
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

August 2016 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:
Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take less than 45
minutes.

Some of the problems may cover multiple pages.
Use one exam book for each problem, and label it carefully with the problem topic and
number and your name.

You may use, with the proctor’s approval, a foreign-language dictionary. No other mate-
rials may be used.
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Classical Mechanics 1

Three beads

Consider three beads of mass m, connected by three identical springs with spring constant
k and unstretched equilibrium length l0. In equilibrium this system has the shape of an
equilateral triangle whose sides have length l0. We are going to study the small oscillations
of this system.

1. (3 points) First consider the motion of this system in a horizontal plane. All three
beads can freely move in the plane, only restricted by the springs attached to them.
The motion is assumed to be without friction. (i) How many normal modes does
this system have? (ii) How many zero modes are there (by zero mode we mean a
normal mode with frequency ω = 0)? (iii) How many nonzero modes are there, and
is there degeneracy (by degeneracy we mean that two or more normal modes have the
same frequency)? (iv) Sketch the motion of the normal modes with nonvanishing
frequencies. Do not calculate the values of these frquencies.

2. (2 points) Next consider the case that the beads can only move along a fixed ring
of radius R in the plane. To fit the triangle on the ring, one may need to stretch or
compress the springs, depending on the values of l0 and R. Consider an arbitrary value
of l0. Again the motion of the beads along the ring is assumed to be frictionless. We

Consider three beads of mass m, connected by three identical springs with spring constant k
and equilibrium length l0. In equilibrium this system has the shape of an equilateral triangle
whose sides have length l0. We are going to study the small oscillations of this system.

1. (2 points) First consider the motion of this system in a horizontal plane. All three
beads can freely move in the plane, only restricted by the springs attached to them.
The motion is assumed to be without friction. How many normal modes does this
system have? How many zero modes are there (by zero mode we mean a normal mode
with frequency = 0)? How many nonzero modes are there, and is there degeneracy (by
degeneracy we mean that two or more normal modes have the same frequency)? Sketch
the motion of the normal modes with nonvanishing frequencies. Do not calculate the
values of these normal modes.

2. (2 points) Next consider the case that the beads can only move along a fixed ring in
the plane. In equilibrium one may need to compress or stretch the triangle so that it
fits on the ring, depending on the value of l0. Consider an arbitrary value of l0. Again
the motion of the beads along the ring is assumed to be frictionless.

2R

We ask again the same questions:

• How many zero modes are there?

• How many nonzero modes are there, and is there degeneracy?

3. (2 points) Depending on the value of l0
R
, the system may be stable or unstable. Can

you guess a case when it is stable, and a case when it is unstable?

4. (3+5 points) Expand the potential to second order in small deviations. Compute the
frequencies of small oscillations.

5. (6 points) Finally determine the value of l0
R

when the system changes from stable to
unstable.

1

ask again the same questions: (i) How many modes are there? (ii) How many zero
modes are there? (iii) How many nonzero modes are there, and is there degeneracy?

3. (1 points) Depending on the value of l0
R
, the triangle on the ring may be stable or

unstable. Can you guess a case when it is stable?

4. (6 points) Determine the value of l0
R
when the system changes from stable to unstable.

5. (3+5 points) Expand the potential to second order in small deviations. Compute the
frequencies of small oscillations in the stable regime.
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Solution 
 

 1. Each of the beads, moving in a plane, has 2 degrees of freedom, so that the system of 3 of 
them have 3×2 = 6 degrees of freedom. According to the general theory of linearly coupled particles, the 
system has the same number (6) of normal modes, but 3 of them have zero frequencies: free translational 
motions of the system as the whole along 2 mutually perpendicular directions, and the free rotation of 
the system about its center of mass.  

 So, there are 3 modes with non-zero frequency, all conserving the linear and angular momenta of 
the system. One of them is evidently the radial oscillation of the beads toward the center of mass and 
back (with their angular positions conserved) – see the left panel in Fig. below. The remaining 3 panels 
of that Fig. show 3 possible choices for the remaining 2 modes. All these 3 modes differ only by 2π/3 
rotations. Due to the similarity of the beads, the oscillation frequency has to be invariant with respect to 
such rotations, so that the frequencies of all these modes are equal. Moreover, each of these modes may 
be represented as a weighed sum of the other two, so there are only 2 linearly-independent, doubly-
degenerate modes of this type. 

 

 

 

 

 

 

 2. The ring constraint reduces the number of degrees of freedom to 3 - characterized, say, by the 
angles ϕj (with j = 1, 2, 3) at which the jth bead is visible from the center of the ring. This reduction 
obviously kills both translational modes and the radial oscillation mode, leaving the system with 3 
modes of motion: 1 free rotational mode (of zero frequency) and 2 angular modes with the same 
frequency ω ≠ 0. 

 3. We may expect the symmetric, equilibrium position of the system (with the magnitudes of all 
3 angles ϕjj’ ≡ ϕj - ϕj’ between the beads being equal to ϕ0 = 2π/3) to be stable if the springs are pre-
compressed, i.e. if l0 is larger that the equilibrium linear distance between the beads, 

, 

because the springs “try” to push the beads apart from each other.1 Moreover, if l0 = l, the system is 
evidently also stable. Hence we may expect that even if the springs are slightly pre-stretched, i.e. if  

 

                                                 
1 The only requirement on the pre-compression is to avoid spring “buckling” (which would break our implicit 
assumption that the springs are straight). 



is positive but not very large, the symmetric equilibrium position is stable as well. However, a large pre-
stretch (Δl0 >> R) means that the beads are strongly attracted to each other, so that we may expect the 
symmetric equilibrium position to be unstable with respect to an avalanche process leading to all beads 
eventually collecting into a tight group with all linear distances of the order of l0. 

 4. The potential energy of the spring connecting beads number j and number j’  is 

€ 

 U jj' =
k
2
l jj ' − l0( )

2
, 

where ljj’ is spring’s length: 

. 

Combining these two relations, we get 

. 

In the symmetric stationary state, all three angles are equal: ϕjj’ = ϕ0. Expanding the sine function  in a 
Taylor series in small deviations  from this equilibrium, and dropping all terms higher 

than  , we get 

 

The first term in the last expression for Ujj’ is a constant, and the sum of the second terms for all springs 
vanishes because  

. 

The last, quadratic, term may be rewritten as 

, 

where k’ is the effective spring constant: 

. 

 The constant is positive, and hence the potential energy of the spring grows with the deviation 
from equilibrium, if 



. 

In our particular case of 3 beads2 

, 

and the above conditions take the form  

. 

 This result confirms our preliminary hand-waving arguments: the condition is always fulfilled if 
Δl0 ≤ 0, i.e. if the springs are either pre-compressed or not stretched in the equilibrium state.  

 5. If the system is stable, i.e. if k’ > 0, we may analyze small oscillations around the equilibrium 
position by constructing system’s Lagrangian 

 

with 

. 

With the angle deviations  taken as the generalized coordinates qj, the Lagrange equations of motion 
read: 

. 

Looking for a solution of the usual form , we reduce this system to that of three linear 
algebraic equations: 

             .    (*) 

 Now there are two ways to proceed to find the eigenvalues ω2, with the same result. The general 
way is to write the condition of self-consistency of system (*), equating its determinant to zero, and 
solving the resulting characteristic equation to find 3 roots for ω2. A more elegant way is to use system’s 
symmetry, which expresses itself in the similarity of all 3 equations (*), and to look for a solution of the 
form, 

€ 

c j = ae+iαj . This substitution immediately yields the characteristic equation 
                                                 
2 Please note that until this point, our quantitative analysis is valid for an arbitrary number (N > 1) of beads, when 
ϕ0 = 2π/N. 



, 

giving 

. 

 In an infinite 1D system of particles, the phase shift α may take any (real) values. In our current 
case, we have just 3 particles, on a ring, so that the wave assumption, 

€ 

c j = ae+iαj , is only valid if we 
impose the additional periodicity condition cj+3 = cj. This condition yields 3α = 2πn, with integer n, so 
that there are only 3 physically different (i.e. located on a single 2π-segment, say -π ≤ α < π) values of 
the constant α:3 

, 

corresponding to just 2 physically different (say, non-negative) eigenfrequencies: 

. 

 The first solution is the formal description of the evident fact that an arbitrary displacement of 
the 3 beads from their equilibrium state by an arbitrary (constant) shift  Δϕ does not disturb the mutual 
force balance, and hence does not result in oscillations. The second and third solutions describe 
oscillations with the same frequency, but are physically different, by the sign of the phase shift α 
between the oscillations of any fixed pair of beads, thus confirming the qualitative argumentation above. 

 Two left panels of Fig. below show the “phasor diagrams”, i.e. the sets of complex amplitudes of 
oscillations of each bead, of these two modes. 

 

 

 

 

 

 

 Note that due to the linearity of the equation of motion (for small 
oscillations only!), any linear superposition of these two basic phasor 
diagrams, with arbitrary complex amplitudes a, also represents a possible 
motion of the system. In particular, if the initial conditions are such that the 
amplitudes a of these two modes are equal, we should sum up the vectors of 
both basic diagrams, getting the new diagram shown on the right panel of Fig. 
above. It corresponds to a rather curious mode of oscillations in which beads 

                                                 
3 The fact that the wave assumption gives 3 different oscillation modes means that it covers all modes which 
might be calculated using the more general method mentioned above. 



2 and 3 oscillate together in antiphase with bead 1 (with a twice smaller amplitude), so that the length of 
one spring, l23, does not change – see Fig. on the right. (Evidently, there are three such modes, which 
differ only by bead numbers, and may be obtained by the superposition of the two basic modes with 
equal |a|, but specific phase shifts, arga. Note, however, that only two of them are linearly independent.) 

 
 



Classical Mechanics 2

The rocking of a half-cylinder

Consider a uniform half-cylinder of mass m and radius a rocking without slipping on a
horizontal plane.

1. (2 points) Determine the position of the center of mass of the half-cylinder and the
moment of inertia Icm around the center of mass.

2. (4 points) Derive the Lagrangian L in terms of the angle θ between the flat surface of
the half-cylinder and the horizontal.

3. (4 points) Write down the Lagrange equation of motion and find the frequency ω of
small oscillations around the equilibrium.

4. (5 points) Determine the force ~F (θ) produced by the plane on the half-cylinder at the
line of contact as a function of the angle θ of the half-cylinder in the regime of small
oscillations.

5. (5 points) Now consider large oscillations. Give physical arguments to predict whether
the normal force exerted by the plane is larger or smaller than the gravitational force
in the following two cases: when the angle θ is maximal, and when θ = 0.
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Solution

1. The center of mass is located on the symmetry plane of the half-cylinder a distance d
away from the cylinder axis. The standard definition of the center of mass gives for
the distance d:

d =
1

πa2/2

∫ a

0

dy2y(a2 − y2)1/2 =
2a

π

∫ 1

0

dξ(1− ξ)1/2 =
4a

3π
.

The moment of inertia Icm for the rotation around the center of mass is most directly
obtained with the help of the parallel-axis theorem:

Icm =
1

2
ma2 −md2 =

1

2
ma2

(
1− 32

9π2

)
.

2. The potential energy V (θ) of the rocking half-cylinder comes from the gravitational
force mg applied to the center of mass, and is given by the elevation d(1− cos θ) of the
center of mass relative to its lowest position at θ = 0:

V (θ) = mgd(1− cos θ) .

The kinetic energy K is a sum of the translational energy, and the rotational energy
relative to the center of mass:

K = 1
2
mv2 + 1

2
Icmθ̇

2 ,

where v is the velocity of the center of mass. As a vector, this velocity has a horizontal
and vertical components (vh, vv):

vh =
d

dt

[
d sin θ − aθ

]
=
[
d cos θ − a

]
θ̇ , vv =

d

dt

[
d(1− cos θ)

]
= d sin θθ̇ ,

and
v2 = v2

v + v2
h =

[
a2 + d2 − 2da cos θ

]
θ̇2 .

This result can also be obtained by viewing the motion of the center of mass as rotation
around the contact line with the plane.

The two energies determine the Lagrangian:

L = 1
2
I(θ)θ̇2−mgd(1−cos θ) , I(θ) ≡ Icm+m(a2+d2−2da cos θ) = 3

2
ma2−2mda cos θ.

3. The Lagrange equation of motion reads

d

dt

∂L

∂θ̇
= I(θ)θ̈ +

dI(θ)

dθ
θ̇2,

∂L

∂θ
= −mgd sin θ +

1

2

dI(θ)

dθ
θ̇2,

and finally,

I(θ)θ̈ +
1

2

dI(θ)

dθ
θ̇2 = −mgd sin θ .
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For small angles θ this equation can be linearized as

I(0)θ̈ = −mgdθ ,

and gives the frequency of small oscillations:

ω =

[
mgd

I(0)

]1/2

=
(g
a

)1/2[ 8

9π − 16

]1/2

.

4. The most direct way of finding the vector of the contact force ~F (θ) is from the accel-
eration of the center of mass, m~a = ~F −mgŷ, where ŷ is the unit vector in the vertical
direction. From the expression above for the velocity v, we have:

~a = d
dt
{vh, vv} = {d cos θ − a, d sin θ}θ̈ + d{− sin θ, cos θ}θ̇2.

For small oscillations, this reduces to ~a = {(d− a)θ̈, 0} =
{
mgd(a−d)θ

I(0)
, 0
}
, and

~F (θ) = mg

{
4

3π
· 6π − 8

9π − 16
θ , 1

}
.

5. When the angle is maximal, the velocity vanishes at that moment, and the center of
mass starts falling. At that moment the force exerted by the plane is less than the
gravitational force. On the other hand, at the moment when the angle of the rocking
cylinder vanishes, the center of mass reaches the bottom of its trajectory and then the
centrifugal force adds to the gravitational force, so the force exerted by the plane is
larger than the gravitational force.
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Classical Mechanics 3

The precession of Mercury due to Jupiter

Recall that the trajectory of Mercury r(φ) is an ellipse with the sun at one focus as shown
below. The perihelion (defined as the distance of closest approach – see below) is rotated
relative to the x-axis by an angle θ. The semi-major axis is denoted RM . The eccentricity
of Mercury is small, ε = 0.2, although it is the most eccentric of the Sun’s planets.

Mercury

Sun

perihelion

φ

RM

r θ

Due to perturbations from the other planets, the angle of the perihelion θ changes (it
precesses) as function of time. The precession rate due to the plantes is small. The contri-
bution of Jupiter to the precession rate is of order 150 arcsec/century, or (since the orbital
period of Mercury is 88 days) approximately 1.78× 10−6 rad/turn.

The goal of this problem is to estimate Jupiter’s contribution to the precession rate1.
Specifically, we will model Jupiter as a ring of mass MJ at the orbital radius of Jupiter RJ

(not shown), and compute how the ring perturbs Mercury’s orbit and causes the perihelion
of Mercury to precess. Jupiter’s orbital radius is significantly larger than Mercury’s, RJ '
10RM , and its mass is significantly smaller than the sun’s, MJ ' 0.95× 10−3M�.

1. (4 points) Show that for RJ � RM the Lagrangian of Mercury interacting with the
sun of mass M�, and a ring of mass MJ and radius RJ is approximately

L ' 1

2
mṙ2 +

1

2
mr2φ̇2 +

GmM�
r

+ αr2 , (1)

and determine the coefficient α.
1Famously, general relativity also perturbs the classical orbit and contributes 43 arcsecs/century to the

total precession rate. This “anomalous" precession of Mercury was measured in the nineteenth century by
Le Verrier and finally explained by Einstein in 1915. The total precession rate due to all the planets is
approximately 550 arcsec/century.
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2. (2 points) By introducing a dimensionless radius r = r/RM (the radius in units of Mer-
cury’s semi-major axis) and other dimensionless variables show that a dimensionless
Lagrangian for the system is

L ' 1

2

(
dr

dt

)2

+
1

2
r2

(
dφ

dt

)2

+
1

r
+ α r2 , (2)

where the dimensionless constant α is of order

MJ

M�

(
RM

RJ

)3

' 0.4× 10−6 . (3)

To lighten the notation, stop underlining the variables in what follows.

3. (2 points) Determine the Hamiltonian of the dimensionless system, and use the Hamil-
tonian to determine the equations of motion.

4. (6 points) For α = 0 determine the trajectory of Mercury r(φ), in terms of the energy
and the angular momentum.

For convenience, we note the elementary integral∫ x dy√
1− y2

= sin−1(x) . (4)

5. (6 points) Determine the change in the orbital period and precession of the perihelion
of Mercury to first order in α. You may treat the eccentricity of Mercury as small so
that the orbit is approximately circular. Evaluate the precession rate numerically in
radians per turn and compare to the experimental result of 1.78× 10−6rad/turn.
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Solution:

1. The potential from a ring of mass of density ρ(ro) is found from the law of Newton

Φ(r) = −
∫

ring

d3ro
Gρ(ro)

|r − ro|
, (5)

where |r2
o | = R2

J is the ring radius. Expanding the denominator

1

|r − ro|
=
(
R2
J + r2 − 2rRJ cosφo

)−1/2
, (6)

' 1

RJ

[
1 +

r

RJ

cosφo +
r2

R2
J

(3
2

cos2 φo − 1
2
)

]
, (7)

we obtain the integral expression for the potential

Φ(r) = −λG
∫
dφo

[
1 +

r

RJ

cosφo +

(
r

RJ

)2 (
3
2

cos2 φo − 1
2

)]
, (8)

where λ = MJ/(2πRJ) is the linear mass density of the ring. After integrating over the angle
φo, we find

Φ(r) = −GMJ

RJ

− GMJ

4R3
J

r2 . (9)

Thus, the Lagrangian with the potential V = mΦ(r) is

L ' 1

2
mṙ2 +

1

2
mr2φ̇2 +

GmM�
r

+ αr2 , (10)

where we have dropped an irrelevant constant, GmMJ/RJ , and

α =
GmMJ

4R3
J

. (11)

2. Then we rescale the radius
r ≡ r

RM

, (12)

and choose a rescaling for time
t ≡ t

TM
, (13)

where TM is at this point arbitrary. With these rescalings, the kinetic and potential energies
are respectively

1

2

mR2
M

T 2
M

[(
dr

dt

)2

+
1

2
r2

(
dφ

dt

)2
]
, and

GmM�
RM

[
1

r

]
. (14)

This leads us to define
T 2
M ≡

R3
M

GM�
, (15)
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and the dimensionless Lagrangian is

L =
L

Eo
=

1

2

(
dr

dt

)2

+
1

2
r2

(
dφ

dt

)2

+
1

r
+ α r2 , (16)

where
Eo =

GmM�
RM

= m
R2
M

T 2
M

, (17)

and

α =
αR2

M

Eo
=

1

4

(
MJ

M�

)(
RM

RJ

)3

. (18)

3. The Hamiltonian is

H =
1

2
p2
r +

p2
φ

2r2
− 1

r
− αr2 . (19)

The Hamilton equations of motion are

ṙ =pr , (20)

φ̇ =
pφ
r2
, (21)

ṗr =
p2
φ

r3
− 1

r2
+ 2αr , (22)

ṗφ =0 . (23)

4. We have two constants of motion: the angular momentum pφ = ` and the energy H = E.
Thus

dr

dφ
=
ṙ

φ̇
=
r2pr
pφ

, (24)

where

pr =

(
2E − `2

r2
+

2

r

)1/2

, (25)

Therefore a integral relation determining r(φ) is∫ r dr

r2

`

(2E − `2

r2
+ 2

r
)1/2

=

∫
dφ . (26)

Substituting

u ≡ 1

r
(27)

completing the square

2E − `2u2 + 2u =

(
2E +

1

`2

)
−
(
`u− 1

`

)2

, (28)

and using the elementary integral∫ u `du[
(2E + 1

`2
)− (`u− 1

`
)2
]1/2 = arcsin

[
(`u− 1

`
)

(2E + 1
`2

)1/2

]
, (29)
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we find
`

r
− 1

`
= (2E +

1

`2
)1/2 sin(φ− φo) . (30)

Or,

r =
`2

1 + `(2E + 1
`2

)1/2 sin(φ− φo)
. (31)

The minimum energy at fixed ` (corresponding to a circular orbit) is found by setting
pr = 0 in

E =
1

2
p2
r +

p2
φ

2r2
− 1

r
, (32)

and thus the circular orbit parameters are2

r|min ≡ ro = `2 Emin = − 1

2`2
. (33)

Thus, we can express r as
r(φ) =

ro
1 + ε cos(φ− θ)

, (34)

where

ro = `2 and ε =

√
(E − Emin)

|Emin|
=
√

2E`2 + 1 . (35)

We have chosen units where the semi-major axis of the ellipse is unity. Since the semi-
major axis in physical units is related to the eccentricity of the ellipse

RM =
ro

1− ε2
, (36)

we have a relationship between ` and ε

`2

1− ε2
= 1 . (37)

5. The unperturbed orbit is approximately circular. In the first step, we will determine the
radius of the circular orbit ro to first order in α. In the second step, we will analyze radial
perturbations of the circular orbit, and determine the temporal period of radial oscillations.
During one full cycle of a radial oscillation, the azimuthal angle φ will increase by 2π plus a
correction δφ proportional to α, φ→ φo + 2π + δφ. δφ is precession rate per turn.

In the first step we determine the radius of the circular orbit to first order in α. For
general orbits the exact equation of motion for r(t) reads

d2r

dt2
=
p2
φ

r3
− 1

r2
+ 2αr . (38)

2These relations are familiar from the Bohr model where the Bohr radii and energies scale as rn ∝ n2

and En ∝ −1/n2 respectively.
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Thus, for circular orbits the radius ro is constant and determined by

p2
φ

r3
o

− 1

r2
o

+ 2αro = 0 . (39)

Solving Eq. (39) order by order in α

ro = r(0)
o + r(1)

o + . . . , (40)

we find

r
(0)
0 = `2, and r(1)

o = 2α`8 . (41)

In the second step we study perturbations of the circular orbit, and determine the period
of radial oscillations. Substituting r(t) = r

(0)
o +r

(1)
o +δr(t) into the exact equation of motion,

Eq. (38), and expanding to first order in δr and α, we find

d2δr

dt2
= − 1

`6
(1− 14α`6)δr . (42)

Thus, the period of radial oscillations is

τM = 2π`3(1 + 7α`6) . (43)

Finally, in the last step we examine the angular equation in order to determine δφ

φ̇ =
`

r2
, (44)

=
`

(r
(0)
o + r

(1)
o + δr)2

, (45)

' 1

`3

(
1− 4α`6 − 2

`2
δr

)
. (46)

Integrating the over a full period of radial oscillations t = 0 . . . τM , the term proportional to
δr vanishes upon integration, and we find that the azimuthal angle has changed by

∆φ ' τM
`3

(1− 4α`6) ' 2π(1 + 3α`6) . (47)

Thus the angle φ deviates from a full rotation by +6πα`6.
Finally, since `2 = 1− ε2 ' 1, the precession is

δφ = 6πα rad per turn . (48)

With the numerical value of α, we find

δφ =
3π

2

MJ

M�

(
RM

RJ

)3

' 1.88× 10−6 rad per turn , (49)
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which should be compared to the nominal value of 1.78×10−6 rad/turn. Eq. (49) is 5% larger
than the nominal value, and this difference is consistent with order ε2 ' 4% corrections.

One can also proceed more systematically, using Green functions, and only expand at
the very end. That will give the usual result (the ellipse, exact to all orders in ε) if α = 0,
and to order ε the terms linear in α are kept. The exact equation of motion for r(t) can be
rewritten as an equation for σ(ϕ) ≡ 1/r(ϕ) by using dr

dt
= dϕ

dt
dr
dϕ
, and reads

σ′′ + σ − 1

l2
= −2α

l2
1

σ3
where σ′ =

dσ

dϕ
.

We set σ(ϕ) = σ0(ϕ) + αχ(ϕ) + O(α2) where σ0(ϕ) = l−2(1 + ε cosϕ) is the most general
solution for α = 0 (the ellipse). Then we find from the terms of order α

χ′′ + χ = − 2

l2

(
l2

1 + ε cosϕ

)3

.

The general solution for χ is the sum of a particular solution of the inhomogeneous equa-
tion which we shall obtain using the Green function and the most general solution of the
homogeneous equation,

χ(ϕ) =

∫
dϕ′ G(ϕ− ϕ′) −2l4

(1 + ε cosϕ′)3
+ A cosϕ+B sinϕ

with A and B arbitrary coefficients. The Green function satisfies(
d2

dϕ2
+ 1

)
G(ϕ− ϕ′) = δ(ϕ− ϕ′),

and is given by3

G(ϕ− ϕ′) =
1

2
ε(ϕ− ϕ′) sin(ϕ− ϕ′).

Because the integrals are complicated, we expand in terms of ε and keep only terms at most
linear in ε. Then we find

χ(ϕ) = −l4
∫ ϕ

0

sin(ϕ− ϕ′)(1− 3ε cosϕ′) dϕ′

+ l4
∫ 2π

ϕ

sin(ϕ− ϕ′)(1− 3ε cosϕ′) dϕ′ + A cosϕ+B sinϕ. (A)

The integrals are now straightforwardly evaluated, but to interpret them later we first do
the case with ε = 0, which yields

χ(ϕ) = −2l4(1− cosϕ) + A cosϕ+B sinϕ.

Since the equation χ′′+χ = −2l4 has the obvious solution χ = −2l4, we set A cosϕ+B sinϕ
equal to −2l4 cosϕ. Then for ε = 0 the solution for χ is χ = −2l4, and to order ε we find,
after evaluating the four trigonometric integrals in (A), the following final result for χ,

χ(ϕ) = −2l4 +
3εl4

2
(sinϕ(2ϕ− 2π + sin 2ϕ) + cosϕ(cos 2ϕ− 1)) .

3 This is easy to check if one notices that the first ϕ derivative must act on sin(ϕ− ϕ′).
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A little bit of goniometry reduces this to

χ(ϕ) = −2l4 + 3εl4 sinϕ(ϕ− π).

Thus the complete result for σ(ϕ) to linear order in α and αε (but exact to all orders in ε if
α = 0) reads

σ(ϕ) =l−2(1 + ε cosϕ) + α(−2l4) + 3αεl4 sinϕ(ϕ− π)

=
1

l̄2
(
1 + ε̄ cos

[
ϕ− 3αl6(ϕ− π)

])
,

where l̄2 = l2(1 + 2αl6), ε̄ = ε(1 + 2αl6). In this result one could replace l by l̄ to the order
of approximation we are using, but we shall not do so.

Since two consecutive perihelia occur when the cosine is maximal, we find{
ϕPh,I(1− 3αl6) + 3αl6π = 0,

ϕPh,II(1− 3αl6) + 3αl6π = 2π.

Thus ϕPh,II − ϕPh,I = (1 + 3αl6)2π. Hence, the perihelion precession per turn is

δϕ = 6αl6π.

Since l̄2 = a2/b for an ellipse, and b2 = a2(1− ε2), while a = 1 in our choice of dimensionless
variables, we find l2 = 1 +O(ε2). Thus

δϕ = 6απ = 6
π

4

MJ

M�

(
RM

RJ

)3

= 1.88× 10−6 rad per turn.
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Electromagnetism 1

Scattering at different scales

Consider the scattering of an electromagnetic plane wave of wavenumber k and frequency
ω propagating in the z direction. The incident light is linearly polarized in the y direction,
E(t, r) = ŷE0e

ikz−iωt (out of the page in the diagram below). The light is scattered by two
small dielectric spheres of radius a separated by a distance b with b� a. The first sphere is
centered at the origin, while the second sphere is located on the z axis with z = b. The two
spheres have dielectric constant ε = 1 + χ with χ� 1.

θ

x

y (pol. of incoming light)

z

b

Light

(a) (5 points) Consider the scattering of long wavelength light kb� 1. Determine the total
cross section of the two spheres to leading order in kb. Hint: in the long wavelength
limit the two spheres are polarized by the same (approximately) uniform incoming
field.

• How does the cross section of the two spheres compare to the cross section of a
single sphere in the long wavelength limit?

(b) (5 points) Remaining in the long wavelength limit kb� 1, determine the electric field
as a function of time at the specific point, r = (x, y, z) = (2b, 0, 0), along the x axis.
Hint: Is this point in the near or far field? Explain.

(c) (5 points) Now consider the scattering of shorter wavelength light with kb ∼ 1 but still
ka � 1. Determine the differential cross section dσ/dΩ of the two spheres for light
scattered at an angle θ in the z, x plane (see diagram above).

• Sketch the differential cross section dσ/dΩ for scattering at θ = π/2 (along the x
axis) as a function of k for kb = 0 . . . 8π.

(d) (5 points) Now instead of a plane wave of light, consider the scattering of a wave packet
with mean wavenumber k̄ and bandwidth ∆k, with ∆k/k ' 1/10. The differential cross
section is the energy scattered per solid angle divided by the total energy in the wave
packet.
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• Qualitatively sketch the differential cross section dσ/dΩ for scattering at θ = π/2
as a function of k̄, and contrast this sketch with the ∆k = 0 limit drawn in the
second part of (c). At large k how does the cross section for the two spheres
compare to the cross section for one sphere?
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Solution

(a) To leading order in kb the external field induces an identical dipole moment in each
sphere of magnitude χV E0. The two dipoles then radiate electromagnetic radiation via
dipole radiation The total electric dipole moment of the two spheres is

p = 2χV E0e
−iωt ŷ (1)

The radiated power for dipole radiation

P =
ω4

4πc3

|p|2

3
(2)

So the cross section is
σ =

P
c
2
|E0|2

=
ω4

4πc2

2

3
|p0|2 (3)

Collecting all factors

σ =
P

c
2
|E0|2

=
ω4

4πc4

8

3
χ2V 2 (4)

• The total dipole moment is twice as large as a single sphere. The cross goes as the
square of the dipole moment and is therefore four times as large

(b) This is in the near field. The electric field is just the electric field of two dipoles, one
situated at the origin and one situated at z = b. The field from an electric dipole is

E =
3(p · n)n− p

4πr3
. (5)

where n is the vector from the dipole origin to the observation point, and p is the dipole
moment. In the current setup, p points in the y direction and n lies in the x, z plane for
both dipoles. Thus the sum of the fields from the two dipoles is

E =
−p

4πr3
1

+
−p

4πr3
2

(6)

where r1 and r2 are the distances to the two induced dipole moments.

r1 =2b (7)

r2 =
√

(2b)2 + b2 =
√

5b (8)

This leads to
E(t) = −ŷ χV

4πb3
E0e

−iωt
[

1

8
+

1

5
√

5

]
(9)

(c) In this case the two dipoles are out of phase

p1 =ŷχV E0e
−iωt (10)

p2 =ŷχV E0e
−iωt+ikb (11)
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The radiation is

Arad =
e−iω(t−r/c)

4πrc

∫
d3roJ(ro)e

−ikn·ro (12)

Thus examining this integral we see that there is an overall phase difference between the two
dipoles

− kn · ro = −kb cos θ (13)
So

E1 =
−ω2e−iω(t−r/c)

4πrc2
n× n× p1 (14)

E2 =
−ω2e−iω(t−r/c)

4πrc2
n× n× p2e

−ikb cos θ (15)

For n in the x, z plane and p1 and p2 oriented in the y direction we have n× n× ŷ = −ŷ
dP

dΩ
=
c

2
|E1 +E2|2 (16)

=
ck4

32π2
(χV )2E2

0

∣∣1 + eikb(1−cos θ)
∣∣2 (17)

So the cross section is
dσ

dΩ
=

k4

16π2
(χV )2

∣∣1 + eikb(1−cos θ)
∣∣2 . (18)

To make a graph we first note that∣∣1 + eikb(1−cos θ)
∣∣2 = |2 cos(kb sin2(θ/2))|2 . (19)

Thus at θ = π/2 we are plotting
dσ

dΩ

∣∣∣∣
θ=π/2

∝ (kb)4 cos2(kb/2) , (20)

We graph this function below
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(d) If the wave packet has a finite band width ∆k, it has a spatial size of order ∆x ∼
1

∆k
. When this size comes comparable to the spacing b, i.e. ∆x ∼ b or ∆k b ∼ 1, the

interference between the scattering centers will not be complete. Indeed, when the mean
Fourier compment of the wave packet k̄b is at an interference maximum, most of the Fourier
components in the packet, k ∼ (k̄±∆k) b, will not be at an interference maximum if ∆k b ∼ 1.
In the limit ∆x� b (or ∆kb� 1) the wave packet will scatter off the first sphere and then
scatter off the second sphere. The cross section for scattering off of the two spheres is thus
twice the cross section for scattering off one of the spheres in this limit.

Since ∆k/k̄ ∼ 10, when
k̄ b ∼ 10 , (21)

the interference betweeen the two scattering centers will begin to wash out. A schematic
sketch of the cross section in this case is shown above. In the coherent limit (part (c)) the
cross section varies between zero and four times the cross section for the scattering off a single
sphere correspoinding to destructive and constructive interference respectively. If there is a
finite coherence length ∆x then the cross section transitions from the coherent limit to the
incoherent limit. In the incoherent limit the cross section is twice the cross section of a single
sphere.
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Electromagnetism 2

A charge in a rectangular tube

Consider a point charge placed in an infinitely long grounded rectangular tube as shown
below. The sides of the square cross sectional area of the tube have length a.

b

a

1. (2 points) Show that the solutions to the homogeneous Laplace equation (i.e. without
the extra point charge) are linear combinations of functions of the form

Φ(kxz) Φ(kyy) e±κzz where Φ(u) =
{

cos(u) or sin(u)
}

(1)

for specific values of kx, ky and κz. Determine the allowed the values of kx, ky and κz
and their associated functions.

2. (4 points) Now consider a point charge displaced from the center of the tube by a
distance b in the x direction, i.e. the coordinatess of the charge are ro = (x, y, z) =
(b, 0, 0). Use the method of images to determine the potential.

3. (7 points) As an alternative to the method of images, use a series expansion in terms
of the homogeneous solutions of part (1) to determine the potential from the point
charge described in part (2).

4. (7 points) Determine the asymptotic form of the surface charge density, and the force
per area on the walls of the rectangular tube far from the point charge, i.e. z � a.
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Solution

1. The Laplace equation is
−∇2ϕ = 0 (2)

Separating variables with ϕ = X(x)Y (y)Z(z) we must have

−d
2X

dx2
=k2

xX (3a)

−d
2Y

dy2
=k2

yY (3b)

−d
2Z

dz2
=k2

zZ (3c)

In order to satisfy Eq. (2), the separation constants satisfy

k2
x + k2

y + k2
z = 0 (4)

and thus
d2Z

dz2
= κ2Z with κ =

√
k2
x + k2

y (5)

The solutions to Eq. (3a) may be either sines or cosines

X(x) = Φ(kxx) , (6)

with kx at this point still arbitrary. In order to satisfy the boundary conditions
X(±a/2) = 0, we require for the cosine functions that

kxa/2 = (n+ 1
2
)π . (7)

Similarly, for the sin functions
kxa/2 = nπ . (8)

Thus, the general form is

Xn(x) = Φn(knx) n = 0, 1, . . . , (9)

with kn = (n+ 1)π/a and

Φn(u) =

{
cos(u) n even
sin(u) n odd

. (10)

The Y (y) direction follows by analogy

Ym(y) = Φm(kmx) m = 0, 1, . . . , (11)

with km = (m+ 1)π/a. The solutions to the z direction are

Z(z) = e±κz κ =
√
k2
n + k2

m . (12)
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Figure 1: Arrangement of image charges. The black circles idicate plus charges, while the
white circles indicate negative charges. The origin of the coordinate system is indicated by
the dashed lines. The real charge is displaced by a distance b from the origin.

2. The image charges may be placed in a rectangular lattice as shown below. Their are
four types of charges with coordinates

r1(n,m) =(b+ 2na)x̂+ 2maŷ (13)
r2(n,m) =((2n+ 1)a− b)x̂+ 2maŷ (14)
r3(n,m) =(b+ 2na)x̂+ (2m+ 1)aŷ (15)
r4(n,m) =((2n+ 1)a− b)x̂+ (2m+ 1)aŷ (16)

where n,m are integers. Then the potential is

φ(r) =
q

4π

∞∑
n,m=0

1

|r − r1(n,m)|
− 1

|r − r2(n,m)|
− 1

|r − r3(n,m)|
+

1

|r − r4(n,m)|
(17)

3. For the potential at r due to a point charge at ro = (b, 0, 0), we expand the potential
as

φ(r; ro) =

(
2

a

)2 ∞,∞∑
n,m=0

Xn(x)Xn(b)Ym(y)Ym(0) gn,m(z) (18)

and substitute into the Poisson equation

−∇2ϕ(r; ro) = qδ(x− b)δ(y)δ(z) . (19)
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The leading factors (2/a)2 arise from the fact that we have not normalized the eigen-
functions X and Y ∫ a/2

−a/2
dxXn(x)Xn′(x) =

a

2
δn,n′ (20)∫ a/2

−a/2
dy Ym(y)Ym′(y) =

a

2
δm,m′ (21)

If gn,m(z) satisfies (
k2
n + k2

m −
∂2

∂z2

)
gn,m(z) = qδ(z) , (22)

then using the completeness relation

2

a

∑
n

Xn(x)Xn(xo) =δ(x− xo) (23)

2

a

∑
m

Ym(x)Ym(xo) =δ(y − yo) (24)

it is not difficult to show that Eq. (19) is satisfied.

The solution to Eq. (22) is

gn,m(z) =

{
Ae−κn,mz z > 0

Aeκn,mz z < 0
(25)

Integrating across the δ-fcn in Eq. (22) we have

− dg

dz

∣∣∣∣
z=0+

+
dg

dz

∣∣∣∣
0−

= q (26)

With this requirement A = q
2κn,m

and

φ(r; ro) =
4q

a2

∞,∞∑
n,m=0

Xn(x)Xn(b)Ym(y)Ym(0)
e−κn,m|z|

2κn,m
(27)

4. At asymptotic distances the terms with the smallest κn,m dominate the sum. We then
have only the contribution from n = m = 0 mode, and

κ0,0 =
√

2π/a . (28)

The potential reads

φ(r; ro) '
4q

a2
cos(πx/a) cos(πb/a) cos(πy/a)

e−κ0,0|z|

2κ0,0

(29)
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or

φ(r; ro) '
√

2q

πa
cos(πx/a) cos(πb/a) cos(πy/a)e−

√
2π|z|/a (30)

Let us calculate the charge density on the bottom plate

σ = n ·E = −∂yφ|y=−a/2 , (31)

=−
√

2q

a2
cos(πx/a) cos(πb/a) e−

√
2π|z|/a . (32)

Finally, the force per area on the bottom plate is

F y

A
=
σ2

2
, (33)

=
q2

a4
cos2(πx/a) cos2(πb/a) e−2

√
2π|z|/a . (34)

The direction of the force is into the tube. The other walls of the tube have the same
force per area.
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Electromagnetism 3

A ring and a sphere in a magnetic field

A sphere of radius a with magnetic permeability µ is placed in an external slowly varying
homogeneous magnetic field (not shown), Bext(t) = Bo(t) ẑ = B cos(ωt)ẑ. Placed above the
sphere at height zo is an ohmic ring of radius b and resistance R. The center of the ring
coincides with the z-axis and the plane of the ring is perpendicular to the z-axis (see below).

a

zo

x

y

z

b

(a) (6 points) The induced magnetic moment of the sphere is proporitonal to the external
field

m = αBBext . (1)

Determine the polarizability, αB. Neglect the fields from the currents induced in the
ring.

(Hint: recall that for a permeable sphere in a constant external magnetic field, the
magnetic field outside the sphere is that of an induced magnetic dipole plus the external
field, while the magnetic field inside the sphere is constant, Bin = Bin ẑ. Determine
αB and Bin from the appropriate boundary conditions at the surface of the sphere.)

(b) (6 points) Determine the current induced in the ring.

(c) (2 points) Under what conditions can the induced magnetic fields from the ring be
neglected in part (a)? Estimate.

(d) (6 points) Determine the force on the ring.
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Solution

(a) The boundary conditions read

n× (Hout −Hin) =0 (2)
n · (Bout −Bin) =0 (3)

In terms of components

Hθ,out −Hθ,in =0 (4)
Br,out −Hr,in =0 (5)

With the magnetic field of a dipole

Bout =Bo ẑ +
3r̂(r̂ ·m)−m

4πr2
(6)

Bin =Bo ẑ (7)

we see that

Br,out =
2m cos θ

4πa3
+Bo cos θ (8)

Hθ,out =
m sin θ

4πa3
−Bo sin θ (9)

Inside we have

Br in =Bin cos θ (10)

Hθ in =− 1

µ
Bin sin θ (11)

Putting together the ingredients we have

m

4πa3
−Bo +

Bin

µ
=0 (12)

2m

4πa3
+Bo −Bin =0 (13)

Solving these equation for m and Bin we get

m =Bo(4πa
3)
µ− 1

2 + µ
(14)

Bin =Bo
3µ

2 + µ
(15)

(b) The flux through the loop has two contributions: the external magnetic field and the
induced dipole. The external field contribution is simply

ΦB,ext = Bo(t)πb
2 . (16)
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The dipole contribution is most easily found using the vector potential

ΦB,dip =

∫
B · da =

∮
A · d` . (17)

With the vector potential of the dipole

A =
m× r̂
4πr2

(18)

we have
Aφ =

m sin θ

4π(z2 + b2)
(19)

So with sin θ = b/
√
z2 + b2 we have

ΦB,dip =
m(t)

2

b2

(z2 + b2)3/2
(20)

=αB
Bo(t)

2

b2

(z2 + b2)3/2
(21)

Thus the magnetic current is

I(t) = − 1

cR
∂tΦB(t) (22)

Or

I(t) =
−Ḃo(t)πb

2

cR

[
1 +

αB
2π

1

(z2 + b2)3/2

]
(23)

(c) The current in the loop produces a field at the sphere of order I(t)/[c(b2 + z2)1/2]. We
should compare this field to Bo, yielding the condition:

ωBoπb
2

c2R
1

(z2 + b2)1/2
� Bo . (24)

Taking b and z the same order of magnitude b ∼ z as drawn in the figure,

ωπb

2πc2R
� 1 . (25)

This is the answer.

It is useful to interpret the answer. The resistance is R = 2πb/(σA) where A is the
cross section of the wire and σ is the conductivity, yielding

ωσ

4πc2
A� 1 . (26)

Recognizing the magnetic diffusion coefficient D=c2/σ of the wire and the skin depth
δ(ω) ∼

√
D/ω, we rewrite the condition as

A

πδ2(ω)
� 1 . (27)
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(d) For the force we have the contribution of the constant field Bo and the field of the
sphere Bdip.

Using the right hand rule we see that the constant field produces no net force. All the
forces of from the static field lie in the plane of the loop, tending to deform the ring
but providing no net force.

From the dipole we have the Lorentz force

F z =

∫
bdφ

I(t)

c
ẑ · (φ̂×Bdip) . (28)

With the dipole field,

Bdip =
3r̂ · (r̂ ·m)−m

4πr3
, (29)

the magnetic moment m(t) = αBBo(t)ẑ, the cross products

ẑ · (φ̂× r̂) = ẑ · θ̂ = − sin θ , (30)

ẑ · (φ̂× ẑ) = 0 , (31)

we find
F z = −

∫
bdφ I(t)/c

3 sin θ cos θm(t)

4π(z2
o + b2)3/2

(32)

Thus
F z =

(
−I(t)Bo(t)b

c

)
3

4

sin(2θ)αB
(z2
o + b2)3/2

(33)

This is the answer after substituting the results of part (b).

After minor manipulations we find

F z =

(
dB2

o(t)

dt

πb3

c2R

)
3

8

sin(2θ)αB
(z2
o + b2)3/2

[
1 +

αB
2π(z2

o + b2)3/2

]
(34)
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Quantum Mechanics 1

A particle in crossed E and B fields

Consider a particle of mass m and charge e moving in a 2-dimensional xy-plane in the
presence of both a scalar potential V (~r) and a magnetic potential ~A = Bx ŷ. For notational
simplicity assume e = ~ = c = 1.

a. (5 points) For V (~r) = −ax, identify the conserved momentum, and derive the energy
spectrum of the system. If we were to trade ax→ ay, is there a conserved momentum?
b. (8 points) Define the following localized state for the potential V (~r) = −ax

|Ψ(0)〉 =

∫ +∞

−∞
dkΨ(k) |k〉0 ,

where |k〉0 is the lowest energy eigenstate with momentum k, and Ψ(k) is any normalized
momentum space wavefunction. Write down an expression for the time-evolved state, |Ψ(t)〉,
and calculate its mean velocity along the conserved momentum direction. Give a physical
interpretation of your result.
c. (7 points) Now consider instead, the hard wall potential

V (~r) =

{
0 x > 0

∞ x ≤ 0
(1)

with the same magnetic potential. Find the lowest energy of 3 indistinguishable particles,
each at rest, that carry in addition a spin 1

2
with a g-factor g, and write the corresponding

wavefunction.
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Solution:

a. Since the electric potential is y-independent, py is conserved. Thus

H =
p2
x

2m
+

(py −Bx)2

2m
− ax

=
p2
x

2m
+
B2

2m

(
x− Bpy +ma

B2

)2

+
1

2m

(
p2
y −

(Bpy +ma)2

B2

)
(2)

The energy spectrum is

En(py) =

(
n+

1

2

)
B

m
+

1

2m

(
p2
y −

(Bpy +ma)2

B2

)
(3)

If we trade ax→ ay, both px,y do not commute with H. However, the combination px−By
commutes with H. So the conserved momentum is Πx = px −By with [Πx, H] = 0.

b. The evolved state is |Ψ(t)〉 = e−iHt |Ψ(0)〉. The velocity vy(t) is

vy(t) =
d

dt
〈Ψ(t)|y|Ψ(t)〉 = −i 〈Ψ(t)|[y,H]|Ψ(t)〉 =

〈
Ψ(t)

∣∣∣∣py −Bxm

∣∣∣∣Ψ(t)

〉
=

1

m

∫ +∞

−∞
dk |Ψ(k)|2 (k −B 0 〈k|x|k〉0) = − a

B
(4)

We have used that for the lowest energy momentum eigenstate, i.e. py|k 〉0 = k|k 〉0, the
spatial x-wavefunction is a normalized Gaussian with

0 〈k|x|k〉0 =
Bk +ma

B2
(5)

This result is consistent with the classical interpretation of a charged particle subject to a
zero net Lorentz force ~F = ~E + ~v × ~B, i.e. Fx = a+ vyB = 0 or vy = −a/B.

c. For the hard wall potential with a = 0 and for particles at rest with py = 0 we have
(x > 0)

H → p2
x

2m
+
B2x2

2m
(6)

This is a harmonic oscillator on the half-line. The energy spectrum is (n + 1/2)B/m with
only the odd wavefunctions with n = 2l − 1 and l = 1, 2, .. vanishing at x = 0. Thus the
energy spectrum for a spin Sz = ±1/2 particle at rest is
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E±l (py = 0) =

(
2l − 1

2

)
B

m
∓ gB

4m
(7)

and its wavefunction is

ψS=±
n,k=0(x) = φn(x− x0)χ(S = ±) (8)

with x0 = (Bk +ma)/B2 and φn(x) normalized harmonic oscillator wavefunctions, e.g.

φ0(x− x0) =

(
B

π

) 1
4

e−B(x−x0)2/2 (9)

For 3 fermions each at rest the lowest energy is

E(3) = 2

(
2− 1

2

)
B

m
+

(
4− 1

2

)
B

m
− gB

4m
=

(
13

2
− g

4

)
B

m
(10)

and their totally antisymmetric wavefunction is

Ψ(3) =
1√
3!

φ1(x1 − x0)χ(+) φ1(x1 − x0)χ(−) φ3(x1 − x0)χ(+)
φ1(x2 − x0)χ(+) φ1(x2 − x0)χ(−) φ3(x2 − x0)χ(+)
φ1(x3 − x0)χ(+) φ1(x3 − x0)χ(−) φ3(x3 − x0)χ(+)

 (11)
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Quantum Mechanics 2

BEC of Lithium-7

At about the same time that Ketterle, Wiemann, and Cornell formed Bose-Einstein Conden-
sates (BEC) of rubidium-87 and sodium-23 atoms (and later won the Nobel prize), Randy
Hulet’s lab in Texas was trying to form a BEC of lithium-7 (7

3Li) atoms in a harmonic trap.
We will try to model Hulet’s system with a mean-field approach, using the Gross-Pitaevskii
equation — essentially a nonlinear generalization of Schrödinger’s equation:

H =
p2

2m
+

1

2
mω2r2 +

Ng

2
|ψ|2

where H acts on the wave function ψ. Here ψ is a single particle wave function. At low
temperatures, all the N bosons should be in the same state, and the contribution of the
interactions to the energy should scale as the local density of the wave function |ψ|2, giving
rise to the third term in our Hamiltonian. One very significant difference between these
experiments is that lithium-7 atoms attract (g < 0) while rubidium-87 and sodium-23 repel
(g > 0).

a. (2 points) Explain how lithium-7 is a boson.

b. (7 points) Using a Gaussian trial wave function ψ = c e−r
2/2a2 , calculate the expecta-

tion value of the energy E(a) = 〈H〉 as a function of a. [Hint: The expectation value
has the form E(a) = A/a2 + Ba2 + C/a3 for some constants A, B, and C which you
need to determine.]

c. (5 points) In the limit in which the interaction energy is large compared to the kinetic
energy, minimize E(a) as a function of a for the repulsive case g > 0. How do amin and
〈H〉min scale with N?

d. (6 points) The coupling, g, is proportional to the scattering length, `, for the bosons

g =
4π~2`

m
.

Assume the trap has a frequency ω = 2π×145 Hz and a scattering length ` = −1.5 nm
for lithium-7. What is the maximum number of lithium-7 atoms that can be placed in
the trap?
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BEC of Lithium-7: Solution

a. Lithium-7 has 3 protons, 4 neutrons, and 3 electrons. The total number of fermionic
constituents is an even number, ten, and thus lithium-7 is a boson.

b. To simplify the algebra, we begin by integrating the kinetic energy term in 〈H〉 by
parts:

〈H〉 =

∫
d3x

(
− ~2

2m
ψ∗∇2ψ +

1

2
mω2r2|ψ|2 +

Ng

2
|ψ|4

)
=

∫
d3x

(
~2

2m
|∇ψ|2 +

1

2
mω2r2|ψ|2 +

Ng

2
|ψ|4

)
.

The normalization condition for the trial wave function ψ = c e−r
2/2a2 is

1 =

∫
ψ2 d3x = 4πc2

∫ ∞
0

r2e−r
2/a2dr = c2π3/2a3 .

Now we are ready to compute 〈H〉:

E(a) =

∫
d3x

(
~2

2m
(∇ψ)2 +

1

2
mω2r2ψ2 +

Ng

2
ψ4

)
= 4πc2

∫ ∞
0

[
~2

2ma4
r2e−r

2/a2 +
mω2

2
r2e−r

2/a2 +
Ng

2
c2e−2r2/a2

]
r2 dr .

A few handy integrals are ∫ ∞
0

r4e−r
2/a2dr =

3

8

√
πa5 ,∫ ∞

0

r2e−2r2/a2dr =
1

16

√
2πa3 .

Thus

E(a) =
1

4
π3/2a3c2

(
3~2

ma2
+ 3mω2a2 +

1√
2
Ngc2

)
=

1

4

(
3~2

ma2
+ 3mω2a2 +

√
2Ng

2π3/2a3

)
.

The parameter a governs the size of the Gaussian. By the uncertainty principle, if the
Gaussian is larger in position space, the average value of 〈p2〉 and hence the kinetic
energy will be less. On the other hand, the larger the Gaussian, the larger the poten-
tial energy from the harmonic oscillator potential. The energy contribution from the
interactions depends sensitively on the sign of g, favoring smaller a for negative g and
larger a for positive g.
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c. We should minimize the energy without the contribution from the kinetic term:

F (a) =
1

4

(
3mω2a2 +

√
2Ng

2π3/2a3

)
.

The condition dF/da = 0 implies

amin =

(
Ng

(2π)3/2mω2

)1/5

Thus the energy at the minimum is

Fmin =
5

4

(
N2g2m3ω6

8π3

)1/5

.

These scalings a ∼ N1/5 and F ∼ N2/5 have been verified experimentally.

d. When g < 0, the system can at best be meta-stable because E(a) → −∞ as a → 0.
However, for small enough N there will be a local maximum amax > 0 and a further
local minimum amin > amax. A condensate with a = amin can exist for a little while. As
N is increased, these two critical points move together and eventually coalesce. The
condition for this coalescence is that both dE/da = 0 and d2E/da2 = 0. In other words

~2

ma4
−mω2 +

√
2Ng

4π3/2a5
= 0 ,

3~2

ma4
+mω2 +

√
2Ng

π3/2a5
= 0 .

We solve these simultaneous equations for a and N yielding

a4 =
~2

5m2ω2
and Nmax = − 8

√
2π3/2~5/2

55/4m3/2ω1/2g
=

2

55/4|`|

√
2π~
mω

.

Using the values suggested in the problem, we find that Nmax ≈ 1400 atoms. Indeed
Randy Hulet was never able to make large condensates of lithium-7 atoms.
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Quantum Mechanics 3

Zitterbewegung and the Darwin Term

The phenomenon of Zitterbewegung (“quivering motion”) for an electron was predicted
by Schrödinger in 1928, and is a peculiar consequence of Dirac’s 1928 relativistic quantum
theory. In this problem we will use the Zitterbewegung to give a physical interpretation of
the Darwin term, which is a relativistic correction to the non-relativistic Hamiltonian arising
from an approximation of the Dirac equation.

(a) (5 points) For the electron in the hydrogen atom the Hamiltonian takes the following
approximate form

H =
p2

2m
+ V (r)− p4

8m3c2
+

~2

4m2c2

1

r

dV

dr
σ ·L+

~2

8m2c2
∇2V (r)︸ ︷︷ ︸

The Darwin term!

, (1)

where V (r) = −e2/r is the Coulomb potential, and m is the electron mass. The last
term is known as the Darwin term.

(i) Briefly state the origin of the the p4 term and the σ ·L term (no long derivations).

(ii) Determine the energy shift δE from the Darwin term to the 1s state of hydrogen
with wave function ψ1s(r) = e−r/ao/

√
πa3

0.

(iii) Evaluate the magnitude of the shift δE/E1s numerically.

(iv) What is the shift for the 2p state? Explain.

The origin of the Darwin term can be understood with the Dirac Hamiltonian

H = cα · p+ β mc2 . (2)

Here α and β are 4×4 Dirac matrices which (in the Schrödinger picture) are4

αk =

(
0 σk

σk 0

)
, β =

(
I 0
0 −I

)
, (3)

where σk are the Pauli matrices and I is the unit matrix. In the Heisenberg representa-
tion these matrices are time-dependent operators, α̂(t) and β̂(t). They satisfy the anti-
commutation relations{

αi, αj
}

= 2 δij · I4×4, {β, β} = 2 · I4×4, {α, β} = 0. (4)

(b) (2 points) Using the Heisenberg picture evaluate the velocity operator v̂k = dx̂k(t)/dt,
and show that the eigenvalues of v̂z are ±c.

4These matrices are given in the Dirac representation.
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(c) (5 points) Now evaluate dv̂k/dt in the Heisenberg picture, and write the result in terms
of p̂k and v̂k and H. Why are p̂k and H time independent?

(i) First for pk ' 0, determine v̂k(t) and then x̂k(t) by integrating the Heisenberg
equations of motion.

(ii) Now for general pk, determine v̂k(t) and then x̂k(t) by integrating the Heisenberg
equations of motion.
You should find a term linear in time and an oscillatory term. Interpret the linear
term. The oscillating motion in x̂k(t) is known as Zitterbewegung or “quivering
motion”.

(d) (6 points) Now consider the following electron wave function with 〈~p〉 ' 0 in a specific
superposition of states at time t = 0

ψ(~x) =
ψ0(~x)√

2


1
0
1
0

 , (5)

Here ψ0(~x) is a normalized Gaussian wave packet with a large spatial width, so that
the uncertainty in ~p is negligibly small.

(i) Using the results of part (c), determine the mean position and velocity of the
electron in the z direction, 〈ẑ(t)〉 and 〈v̂z(t)〉.

(ii) Numerically determine the amplitude of the oscillating term of 〈ẑ(t)〉 in meters.
Compare the amplitude of the Zitterbewegung oscillatory motion to the Bohr
radius ao.

(iii) Using microscopy, could it be possible in the future to directly detect the oscilla-
tory motion of the electron? Explain.

(e) (2 points) Show that the Darwin correction to the Hamiltonian can be qualitatively,
and even quantitatively, explained as the average potential experienced by an electron
undergoing Zitterbewegung oscillations around its equilibrium position ~r.
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Solution

(a) (i) The p4 term arises from an expansion of the energy E =
√

(cp)2 + (mc2)2. The
spin orbit term σ ·L reflects the coupling between the spin and the magnetic field
in the rest frame of the electron.

(ii) Examining the Darwin term for the Coulomb potential

−∇2 1

r
= 4πδ3(r) , (6)

the perturbing Hamiltonian reduces to

H =
πe2~2

2m2c2
δ3(r) . (7)

Thus the energy shift is

δE =

∫
d3r ψ∗(r)Hψ(r) =

πe2~2

2m2c2
|ψ(0)|2 . (8)

For the 1s state
|ψ1s(0)|2 =

1

πa3
0

, (9)

and the shift is
δE =

e2~2

2m2c2a3
0

. (10)

(iii) To evaluate the shift numerically we note that

|E1s| =
e2

2a0

=
~2

2ma2
0

= 1
2
mc2α2 , (11)

where α = e2/~c = 1/137. Thus

δE

|E1s|
=

1

mc2

e2

ao
= α2 , (12)

which is consistent with a non-relativistic approximation of order (v/c)2.

(iv) For the 2p state the shift is zero since the wave function vanishes at the origin.

(b) To evaluate ẋk we note that

dx̂k

dt
=
−i
~

[x̂k, H] = cα̂k (13)

Since
αkαk = I4×4 (no sum over k) (14)

The eigenvalues of α are therefore ±1, and thus the eigenvalues of v̂k = cα̂k are ±c.
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(c) Now we evaluate

dv̂k

dt
=
−i
~

[v̂k, H] =
−i
~
(
v̂kH −Hv̂k

)
. (15)

Anti-commuting v̂k across the Hamiltonian (H = v·p+βmc2) using the anti-commutation
relations,

Hvk =− vkH + 2c2pk , (16)

we find
dv̂k

dt
+

2i

~
v̂kH =

2i

~
c2p̂k . (17)

where H and p are constants of the motion.

(i) The homogeneous equation is

dvk

dt
+

2i

~
vkH = 0 , (18)

and has solution5

vk(t) = vk(0)e−
i
~2Ht . (19)

Then integrating we find

xk(t) = xk(0) + vk(0)
i~
2H

(
e−

i
~2Ht − I

)
. (20)

(ii) For pk 6= 0, the rhs of Eq. (17) acts as a driving term. Multiplying Eq. (17) by
ei2Ht we find

d(vkei2Ht)

dt
=
i

~
2c2pkei2Ht . (21)

Integrating we both sides we have

vk(t)ei2Ht − vk(0) =
c2pk

H
ei2Ht − c2pk

H
, (22)

or

vk(t) =
c2pk

H
+

(
vk(0)− c2pk

H

)
e−

i
~2Ht . (23)

Integrating once again we have

xk(t) = xk(0) +

(
c2pk

H

)
t+

(
vk(0)− c2pk

H

)
i~
2H

(
e−

i
~2Ht − I

)
. (24)

5Here and below we will drop the “hats" in v̂k(t) when confusion can not arise.
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(d) (i) Now we evaluate Eq. (19) and Eq. (20) for a specific state. First we note that the
given wave function

ψ =
ψ0(~x)√

2


1
0
1
0

 , (25)

is in an eigenstate of the v̂z operator

v̂z(0)ψ = cψ , (26)

We also note that since
H '

(
mc2 I 0

0 −mc2 I

)
, (27)

we find

e−
2i
~ Htψ =

ψ0(~x)√
2


e−

2i
~ mc

2t

0

e+ 2i
~ mc

2t

0

 . (28)

So
〈v̂z(t)〉 =

∫
d3~xψ† v̂z(t)ψ = c cos

(
2mc2t

~

)
, (29)

and integrating we find

〈ẑ(t)〉 = const +
~

2mc
sin

(
2mc2t

~

)
. (30)

(ii) The amplitude is half the electron Compton wavelength

amplitude =
~c

2mc2
=

1

2

200 eV · nm

0.5× 106 eV
' 2× 10−13 m . (31)

This is significantly smaller than the Bohr radius which is half an Angstrom

a0 =
~

mcα
∼ 0.05 nm , (32)

where α = e2/(~c) = 1/137 is the fine structure constant. Thus
amplitude

ao
∼ 1

2 · 137
. (33)

(iii) In order to see the Zitterbewegung oscillations with microscopy, the scattered
photons would need a wavelength of order half a Compton wavelength

λ ∼ h

2mc
. (34)

At this point the energy of the photon is

E ∼ hc

λ
∼ 2mc2, (35)

which is sufficient to produce electron-positron pairs. This essentially makes direct
detection of Zitterbewegung impossible.
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(e) The Coulomb potential including small oscillations of the position of the electron x→
x+ δx is

V (x+ δx) = V (x) +
∂V

∂xi
δxi +

1

2

∂2V

∂xi∂xj
δxiδxj (36)

Averaging over time with the statistics

〈
δxi(t)

〉
time

= 0 ,
〈
δxi(t)δxj(t)

〉
time

=

(
~

2mc

)2

δij , (37)

yields the Darwin term

〈V (x+ δx)〉time = V (x) +
~2

8m2c2

∂2V

∂xi∂xi
. (38)

It is perhaps fortuitous that this qualitative derivation of the Darwin term precisely
reproduces the coefficient of ∇2V term.
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Statistical Mechanics 1 

 

Blackbody radiation and its fluctuations 

 

This problem addresses properties of the spontaneous electromagnetic radiation at thermal equilibrium. 

 (a) [2 points] Calculate the probability for a one-dimensional quantum harmonic oscillator of 
eigenfrequency  to be on its nth energy level, in thermal equilibrium at temperature T. 

 (b) [3 points] Calculate the average energy, the free energy, and the entropy of the oscillator, and 
discuss their dependences on temperature. 

 (c) [4 points] Calculate the variance (dispersion) of fluctuations of oscillator’s energy, and 
express it via the average energy and . 

 (d) [2 points] Calculate the number of electromagnetic standing-wave modes in a large, closed 
free-space volume V, with frequencies within a narrow interval [,  + d], where d is much smaller 
than , but still large enough to contain many modes. Briefly explain why each mode may be treated as 
a one-dimensional quantum harmonic oscillator. 

 (e) [6 points]  Calculate the average total energy of the electromagnetic field in volume V 
(including all essential modes), and the variance of its fluctuations. Express the variance via the average 
energy and temperature, and find the dependence of the relative r.m.s. fluctuation of the energy on 
temperature T and volume V. 

 (f) [3 points] How large should volume V be for your results to be qualitatively valid? Evaluate 
the condition for room temperature. 

 Hint: You may like to use the following table integral: 
151

4

0

3 





xe

dxx
. 
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Statistical Mechanics 1 

 

Solutions 

 (a) [2 points] We may calculate the probability Wn of the oscillator being on nth energy level, 
using the canonical (Gibbs) distribution: 

             








T

E

Z
W n

n exp
1

,     (1) 

where En is the energy of the nth eigenstate, T  kBTK is temperature in energy units, and Z is the 
statistical sum 

               








n

n

T

E
Z exp .     (2) 

For a quantum oscillator, it is convenient to refer the energy to the (temperature-independent) ground 
state energy /2, then En = n (with n = 0, 1, 2,…), and Eq. (2) yields 

    .1exp  where,exp
00
















 







 n

n

n TT

n
Z

 
   (3) 

This series is just the infinite geometric progression, whose sum is well known: 

        
Te

Z
/1

1

1

1
 




 ,     (4) 

so that Eq. (1) gives 

                  .1 // TnT eeWn
         

 

 (b) [3 points] This average energy of the oscillator may be calculated in any of two ways: either 
directly: 

           









00

//1
nn

nn
TnT eneWEE        

(where the sum may be readily calculated by the differentiation of Eqs. (3) and (4) over the reciprocal 
temperature   1/T), or using the well-known general relation (see Appendix 1) 

                ZE ln



 .     (5) 

Both methods give the same result: 

               
1/ 


Te

E 





.     (6) 
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The free energy of the oscillator is 

         TeT
Z

TF /1ln
1

ln  ,     

and now its entropy may be found from thermodynamics: either as S = -∂F/∂T, or (even more easily) as 
S = (E – F)/T. Both relations give, of course, the same result: 

                        T
T

e
eT

S /
/

1ln
1

1 


 


 


 .    

 At T  0, all these averages (E, F, and S) tend to zero, while in the classical limit (T >> ), 
their magnitudes grow: E tends to the equipartition-theorem value T, F  -Tln(T/), and S  
ln(T/). (The last trend reflects the growth of the number M ~ T/ of the levels with energies not 
exceeding T too much, and hence having substantial occupancy.) 

 

 (c) [4 points] The variance of energy fluctuations EEE ~
 may be found from the following 

general relation (which may be readily derived from the Gibbs distribution – see Appendix 2): 

      





E
E 2~

.     (7) 

With Eq. (5), this expression yields 

          T
T

e
e

e
ee

E /
/

22

2

111

~ 







































  .  (8) 

It is straightforward to verify that this expression is simply related to Eq. (6):1 

 
22~

EEE   . 

 This result shows that r.m.s. fluctuation of energy, 

,
~ 2/1

2EE   

is always larger than its average value, and approaches it only in the classical limit T, when, as was 
discussed above, E  T >> . 

 

                                                 
1 Note, however, that this relation is valid only if E is referred to ground state energy /2 of the oscillator. It was 
first obtained in 1909 by A. Einstein from the Planck’s blackbody radiation formula (which does not involve the 
ground state energy), and is reproduced in some textbooks without proper qualification. If the energy is referred to 

the minimum of the oscillator’s potential energy, then the relation is different:   ,2/
~ 222  E'E  where 

2/ EE' . 
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 (d) [2 points] If the volume V is large enough (see below), we may apply the well-known general 
result for the number of different standing wave modes with the wave numbers within small interval dk 
<< k:  

      dkk
gV

kd
gV

dN 2
3

3
3

4
)2()2(




 , 

regardless of the boundary conditions on the walls limiting the volume. For the electromagnetic waves 
in free space, k = /c, and the degeneracy factor g equals 2, due to two independent polarizations of 
these transverse waves. As a result, we get 

            .4
)2(

2
32

2

3

2

3






d

c
V

c

dV
dN      (9) 

 The variable separation in the source-free Maxwell equations of classical electrodynamics shows 
that, the amplitude of each spatial mode obeys the same temporal equation as a one-dimensional 
harmonic oscillator, so that the transition to from classical to quantum mechanics may be performed 
exactly as for a mechanical one-dimensional oscillator, so that all the above formulas are applicable to 
each mode. 

 

 (e) [6 points]  The field oscillators at different frequencies (and at different polarizations at the 
same frequency) are independent, and the fluctuations of their energies are uncorrelated, so that their 
average energies and the average squares (i.e. variances) of their fluctuations just add up. As a result, the 
average total energy Et of the field may be calculated as 




 





0

3

323

4

0
32

2

0 11/ xT e

dxx

c

VT
d

c
V

e
dNEEt 









 




, 

where x  /T. Using the table integral provided in the Hint, we get the famous result 

      
33

42

15 c

VT
Et




 ,     (10) 

which is directly and simply related to the Stefan-Boltzmann law for the blackbody radiation power. 

 Similarly, the variance of fluctuations of the total energy Et, 
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may be calculated by the direct integration of Eq. (8); however, in order to avoid working out another  
integral, it is beneficial to use Eq. (7) to write 
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Since, according to Eq. (9), the density of states dN/d is temperature-independent, we may take the 
partial derivative / out of the integral, and notice that the remaining integral is just the average total 
energy, which was already calculated above – see Eq. (10): 
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 The relative r.m.s. fluctuation of the total energy is 
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Somewhat counter-intuitively, the relative fluctuation decreases with temperature. The result shows also 
that by increasing the volume V, we can always make the fluctuation much smaller than 1. (The last 
result has important implications for accurate measurements of the fundamental anisotropy of the 
cosmic background radiation.) 

 

 (f) [3 points] Eq. (9) is strictly valid only if dN >> 1, i.e. volume V is much larger that than the 
cube of the wavelength: V >> c3/3 for all substantial frequencies. In thermal equilibrium, the right-hand 
side of this relation should be evaluated for the frequencies that dominate integral (11), namely  ~ T, 
so that the required condition is 
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 For room temperature (T  kBTK  1.3810-23J/K300K  410-21J) the right-hand side of this 
relation is of the order of 10-15m3 = (10 m)3, i.e. small on the human scale, but not quite microscopic. 

 

           Appendix 1 

 For a system with the general energy spectrum En, we may calculate the average energy as 
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On the other hand, using Eq. (2) to write 
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and differentiating both parts of this relation over , we get 
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thus proving Eq. (5). 
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Appendix 2 

 The average square of energy may be calculated as 
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On the other hand, a double differentiation of the statistical sum over  yields 

  







n

n
n

n

n EE
eEe

Z 


2

2

2

2

2

. 

A comparison of these two formulas show that  
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so that using Eq. (5), for the energy fluctuation variance we may write 
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thus proving Eq. (7). 

 

 

 

 



Statistical Mechanics 2

Ising model on a triangle

The Ising model on a triangle is described by the energy:

E = −J(σ1σ2 + σ2σ3 + σ3σ1)− h(σ1 + σ2 + σ3) .

Here J and h are known parameters: exchange energy and external magnetic field, respec-
tively. The Ising spins σ1,2,3 are the only degrees of freedom in the problem and they are
taking values ±1. Assume that the temperature of the system is T .

(a) [2 points] Compute the partition function of the model.

(b) [3 points] Compute the free energy and the entropy of the model.

(c) [3 points] Compute the specific heat at temperature T and h = 0. Plot qualitative
dependence of the specific heat as a function of T .

(d) [4 points] Compute the magnetizationM = 〈σ〉 ≡ 〈σ1 +σ2 +σ3〉 at given h and T � J .
What is the behavior of the magnetic susceptibility χ = ∂M

∂h

∣∣∣
h→0

at low temperature?

(e) [8 points] Find the fluctuation of magnetization 〈(σ −M)2〉 at T � J .
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Solution

It is convenient to rewrite the energy in terms of the total spin σ = σ1 + σ2 + σ3. We
have

E(σ) = −J
2

(σ2 − 3)− hσ .

There is 1 state with σ = 3, 3 states with σ = 1, 3 states with σ = −1 and 1 state with
σ = −3.

(a) [2 points] Taking into account the weights of states exp(−E/T ) with their multiplicities
we have for the partition function

Z = e
3J+3h

T + 3e−
J−h
T + 3e−

J+h
T + e

3J−3h
T

= 2e
3J
T cosh

(
3
h

T

)
+ 6e−

J
T cosh

(
h

T

)
.

(b) [3 points] The free energy is given by the standard expression F = −T logZ or

F = −T log

[
2e

3J
T cosh

(
3
h

T

)
+ 6e−

J
T cosh

(
h

T

)]
.

(c) [3 points] At h = 0 we have for free energy

F (h = 0) = −T log
[
2e

3J
T + 6e−

J
T

]
and we obtain the entropy

S = −∂F
∂T

= log
[
2e

3J
T + 6e−

J
T

]
− J

T

3e
3J
T − 3e−

J
T

e
3J
T + 3e−

J
T

.

Here we can either calculate the specific heat as c = T dS
dT

or first calculate the energy

E = F + TS = −J 3e
3J
T − 3e−

J
T

e
3J
T + 3e−

J
T

= −3J
1− e− 4J

T

1 + 3e−
4J
T

= −3J + 12J
e−

4J
T

1 + 3e−
4J
T

(this expression is, of course, can be written right away as the average of energy) and then
specific heat as

c =
dE

dT
=

48J2

T 2

e−
4J
T(

1 + 3e−
4J
T

)2

At T � J we have c ∼ 48J2

T 2 e
− 4J

T and at T � J we have c ∼ 12J2

T 2 . The maximum is at
T ∼ J . The plot is very easy to make now.
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(d) [4 points] The magnetization is given by

M = −∂F
∂h

= 3
e

3J
T sinh

(
3h
T

)
+ e−

J
T sinh

(
h
T

)
e

3J
T cosh

(
3h
T

)
+ 3e−

J
T cosh

(
h
T

) ≈ 3 tanh

(
3h

T

)
.

We used here low temperature condition T � J . For susceptibility we have

χ =
∂M

∂h

∣∣∣
h→0
≈ 9

T
,

that is Curie’s law.

(e) [8 points] The fluctuation is given by

〈〈σ2〉〉 = 〈(σ −M)2〉 = −T ∂
2F

∂h2
= T

∂M

∂h
=

9

cosh2(3h/T )
.

At h = 0 it becomes equal 9 which is pretty obvious as σ is fluctuating with equal probability
between 3 and −3 at this point.
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Statistical Mechanics 3 
 

Bose-Einstein condensation 
 

This problem addresses the Bose-Einstein condensation (BEC) of the gas of N >> 1 indistinguishable, 
noninteracting bosons of mass m, in various confining potentials.  

 (a) [4 points] Calculate the critical temperature Tc of the condensation in a rectangular, hard-wall 
box of volume V = a×b×c, with all linear sizes of the same order. What is the exact value of the 
chemical potential µ at T < Tc? 

 (b) [3 points] Now one of the box sizes (say, c) is slowly reduced, while other two dimensions 
are increased to keep the volume V constant. Estimate the value c0 at which Tc becomes substantially 
affected by the change. 

 (c) [4 points] Can the BEC take place at c << c0? If yes, calculate the corresponding Tc. If not, 
provide a proof. 

 (d) [7 points] Now the same particles are placed into a soft, spherically-symmetric potential well, 
whose potential may be approximated as U = mω2r2/2 ≡  mω2(x2 + y2 + z2)/2. Can the BEC take place in 
this system?  If yes, calculate the Tc. 
 (e) [2 points] Suggest (and justify by estimations) a simple way of experimental detection of the 
BEC in the case of a soft confining potential. 
 

 Hints: You may use the following table integrals,  

; 

€ 

xs−1dx
ex −10

∞

∫ = Γ s( )ζ s( ), for  s >1, 

and treat particular values of the gamma-function Γ(s) and the Riemann zeta-function ζ(s) as known 
numbers. (For s ~ 1, they are of the order of 1 as well, for example, Γ(3/2) = π1/2/2, ζ(3/2) ≈ 2.612; Γ(2) 
= 1, ζ(2) = π2/6, etc.) 
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Solutions 

 (a) [4 points] The standard quantum-mechanical analysis of a single particle placed in a 
rectangular, rigid-wall box yields the following energy spectrum:  
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with the quantum numbers na, nb, and nc taking all positive integer values starting from 1. Now we may 
use the use the Bose-Einstein distribution  
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to calculate the average number of particles in the case when the box is in a thermal and chemical 
equilibrium with the environment with temperature T (in energy units, T  kBTKelvin), and chemical 
potential :  
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where g is the internal (say, spin) degeneracy of the energy levels. 

 Generally, this expression is only valid for the grand canonical ensemble, in which the number N 
of particles in the box is not fixed. However, in the canonical ensemble of systems with the number N of 
particles in the box fixed but very large, we may still use this formula, with the replacement N  N, 
for the calculation of the relation between the average values of T and , neglecting the small 
fluctuations of the chemical potential, whose r.m.s. value scales as 1/N1/2 << 1. In particular, in order to 
calculate Tc, we have to take   equal to the ground-state energy of a single particle, in this case 
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i.e. solve the following equation: 
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2 

 If the box sizes a, b, and c are all comparable, such a sum converges as soon as the magnitude of 
the argument under the exponent becomes much larger than 1, i.e. at na ~ nb ~ nc ~ nmax  (Tc/g)

1/2 Since 
the first, most significant terms of the sum are of the order of 1, the sum itself may be estimated as n3

max, 
so that, by the order of magnitude, Eq. (*) gives  
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But since N >> 1 and g ~ 1, this means that Tc is much larger than g, which is the scale of the distance 
between the adjacent energy levels (which differ by a unit change of one of the quantum numbers). 
Hence at T ~ Tc, many lower levels are populated, so that in the sums in Eq. (*), the terms (-1) may be 
neglected, and the sum as a whole may be approximated by an integral. As a result, the equation for Tc 

takes the form 
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and V  abc is the volume of the confining box. Making the transition from the Cartesian coordinates in 
the momentum space p = {pa, pb, pc} with the elementary volume d3p = dpadpbdpc, to the spherical 
coordinates in the same space, so that d3p = 4p2dp, and pa

2 + pb
2 + pc

2 = p2, we get 
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where x  p2/2mTc, and the front factor 1/8 compensates the 8-fold increase of the original integration 
volume pa, pb, pc > 0. Now using the second of the provided table integrals, with s = 3/2, we get 
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 This is the standard expression for Tc, usually derived using the well-known formula for the 3D 
density of states, and valid for any form of the confining box. However, the more specific derivation, 
carried out above, is more convenient for addressing the next tasks of the problem. It also indicates the 
actual exact value of the chemical potential of the condensate: 
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Since at N >> 1, this  << Tc, so that the result of the standard treatment,  = 0, is not entirely wrong. 
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 More effective approaches, for N >> 1, i.e. a, b >> c0, include the replacement of the sums over 
na and nb with integrals, very similarly to what has been done in part (c). Another useful trick is to use 
the well-known formula, 
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, 

to trade off the inconvenient denominator in the above formulas for an additional summation, reducing 
some sums to either the geometric progression or its derivatives - see, e.g., the original analysis of the 
BEC by R. Fowler and H. Jones, Proc. Camb. Phil. Soc. 34, 573 (1928). 

 (b) [3 points] If c is reduced, the distances between the energy levels due to the quantization in 
this direction, 

2

22

2

222

2
~

2 mcmc

nc
c

 
  , 

grow. However, the above result for Tc shows that if the particle density N/V is kept constant (say, by 
increasing the base area A  ab of the box), this decrease does not affect the critical temperature until c 
becomes comparable with Tc, i.e. until 
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Solving this (approximate) equation for the critical thickness c0 of the box, we get the following simple 
estimate:  
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 If c ~ c0, we may use the above expression for the number of particles, 
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for a numerical calculation of (T). In the conceptually simplest (though not the most computationally 
efficient) algorithm, for each temperature T we would gradually change the magnitude of the 
dimensionless fraction  /T < 0, at each step using this formula to calculate N and compare it with the 
given number of particles. (Their balance gives us the actual value of the chemical potential.) 

 More effective approaches, for N >> 1, i.e. a, b >> c0, include the replacement of the sums over 
na and nb with integrals, very similarly to what has been done in part (c). Another useful trick is to use 
the well-known formula, 
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to trade off the inconvenient denominator in the above formulas for an additional summation, reducing 
some sums to either the geometric progression or its derivatives - see, e.g., the original analysis of the 
BEC by R. Fowler and H. Jones, Proc. Camb. Phil. Soc. 34, 573 (1928).  

 (c) [4 points] If c << c0, all energy levels corresponding to nc > 1 are much higher than the Tc 
evaluated above, so that at T ~ Tc their population is negligible. Hence we may redo the calculations of 
part (a), excluding the sum over nc. As a result, Eq. (*) is reduced to  
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Reviewing the above estimate, we see that at N >> 1 we still may replace the remaining double sum by a 
2D integral: 
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Transitioning from the Cartesian coordinates p = {pa, pb}, with the elementary area d2p = dpadpb to the 
polar coordinates with d2p = 2pdp, and pa

2 + pb
2 = p2, we get 
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where x  p2/2mTc. This integral diverges at the lower limit, indicating that in this case Tc = 0, i.e. that 
the hard-confined 2D gas does not exhibit the Bose-Einstein condensation.  

 Note, however, that this conclusion is strictly valid only in the limit N   (and hence A  ), 
because the divergence of integral (**) at the lower limit is very weak (logarithmic), and is cut off by 
virtually any factor. In particular, a finite area A = ab, with a ~ b, keeps the particle energy quantized on 
a small scale  ~ 22/2mA, corresponding to xmin ~ 22/2mATc << 1. With this modification, Eq. (**), 
together with the first of the provided table integrals, shows that Tc is nonvanishing and has to calculated 
from the following transcendent equation 
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2
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2  
cc mATgAmT

N  , 

where the argument of the logarithm is approximate. (More exact calculations require numerical 
methods.) 

 (d) [7 points] A well-known quantum-mechanical analysis of single particle’s motion in such a 
potential well (frequently called the 3D harmonic oscillator) yields the following energy spectrum:  
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with quantum numbers nx, ny, and nz taking all non-negative integer values starting from 0. Just as was 
done for the hard-wall box, we may use the Bose-Einstein distribution to calculate the average number 
of particles in the case when the gas is in a thermal and chemical equilibrium with the environment with 
temperature T and chemical potential :  
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where g is the spin degeneracy of each “orbital” state. Using the standard arguments for the transfer 
from the grand canonical to the canonical ensemble, quantitatively correct in the limit N >> 1, and 
taking the chemical potential  equal to the ground state energy g (in our current case, equal to 0,0,0 = 
(3/2)), we get the following equation for the critical temperature Tc: 
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.    (***) 

 Such a sum converges as soon as the magnitude of the argument under the exponent becomes 
much larger than 1, i.e. at n  nx + ny + nz ~ nmax  Tc/. Since the first, significant terms of the sum are 
of the order of 1, the sum itself may be estimated as n3

max, giving 
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But since N >> 1 and g ~ 1, so that (N/g)1/3 is much larger than 1 as well, this means that Tc is much 
larger than , which is the scale of the distance between the adjacent energy levels (which differ by a 
unit change of one of the quantum numbers). Hence at T ~ Tc, many lower levels are populated, so that 
the sum (**) may be well approximated by an integral. 

 As a result, the equation for Tc takes the form 
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where d is an elementary volume of the state number space {nx, ny, nz}. Since the function under the 
integral depends only on one linear combination, n  nx + ny + nz, of the Cartesian coordinates of this 
space, is beneficial to select the differential d in the form 
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(see Fig. on the right), so that our 3D integral reduces to a 1D one: 
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With the integration variable replacement x  (/Tc)n, this equation takes the form  
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Using the provided table integral with s = 3, we get 
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 (e) [2 points] The average distance R of a 3D classical particle from the bottom of a quadratic 
potential may be found from the equipartition theorem:  
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Hence the optically visible area of all the gas cloud above Tc, and of its uncondensed fraction below the 
critical temperature, is of the order of 
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However, all particles of the condensed fraction of the gas, at T < Tc, are in their ground state, with 
energy g 0,0,0 = (3/2), so that the radius Rc of their cloud should be estimated from the relation 
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giving the visible area 

 
A

gN

A

m
RA cc 

3/1
2

/
~~~




. 

Hence, the most direct manifestation of the Bose-Einstein condensation at the soft confinement is the 
appearance, at T = Tc, of a small, dense “blob” on the background of a larger gas cloud image. Some 
spectacular images of this appearance are available online - see, e.g., https://en.wikipedia.org/wiki/Bose-
Einstein_condensate. 


