4A
col

�
(32)

=4�Mcolc
2 � ��2

⇥
L2d1

2

(Ko/c)
2

⇤
(33)

(ii) The electromagnetic stress follows from the transformed fields:

Bx
=�Bx

= �
Ko

c
, (34)

Ez
=� ��Bx

= ���Ko

c
. (35)

So the electromagnetic energy density in between the sheets is

⇥

00

=

1

2

(E

2

+B

2

) , (36)

=

1

2

(Ko/c)(�
2�2

+ �2) , (37)

and the total electromagnetic energy is therefore
Z

V

d3r⇥00

em

=

⇥
L2d1

2

(Ko/c)
2

⇤
(� + ��2

) . (38)

(iii) Adding the two contributions, the terms proportional to [L2d1

2

(Ko/c)
2

]��2 cancel, and
we find Z

V

d3r⇥00

tot

= �
�
4M

col

c2 +
⇥
L2d1

2

(Ko/c)
2

⇤�
. (39)

This, as expected, is simply
�M

tot

c2 , (40)

where M
tot

c2 was the rest energy computed in part (b).
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Quantum Mechanics 1

Interaction of two nucleons

The Schrödinger equation for the interaction of two nucleons can be reduced to the form:

� ~2
2m

d2u(r)

dr2
+


V (r) +

~2`(`+ 1)

2mr2

�
u(r) = Eu(r) (1)

where u(r) = r (r), r is a separation between the proton and the neutron, and the m is the
reduced mass of the neutron-proton system. Use: Mp = 938 MeV/c2, Mn = 939 MeV/c2,
~c = 197 eV· nm, 1 barn = 10

�28m2.

a) (5 points) The deuteron is a bound state of a proton and a neutron which are primarily
in an orbital s-wave with total angular momentum J = 1 and total spin S = 1. The
deuteron potential can be approximated as a three-dimensional, spherically symmetric,
square-well:

V (r) =

8
<

:
�V

0

for r < R

0 for r � R
(2)

Given the (small!) deuteron binding energy E ' �2MeV and the potential range
R ' 2 fm (⇠diameter of a deuteron), find an equation for the depth of the potential
Vo. By analyzing this equation, show that the depth Vo must be greater than about
25MeV. (Hint: tan ✓ changes sign at ⇡/2.)

An exact calculation of the potential depth in part (a) yields V
0

' 35 MeV.

b) (10 points) In low energy neutron-proton scattering (incident neutron energy Eo 
10 keV), one can use the same potential (Eq. 2) as for the deuteron state in part
a). Find the wave function u(r) and determine a formula for the neutron-proton
scattering cross section. Which partial wave dominates the cross section? Hint: The
wave function at large distances (r ! 1) can be represented as a superposition of an
incident wave and a scattered wave:

 (r, ✓,�) ⇠ eikz + f(✓,�)
eikr

r
, where f(✓,�) =

1

k

1X

`=0

(2`+ 1) ei�` sin (�`)P`(cos ✓),

with k ⌘p(2mE/~2), and the normalization of the Legendre polynomials is:
Z ⇡

0

P`(cos ✓)P`0(cos ✓) sin ✓d✓ =
2

2`+ 1

�``0 .
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c) (5 points) At low energies the experimental value of the unpolarized neutron-proton
cross section is � ' 20 barns (Fig. 1), while an analysis of part b) yields a cross section
of 4.5 barns. What is the explanation for the discrepancy between the calculated value
of the cross section in part b) and the experimental value? Make a specific prediction
for a proton-neutron cross section in different spin channels which can be checked
experimentally. Hint: Use the fact that that the deuteron has total spin S = 1.

Figure 1: The neutron-proton scattering at low energy. Data taken from R. K. Adair, Rev.
Mod. Phys. 22, 249 (1950) and T. L. Houk, Phys. Rev. C 3, 1886 (1970).
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Solution

a) Assuming l = 0 (S-state only) Eq. 1 becomes:

� ~2
2m

d2u(r)

dr2
= [E + V

0

] u(r) for r < R

� ~2
2m

d2u(r)

dr2
= Eu(r) for r � R

The functions

u(r) =

8
<

:
A sin(k

1

r) + B cos(k
1

r) for r < R, with k
1

⌘p2m(E + V
0

)/~2

Ce�k2r
+Dek2r for r > R, with k

2

⌘p�2mE/~2
, (3)

are the solutions of the Schrödinger equation. From the boundary conditions we find: B =

0, D = 0 and k
1

cot (k
1

R) = �k
2

. Thus we need to solve

k
1

k
2

= � tan(k
1

R) (4)

with k
2

fixed. This equation determines k
1

and hence V
0

. Plotting � tan(k
1

R) and k
1

R/k
2

R

(note k
2

R is small) we see that the first instersection must happen for

k
1

R >
⇡

2

. (5)

This implies that

V
0

>
~2

2mR2

⇣⇡
2

⌘
2

. (6)

Substituting numbers we have
V
0

> 25.6MeV . (7)

b) In low energy nucleon-nucleon scattering (0 < Eo < 10 keV) we can assume ` = 0. Eq. 1
becomes:

� ~2
2m

d2u(r)

dr2
= [E + V

0

] u(r) for r < R ,

� ~2
2m

d2u(r)

dr2
= Eu(r) for r � R .

We assume that the wave function inside the well is identical with that in the deuteron
problem. This is justified since the total energy inside the potential well is raised by little
over 2 MeV corresponding to the binding energy of the deuteron, which is much smaller than
the well depth of V

0

= 35 MeV. The functions

u(r) =

8
<

:
A sin(k

1

r) + B cos(k
1

r) for r < R, with k
1

⌘p2m(E + V
0

)/~2

C sin(k
2

r + �
0

) for r > R, with k
2

⌘p2mE/~2
,
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are the solutions of the Schroedinger equation. From the boundary conditions we find B = 0

and
k
2

cot (k
2

R + �
0

) = k
1

cot (k
1

R) ⌘ �↵ (8)

Then manipulating Eq. (8)

cos(k
2

R) cos(�o)� sin(k
2

R) sin(�o)

sin(k
2

R) cos(�o) + cos(k
2

R) sin(�o)
= � ↵

k
2

(9)

we solve for sin(�o)2

sin

2 �
0

=

(cos(k
2

R) + (↵/k
2

) sin(k
2

R))

2

1 + (↵/k
2

)

2

..

Standard analysis gives

f(✓,�) =
ei�0 sin �

0

k
2

d�(✓,�)

d⌦
= |f(✓,�)|2 =) � =

4⇡ sin2 �
0

k2

2

The cross section � becomes:

� =

4⇡

k2

2

⇥ (cos (k
2

R) + (↵/k
2

) sin (k
2

R))

2

1 + (↵/k
2

)

2

(10)

'4⇡

↵2

(1 + ↵R)

2 (11)

In the last approximation we studied Eq. (8) to recognize that ↵/k
2

� 1 and k
2

R ⌧ 1. For
this problem,

k
1

=(2mVo/~2)1/2 ' 0.92 fm (12)

↵ =� k
1

cot(k
1

R) ' 0.25 fm�1 (13)

R '2.0 fm (14)

and we find
� ' 4.5 barns . (15)

c) At low energies, the neutron-proton system can form either a spin triplet or a spin singlet
state. Since the potential value V

0

= 35 MeV used in b) corresponds to deuteron (spin=1,
spin triplet state), the value of the cross section of ⇠ 4 barn corresponds to the neutron-
proton spin-triplet cross section (�t ' 4barn). The cross section shown in Fig. 1, is a weighted
sum of spin-singlet and spin-triplet state:

� =

3

4

�t +
1

4

�s ' 20 barn (measured),

32



where 3/4 and 1/4 are probabilities of neutron-proton being in a spin-triplet and spin- singlet
states. It follows that

�s = 4� � 3�t ⇠ 68 barn

indicating large differences between the low energy neutron-proton scattering cross sections
for the spin-triplet and the spin-singlet states.
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Quantum Mechanics 2

An oscillator in an electric field

A particle of mass m and electric charge q moves in 1-dimension under the effects of a a
harmonic potential and a homogeneous electrostatic field E . The Hamiltonian for the system
is

H =

p2

2m
+

1

2

m!2x2 � qEx = H
0

� qEx (1)

1. (4 points) Show that H can be written as H = e�AH
0

eA + B by explicitly determining
the two operators A,B. Use this to show that the spectrum of H follows from that of H

0

by
a shift operator. Use this observation to solve the eigenvalue problem.
2. (4 points) Express A in terms of the creation a and annihilation a† operator of H

0

. Use
this to evaluate the probability to find the system in the ground state of H at time t if at
time t = 0 it is in the ground state of H

0

.
3. (4 points) What is the probability for the system to start at t = 0 in the ground state
of H

0

and remain in this state at time t? For what time this probability is 1?
4. (4 points) Repeat 3 but now for the system to be found in the first excited state of H

0

.
Comment physically on the similarities and differences between 3 and 4.
5. (4 points) Express the dipole moment d = qx in terms of a, a†. Use this to calculate the
mean value of the dipole moment d = qx at time t, assuming that at t = 0 the system is
again in the ground state of H

0

.
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Solution

1. The Hamitonian can be re-written as

H =

p2

2m
+

1

2

m!2

✓
x� qE

m!2

◆
� q2E2

2m!2

⌘ e�ilp/~H
0

eilp/~ � q2E2

2m!2

(2)

with l = qE/m!2. The spectrum of H follows from that of H
0

by a shift. Thus the eigenstates
|n̄i are shifted harmonic oscillators |n̄i = e�ilp/~ |ni with shifted energies

¯En =

✓
n+

1

2

◆
~! � 1

2

m!2l2 (3)

2. The probability is

P
0

¯

0

(t) = |h0(0)|¯0(t)i|2 = ��⌦0|e�ilp/~|¯0↵��2 (4)

Since p = �i
p

m~!/2(a� a†) and since [a, a†] = 1 we can use the identity

eA+B
= eAeBe�[A,B]/2 (5)

to unwind (4)

⌦
0|e�ilp/~|¯0↵ =

D
0

���el
p

m!

2~ a†e�l
p

m!

2~ ae�m!l2/4~
��� 0
E

(6)

Thus

P
0

¯

0

(t) = e�m!l2/2~ (7)

3. The exact eigenstate of H
0

at any time t is

|'(t)i = e�iHt/~ |0i =
1X

n=0

e�i ¯E
n

t/~ hn̄|0i |n̄i (8)

with

h0|n̄i =
D
0

���el
p

m!

2~ a†e�l
p

m!

2~ ae�m!l2/4~
���n
E

=

1X

k=0

1

k!

✓
�l

r
m!

2~

◆k ⌦
0|ak|n↵ e�m!l2/4~

=

(�1)

n

p
n!

✓
l

r
m!

2~

◆n

e�m!l2/4~ (9)
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The probability amplitude to remain in |0i is

h0|'(t)i = e�i!t/2e�m!l2/2~eim!2l2t/2~em!l2e�i!t/2~ (10)

and the probability to remain in the ground state of H
0

is

P
00

(t) = |h0|'(t)i|2 = e�
2
~m!l2sin2 !t

2 (11)

The probability is 1 for !t/2 = ⇡ mod ⇡.

4. The probability is now given by

P
10

(t) = |h1|'(t)i|2 (12)

with

h1|'(t)i =
1X

n=0

e�i ¯E
n

t/~ hn̄|0i h1|n̄i (13)

using

h1|n̄i = ⌦0|ae�ilp/~|n↵ = ⌦0|e�ilp/~a|n↵+ l

r
m!

2~
⌦
0|e�ilp/~|n↵ (14)

and after a short algebra we have

P
10

(t) =

✓
2

~m!l
2

◆✓
sin

2

!t

2

◆
P
0

¯

0

(t) (15)

which is seen to vanish when P
00

(t) is maximum due to the nodal form of the first excited
state.

5. The expectation value after some algebra is

d(t) = h'(t)|qx|'(t)i = 2ql

✓
sin

2

!t

2

◆
(16)
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Quantum Mechanics 3

Approximations for a quartic potential

Consider a particle with mass m in a one-dimensional quartic potential V = �x4 where � is
a positive constant.

(a) (2 points) Use dimensional analysis to determine how the eigenstate energies depend
on �. (Hint: write the Schrödinger equation in terms of dimensionless variables

✓
�1

2

d2

dx̄2

+ x̄4

◆
 = ✏ ,

where x̄ is a suitably rescaled coordinate.)

(b) (4 points) Calculate the eigenstate energies En with n = 0, 1, 2, · · · in the WKB ap-
proximation. Compare the WKB spectrum of this quartic anharmonic oscillator with
the spectrum of the harmonic oscillator and the particle in a box.

(c) (2 points) For which values of n is the WKB method most accurate?

(d) (6 points) Approximate the energy E
0

of the ground state of the �x4 anharmonic oscil-
lator by applying the variational method with Gaussian wave function  

0

= Ce�x

2/�2

where � is a real variable parameter.

(e) (4 points) Do the results obtained in part (d) satisfy the virial theorem? Explain. Do
the variational method and/or the WKB method provide upper and/or lower bounds
on the ground state energy?

(f) (2 points) Write down a wave function that can be used for the variational method to
obtain an approximate value of the energy E

1

of the first excited state of the quartic
anharmonic oscillator.

You may use the following integral:
Z

1

0

dx x↵�1

(1� x)��1

=

� (↵)�(�)

� (↵ + �)
. (1)
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Here the gamma function satisfies the recursion relation �(z+1) = z�(z), with representative
values:

�(

1/4) =3.62561 (2)

�(

1/2) =
p
⇡ (3)

�(

3/4) =1.22542 (4)

�(1) =1 (5)

You may also use the following results for Gaussian integrals

Z 1

�1
dx e�ax2

xn
=

8
>>><

>>>:

p
⇡
a

for n = 0

p
⇡
a

�
1

2a

�
for n = 2

p
⇡
a

�
3

4a2

�
for n = 4

(6)
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Solution

(a) We first define dimensionless variables to simplify the algebra. The Schrödinger equation
reads 

� ~2
2m

d2

dx2

+ �x4

�
 = E . (7)

There is a length scale where the kinetic and potential terms are the same

~2
mL2

= �L4 , (8)

or

L ⌘
✓

~2
m�

◆
1/6

. (9)

Then introducing
x ⌘ x/L , ✏ = E/(~2/mL2

) , (10)

we write the Schrödinger equation in dimensionless form

1

2

�d2

dx2

+ x4

�
 = ✏ . (11)

We will stop writing the “bar" in x to lighten the notation below. From the scalings in Eq. 10
we see that E / �1/3.

(b) For a given energy ✏, we find the turning points at

✏ = x4 x± = ±✏1/4 . (12)

Then the WKB solution quantization condition is
Z x+

x�

p(✏, x)dx =

�
n+

1

2

�
⇡ , (13)

where p(✏, x) is the momentum. In the orginal variables the momentum is

p(E, x) =
p

2m(E � V ) , (14)

while in dimensionless form the momentum reads

p(✏, x) =
p

2(✏� x4

) (15)

Thus we find
Z x+

x�

dx
p
2(✏� x4

) =(n+

1

2

)⇡ (16)

✏3/4
p

2

Z
1

�1

du (1� u4

)

1/2

�
=(n+

1

2

)⇡ (17)
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where u = x/✏1/4. Here the integral can be evaluated numerically if necessary and is of order
one. In this case the integral is expressible in terms of the � function

Co ⌘
p
2

Z
1

�1

du (1� u4

)

1/2 (18)

=

2

p
2

4

Z
1

0

dx x� 3
4
(1� x)1/2 (19)

=

1p
2

�(

1

4

)�(

3

2

)

�(

1

4

+

3

2

)

(20)

=2.4721 (21)

So we find

✏ =

✓
(n+

1

2

)⇡

Co

◆
4/3

(22)

Restoring units

E = �

✓
~2
m�

◆
2/3✓

(n+

1

2

)⇡

Co

◆
4/3

(23)

Thus at large n

E / n4/3 (24)

which is steeper than the harmonic oscillator ✏ / n, but not as steep as the particle in the
box ✏ / n2

(c) The WKB method works best at large n.

(d) Let us take a Gaussian as a variational ansatz

 =

1

(2⇡�2

)

1/4
e�x2/4�2

. (25)

The constants are chosen so that

 ⇤ =

1p
2⇡�2

e�x2/2�2 (26)

is a normalized gaussian.
Let us recall some properties of Gaussian integrals which help to simplify the algebra.

First note ⌦
x2

↵
=

Z 1

�1
dx ⇤ x2

= �2 (27)

Then recall that a Gaussian is the unique minimum uncertainty wave packet,
p

hx2i hp2i = 1

2

(28)
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So, we have without calculation
Z 1

�1
dx ⇤

✓
�d2 

dx2

◆
=

1

4�2

(29)

Finally, let us recall a physically important fact of Gaussians. Namely, all cumulants
higher than two vanish. For any probability distribution the fourth cumulant is

C
4

⌘ ⌦x4

↵� 3

⌦
x2

↵
2

. (30)

Thus ⌦
x4

↵
= 3

⌦
x2

↵
2

= 3(�2

)

2 , (31)

which can be verified by direct integration.
With this information the variational energy is

✏(�2

) =

⌧
�1

2

d2

dx2

+ x4

�
=

1

8�2

+ 3(�2

)

2 . (32)

Differentiating with respect to �2 to minimize the variational energy,

@✏(�2

)

@�2

����
�2
min

=0 , (33)

we find
�2

min

=

1

3
p
48

. (34)

Then the variational energy is

✏(�2

min

) =

1 + 24(�2

)

3

8�2

=

✓
3

4

◆
4/3

. (35)

(e) The virial theorem says that for any eigenstate eigenstate

2 hKEi =
⌧
x
@U

@x

�
. (36)

The theorem follows by considering the following expectation value in an energy eigenstate
⌧
d(XP )

dt

�
=

�i

~ h[XP,H]i = 0 . (37)

Evaluating the commutator with [XP,H] = [X,H]P +X[P,H] leads to Eq. 36.
For U = x4 the virial theorem reads

2 hKEi = 4 hPEi . (38)
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For the variational eigenstate we see (by comparing the two terms in Eq. 32) that

hKEi = 1

24(�2

)

3

hPEi . (39)

Or, at minimum where (�2

)

3

= 1/48

hKEi = 2 hPEi . (40)

Thus the variational wave function satisfies the virial theorem for this particular case, but
not in general.

The variational energy is an upper bound on the ground state energy. The variational
energy is

✏
vary

= 0.68142 , (41)

while the exact result is found numerically

✏
numerical

= 0.668 . (42)

The exact result is below the variational energy by about two percent.
There is no rigorous statement about wether the WKB energy is an upper or lower bound.

Comparing the WKB result for the ground state energy, using Eq. 22 with n = 0 we find,

✏
WKB

= 0.546267 , (43)

which is below the exact energy in this case.

(f) The variational functional form for the first excited state should be orthogonal to the
ground state. In this case the symmetry under x ! �x dictates that the ground state is
even under interchange. So the first excited variational ansatz should be odd. The function

 
1

= Cxe�x2/�2 (44)

is a natural choice.
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Statistical Mechanics 1 
 
Ultra-relativistic electron gas 
 

 Consider an ideal 3D gas of N ultra-relativistic electrons with energies H = pc (where p is 
electron's momentum, and c is the speed of light), confined to volume V. 

 (a) (3 points) For the gas in equilibrium at zero temperature, calculate its chemical potential P  

(i.e. the Fermi energy HF) and the total energy E0, and express E0 in terms of N and HF. 

 (b) (6 points). Now consider the gas in equilibrium at a low temperature T << HF/kB. In the first 
nonvanishing approximation in T, calculate the chemical potential, and express your result in terms of  
HF and T. 

 (c) (4 points) For the same conditions as in Task 2, calculate the specific heat (i.e. the heat 
capacity per particle) of the gas, and express it in terms of HF  and T.  

 (d) (4 points) Obtain general expressions for the grand thermodynamic potential of the gas and 
its pressure, and express them via the total energy of the gas and its volume. Compare the result with 
that for an ideal gas of non-relativistic particles. 

 (e) (3 points) Express the gas pressure at T  = 0 in terms of N and V. 

 
 Hint: You may find the following Sommerfeld expansion useful: 

� � � � � � � � � �
4

B

0 0

2
B

2

6 ¸̧
¹

·
¨̈
©

§
�� ³ ³

f

P
PSHHHHH

P TkOF'TkdFdfF , 

where  

� � � �^ ` 1/exp
1

B ��
{

Tk
f

PH
H , 

is the Fermi-Dirac distribution, F(H) is any differentiable function, growing slower than 1/f(H) at H o f, 
and F'(H) is its derivative. 



Solution 

 (a) Density g(H) of quantum states of a single electron maybe found from the standard state 
counting rule: 

� �
� �3

3

2
2

!S
HH pdVdg  , 

where the first factor 2 is due to the spin degeneracy. For an isotropic gas, d3p = 4Sp2dp, so that for an 
ultra-relativistic gas, with p = H/c, we get 

� �
� �32

2

c
Vg
!S
HH  . 

Since the electrons are Fermions, and obey the Pauli principle, at T = 0 each quantum state with energy H 
below the Fermi energy HF is occupied with one electron, while all the states with H  > HF are empty. 
Hence the total number of electrons may be expressed as 

     � �
� �32

3
F

0 3 c
VdgN

F

!S
H

HH
H

  ³ .     (1) 

If N, rather than HF, is given, the Fermi energy may be expressed from this relation as 

              c
V

N
!

3/12

F
3

¸̧
¹

·
¨̈
©

§
 

SH .     (2) 

Now we may calculate the total energy of the electrons as 

     � �
� �³   

F
F

c
VdgE

H

S
HHHH

0
32

4

0 4 !
.     (3) 

Comparing Eqs. (1) and (3), we see that 

F0 4
3 HNE  . 

 (b) At a nonvanishing but low temperature, we may use the Sommerfeld expression, with F(H)  - 
g(H), so that  

� � � �
� �

,2
32 c

V
d

dgF'
!S
P

H
HP PH     

to calculate the generalization of Eq. (1): 
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32
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2
32

0

PSP
S

PSHH
S

HHH
P Tk

c
VTkd

c
VdfgN

!!
 . 

Plugging N from Eq. (1), we may recast this expression as  

� �
33

233
F PSPH TkB|
� . 

Since at T o 0, P o HF, we approximate the left-hand part of this expression as 

� �PHH
PH

�|
�

F
2

33

3 F
F , 

and replace P in the (already small) right-hand part with just HF, getting 
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ª
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3
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F

B
F

Tk
H
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HP .     (4) 

  (c) The total energy of the gas, 

      � � � �
� �

� �³³
ff

  
0

3
32

0

HHH
S

HHHH df
c

VdfgE
!

,    (5) 

at low temperature may be calculated using the same Sommerfeld expansion, but now with F(H) = g(H)H, 
so that 

� � � �> @
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Plugging into this expression P from Eq. (4), leaving only two leading terms of the Taylor expansion in 
small (SkBT)2, and then using Eqs. (1) and (3), we get: 
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so that the specific heat (the heat capacity per particle) is 

F

B

V
V

Tk
T
E

N
c

H
S

2
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¹
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¨
©
§
w
w

{ . 

Note that it is much smaller than cV ~ kB of classical gases. 
 
 (d) The grand thermodynamic potential for each state of a Fermi gas is 

� � � �^ `> @,/exp1ln BB TkTk HPH ��� :
 so that the potential of the whole gas may be calculated as 

� � � �
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� �^ `> @³³
ff
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B
2

32
B
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/exp1ln HHPH
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HHH dTk
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Integrating this expression by parts, we get 
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HHH
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!!  
But according to Eq. (5), this is just (-1/3)E. So, calculating pressure as 
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we see that for any temperature the following exact relation holds: 

         
3
EPV  .     (7) 



This product is twice smaller that that of the non-relativistic ideal gas (either classical or quantum), for 
which PV = NkBT = (2/3)E. 
 
 (e) Combining Eqs. (3) and (7), and then using Eq. (2), we get 

� � 3/43/12

0 4
3

¸
¹
·

¨
©
§  V

NcP T !
S . 

This simple expression may be also obtained by counting the average number of particles hitting a 
container wall during a unit time, and the average momentum transferred to the wall at a single hit. 



1 

Statistical Mechanics 2 
 

Magnetic refrigeration 
 

An external magnetic field B is applied to a set of N non-interacting spin-½  particles with gyromagnetic 
ratio J, and fixed spatial positions. For the thermal equilibrium at temperature T, calculate: 

 (a) (3 points) the average energy and heat capacity,  

 (b) (3 points) the average magnetic moment of the system and the variance of its fluctuations, 
and 

 (c) (4 points) the entropy per spin. 

 (d) (5 points). Sketch the temperature dependence of the entropy, for two substantially different 
field magnitudes, and discuss (qualitatively) what would happen with the entropy and the internal 
energy of the system if it is first thermally isolated from the environment, and then the applied field is 
turned off. 

 (e) (5 points). Suggest a way to use this system as a refrigerator, assuming that its thermal 
contacts with hot and cold heat baths, and the applied magnetic field, may be controlled at will. 

  

  



 

Solution 
 (a) In the magnetic field, a spin ½ particle may have two energy values,  

2
BBSBmE JJ !

# � � rrr , 

where mr = JSr are the eigenstates of its magnetic moment’s component along applied field’s direction. 
According to the canonical (Gibbs) distribution, in thermal equilibrium the statistical sum (per spin) may 
be calculated as 

T
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where temperature is in energy units: T { kBTKelvin. The respective probabilities of two possible states 
follow from the Gibbs distribution: 

,
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so that the average energy (per spin) may be calculated as  
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and the heat capacity as 
 

2

2
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 These expressions describe the gradual saturation of the state probabilities (at 1 for the lowest-
energy state, and 0 for the highest-energy state) at high fields (!_JB_ >> T), making the heat capacity to 
have a maximum at !_JB_ | 2.3 T. 

 (b) The magnetic moment M of the system of independent spins is just the sum of their moments 
mr, i.e.  
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where Nr (with N+ + N- = N) are the numbers of particles with spins up and down. Since the statistical 
averages of Nr are, by the probability definition, equal to NPr, the average magnetization may be 
calculated as N¢m², where  
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 Due to the independence of spin fluctuations, the variance of magnetization fluctuation 
MMM �{~  is also just the sum of those of individual spins: 
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The latter variance may be calculated from the averages of the moment itself and its square: 
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 This expression describes a gradual suppression of the fluctuations at high fields, due to the 
saturation of the magnetization.  

 (c) First calculating the free energy (again per spin) from the statistical sum, 
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we may find the entropy as 
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 According to this expression, the entropy tends to ln2 at low fields (reflecting the two-fold 
degeneracy of the system at B = 0), and vanishes at high fields (!_JB_ >> T). 

(d) Figure on the right shows the 
entropy as the function of temperature for 
two magnetic field values that differ by an 
order of magnitude. Let the system of spins 
first be at thermal equilibrium with the 
environment at the higher value B1 of field, 
then get thermally isolated, and then the 
field decreased to the much lower value B2. 
Due to its thermal isolation, the spin 
system’s entropy cannot change much, so 
that it will evolve approximately as the solid 
arrow 1o2 in the Fig. shows, leading to the 
decrease of the effective temperature of the 
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system. (This  transient process is not strictly adiabatic, so that depending on system’s details, it may 
deviate somewhat from the shown horizontal arrow. Nevertheless, it is traditionally called adiabatic 
demagnetization. 1) 

(e) In order to use this process for continuous refrigeration, the following Carnot cycle may be 
used – see dashed lines in Fig. above. Let us start, for example, from point 4, at which the spin system is 
in contact with “hot bath” of temperature TH, 2 and kept at vanishing field, so that the entropy per spin is 
large, S | ln2. Now the field is slowly increased to some value B2 ~ TH/!J, still keeping the spin system 
in contact with the hot bath. Since the entropy is being decreased (because almost all spins condense 
onto the lowest energy level, thus decreasing spin disorder), heat –QH = TH'S > 0 is being transferred to 
the hot bath. Then (at point 1) the refrigerant is being thermally insulated from the hot bath, and then the 
external field is decreased, leading to a decrease of the spin temperature - as was discussed above. At 
point 2, when T decreases to temperature TL of the “cold bath” (the object being cooled), the refrigerant 
is brought into a thermal contact with that bath, and then field’s decrease is continued isothermally until 
point 3, at which the entropy per spin has its maximum value ln2. The cycle is now completed 
adiabatically using a slight field increase until the spin system temperature rises to TH again. 

 Practical cycles of such “adiabatic magnetic refrigeration” somewhat differ from, and hence have 
lower COPcooling than the Carnot cycle discussed above, mostly because of the difficulties of fast 
changing the thermal contacts (“heat switches”) between the spin system (practically, a solid alloy such 
as Gd5(Si2Ge2) or PrNi5) and the heat baths – typically letting in and pumping out small potions of 
gaseous helium.  

                                                 
1 It was suggested independently by P. Debye in 1926 and W. Giauque in 1927, and implemented experimentally 
by several groups in the early 1930s, enabling them to reach temperatures well below 1 K for the first time.  
2 For a typical application of this technique, with TH corresponding to ~4 K, the term “hot bath” is pretty 
awkward, and engineers prefer the term “cooling source” (which is wrong from the point of view of physics :-).   



 

 

 



 

Statistical Mechanics 3 
 

1D vibrational modes 
 

Consider a system of N >> 1 similar particles of mass M, equally spaced on a circle 
of radius R, and constrained to move only around the circle. Nearest neighbor 
particles are connected by springs with equal spring constants J – see Fig. on the 
right. 

 (a) (3 points). Write down the Lagrangian function of the system, and the 
equation of angular motion of an arbitrary particle, assuming that spring 
deformations are relatively small. 

 (b) (2 points). Prove that if the particles are numbered sequentially, the equation of motion of the 
nth particle is satisfied by the following function: 
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where Mn(t) is the angular displacement of the particle, and derive the differential equation obeyed by 
functions cj(t). What simple physical system obeys the similar differential equation? 

 (c) (3 points). For a single one-dimensional harmonic oscillator of frequency Z that may be 
comparable with kBT/!, write down the statistical sum (“partition function”), and calculate its heat 
capacity C(T) in thermal equilibrium at temperature T. Analyze the low-temperature and high-
temperature limits of the function C(T). 

 (d) (5 points). Returning to the system of N particles on a circle (see Fig. above),  calculate its 
heat capacity in the intermediate temperature range 
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 (e) (4 points). Now suppose that M is so large that there is a broad range of lower temperatures: 
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What is the heat capacity of the system in this range? 

 (f) (3 points). Estimate the temperature at which the heat capacity becomes exponentially small, 
if the particles are distinguishable. How does the answer change if they are indistinguishable bosons? 

Hint: You may use the following integral: 
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Solution 
 (a) The kinetic energy of the nth particle is  
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where Mn is the angular coordinate of the particle, while the potential energy of the spring connecting nth 
and (n + 1)st particle, due to its small deformation 'ln, is 

� �
22

2
1

2
nnn

n
RRJlJ

U
MM �

 
'

 � . 

From here, the Lagrangian function of the system is 
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 From this Lagrangian, the equation of motion of an the nth particle is 
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 (b) Plugging the suggested solution,  
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into the above equation of motion, we see that it is indeed satisfied if functions cj(t) satisfy the usual 
equations of the usual (one-dimensional) harmonic oscillators, 
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This result is sketched in Fig. on the right; the following features of 
this “dispersion curve” are important for the next tasks: 

 - For small j, the frequencies depend on index j (the 
dimensionless “crystal momentum”) linearly, forming the so-called 
acoustic branch: 
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 -  There is a similar acoustic branch, with  the negative slope, Zj v (N – j), for j very close to N. 

 - The mode with j = N, and hence Zj = ZN = 0, is special. Indeed, for this mode, the solution of 
Eq. (2) is not oscillatory (sinusoidal) as for all other modes, but rather a linear function of time: 
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This means that this mode describes the rotation of the system of particles around the circle as the 
whole, without spring deformations, with angular velocity :. 
 - Since this linear system has N degrees of freedom, it can have no other distinguishable modes 
besides the N modes contributing to Eq. (1). 

 (c) The quantum energy spectrum of a single harmonic oscillator of frequency Z is 
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so that its statistical sum is 
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This series is just a geometric progression, equal to 1/(1- O), so that 
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Now the oscillator’s average energy may be calculated as   
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giving 
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and the heat capacity as 
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 This formula shows that at low temperatures (kBT << !Z) the specific heat is exponentially low, 
while in the opposite limit of high temperatures it reaches the constant value kB, which also follows from 
the equipartition theorem for the classical oscillator (with two quadratic contributions to the Hamiltonian 
function). 

 (d) As the above result shows, in the intermediate temperature range 
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we may calculate system’s average energy taking into account only the two acoustic branches of its 
dispersion curve, treating them as the continua. (Due to the left condition, the rotational mode with j = N 
behaves classically, and its contribution to the heat capacity is negligible in comparison with the sum of 
comparable contributions from ~kBT/(!Z0/N) >> 1 of classically-behaving oscillatory modes.) As a 
result, ignoring the first, temperature-independent term of Eq. (4), we may write 
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where the front factor of 2 accounts for the second acoustic branch of the dispersion curve. Now using 
Eq. (3), we may write dj = (N/2SZ0)dZj, bringing the integral to the form 
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With the dimensionless integral provided in the hint, this expression becomes 
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Now we may readily calculate the heat capacity of the system: 

� �
0

B

3 Z
S

!

TkNk
dT

Ed
TC B  . 

 This expression confirms that the number of low-frequency modes contributing to the heat 
capacity (~kB each) in this temperature range is of the order of N(kBT/!Z0) >> 1, so that the rotational 
mode contribution is indeed negligible.  

 (e) On the contrary, in the lower temperature range, 
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the contribution of the rotational mode dominates, due to the right inequality. On the other hand, due to 
the left inequality, its quantum properties (see the solution of Task (f) for their discussion) are 
negligible, so that the heat capacity may be immediately calculated from the classical equipartition 
theorem. Since the system, rotating as the whole (with all Mn(t) equal to M(t) = cN(t)), has just one 
quadratic term in its Hamiltonian function 
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(where I = MNR2 is the moment of inertia of the system, and Lz = IM�  = I: its angular momentum), in 
thermal equilibrium its average has to be equal kBT/2, so that 
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 (f) If the temperature is further decreased, quantum properties of this aggregate plane rotator 
become important. The Hamiltonian operator corresponding to the classical Hamiltonian function (5) is 
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whose eigenfunctions and eigenvalues are 
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 If the component particles are distinguishable, then the wavefunctions should be 2S-periodic 
(because the angular translation by 2S is indistinguishable), so that exp{im(M + 2S)} has to equal 
exp{imM}, i.e. exp{i2Sm} should be equal to 1. This means that index m may take any integer values. 
Hence the thermal excitations of the system, and its heat capacity becomes exponentially small when the 
temperature is decreased to 

2

22

01B 22
~

MNRI
EETk !!

  � . 

 On the other hand, if the component particles are indistinguishable bosons,1 an angular 
translation as small as 2S/N should already be indistinguishable, so that exp{im(M + 2S/N)} = exp{imM}, 
i.e. exp {i2Sm/N} = 1. This means that the quantum number m may only take only values multiple of N. 
As a result, the heat capacity becomes exponentially small when the temperature is decreased to a higher 
value: 
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(This result explains the left condition in Task (e), which ensures that the system may be treated as a 
classical one for any particle statistics.) 

 

                                                 
1 In this case the elastic forces between the particles are supposed to be provided by some field, rather than by 
macroscopic mechanical springs – which are always distinguishable. 


