
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

August 2018 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Some of the problems may cover multiple pages. Use one exam book for each problem,
and label it carefully with the problem topic and number and your ID number.

Write your ID number (not your name!) on each exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, if approved by
the proctor, a foreign-language dictionary. No other materials may be used.
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Classical Mechanics 1

Periodic one-dimensional motion

Part I. Consider one-dimensional motion xptq, as described by the Lagrangian

L “
m

2
9x2 ´ g |x| .

(a) (3 points) First draw a qualitative picture of the motion. Then write down and
integrate the equation of motion.

(b) (3 points) Find T pEq, the period of the motion at given total nonrelativistic energy
E.

(c) (3 points) Find the truncated action per period,
şt0`T

t0
p dx.

Part II. Same as in Part I, but for the relativistic Lagrangian

L “ ´m
?

1´ 9x2 ´ g |x| with c “ 1 .

(a) (5 points) Integrate the equation of motion. Check that the nonrelativistic limit
reduces to the solution in I(a).

(b) (2 points) Find T pEq, the period of the motion at given total relativistic energy E.

(c) (2 points) Evaluate again the truncated action per period.

(d) (2 points) Compare the relativistic and the nonrelativistic motion of a particle that
is momentarily at rest at x “ x0.
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Solution

Part I:

(a) The equation of motion
m :x “ ´g signpxq

describes uniform acceleration ´g for positive x, and `g for negative x. The trajectory thus
is the juxtaposition of parabolas

xptq ´ x0 “ ´
g

2m
pt´ t0 ` T {4q

2 for ´ T {2 ď t´ t0 ď 0 ,

xptq ` x0 “ `
g

2m
pt´ t0 ´ T {4q

2 for 0 ď t´ t0 ď T {2 ,

periodically repeated with the period

T “ 4

c

2mx0
g

.

Here x0 ě 0 is the amplitude of the oscillations.

(b) The amplitude x0 relates to the energy E as

E “ g x0 ,

hence

T pEq “
4
?

2mE

g
.

(c) Since

E “
p2

2m
` g |x|

we have
p “ ˘

a

2mpE ´ g |x|q

where the sign changes at the turning points |x| “ x0. Elementary calculation yields

S “

ż t0`T

t“t0

pdx “ 4

ż x0

0

a

2mgpx0 ´ xq dx “
8
?

2m

3g
E3{2

pP2.1q

Part II.

(a) Now the equation of motion is

d

dt

ˆ

m 9x
?

1´ 9x2

˙

` g signpxq “ 0 .

As conservative system, it has the first integral

E “
m

?
1´ 9x2

` g |x| ,
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which allows one to integrate the equation of motion:

pX ´ xq2 ´ pt´ t0q
2
“ R2 for x ě 0 ,

pX ` xq2 ´ pt´ t0q
2
“ R2 for x ď 0 .

Here
R “

m

g
, X “

E

g
,

and t0 is an arbitrary time. For real motion E ě m, hence

X ě R .

Thus, the trajectory is the periodic (with the period T ) extension of the piecewise hyperbolic
cycle

xptq “ `X ´
a

R2 ` pt´ t0 ` T {4q2 for ´ T {2 ď t´ t0 ď 0 ,

xptq “ ´X `
a

R2 ` pt´ t0 ´ T {4q2 for 0 ď t´ t0 ď T {2 .

Here
T “ 4

?
X2 ´R2

so that xpt0q “ 0.

(b) Since X “ E{g we have

T pEq “
4

g

?
E2 ´m2 .

When E “ m ` ∆E with ∆E ăă m, this reduces to the result in the Part I, with ∆E
replacing E.

(c) In terms of the relativistic momentum

p “
m 9x

?
1´ 9x2

we have
E “

a

m2 ` p2 ` g |x| .

The integral
ż T {2

t“´T {2

pptq dxptq “ 2

ż T {2

0

pptq dxptq

is easy to evaluate with the change of variables

t´ t0 ´ T {4 “ R sinh τ for 0 ď t´ t0 ď T {2 ,

suggested by the notion of the proper time on the trajectory. Then

X ´ x “ R cosh τ , p “ ´m sinh τ .
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When t´ t0 changes from 0 to T {2, τ changes from ´θ to θ, where θ is determined from

R sinh θ “ T {4 “
1

g

?
E2 ´m2 ,

or
E “ m cosh θ . pP2.2q

The integration yields

S “
2m2

g

ż θ

´θ

dτ sinh2 τ “
m2

g
rsinh 2θ ´ 2θs . pP2.3q

Together with (P1.2) this yields a parametric representation of SpEq.
In the non-relativistic limit ∆E “ E ´m ăă m we have θ ăă 1, whence

∆E «
m

2
θ2 , S «

4m2

3g
θ3 ,

and (P2.2),(P2.3) reduce to (P2.1).

(d) The relativistic orbit encloses the nonrelativistic orbit because for a moving particle
a given force accelerates a nonrelativistic particle more than a relativistic particle (“the mass
increases with velocity for a relativistic particle”).

t

x0

x

——– = parabolic nonrelativistic motion
¨ ¨ ¨ ¨ ¨ ¨ = hyperbolic relativistic motion
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Classical Mechanics 2

Discretizing canonical transformations

Many physical systems are described by Hamiltonians which give rise to equations of motion
that cannot be solved analytically, but must be discretized and solved numerically. Dis-
cretizations which preserve the symmetries of the continuum theory are especially effective
when numerically integrating the equations of motion for long times. In this problem, we
will explore some of the techniques available to describe such systems.

Consider a one-dimensional classical system whose finite time evolution is described by a
canonical transformation. Specifically, let

x ” xptq , x1 ” xpt1q , p ” pptq , p1 ” ppt1q

and consider a generating function F2px, p
1q. Then the evolution from px, pq to px1, p1q is

obtained by solving the equations

p “
BF2

Bx
, x1 “

BF2

Bp1
(1)

(a) (5 points)

(i) Show that this evolution preserves volume in phase space (that is, prove Liouville’s
theorem for this case).

(ii) Next show that for
F2 “ xp1 ` δtH

as δt ” t1 ´ t Ñ 0, the evolution equations reduce to Hamilton’s equations of
motion.

(b) (5 points) Suppose there is a conserved quantity Gpx, pq. Noether’s theorem states
that this means the system has a symmetry.

(i) What are the transformations of x, p under this symmetry?

(ii) How does the Hamiltonian transform under this symmetry? Explain why this is
equivalent to Noether’s theorem.

(iii) Now compute the transformation of the Lagrangian expressed in the Hamiltonian
form:

Lpx, 9xq “ p 9x´Hpx, pq

Show that L transforms by a total derivative. You should use Hamilton’s equa-
tions, but do NOT use the Euler-Lagrange equations.

(iv) A simple example of a conserved quantity is the Hamiltonian itself. For this
example, what are the transformations of x, p and L? What is the physical inter-
pretation of this symmetry?
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(c) (5 points) For a Hamiltonian of the form p2

2m
`Upxq, show that the naive discretization

of Newton’s equations of motion (for δt small but finite)

p1 “ p´
BUpxq

Bx
δt , x1 “ x`

p

m
δt (2)

does NOT preserve volume in phase space. For a harmonic oscillator, will the volume
shrink or grow? What does this say about the long time behavior of this approxima-
tion? Estimate the number of iterations before the error is of order one, in terms of
the mass m of the particle, the spring constant k, and the finite interval δt.

(d) (5 points) What is the analogous discretization using canonical transformations? Find
the right F2px, p

1q, and work out the equations corresponding to (2) in part (c). Why
is this guaranteed to preserve volume in phase space? What does this say about the
long time behavior of this approximation?
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Solution

(a) (5 points)

(i) Show that this evolution preserves volume in phase space (that is, prove Liouville’s
theorem for this case).
Solution: We need to compute the Jacobian determinant of the transformation:

detpJacq “

ˇ

ˇ

ˇ

ˇ

ˇ

Bx1

Bx
Bx1

Bp

Bp1

Bx
Bp1

Bp

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

B2F2

Bp1Bx
` B2F2

Bp1Bp1

Bp1

Bx
B2F2

Bp1Bp1

Bp1

Bp

Bp1

Bx
Bp1

Bp

ˇ

ˇ

ˇ

ˇ

ˇ

“
B2F2

Bp1Bx

Bp1

Bp
.

But differentiating p “ BF2

Bx
with respect to p gives

1 “
B2F2

Bp1Bx

Bp1

Bp
,

and hence the Jacobian determinant is 1.
Solution: Solution with the volume form:

dp^ dx “
B2F2

BxBp1
dp1 ^ dx “ dp1 ^

B2F2

Bp1Bx
dx “ dp1 ^ dx1

is also acceptable.

(ii) Next show that for
F2 “ xp1 ` δtH

as δt ” t1 ´ tÑ 0, the evolution equations reduce to Hamilton’s equations of motion.
Solution: Equation (1) becomes:

p “ p1 ` δt
BH

Bx
, x1 “ x` δt

BH

Bp1
ñ p1 ´ p “ ´δt

BH

Bx
, x1 ´ x “ δt

BH

Bp1

which, in the limit δtÑ 0, p1 Ñ p, x1 Ñ x reduces to

9p “ ´
BH

Bx
, 9x “

BH

Bp

(b) (5 points) Suppose there is a conserved quantity Gpx, pq. Noether’s theorem states that
this means the system has a symmetry.

(i) What are the transformations of x, p under this symmetry?
Solution: They given simply by the Poisson brackets with G:

δp “ ´ε
BG

Bx
, δx “ ε

BG

Bp

where ε is an arbitrary constant small parameter.
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(ii) How does the Hamiltonian transform under this symmetry? Explain why this is equiv-
alent to Noether’s theorem.
Solution: The statement that this is a symmetry is simply δH “ 0. Then:

δH ”
BH

Bx
δx`

BH

Bp
δp “ ε

ˆ

BH

Bx

BG

Bp
´
BH

Bp

BG

Bx

˙

“ ε

ˆ

´ 9p
BG

Bp
´ 9x

BG

Bx

˙

“ ´ε 9G ,

and hence δH “ 0 ô 9G “ 0.

(iii) Now compute the transformation of the Lagrangian in Hamiltonian form:

Lpx, 9xq “ p 9x´Hpx, pq

Show that L transforms by a total derivative. You should use Hamilton’s equations,
but do NOT use the Euler-Lagrange equations.
Solution: Because δH “ 0, we have

δL “ δp 9x` p δ 9x “ ε

ˆ

´
BG

Bx
9x` p

d

dt

BG

Bp

˙

“ ε

ˆ

´
BG

Bx
9x`

d

dt

ˆ

p
BG

Bp

˙

´ 9p
BG

Bp

˙

“ ε

ˆ

´ 9G`
d

dt

ˆ

p
BG

Bp

˙˙

“ ε
d

dt

ˆ

p
BG

Bp

˙

,

where the last step follows from 9G “ 0.

(iv) A simple example of a conserved quantity is the Hamiltonian itself. For this example,
what are the transformations of x, p and L? What is the physical interpretation of this
symmetry?
Solution: If we take G “ H, then from Hamilton’s equations we have

δp “ ε 9p , δx “ ε 9x

Plugging into our result, we find

δL “ ε
d

dt
pp 9xq

which is correct modulo Hamilton’s equations; we are free to subtract a term 0 “ ε 9H,
and then we find the more usual result

δL “ ε 9L

Physically, this is time translation invariance, and it means that if we find one solution
xptq to the equations of motion, then xpt` aq is also a solution for any constant a.

(c) (5 points) For a Hamiltonian of the form p2

2m
` Upxq, show that the naive discretization

of Newton’s equations of motion (for δt small but finite)

p1 “ p´
BUpxq

Bx
δt , x1 “ x`

p

m
δt (2)
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does NOT preserve volume in phase space.
Solution: The Jacobian determinant is

detpJacq “

ˇ

ˇ

ˇ

ˇ

ˇ

Bx1

Bx
Bx1

Bp

Bp1

Bx
Bp1

Bp

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1 δt
m

´δt B
2U
BxBx

1

ˇ

ˇ

ˇ

ˇ

ˇ

“ 1`
pδtq2

m

B2U

BxBx

For a harmonic oscillator, will the volume shrink or grow?
Solution: For a harmonic oscillator, U “ 1

2
kx2 with k ą 0, and hence the Jacobian is

1` k
m
pδtq2 ą 1, which means the volume grows.

What does this say about the long time behavior of this approximation? Estimate the
number of iterations before the error is of order one in terms of the mass m of the particle,
the spring constant k, and the finite interval δt.
Solution: The approximation is unstable and after approximately

N «

ˆ

k

m
pδtq2

˙´1

iterations will deviate from the exact solution by order one.

(d) (5 points) What is the analogous discretization using canonical transformations? Find
the right F2px, p

1q, and work out the equations corresponding to (2) in part c).
Solution: The right F2px, p

1q follows from part ii) of a):

F2px, p
1
q “ xp1 ` δt

ˆ

pp1q2

2m
` Upxq

˙

.

The evolution equations are (1) from above; here they become:

p “ p1 ` δt
BU

Bx
, x1 “ x` δt

p1

m
,

which we rewrite as:
p1 “ p´ δt

BU

Bx
, x1 “ x` δt

p1

m
.

Notice in the second equation, p1 appears on the right hand side, rather than p as in (2) of
part c).

Why is this guaranteed to preserve volume in phase space?
Solution: We proved that all canonical transformations preserve volume in phase space.

What does this say about the long time behavior of this approximation?
Solution: We do not expect the errors from the discretization procedure to grow with time
(of course, numerical errors can accumulate, though these are typically much smaller than
discretization errors).
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Classical Mechanics 3 

 

Open system   

 

A particle of mass m is attached to an infinite string, with mass μ per unit length, and stretched with 

tension T. The particle is confined to move along the y axis normal to the string (see the figure below), 

in an additional potential U(y), not related to the string, with a minimum at y = 0. 

 

A (5 points). Derive the system of differential equations and boundary conditions describing 

the dynamics of small deviations of this system from equilibrium.  

B (5 points). Assuming that the waves on the string are excited only by the motion of the 

particle (rather than any external source), reduce this system to an ordinary differential equation for 

the small displacement of the particle, as a function of time. (Hence consider the case that for x>0 

there are only right-moving waves, and for x<0 only left-moving waves.) 

C (4 points). Solve this equation for the case U(y) = 0, assuming that the motion was initiated, 

from equilibrium, by a short external impulse p given to the particle. Calculate the final displacement 

of the particle. Sketch the resulting displacement y(x, t) of some point of the string as a function of 

time. 

D (4 points). For the case of a harmonic oscillator, when U(y) = mω²y²/2, solve the equation 

of motion under the same assumptions as in C. 

E (2 points). Would you describe this system as a Hamiltonian (energy-conserving) or 

dissipative? 

 

 

 

 

 

 

 

 

 

 

x T 0 T 

m 

y 



 

Solution 

  A (5 points). For small deviations from equilibrium, with y/x → 0, the vertical force exerted 

on the particle by the two parts of the string is 













−




 −=+= 00 xxy

x

y

x

y
TF , 

so that the equation of motion of its vertical coordinate Y(t) is 

        
( )













−




+




−= −=+= 00 xx

x

y

x

y
T

Y

YU
Ym  ,    (1) 

where the dot denotes the differentiation over time. 

  Similarly, the vertical force exerted on to a small fragment, of length dx, of the string by the 

parts adjacent to it, is 

dx
x

y
T

dx

x

ydx

x

y
T

x

y

x

y
TdF xxdxxdxxy 2

2

2

2

2

2

2/2/
22 


=
















−




−








+

















−




 −+ . 

Since the mass of this fragment is dx, this gives us the following equation of the string motion: 

      .
2

2

2

2

x

y
T

t

y




=




      (2) 

Eqs. (1)-(2), together with the boundary condition (evident from the figure above), 

      )(),0( tYty = ,      (3) 

fully describe the system’s dynamics, provided that initial conditions are specified. 

 

  B (5 points). Eq. (2) is the well-known wave equation, with the general solution 

,),( 







++








−= →

v

x
tf

v

x
tftxy  

where ( ) 0/
2/1
 Tv , is the wave velocity, and f → and f are some functions of a single argument, 

which are determined by initial and boundary conditions. If the waves on the string are excited only 

by the motion of the particle (rather than any external sources, in particular any waves arriving from 

afar), the wave on its right part (x > 0) may travel only to the right, and vice versa: 





+

−
=



→

,0at ),/(

,0at ),/(
),(

xvxtf

xvxtf
txy  

Moreover, according to Eq. (3), at x = 0 these functions have to be equal to each other, and to the 

particle’s coordinate Y(t), so that 

      
( )
( )



++

−−
=









+

−
=

.0at ),/(/1

,0at ),/(/1
   hence and

,0at ),/(

,0at ),/(
),(

xvxtYv

xvxtYv

x

y

xvxtY

xvxtY
txy




 (4) 



 

Plugging the last expressions, for x = 0, into Eq. (1), we get the ordinary differential equation  

           
( )

( ) 2/1
with  ,2 T

v

T
ZYZ

Y

YU
Ym =−




−=  .   (5) 

The constant Z is called the wave impedance of a string; as Eq. (5) shows, in our case 2Z plays the role 

of the drag coefficient   defined by the relation Fdrag = -u, where Yu  is the particle’s velocity. 

 

  C (4 points). If U(Y) = 0, Eq. (5) is reduced to a simple linear equation for the velocity of the 

particle, 

02 =+ Zuum  , 

with the solution 

    ( ) ( )
Z

mt
utu

2
  where,exp0 








−= 


.    (6) 

This solution describes the asymptotic approach of the velocity to zero, and of the particle’s 

displacement Y(t) to a constant. For the initial condition specified in the assignment, mu(0) = p, we 

get 

   ( ) ( ) ,exp1exp
00

















−−=








−==  





t

m

p
dt'

t

m

p
dt't'utY

tt

 

so that at t → , Y → p/m. As the first of Eqs. (4) shows, the displacement of each point of any string 

have the same form, delayed by the wave propagation time t = y/v - see the sketch below. 

 

 

 

 

 

 

  D (4 points). For the case of a harmonic oscillator, with U(Y) = m2Y2/2, Eq. (5) takes the form 

,0
1 2 =++ YYY 


  

where the time constant  is given by Eq. (6). This is the standard equation of a damped linear oscillator 

with the Q-factor 

=Q ; 

in our particular case, Q = m/2Z. 

 

yt 

y

t
0

mp /





 

  E (2 points). This is a good example of an “open” physical system, whose dynamics may be 

interpreted in two different ways. On one hand, the full energy of the system, with strings extending 

to infinity, 

( ) 
+

−

+

−


























+












++=+ dx

x

yT

t

y
YUY

m
edxEE

22

2

222

  , 

is conserved for any finite t.  On the other hand, the energy of any sub-system including the particle 

plus two adjacent segments of the string of any finite length, eventually looses energy, and hence is 

dissipative. This duality gives a wonderful (and broadly used) opportunity to explore this and similar 

models to study not only classical, but also quantum dynamical dissipative systems, using reliable 

theoretical methods developed for Hamiltonian systems. 

 

Comment: One can also derive the equation of motion in (5) from energy conservation. For an 

arbitrary waveform y(x, t) the kinetic energy of a small fragment dx is 

dx
t

y
2

2












, 

while its potential energy udx may be calculated as the elementary work, Tdl, necessary for the 

elongation dl of the fragment - from its equilibrium value dx to the current value  

dx
x

y
dx

x

y
























+
























+

2
2/1

2

2

1
11 , 

where the last form is valid for small elongations, dl << dx. From here, 

dx
x

yT
udx

2

2












= , 

so that the total energy of the fragment is  

dx
x

yT

t

y
edx
























+












=

22

22


. 

Traveling with velocities v, the waves (4) carry out the power  

( )
( ) ( )

.
1

22

/

2

/

2
, 22

2

22









=
















+=
























+












==



→
v

x
tYZ

v

x
tY

v

T
v

x

vxtYT

t

vxtY
vvetxP  

  

 Since both power flows are directed from the particle, its energy balance may be written as 
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Carrying out the differentiation in the left-hand side, and cancelling Y , we arrive back at Eq. (5). 



Electromagnetism 1

Consider two identical rods of length ` with charges `q and ´q pasted on their ends. The
centers of the rods are located on the z-axis which is perpendicular to the length of the rods
(see below). The two rods are separated by a distance d " `, with the top and bottom rods
located at heights z “ ˘d{2 respectively. The rods rotate around the z axis with the same
frequency ω but are out of phase, and at time t“0 the bottom rod has an azimuthal angle
of φ0 while the top rod has φ “ 0.

+q�q!

!

+q

�q

`

d

z

x

z= 3
2d

(a) (8 points) First consider the limit ωd{c ! 1. Determine the (real) electric and magnetic
fields as a function of time at a height z “ 3d{2 on the z axis.

(b) (4 points) Next consider the limit ωd{c " 1, but still with ω`{c ! 1. Determine the
(real) electric and magnetic fields at a height z “ 3d{2 on the z axis.

(c) (4 points) With the approximations of part pbq, determine the phase φ0 when the fields
from the two dipoles add destructively. Explain your result physically.

(d) (4 points) With the approximations of part pbq, determine the time averaged electro-
magnetic power passing through a small area A at a height z “ 3d{2 on the z axis,
with front face directed towards the origin.
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Solution

(a) This is near field regime. In this case we are just supposed to sum the electrostatic fields
from the dipoles. The dipoles are

p1 “p0e
´iωt

px̂` iŷq , (3)

p2 “p0e
´ipωt`φ0qpx̂` iŷq , (4)

where it is understood that we are to take the real part of the expression. Here and below
the magnitude of the dipole moment is

p0 “ q` . (5)

The two electrostatic fields are

E1 “
3n1pn1 ¨ p1q ´ p1

4πr31
, (6)

E2 “
3n2pn2 ¨ p2q ´ p2

4πr32
, (7)

where

r1 “|r ´ r1| “ d , (8)
r2 “|r ´ r2| “ 2d , (9)

and n1 (for example) is a unit vector from the center of the dipole to the observation point.
Here we note that n1 “ n2 “ ẑ, and thus n1 and n2 are perpendicular to p1 and p2 yielding

E “E1 `E2 , (10)

“
´p1
4πd3

`
´p2

4πp2dq3
, (11)

“´
p0

4πd3
e´iωt

ˆ

1`
e´iφ0

8

˙

px̂` iŷq . (12)

Taking the real part

E “ ´
p0

4πd3

„ˆ

cospωtq `
1

8
cospωt` φ0q

˙

x̂`

ˆ

sinpωtq `
1

8
sinpωt` φ0q

˙

ŷ



. (13)

Now we will determine the magnetostatic field. This is given by the Biot-savat law. First
we recognize that a time dependent dipole gives a current. Integrating over a small volume
including the dipole we find

I1∆~̀1 ”j1∆V “ Btp1 “ ´iωp0e
´iωt

px̂` iŷq , (14)

I2∆~̀2 ”j2∆V “ Btp2 “ ´iωp0e
´ipωt`φ0qpx̂` iŷq . (15)
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Then the Biot-savat law gives

B “
I1∆~̀1{cˆ n1

4πr21
`
I2∆~̀2{cˆ n2

4πr22
. (16)

Thus, since n1 “ n2 “ ẑ and

pI∆~̀ˆ ẑq 9 px̂` iŷq ˆ ẑ “ p´ŷ ` ix̂q , (17)

we find:

B “
ikp0e

´iωt

4πd2

ˆ

1`
e´iφ0

4

˙

pŷ ´ ix̂q . (18)

Taking the real part we have

B “
kp0

4πd2
“

ŷ
`

sinpωtq ` 1
4

sinpωt` φ0q
˘

` x̂
`

cospωtq ` 1
4

cospωt` φ0q
˘‰

(19)

(b) In this regime the field is radiative. The electric field is just the sum of the radiation fields
of two dipoles separated from the observation point by d and 2d respectively. Because of the
retardation, the phases of the two dipoles are e´iωpt´d{cq and e´iωpt´2d{cq`iφ0 respectively, and
thus

E1 “k
2p0

e´iωpt´d{cq

4πd
p´nˆ nˆ px̂` iŷqq , (20)

E2 “k
2p0

e´iωpt´2d{cq`iφ0

4πp2dq
p´nˆ nˆ px̂` iŷqq . (21)

Then with n in the z direction we have

E “E1 `E2 (22)

“k2p0
e´iωpt´d{cq

4πd
px̂` iŷq

„

1`
1

2
eipωd{c´φ0q



. (23)

Taking the real part of we determine the radiative electric field

E “
k2p0
4πd

“

x̂
`

cospωpt´ d{cqq ` 1
2

cospωpt´ 2d{cq ` φ0q
˘

` ŷ
`

sinpωpt´ d{cqq ` 1
2

sinpωpt´ 2d{cq ` φ0q
˘ ‰

. (24)

The magnetic field in this region is simply

B “ ´ẑ ˆE . (25)

(c) The phase difference betwen the two oscillators will add destructively when

pωd{cq ´ φ0 “ π (26)

i.e.
φ0 “

2πd

λ
´ π (27)

Physically we are requiring that the waves from the bottom dipole (which are delayed by a
time d{c relative to the top, but ahead by the phase angle φ0) should be 180 degrees out of
phase from the waves of the top dipole by the time they reach the observation point.
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(d) The time averaged power passing through the detector is

P “ xS ¨ nAy “
c

2
AE ¨E˚ (28)

Combining factors we see that

E ¨E˚9px̂2
` ŷ2

q

ˇ

ˇ

ˇ

ˇ

1`
1

2
eipωd{cq´iφ0

ˇ

ˇ

ˇ

ˇ

2

(29)

“2

ˆ

5

4
` cospωd{c´ φ0q

˙

(30)

and therefore
P “

ck4Ap20
16π2d2

ˆ

5

4
` cospωd{c´ φ0q

˙

. (31)
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Electromagnetism 2

A guided wave:

A simple coaxial cable consists of two cylindrical perfect conductors of infinite length as
shown below. The inner and outer conducting cylinders have radii a and b respectively.
The space between the conductors is filled with a dielectric with electric and magnetic
permeablities ε and µ respectively. Assume that the currents are on the conducting surfaces
and do not penetrate into the interior of the metal. This is an appropriate approximation
at high frequency when the skin depth is small compared to the transverse dimensions.

✏, µ

a
b

(a) (2 points) (i) A static potenial difference is maintained between the inner and outer
conductors. Determine the capacitance per unit length C. (ii) A current runs down
the cable on the surface of the inner conductor and returns on the surface of the outer
conductor. Determine the inductance per unit length L. (iii) Determine the product
LC and find a pleasing result.

(b) (4 points) Now consider an electromagnetic wave propagating down the cable in the
z direction. Assume that the electric and magnetic fields are perpendicular to z and
take the form

Ept,xq “ EKpxKq e
ikz´iωt , Bpt,xq “ BKpxKq e

ikz´iωt , (1)

where xK denotes the px, yq coordinates. Show that EKpxKq and BKpxKq satisfy the
equations of two-dimensional electro and magneto statics; determine the relation be-
tween EK and BK and the relation between ω and k.

The wave solutions in Eq. (1) are known as transverse electromagnetic (TEM) waves.

(c) (4 points) Consider the propagating TEM wave of part (c). Show that the current on
the conducting surfaces satisfies a one dimensional wave equation.

(d) (5 points) Determine the power transmitted by the TEM wave. Express your result in
terms of the amplitude of current wave, I0, and the radii a and b of the cable.

(e) (5 points) Now assume the walls of the cylinders are not perfect conductors, but have
a large but finite conductivity σ. First estimate, and then compute the power lost per
length by the TEM wave of part (d). Assume that kb ! 1.
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Solution

(a) If the inner conducter has charge per length λ and the outer conductor has charge ´λ,
then Gauss law

ş

D ¨ da “ Qenc gives

εEρp2πρq` “ λ`, Eρ “
λ{ε

2πρ
. (2)

The potential differnce between the outer and outer conductor is

´∆Vab “ Vb ´ Va “ ´

ż b

a

dρEρ “ ´
λ

2πε
logpb{aq . (3)

Then the capacitance per length is

C “ pQ{`q
Vab

“
2πε

logpb{aq
. (4)

The inuctance is perhaps most easily found from the energy stored in the region:

UB “
µ

2

ż

d3rH2 , (5)

“
µ

2
`p2πq

ż b

a

ρdρ
I2{c2

p2πq2ρ2
, (6)

“
µ

2c2
`
I2

2π
logpb{aq . (7)

The energy per length is UB{` and thus, from the formula UB “ 1
2
LI2, the inductance per

length is
L “ µ

2πc2
logpb{aq . (8)

Concluding
LC “ µε

c2
. (9)

Although this result result was derived for a cylindrical cable, it actually holds for a co-
axial cable of arbitrary transverse cross section. You are invited to prove this statement for
yourself.

(b) Now we substitute the provided forms into the Maxwell equations.

We use indices a, b “ 1, 2 and ijk “ 1, 2, 3. εijk is the usual thing, and εab is the two
dimensional version with ε12 “ `1. The vectors have only xy components, and thus the
divergence and curl take the form:

∇ ¨ V “BaV
a , (10a)

p∇ˆ V qa “εaijBiVj “ εazbBzVb , (10b)
“´ εabBzVb , (10c)

p∇ˆ V qz “εzabBaVb , (10d)
“εabBaVb . (10e)
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Note
εabε

bc
“ ´δca . (11)

Then breaking up the Maxwell equations with these rules

ε∇K ¨EK “0 (12a)
εabBaHb “0 (12b)

´εabBzHb “´
1

c
BtpεE

a
q (12c)

∇K ¨ pBKq “0 (12d)
εabBaEb “0 (12e)

εabBzEb “
1

c
BtpµH

a
q (12f)

Taking the z derivative of the last equation (and multiplying by εca) and using it in the
time-derivative of the third

ˆ

µε

c2
B2

Bt2
´
B2

Bz2

˙

Ea
px, z, tq “ 0 (13)

Similarly, taking the z derivative of the third equation (and multiplying by εca ) and using
it in the time-derivative of last gives

ˆ

µε

c2
B2

Bt2
´
B2

Bz2

˙

Ba
px, z, tq “ 0 (14)

Thus these equations are solved if

ω2
“
c2

µε
k2 (15)

We also can see from the last equation the relation between E and H:

εabEb “ ´ZH
a , Z ”

a

µ{ε , (16)

i.e.
Ex
“ ZHy , Ey

“ ´ZHx . (17)

Finally the perpendicular vector satisfy the equations of 2D electro and magneto statics.

∇K ¨DK “0 , (18a)
εabBaEb “0 , (18b)
∇K ¨BK “ “ 0 , (18c)
εabBaHb “0 . (18d)
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(c) Let us examine the boundary conditions. In what follows n is an outward directed
normal to the surface (i.e. directed away from the metal.) The charge density is

ε n ¨ pEoutq|surf “ ε naE
a
|surf “ σpz, tq . (19)

and the current is in the z direction

pnˆHoutq
z
|surf “ εabnaHb

ˇ

ˇ

surf
“
Kzpz, tq

c
. (20)

Then we have the continuity equation:

Btσ ` BzK “ 0 . (21)

Taking the z derivative of this equation

BtBzσ ` B
2
zK “ 0 , (22)

and using
Bzσ “ εnaBzE

a
“ εna

´

´
µ

c
εabBtHb

¯

“ ´
εµ

c2
BtK , (23)

we arrive at the wave equation for the surface Current
ˆ

µε

c2
B
2
t ´

c2

µε
B
2
z

˙

K “ 0 . (24)

(d) The electric field is radially outward and equal to

Eωpxq “
λω{ε

2πρ
. (25)

Here and below we use the following notation for the electric field and other physical quan-
tities,

Epx, t, zq ” Eωpxqe
´iωt`ikz , (26)

where x denotes the transverse vector x “ px, yq. Thus the charge per length is

λpt, zq ” λωe
´iωt`ikz . (27)

The magnetic field is azimuthal, and circles around the cylinder

Hω “
Iω{c

2πρ
“
I0{c

2πρ
(28)

where in the last step we used that Iω was called I0 in the problem statement.

The charge per length λω is related to the current through continuity to I|omega

Btσ ` BzK “0, (29)
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yielding
´ iωσω ` ikKω “ 0 . (30)

Thus the amplitude of the charge wave is

λω “

?
µε

c
I0 . (31)

where Kω “ I0{p2πaq and Kω “ I0{p2πbq on the inner and outer surface respectively.

We then evaluate the (time averaged) Poynting flux

xSy “c xE ˆHy “
c

2
RerE˚ωHωs ẑ (32)

“
c

2

c

µ

ε

ˆ

I0
c

˙2
1

p2πρq2
ẑ . (33)

Integrating over the transverse area of the cable gives the energy flux carried by the TEM
wave

dW

dt
“

ż b

a

xSy 2πρ dρ , (34)

“
c

4π

c

µ

ε

ˆ

I0
c

˙2

logpb{aq . (35)

(e) First an estimate. The electric and magnetic fields penetrate a distance of order the skin
depth δ „

a

c{pωσq into the metal. Consider a wire with cross sectional area A and length
L; the resistance R per length is

R
`
“

1

σA
. (36)

In this example the effective area is of order A „ 2πaδ, then the energy dissipated per length
is of order

dWloss

dtd`
„
I2R
`
„
I20
σδ

1

2πa
. (37)

Our computations below will confirm this estimate.

To actually calculate the resistance, we have to evaluate the Poynting flux directed into
the ohmic material. Inside the material the magnetic field obeys a diffusion equation

BH

Bt
“

c2

µσ
∇2H . (38)

with diffusion coefficient
D “

c2

µσ
. (39)

Thus, if the sysmtem is driven with frequency ω, there is a characterstic length of order

δ
?

2
”

c

D

ω
(40)
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which emerges.

Choosing the normal wall face as the x direction, the parallel direction to the wall face as
the y direction, and the longitudinal direction as the z direction. The magnetic field takes
the form

Hypt, xq “ Ho
ye
´iωt`ikx , (41)

where

k “ i1{2
c

ω

D
“ i1{2

?
2

δ
. (42)

From the relation
∇ˆH “

σ

c
E , (43)

we see that the electric field is

Ez “
c

σ
BxHypt, xq “ i

ck

σ
Ho
ye
´iωt`ikx

“ i3{2
?

2c

σδ
Ho
ye
´iωt`ikx (44)

Next we evaluate the Poynting flux into the wall

xSloss ¨ x̂y|surf “
c

2
RerEω ˆH

˚
ωs ¨ x̂

ˇ

ˇ

ˇ

surf
(45a)

“
c2|Ho

y |
2

2σδ
(45b)

“
|Ky|

2

2σδ
(45c)

In the last step we replaced |Ho
y | (the amplitude of the surface field) with the amplitude

of the surface current |Ky|{c. The surface current is defined as the integral of the volume
current

Kzptq

c
“

ż 8

0

dx σEzpt, xq “ Ho
ye
´iωt (46)

Eq. (45b) and Eq. (45c) are rather general results which can be used in many problems to
evaluate losses.

Finally, since the current on the inner and outer surfaces are

Kin “
I0

2πa
, Kout “

I0
2πb

, (47)

we may evaluate the energy lost per time per length by integrating Eq. (45c) over the walls
of the surface. This yields

dWloss

dtd`
“

I20
2σδ

ˆ

1

2πa
`

1

2πb

˙

, (48)

where the first and second terms come from integrating Eq. (45c) over the inner and outer
surface respectively
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Electromagnetism 3

The Poisson Integral

(a) (5 points) Consider a grounded cylinder of radius a which is infinite in length. A line
of charge inside the cylinder has charge per length λ, and is displaced from the center
of the cylinder by a distance ρ0, with ρ0 ă a. Determine the potential ϕpρ, φq at all
points inside the cylinder1.

Hint: consider an appropriate image line of charge at a distance a{ρ20 from the center,
and check that the appropriate boundary conditions are satisfied.

(b) (8 points) Now the line of charge is removed, but the surface cylinder is held at potential

V0pφq “

#

V0 0 ă φ ă π

´V0 π ď φ ď 2π
(49)

Express the potential inside the cylinder ϕpρ, φq as a definite integral using the Green
function of paq.

(c) (7 points) The potential ϕpρ, φq of part pbq may also be expressed as a series expansion
in the appropriate separated solutions. Determine this expansion and check that the
first term in the series agrees with the results of pbq for ρ ! a.

1Here ρ “
a

x2 ` y2 and φ “ atanpy{xq, with x, y measured from the center of the cylinder.
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~ρ − ~ρ2

~ρ2

~ρ1
~ρ − ~ρ1~ρ =

(ρ
co
sφ
, ρ
sin

φ)

Figure 1: Coordinates for determining the potential from a line of charge in a cylinder.

Solution:

(a) The potential is found through inversion. Specifically if the line of charge is at position
~ρ1 “ pρ0, 0q, then we will take an image line of charge at position ~ρ2 “ pa2{ρ0, 0q with charge
per length λ1. The full potential is

ϕp~ρq “ ´
λ

4π
logp~ρ´ ~ρ1q

2
´
λ1

4π
logp~ρ´ ~ρ2q

2
` const (50)

Expressing Eq. (50) using the coordinates shown in Fig. 1 we find

logp~ρ´ ~ρ1q
2
“ logpρ2 ` ρ20 ´ 2ρρ0 cospφqq (51)

logp~ρ´ ~ρ2q
2
“ logpρ2 `

a4

ρ20
´

2a2ρ

ρ0
cospφqq (52)

“ log
`

pρ0ρ{aq
2
` a2 ´ 2ρρ0 cospφq

˘

` logpa2{ρ20q (53)

Notice that when ρ “ a the two logarithms differ by a constant, log a2{ρ20. With this result
we take λ1 “ ´λ, and set the constant in Eq. (50) to ´λ{p4πq logpa2{ρ20q, to find the required
potential

ϕp~ρq “ ´
λ

4π
log

ˆ

ρ2 ` ρ20 ´ 2ρρ0 cospφqq

pρ0ρ{aq2 ` a2 ´ 2ρρ0 cospφq

˙

. (54)

This satisfies the Poisson equation ´∇2ϕp~ρq “ λδ2p~ρ ´ ~ρ1q, and the Dirichlet boundary
conditions

ϕp~ρq|ρ“a “ 0 . (55)

(b) Now we will use Green theorem to determine the potential everywhere in the interior
given the Green function and the boundary values of the potential. The Dirichlet Green
function is the potential at point ~ρ from a unit charge at point ~ρ0 “ pρ0 cospφ0q, ρ0 sinpφ0qq.
Translating Eq. (50) into this slightly more general geometry, the Dirichlet Green function
is

GDp~ρ, ~ρ0q “ ´
1

4π
log

ˆ

ρ2 ` ρ20 ´ 2ρρ0 cospφ´ φ0qq

pρ0ρ{aq2 ` a2 ´ 2ρρ0 cospφ´ φ0q

˙

. (56)
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The surface Green function (or boundary to bulk propagator) is the normal derivative of the
Dirichlet Green function

Kp~ρ, φ0q “ ´n ¨
BGDp~ρ, ~ρ0q

B~ρ0

ˇ

ˇ

ˇ

ˇ

surf

, (57)

“ ´
BGD

Bρ0

ˇ

ˇ

ˇ

ˇ

ρ0“a

. (58)

With straightforward algebra we find

Kp~ρ, φ0q “
a

2π

1´ ρ2{a2

ρ2 ` a2 ´ 2ρa cospφ´ φ0q
. (59)

The boundary to bulk propagator takes the boundary value of the potential as input and
determines the potential in the interior as prescribed by the Green theorem:

ϕp~ρq “

ż 2π

0

a dφ0Kp~ρ, φ0qV0pφ0q . (60)

For the problem at hand this integral reads

ϕp~ρq “ V0

ż π

0

adφ0

„

a

2π

1´ ρ2{a2

ρ2 ` a2 ´ 2ρa cospφ´ φ0q
´

a

2π

1´ ρ2{a2

ρ2 ` a2 ´ 2ρa cospφ` φ0q



. (61)

For ρ ! a we find

ϕp~ρq »V0

ż π

0

dφ0
1

2π

2ρ

a
pcospφ´ φ0q ´ cospφ` φ0qq , (62)

“
4V0
π

ρ sinpφq

a
. (63)

(c) Now we determine the potential using the series expansion of the Laplace equation in
cylindrical coordinates

ϕp~ρq “ A0 log ρ` A1 `

8
ÿ

n“1

ˆ

Cnρ
n
`
Dn

ρn

˙

cospnφq `
8
ÿ

n“1

ˆ

Enρ
n
`
Fn
ρn

˙

sinpnφq . (64)

We limit ourselves to sin terms since the potential is odd in this case, and drop the terms
which are singular as ρÑ 0, yielding

ϕp~ρq “
8
ÿ

n“1

Enρ
n sinpnφq . (65)

Using the orthogonality relation
ż π

0

dφ sinpnφq sinpmφq “ δnm
π

2
, (66)
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we find the coefficients

Ena
n
“

2

π

ż π

0

dφ0 V0pφ0q sinpnφ0q , (67)

“
4V0
πn

n “ 1, 3, 5, . . . , (68)

leading to our final result for the potential

ϕpρq “
8
ÿ

n“1,3,5...

4V0
πn

´ρ

a

¯n

sinpnφq . (69)

The first term in this expansion agrees with Eq. (63) derived in (b).
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Quantum Mechanics 1

One dimensional “atoms” and “molecules” in external fields

The purpose of this problem is to study the ionization process of a one-dimensional “atom”,
and the excitation process of a one-dimensional “molecule” under the action of an external
time-dependent interaction.

a. (5 points) Consider a one-dimensional atom composed of a spinless particle of charge e
and massm bound by a delta-function potential V pxq “ ´g δpxq. Find the normalized energy
eigenstates of the bound atom. Find the normalized energy eigenstates of the unbound atom
assumed as free particles in a box of size L. Derive their density of states as a function of
their energy Ek where k is the wavenumber.

b. (5 points) A time-dependent electric field is applied on the atom,

Eptq “ E0θptqθpτ ´ tq (1)

with θptq a step function. What is the probability P pEkqdEk for the charge to be in an
unbound state with energy between Ek and Ek ` dEk? Discuss the physical nature of this
result for small and large k.

c. (5 points) Now, consider a one-dimensional molecule composed of two distinguishable
spin-1

2
particles with charges e1,2 and masses m1,2 coupled harmonically:

H “
p21

2m1

`
p22

2m2

`
1

2

ˆ

1

m1

`
1

m2

˙´1

ω2
px1 ´ x2q

2
` gS ~σ1 ¨ ~σ2 . (2)

What are the energy levels, wavefunctions and degeneracies of the molecule? Give the explicit
form of the normalized wave functions of the two lowest energy levels of the molecule for
gS{~ω ! 1.

d. (5 points) A time- and spin-dependent interaction is now applied on the molecule

V ptq “

ˆ

V1 ` V2
px1 ´ x2q

L

˙

σ1x θptq sinpωtq . (3)

Here V1 and V2 are constants, x1 and x2 are the spatial cooridates of the particles, and σ1x
is the spin operator acting on the first particle. The molecule is intially in the ground state
when V ptq is applied. What is the transition probability to find the molecule in an excited
state if V1,2 are small. Comment on any selection rule.
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a. If we set E “ ´p~kq2{2m ă 0 and α “ 2mg{~2 for the bound state, then the eigenvalue
problem is

Ψ2
´ k2Ψ` αΨ “ 0 (4)

The normalized bound state solution and energy are

E “ ´
mg2

2~2

Ψpxq “
´mg

~2
¯

1
2
e´mg|x|{~

2

(5)

The normalized plane waves in the box of length L with energy Ek “ p~kq2{2m are

Ψkpxq “
1
?
L
eiknx “

1
?
L
ei2nπx{L (6)

with n “ 0,˘1,˘2, .... The energy levels are 2-degenerate for n ‰ 0. The density of free
energy levels is

npEkqdEk “ 2npkqdk “ 2
L~k
2π

“
L

π~

ˆ

m

2Ek

˙

(7)

b. The electric field acts through its dipole form V ptq “ ´exEptq. The probability to
transition from bound to free is

Pk0pτq “
1

~2
| 〈k|exE0|0〉 |2

ˇ

ˇ

ˇ

ˇ

ż τ

0

dteiωk0t
ˇ

ˇ

ˇ

ˇ

2

“
1

~2
| 〈k|exE0|0〉 |2

sin2pωk0τ{2q

pωk0{2q2
(8)

with ωk0 “ Ek `mg
2{2~2 and

〈k|exE0|0〉 “ ´
eE0
?
L

´gm

~2
¯

ż `8

´8

xe´ikx´K|x|

“

´ gm

~2L3

¯
3
2 4ieE0k

pk2 ` pgm{~2q2q2
(9)

The probability to transit to the interval rEk, Ek ` dEks is

P pEkqdEk “ Pk0pτqnpEkqdEk (10)

c. The spectrum of the molecule including its translation is

EP,nS “
P 2

2M
`

ˆ

n`
1

2

˙

~ω ` 2gS

ˆ

SpS ` 1q ´
3

2

˙

ΨP,nSMS
pX;xq “

ˆ

1
?

2π
eiPX{~

˙ ˆ

1

π
1
4x0

Hnpxqe
´x2{2x20

˙

χSMS
(11)
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with M “ m1`m2 and ~S “ ~S1` ~S2. Each molecular state is 2S` 1 degenerate. The lowest
two states occur for P “ 0 and

E0,00 “
1

2
~ω ´ 3gS Ψ0,000pxq „ e´x

2{2x20

ˆ

χ00 “
1
?

2
pα1β2 ´ α2β1q

˙

E0,01 “
1

2
~ω ` gS Ψ0,01MS

pxq „ e´x
2{2x20

ˆ

χ1MS
“ pα1α2,

1
?

2
pα1β2 ` α2β1q, β1β2q

˙

(12)

with α1,2 “Ò and β1,2 “Ó for each particle.

d. For V1,2 small, the transition amplitude follows from the Fermi-Golden rule

C0Ñnpt “ 8q “
1

i~
〈n|V |0〉

ż 8

0

dt sinpωtqeiωn0t (13)

with ~ωn0 “ En,SMS
´ E0,00. The transition probability is

P0Ñn “
| 〈n|V |0〉 |2

4~2

ˆ

1

pω ` ωn0q2 ` ε2
`

1

pω ´ ωn0q2 ` ε2

˙

Ñ
| 〈n|V |0〉 |2

4~2
1

pω ´ ωn0q2 ` ε2

(14)
as the second term in the bracket is dominant. Since σ1xα1 “ β1 and σ1xβ1 “ α1, then

〈n|V |0〉 ” 〈0, nSMS|V |0, 000〉 “ δS1
?

2
pδMS ,`1 ´ δMS ,´1q

ˆ

V1δn0 ` V2
x0
?

2L
δn1

˙

(15)

The transition is to the spin-triplet ground state for the monopole interaction V1, i.e E0,00 Ñ

E0,01 with ω10 “ 4gS, and to the spin-triplet excited state of the harmonic oscilator for the
dipole interaction V2, i.e. E0,00 Ñ E1,11 with ω10 “

1
2
~ω ` 4gS.
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Quantum Mechanics 2

A complex potential

In this problem we will explore the partial transparency of the nucleus to high energy
eutrons, i.e. their partial absorption. For that, a complex potential language will be used.
Consider a beam of non-relativistic neutrons of mass m and energy E moving along the
z-axis towards a nuclear target. The incoming neutron will be treated as a plane wave
with wave number k and the nucleus will be approximated by a constant complex potential
V “ ´U ´ iW . By analogy with optics, we define n “ v{c as the index of refraction, where
v and c are the effective velocities of the neutron inside and outside of the nucleus respectively.

a. 4 points Derive an expression for n, and express its limit (by Taylor expansion) for
high energy neutrons. Derive the intensity of the neutron beam along the z-direction.

b. 4 points Derive the equation for the neutron flow of probability and show that it is
not conserved. What is the net rate loss of neutrons? Where do the neutrons go?

The nucleus can be thought of as a collection of N (spinless) nucleons, moving in an at-
tractive well potential ´Uprq for r ď R, with pair interactions V p~r1, ~r2q described by the
following Hamiltonian in the second quantized form

H “
ÿ

a

eaa
:
aaa `

1

2

ÿ

ab,cd

〈ab|V |cd〉 a:aa:badac , (16)

with ea |a〉 “ p~p 2{2m´ Uprqq |a〉. a:a, aa are creation and annihilation operators.

c. 6 points Write the commutation relations for a, a: and use them to define the prop-
erly symmetrized and normalized ground state |0F y of the nucleus in zeroth order in V . Use
perturbation theory to correct the ground state energy to first order in V .

d. 6 points The neutron in parts a-b can be thought to be in an initial state |ΨE〉 “ a:E |0F 〉
with energy E. Use Fermi Golden rule to express the transition rate between this state and
the allowed final states |ΨF 〉 “ a:pa

:

p1ah |0F 〉. This rate can be used as a microscopic estimate
for W . Explain.
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a. The neutron obeys the stationary equation
ˆ

´
~2∇2

2m
`V

˙

ΨEpzq “ EΨEpzq (17)

with a solution Ψpzq « eiKz and K “ 1
~

a

2mpE ` U ` iW q. The index of refraction is

n “
v

c
“
K

k
“

ˆ

E ` U ` iW

E

˙
1
2

« 1`
1

2

U

E
`
i

2

W

E
(18)

where the large E limit is the last expression. As in optics K “ nk and for large E, the
z-attenuation is

1´ |Ψpzq|2 “ 1´
ˇ

ˇeiknz
ˇ

ˇ

2
« 1´ e´

kW
E
z (19)

b. The time evolution of the probability current (Ψ:Ψ,Ψ:~vΨ) follows from the time depen-
dent Shrodinger equation

i~Ψpt, ~xq “

ˆ

´
~2∇2

2m
`V

˙

Ψpt, ~xq (20)

and its conjugate using the symmetrized velocity ~v “ ~~∇{im. The result is

B

Bt
|Ψ|2 “ ´~∇ ¨Ψ:~vΨ´

2W

~
|Ψ|2 (21)

The rate of neutron loss is

dN

dt
“ ´

2

~
〈ΨE|W |ΨE〉 “ ´

2W

~
N (22)

The loss is from the elastic channel to the inelastic channels of the nucleus. In other words,
the neutrons get absorbed and excite the nucleus.

c. The a, a: obeys standard anti-commutation rules. For V “ 0, the state of N-non-
interacting fermions is given by a Slater determinant

|0F 〉 “
ź

aPF

a:a |0〉 (23)

The energy to first order is

EF ` E1 “
ÿ

aPF

ea `
1

2

ÿ

ab,cd

〈ab|V |cd〉 〈0F | a:aa:badac |0F 〉 “
ÿ

aPF

ea `
1

2

ÿ

a,bPF

〈ab|V |ab〉A (24)

d. The rate of transition from the initial neutron state to the final 2-particles-1-hole state
from Fermi Golden rule is (connected part)
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wiÑf “
2π

~
ÿ

p,p1RF ;hPF

ˇ

ˇ

ˇ

ˇ

ˇ

〈
0F

ˇ

ˇ

ˇ

ˇ

ˇ

aE

˜

1

2

ÿ

ab,cd

〈ab|V |cd〉 a:aa:badac
¸

a:pa
:

p1ah

ˇ

ˇ

ˇ

ˇ

ˇ

0F

〉ˇ

ˇ

ˇ

ˇ

ˇ

2

δpep ` ep1 ´ eh ´Eq

(25)
which is readily reduced by commutation to

wiÑf “
2

~
〈ψE|W|ψE〉 (26)

with

〈ψE|W|ψE〉 “
ÿ

p,p1RF ;hPF

〈Eh|V |pp1〉 〈pp1|V |Eh〉ˆ πδpE ` eh ´ ep ´ ep1q (27)

(26) is the rate of transition from the flying neutron with energy E to an excited state of the
nucleus with 2 particles labeled by p, p1 R F and 1 hole labeled by h P F . This rate loss as
in (22) with (27) is a microscopic estimate for W which realistically is a non-local potential.
Note that energetically E ` eh “ ep ` ep1 is allowed with ep,p1 ą EF and eh ă EF , so the
delta-function has a support.
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Quantum Mechanics 3 

 

Polarized spin 

 

In this problem, your task is to derive some basic properties of particle’s spin, starting exclusively from 

the commutation relations between the Hermitian Cartesian components jŜ of its vector operator Ŝ : 

  jkllkj SiSS ˆˆ,ˆ   

(where each of indices j, k, and l may take values from 1 to 3, and jkl is the Levi-Civita permutation 
symbol), plus the fact that the each of these component operators has a set of eigenstates, with 
eigenvalues separated by multiples of . Then you would use the derived properties of the operators to 
analyze properties of a polarized spin. 

 

A (2 points). Calculate the following commutators:     SSSS j
ˆ,ˆ,ˆ,ˆ 2  and  ,ˆ,ˆ 3 SS  and prove the 

operator relation 3
2
3

2 ˆˆˆˆˆ SSSSS   , where ,ˆˆˆˆ 2
2

2
2

2
1

2 SSSS   and 21
ˆˆˆ SiSS  . 

B (5 points). Prove that for the common eigenstates of the operators 2Ŝ and 3Ŝ , the eigenvalue of the 

former operator is 2s(s + 1), where s is an either integer or half-integer quantum number,1 which sets 
the limits for the possible eigenvalues S3 = m of the latter operator: -s  m  +s. 

C (3 points). In the basis of the these common eigenstates, calculate all matrix elements of the 

operators 2,1
ˆ andˆ SS , and then the diagonal matrix elements of operators 2

1Ŝ , 2
2Ŝ , 21

ˆˆ SS , and 12
ˆˆ SS . 

D (7 points). A free particle with spin s and a gyromagnetic ratio   0  has been placed into an external 
constant magnetic field, and allowed to relax into its ground state, thus “polarizing” the spin. Use the 
results of the previous tasks to calculate the expectation value of its spin component along a direction at 
angle  with that of the field, and the r.m.s. uncertainty of this value. 

E (3 points). Specify your results for  = /2, and give physical interpretations for their dependence on 
the spin s. 

                                                 
1 This constant s is of course what is called the particle’s spin in the narrow sense of the word. 



Solutions: 

A (2 points). First, let us calculate the commutator of 2
3

2
2

2
1

2 ˆˆˆˆ SSSS   with, for example, 1Ŝ : 

           3311332211221
2
31

2
21

2
11

2 ˆˆˆˆˆˆˆˆˆˆˆˆ0ˆ,ˆˆ,ˆˆ,ˆˆ,ˆ SSSSSSSSSSSSSSSSSSSS  , 

using the commutation rule given in the assignment, which may be spelled out for our cases as: 

2133131221
ˆˆˆˆˆ,ˆˆˆˆˆ SiSSSSSiSSSS   . 

Applying each of them twice to the corresponding terms, we get 

 

     
   

.0ˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ,ˆ

32232332

32312133133233122122

321313323121221
2







SSiSSiSSiSSi

SSiSSSiSSSSSSSSiSiSSSSSS

SSiSSSSSSSiSSSSSSS







 (1) 

Due to the symmetry of 2Ŝ , its commutators with 2Ŝ  and 3Ŝ  are evidently similar.  

 Next, using the definition of the operators Ŝ , we get 

               332121122121
ˆ2ˆ2ˆ,ˆ2ˆ,ˆˆ,ˆˆˆ,ˆˆˆ,ˆ SSiiSSiSSiSSiSiSSiSSS   . 

The calculation of the last commutator listed in the assignment is also simple: 

               SSiSSiiSiSSiSSSiSSSS ˆˆˆˆˆˆ,ˆˆ,ˆˆˆ,ˆˆ,ˆ 211223132133  . 

Finally, spelling out the right-hand side of the relation to be proved, we get 

    
    ,ˆˆˆˆˆˆˆˆˆˆˆ,ˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

2
3

2
2

2
13

2
33

2
2

2
13

2
321

2
2

2
1

3
2
31221

2
2

2
13

2
321213

2
3

SSSSSSiiSSSSSSiSS

SSSSSSiSSSSSiSSiSSSSS








 

q.e.d. 

 

B (5 points). First of all, since the operators 2Ŝ and 3Ŝ  commute, they may share some eigenstates; let 

us call their eigenkets m, where m is a certain index (“magnetic quantum number”, not necessarily 
integer) numbering the corresponding eigenvalues sequentially. According to the fact given in the 
assignment, we may always select the indices m so that 

             ,ˆ
3 mmmS        (2) 

with the adjacent values of m different by 1. Let us rewrite the last of the commutation relations 
derived in part A as  

  SSSSS ˆˆˆˆˆ
33  , 

and act by both its parts on any eigenket m: 



mSmSSmSS   ˆˆˆˆˆ
33  . 

Now applying Eq. (2) to the first term in the right-hand part, we may rewrite the result as 

    mSmmSS   ˆ1ˆˆ
3  . 

This equality means that the states mS
ˆ  are also eigenstates of the operator 3Ŝ , corresponding to 

eigenvalues m  1, which are adjacent to the eigenvalue m: 

            1ˆ   mSmS m ,     (3) 

where S
(m) are some c-numbers (essentially, the only 

nonvanishing matrix elements of the “ladder operators” Ŝ  in 
the basis of states m), to be calculated later. Thus the  
operators move the system, respectively, up and down the 
ladder of the eigenstates m – see Fig. on the right.   

 This state ladder must have ends in both directions, 
because an infinite increase of m, and hence of the modulus 
of the expectation value m of the observable S3, would cause the expectation values of the operator 

              2
3

22
2

2
1

ˆˆˆ SSSS  ,      

which corresponds to a non-negative observable, to become negative. Hence there should be two states 
on both ends of the ladder, mmax and mmin, such that  

             .0ˆ,0ˆ
minmax   mSmS     (4) 

Due to the symmetry of the whole problem with respect to the replacement m  -m, we should have 
mmin = - mmax. The value mmax is exactly what is called the particle’s spin s, so that the limits of m may 
be represented as  

                  .sms     

Since the difference mmax - mmin = 2s should correspond to an integer number of ladder steps, s must be 
either integer of half-integer. 

In order to calculate eigenvalues of the operator 2Ŝ , we may use the relation proved in part A: 

           3
2
3

2 ˆˆˆˆˆ SSSSS   .     (5) 

Acting by both its sides on the ket-vector s of the highest state of the ladder, and then using Eq. (2) and  
the first of Eqs. (4), we get 

      ssssssssSsSsSSsS 10ˆˆˆˆˆ 22
3

2
3

2    , 

Next, according to Eq. (1) and its analogs for all other components, the operators 2Ŝ and Ŝ  commute, 
so that we may use Eq. (3) twice to write 

m

mS
ˆ

mS
ˆ

m

 1m

         … 

3
ˆof eigenvalue                  eigenket S 

 SS ˆ   ˆ

 SS ˆ   ˆ

         … 

 1m



   
 
    11ˆ1ˆ

ˆˆ
ˆ1ˆ 2

2
222 


 







 ssssS
S

ss
sS

S

S
s

S

S
SsS

sss



, 

   
 
    211ˆ1

1ˆ
ˆ

1
ˆ

ˆ2ˆ 2
1

2
2

11
22 


 











 ssssS
S

ss
sS

S

S
s

S

S
SsS

sss



, 

etc. - until m = -s, where the matrix element S-
  turns to zero. This means that the eigenstates of 2Ŝ in all 

available states m are indeed the same, equal to 2s(s + 1). This fact is very natural, because physically 
all these states correspond to different spatial orientations of the spin vector S, maintaining its effective 
magnitude.  

 

C (3 points). Let us start from the finding the matrix elements S
(m) participating in Eq. (3). First of all,  

we are speaking essentially about finding just one, rather than two sets of coefficients S
(m). Indeed, let 

us use the general bra-ket conjugation rule to write  

*† ˆ11ˆ mSmmSm   . 

Since the spin component operators jŜ are Hermitian, the ladder operators 21
ˆˆˆ SiSS  are Hermitian 

conjugates of each other, and this equality may be rewritten as 

*ˆ11ˆ mSmmSm   . 

Now applying Eq. (3), and assuming that all eigenstates have the same norm: mm = m + 1m + 1 (as 
may always be done by proper normalization), we get  

 *)()1( mm SS 


  ,     (6) 

so that the problem is reduced to finding just one of these coefficient sets, say S+
(m). 

 This may be done, for example, by applying Eq. (5) again, but now to an arbitrary state m: 

 mSmSmSSmS 3
2
3

2 ˆˆˆˆˆ   . 

Using the eigenvalues calculated above, and Eq. (3), we get 

       mSSmmmmmmmSSmss mmm )()1(22)(2 11ˆ)1( 


   . 

For all existing eigenstates (with m  s), this equality may be true only if the c-number factors in its 
first and last forms are equal. Together with Eq. (6), this gives us the final answer: 

  2/1)1()( )1()1(  
 mmssSS mm  . 

Other frequently used forms of the same result are 

            2/12/1)( 1)1()1( msmsmmssS m   .   (7) 



 As a sanity check, the coefficient S+
(m) turns into zero at m = s, while S-

(m) does the same at m = -s, 
thus assuring Eqs. (4). In what follows, we will use Eqs. (7) for S(m), thus dropping possible phase 
factors exp{im} before these matrix elements, because they are inconsequential for the final results. 

 Next, from the definition of the ladder operators Ŝ , we readily get the reciprocal relations 

                       
i

SS
S

SS
S

2

ˆˆ
ˆ,

2

ˆˆ
ˆ

21
 




 ,     

so that using Eqs. (7) we may calculate the matrix elements of 2,1Ŝ  in two equivalent forms: 

     
    ,))(1())(1(

2

)1)(()1)((
2

,ˆ
2

1ˆ
2

1ˆ
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According to these formulas, the diagonal matrix elements of 2,1Ŝ in any of these states are vanishing: 

      0ˆ
2,1 mSm .     (9) 

 For the calculation of the diagonal matrix elements of 2
1̂S , it is instrumental to represent this 

operator as the product 11
ˆˆ SS , and then act by the first of them (a Hermitian operator!) upon the bra-

vector, and with the second one, upon the ket-vector, using Eq. (8a) twice – each time in the most 
convenient form: 
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Taking into account the orthonormality of the state vectors, this formula yields 
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Repeating this calculation for the operator 2Ŝ , we get the absolutely similar result (as could be expected 
from the symmetry of the system with respect to the component swap): 

                              2
2

2
2 1

2
ˆ mssmSm 


.    (10b) 

 Using the same approach to calculate the diagonal matrix elements of the mixed products 21
ˆˆ SS  

and 12
ˆˆ SS , we get 

    m
i

mSSmm
i

mSSm 2
12

2
21 2

ˆˆ,
2

ˆˆ   .   (11) 

As a sanity check, we may readily calculate the diagonal matrix elements of one of the commutation 
relations we have started with, 

  321
ˆˆ,ˆ SiSS  , 

using Eq. (2): 

  mimSimmSSm 2
321

ˆˆ,ˆ    

- the same result as follows from the subtraction of two Eqs. (11). 

 

D (7 points). Let a classical geometric vector S have Cartesian components S1, S2, S3 in a certain 
reference frame {n1, n2, n3}, i.e.  

332211 nnnS SSS  . 

Then its projection to the axis n’, whose direction forms the usual spherical angles 
 and  in this reference frame (see Fig. on the right), so that 

321 cossinsincossin nnnn  ' , 

is simply 

 cossinsincossin 321 SSS'S'  nS . 

According to the correspondence principle, quantum-mechanical vector-operators 
should follow the same geometric relations as the classical geometric vectors, so 
that we may write 

     cosˆsinsinˆcossinˆˆ
321 SSS'S  .    (12) 

Hence the expectation value of this operator in any eigenstate m of the operator 3Ŝ is: 

 cosˆsinsin,ˆcossin,ˆˆ
321 mSmmlSmmlSmmSmS'  . 

With Eqs. (2) and (9), this relation yields  

      cosmS'  .     (13) 
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 Next, using Eq. (12) again, we may write: 
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Now using the expectation values calculated in the previous task of the problem, we get 
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Hence for the variance of this value, i.e. for the square of its uncertainty S’, we get  

                  2
2

2222 sin
2

1
'

mss
S'S'S


  .   (14) 

 Let us direct the axis n3 along the applied magnetic field. Then the ground state, reached after the 
system’s relaxation, is one of the ultimate steps of the state ladder, i.e. either m = +s or m = –s, 
depending on the sign of the gyromagnetic ratio . For this state, Eqs. (13) and (14) yield 
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1
',cos s

sss
SsS'
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where now  is the angle between the magnetic field and the spin measurement axis n’. As a sanity 
check,  the angle  shown in Fig. above, i.e. the direction of the axes n1 and n2 of the initial reference 
frame, do not affect the result. 

 

E (3 points). For the particular case  = /2, Eqs. (15) are reduced to 

  sSS'
2

',0
2

2 
  . 

 The first of these results, valid for any s, is very natural, because we are trying to measure spin in 
the direction orthogonal to its polarization, and the probabilities to find the spin oriented in either 
direction along the axis n’ have to be equal, leading to the cancellation of their contributions to the 
expectation value. 

 The second of the results shows that the absolute uncertainty S’ of the measured spin grows 
with spin as s1/2, but its fair relative measure, 

 
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S

S'




, 

decreases with the growth of s, reflecting the effective suppression of the quantum uncertainty in the 
(essentially, classical) limit s  . 



Statistical Mechanics 1 

 

Dipole interaction 

Two similar classical electric dipoles, of a fixed magnitude d, are separated by a fixed distance r. 

 

A (4 points). Represent the dipole-dipole interaction energy as a function of the angular 
orientation of each dipole. 

B (3 points). Assuming that each dipole may rotate, with negligible mechanical inertia, write a 
general expression for its statistical sum Z in thermal equilibrium. (The expression may include a 
specific definite integral.)  

C (7 points). Obtain an explicit expression for Z in the high-temperature limit, and use it to 
calculate the average interaction energy E, heat capacity, and entropy of the system. 

D (3 points). Give a brief physical interpretation of the results. In particular, compare the 
obtained dependence E(r) with the long-range part of the van der Waals interaction1 between electrically 
neutral atoms. What are the main handicaps of this simple model for the description of such interaction 
between real atoms?  

E (3 points). Calculate E explicitly in the limit T  0, and briefly discuss the result. 

                                                 
1 This part is called the London dispersion force. 



Solutions: 

A (4 points). The electrostatic potential of a dipole d, located in the origin, at the point r is:2 
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The corresponding electric field is 
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On the other hand, the potential energy of the dipole in an external electric field E is  

Ed U . 

Combining these formulas, we get the energy of interaction of two independent dipoles: 
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where z is the axis directed along vector r, i.e. along the line connecting the dipoles. Plugging into the 
last form of this relation the expressions for the Cartesian components of both dipole moments via the 
polar and azimuthal angles of their orientation, 

2,1  where,cos,sinsin,cossin  jdddddd jjzjjjyjjjx  , 

we may rewrite the interaction energy as 
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  (1) 

 

 B (4 points). If each dipole is free to rotate, possible states of its orientation are uniformly 
distributed over the full solid angle j = 4. In addition, if the kinetic energy of rotation of the physical 
objects carrying the dipole moments is negligible, as specified in the assignment, the full energy of the 
system is reduced to the interaction energy Eq. (1) - perhaps plus an inconsequential constant, which 
may be taken for the energy reference. As a result, the probability density w  dW/d1d2 to find the 
system at a certain point {1, 1; 2, 2} may be calculated using the Gibbs distribution in the following 
form: 

                     Ue
ZT

U

Z
w 









1
exp

1
,    

where T is temperature in energy units,   1/T is the reciprocal temperature, and Z is the statistical sum: 

                                                 
2 All formulas in this solution are in the SI units; for the transfer to the Gaussian units it is sufficient to drop the 
coefficient 1/40. 



UU eddddeddZ 




   
2

0

2

0

22

2

0

1

0

11

4

2

4

1 sinsin . 

  Due to the 2-periodicity of the function under the integral with respect to both arguments j, 
the integral would not change if we replace the integration interval [0, 2] for one of these angles, say 1, 
to any 2-long interval, for example [2, 2 +2]. Now in this integral, to be worked out at fixed 2, we 
may write d1 = d, where   1 - 2 is the angle participating in the last form of Eq. (1). Since, 
according to Eq. (1), the function under the integral depends only on  but not on 2, we may first take 
the integral over 2, giving 2, so that the expression for Z is reduced to 
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 C (7 points). In the high-temperature limit, T >> a, the argument of the exponent in Eq. (2) is 
small for any dipole orientations, and we may expand it into the Taylor series in this parameter, keeping 
only three leading terms: 

 2

2

1
1 afafe af   . 

The integration (2) of the first term alone yields a -independent result, (4)2, which gives no 
contribution to the average interaction energy. The second term is proportional to the function f, which 
keeps its magnitude but changes sign at any replacement j   - j, i.e. j - /2  /2 - j. Since the 
range of integration over each angle j in Eq. (2) is the sum of two equal regions below and above /2, 
the contributions from these regions cancel, and the total integral of this term equals zero. This is exactly 
why we needed to keep the last, quadratic term in the Taylor expansion: it does give a nonvanishing, -
dependent  contribution to Z. Indeed, in this approximation 
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Squaring the parentheses, we see that the mixed term, proportional to cos, gives a vanishing 
contribution to the integral over , so that we may continue as follows: 
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Now introducing new variables j  cosj, we get 
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so that, finally, 
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This high-temperature approximation is valid only if the second term on its right-hand side is much 
smaller than the first one, so that with the accuracy O(2),  
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 From here, we may calculate the average interaction energy of the system, 
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(In the last expression, only the first term is due to the dipole-dipole interaction.) 

 

D (3 points). The results show that in the high-temperature limit, all dipole interaction effects are 
small (proportional to a2 << T2). This is natural, because the probability w is nearly uniformly 
distributed over all dipole orientations, thus virtually averaging out the interaction energy.  

The negative sign of the calculated average interaction energy,  
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and the growth of its magnitude at r  0 show that the dipoles attract each other. Exactly the same 
distance dependence of the energy, E  -1/r6, is typical for the London dispersion force, which 
dominates the long-range interaction of electroneutral atoms and molecules.3 This similarity is natural, 
because the London force is also due to the averaged interaction of electric dipoles.  

                                                 
3 Note that the traditional form, 1/r12, of the other term in the van der Waals formula, describing molecular/atomic 
repulsion at small distances, does not have a similarly quantitative physical basis. 



 However, in contrast to the fixed-magnitude dipole model analyzed in this problem, the London 
dispersion force between most atoms (having no spontaneous electric dipole moments) is due to weak 
mutual polarization of their randomly fluctuating dipole moments. The second important feature of this 
force, not taken into account by this classical model, is that these dipole fluctuations have quantum 
nature, so that for gas atoms at ambient conditions, the force is virtually temperature-independent. 

 

 E (3 points). At T << a, the system should stay very close to one of its potential energy minima. 
According to Eq. (1), there are two of them; in both cases the dipole moments d are aligned with each 
other, and the line connecting them:   
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 (In any of these positions, the angle  is uncertain.) In this limit,  
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 This expression shows that in this limit the interaction is also attractive, but temperature-
independent, and much stronger than in the high-temperature limit.   



Statistical Mechanics 2

Independent spins in magnetic field

Consider a system of N quantum spins s “ 1{2 in magnetic field B. The Hamiltonian of
such system is

H “ ´

N
ÿ

i“1

2µBSzi . (28)

Here µ is the magnetic moment of the particle, Szi take values ˘1{2 and we assumed that
the magnetic field is in the z-direction.

(a) (2 points) Show that the partition function of such a system at temperature T is given
by

ZpT,N,Bq “ r2 coshpµB{T qsN .

(b) (3 points) Compute the average value of total magnetization defined as

M “ xM̂y ,

as a function of T,N,B. Here the total magnetization operator is given by M̂ “

2µ
řN
i“1 Ŝ

z
i .

(c) (1 point) Calculate the magnetic susceptibility of the system as a function of T,N,B
defined by

χ “

ˆ

BM

BB

˙

N,T

.

(d) (4 points) Find the variance of the magnetization pδMq2 as a function of temperature
and magnetic field. The variance is defined as

pδMq2 “

B

´

M̂´ xM̂y

¯2
F

“ xM̂2
y ´ xM̂y

2 .

How is the variance of the magnetization related to the magnetic susceptibility?

(e) (3 points) Explicitly determine the variance in the limit of high and low temperatures.
Interpret these limiting cases physically (i.e. explain why they are almost obvious).

(f) (8 points) Find the form of the partition function for a system of N classical spins and
repeat the calculations of (b), (c), (d), and (e) for classical spins. You can take the
Hamiltonian of the system to be a classical analogue of (??), i.e.

H “ ´

N
ÿ

i“1

µ ¨B . (29)

assuming now that µ is a classical magnetic moment vector with fixed absolute value
µ2 “ µ2. Compare the results of part peq for the classical and spin 1

2
cases.

47



Solution:

a) We have

Z “
ÿ

Szi “˘1{2

exp

#

1

T

N
ÿ

i“1

2µBSzi

+

“

N
ź

i“1

ÿ

Szi “˘1{2

exp

"

2µB

T
Szi

*

“

N
ź

i“1

´

e
µB
T ` e´

µB
T

¯

and
ZpT,N,Bq “ r2 coshpµB{T qsN .

b) For magnetization we have

M “ xM̂y “ Z´1T
BZ

BB
“ ´

BF

BB

with free energy given by

F “ ´T lnZ “ ´TN ln
´

2 coshpµB{T q
¯

.

Taking derivative with respect to B we obtain

M “ ´
BF

BB
“ µN tanh

µB

T
.

c) The susceptibility is given by

χ “
BM

BB
“ ´

B2F

BB2
“

Nµ2

T cosh2
`

µB
T

˘ .

d) The variance can be calculated as

pδMq2 “
A

xM̂2
y ´ xM̂y

2
E

“
1

Z

˜

T 2 B
2Z

BB2
´

ˆ

T
BZ

BB

˙2
¸

“ T 2B
2 lnZ

BB2
“ ´T

B2F

BB2
.

We obtained a general relation between fluctuations of magnetization and magnetic suscep-
tibility

pδMq2 “ χT .

We immediately have

pδMq2 “
Nµ2

cosh2
`

µB
T

˘ .

e) As the temperature gets large (T " µB) we can use coshpxq Ñ 1`x2{2 and to the leading
order the variance becomes

pδMq2 « Nµ2

This result is easy to understand. At large temperatures the probability of a spin to be in
one of two states is approximately 1{2 and the variance is given by random distribution of
particles between two levels (random walk of N steps).
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As the temperature gets small coshpxq Ñ ex{2 and the variance becomes

pδMq2 « Np2µq2e´2µB{T .

In this case almost all spins are in the lowest energy state (along the field). Fluctuations are
given by probability of exciting spins into the higher state which is „ e´p2µBq{T .

f) The partition function can be written as

Z “
N
ź

i“1

ż 2π

0

dφi

ż π

0

sin θi dθi exp

"

µB

T
cos θi

*

“

N
ź

i“1

2π
T

2µBS

´

e
µB
T ´ e´

µB
T

¯

and

ZpT,N,Bq “

„

4π
T

µB
sinhpµB{T q

N

.

The free energy is given by

F “ ´T logZ “ ´TN log

„

4π
T

µB
sinhpµB{T q



.

For magnetization we obtain

M “ ´
BF

BB
“
NT

B

„

µB

T
coth

µB

T
´ 1



.

The magnetic susceptibility is given by

χ “
BM

BB
“ ´

B2F

BB2
“
NT

B2

«

1´

ˆ

µB{T

sinhpµB{T q

˙2
ff

and

pδMq2 “ χT “
NT 2

B2

«

1´

ˆ

µB{T

sinhpµB{T q

˙2
ff

.

As the temperature gets large (T " µ2µBS) we have

pδMq2 « N
µ2

3

corresponding to the Curie’s law for susceptibility χ “ N µ2

3T
. For small temperatures sinh is

exponentially large and we have approximately

pδMq2 «
NT 2

B2
.

Fluctuations diverge at small B. In fact, the quantization of the magnetic moment (quantum
spin) will cut off this divergence when energy level spacing will become of the order of
temperature.
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Statistical Mechanics 3

Bose-Einstein Condensation:

Consider a non-interacting non-relativistic Bose gas in a macroscopic three-dimensional box
of volume V .

(a) (3 points) Write down the appropriate partition function and derive an equation that
gives the occupation number as a function of energy at a given temperature and chem-
ical potential.

(b) (5 points) Consider a gas composed of a finite number of particles. Make a sketch of
the chemical potential as a function of temperature. Does it go to zero? If so, indicate
whether this happens at T Ñ 0 or at some other temperature.

Explicitly determine the chemical potential as a function of temperature in the classical
(or high temperature) limit, and also show this approximate result in your sketch.

(c) (3 points) Compute the critical temperature, Tc, above which practically all the par-
ticles are in excited states, but below which a significant number is in the ground
state.

(d) (4 points) Does the pressure at low temperatures (T ă Tc) depend on the particle
density? If yes, how? If no, explain why. What is limiting behavior of the pressure of
the ideal Bose gas as T Ñ 0?

Consider now what happens for an infinite system (V Ñ 8 with N{V fixed) in different
dimensions, 1d, 2d, and 3d:

(e) (4 points) Can a non-relativistic ideal Bose gas of a given number density of particles
undergo Bose condensation in d = 1, 2, 3 dimensions? Explain.

Useful Mathematical Formulas
ż 8

0

xn´1e´xdx “Γpnq (30)

Γpn` 1q “nΓpnq; Γp1{2q “
?
π (31)

ż 8

0

xs´1dx

ex ´ 1
“Γpsqζpsq (32)

tζp3
2
q, ζp4

2
q, ζp5

2
q, ζp6

2
q, ζp7

2
q, ζp8

2
q, . . .u “t2.61, 1.64, 1.34, 1.20, 1.13, 1.08, . . .u (33)
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Solution

(a) Each Fourier mode may be treated separately. The single particle energy of each mode
is εp “ p2{2m. The energy levels are

En “
`

n` 1
2

˘

εp . (34)

Neglecting the zero-point energy, the grand canonical partition function is

Q “
ÿ

n

e´nβpεp´µq “
1

1´ e´βpεp´µq
. (35)

The mean occupation number follows by differentiation:

xnpy “
1

Q

ÿ

n

ne´nβpεp´µq “
1

β

B log Q

Bµ
“

1

eβpεp´µq ´ 1
. (36)

(b) Ignoring condensation we find

N “ V

ż

d3p

p2π~q3
1

eβpεp´µq ´ 1
(37)

Changing variables to integrate over a dimensionless energy,

x ”
p2

2mT
(38)

and defining the thermal wavelength λ, the fugacity z, and the inter-particle spacing `

λ ”
p2π~q
?

2mT
, z ” eµ{T ,

N

V
”

1

`3
, (39)

we find
1

`3
“
π3{2

λ3
g3{2pzq , (40)

where

g3{2pzq ”
1

Γp3{2q

ż 8

0

y1{2dy

p1{zqey ´ 1
. (41)

Eq. (??) implicitly determines µ as a function of T . We will define a temperature T0 when
the thermal wavelength equals the distance between particles

T0 ”
1

2m

ˆ

2π~
`

˙2

, (42)

and then Eq. (??) can be neatly summarized by the requirement that

g3{2pzq “

ˆ

T0
πT

˙3{2

. (43)
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Figure 1: The chemical potential (over temperature) versus temperature for a Bose gas
at fixed density (solid line). The dashed line gives the approximate result of Eq. (??). T0
is determined by the density and is given in Eq. (??). The shaded region indicates Bose
condensation.

g3{2pzq is an increasing function of the fugacity z until the point of condensation (see
below). For z small, the inversion of Eq. (??) can be done analytically. Specifically for small
z (i.e. a classical gas) we have

g3{2pzq »
z

Γp3{2q

ż 8

0

?
ye´y “ z , (44)

and thus we find
µ “ ´

3

2
T log

ˆ

πT

T0

˙

. (45)

Plotting this last expression gives a qualitative understanding of µ versus T . It is understood
that Eq. (??) is only valid for T " T0.

At z “ 1 (the point of condensation) g3{2pzq reaches its limiting value

g3{2p1q “ ζp3
2
q » 2.6 . (46)

Thus the left hand size Eq. (??) is an increasing function of z, starting from 0 for z “ 0
(a classical gas) and ending at 2.6 for z “ 1 (the point of condensation). This information
should be enough to qualitatively sketch z “ eµ{T versus T .

Fig. ?? shows the chemical potential versus the temperature. The dashed line shows the
approximation given by Eq. (??), while the solid red line is the full (numerical) result found
by inverting Eq. (??). The shaded region is below the critical temperature (see below).

(c) When eµ{T is unity (or µ “ 0), this is the point of condensation

ζp3
2
q “

ˆ

T0
πTc

˙3{2

. (47)
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Solving for Tc we find

Tc “
1

πpζp3
2
qq2{3

T0 “ 0.168T0 . (48)

(d) The condensate and normal parts are in equilibrium. The pressure at T ă Tc is simply
the contribution of the normal part at zero chemical potential

P “
ż

d3p

p2π~q3
pivi

3

1

ep2{p2mT q ´ 1
. (49)

In writing this expression we have simply used the kinetic theory definition of the stress
tensor

P “ 1

3
T ii with T ij “

ż

d3p

p2π~q3
pivj

3

1

ep2{p2mT q ´ 1
. (50)

Using the same notation as before

P “ 2T

3

2πΓp5{2q

λ3

„

1

Γp5{2q

ż 8

0

x3{2dx

ex ´ 1



loooooooooooomoooooooooooon

“ζp
5
2
q

, (51)

yielding

P “ T

λ3
π3{2ζp5

2
q . (52)

So we see that the pressure is independent of the density, and goes to zero as T 5{2. The
reason that the pressure is independent of the density is that as we increase the particle
number at fixed temperature and volume, the additional particles go to the condensate, and
the number of particles in the normal phase (which determines the pressure) remains fixed.

(e) In various dimensions the number of particles per “volume” is

N

V
“

1

λd
1

2
Γpd{2qSd´1

1

Γpd{2q

ż 8

0

dx
xd{2´1

p1{zqex ´ 1
. (53)

Here Sd´1 is the surface area of a sphere in d spatial dimensions, i.e. Sd´1“2, 2π, 4π for
d“1, 2, 3 respectively.

For d“1 and d“2, the dimensionless integral
ż 8

0

dx
xd{2´1

p1{zqex ´ 1
, (54)

increases without bound as z Ñ 1 (or µ Ñ 0). Thus, the the density of particles in units
of 1{λd can increase without bound before µ{T reaches zero. For this reason, ideal Bose
condensation will not occur in one and two dimensions.
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