
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

Spring 2021 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Use one exam book for each problem, and label it carefully with the problem topic and num-
ber and your ID number.

Write your ID number (not your name!) on each exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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Classical Mechanics 1

A bar on a thread

A thin uniform bar of mass M and length l is hung on a light thread of length l′ in a
gravitational field with acceleration, g (see above). Take the origin of the coordinate system
to be the point at which the thread attaches to the ceiling on the top. The center of mass of
the bar is at O (whose Cartesian coordinates are X and Y ). Let I be the moment of inertia
of the bar relative to its center of mass O, i.e., I = 1

12
Ml2. Let ω be the instantaneous

angular velocity of the bar’s rotation in the plane of the drawing.

(a) [5 points] Find the equations of motion of the system. A useful set of generalized
coordinates are the two angles ϕ and ϕ′ as indicated in the figure. (You may wish to
use the notation IA = I + 1

4
Ml2 = 1

3
Ml2, where IA is the moment of inertia around

point A.)

(b) [2 points] Linearize the equations of motion near their fixed point of ϕ = ϕ′ = 0 (i.e.,
keep only terms linear in ϕ, ϕ′, ϕ̇, ϕ̇′, ϕ̈, and ϕ̈′ as needed).

(c) [6 points] Find the eigenfrequencies of small oscillations near the equilibrium. Write
your answer in terms of Ω2 ≡ 3g

2l
and Ω′2 ≡ g

l′
.

(d) [3 points] Discuss the motion in the limits (i) l � l′ and (ii) l′ � l. In particular,
find the oscillation frequencies and discuss the physical significance of the two limits.
You may draw a sketch if helpful.

(e) [4 points] Find the eigenmodes for the particular case l = l′. Sketch the two oscillation
modes in this limit.
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Solutions

1. The Lagrangian of the system is

L = T − U =
1

2
M(Ẋ2 + Ẏ 2) +

1

2
Iω2 −MgY .

We can express X and Y in terms of the generalized coordinates ϕ and ϕ′ as

X = l′ sinϕ′ +
1

2
l sinϕ, Y = −l′ cosϕ′ − 1

2
l cosϕ, ω = ϕ̇ .

With these expressions, the Lagrangian becomes

L =
1

2
M

(
l′2ϕ̇′2 +

1

4
l2ϕ̇2 + ll′ cos(ϕ− ϕ′)ϕ̇ϕ̇′

)
+

1

2
Iϕ̇2 +Mg

(
l′ cosϕ′ +

1

2
l cosϕ

)
.

We can now use the Euler-Lagrange equations to find the following equations of motion
for ϕ and ϕ′:

IAϕ̈+
1

2
Mll′ cos(ϕ− ϕ′)ϕ̈′ + 1

2
Mll′ sin(ϕ− ϕ′)ϕ̇′2 +

1

2
Mgl sinϕ = 0 (1)

Ml′2ϕ̈′ +
1

2
Mll′ cos(ϕ− ϕ′)ϕ̈− 1

2
Mll′ sin(ϕ− ϕ′)ϕ̇2 +Mgl′ sinϕ′ = 0 . (2)

2. The equations are simplified by linearizing them near the fixed point ϕ = ϕ′ = 0, which
describes the equilibrium position:

IAϕ̈+
1

2
Mll′ϕ̈′ +

1

2
Mglϕ = 0 (3)

Ml′2ϕ̈′ +
1

2
Mll′ϕ̈+Mgl′ϕ′ = 0 . (4)

3. We look for solutions to the equations of motion of the form

ϕ = ae−iωt, ϕ′ = a′e−iωt . (5)

Inserting Eq. (5) into Eq. (3) and Eq. (4), we get a system of linear equations for the
oscillation amplitudes a and a′:

(
1

2
Mgl − ω2IA

)
a− 1

2
ω2Mll′a′ = 0 (6)

−1

2
ω2Mll′a+

(
Mgl′ − ω2Ml′2

)
a′ = 0 , (7)

or, in terms of Ω and Ω′,

(
Ω2 − ω2

)
a− Ω2

Ω′2
ω2a′ = 0 (8)

−3Ω′2

4Ω2
ω2a+

(
Ω′2 − ω2

)
a′ = 0 . (9)
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Figure 1: Physical significance of the two limits l� l′ and l′ � l.

Here, Ω is the oscillation frequency of the bar suspended by the point A (with ϕ′ = 0),
while Ω′ is the oscillation frequency of the system if all the bar’s mass is concentrated
at point A. We determine the frequencies of the small oscillations by requiring the
determinant of these equations written in matrix form to be zero:

∣∣∣∣
Ω2 − ω2 − Ω2

Ω′2
ω2

−3Ω′2

4Ω2 ω
2 Ω′2 − ω2

∣∣∣∣ =
1

4

(
ω4 − 4(Ω2 + Ω′2)ω2 + 4Ω2Ω′2

)
= 0 . (10)

The two solutions of this quadratic equation for ω2 are

ω2
± = 2

(
Ω2 + Ω′2

)
± 2
√

(Ω2 + Ω′2)2 − Ω2Ω′2 . (11)

4. (i) For l � l′, the bar is shrunk to a point; in this case, Ω� Ω′ and ω− ' Ω′. (ii) For
l′ � l, the bar is essentially attached to the ceiling at point A; in this case, Ω′ � Ω
and ω− ' Ω. See Fig. 1.

5. For l = l′, Ω′2 = 2
3
Ω2, so that

ω2
± =

2

3

(
5±
√

19
)

Ω2 , (12)

i.e., ω+ ' 2.496Ω and ω− ' 0.654Ω. Inserting these values, one by one, into Eqns. (8)
and (9), we find (

a′

a

)

+

= −0.560

(
a′

a

)

−
= −0.893 . (13)

The oscillations look as in Fig. 2.
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Figure 2: The two distinct oscillation modes for l = l′.
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Classical Mechanics 2

Rolling of a spool

A wheel is allowed to roll on a massless rope of the length L without slipping. Both ends
of the rope are fixed to the ceiling as shown below. The wheel is a homogeneous disk of the
mass M and radius R. Assume that X is of order L, but R� L.

Problem 10

A wheel is allowed to roll on a massless rope of the length L without slipping.
Both ends of the rope is fixed to the ceiling as shown in the figure The wheel

X

is a homogeneous disk of the mass M and the radius R. Assume that X ! L,
but R << L.

(a) Determine the number of generalized coordinates.
(b) Write down the Lagrangian.
(c) Determine frequencies of oscillations near equilibrium.

Solution

Let L1 and L2 be the lengths of the two parts of the rope situated to the left
and to the right from the wheel. If R << L we can write L1 + L2 = L. Also,
let x and y be the coordinates of the center of the wheel, with the origin of the
coordinates located exactly in the middle between the two points where the
rope is attached to the ceiling, see Figure below. By construction, the position
(x, y) is constrained to lay on the ellipse

y2 =
L2 − X2

L2

(
L2

4
− x2

)
. (0.31)

Rotational configuration of the wheel is described by a single angle φ. If the
radius of the wheel R is small, the angle relates to the lengths L1 and L2 in a
simple way: up to a constant phase

Rφ = L2 + O(R) = L − L1 + O(R) (0.32)

23

(a) (4 points) Recall that an ellipse is the locus of points such that the sum of distances
L1 + L2 = L is constant (the case here). The Cartesian form of an ellipse reads

x2

a2
+
y2

b2
= 1 . (14)

where x and y are measured from the origin (see above). Determine the Cartesian
parameters a and b of in terms of the variables L and X. Show that the L1 and L2 are
related to the x displacement of the disk for R� L (see figure).

L1 =
L

2
+
X

L
x , (15)

L2 =
L

2
− X

L
x . (16)

Do not assume that x is small.

(b) (7 points) Write down the Lagrangian for the system. Do not assume x is small. Take
x as a generalized coordinate.

(c) (4 points) Determine frequency of small oscillations near equilibrium.

(d) (5 points) Now consider what happens if the separation X is slowly increased. If the
initial separation is X0 and the initial amplitude of small oscillations is A0, determine
how the final oscillation amplitude depends on X/L. What happens for X ' L?
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Solution:

(a) Let L1 and L2 be the lengths of the two parts of the rope situated to the left and
to the right from the wheel. If R � L we can write L1 + L2 = L. Also, let x and y be
the coordinates of the center of the wheel, with the origin of the coordinates located exactly
in the middle between the two points where the rope is attached to the ceiling, see Figure
below. By construction then, the position (x, y) is constrained to lay on the ellipse.

The Cartesian form is
x2

a2
+
y2

b2
= 1 . (17)

We can set x = 0 and then y2 = b2 with b =
√

(L/2)2 − (X/2)2 being the semi-minor axis of
the ellipse. Similarly, setting y = 0, then x = a, with a = (L1 +L2)/2 = L/2 the semi-major
axis of the ellipse. (Draw a picture if confused). We find then the relation

y2 =
L2 −X2

L2

(
L2

4
− x2

)
. (18)

To relate L1 and L2 to x and y we have

L2
1 =(X/2 + x)2 + y2 , (19)

L2
2 =(X/2− x)2 + y2 . (20)

So, subtracting the two equations we have

L2
1 − L2

2 = 2xX . (21)

Writing L2 = L− L1 we find
2LL1 − L2 = 2xX , (22)

and then it it is easy to find the result quoted in the problem statement

L1 =
L

2
+
X

L
x , (23)

L2 =
L

2
− X

L
x . (24)

(b) To write down the Lagrangian of the configuration we will need to relate the angle of
rotation φ to the displacement x. The rotational configuration of the wheel is described by
a single angle φ. If the radius of the wheel R is small, the angle relates to the lengths L1 (or
L2) in a simple way. The distance along the string that the disk has rolled as x is increased
from zero is

Rφ = L1 − L/2 , (25)

where we have assumed R � L, and taken positive φ as clockwise. Thus φ is a simple
(linear) function of x,

φ =
X

LR
x . (26)
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L1 L2

x

y
−X/2 X/2

0

where O(R) are terms ∼ R which can be neglected in the case R << L. It is
not difficult to check the following identities:

L1 =
L

2
− X

L
x , L2 =

L

2
+

X

L
x , (0.33)

i.e. φ is simple (linear) function of x,

φ =
X

LR
x + const . (0.34)

Thus, the configuration of the system is completely determined by one gener-
alized coordinate, say x. This answers the question (a).

(b) The kinetic energy of the wheel is

K =
M

2
(ẋ2 + ẏ2) +

I

2
ω2 . (0.35)

where I = MR2/2 is the moment inertia (the wheel is assumed to be a ho-
mogeneous disk), and ω = φ̇ is the angular velocity of the wheel. Taking into
account the constraints (0.31),(0.34), we have

L =
M

2

(
L4 − 4X2 x2

L2(L2 − 4 x2)
+

X2

2 L2

)
ẋ2 + Mg

√
L2 − X2

L2

(
L2/4 − x2

)
. (0.36)

(c) The point of static equilibrium is x = 0. Expanding near this point,

24

Figure 3: A wheel on a massless rope.

The kinetic energy of the wheel is

K =
M

2
(ẋ2 + ẏ2) +

I

2
ω2, (27)

where I = MR2/2 is the moment inertia (the wheel is assumed to be a homogeneous disk),
and ω = φ̇ is the angular velocity of the wheel. Taking into account the constraints in (18)
and (26), we have finally

L =
M

2

(
L4 − 4X2x2

L2(L2 − 4x2)
+
X2

2L2

)
ẋ2 +Mg

√
L2 −X2

L2

(
L2

4
− x2

)
. (28)

(c) The point of static equilibrium is x = 0. Expanding near this point, and keeping only
quadratic terms, we have

L =
M

2

(
1 +

X2

2L2

)
ẋ2 −Mg

√
L2 −X2

L2
x2 + const , (29)

=
1

2
m(X)ẋ2 − 1

2
m(X)Ω2x2 . (30)

where we have defined the frequency and effective mass

Ω2 =
4g
√
L2 −X2

2L2 +X2
, (31)

m(X) =M

(
1 +

X2

2L2

)
. (32)

Ω determines the frequency of small oscillations near the equilibrium point.

(d) From the general theory of adiabatic invariants, the energy per frequency is constant
under a slow change of a parameter

I ≡ E

ω
= const , (33)
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which is a consequence of the Louiville theorem. Here

E =
1

2
m(X)Ω2A2 . (34)

is the first integral of the one dimensional motion.
Let E0, Ω0, X0, A0, m0 be the initial values of the parameters, and Ef , Ωf , Xf , Af , mf

be the final values of these parameters. The adiabatic condition gives

mfΩfA
2
f = m0Ω0A

2
0 . (35)

Solving for Af we have

Af = A0

√
m0Ω0

mfΩf

. (36)

Substituting X0 = L/2 and Xf = L/4, we find after minor algebra

mΩ = const(1− u2)1/4(1 + u2/2)1/2 , (37)

where u ≡ X/L, and thus

Af =
const

(1− u2)1/8(1 + u2/2)1/4
. (38)

The amplitude grows as (1−X/L)−1/8 for X ' L.

9



Classical Mechanics 3

Dissipation from an external field

A particle of mass m moves in one dimension, parametrized by coordinate q, subject to
a potential energy V (q) and to a damping force

Ffriction = −2mγq̇ .

(a) (4 points) Find a Lagrangian that gives the correct equation of motion for the particle.
Hint: consider a Lagrangian of the form L(q, q̇, t) = f(t)L0(q, q̇).

(b) (2 points) Find the corresponding Hamiltonian H(P,Q, t).

(c) (8 points) Assume that the potential is harmonic,

V (q) =
1

2
mω2q2 .

(To slightly simplify the algebra, henceforth you may set m ≡ 1 and ω ≡ 1 by a choice
of units). Find a canonical transformation

Q = Q(q, p, t) , P = P (q, p, t)

such that the transformed Hamiltonian K(Q,P ) does not depend explicitly on time.

(d) (6 points) Write the Hamiltonian equations of motion that follows from K(Q,P ). Find
the general solution for Q(t) in the underdamped case γ < ω ≡ 1. Transform back
to the original coordinate q and verify that this gives the familiar solution for an
underdamped harmonic oscillator.
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Solution:

(a) We are looking for a Lagrangian that yields the equation of motion

mq̈ + 2mγq̇ + V ′(q) = 0 . (1)

For γ = 0 the Lagrangian is clearly

Lγ=0(q, q̇) = T − V =
1

2
mq̇2 − V (q) . (2)

This suggests to refine the ansatz in the hint by taking L0 = Lγ=0,

L(q, q̇, t) = f(t)

(
1

2
mq̇2 − V (q)

)
. (3)

The Euler-Lagrange equations of motion that follow from this ansatz are

0 = −∂L
∂q

+
∂

∂t

(
∂L

∂q̇

)
= f(t)V ′(q) + f(t)mq̈ + f ′(t)mq̇ . (4)

Comparing with (1), we identify f ′/f = 2γ, which gives f(t) = c e2γt, where c is an arbitrary
integration constant that gives an overall rescaling of L and may be set to 1. So the answer
is

L(q, q̇, t) = e2γt

(
1

2
mq̇2 − V (q)

)
. (5)

(b) The canonical momentum is

p ≡ ∂L

∂q̇
= e2γtmq̇ (6)

and the Hamiltonian

H(p, q, t) = pq̇ − L(q, q̇, t) = e−2γt p
2

2m
+ e2γtV (q) . (7)

(c) Specializing to the harmonic potential (with m = ω ≡ 1),

H(p, q, t) = e−2γt p
2

2
+ e2γt q

2

2
. (8)

A canonical transformation is a change of variables Q = Q(q, p, t), P = P (q, p, t) that
preserve the form of the Hamilton equations. The change of variables must then be consistent
with the variational principles

δ

∫ t2

t1

(pq̇ −H(p, q, t)) dt = 0 , δ

∫ t2

t1

(
PQ̇−K(P,Q, t)

)
dt = 0 . (9)
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Compatibility of the two variational principles is ensured by

pq̇ −H(p, q, t) = PQ̇−K(P,Q, t) +
dF

dt
(10)

where F is an arbitrary function. Since we are looking for a K with no explicit time depen-
dence, the compelling guess is

P = e−γtp , Q = eγtq . (11)

Substituting p = eγtP , q = e−γtQ in (10),

PQ̇− γPQ− P 2

2
− Q2

2
= PQ̇−K(P,Q, t) +

dF

dt
, (12)

we see that this indeed works with F ≡ 0 and

K(P,Q) =
P 2

2
+
Q2

2
+ γPQ . (13)

Another way to see that (11) is a legitimate canonical transformation is to check invariance
of the symplectic form up to an exact term,

dP ∧ dQ = dp ∧ dq + d (γ(qdp+ pdq)t) . (14)

(d) The Hamiltonian equations for K are

Ṗ = −∂K
∂Q

= −Q− γP , Q̇ =
∂K

∂P
= P + γQ , (15)

from which we find the eom for Q,

Q̈+ (1− γ2)Q = 0 . (16)

The general solution in the underdamped case γ < 1 is

Q(t) = A cos(
√

1− γ2 t) +B sin(
√

1− γ2 t) , (17)

with A and B integration constants. In terms of the original variable q,

q(t) = e−γt
(
A cos(

√
1− γ2 t) +B sin(

√
1− γ2 t)

)
, (18)

which is indeed the familiar solution for an underdamped harmonic oscillator.
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Electromagnetism 1

Rotating charged cylinder

An infinitely long and non-conducting cylindrical tube of radius R and surface charge density
σ rotates around its symmetry axis with angular velocity ω.

(a) (3 points) Evaluate the electric and magnetic fields in and out of the cylindrical tube.

(b) (3 points) Now assume the cylinder to rotate from rest with an angular velocity ω(t) =
αt. Evaluate the steady state electric and magnetic fields inside the cylindrical tube.

(c) (5 points) Characterize the energy flow around the cylinder.

(d) (9 points) Evaluate the work done by the fields How does your result compare to the
change in the field energy per unit length inside the tube. Explain.
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Solution

a. The electric and magnetic fields in and out are

~Ein = ~0 ~Eout =
4πσ~r

R

~Bout = ~0 ~Bin =
4π

c
σωR ẑ (1)

b. Since the displacement current vanishes in and out (stationary electric fields see below),
the magnetic fields in and out are

~Bout = ~0 ~Bin(t) =
4π

c
σω(t)R ẑ (2)

The electric fields in and out follow from Lenz law ~∇× ~E = −∂ ~B/c∂t or
∮

~E · d~l = −dΦ

cdt
→ ~Ein = −Ḃinr

2c
φ̂ ~Eout = −ḂinR

2

2cr
φ̂ (3)

c. The energy flow is captured by the Poynting vector in and out

~Sout =
c

4π
~Eout × ~Bout = ~0

~Sin =
c

4π
~Ein × ~Bin = − c

4π
EinBinr̂ = −BinḂin

8π
~r = −B

2
in

8π

ω̇

ω
~r (4)

so the energy flows from the fields outside-in. On the tube surface, the energy flux is

E(t)

A
= −B

2
in(t)

8π

R

t
(5)

d. The electric field exerts a torque on the surface of the cylindar. The torque τ per
unit length H is

dτ = ERdq = ERσdA = −
[
ḂinR

2c

]
R[σdA = RdφdH]

τ

H
= −

[
ḂinR

2c

]
[2πσR2] (6)

14



The cumulative work W per length H done by the electric force at time t is

W (t)

H
=

∫ t

0

τ

H
ω(t)dt = −4π2σ2R4

c2

∫ t

0

ω̇ωdt = −2π2σ2R4ω2(t)

c2
(7)

or the work per volume V = πR2H

W (t)

V
= −2π(σRω(t))2

c2
= −B

2
in(t)

8π
(8)

which is minus the magnetic energy per unit volume being stored inside the tube. In storing
this energy, outside work through spinning is needed.
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Electromagnetism 2

Optically active media

An optically active medium can rotate the plane of polarization of light by allowing
right and left circularly polarized waves that obey different dispersion relations. The electric
susceptibility tensor at frequency ω of such a medium can be expressed as

χ̂ =




χ11 iχ12 0
−iχ12 χ11 0

0 0 χ33




where χ̂ is related to the electric polarization P in the usual way: Pi = ε0χijEj. Here and
below the fields are harmonic in time, E(t, r) = Re[e−iωtE(r)].

(a) (4 points) Derive the wave equation (analogous to the Helmholtz equation) satisfied
by the electric field E(r) in this medium.

(b) (4 points) Now assume that a plane wave propagates in the medium in the z direction
(which is also the 3-direction). Show that the propagating electromagnetic wave is
transverse.

(c) (3 points) Show that the medium admits electromagnetic waves of two distinct wave
vectors of magnitude kR and kL. Find these wave vectors in terms of ω and the
necessary elements of χ̂.

(d) (4 points) Explicitly show that kR and kL correspond to the propagation of right- and
left-circularly polarized electromagnetic waves.

(e) (5 points) Compute the ratio between the (time averaged) Poynting flux and the (time
averaged) energy density for the right and left circularly polarized waves.
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Solution

(a) Then we have the Maxwell equations

∇ ·E +∇ · P =0 , (1)

∇×H − 1

c
(−iω)D =0 , (2)

∇ ·B =0 , (3)

∇×E +
1

c
(−iω)B =0 . (4)

We take the curl of the last equation, use

∇×∇×E = ∇(∇ ·E)−∇2E , (5)

and exploit the second equation to find

−∇2E +∇(∇ ·E)− ω2

c2
D = 0 . (6)

Then we use, D = E + P , a bit more explicitly to find finally a wave equation for E

− ∂i∂iEj + ∂j(∂iEi)−
ω2

c2
(δjk + χjk)Ek . (7)

(b) For a plane wave Ej(x) = Eje
ikx we have

k2Ej − kj(kiEi)−
ω2

c2
(δjk + χjk)Ek = 0 . (8)

Taking k in the z direction, and the indices a, b in the transverse direction, we find the
equations of motion

k2
zEz − k2

zEz +
ω2

c2
(δzz + χzz)Ez =0 , (9)

k2Ea −
ω2

c2
(δab + χab)Eb =0 . (10)

The first equation gives that Ez = 0, i.e. the waves are transverse.

(c) The second equation gives and eigen-equation for Ea. The non-trivial solutions are found
when

det

(
k2 − (ω/c)2χ11 −i(ω/c)2χ12

i(ω/c)2χ12 k2 − (ω/c)2χ11

)
= 0 , (11)
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which determines k for the specified frequency. This determines the dispersion curve1. We
are solving an eigen system of the form

k2

(
~E1

~E2

)
=
ω2

c2

(
1 + χ11 iχ12

−iχ12 1 + χ11

)(
~E1

~E2

)
. (12)

The matrix we are finding the eigen-values of is of the form (1 + χ11) I − χ12σy, where I is
the identity matrix and σy is a Pauli-matrix. The eigenvalues of such a matrix are

k2
∓ =

ω2

c2
λ∓ , λ∓ ≡ [(1 + χ11)∓ χ12] . (13)

(d) The corresponding eigenvectors are

~E∓ =

(
1
±i

)
. (14)

So the minus solution is

Ea = Re

[
A eik−x−iωt

(
1
i

)]
, (15)

where A is a complex amplitude. At x = 0 (and setting the phase of A to zero) we have

Ex =A cos(ωt) , (16)
Ey =A sin(ωt), (17)

and thus the minus solution is right handed, kR. The plus solution is left-handed kL.

(e) Consider the plus plane wave (i.e. kL)

E(t, z) = ~Eeikz−iωt , (18)

D(t, z) = ~Deikz−iωt , (19)

B(t, z) = ~Beikz−iωt , (20)

where it is understood that we are to take the real part, and we have set the amplitude to
unity for simplicity.

Then since D = E + P
~Da = (δab + χab) ~Eb = λ+

~Ea . (21)

Similarly, from ∇×B = −iω/cD

ik ẑ × ~B+ =
−iω
c
λ+

~E (22)

1Normally the dispersion curve is taken as ω(k). But both forms ω(k) or k(ω) are useful in different
contexts.
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So since
k2

+ =
ω2

c2
λ+ , (23)

We find
ẑ × ~B = −

√
λ+

~E , or ~B =
√
λ+ ẑ × ~E . (24)

Putting the ingredients together using

u =
1

2
(E ·D + B ·H) S = cE ×H , (25)

we find since B = H

〈u〉 =
1

4
Re
[
~E · ~D∗ + ~B · ~B∗

]
, (26)

=
1

2
λ+

~E · ~E∗ . (27)

The Poyting vector is

〈S〉 =
c

2
Re
[
~E × ~B∗

]
, (28)

=
1

2

√
λ+

~E × (ẑ × ~E) , (29)

=
1

2

√
λ+

~E · ~E∗ ẑ . (30)

Then we find
〈S〉 =

c√
λ+

u ẑ (31)

and recognize that there a similar expression for the minus mode, with the replacement
λ+ → λ−.
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Electromagnetism 3

Rotations of a neutral rod

Two particles of charge q sit on the opposite sides of a rod of length 2a, and a balancing
chargeQ = −2q sits in the rod’s center (see below). The orientation angle of the rod oscillates
in time θ(t) = π cos(ωt), and the motion is non-relativistic. Here you will determine the
electric and magnetic field at a distance x along the x axis.

For charge and current distributions, ρ(r) and J(r), the multipole moments are:2

Multipole Definition
Electric Monopole

∫
d3r ρ(r)

Electric Dipole
∫
d3r r ρ(r)

Magnetic Dipole 1
2c

∫
d3r (r × J(r))

Electric Quadrupole
∫
d3r ρ(r) (3rirj − δijr2)

We define v0 ≡ aω and λ0 ≡ c/ω, and note that v0/c = a/λ0.

(a) (3 points) Determine the listed multipole moments for the rod as a function of time.

(b) (3 points ) For a � x � λ0, determine the contribution to the electric and mag-
netic fields at position x from the magnetic dipole moment in terms of q, λ0, a, x and
fundamental constants.

(c) (6 points) For a � x � λ0, estimate the magnitude of each listed multipole to the
rod’s electric and magnetic field in terms of q, λ0, a, x and fundamental constants. Does
your estimate confirm your calculation in (b)? Is the magnetic dipole the dominant
contribution to the electric and magnetic field? Explain.

(d) (6 points) Determine the electric and magnetic field as a function of time for x� λ0,
and determine the instantaneous energy flux, Sx, at position x. Neglect the quadrupole
moment.

(e) (2 points) Estimate the quadrupole contribution to the energy flux of (d). Was ne-
glecting this contribution in part (d) justified? Explain.

2We are using Gaussian units. In SI units the magnetic moment does not have 1/c.
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Solution

(a) The electric monopole and dipole are zero. The magnetic dipole is in the z direction.
The velocity of the charges at “left" end is v(t) = aπω sin(ωt)(−ŷ). The full dipole moment
is a sum of the two moving contributions

m =
∑ q

2c
r × v =

q

c
πa2ω sin(ωt)(−ẑ) . (32)

Thus
m = πq

a2

λ0

sin(ωt)(−ẑ) . (33)

To determine the quadrupole moment write the coordinate vectors of the two charges as:

r1 =(a cos(θ), a sin θ, 0), (34)
r2 =− (a cos(θ), a sin θ, 0). (35)

Then the contribution for r1 is

Qij = qa2




3 cos 2θ − 1 cos θ sin θ 0
cos θ sin θ 3 sin2 θ − 1 0

0 0 −1


 (36)

after a little bit of algebra and adding the contribution from the second charge we find

Qij = qa2




cos 2θ sin 2θ 0
sin 2θ − cos 2θ 0

0 0 0


+ qa2




1 0 0
0 1 0
0 0 −2


 . (37)

Only the first term depends on time, and ultimately contributes to the radiation. Note the
period of the quadrupole moment is half that of the dipole moment, since Qij scales with 2θ
instead of theta.

(b) The magnetic field from the dipole

B =
3(n ·m)n−m

4πr3
(38)

So in the current case n = x̂ while m = m(t)(−ẑ) with m(t) = qπa2/λ0 sin(ωt). So we have
simply

B(t, x) =
q

4

a2

x3λ0

sin(ωt)ẑ . (39)

The vector potential from a dipole is

A =
m× r̂

4πr2
, (40)

and the induced electric field is
E = −1

c
∂tA . (41)
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Then since −(−ẑ)× x̂ = ŷ we have

E(t,x) =
1

c

ṁ

4πr2
ŷ . (42)

Putting in the value of m(t) we have

E(t, x) =
q

4

a2

x2λ2
0

cos(ωt)ŷ (43)

(c) This is the near zone there. Clearly the electric monopole and dipole contributions are
zero. The magnetic field from a magnetic dipole is

B ∼ m

x3
∼ q

a2

x3λ0

(44)

where λ0 ≡ ω/c. This is compatible with Eq. (39). The corresponding electric field is from
Faraday’s Law ∮

E · d` = −1

c
∂t

∫
B · da , (45)

and thus we estimate
E ∼ x

c
Ḃ ∼ q

a2

x2λ2
0

, (46)

which is consistent with Eq. (43).

The quadrupole field is

E ∼ Q

x4
∼ q

a2

x4
. (47)

The magnetic field comes from the Maxwell corrections to Ampere’s Law
∮

B · d` =
1

c
∂t

∫
E · da , (48)

yielding

B ∼ x

c
Ė ∼ q

a2

x3λ
. (49)

Since x� λ0, we see that the electric quadrupole’s electric field is larger than that from
the magnetic dipole. The quadrupole’s magnetic field is comparable to the magnetic dipoles
magnetic field, and thus can not be neglected.

(d) This is magnetic dipole radiation in the far field. We have

B =
1

4πrc2
n× n× m̈(t− r/c) . (50)

In the current case we have m = m(t)(−ẑ) . So we find

1

c2
m̈(t) = −qπ a

2

λ3
0

. (51)
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So
B(t, x) =

q

4

a2

xλ3
0

sin(ω(t− x/c))(−ẑ) (52)

We note that the magnetic field here in Eq. (52) is 180o out of phase from the near field
result in Eq. (39).

This is a radiation field. Thus the electric and magnetic field are equal in magnitude, in
phase, and perpendicular to each other, as in a plane wave. Thus we have

E(t, x) =
q

4

a2

xλ3
0

sin(ω(t− x/c))(−ŷ) (53)

The Poynting flux is

Sx = (E ×B)x =
(q

4

)2
(
a2

xλ3
0

)2

sin2(ω(t− x/c) . (54)

(e) The power in quadrupole radiation follows as ω6 ∼ 1/λ6
0. This is the same order of

magnitude as magnetic dipole radiation.
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Quantum Mechanics 1

Coherent states of a harmonic oscilator

A one-dimensional quantum harmonic oscillator with coordinate x, mass m, and fre-
quency ω is initially in its ground state |0〉. At time t = 0, a constant force F is abruptly
applied to the oscillator.

(a) (2 points) Write down the Hamiltonian H of the oscillator at t > 0 (with the force
term) through the creation/annihilation operators a†, a.

(b) (4 points) Find the new creation/annihilation operators b†, b in terms of the old ones
a†, a such that the Hamiltonian H takes the form of the Hamiltonian of a free harmonic
oscillator without an external force,

H = ~ωb†b+ const .

(c) (3 points) What is the state |ψ(0)〉 of the oscillator at time t = 0, right after the force
F is applied? Write down the equation this state should satisfy in terms of the operator b.

(d) (6 points) Obtain an explicit expansion of the state |ψ(0)〉 in the basis {|n〉} of the
energy eigenstates of the b-oscillator and normalize it. From this expansion, write down the
time-dependent normalized state |ψ(t)〉 of the oscillator at t > 0.

(e) (4 points) Using the expression for |ψ(t)〉, find the time dependence of the average
coordinate 〈x(t)〉 and momentum 〈p(t)〉 of the oscillator.

(f) (1 point) Very briefly, interpret your result in part (e) from the point of view of the
Ehrenfest theorem.
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Solution

(a) Using the standard expression for the oscillator coordinate x in terms of the cre-
ation/annihilation operators a†, a, one can directly write the Hamiltonian as:

H = H0 − Fx = ~ω
(
a†a+

1

2

)
− F

√
~

2mω

(
a† + a

)
. (1)

(b) From the expression for H above, one can see immediately that to include the force
term in the main part of the Hamiltonian, one needs to introduce the annihilation operator
b as

b = a− f , f ≡ F

(2~mω3)1/2
.

(This corresponds to the shift of the potential minimum of the classical harmonic oscillator
by the constant external force.) In terms of the operator b and Hermitian conjugate b†, the
Hamiltonian H takes the form of the free harmonic oscillator:

H = ~ωa†a− F
√

~
2mω

(
a† + a

)
= ~ωb†b+ const . (2)

(c) Since the force is switched on abruptly, the state |ψ(0)〉 of the oscillator right after
switching on of the force F coincides with the initial state before the force was switched one,
i.e., the ground state on the initial "a"-oscillator: |ψ(0)〉 = |0〉. As usual, this state satisfies
the condition a|0〉 = 0, i.e.,

a|ψ(0)〉 = 0 .

In terms of the new annihilation operators b, this equation is:

b|ψ(0)〉 = −f |ψ(0)〉 ,

i.e., the state |ψ(0)〉 represents a coherent state.

(d) To expand the state |ψ(0)〉 in the basis {|n〉} of the energy eigenstates of the "b"-
oscillator:

|ψ(0)〉 =
∑

n

cn|n〉

we note that the states in this basis are given by the standard relations for the energy
eigenstates of a harmonic oscillator:

|n〉 =
1√
n!

(b†)n|0〉 ,

where, as usual, the ground state of the oscillator is defined by the equation

b|0〉 = 0 .
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The expansion coefficients cn are found directly:

cn = 〈n|ψ(0)〉 =
1√
n!
〈0|bn|ψ(0)〉 =

(−f)n√
n!
〈0|ψ(0)〉 ,

and after proper normalization

cn =
(−f)n√

n!
e−f

2/2.

Finally, taking into account the standard time evolution of the energy eigenstates, we obtain
the wavefunction of the oscillator in the basis of the new energy eigenstates:

|ψ(t)〉 =
∑

n

[−fe−iωt]n√
n!

|n〉e−f2/2. (3)

(e) Using the wavefunction |ψ(t)〉 and the standard properties of the creation/annihilation
operators one finds:

〈ψ(t)|b|ψ(t)〉 = −fe−iωt, 〈ψ(t)|b†|ψ(t)〉 = −feiωt,

and from this, the average coordinate 〈x〉(t) and momentum 〈p〉(t):

〈x(t)〉 =

√
~

2mω
(2f − 2f cosωt) =

F

mω2
(1− cosωt) , (4)

〈p(t)〉 = −i
√

~mω
2

f(eiωt − e−iωt) =
F

ω
sinωt . (5)

(f) Equations obtained in (e) coincide precisely with those describing the evolution of
coordinate and momentum of a classical harmonic oscillator, in agreement with the Ehrenfest
theorem.
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Quantum Mechanics 2

Jordan-Wigner transformation

The Jordan-Wigner transformation is a mapping between spin 1/2 operators and fermion
creation/annihilation operators. Qualitatively, for a system of spins on sites in a lat-
tice, the Jordan-Winger transformation maps spin up/spin down states on each site to the
filled/empty fermion occupation states on the same site. (All spin operators in this problem
are defined in units of ~.)

1. Quantitatively, we consider first a single site with spin 1/2. Take the mapping |↑〉 ≡ f †|0〉
and |↓〉 ≡ |0〉, where f † and its Hermitian conjugate f are the raising and lowering operators
for the fermion on this site. The f operators obey the standard fermionic commutation
relations, and state |0〉 is the “empty” state: f |0〉 = 0.

(a) (3 points) From the connection between the spin states and f operators given above,
show that we can write Sz = f †f − 1

2
. What are the expressions for Sx and Sy in terms

of the f operators?

(b) (3 points) Show that the spin commutation relations are respected by transformation
to the fermion operators. (It is sufficient to demonstrate explicitly only one relation.)
What is the anticommutator {S+, S−}?

2. Now consider a chain of spin 1/2’s in one dimension on a lattice of sites j = 1...N , each
separated by distance a.

(a) (1 point) State in one sentence what is wrong with the mapping between spins and
fermions in part (1) in this case.

Hint: Compare the commutation relation between spins and between fermions on
different sites j and l.

(b) (5 points) To overcome this problem, one generalizes expressions from part (1), and
defines the spin raising and lowering operators at site j through the fermion operators
as

S+
j = f †j e

iφj , S−j = fje
−iφj ,

where the phase operator contains the sum over all fermion occupancies n at sites to
the left of j: φj = π

∑
l<j nl. Show that the “string operator” eiφj solves the issue in

2(a).

Hint: First show that fj and f †j anticommute with eiπnj . What about eiπnj and fl
for l 6= j? Finally, show that the spin raising and lowering operators as defined
above commute on different sites, when expressed through f operators. (As in 1b,
one commutation relation would be sufficient.)
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3. Consider the one-dimensional, anisotropic Heisenberg model with two interaction con-
stants J and Jz:

H = −J
2

∑

j

[S+
j+1S

−
j + H.c.]− Jz

∑

j

SzjS
z
j+1.

(a) (1 point) Show that in terms of the fermion operators, the quadratic part of this
Hamiltonian (the one that does not contain “interactions,” i.e., expressions with more
than two fermion operators) is:

H = −J
2

∑

j

(f †j+1fj + H.c.) + Jz
∑

j

f †j fj .

(b) (2 points) Next, the noninteracting Hamiltonian from 3(a) can be Fourier transformed
to the momentum space via fj = 1√

N

∑
k ske

ikRj , where Rj = ja. Show that the result
of this transformation is

H =
∑

k

ωks
†
ksk ,

and find the energy ωk as a function of Jz, J , k, and a.

(c) (5 points) ωk in part 3(b) defines the “magnon excitation energy.” Take Jz = J > 0.
Describe very briefly the ground state of the model. Sketch the magnon dispersion
(i.e., ωk versus k) between k = −π/a and k = π/a. What does the value of ωk at k = 0
say about the direction of spins in the ground state?
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Solution

(1) (a) For a spin 1/2, the operator Sz is diagonal in the basis {|↑〉, |↓〉} and has eigenvalues
±1/2, i.e.:

Sz|↑〉 =
1

2
|↑〉, Sz|↓〉 = −1

2
|↓〉 .

From the given analogy to the fermion states, and the standard properties of the fermion
operators, we see that the operator with the same properties (diagonal, with eigenvalues
±1/2 is indeed f †f − 1

2
:

[f †f − 1

2
]|0〉 = −1

2
|0〉 , [f †f − 1

2
]f †|0〉 =

1

2
f †|0〉 .

Next, the properties of the fermion operators imply that

f(f †|0〉) = ff †|0〉 = (1 + f †f)|0〉 = |0〉 .

Combined with the definition of f † above, we see that in terms of the spin operators: f † = S+

and f = S−. The properties of the spin operators then mean that,

Sx =
1

2
(f † + f) , Sy =

1

2i
(f † − f) .

(b) The spin operators should have the relations [Sa, Sb] = iεabcSc. For example:

[Sx, Sy] =
i

4
[f † + f, f − f †] =

i

4
(f †f − ff † − ff † + f †f) =

i

2
(2f †f − 1) = iSz ,

and so on. The anticommutator {S+, S−} is directly

{S+, S−} = {f †, f} = 1 ,

and, as should be, coincides with the value it has for spin 1/2:

{S+, S−} = 2(S2 − S2
z ) = 2(

3

4
− 1

4
) = 1 .

(2) (a) Spin operators for different sites, as operators of the independent systems, commute,
while fermion operators anticommute even on different sites.

(b) Consider a state |ψ〉 in which the site j is filled by a fermion, i.e. |ψ〉 = |...1j...〉.
Then feiπnj |ψ〉 = −f |ψ〉, while

eiπnjf |ψ〉 = eiπnj |...0j...〉 = |...0j...〉 = f |ψ〉 .

Thus, {eiπnj , fj} = fj − fj = 0. An analogous argument holds for f †. It is clear that the
phase factor at any other site l 6= j commutes with fj and f †j . Thus we see that {eiφj , fl} = 0

if l < j, and [eiφj , fl] = 0 if l ≥ j.
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From this, taking j < k, we get:

[S+
j , S

+
k ] = [f †j e

iφj , f †ke
iφk ]

= f †j [eiφj , f †ke
iφk ] + [f †j , f

†
ke
iφk ]eiφj

= [f †j , f
†
ke
iφk ]eiφj = 0 ,

(1)

where we used the fact that eiφj commutes with fermions on site j and k, and that f †j
anticommutes with both f †k and eiφk , and therefore, commutes with their product. A similar
argument holds for [S−j , S

−
k ] and [S+

j , S
−
k ].

(3) (a) For the first term in the Hamiltonian, we have

−J
2

∑

j

S+
j+1S

−
j = −J

2

∑

j

f †j+1e
iπnjfj = −J

2

∑

j

f †j+1fj .

The second term becomes

−Jz
∑

j

(f †j+1fj+1 −
1

2
)(f †j fj −

1

2
) .

Neglecting terms quartic in fermion operators, we get Jz
∑

j f
†
j fj for this expression, and

with this, the sought expression for the quadratic part of the Hamiltonian.

(b) The first term in the Hamiltonian is 3(a) becomes

− J

2N

∑

k

(eika + e−ika)s†ksk = − J
N

∑

k

cos(ka)s†ksk .

The second term is simply Jz
∑

k s
†
ksk. Thus, H =

∑
k ωks

†
ksk, where

ωk =
1

N
[Jz − J cos(ka)] .

(c) In the case J = Jz > 0, this gives ωk > 0, for k 6= 0. Therefore, the energy is
increased for any non-uniform spin configuration. Thus, the ground state of the system
is all spins pointing in the same direction. The magnon dispersion is sketched in Fig. 1.
The fact that ωk=0 = 0 means that there is no energy penalty for changing the direction
of all spins simultaneously, i.e., the spins in the ground state should point in the same but
arbitrary direction. This makes physical sense, since we have removed any anisotropy by
setting J = Jz.
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Figure 1: Magnon dispersion for part 3(c).
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Quantum Mechanics 3

BEC superfluiditiy

The ground state of a quantum-degenerate gas (Bose-Einstein condensate) of bosonic
atoms of mass m in an external potential V is described by a macroscopic wavefunction
Ψ(~r, t) = ψ(~r)e−iµt/~ featuring a chemical potential µ due to a nonlinear effective interaction
g|ψ2| (with g > 0) between the atoms. The zero-point energy in the potential is negligible.

First, consider an effectively 1D scenario and a box-shaped potential V (z) to derive some
basic properties of the condensate. One of the walls of the box is at z = 0, with V =∞ for
z < 0 and V = 0 for z ≥ 0.

1. (a) (2 points) Write down the Schrödinger equation for ψ(z). Find the stationary
bulk density n0 = |ψ0|2 = |ψ(∞)|2 far away from the wall where edge effects can
be neglected.

(b) (3 points) Qualitatively sketch n(z) = |ψ(z)|2 near the wall, and discuss the role of
kinetic and interaction energy terms. Using the ansatz n(z) = n0 tanh2(x/[

√
2ξ]),

determine the healing length ξ.

2. Far from the walls, the condensate supports perturbative excitations

δψ = e−iµt/~[uei(kz−ωt) − v∗e−i(kz−ωt)] ,

so that the total wavefunction is given by ψ(z, t) = [ψ0 + δψ(z, t)]e−iµt/~, with |δψ| �
|ψ0|.

(a) (3 points) Derive a linearized Schrödinger equation for δψ, keeping terms to first
order in δψ.

(b) (4 points) Show that the dispersion relation ω(k) of the perturbations is given by
ω(k) = [k2/2m (~2k2/2m+ 2µ)]

1/2.

(c) (3 points) Using the result for ω(k), discuss the character of the excitations for
small and large momenta (i.e. k � 1/ξ and k � 1/ξ).

The result for ω(k) is valid also in higher dimensions. Now consider an impurity atom moving
through a 3D condensate with velocity ~v.

3. (a) (2 points) Calculate the Doppler shift of the frequency ω(k) of an excitation
propagating in ~k/k direction in the atom’s reference frame (you may assume
k � 1/ξ).

(b) (3 points) The Doppler shift allows for resonant coupling between the impurity
motion and the excitation, once v exceeds a critical velocity vc. Calculate vc for
strong interactions, and in the absence of interactions. What is the friction force
for motion below vc? Justify your answer.
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Solution

1. Start with the Schrödinger equation i~∂tψ = [−~2∂2
z/2m + g|ψ(z)|2]ψ(z) with i~ψ =

µψ(z). Far away from the wall, the wavefunction is flat such that µψ = g|ψ|2ψ and hence
n0 = |ψ0|2 = µ/g. The wavefunction has to vanish near the wall, reaching zero. While
this reduces the interaction energy near the wall, it increases kinetic energy due to bending
of the wavefunction, giving rise to the characteristic length scale ξ. Plugging the ansatz
ψ =
√
n0 tanh(x/[

√
2ξ]) into the Schrödinger equation yields

ξ = ~/
√

2mµ. (1)

2. Substituting the wavefunction ψ(z, t) = [ψ0 + δψ(z, t)]e−iµt/~ into the time-dependent
Schrödinger equation and only keeping terms ∝ δψ yields

i~ ˙δψ = −~2∂2
zδψ

2m
+ 2g|ψ0|2δψ + gψ2

0δψ
∗ (2)

After inserting the expression for δψ(z, t), group all terms ∝ e−iωt and ∝ eiωt and require
them to fulfil the equation separately for all times. This yields

0 =

(
~2k2

2m
+ µ− ~ω

)
u− µv (3)

0 = −µu+

(
~2k2

2m
+ µ+ ~ω

)
v (4)

where we have already taken the complex conjugate of the last equation (which contained v∗
and u∗). This system only has a solution for u and v if the determinant is zero; this imme-
diately gives the desired equation for ω(k) (known as the Bologliubov dispersion relation).
Note that the chemical potential is related to the healing length as 2µ = (~/ξ)2/2m. For
small momentum, k � 1/ξ, the dispersion relation thus is linear (sound-like)

ω(k) ≈
√
µ

m
k (5)

whereas for large momentum, k � 1/ξ, it approximates that of a single free atom,

ω(k) ≈ ~k2

2m
(6)

One can thus see that collective excitations of the condensate are only possible if the bending
of the wavefunction is soft on the scale of the healing length.

3. In the reference frame of the moving impurity atom, the perceived frequency of an ex-
citation propagating in the direction of impurity motion is ω′(k) = ω(k)(1 − v/cs) where
cs =

√
µ/m is the speed of sound. Thus for wave-like excitations with ω(k) = csk we have
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ω′(k) = ω(k)− kv, which generalizes to ω′(k) = ω(k)−~k ·~v in non-collinear situations. The
condition for resonant excitation, ω′(k) = 0 can thus be fulfilled (Landau criterion) for

v ≥ vc =
ω(k)

k
, (7)

which for k � 1/ξ coincides with the speed of sound,
√
µ/m. Above vc, the motion can

resonantly produce Bogoliubov excitations (given off sideways), which leads to damping
of the motion. Below vc, no excitations can be produced and the motion is frictionless
(superfluidity). For vanishing interactions, vs goes to zero with the chemical potential. In
this case, excitations (in the form of single recoiling atoms produced by collisions with the
impurity) can now occur for any non-zero velocity, and superfluidity goes away.
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Statistical Mechanics 1

Phonons

Consider a cubic array of atoms in d dimensions, where each atom is labelled by its
equilibrium position, R =

∑d
i=1 aniei, where a is the lattice spacing, ni is an integer, and ei

is a unit vector in the direction indicated by i. As the atoms vibrate about their equilibrium
positions, let xR be the displacement of the atom whose equilibrium position is R from
equilibrium, i.e., xR = 0 indicates the atom is sitting at its equilibrium position. Let pR

be the momentum conjugate to xR. The simplest description of the energy of the atomic
vibrations is by imagining the atoms are connected by springs of spring constant ω. Then
the Hamiltonian describing the energy of the crystal as the atoms vibrate is a sum of their
kinetic and potential energies:

H =
∑

R

p2
R

2m
+
∑

R

d∑

i=1

mω2

2
(xR − xR+aei)

2 , (1)

where m is the mass of an atom and the sum is over all equilibrium lattice positions R.
Assume periodic boundary conditions in all directions, so that R ≡ R+Naei. Then the

Hamiltonian is translationally invariant and can be diagonalized using the Fourier transforms:

xR =
1√
Nd

∑

q

eiq·R~φq

pR =
1√
Nd

∑

q

eiq·R~πq. (2)

Notice that ~φ and ~π are d-component vectors because x and p are d-component vectors. The
periodic boundary conditions require q = 2π

Na

∑d
i=1 miei, where mi is an integer defined mod

N .

1. Using the Fourier transforms in Eq. (2),

(a) (2 points) Show that the Hamiltonian in Eq. (1) can be written as a sum of
decoupled harmonic oscillators for each q:

H =
∑

q

[
~πq · ~π−q

2m
+
mω2

q

2
~φq · ~φ−q

]
(3)

(b) (2 points) Express ωq in terms of ω, q, and a.

2. The mean squared atomic displacements are given by: x2
rms ≡ 〈xR · xR〉.

(a) (3 points) Write an expression for x2
rms at finite temperature as a sum over q.
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(b) (2 points) Show that in the high temperature limit where kBT � ~ωq,

x2
rms =

d

Nd

∑

q

kBT

mω2
q

(4)

(c) (3 points) In the Debye approximation, the phonon frequency is approximated by
ωq → ωa|q|. Compute x2

rms in three dimensions in the Debye approximation by
converting the sum to an integral via

∑
q · · · → Ndad

∫
ddq

(2π)d
· · · and taking π/a

as a large-momentum cut-off for q.

Hint: it may be helpful to define the raising and lowering operators:

aq,i =

√
mωq

2~

(
φq,i +

i

mωq

πq,i

)

a†q,i =

√
mωq

2~

(
φ−q,i −

i

mωq

π−q,i

)
, (5)

where φq,i indicates the ith component of ~φq and similarly for πq,i. The raising and
lowering operators satisfy [aq,i, a

†
q′,j] = δq,q′δij.

3. Lindemann’s criterion predicts that a crystal will melt at the temperature where the
atomic displacements reach the same scale as the lattice spacing; specifically, when
x2
rms = cLa

2, where cL is a phenomenological constant.

(a) (3 points) Use Lindemann’s criterion to compute the melting temperature of a
three-dimensional crystal in the Debye approximation in terms of cL, using the
results from 2(c).

(b) (3 points) Repeat part 2(c) for two dimensions, using π/(Na) as a small-momentum
cut-off and π/a as a large-momentum cut-off. Show that xrms diverges with sys-
tem size.

(c) (2 points) What does part 3(b) imply for the stability of a two-dimensional crystal
in the thermodynamic limit?
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Solution

1. Plugging the Fourier transforms in Eq. (2) into Eq. (1) yields:

H =
∑

R

1

Nd

∑

q,q′

eiq·R+iq′·R~πq · ~πq′
2m

+
∑

R

1

Nd

∑

q,q′

d∑

i=1

mω2

2
×

(
eiq·R+iq′·R − eiq·R−iq′·(R+aei) − eiq·(R+aei)+iq

′·R + eiq·(R+aei)+iq
′·(R+aei)

)
~φq · ~φq′ (6)

=
∑

q

[
~πq · ~π−q

2m
+

d∑

i=1

mω2

2
(2− 2 cos(aq · ei)) ~φq · ~φ−q

]
(7)

=
∑

q

[
~πq~π−q

2m
+
mω2

q

2
~φq · ~φ−q

]
, (8)

where

ω2
q = 4ω2

d∑

i=1

sin2 aq · ei
2

(9)

2. (a) By translation symmetry, x2
rms = 〈xR ·xR〉 = 〈x0 ·x0〉, which can be computed using

the Fourier transform in Eq. (2) and the raising and lowering operators in Eq. (5):

x2
rms =

1

Nd

∑

q,q′

〈~φq · ~φq′〉 (10)

=
1

Nd

∑

q,q′

d∑

i=1

~
2m
√
ωqωq′

〈
(
aq,i + a†−q,i

)(
aq′,i + a†−q′,i

)
〉 (11)

Since the harmonic oscillators are decoupled, the right-hand-side will be zero unless
q′ = −q. Therefore:

x2
rms =

1

Nd

∑

q

d∑

i=1

~
2mωq

〈1 + nq,i + n−q,i〉 (12)

=
d

Nd

∑

q

~
2mωq

(
1 +

2

eβ~ωq − 1

)
, (13)

where nq,i ≡ a†q,iaq,i, β ≡ 1/(kBT ) and we have used the fact that ωq = ω−q and
〈nq,i〉 = 1

eβ~ωq−1
following the Bose-Einstein distribution.

(b) In the high-temperature limit when kBT � ~ωq, we make the approximation eβ~ωq−1→
β~ωq and Eq. (13) simplifies:

x2
rms

kBT�~ωq−−−−−−→ d

Nd

∑

q

kBT

mω2
q

(14)
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(c) In the Debye approximation where ωq → ωa|q|:

x2
rms →

d

Nd

∑

q

kBT

mω2a2q2
(15)

In three dimensions, converting the sum to an integral yields:

x2
rms → 3a3

∫
d3q

(2π)3

kBT

mω2a2q2
(16)

=
3a

2π2

∫ π/a

0

dq
kBT

mω2
(17)

=
3

2π

kBT

mω2
(18)

3. (a) Using Lindemann’s criterion and x2
rms in three dimensions from Eq. (18), the melting

temperature will occur when

3

2π

kBTL
mω2

= cLa
2 ⇒ TL =

2πmω2cLa
2

3kB
(19)

(b) Applying the expression for x2
rms in Eq. (15) to two dimensions yields:

x2
rms → 2a2

∫
d2q

(2π)2

kBT

mω2a2q2
(20)

=
kBT

πmω2

∫ π
a

π
Na

dq

q
(21)

=
kBT

πmω2
ln(N), (22)

which diverges in the large N limit.

(c) Eq. (22) shows that fluctuations in atomic position diverge in the large N limit for a
two-dimensional crystal. This means that strictly speaking, a two-dimensional crystal
is unstable to fluctuations, i.e., it cannot exist in the thermodynamic limit. Applying
Lindemann’s criterion shows that the melting temperature occurs when TL ln(N) ≈
cLa

2, i.e., TL → 0 as N → ∞ as a is held fixed. Thus, we reach the same conclusion
that a crystal is unstable in two dimensions.
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Statistical Mechanics 2

Mean field behavior of the spin-2 Ising model

Consider a spin-2 Ising model with the Hamiltonian:

H = −
∑

〈i,j〉

JijSiSj −H
∑

i

Si (1)

where spins Si ∈ {-2,-1,0,1,2} are on a simple cubic lattice and summation is performed over
pairs of spins 〈i, j〉 (once each) that have only the nearest-neighbor coupling J1/kB = 40K
and the next-nearest neighbor coupling J2/kB = 10K. Note that every spin has 6 nearest
neighbors and 12 next-nearest neighbors.

(a) (5 points) Derive the mean field Hamiltonian by writing Si = m+ δSi (with m = 〈Si〉
and δSi = Si −m) and then neglecting terms in quadratic fluctuations.

(b) (4 points) Find the mean field free energy F (T,H,N,m)

(c) (4 points) Find the mean field equation for m.

(d) (5 points) Find the mean field transition temperature Tc when H = 0.

(e) (2 points) How would the obtained Tc value compare with the exact value?
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Solution

(a) In the mean-field Hamiltonian, we need to replace the spin interaction term SiSj by

Si = m+ δSi;

δSi = Si − 〈Si〉 = Si −m
SiSj = ((m+ δSi)(m+ δSj)) = m2 +m(δSi + δSj) +���

�:0
δSiδSj

Now:

SiSj = m2 +m(δSi + δSj)

= m2 +m(Si −m) +m(Sj −m) =

=��m
2 +mSi −��m2 +mSj −m2 =

= m((Si + Sj)−m)

Substituting into the original Hamiltonian:

HMF = −
∑

〈i,j〉

Jijm((Si + Sj)−m)−H
∑

i

Si

Due to symmetry (all atoms have the same number of nearest neighbors) we have
∑

〈i,j〉

Si =
∑

〈i,j〉

Sj

∑

〈i,j〉

(Si + Sj) =
∑

〈i,j〉

2Si

HMF = −
∑

〈i,j〉

Jijm(2Si −m)−H
∑

i

Si

The mean-field sum can now be simplified as:

∑

〈i,j〉

JijSi =
1

2

N∑

i=1

∑

j∈nn(i)

JijSi =
1

2
(z1J1 + z2J2)

N∑

i=1

Si

where z1=6, the number of 1st nearest neighbors and z2=12. We can name a new mean-field
variable J0 = (z1J1 + z2J2)=360K kB:

∑

〈i,j〉

JijSi =
(z1J1 + z2J2)

2

N∑

i=1

Si =
1

2
J0

N∑

i=1

Si
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Finally, we have:

HMF = −J0m

2

N∑

i

(2Si −m)−H
∑

i

Si =

=
NJ0m

2

2
− J0m

N∑

i

(Si)−H
∑

i

Si =

=
NJ0m

2

2
− (J0m+H)

N∑

i

Si

(b) First we need to compute the partition function:

ZMF = Tr

(
e−βHMF

)
=

=
N∏

i

( ∑

Si=±2,±1,0

e−βHMF

)
=

=
N∏

i

( ∑

Si=±2,±1,0

)
e−

βNJ0m
2

2 eβ(J0m+H)
∑
i Si =

= e−
βNJ0m

2

2

N∏

i

( ∑

Si=±2,±1,0

eβ(J0m+H)
∑
i Si

)
=

= e−
βNJ0m

2

2

N∏

i

(
1 + eβ(J0m+H) + e−β(J0m+H) + e2β(J0m+H) + e−2β(J0m+H)

)
=

= e−
βNJ0m

2

2

N∏

i

(
1 + 2cosh(β(J0m+H)) + 2cosh(2β(J0m+H))

)
=

= e−
βNJ0m

2

2 G(m,H)N

Where G(m,H) = 1+2cosh(β(J0m+H))+2cosh(2β(J0m+H)). From the partition function,
the free energy is:

F = −kβT lnZ =
βNJ0m

2

2
−NkβT lnG(m,H)

(c) Find the mean field equation for m. The mean field eq. for m is obtained at the minimum
of F → ∂F

∂m
= 0

∂F
∂m

= NJ0m−
NkβTJ0

kβT

2sinh
(
H+J0m
kβT

)
+ 4sinh

(
2H+2J0m

kβT

)

1 + 2cosh
(
H+J0m
kβT

)
+ 2cosh

(
2H+2J0m

kβT

) = 0

→ m =
2sinh

(
H+J0m
kβT

)
+ 4sinh

(
2H+2J0m

kβT

)

1 + 2cosh
(
H+J0m
kβT

)
+ 2cosh

(
2H+2J0m

kβT

)
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(d) We can make the following change of variables (just to simplify the notation): θ =
kβT

J0
and h = H/J0. The expression for m is then:

m =
2sinh

(
m+h
θ

)
+ 4sinh

(
2m+2h

θ

)

1 + 2cosh
(
m+H
θ

)
+ 2cosh

(
2m+2H

θ

)

Now, setting the slopes of the LHS and RHS of the equation to be the same at m=0 and
H=0 yields the Tc equation. For the LHS the slope is equal to 1. For the RHS we have:

limH,m→0RHS =
2
(
m+h
θ

)
+ 2
(
m+h
θ

)

5

=
2

θ
(m+ h)

∂RHS

∂m
=

2

θ

This means that 2
θc

= 1⇒ θc = 2, Tc=2J0 = 720K

(e) How would the obtained Tc value compare with the exact value? Since the mean field
model assumes that fluctuations are small, it generally overestimates the system’s tendency
to order and thus overestimates the value of Tc
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Statistical Mechanics 3

Pair production in massive stars

Hydrogen gas in the core of a massive star can be hot enough to produce electron-positron
pairs by (for example) electron scattering off of protons,

e− + p→ e− + p+ e− + e+.

(a) (2 points) If this reaction, and its inverse, are in statistical equilibrium, write down the
relation between the chemical potential of the electron, µ−, and the chemical potential
of the positron, µ+.

(b) (3 points) Suppose that the gas is relatively cold, such that the temperature T satisfies,

kT � mec
2,

where me is the rest mass of the electron, k is Boltzmann’s constant, and c is the speed
of light. Under these conditions, what is the distribution over momentum p for given
chemical potentials µ±, and temperature T?

(c) (3 points) Making the further assumption that the gas is very dilute, find an expression
for the physical density of electrons n− and positrons n+.

(d) (7 points) The gas is neutral, with proton number density n. Determine the ratio n+/n
in terms of the parameters,

y ≡ 1

4
nλ3 exp

(
mec

2

kT

)
, and λ ≡ h√

2πmekT
.

(e) (5 points) Pairs can also be produced in the core of a star from photons γ+γ ↔ e−+e+.
If this reaction is dominant, compare qualitatively the S = constant compressibility of
a gas of photons containing e± to that of photons only.
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Solution

Hydrogen gas in the core of a massive star can be hot enough to produce electron-positron
pairs by (for example) electron scattering off of protons,

e− + p→ e− + p+ e− + e+.

(a) If this reaction, and its inverse, are in statistical equilibrium, write down the relation
between the chemical potential of the electron, µ−, and the chemical potential of the
positron, µ+.

In statistical equilibrium, where the reaction and its inverse have the same rate, µ− +
µ+ = 0.

(b) Suppose that the gas is relatively cold, such that the temperature T satisfies,

kT � mec
2,

where me is the rest mass of the electron, k is Boltzmann’s constant, and c is the speed
of light. Under these conditions, what is the distribution over momentum p for given
chemical potentials µ±, and temperature T?

The kinetic energy,
E = E −mec

2 ∼ kT � mec
2,

with,
E =

√
p2c2 +m2

ec
4.

In the non-relativistic limit we have,

E =
p2

2me

,

so,

E = mec
2 +

p2

2me

.

The required distribution is then, e.g.,

n−(p) =
2

h3

[
exp

(E − µ−
kT

)
+ 1

]−1

,

with h being Planck’s constant.

(c) Making the further assumption that the gas is very dilute, find an expression for the
physical density of electrons n− and positrons n+.

Physically, we just need to integrate over momentum,

n =

∫
n(p)4πp2dp,
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for either species. Being in the dilute limit means that the exponential terms in n±(p)
dominate, and we drop the “1". The required integral is,

n− =
2

h3
exp

[
µ− −mec

2

kT

] ∫
4πp2 exp

[ −p2

2mekT

]
dp.

We need to evaluate a standard integral of the form (for some constant c),
∫
p2 exp

(
−p2/c

)
dp = (1/4)

√
πc3/2.

With this, the physical density evaluates to,

n± =
2

h3
(2πmekT )3/2 exp

(
µ± −mec

2

kT

)
.

(d) The gas is neutral, with proton number density n. Determine the ratio n+/n in terms
of the parameters,

y ≡ 1

4
nλ3 exp

(
mec

2

kT

)
, and λ ≡ h√

2πmekT
.

Charge neutrality implies,
n+ n+ = n−,

and we have from part (i),
µ− = −µ+ .

We simplify the notation by writing the result from part (iii) in terms of the suggested
variables, so that,

n+ =
n

2y
eµ+/kT ,

and,
n− =

n

2y
eµ−/kT =

n

2y
e−µ+/kT .

Using charge neutrality, the quantity we want is,
n+

n
=
n−
n
− 1.

Substituting,
n+

n
=

n

4n+y2
− 1.

In terms of t ≡ n+/n we have a quadratic,

t2 + t− 1

4y2
= 0.

The solution in terms of the suggested variables is,
n+

n
=

1

2y
(
y +

√
1 + y2

) .

Equivalent solutions are fine too of course.
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(e) Pairs can also be produced in the core of a star from photons γ + γ ↔ e−+ e+. If this
reaction is dominant, compare qualitatively the S = constant compressibility of a gas
of photons containing e± to that of photons only.

The onset of pair production softens (makes more compressible) the effective equation
of state. There are various ways to argue this qualitatively. e.g. we can note that for
a system where radiation pressure is dominant, but there are no pairs, Γ ' 4/3. One
pairs are being produced at a high rate, energy goes into the rest mass of the pairs and
does not contribute as much pressure as if it remained in the photons. So Γ < 4/3.

This physics is thought to lead to the hypothesized class of pair-instability supernovae,
and to affect the distribution of masses of stellar mass black holes that can be observed
(in mergers) via gravitational waves.
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