Comprehensive Examination

Department of Physics and Astronomy
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January 2019

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Use one exam book for each problem, and label it carefully with the problem topic and num-
ber and your ID number.

Write your ID number (not your name!) on each exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.



Classical Mechanics 1

Linked rods in a plane

Two massless rods lie in the z — y plane (neglect gravity). Each rod has length ¢, and
each rod has mass M at one end (points A and B below). The massless end of the first rod
is hinged to a fixed pivot O, while its massive end is hinged at the point A to massless end of
the second rod as shown below. The hinges at O and A are constructed so that the second
rod can swing past past the first without obstruction.

Y
B

(a) (7 points) Write down the Lagrangian of the system. Determine and interpret any
integrals of motion.

(b) At time t = 0 both rods are aligned along the z axis. The mass at A moves with
velocity vg, while the mass at B moves with velocity 2vg + Av, with Av « vy.
i (3 points) Qualitatively describe the subsequent motion of the system.

ii (10 points) Determine the angles of the masses relative to the x axis as functions
of time.



Solution:

(a) First we find the Lagrangian of the system. The generalized coordinates are ¢; and ¢s.
The coordinates of a point in A are

ra = (Lcos(¢q),lsin(¢y)), (1)
while the coordinates of B are
rg = x4 + {(cos(p1 + ¢a),sin(Pr + ¢2)) . (2)

Here and below we will write ¢3 = ¢1 + ¢o

Thus, the velocities are

va =((=sin(¢1), cos(¢1))or (3)
and
vp =v4 + ((—sin(¢s), cos(¢3))(¢s) , (4)
respectively. The kinetic energy is %mvi + %mv% yielding after some algebra
L oo Looio 1 59 2 Lo
T =oml6} +  Smle] + Smle3, +ml* cos(¢s — 61)410s | (5)
1 : 1 . 1 . : . i
-—§7n52¢%‘+ (§”n€2¢%'+ §7n€20¢1+‘¢2)2‘F7n52008(¢2)¢10¢1+'¢2)> ; (6)
1 : .o 1 .
=§m€2¢f (3 +2cos(¢a)) + ml%(1 + cos ¢z) P12 + §m€2¢§ : (7)

We have two integrals of motion. The first is the total energy of the system.

h = P1¢1 + p2$2 — L. (8)

We have
p1 =ml*(3 + 2 cos(@))él +ml*(1 + cos ¢2)¢2 , (9)
py =ml*(1 + COS(¢2))¢1 + mégég , (10)

The Hamiltonian function reduces to simply to the kinetic energy
1 . o 1 :
h=T =§m€2¢% (3 4+ 2cos(¢a)) + ml%(1 + cos ¢y)P1y + §m€2¢§ : (11)

as one could expect.

The second is associated with the cyclic coordinate ¢, which is the total angular mo-
mentum: or
J — —

_8¢1_
3

p1- (12)



(i) Tt is perhaps a good place to use some intuition. If the total angular momentum is
large compared to the internal angular momentum. There will be a strong centrifugal
force which will tend to align rod B with rod A. The resulting sytem will exhibit small
oscillations around this configuration, while the center of mass will move at a constant

(i)

rate around the circle.

We should expand near ¢o = 0. él is not small, but 9252 and ¢ are small. The Lagrangian

in this case is

1 : | :
L= §m€2¢f(5 — ¢5) + 2ml7p1 g + §m€2¢§.

The angular momentum is

J = 5mldr + 2me .

The equation of motion for ¢, is

dt

On the RHS, which is already small, we can approximate

: J
(bl - 5m€2 I
so the RHS can be written
. J2
o 52 2 _ < ]
mb o102 25ml? ¢2
The LHS can also be approximated. Since
dJ
— =0
dt ’

we have ) )
5mliy + 2mlPpy = 0.

So the LHS reads :

mldy + 2mPp, = mPehy(l — =) .

5
Then the equation of motion for ¢, is

1 J?

LS
5P = o
Thus the motion is periodic with frequency
w2 = J2
0 5(me2)?
Since
J ~bmlv,

L2y + 2mén) = —mi23e, .

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)



we have

Putting together the results we have

¢ =Asin(wot) + B cos(wt)
: J 2.
O i 5%

The second equation is integrated to yield

o
© Hme2

2
01 — 5@ + const

At time t = 0, ¢1 = ¢ = 0, so our solutions can be written
c .
¢o(t) =— sin(wpt)
Wo
2
¢1(t) =Dt — 5¢2

Then in order to match the initial condition we need

o0 g,
o1 = i Py = 7
So finally
Av .
oo(t) :M sin(wot)
. Vo 2Av 2
@@)_<e 5e)t 59

(27)

(31)

(32)



Classical Mechanics 2

Coupled pendulums

Two identical pendulums each have a point mass m suspended (in a uniform gravitational
field) on a massless rigid rod of length ¢ hanging from a frictionless pivot. The pendulums
are constrained to swing in the x — z plane, and are mounted on a block of mass M = 2m
which is free to slide, without friction, in the x-direction.

(a)

(b)

T X

(10 points) Construct a Lagrangian of the system assuming small oscillations: (i) find
the resulting normal modes and frequencies, (ii) interpret any zero modes, and (iii) qual-
itatively sketch the oscillation pattern for each mode.

(6 points) Now the base (the block with mass 2m) is pushed in the z-direction by
an external force F(t) = FPy(t). Determine thee subsequent motion of the system,
assuming that the impulse F, is so small that the subsequent oscillations may be
treated in a harmonic approximation.

(4 points) Now consider a time dependent force pushing the base in the z-direction:
F(t) = Fye 1T (33)

where 7 > 0 is some characteristic time scale. Assuming that the system is at rest for
t — —oo, determine the total work done on the system by the time dependent force as
t — +00.



Solution:

(a) First we coordinate the system. Choosing X to be the bottom of the center of mass of
the base, and ¢; and ¢ to be the angles. The coordinates of the first mass is

z1 =X + {sin(¢) ~ X + Loy + O(47), (34)
2
y1 =L(1 — cos(¢y) ~ 67 : (35)

with an analogous expression for the second mass. Here we have chose y = 0 to be the
resting point of the two masses.
The kinetic energy

1. . 1 . : 1 . :
T = 5MX2 + §m(X +0g1)? + §m(X + (go)?. (36)
The potential energy is just
U = mgy, + mgy, . (37)
So the total Lagrangian is
. 1 . : 1. : 1
L=mX?+ ém(X +0¢1)* + Em(X + lgo)* + ingQ(qﬁf +¢3). (38)

First we note that there is a zero mode associated with the x translation of the system

I . . .
Py = j—X =4mX + mlpy + mlop, . (39)

This is clearly the momentum of the center of mass.

To find the equation of motion of the remaining coordinates it is useful to eliminate X
(which is cyclic) and to focus on ¢; and ¢o. This can be done using the Routh procedure.
The Routhian, —R = L.g, is ‘

Leff =L _pXX7 (40>

and gives an effective Lagrangian for the remaining coordinates and a Hamilton equation of
motion for X.

In addition, since only the sum (¢ + ¢2)/2 = ¢, couples to the center of mass, it is
convenient to change coordinates to ¢5 and ¢pa = (¢ — ¢1)/2. This is also motivated by
symmetry considerations. We note the following

¢7 + ¢3 =207 + 2977, (41)
G2 + ¢35 =207 + 202 . (42)

We also note that the velocity of the center of mass is

Py =4mX + 2mld, . (43)



The effective Lagrangian evaluates to

1 . . 1 1 .
Lat —am® (8 + 62) = Smof3(67 + 63) — S(am) X2, (15)
- . (P, — 2mlo,)?
=ml?¢? — mgle? + ml2px — mgloi — 2{m) : (46)
Expanding the factor
(Px —2mlg,)* _ PY | 2P.2mld,)  (2m)*L¢] )
2(4m) o 2(4m) 8m sm
P: 1dPx - 1 ..,
= — - = bp — —ml=¢s . 48
am) 2 @ 0"t (48)
Recognizing that Px is constant, the effective Lagrangian is
1 i .
Leg = §m€2¢§ — mglg? + ml*¢3 — mglex + const . (49)
From here the normal modes are simple. The first EOM
ml, + 2mgles = 0, (50)
yielding a resonance frequency (squared) of
wi = 29 (51)
14
The second normal mode associated with ¢, is a simple pendulum
2 _ 4§
-7 52
Wy g ( )

(b) Now we add a force. After integrating the force on the block from ¢ = —e¢ to t = +¢, the
momentum of the base is

(2m)X = P,. (53)

The momentum of the balls is zero
miy = mX +mlg, =0, (54)
miy = mX +mlgy =0. (55)

This means that just after the impulse

PX :PU ) (56)
B

Qbs = - m ) (57>

pa =0. (58)



The subsequent oscillator motion of ¢, is just given by a simple harmonic oscillator result

Py sin(wst)

s t) = 5 59
bult) =~ 0L (59)
with initial conditions described above. Similarly Py = Py = const and ¢ = 0.
We can find X (¢) from the Eq. (43) for the center of mass and our result for ¢g(?)
Py = 4mX — Py cos(wit) (60)
Thus,
X = 22 (1 + cos(ent)) (61)
= — cos(w
Am 1 )
which is easily integrated to find
Py
X(t) = — i . 2
(1) 4mt + T, sin(wqt) (62)
(c) Let us find the motion for an arbitrary force F'(¢). In general
Q0
X0 = [ dtg Gt~ t0)Ft0). (63)
—00

One should realize that the Green function is the response to an impulsive force 0(t — ty),
which was already found in part (b). We can use this to write

1 1 )
GR(t — to) = m(t - to) + 4mw1 Sln(w1 (t — to)) . (64)
Its derivative is ] ]
&gGR(t — to) = m + R cos(wl(t — to)) . (65)
The work done is
IszﬁF@X@, (66)
leading to
W = Jdt JdtoF(t)étGR(t —t0)F(to) - (67)

The Green function derivative consists of a constant, 1/4m, and cos term

1 |
Writing the cos(w; (t —tg)) = (e™1(t=10) 4 emiw1(t=%)) /2 and performing the integrals, we find
W= IO+ | (69)
 4m gL

9



where
Flw) - J dte ™ P (1), (70)

is the Fourier transform of F'(t). Thus the work is only sensitive to the spectral density of
the force at the resonant frequencies of the system, w = 0 and w = ws.
For the current case the Fourier transform is

~ 2FOT

F(w) = m (71)

10



Classical Mechanics 3

Scattering between two particles

An incoming particle (particle A) of mass m and velocity ¢ and collides with a free
particle (particle B) also of mass m, which is initially at rest in the laboratory frame. The
two particles interact with a repulsive 1/r? potential

h
U(T’) = T_2 ) h > 07
where 77 = 74 — r'g is the relative coordinate of the two particles.
Find the angular distribution (the differential cross-section) of the deflected particles,
do(0)/df, where 6 is the angle between ¥ and particle A’s velocity after the collision. Assume
that the process is repeated many times with random impact parameter b, distributed so

that the number of incident particles per transverse area is constant. In steps:

(a) (3 points) Write down the Lagrangian of the two particles. Introduce the center-of-
mass and relative coordinates of the system, and show that the equation of motion of
the relative coordinate 7 is that of a single (effective) particle in the potential U(r).
Express the energy E and angular momentum ¢ of the relative motion with respect to
the origin of 7 in terms of the “laboratory” frame quantities m, v and b.

(b) (6 points) Find the trajectory r(¢), where the ¢ is the polar angle, of the effective
particle with energy F and angular momentum ¢ moving in the potential U(r). Follow
the convention that ¢ = 0 corresponds to the distance of closest approach as shown
below.

(c) (6 points) Find the differential cross-section do(x)/dx in the center-of-mass frame,
where x is the scattering angle in this frame.

Figure 1: The scattering angle x in the center-of-mass frame.

(d) (5 points) Convert do(x)/dy into the initial “laboratory” frame to find do(6)/d6.

11



Solution

(a) Introducing the center-of-mass and relative coordinates: 7.,, = (| + 7)/2, and 7 =
7 — 75, we see that the initial relative velocity is 7" = ¢. The reduced mass of the relative
motion is m/2. Therefore, the energy and the angular momentum of the relative motion are:

muv? mup

E="C 1=
4 2

(b) To find the trajectory, we evaluate the standard integral for the polar angle ¢ for motion
in the central potential U(r):

f dr/r* :_JW du
SV = (o 82/m)/r2]'/2 [(mE/1?) = (1 + mh/12)u?]'/?
1 1/r

arccos (

(L mh/2)7 [Emh+pﬂmfﬂ>'

The integration constant here was taken to be zero, the choice that makes ¢ = 0 the peri-
center. Finally, the trajectory is given by the following equation:

% = (ﬁ) 2 coS [(1 + mh/l2)1/2¢] .

(c) This equation shows that the angle 2¢y between the incoming and outgoing directions
of the particle scattered by the 1/r? potential is:

s
(1 + mh/2)12

20 =

This means that the impact parameter p = 21/mv depends on the scattering angle y = 7—2¢q

as
(h/E)"*(m — x)
P = 1/2
[27?)( — XQ]
Hence,
@ o (h/E)1/27T2

dX [27TX . X2]3/2 )
and the differential cross section do(x)/dx is:
h w3 —x) 4h 2 (m — x)

do(x) _
, = : ., x€[0,7].
dy sin d Esmx X221 —x)?  mu?siny x?(27 — x)?

(d) To convert this result into the laboratory frame, one needs to find the velocity of the

scattered particle 7, = 7., + 7“/2 Since 7., = U/2, we see from this relation that the
scattering angles in the center-of-mass and the laboratory frames are related simply as
0=x/2.

12



Equating the number of scattered particles in the two frames,

d do (0
ésinxdx = il& ) sin 0df ,

and using the relation between the scattering angles, we find finally:

do(0) _ deos ed_a h 7% (m — 20)

- 0 2].
do dx =20 2muZsmd B(r— 02 [0,7/2]

Similarly, one can show that the angular distribution of the particles that initially were at
rest is the same.

13



Electromagnetism 1

Radiation from an undulator

Consider an ultra-relativistic electron of charge ¢, mass m, and velocity v, propagating in
the z direction with y=1/4/1 —v2/c? » 1. In the lab frame Fy, the electron experiences a
weak external sinusoidal magnetic field directed along the x axis:

B(z) = Bysin(kz) @ . (1)

The electron is only slightly deflected from its straight line motion as it propagates in the
magnetic field.

In this problem we will compute the average energy radiated per unit time by the undu-
lating electron in two ways. In parts (a), (b), (¢) we will work in a frame F moving (with the
electron) at constant speed v in the z direction relative to the lab. In part (d) we will work
directly in the lab frame Fj.

(a) (4 points) Explicitly determine the external electromagnetic field in the moving frame
F by making a Lorentz transformation. Compute the instantaneous Poynting vector
in F (both magnitude and direction). Show that the transformed fields are equivalent
to a plane wave. What is the wavelength and amplitude associated with these fields?

(b) (6 points) Determine the average energy radiated per unit time by the electron in frame
F.

(c) (4 points) Show that the energy radiated per unit time by an accelerating charged
particle is invariant under Lorentz boosts in the z direction. What then is the average
energy radiated per unit time in the lab frame F{ by the undulating electron?

Hint: Boost the radiated energy and momentum in a time interval At from the insta-

neous rest frame of the accelerating particle to a frame moving in the z direction.

(d) (6 points) The relativistic Larmor formula for the total energy W radiated per retarded
time 7' is w9 )
q 6 2 4. 2
T "3 (w) ("’ajj +7'al) 2)
Here a is the acceleration of the electron parallel to its velocity, and a is the accel-
eration perpendicular to its velocity.

Working in the lab frame, use Eq. (2) with the appropriate kinematic approximations
to determine the average energy lost per time by the relativistic electron. Compare
the result to that of part (c).

14



Solution
(a) We use the transformation rule
FY(X) = Ly LEF7(X), (3)

to determine the field strength in the electron’s frame. The only non-zero component of F*?
is F¥* = —F* = B,, which follows from the relation, F'/ = /¥ B;. The matrix (£)!' = LI
takes the form

v 00 —p
0 10 0
L=1 0 o1 o |’ (4)
B 0 0 v
and thus
F* = YLV F% — LYLY FY° . (5)

Looking at this formula, one of the indices in F*” needs to be y. Thus, the non-zero
components are £Y = F% and B, = F¥*:

BY(X) = F% = — L', LY F% = 73B,(X), (6)

spz

B(X) = F¥* =LYL:F" = 7B,(X). (7)

We also need to express the coordinates of the lab frame in terms of the electrons coordinates,
X = (L)X . This yields

ct =y(ct) + Pz, (8)
z =7B(ct) +7z. (9)

Thus, since B,(X) = Bysin(kz) we find
B,(X) = Bysin (kvyvt + kvz) , (10)
and the fields in the ultra relativistic limit 5 ~ 1 read

E =vBysin (ky(z+ct)) 9, (11)
B = yBysin (ky (2 +ct) @.

We note the similarity between these fields and a plane wave of light with wavenumber
kv (wavelength A=27/kv) moving in the negative z direction with amplitude vBy. The
Poynting vector S = cE x B is

S = —cy*Bsin®(ky (z + ct)) 2, (13)

and is proportional to ~2.

15



(b) In frame F the electric field of the incident plane wave is
E(t, w) _ ge—iwt-‘rikz,g’ (14)

where it is conventionally understood that we are to take the real part of this expression.
From part (a), the amplitude of the electric field is & = yB,.

For an electron at z = 0, the acceleration is given by Newton’s law

qg —wwt 5 —wwt
t) = — =a, 15
a(t) e UE=auc (15)
The radiated power is
2 ¢* a(t)?
_2a ) (16)
34m 3
and thus the time averaged radiated power reads
o 1 q2 |aw|2
P=—-——— 17
34w 3 (17)

Using the result from (a) that & = yBy

5_ 1 q' 2 g2 18
“\127 ) m2a ) 0 (18)

(c) In the rest frame, the energy radiated in a time At is AP? = AFE/c. The momentum
radiated in At is zero, AP* = 0. Over this time interval the change in the electron’s four
vector AX* is (AX? AX") = (cAt,0). We can now boost these four vectors in another
frame.

Boosting the momentum in Z direction we find

AP? =yAP", (19)

AP?* = — yBAP°. (20)
Boosting the coordinates yields

AX" =yAX?, (21)

AX® = —yBAXY. (22)

Thus, in the new frame the energy radiated per time is

AP’ ~APY  AP°
AX?  yAX0 T AXO’ (23)

establishing the invariance of this quantity.

Since the total power is Lorentz invariant it may be computed in the rest frame of the
electron, and thus the frame F result of (b) holds in the lab frame Fy

po( L) 4 op 24
- m mgcgry 0" ( )

16



(d) In the lab frame we can compute the acceleration of the electron using Newton’s law

dp v
— =g— x B 2
where
p="ymuv, (26)

is the relativistic momentum. Here the particle is only scarcely deflected from its straight line
motion. Thus, in a first approximation v ~ ¢t 2, and the magnetic field then causes small
deflections in the 2 x & = y direction. The acceleration in the y direction is approximately

dv¥ qu

~

Bysin(kvt) ~ L By sin(ket) . (27)

a = — ~
= dt moyc mry

The energy radiated is determined only by the transverse acceleration a |

aw 2 ( ¢ 1 .
== = B3 sin®(kct 2
=3 (1) (S s s (25)
1 ¢
me%gYQBg (29)

in agreement with part (d).

17



Electromagnetism 2

A current loop and a sphere

A circular loop of radius R, lying flat in the zy-plane with center at the origin, carries a
uniform current /. A sphere of radius a « R and permeability pu is placed at a height A » a
on the z axis above the zy-plane.

a. (6 points) Determine the magnetic field B inside and outside the sphere.
b. (4 points) Determine the force between the sphere and the ring. Give a qualitative ex-
planation for the direction of the force for both paramagnetic (4 > po) and diamagnetic

(1 < po) materials.

c. (5 points) Determine the angular distribution of the force per area on the surface of
the sphere to leading order in a/R.

d. (3 points) Integrate the force per area in (c¢) to find the total force and compare the
result to (b). Do they agree? Why or why not? Explain.

e. (2 points) Now place the sphere in the center of the ring at zero height, h = 0. Is

this configuration stable or unstable configuration? Explain. Consider both paramagnetic
and diamagnetic materials.

18



Solution

a. The magnetic field created by the loop at a heigth h is

_ (Idl xR, I2rR*, .

B = z = By(h)z 30
2@ prt = e = B (30)

with B2 = R? 4+ h%. Throughout the coordinate system will be centered in the sphere. The

corresponding applied magnetic potential By = —6900 is g = —Bo(h)z/pmo. When a sphere

of radius a « R is positioned at height h, we will assume that the outside potential around

the sphere ¢~ asymptotes pg. Let ¢~ be the potential inside the sphere. Since both satisfy

V¢~ =0, then for the lowest partial wave (dipole)

A
P> = — cosf + g w< = Crcosf (31)
r

subject to the continuity equations at r = a,

> Jp<
_ R 32
> = P< Ho or K or (32)
which gives
-3 - S -
— B B. =—uVep. = B 33
< (u+2u0> 02 <=—nVepso <M+2M0) 0 (33)
and similarly for ]§> = —uoﬁg@.
b. The magnetization follows as
B- = uo (ﬁ + 1\7I> —uH (34)
and therefore
. 3 — . .
Y PR it VRS- S (35)

fo(p + 240)

b. The energy of the sphere in the external field B, is
4ra® -\ =
E=— 3 M | - By (36)

The binary force between the loop and the sphere is along the z-axis by symmetry

19



08 18(u — po) Amha®
oh  po(p+2p0) 3R;

It is attractive for py < p and repulsive for g > p.

(37)

d. To determine the angular distribution of the force around the sphere, we note that

the surface current density is

Esz"x(ﬁ<—FI>)=1\7Ixf

since 7 x (B. — B~). The pressure on the sphere or force per unit area is

- dF o S = .
fzﬂzaMxBozoc((Boxr)xBo)zaBg(h)(r—z(r-z))

which clearly shows that f, = 0. The total force is

F — aB2(h) fa%m (7 — 2 (- 2))

(38)

(39)

(40)

with manifest F, = 0. This is expected from the Lorentz character of the force on the surface

currents on the sphere.

e. The expression of F, in (37) shows that although F, = 0 for h = 0, a small devia-
tion up results in a repulsive force for oy > p and an attractive force for g < p. The former

configuration is unstable, while the latter is stable.

20



Electromagnetism 3

A current sheet in an ohmic medium

Consider an infinite sheet lying in the zy plane carrying surface current!, K = Kye ™' 2.

The current is driven by an external source which sustains the current’s amplitude and

frequency.
<ol

4

(a) (4 points) First consider the this current-carrying sheet in vacuum. Determine the
magnetic and electric fields to lowest (non-trivial) order in the frequency. Sketch the
amplitude of the electric field as a function of x for both positive and negative values
of x. Do your results for the electromagnetic fields hold everywhere in space? Explain.

(b) (8 points) Now place the same current sheet into an ohmic medium of conductivity o
with? ¢ » w. Determine the (real) electric and magnetic fields everywhere in space.
Sketch the amplitude of the electric field as a function of x for both positive and
negative values of .

Show how your results for the fields follow from the Maxwell equations and their
boundary conditions. Assume that® ¢ = p = 1.

(c) (8 points) Determine the total energy dissipated per time by the induced electric fields
in the ohmic medium. Show that it equals the work done per time by the external
source maintaining the surface current.

!The units of Ky are amps/meter in SI units.
2In SI units this reads o /ey » w.
3In SI units this reads € = ¢y and pu = po.
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h

Figure 1: (a) Amperian loop used to determine the magnetic field. (b) Loop used to deter-
mine the electric field using Faraday’s law.

Solution:
(a) Drawing an Amperian loop of length ¢ as shown in Fig. 1(a) we find

§B-d£=
2

B(t)l =

3 (a1)

@e. (42)

Reinserting the direction of the magnetic field we find
ﬁefiwt ~
. Y x>0
B(t) = 2K0 i . (43)
—S2e "y x <0
One can also immediately check that the boundary conditions are satisfied:

K K
nx(B-B)=E0 o o, = KO (44)

C C

To determine the induced electric field we use Faraday’s Law in integral form
\(JEE-dEz—%é’th-da. (45)
Drawing a surface as shown in Fig. 1(b) for z > 0 we find
E*(t)h = +%8tBy(t)hx, (46)
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Figure 2: (a) The electric field in vacuum from part (a), Eq. (49). (b) The electric field in
the ohmic medium, Eq. (64). In case (b) (in contrast to (a)) the work done by the external
source is non-zero because the induced electric field does not vanish at x = 0.

where we have recognized that the normal to the surface is in the negative y direction for a
loop as drawn in Fig. 1(b), and thus B - da < 0. For x > 0 the electric field reduces to

—iw Ko .
E*(t) = % Soea a0, (47)

A similar loop for x < 0 gives

Ciw Ke o
E*(t) = % Soe ¥ (—a)  w<0, (48)
leading to our final result
CiwKa
E(t,z) =Re l%emm] 2, (49)
wlz| . Ko
=— — t)—=z. 50
. sin(wt) 5. (50)

A graph of the electric field (amplitude) in the z direction is shown in Fig. 2(a). The
amplitude of the electric field grows with x, and when

wx
el | o1
c Y ( )

the quasi-static approximation used here is no longer valid. At this point the electric field
becomes comparable to the magnetic field.

(b) When the sheet is in an ohmic medium, we first derive the appropriate magnetic diffusion
equation for magnetic field in conducting media. Writing 37 = o E we find

VX(VXB)I%VXE. (52)
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Using
Vx(VxB)=V(V-B)-V’B, (53)

and Faraday’s Law
1
VxE=—-—-0B, (54)
c

we find the magnetic diffusion equation
9 o
VB = gétB. (55)
In this problem we are motivated by the right hand rule to try a solution of the form
B(t,r) = Bye* "ty . (56)

Substituting this ansatz into the diffusion equation, Eq. (55), and solving for k& we find two
possible values of k

1
ky =+ i—=i5(1+z’) . (57)
In the last step, we used the traditional definition of the skin depth

2¢?
O0=A/—. 58
g~ (58)
The solution must decay as * — +00 and should have a symmetric character. Thus, the

solution to the right and left of the current sheet takes the form

B i(1+4)z/d ,—iwt 5 >0
B=Re{ o o ¥ T (59)
_Boe—z(1+z)z/ e—zwt,y r <0
The coefficient By can be found from the boundary conditions, Eq. (44),
Ky
By = — 60
07 9¢ (60)
and the solution therefore takes the form
K
B = i2—06_|z‘/5 cos(|z|/d — wt)y . (61)
c

Here the positive sign is for > 0 and the negative sign is for z < 0.
The electric field is found from Ampere’s Law together with the constitutive relation
j=0okFE:

VxB="". (62)

Since B is the y direction

Ky . ,
(V X B)z = axBy = i/{:+ —Oe’kwﬂfzwt, (63>



leading to our final result for z > 0

1—1) Ky | ’
Ez(t7 ZE) — _Re lc( - Z) 2_061k+r—zwt] 7 (64)
o C
— — Re l@ ﬁex/6eim/5iwtiﬂ/4] ’ (65)
gd 2c

_ \E <%> e cos(/5 — wt — 7/4). (66)

In the last step we recognized that

v2e | fw (67)

od o
The solution for x < 0 is follows by the relacements x — |z|. A graph of the amplitude,
|E,,|oce™ 1719 is shown in Fig. 2(b).
(c) The work done per area per time can be found in at least three ways:

1. By calculating the work done by the battery, —K - E. The work done by the battery
on the currents is, K - Ey,;. The battery must supply an additional field Ey.y = —F
to counter balance the induced field E, and maintain the current K.

2. By calculating the Poynting flux flowing out of the sheet.

3. By integrating the dissipation rate over the volume: {dVj - E = o {dV E?
They should all agree. All of these calculations involve time averages of harmonic quantities,
which are calculated as follows: if A(t) = Re[A,e '] and B(t) = Re[B,e '] then
— 1
A(t)B(t) = §Re[AwB;]. (68)

The first method directly evaluates the work done by the battery
aw
— __K-E
dt dA ”«“:0
1
= SRe[FL(E2)"] (70)
wK§(1—1)
— 71
s 2 V3 ] (71)

|Ko|* [w
_ el 2
4e 20 (72)

The Poynting flux methods is evaluated similarly. There are two sides to the sheet leading
to a factor of two

(69)

1
= + §RG[K0

aw

MI2CEXB‘33, (73)

Y %Re K%) (Ej)*] 7 (74)
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which clearly agrees with Eq. (70). (The minus in passing from the first to the second line
follows from 2 x y = —&.) We should expect agreement between these two methods since

V.S=jE, (75)

Integrating V - S over a Gaussian “pillbox” shows directly that the Poynting flux out of the
sheet equals the work done by the battery, —K - E.

Finally, we integrate the ohmic dissipation over the volume. Here we evaluate the con-
tribution from x > 0 and then multiply by a factor of two to account for x < 0:

% =20 LOO dxE? (76)
—2 LOO dx% (%%’e—w) , (77)
L5, (78)

K 2
- %‘ 4(;' ' (79)

All three methods thus give the same answer.
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Quantum Mechanics 1

Resonant tunneling and state metastability

Your goal in this problem is to study and relate two basic quantum properties of a one-
dimensional non-relativistic particle of mass m, moving in the system of two similar, symmetric
potential barriers U(x) of width scale w, separated by a much larger distance a >> w — see the left panel
in the figure below. Each barrier has a tunneling transparency T < 1 (which is some smooth function of
the particle’s energy E), defined as shown on the right panel of the figure, where | and I’ are the
probability currents of the incident and transferred monochromatic de Broglie waves.

V() a U(x-a) | = I' =TI
1N 7 E

w w

A (4 points). Calculate the (similarly defined) transparency T’ of the two-barrier system for a
monochromatic de Broglie wave incident from afar, as a function of a, T, and the particle’s energy E.

B (2 points). Sketch the calculated transparency as a function of a, and prove that its largest
value, reached at certain resonance values ayes, equals 1, and hence may be larger than T. Give a physical
interpretation of this fact.

C (4 points). For the case of a very low barrier transparency, T << 1, and the distance a close to
one of its resonance values as, calculate the energy width oE of the transparency resonance. (For
certainty, use the standard “FWHM?” definition of the width as the energy interval within that the
transparency is larger than %2.)

D (7 points). Now consider the situation when the particle is initially placed between the barriers
(again with a very low transparency T << 1), in its lowest-energy state, which is metastable due to the
tunneling through the barriers. Calculate the law of the time decay of the probability to find the particle
between the barriers, in the lowest nonvanishing approximation in T.

E (3 points). Compare the characteristic time 7 of the metastable state’s decay to the energy
width JE calculated in Task C, and comment. Explain why such “energy-time uncertainty relation” is
less general than the canonical uncertainty relations - such as those between Cartesian components of
the generalized coordinates and the corresponding momenta.

Hint: Working on Task D, it may be helpful to represent the standing de Broglie wave describing
the metastable state as a sum of two waves traveling in opposite directions.



Solution:

A (4 points): Outside of the barriers, i.e. in any region where U(x) = 0, the stationary 1D Schrddinger

equation has the simple form
h? d?y
-———+Ey =0,
2m dx? v

and hence is satisfied with any linear superposition of two de Broglie waves exp{zikx}, where the wave
number k is determined by the particle’s energy E:

h’k?
2m

=E.

Due to the Schrddinger equation’s linearity for any x, for a single barrier located at x = 0, with
the wave incident from the left, the coefficients in such superpositions at x < 0 and x > 0 may be selected
as shown in Fig. below.

peikx U(x) (AKX
— —
rAe KX
0 X

Here t and r the (generally, complex) transmission and reflection coefficients, which may depend on the
energy of the incident wave, but not its amplitude A. Since the corresponding probability currents | are
proportional to the squares of the moduli of these coefficients, they are related by the probability
conservation law as

rA|" +1tA” =|A°,  giving || =1~ =1-T. 1)

For the system of two barriers, we may take the superpositions, in three regions outside the
barriers, in the form shown in Fig. below.

Aelk U (x) B el U(x—a) Celkx
‘ B o ikx |
0 a X

Now requiring that the waves incident upon, transmitted through, and reflected from each barrier satisfy
the same relations as for a single barrier, we get the following relations between the complex amplitudes
of these waves:

B, =tA+rB_, Be ¥ =rBekd ek =1 e/

This system of linear equations yields, in particular,



B t2A
1-r?exp{2ika}’

so that using Eq. (1), the transparency of the system may be represented as
2 2
t T?
by 2

2_| £ _

_ "
11— r? exp{2ikal| ‘1—|r|2 exp{2i(ka+qo)}r 1- 1T )exp{2i(ka + o)}’

A

T=-"S=
I

I ‘c

where the real phase ¢ = arg r may be also a (smooth) function of k, and hence of the energy E.

B (2 points). The easiest way to analyze T’ as a function of a is to consider the denominator of
the last form of Eq. (2) as the square of the length of the 2D vector that is the difference of two vectors:
one of length 1, directed along some fixed axis, and the second vector of length (1 — T), turned by the
angle 2(ka + ¢) — see Fig. below.

@-T) difference
, vector
12(ka+¢)
0 ' 1

The change of a, which affects only this angle, leads to the mutual rotation of the two vectors
with the period A(ka) = 27, and as a result, to oscillations of the denominator in Eg. (2), and hence of the
transparency T’, with the same period. This is the effect of resonant tunneling, physically arising from
the interference of the de Broglie waves reflected from two potential barriers. The largest value of T is
reached when the two vector are exactly aligned, i.e. when

ka+p=ka+p=m, 3)

where n is an integer, so that the vector of their difference has the length T, and Eq. (2) yields T"max = 1.
This value may be indeed larger than the transparency T of a single barrier, because due to the
constructive interference of the reflected waves, the internal wave amplitudes B. are resonantly
increased, resulting in the corresponding increase of the transmitted wave’s amplitude C.

Figure below shows plots of Eq. (2) for several values of the parameter T. The smaller is T, the
sharper is the resonance peak, i.e. the smaller is its FWHM (Full Width on Half-Maximum), &(ka).

T=09
0.8 7]
0.6] 7
T |y AR RERELEERE oS Y
o4 | T=06 5(ka) ]
0.2 1
K& T=01 JJ
0 ] ]
0 1 2 3



C (4 points). If the single barrier’s transparency is very low, T << 1, the two vectors discussed
above have very close lengths, so that the transparency decreases to ¥ when the angle 2(ka + ¢) between
them is increased to a small amount equal to approximately +T — see the vector diagram below.

(l_T) :
2ka+p)=T '\ﬁT

0 1 —

The distance between these two values is
s[2(ka+¢)]=2(ka+¢), —2(ka+¢@) =~ 2T,

Since T (and hence r and t, including ¢ = arg r) are relatively slow functions of k, we may use this
expression even if this change of the phase shift 2(ka + ¢) is achieved using a small change JE of
particle’s energy, and hence of the wave vector, at constant a ~ ares:
2 2
K
K~L,  sothat o~ IE g = gk o 1K
a dk m ma

T. (4)

D (7 points). If T = 0, the particle placed between the barriers has genuine stationary states
described by standing waves,

w,(x)= Bsin(k,x + const),

with the wave numbers given by Eq. (3). If T is nonvanishing but very small, this solution still may be
used as a reasonable approximation, but due to the particle “leakage” (tunneling) through the barriers,
the wavefunction has to be normalized not to unity, but to the probability W of finding the particle
between the barriers at this particular instant, which may be less than 1:

.|.|z//|2 dx=|B[* J.|sin(knx +o) dx=W.
inside inside

In the limit w << a, the exact interval of this integration are not important, and may be taken to be [0, a].
Since, according to Eq. (3), this interval contains an integer number of de Broglie half-waves, the
integral equals a/2, and we get

BF2=w, e fpf=2Y.
2 a
As suggested in the Hint, this solution may be represented in the same form as in Task A:
|B| W 1/2
w,(x)=B, exp{+ik,x}+ B_exp{-ik,x},  with |B,|=|B,|= o= (zj :

Each of these waves, hitting the corresponding barrier, induces beyond it an outgoing wave with the
amplitude C. = tB. and hence with the probability current
2 nk. W

=+—"T7T —. 5
m 2a ®)




These leakage currents gradually reduce the probability W. The law of this reduction may be found from
the general probability conservation law, in our case taking the form*

dw

—+1,-1_=0.
dt
With the result (5), this law gives a simple differential equation
W _ W ith 2K (6)
dt T T ma

with the elementary solution W(t) = W(0)exp{-t/z}, so that the constant z given by Eq. (6) is the
metastable state’s lifetime.

E (3 points). Comparing Egs. (4) and (6), we see that their relation is remarkably simple:

h :
E==, e Er=n. (7)
.
This “energy-time uncertainty relation” is much more general than the analyzed situation, and is valid,
in particular, for a broad class of metastable states. However, it is still less general than canonical
uncertainty relation, in particular the Heisenberg’s relation

h
O, 0py > ®)

Indeed, in quantum mechanics, the Cartesian coordinates r; of a particle, the Cartesian
components p; of its momentum, and the energy E are regular observables, represented by operators. In
contract, the time is treated as a c-number argument, and is not represented by an operator, so that Eq.
(7) cannot be derived using such general assumptions as Eqg. (8). Thus the time-energy uncertainty
relation should be applied with caution.

* * %

Finally, note that this the simple model discussed in this problem is a convenient platform for
discussion of several conceptual issues of quantum mechanics, including the relation between closed
(and hence energy-conserving) and open (and hence dissipative) systems, in particular their time
reversibility and irreversibility, and also of the so-called “wave-packet reduction” at quantum
measurements — see, e.g., Sec. 2.5 in https://commons.library.stonybrook.edu/egp/4/ .

L If the system is initially in one of its higher metastable states, with k, > (K,)min, the perturbation caused by the
barrier transparency may also cause quantum transitions to lowest-energy states, thus affecting the probability
conservation law. This is why this problem asks only the explore the lowest-energy state.



Quantum Mechanics 2

Orbital motion perturbations

A spinless point particle of mass m is confined to a square-shape two-dimensional region of size
LxL:

YA
L

0 L ™

A (2 points). Write down the stationary wave functions and the corresponding
eigenenergies of the particle.

B (5 points). Now consider there is a “point defect” inside the region, whose potential can
be modeled as

U=a%(r-r,),

where T, ={x,,Y,} is the location of the defect. Treating the potential as a perturbation, calculate

the first-order corrections to the energies of the ground state and the first excited state. Find out
the locations of the defect (inside the square), at which the 1% excited state remains degenerate.

C (7 points). Now consider a moving “defect”, which oscillates along the x-direction at the

center of the square:
. L . L
I, =<—+Isinat,—¢,
2 2

where | << L. Find out the selection rule for the particle excitation from the ground state to an
arbitrary excited state. Calculate the time-dependent probability for the charge to be in the first
excited state, for @ << wri, where %axi is the energy difference between the initial and final states,
using the time-dependent perturbation theory.

D (6 points). At @ << wx, the time evolution of the system obeys the adiabatic theorem.
Use this fact to calculate the time-dependent transition probability from the ground state to the first
excited state. Compare your result with what you got in Task C.



Solution:

a) The wave functions are standing waves which vanish at the edges of the region:

2 N, TTX n,mwy
Wnon, = Inx,ny>=—sin( ad )sin( Y )

L L L
where ny, ny =1, 2, 3, ..... And the corresponding energies are:
n2h?

— 2 2
Enxrny - 2ml2 (Tlx + le)
Ground state: (n,,n,) = (1,1), not degenerate.
First excited state, (n,,n,) = (1,2), (2,1), denegeracy=2.
b) Ground state is not degenerate, so the 1% order energy correction is:
AED = (1,1|v"|1,1)
4 ) XY | Ty
= L_Zf dxdy sin? (T) sin? (T) 5(x — x0)8(y — yo)AL?
X, Yy
— 2 (270N o2 (270
= 4/sin ( I )sm ( L )
For the first excited states: |1,2 > and |2,1 >

X 21
(1,2|V']1,2) = 42 sin? (TO) sin? ( y") = q

X 21X
(1,2|V'|2,1) = 4Asin (TO) sin( . ")si

s}
/N -~
g
=S
o
N————
N
b-’\<
o
N———

i

ey}

21X, X
(2,1|V'[1,2) = 42 sin( - 0) sin (22) sin

27X
21|V']2.1) = 44 sin2<

Solving: (Z IZ) (Z;) =E," (Z;

N——

a+c++/(a—c)2+4b2

We get: AESY = -

U 2b
Uz a+cx./(a—c)?+4b?
. Uy 1 (a
Hence: (uz) T VitaZ (1)

For the 1°t excited state to remain degenerate, (a — c)? + 4b?> = 0,s0a=cand b = 0

Hence: x, = 0,§,L; and y, = 0,§,L



(locations which do not break degeneracy for the 1 excited state)

b) First we can write down the time-dependent defect potential:

V' =2AL28(x — L - sin(wt))s (y - %)

A transition from the ground state (1,1) to (ny, ny):

d(t) = f dxdyf — sm sm (?) sin (nanx) sin (ny y) AL25(x — Isin(wt"))s (

—2)eternit’ gy
2)e

—4Ai ot . (misin(wt)\ . (m\ . (nywElsin(wt)\ . (MyT\ je.t!
= [ sin (#) sin (—) sin ("—()) sin (L) eterit qt’
n Y0 L 2 L 2

Here wy; =

n2h? ni+n3-2
2mlL? oo

ny), wg; =

For d(t) to be non-zero, ny=1,3,5..

Since | « L, assuming the variables inside sine are very small, the above can be approximated by:

d(t) = elwrit' g’

—4Mi  mymy (frlsin(wt") n,nisin(wt’)
sm( )j
n 2 /), 1 L

—4Al N n t I
nx< ) sm( 4 )f sin?(wt")e'@rit dt’
0

h L 2

_411' T[l (TyT 11 iwtr —iwtr 2 iwet! 341
() () [l -] et

. 2 t
=—n, (_) sin (nyn-)-[ [ei(wfi+2w)t/ + ei(wﬁ—Zw)t/ _ Ze—iwfit/] dt’
2 0

_ A (ﬂl)z - (nyrr) ei(a)ﬂ+2m)tl -1 s ei(wﬁ—Zw)tl -1 Z(eiwﬂtl ~1
M st wsi + 2w wfi — 20 wri

For w < wy;, this can be approximated by:



A 1l 2 n,m ei(wﬁ+2w)tl -1 ei(wﬁ—Zw)tl -1 z(eiwfit' _ 1)
d(t) = Enx (T) sin( > ) + -
wfi wfi wfi

A (nl)z _ (nyn) ellopit2w)tr o pi(wpi—20)tr _ 9 iwpt!
= E T sin 2

(Ufl'

Hence the transition probability is:

2 h* n,m\ (6 + 2 cos(4wt) — 8cos(2wt))
o= ) - () e
nz 4m2 2?14 n,m
=— ’2‘ R sinz( ; )sin‘*(a)t)
(nx +ny — 2)
For |1,1> to [2,1> transition:
1 2172714
ld(®)|* = T51n4(wt)

d). Based on adiabatic theorem, the system starting from ground state would remain in ground state while
been very slowly perturbed. Under the slow perturbation, at any given moment, the ground state is (from
time-independent perturbation method):

1,1, V1,1

0)_(0)
El1 _Enx,ny

11L1) = [L,1O) + 5, I, ny(°)><

The transition to the 1% excited state is thus described by the projection of the 1% excited state on the
perturbed ground state:

(2,10]v"|1,1©)
B\ — Eyy

(2,19]1,1) =

~ [ sin (ZLLX) sin (%) sin (nTx) sin (%) AL25(x — Isin(wt’))s (y - %) dxdy

(0) (0)
E1,1 - E2,1

sin <2nlsi£1(a)t)) sin (ﬂlsiri(a)t)>

(0) (0)
E1,1 - E2,1
l\? .
2mlL? (f) sin(wt) — 4mal?
m2h?2 3 ~ 3n2
1,1) = 0 obviously, because (1,2 |V’|1,1(®) = 0 from the selection rule in c).

~ 2AL% sin?(wt)

And (1,2©




So the probably for the system to transit from ground state to the 1% excited state is:

16m?A*1*
TSIH ((l)t)

This is the same result as derived from the time-dependent perturbation method.

(21@[11)[" =



Quantum Mechanics 3

Two fermions on a ring

Consider two spin-1/2 fermions of mass m, with coordinates z; and x2, confined to move on
a circle of circumference L and interacting through a spin-dependent potential

V = —U5($1 — l‘g)gl : §2, u > 0,

where §' = {s,, s, 5.} is the operator of the spin 1/2 (in units of &), so that the Hamiltonian
H of the two-electron system (in the standard notations) is:

1
H = %(P%P%)JFV-

The circle is threaded by an infinitely-long solenoid which carriers a magnetic flux ®, so that
the electron momenta are

pj = =5 —¢€A,

where A is the vector potential produced by the magnetic flux, which can be taken to be
constant along the circle, and e is the electron’s charge.

(a) (4 points) What is the relation between A and ®7 Use this relation to write down the
single-particle eigenstates 1, (z) and eigenenergies F, of one electron on the circle in
terms of ¢ and other parameters in the problem.

(b) (3 points) Derive the boundary conditions for the orbital part 1(z1,x2) of the two-
electron wavefunction at x; = w9, if electron spins are in the triplet state.

(¢) (4 points) Assuming that [®/(h/e)| < 3, find the ground-state energy E(gt) and the

orbital part 1/16” (21, z2) of the corresponding two-electron state.

(d) (4 points) Derive the same boundary conditions as in part (b) for electron spins in the
singlet state.

e points) For & = 0, determine the ground-state energy and the orbital par

5 points) For ® = 0, determine the ground-stat gy ES and the orbital part
wés)(xl, x9) of the ground-state two-electron wavefunction in the singlet spin state in
the limit of strong potential u — 0.
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Solution

(a) By Stokes’ theorem
@:st*é:fdg'vxj:fdﬁzm.

Since the wavefunctions on a circle should be periodic with the period L, the single-particle
eigenstates are

1 2m
n(r) = —=e"" Kk, = —
Acting on these wavefunctions with the kinetic energy operator p?/2m, and using the relation
between A and ®, we get the eigenenergies that correspond to these eigenstates
(hkn, —eA)>  (hn—eLA)?  h*(n—¢)°

E, = _ _
2m 2m L2 2m L2

Here and below ¢ = ®/(h/e).

(b) Any one of the triplet spin states is symmetric with respect to interchange of the two
spins:

n, n=0+1,£2 ...

5 =1y ={ 11);] m%ﬂ 1+ 1101}

Since the total wavefunction of the two electrons should be antisymmetric with respect to
interchange of the electrons, the symmetric nature of the spin part of the wavefunction makes
the orbital part 1 (x1, z2) antisymmetric in the triplet states. This means that in this case,

(xq, a:Q)‘ =0, and 9(x1, 29)0(x; — x5) = 0. Therefore, the interaction V' does not have
T1=T2
any effect on the wavefunction, and electrons in the triplet state behave as non-interacting,

i.e. ¥(xq,x2) is continuous together with its first derivatives at x; = x5 as at all other points.

(c) Electrons in the triplet state behave as non-interacting. Since in the triplet state, the two
electrons effectively have the same direction of spin, they can not occupy the same orbital
state. The lowest energy of the two-electron state is reached then, when the two electrons
occupy the two lowest-energy single-particle states. This means that for ¢ € [0,1/2],

h2(1 — 2¢ + 2¢?)

1 o .
2mL>2 ) w(()t)(xl,%) = —(eim/L _ pipiza/Ly
m

EY = Ey+ By = WoT7

For ¢ € [—1/2,0],

2 2
h(1+2¢+2¢)7 ¢ét)($1,$2): ! €

<€7i2pix1/L .
2mL? V2L

EY =B+ E_, = ~izpina/Ly

(d) For electrons in the singlet spin state,
1

S=0)=
S=0)-—

(TO=1i1),

5
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the spin part of the wavefunction is antisymmetric, and the orbital part should be symmetric.
in this case, the d-functional potential affects the wavefunction. To find the magnitude of
the potential, one needs to evaluate the magnitude of the spin part 57 - S5 of the interaction
V. As usual, making use of the operator S = 5, + & of the total spin, we have

; 12, 3
§ -G =[52-52-3%/2=-52-

In the singlet state |S = 0), this gives:
— — 3
S1 - 82|S = 0> = _Z__L|S = 0>,

i.e., the interaction V' reduces to V = (3u/4)d(x; — x3), and its effect on ¢(x1,x2) can be
described in the same way as for the standard single-particle J-function potential. Integrating
the spatial Schrodinger equation over infinitesimal interval of x; around the point z; = x»,
one obtains that the wavefunction is continuous at x; = x5 with discontinuous first derivative:

oY o ;

o, o = 2k = )

01 lzy=22+0 Oy ley=22-0 (3mu/2k° )¢ (a1 = @2)
Similarly for zs:

oY o )

- v _ 5 _ |

&%2 zo=x1+0 51’2 xro=x1—0 (3mU,/ h )¢($1 $2)

The fact that the wavefunction 1(x1, z5) is symmetric in the singlet state, implies that

wp

8:1:'1 x1=x2—0 0.%'2

xo=x1—0

This equality transforms the first relation above into the sought boundary condition:

0 0
( Y oY

8x1 (91]2

= (3mu/2R* )Y (2 = x3) . (80)

x1=x2+0

(e) The boundary condition (80) together with the fact that momenta are finite, means
that i (z1 = x2) = 0 in the limit u — . One can immediately see that such symmetric
wavefunction 1*)(zy, z,) vanishing at coincident coordinates can be constructed out of the
antisymmetric wavefunction of noninteracting electrons ¢¥® (1, x),

1

¢(t)($17x2) = \/5

[¥ny (1) 80, (02) = Yy (T2) Py (21)]

by the sign change:

V) (2, 25) = P (21, 25) sgn (21 — 3) . (81)
Such a sign change implies however, that as the function of one coordinate, e.g. w1, ¥
aquires an extra phase m when increasing past xo. As a result, the single-particle wavefunc-
tions on a circle that could be used to build up ¥® and then ) should be antiperiodic,
changing the quantization of momenta:

e = 1, k=nh(2n+1)/L.
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In this case, the lowest-energy state corresponds to ni;o = 0, —1, giving the ground state
energy

5 _ I

O 4mL2’

The wavefunction that corresponds to this state is

B 2 .7
1/1(() )(xl,xg) = Tsm (E|x1 — :v2|) .
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Statistical Mechanics 1

Ideal gas in gravitational potential

Consider an ideal gas of N indistinguishable molecules of mass m in a cylindrical volume
V = Ah with base area A and height h.

(a)

(b)

Now assume that the top of the cylinder is a piston of mass M that can
move vertically (change the height h), and that the gravity effects on the
gas itself are negligible, so that the gas volume can change but the pressure
is constant.

(d)

(e)

(5 points) Calculate the canonical partition function of the ideal gas Z9(T, V'), including
the effect of gravity. You may find useful the integral {° dt > e = /m/4.

(4 points) Using the partition function, calculate the internal energy of the system.
Then, determine the heat capacity in two limits, T » mgh and T" « mgh. You may
find the Stirling approximation N!a (N/e)™ helpful.

(2 points) Write down the condition for when the effect of gravity is negligible com-
pared to the thermal energy. What is the internal energy in that case? Neglecting
internal degrees of freedom, estimate at what temperature the thermal energy for oxy-
gen molecules Oy (*°0) at 1m height is of the order of the potential energy.

(2 points) Write down the Hamiltonian of the combined piston + gas system HY'P,
and express the potential energy of the piston in terms of the pressure and the volume
of the gas.

(4 points) Find the canonical partition function Z9P of the system with the piston.
One way to do this is to use the result for the partition function Z9(7, V') from part (a)
(now neglecting the potential energy of the gas). First, show that Z9P is proportional
to its Laplace transform

0
Z9tP(T, P) = B J dVe Y Z9(T,V) (82)
0
for some B and « that you have to determine. Then compute Z9*? as above (you may
use the integral SSO dr zN e b = bfvv—+'1)

(3 points) Compute the variance of the piston height h and express it in terms of
particle number N, piston mass M, and temperature 7.
Hint: one way to do this is to use the pressure-dependent partition function Z9*P(T, P).
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Solution:

(a)The partition function of the system is given by

1 N \"
7= 55 (:0)" ~ (?z“)) , (83)
with .
L) — CoE fd?’p d3g e~ PHY , (84)
T
where )
p
HY = o T Y (85)

is the Hamiltonian for one particle with momentum p at height y, and g = 1/T.
Evaluating the integral in z(1),

(1) dm (a2 (M, s
- dpp? e P | AePmovg
= ATl

47T 2m 82 rw 2 h
= — dtt? et J Ae Pmav g
(2rh)? ( 8 ) f 0 Y

3/2 h
_ _Am (2m\T T f Ae=Pmay gy
B 4 Jo

_ 1 (27T_m)3/2 {_ A 6—Bmgy]h
~ (2mhp\ B Bmg 0

1 /2em\** A ~bmah
= w5 g

one gets the partition function of the system

o[ () ] Lol oo

Bmg e \3.Bmg
_ 2mh23 -
where A\p = 4/ === is the thermal wavelength.

(b) The internal energy of the system is given by

0 0 N [ 2rm \** A _bm
V=—2"%="2% {Nln [? (ﬁ@my) Fmg (1€ gh)]}

2
=— — lN <lnN—1—;lnﬁ—lnﬁ+ln(1—e5mgh)+lni—§lnzﬁh )]

mg 2 m
_5N+ mgh
2 1 — efmgh
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c) Gravity becomes relevant when ¢ = ™2 ~ 1. i.e., the potential energy is on the order of
Y kT gy

the thermal energy at temperature 7. For ¢ « 1, we can neglect gravity. To get the internal
energy in this case, we expand the exponential:

5N mgh 5N mgh
U = -— —— >~ ——+ N
25 N T—emmah 25 11— Bmgh— L(Bmgh)® + O()
5N mgh
=< U =

—— — N
2 Bmgh(1 + %ﬂmgh)
3 mgh

which in this limit is the well known internal energy of an ideal gas of non-interacting
particles.
The temperature at which ¢ becomes one for h = 1m, m = 32u = 5.312 - 10~ 2° kg, is

mgh 5312 107269.8 m? kgs—2
ko 1.38-10-23m2kgs2K-!

T ~ = 0.038K (87)

Normal room temperature is 273.15 K, so the effect of gravity is negligible for oxygen at
room temperature, according to this simplified estimate.

(d) The pressure on the system, exerted on the gas by the piston is P = Mg/A. The
potential energy of the piston is Mgh = AhP = V P. With that, the Hamiltonian of the
combined sytem is

H9"" = HY + k*/2M + PV, (88)
where HY = va H® is the Hamiltonian of the entire gas, and k is the momentum of the
piston in the z direction.

(e) With the Hamiltonian H9P above, the canonical partition function becomes

1 dhdk
Z9tP(T, P) = N Jdoﬂf 5T exp[—B(HY + k*/2M + PV)], (89)

where {dw? is the phase space integral for the whole gas, assuming a constant volume
V = Ah. One can first formally integrate the gas degrees of freedom,

dhdk 1 9 dV dk
Zg-i-p(T’ P) _ f s e—ﬁ(k2/2M+PV) [ﬁ dege—ﬁH :| _ f T i 6—ﬂ(k;2/2M+PV)Zg(T’ V) ’
(90)

where Z9(T,V) is the gas partition function and dV = Adh. Integrating out the piston
momentum £k, one gets

Z9MP(T, P) = %4 / 2;\;2 3 fdv e PPV 29V, T). (91)

Thus, the partition function for constant pressure is the Laplace transform of that at constant

volume, as given in part (e) with « = P and B = %4 /%.
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In the high-temperature limit 3 — 0, the partition function of the gas Z9 simplifies to

1 [/ M N2 4 Yoo
Z(T.V) ~ 5 [(27rh25) ﬁmg(1—1+5mgh)] =5 Ny N (92)

and its Laplace transform is given by

1 NI 1 T\
3NY/N —3N _
')\ VY= B S o = AR (]3) (93)

Z9"(T,P) = B oV
(T.P) = B [ave

27rh Jé]

where Ap = is the thermal wavelength of the piston.

(f) The variance of the piston height is essentially the variance of the volume of the gas at
constant pressure, {(6h)%) = 43{(6V)?), and can be found from the equipartition theorem
for the oscillating piston supported by the ideal gas with the isothermal compressibility
Kp = % ( (g‘;) ) =N g—z. It is more fun, however, to use the machinery of the pressure-
dependent partition function developed in parts (e,d). The volume and its fluctuation can
be found as partial derivatives of [ —In Z9*P(T, P)] with respect to the pressure,

1 (ozetr\ 1 (olmzow\  [(0(—-TWZz9""(T,P))
<V>“Ezw< oP )T"E( 0P )‘( iP ) (54

oy~ — - L1 (iiff’);(—%zip (2

*
p*Z
1 (a2lnzg+p> ( — T'n Z9*¥(T, P))) | (95)

2\ op? op?

and thus one can identify (—T In Z9tP(T, P)) with the Gibbs potential. Using the expression
for Z97P from above, one gets

(VYD = T? (M) o (a?[(N+ 1)(a—lnP) +f(T)]> B (N+1)T—2 N %W,

oP? P2 P2
(96)
and the piston height fluctuation is
5V 1V h 1 T
oh=—~ —— = = : 97
NA YN VN My &7
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Statistical Mechanics 2

Thermodynamics of a polymer molecule

’ L
e T =
a

Consider a single polymer molecule that consists of N » 1 connected elementary identical
links. These links may be either “folded” (zero length) or extended (to length a) in the same
direction, and have the same intrinsic energy in both states. One end of the molecule is
fixed, and tension f may be applied to the other end.

(a)

(d)

(e)
(f)

(3 points) Find the average length L, of the molecule when no tension is applied to
the molecule (f = 0). How does Lo depend on temperature? What is the variance of
the length ((§L)?) (assuming constant temperature)?

Hint: Throughout the problem, assume that the change in the length of the molecule
is small, AL « L.

(4 points) The molecule is “stretched” to fixed length L = Ly + AL. How many micro-
scopic states of the molecule correspond to this state, and what is the corresponding
entropy? You may use the Stirling approximation Inn! = (nlnn —n).

(3 points) Calculate the tension f required to stretch the molecule in part(b) to length
L = Lo+ AL, and its elasticity kr at constant temperature 7.

(3 points) Now assume that the heat capacity of the unstretched molecule C'(Lg) = Cy
is independent of temperature. Calculate the heat capacity C for a molecule stretched
by a constant force f.

(3 points) What is the adiabatic elasticity kg if the molecule?

(4 points) Suggest a design for a heat engine based on the temperature dependence of
the elasticity kr(7T") and calculate its efficiency. Draw the engine’s operating cycle in
the (L, T) plane and show the direction of the cycle.
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Solution

This problem can be solved using either microcanonical or canonical (Gibbs) distribution.
The solution here takes the microcanonical approach, which somewhat more complicated bit
is equally valid, but has the advantage of emphasizing how the tension in the rubber band
appears from the entropy if its disordered links.

(a) Since both states of each link have the same energy, their probabilities are the same and
equal to % and independent of the temperature. The average length then is

1 1 N
L0=<L>f:0=N~(§-O+§-a)=a?

and also does not depend on the temperature. The number of extended links is given by the
1

binomial distribution, so its variance (0N;)*> = N-1-(1 —3) = N gives the fluctuation
of the length 0L = adN, = %a\/ﬁ . Alternatively, one can consider the fluctuation of the
length of one (i-th) link,

1, .o L1 o
S (5 = 12, (98)

(0L:)* = {(AL)?) = ) — 1)* =
which gives the same answer for N independent links (6L)? = N(6;)* = 1a®N.

(b) If the length of the molecule is known, then the precise number of extended N, and
folded N_ links can be determined:

(1+£), N_.=N-N, =

N
L=ILy+AL=aN, <= N, =—
2 Lo

The number of microscopic states, or the statistical weight I', corresponding to the molecule
having length L, is given by the number of all combinations of stretched N, and folded N_
links out of the total N = N, + N_ links,

NI
[(L) = N IN_ 1

from which it is easy to compute the entropy using the Stirling formula Inn! ~ (nlnn —n):

Sy(L) =InT(L) ~ NInN — N — (N, InN, — N,) — (N_InN_ — N_)
N, N_

— N.In—F - N_In—
+nN nN

-0 )0 8] - - 5[0~

~ N[an— %(AL—OLY]

In the last line, the expansion In(1 + ) = = — %xQ + O(x3) was used. The first term is
the entropy of a molecule without load (at f = 0), in which any link can be in two equally
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probable states, whereas the second reflects the decrease in the entropy as the molecule is
stretched (or compressed) and more links become extended (or folded) than N /2.
The fluctuation of the length can also be easily found from the Gaussian probability
distribution p(L)ocI(L) = eJa(b):
N (AL\2 L2 L 1
p(L)oc exp [ - E(L_(J) ] — (AL =L, or 6L = ALY - TON = SaVN.

(c) If the molecule is stretched at constant temperature, the change in the free energy is
dF = —SdT + fdL 72" fdL (99)

(note that when the molecule is stretched the external force performs work dWey = fdL).
Alternatively, the free energy for the constant temperature also can be found from the number
of microscopic states above,

F(T.L)— F(T.L = L) = -Tlh 22— _ppp ) 2N
(T, L) = (T, 0) (T L) "I Ly T 2

Z(T, L) I(T,L) 1 (AL)2
Lo

where the difference in the Gibbs partition functions is given only by the disorder of the
links because the energies of links in both states are the same. Finally, the tension in the

molecule is oF AL 2T AL
f = | — = TN_2 = 7
oL ), Ly a Lo

of 2T
kr=|=] =—.
oL T GLO
Note that this elasticity is different from the elasticity of a thermally insulated molecule kg

because the work done by the external force f may produce heat and change the temperature
of the molecule, leading to an additional change in the tension f.

and the isothermal elasticity is

(d) First, note that the internal energy of the molecule is independent of its length L =
Lo + AL because there is no energy difference between the different states of the links.
Therefore, all the internal energy is given by its “thermal” energy and does not depend on
the elongation AL,

E(T,L) = C,T

neither does its heat capacity at constant length C (T, L) = Cy = const. However, the heat
capacity at constant tension f is larger than C, = Cy because of the work performed by the
molecule as it shrinks with increasing temperature:

0 0
Ce(T, f) = <a—§)f—f(a—£>f :

(the minus sign is due to the relation T'dS = dE — f dL where fdL is the work performed
by the external force). Since the internal energy is independent of L, it is also independent
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of f, therefore (g—?) ;= Cp. The length of the molecule can be found from the equation in

(c): AL = 2o f and

. CLLO 2 L() ALQ_ ALN\?2 .
Cy(T, f) = Co+ 55 f = CO+2;<L—0> - CO+N<L—O> > Cp =G
(e) One elegant solution is to compute the ratio of the adiabatic to the isothermic elasticities
using the chain rule for determinants,
bs _ALS) ALT) A0S ALT) G, N ALy:
kr — o(L,S) o(f,T) o(f,T) o(L,S) Cr — Co\ L

and use the expression for k7 from above. Alternatively, one can evaluate the partial deriva-
tive (%)S by changing the variables (L, S) — (L,T) and using the molecule’s “equation of

state” f = 2LAL.
a Lo

of of of oT 2AL (0T
= (52),- (52),+ (), (), = 22 (32),

The derivative (g%) ¢ may be evaluated using the 1st law of thermodynamics and dE = CodT™:

dE—deZCodT—¥%dL=TdS:0 N (‘;%) :%%
0 s o Lo
and, finally,

o G i 2R ) i S

consistent with the previuos answer.

(f)
The simplest solution is to implement the Carnot cycle \ T
which has efficiency n = 1 — T1 /T, shown on the right.
Note that the entropy S, > S; because the shorter
(less stretched) molecule has larger entropy. Thus, the Sy 5,
molecule has to be cooled (S;— 53 < 0) as it is stretched
at T; and heated (S; — 57 > 0) as it is released at tem-

Ty
perature Ts5.

To draw the diagram in (L, T') axes, we need to find how the temperature changes when the
molecule is stretched adiabatically. For S = const < dS = 0, we have

2T AL (AL)?

O:TdSZdE—de < COdT:?L_OdL <~ TZTQGXp[aCOLO]

and the dependency of the temperature on the elongation is exponential (for AL « Ly).
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Statistical Mechanics 3

The thermoelectric effect

A (3 points). For a gas of similar non-relativistic particles, write:

- the Liouville theorem,
- the Boltzmann transport equation in its general form, and
- the Boltzmann equation in the relaxation-time approximation.*

B (2 points). Spell out the last equation for a free, isotropic Fermi gas of particles with electric
charge q, in the presence of a uniform, time-independent external electric field E.

C (4 points). Solve the obtained equation in the linear approximation in the weak applied field E,
and use the result to express the densities of the electric current (je) and of the heat flow (jn) as integrals
over the single-particle energy &.

Hint 1: The heat flow density in a gas with the single-particle probability distribution w(r, p) may be
calculated as

Jh = J.(g_ﬂ)VWd3p ,
where g its chemical potential, and v is the particle’s velocity.
D (2 points). Give a physical interpretation of the formula given in Hint 1.

E (2 points). Use the first result of Task C to obtain an explicit expression for the Ohmic
conductivity o (defined as the coefficient in the differential form jo = oE of the Ohm law) via the gas
density n, particle's charge q and mass m, and the relaxation time z, for arbitrary temperature.

F (3 points). For a degenerate Fermi gas, use the second result of Task C and the Sommerfeld
expansion formula to calculate the so-called Peltier coefficient in the linear relation j, = ITje.

Hint 2: The Sommerfeld expansion may be represented in several forms; for this problem, the most
useful of them is

© af 2 d2
Jgp(a)(—%)dgz¢(y)+%T2%(f)‘g:y, atT << u,
0

where ¢(¢) is a smooth function equal to zero at £= 0, and f(¢) is the Fermi-Dirac distribution.
G (4 points). Suggest a simple method to measure the coefficient I'T experimentally.

Hint 3: Think about a loop made of two different conducting materials, one of them with a known IT.

! The approximation is sometimes called the BGK model.



Solution

A (3 points). The general form of the Liouville theorem is

dw ow G| ow . ow .
_E_"'Z ~4;,+--p;|=0,
da o ‘Z\0q, op

J J

where w({g;}, {p;}, ) is the probability density to find the particle in the (24 + 1)-dimensional space of
its d generalized coordinates g;, d generalized momenta p;, and time ¢. For a non-relativistic gas of 3D
particles (d = 3, {q1. g2, g3} = r), each under the effect of an external force F(r, ¢) but otherwise free to
move, the equation takes the form

a—WJrV-er%rI:pr:O,

ot

where v is the particle's velocity, and V, and V,, are the del operators in the coordinate and momentum
spaces.

The Boltzmann transport equation differs from the Liouville theorem by addition of the so-called
scattering integral, giving an approximate account of relatively rare particle scattering events, for
example in the form

ow 3 '
5+V-V,w+ F-V,w= Id p [Fp,_>pw(r,p ,t)—l“p_>p,w(r,p,t)],
where T are the rates of the corresponding scattering events.

This equation is most frequently used in a simpler form further by assuming that the scattering
integral is proportional to the local deviation,

w=w—wy,
of the probability density from its value wy in equilibrium, so that equation takes the form
ow

—+V-V,,W+F-pr:—2,
ot T

where 7 is a phenomenological constant, called the relaxation time. (Physically, this is the average time
a particle moves between two consequent scattering events.)

B (2 points). For a free, isotropic Fermi gas

"= fh 7 1(e) (1)

where g = 2s + 1 is the spin degeneracy, and f{¢) is the Fermi-Dirac distribution

B 1
eI L1
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&= pl2m is the single-particle energy, x is the chemical potential, and 7 is temperature in energy units.
For particles with electric charge ¢ in an electric field E, in the absence of other forces, we may write F
= gE. If E is time- and space-independent, so should be w, so that the Boltzmann equation, in the
relaxation-time approximation, reduces to

w

GE-V, (wy + )= - @

T

C (4 points). If the applied electric field is relatively weak (¢gEvz << T, w), it may cause only a
weak deviation of the probability density from its equilibrium value (1), so that in the linear
approximation in E we may neglect w in comparison with wg on the left-hand side of Eq. (2), and it
may be readily solved:

w=—qrE-V jw.

Since, according to Eq. (1), wo depends on p only via the energy & = p?/2m, we may write Vowo =
(Owol0g)V pe. But the /™ Cartesian component of this vector,

2 2 2
+p+ ;
(VPS)AE 0 o= O pL+p+p; :ﬁzvi,
7 0p; p, 2m m
so that the gradient V¢ is just the particle's velocity v, and we may write
ow,
=rqE- V( 0 j
oe

Let us first use this expression for the calculation of the electric current density
je = [qvwd®p = q[v(wy +w)d*p.

Since in the equilibrium state (with w = w), the net current density has to equal zero, the integral of the
first term in the parentheses has to vanish. For the integral of the second term, we get

_ow f( )} 3
v(E-v) -—2 d°p
Due to axial symmetry of this expression, the vector j is directed along the applied field,

; ng'E 2 5f( )} 3
Jo = (272'?13.'. cos 9{ 2 d’p

where Here & is the angle between the field E and the vector p = mv. Transferring to the polar
coordinates, and performing an easy angular integration, we get

. gg*rE¥ 2,7 2 6f(8)}_ngrE4_ﬂ°° 2 2{_@{(5)}
jo = oy ) [do jsm@d@cos ij dpv? { o | (2any 3 ip dpv roll

As requested in the assignment, the remaining, one-dimensional integral may be readily recast to that
over particle energies &= p?/2m: p® = 2me, so that p = (2mé&)'2, dp = (ml2£)*?, and v? = 2&m:




. _ngrE4_7z°° 3 /2{_@}
e 2y 3 g(gmg -5 e ¥

Now according to the expression for the heat flow density j, given in Hint 1, it may be obtained
from Eq. (3) for j. by the replacement ¢ — (&- 1), immediately giving

_ gqtE 4x % PR _af_(g):|
J, _(Zﬂh)3 3 0(8 8)1 (5 ,u)[ e de . 4)

D (2 points). By definition, the chemical potential « of a system of independent particles is just
an average energy of a particle, and a deviation (& - 1) of the particle’s energy ¢ from this average may
be interpreted as its thermal energy.

Another possible explanation is that for a uniform gas of N particles, the factor (& - x) in the
expression for j, may be represented as (E — G)/N, where E is the total energy, and G the Gibbs energy
of the system. But according to the basic thermodynamics,

E-G=TS-PV,
where S is entropy, P the pressure, and 7 the volume of the gas. The full differential of this difference,
d(E—G)=TdS + SdT — PdV —VdP.

so that in the absence of mechanical work d/ = -PdV and of changes of pressure and temperature (as in
our current problem), the differential is reduced to just 7dS, i.e. to the elementary heat dQ.

E (2 points). We may take the integral in Eq. (3) by parts. Since the function under it vanishes at
both ends of the integration interval (at & = 0, due to the factor £, and at & —> +oo, due to the
exponentially decreasing Fermi distribution function f), the result is

B gq ’r 47r [ /2]_ g2q°t Ar Y 3 .
_( If d = (2eh} 3 ——(8m) !f(g)ge de
2 3/2 =«
qr _8gm 1/2
=1— d
" X Zﬂzhs_!f(g)g g

But the factor following the multiplication sign is just the well-known expression for the density n = N/V
of the gas in thermal equilibrium. Indeed, using Eq. (1), and the substitutions listed just before Eq. (3),
we get

_ __8
n—jwodsp— (27zh)3

g o _ gmm [ .2
Gy W)= e se)©

0

Hence in the relaxation-time approximation, the Ohmic conductivity may be expressed by the
Drude formula,

c=9"p, (6)




at arbitrary temperature.

F (3 points). Applying the Sommerfeld expansion formula, given in Hinz 2, with ¢(e) = £

= &% - 1e”, ie. with (1) = 0 and P &)lde?| =, = 31, to Eq. (4), for the ratio ju/E = oIl we get

(- 1)

gqrt 4_7z7z2T2
(2zn) 3 6

This expression may be further simplified taking into account that for the degenerate Fermi gas, at 7' <<
u(T) =~ u(0) = &, the Fermi distribution becomes very simple,

()~ {1, for ¢ < e,

0, for & <e¢,

oll~ 38mu)'?,  for T<<pu. (7)

enabling a simple integration in Eq. (5):

3/2 °F

gm j U2 .. gm3/2 2

& &= —&
\/Eﬂ_zhs ! \/Eﬂzfﬁ 3°F

Plugging this expression into Eq. (6) for o, and the result into Eq. (7), we get simply

n~=

2 T?

M=——-, for T << ¢..
2q &

We see that the phenomenological relaxation time 7 has canceled, implying that the last result is
more robust to violations of the relaxation-time approximation.

G (4 points). Figure below shows the traditional (and apparently the easiest) way to measure the
Peltier coefficient.

(Hl _Hz)l

N[: I

I,/

é(nl - Hz)l

An external voltage source drives a certain dc current / = je4 (where A4 is the conductors’ cross-
section area), the same in the whole loop. However, if the materials 1 and 2 are different, the power =



Jjnd of the voltage-induced heat flow? may be different in two parts of the loop. Indeed, if the whole
system is kept at the same temperature, the integration of the relation j, = I1j. over the cross-sections of
each part yields

/1)2 = 1_11,2141,2]'1,2 =I1,1,, =11,,1.
This equality means that in order to sustain a constant temperature, the following power difference,
A = (I, - T1,)I ,

has to be extracted from one junction of the two materials (in the Fig. above, shown on the top), and
inserted into the counterpart junction.

This is the thermoelectric (or Peltier) effect, may be used, in particular, for the measurement of
the coefficient IT of one of the materials, provided that its value in the counterpart material is known.
Another, much more common, application of this effect is for thermoelectric cooling. Indeed, if a
constant temperature is not maintained, one of the junctions is heated (in excess of the bulk, Joule
heating), while the latter one is cooled. Such Peltier refrigerators, which require neither moving parts
nor fluids, are very convenient for modest (by a few tens °C) cooling of relatively small components of
various systems - from sensitive radiation detectors on mobile platforms (including spacecraft), all the
way to cold drinks in vending machines.

% Note that we are discussing the heat transferred through the conductors, not the additional Joule heat generated
in them by the current. (The latter heat, with the power density j.E = oF?, is proportional to the square of the
applied voltage 7, rather than proportional to it as the Peltier heat.)



