
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

January 2020

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately
one hour.

Use one exam book for each problem, and label it carefully with the problem topic and num-
ber and your ID number.

Write your ID number (not your name!) on each exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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Classical Mechanics 1

Spherical Pendulum

Consider a spherical pendulum: a mass m on a rope of length ` attached a frictionless
pivot that allows the mass freedom to move in two angular directions. You may assume that
the length of the rope is fixed so that the motion of the mass is confined to a sphere with
radius `. Do not make small angle approximations in this problem.
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Spherical Pendulum

Consider a spherical pendulum: a mass m on a rope of length ` attached a frictionless pivot that allows

the mass freedom to move in two angular directions. You may assume that the length of the rope is fixed so

that the motion of the mass is confined to a sphere with radius `. Do not make small angle approximations

in this problem.

(a) (4 points) Determine the Lagrangian of this system in terms of angular variables ✓, the angle of the rope

w.r.t to the vertical axis, and � the azimuthal motion of the mass. Choose the gravitational potential energy

of the mass to be zero when the pendulum is hanging vertically (✓ = 0)

First, let’s determine the Lagrangian of the pendulum in cartesian coordinates x, y, z with the origin at

the pivot point:

L =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
mż2 � mg(` + z) (1)

where ˙ = d/dt and g is the gravitational acceleration. Now, let’s impose the constraint that the pendulum

motion is restricted to the surface of a sphere of radius `,

x = ` sin ✓ cos� y = ` sin ✓ sin� z = �` cos ✓ (2)

One can do this via Lagrange multipliers or direct substitution and the result is

L =
1

2
m`2✓̇2 +

1

2
m`2 sin2 ✓�̇2 � mg`(1 � cos ✓) (3)

(b) (4 points) Using the symmetries of the Lagrangian, identify two constants of motion we’ll suggestively

call E and Lz.

The Lagrangian has no explicit t dependence and no explicit � dependence. The �-independence allows

the z-component of the angular momentum to be conserved

Lz =
@L

@�̇
= m`2 sin2 ✓�̇ (4)

(a) (4 points) Determine the Lagrangian of this system in terms of angular variables θ, the
angle of the rope w.r.t to the vertical axis, and φ the azimuthal motion of the mass.

(b) (4 points) Using the symmetries of the Lagrangian, identify two constants of motion.

(c) (4 points) Using your results from (b), find an implicit solution for the equations of mo-
tion θ(t) and φ(θ) (your results should be in terms of integrals that you do not need to do).

(d) (4 points) Using the variational principle, determine the equation(s) of motion for the
pendulum and identify the location of stable orbits.

(e) (4 points) Under what conditions are the orbits from (d) stable? Determine the fre-
quency of small oscillations around these orbits (you may leave your answer in terms of θc
the value of the θ coordinate for a stable circular orbit). Does your answer reduce to the
usual frequency of a simple 1-D pendulum in the small θc limit? Why or why not?
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Solution

(a) First, let’s determine the Lagrangian of the pendulum in cartesian coordinates x, y, z
with the origin at the pivot point:

L =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
mż2 −mg(`+ z) (1)

where ˙ = d/dt and g is the gravitational acceleration. Now, let’s impose the constraint that
the pendulum motion is restricted to the surface of a sphere of radius `,

x = ` sin θ cosφ y = ` sin θ sinφ z = −` cos θ (2)

One can do this via Lagrange multipliers or direct substitution and the result is

L =
1

2
m`2θ̇2 +

1

2
m`2 sin2 θφ̇2 −mg`(1− cos θ) (3)

(b) The Lagrangian has no explicit t dependence and no explicit φ dependence. The φ-
independence allows the z-component of the angular momentum to be conserved

Lz =
∂L

∂φ̇
= m`2 sin2 θφ̇ (4)

and the t-independence means that

E = θ̇
∂L

∂θ̇
+ φ̇

∂L

∂φ̇
− L (5)

=
1

2
m`2θ̇2 +

1

2
m`2 sin2 θφ̇2 +mg`(1− cos θ) (6)

is also conserved. Using the conserved angular momentum, this can be rewritten as

E =
1

2
m`2θ̇2 +

L2
z

2m`2 sin2 θ
+mg`(1− cos θ)

︸ ︷︷ ︸
≡Veff (θ)

(7)

(c) From the conserved energy in (b), we can write

dθ

dt
=

√
2

m`
(E − Veff (θ)) (8)

so that
∆t =

∫
dθ√

2
m`

(E − Veff (θ))
(9)

and, using the conserved angular momentum

dφ

dt
=

Lz
m`2 sin2 θ

(10)
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so that

φ =

∫
Lz

m`2 sin2 θ
dt (11)

=

∫
Lz

m`2 sin2 θ

dθ

θ̇
(12)

=

∫
Lz

m`2 sin2 θ
√

2
m`

(E − Veff (θ))
dθ (13)

(d) Varying the action with respect to φ(t) just gives

d

dt
Lz = 0 (14)

as expected. Varying the action with respect to θ(t) gives

∂L

∂θ
=

d

dt

∂L

∂θ̇
(15)

which gives

m`2θ̈ = m`2 sin θ cos θφ̇2 −mg` sin θ (16)

= m`2 sin θ cos θ
L2
z

m2`4 sin4 θ
−mg` sin θ (17)

=
L2
z cos θ

m`2 sin3 θ
−mg` sin θ (18)

Note that this can just be rewritten as

m`2θ̈ = −∂Veff
∂θ

(19)

Solutions with θc defined via ∂Veff/∂θ(θc) = 0,

L2
z

gm2`3
=

sin4 θc
cos θc

(20)

will have θ̈ = 0. That is, for each pair Lz and θc satisfying Eq. (20), there is a circular
“orbit."
(e) To check the stability of the circular orbits we consider θ(t) = θc+δθ, which has equation
of motion

δ̈θ = − 1

m`2

∂2Veff
∂θ2

∣∣∣∣
θ=θc

δθ (21)

so the stability of the orbits can be assessed by considering the sign of ∂2Veff
∂θ2

at θ = θc,

∂2Veff
∂θ2

(θc) = gm` cos θc +
L2
z

m`2 sin2 θc
+ 3

L2
z cos2 θc

m`2 sin4 θc
(22)

= 4gm` cos θc + gm`
sin2 θc
cos θc

(23)

= gm` cos θc
(
4 + tan2 θc

)
(24)
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So, the orbits are stable as long as 0 ≥ θc < π/2 and the frequency of small oscillations is
given by

ωc =

√
g cos θc
`

(4 + tan2 θc) (25)

For θc � 1, this reduces to

ωc = 2

√
g

`
+O(θ2

c ) (26)

A 1D pendulum would have ω1D =
√
g/`, in going from Eq. (22) to Eq. (23) we assumed

Lz 6= 0, but motion in a single vertical plane would have φ = const. so that Lz = 0 and we
have divided by 0. Yet, starting from Eq. (22) and setting Lz = 0 recovers the familiar 1D
equation

δ̈θ ≈ −g/`δθ (27)
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Classical Mechanics 2

Isotropic oscillator in a magnetic field

Consider a particle of mass m and positive charge q moving in the x, y plane in an
isotropic harmonic potential V (x, y) = 1

2
mω2

0(x2 + y2). In addition, the particle is placed in
a uniform magnetic field of magnitude B0 in the z direction.

(a) (2 points) Write down the Lagrangian of the system in cartesian and cylindrical coor-
dinates x = r cosφ and y = r sinφ.

Hint: Use the gauge A = 1
2
B × r, and define the magnetic frequency1 ωB ≡ eB/(2m)

to simplify the algebra in what follows.

(b) (2 points) Determine the equations of motion in cartesian and cylindrical coordinates.

(c) (4 points) Identify the constant integrals of motion, and write down explicit expressions
for these quantities in cartesian and cylindrical coordinates.

(d) (5 points) What are the radii of the stable circular orbits of the particle and the
associated angular velocities φ̇. Explicitly interpret the allowed values of φ̇ by drawing
a well labeled free body diagram indicating the forces on the particle.

(e) (5 points) Determine the general solution to the equations of motion for x(t) and y(t).

Hint: Write down equations of motion for z ≡ x+ iy and solve this linear differential
equation. Express the final result for x(t) and y(t) in terms of real functions and real
constants of integration.

(f) (2 points) Evaluate the angular momentum of the system for the general solution of
part (e) and interpret the result.

1In Gaussian or Heaviside Lorentz units ωB ≡ eB/(2mc).
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Solution

(a) The Lagrangian is

L =
1

2
mv2 − 1

2
mω2

0(x2 + y2) +
qv ·A
c

. (1)

Then writing

A =
B

2
× r =

B0

2
(−y, x) , (2)

and v = (ẋ, ẏ) we have

L =
1

2
mv2 − 1

2
mω2

0(x2 + y2) +mωB(−ẋy + ẏx) . (3)

Here and below we have defined

ωB ≡
qB0

2mc
= half the cyclotron frequency . (4)

The cyclotron frequency ωc ≡ qB0/mc determines the period of circular orbits of charged
particles in a magnetic field, period = 2π/ωc. Note this period is independent of the radius
of the orbit.

In cylindrical coordinates

x = r cosφ, y = r sinφ, (5)

we have
L =

1

2
m(ṙ2 + r2φ̇2)− 1

2
mω2

0r
2 +mr2ωBφ̇ . (6)

(b) First we will compute the equation of motion in cylindrical coordinates. We note that φ
is cyclic a coordinate and thus

dpφ
dt

= 0, where pφ ≡
∂L

∂φ̇
= mr2φ̇+mr2ωB ≡ ` . (7)

Then the equation of motion for r follows from the Euler Lagrange equations, and takes the
form

d(mṙ)

dt
=
∂L

∂r
= −∂Veff(r)

∂r
, (8)

where
Veff(r) =

`2

2mr2
+

1

2
m(ω2 + ω2

B)r2 + `ωB . (9)

The form of the effective potential can be intuited from the first integral. Energy conservation
(the first integral) reads:

E =
1

2
m(ṙ2 + r2φ̇2) +

1

2
mω2

0r
2 , (10)

E =
1

2
mṙ2 + Veff(r) . (11)
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In cartesian coordinates we have simply:

d

dt
[m(ẋ− ωBy)] =− ω2

0x+mωB ẏ , (12)

d

dt
[m(ẏ + ωBx)] =− ω2

0y −mωBẋ . (13)

Collecting terms for later use we find

ẍ+ ω2
0x− 2ωB ẏ =0 , (14a)

ÿ + ω2
0y + 2ωBẋ =0 . (14b)

(c) The integrals of motion are the energy and the angular momentum around the z axis.
The conserved energy is given by the Hamiltonian function, which for a general Lagrangian
reads:

h(q, q̇, t) =
∑

a

∂L

∂q̇a
q̇a − L . (15)

For the problem at hand this evaluates to

E =
1

2
m(ẋ2 + ẏ2) +

1

2
mω2

0(x2 + y2) , (16)

E =
1

2
m(ṙ2 + r2φ̇2) +

1

2
mω2

0r
2 . (17)

Notice that the energy is independent of the magnetic field. This follows physically from
the fact that the magnetic field does no work. Mathematically it is a statement that for a
Lagrangian of the form

L =
∑

i

1

2
mi(q)(q̇

i)2 + bi(q)q̇
i − V (q) , (18)

the first integral is independent of bi(q)

h =
∑

i

1

2
mi(q)(q̇

i)2 + V (q) . (19)

The Hamiltonian H(p, q, t) is a function of pi and qi

H =
∑

i

(pi − bi(q))2

2mi(q)
+ V (q) , (20)

and, in contrast to h(q, q̇, t), is a function of the magnetic field bi(q).
Now we will evaluate the angular momentum around the z-axis. The angular momentum

around the z axis is associated with the cyclic coordinate φ

pφ =
∂L

∂φ̇
= mr2φ̇+mr2ωB . (21)
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One can either translate this result into cartesian coordinates or work directly with the
cartesian Lagrangian

pφ =xpy − ypx , (22a)
=xm(ẏ + ωBx)− ym(ẋ− ωBy) , (22b)
=m(xẏ + yẋ) +mωB(x2 + y2) . (22c)

where we used that px = ∂L/∂ẋ = mẋ− ωBy.

(d) The circular orbits are determined by the minimum of the effective potential

∂Veff

∂r

∣∣∣∣
r0

= − `2

mr3
0

+m(ω2 + ω2
B)r0 = 0 , (23)

which yields

r2
0 =

|`|
m
√
ω2

0 + ω2
B

. (24)

Of course the value of ` is arbitrary, so there are stable circular orbits at any radius. The
radius is determined by |`|. The associated angular velocities are

dφ

dt
=
pφ
mr2

0

− ωB, (25)

=
`

|`|
√
ω2

0 + ω2
B − ωB. (26)

If the angular momentum ` is positive, the circular orbit is counter clockwise, and the
particle moves relatively slowly with angular velocity ω+ =

√
ω2

0 + ω2
B−ωB. If ` is negative,

the particle relatively quickly with angular velocity ω− = −(
√
ω2

0 + ω2
B + ωB), where the

leading negative sign indicates a clockwise orbit. The freebody diagram is shown in Fig. 1.
Setting Fnet = ma for Fig. 1(a) gives

−mω2
0r0 +

qB0

c
ωr0 = −mω2r0 , (27)

which determines the allowed rotational frequencies

ω = ±
√
ω2
B + ω2

0 − ωB . (28)

Note that the Newtonian equation of motion Eq. (27) does not constrain the radius. Any
radius is allowed.

(e) Adding the equation of motion for x and the equation of motion for iy, leads to a single
equation for z = x+ iy

z̈ + ω2
0z + 2iωB ż =0 . (29)
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q v/c ⇥ B
m!2

0r0

v

mv2/r0

q v/c ⇥ B

m!2
0r0

v

mv2/r0

Figure 1: The free-body diagram for the circular orbits. The blue arrows show the spring
and magnetic forces. The velocity is shown by the green arrows. The net force is ma =
mv2/r0 = mω2r0.

We will look for a solution to this equation of the form Aeiωt. Substituting Aeiωt into Eq. (29)
leads to the characteristic equation

− ω2 + ω2
0 − 2ωBω = 0 . (30)

This equation has two roots
ω± = ±

√
ω2

0 + ω2
B − ωB , (31)

which results in the general solution

z =A1e
iω+t + A2e

iω−t . (32)

Taking the real and imaginary parts the general solution for x(t) and y(t) reads

x(t) =Re z(t) (33a)
=|A1| cos(ω+t+ ϕ1) + |A2| cos(ω−t+ ϕ2) (33b)

y(t) =Im z(t) (33c)
=|A1| sin(ω+t+ ϕ1) + |A2| sin(ω−t+ ϕ2) (33d)

The first term has ω+ > 0 and corresponds to a slower counter-clockwise orbit with pφ > 0.
The second term has ω− < 0 and corresponds to the faster clockwise orbit with pφ < 0. As we
will see in the next exercise the angular momentum in the system is pφ = mω′(|A1|2− |A2|2)

Here we have guessed that the solution for x + iy is simple. If one did not have this
intuition, one could recognize that the equations in Eq. (14) are linear second order differen-
tial equations. In such cases one simply substitutes (x, y) = (x0, y0)e−iωt and then find the
eigenvectors (x0, y0). For instance this leads matrix equation

(
−ω2 + ω2

0 i2ωBω
−2iωBω −ω2 + ω2

0

)(
x0

y0

)
= 0 . (34)
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Then the non-trivial solutions are when

det

(
−ω2 + ω2

0 i2ωBω
−2iωBω −ω2 + ω2

0

)
= 0 . (35)

This equation determines the allowed frequencies and gives the same results as the procedure
outlined above.

(f) Now lets evaluate the angular momentum

pφ = m(xẏ − yẋ) +m(x2 + y2)ωB . (36)

The second term is proportional to

x2 + y2 = zz̄ = |A1|2 + |A2|2 +
(
A1A

∗
2e
i((ω+)−ω−)t + c.c.

)
, (37)

where c.c. denotes the complex conjugate of the first term in brackets. while the first term
is proportional to

(xẏ− yẋ) =
−1

2i
(z ˙̄z− z̄ż) = ω+|A1|2 +ω−|A2|2 +

1

2
(ω+ +ω−)

(
A1A

∗
2e
i(ω+−ω−)t + c.c.

)
. (38)

Noting that (ω+ + ω−)/2 = −ωB, we have finally

pφ =m(ωB + ω+)|A1|2 +m(ωB + ω−)|A2|2 , (39a)
=mω′ (|A1|2 − |A2|2) . (39b)

where ω′ =
√
ω2

0 + ω2
B.

The interpretation is the following: the general solution is a superposition of two circular
orbits with different velocities and directions. The counter-clockwise orbit is slower, and has
radius |A1|. The angular momentum associated with this orbit is mω′|A1|2. The clockwise
orbit is faster, has radius |A2|, and has angular momentum −mω′|A2|2.
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Classical Mechanics 3

An accelerating frame

A cylinder with mass M , moment of inertial I, and radius R, starts rolling without
slipping from rest in a train that accelerates with constant acceleration a0. The axis of the
cylinder is perpendicular to the motion of the train.

(a) (2 points) Calculate the acceleration of the cylinder using Newton’s laws in the lab
frame (the ground). Draw a well labelled free body diagram indicating the forces and
acceleration in this frame.

(b) (2 points) Calculate the acceleration of the cylinder in the frame of the accelerating
train by using Newton’s laws in this frame. Again, draw a well labeled free-body
diagram indicating the forces and acceleration in this frame.

(c) (5 points) Write down a Lagrangian for the cylinder and calculate its acceleration by
solving the Euler Lagrange equations. Is the acceleration consistent with parts (a) and
(b)?

Now consider a cylinder-like contraption consisting of a cylindrical ring of massM and radius
R, and a small weight of mass m fixed to the rim of the ring (see below). At time t = 0 the
cylinder starts to roll without slipping from rest in the accelerating train, and the weight is
at the top of its arc as shown in the figure below.

mx = R�
<latexit sha1_base64="860Ton56W2xhrYVvJK9yzIA/dKE=">AAACCXicbVDLSgMxFM3UV62vqks3wSK4KjNVsBuh4MZlFfuAdiiZTKYNzWNIMmIZ+gWu3OpXuBO3foUf4T+YaWdhWw8EDufcy7k5QcyoNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tEYdLCkknVDZAmjArSMtQw0o0VQTxgpBOMbzK/80iUplI8mElMfI6GgkYUI2OlztP1fT8e0UG54lbdGeAq8XJSATmag/JPP5Q44UQYzJDWPc+NjZ8iZShmZFrqJ5rECI/RkPQsFYgT7aezc6fwzCohjKSyTxg4U/9upIhrPeGBneTIjPSyl4n/eb3ERHU/pSJODBF4HhQlDBoJs7/DkCqCDZtYgrCi9laIR0ghbGxDCykBt9swkCzMUkq2H2+5jVXSrlW9i2rt7rLSqOdNFcEJOAXnwANXoAFuQRO0AAZj8AJewZvz7Lw7H87nfLTg5DvHYAHO1y8VKZn2</latexit>

a0

M

(d) (8 points) Determine the Lagrangian for the angle φ(t), where x ≡ Rφ is the position
of the center of the cylinder relative to the back of the train (see figure). Show that
the Lagrangian may (up to total derivatives) be written in a time independent form

L =
1

2
meff(φ)R2 φ̇2 − U(φ) , (1)

where meff(φ) and U(φ) are specific functions of φ.

Hint: In the train’s frame the acceleration functions like an additional gravitational
field of magnitude a0 pulling the negative x direction.

(e) (3 points) What is the speed of the cylinder after it rolls for two complete turns.
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Solution

(a) The floor exerts a force F . Therefore, according to Newton, F = Ma and −FR = Iα.
The rolling without slipping constraint says that a = a0 + Rα, So that the bottom of the
wheel has acceleration a−Rα = a0, i.e. moves with the train. This is equivalent to saying

x(t) = x0(t) +Rφ (2)

Then solving we find
a =

a0

1 + MR2

I

(3)

We note for later that the acceleration in the frame of the train A is

A = a− a0 = −a0
MR2/I

1 +MR2/I
(4)

(b) In the train frame the forces are the non-inertial force Feff = −Ma0 and friction F with
a total force Fnet = −Ma0 + F . Newton’s law reads

−Ma0 + F =MA (5)

The net torque is only from friction

− FR = Iα (6)

We must have that the bottom of the rim has no acceleration in this frame so A+Rα = 0.
Solving we find

A = −a0
MR2/I

1 +MR2/I
(7)

(c) The Lagrangian with the constraint x = x0 +R reads

L =
1

2
Mẋ2 +

1

2
Iφ̇2 + F (x− x0 −Rφ) (8)

Here F is the Lagrange multiplier, and will later be interpreted as the force of static friction.
The Euler-Lagrange equations are given by

Mẍ =F (9)

Iφ̈ =−RF (10)
x =x0 +Rφ (11)

Using the constraint ẍ = ẍ0 +Rφ̈, we may solve for a yielding

a =
a0

1 +MR2/I
(12)
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(d) In the train’s frame the acceleration acts like an additional gravitational potential φ =
a0x. The Lagrangian of the contraption is thus

L =
1

2
Mẋ2 +

1

2
Iφ̇2 +

1

2
m(ẋ2

1 + ẏ2
1)−Ma0x−ma0x1 −mgy1 (13)

where x = Rφ. The coordinates of the weight are

x1 =Rφ+R sinφ (14)
y1 =R cosφ (15)

So with I = MR2 and x = Rφ we have after minor algebra

L =
1

2
meff(φ)R2φ̇2 − U(φ) (16)

where

meff(x) =2M + 2m(1 + cosφ) (17)
U =Ma0x+ma0 (x+R sinφ) +mgR cosφ (18)

Here it is understood that x = Rφ.

Additional discussion: In the previous solution we have intuited that the constant
acceleration acts like an additional potential. We could derive this by working in the lab
frame. Let us first show how this works for a free particle with coordinateX(t) = x0(t)+x(t).
Here x0(t) = 1

2
a0t

2 is the position of a fixed point on the accelerating train, and x(t) are the
coordinates relative to this point on the train, and X(t) is the poisition in the “lab” frame.
The Lagrangian for this particle is

S =

∫
dt

1

2
mẊ2 , (19)

=

∫
dt

1

2
m(ẋ2

0 + 2ẋ0ẋ+ ẋ2) . (20)

The first term is a total derivative and independent of x and may be ignored. The second
term may be integrated by parts yielding

S =

∫
dt

1

2
m(−2ẍ0x+ ẋ2) , (21)

=

∫
dt

1

2
mẋ2 −ma0x . (22)

These steps show that the particle in the accelerating frame has the Lagrangian

L =
1

2
mẋ2 −ma0x . (23)

Here we have treated one particle. But it clearly extends to an ensemble of particles, and
then to a rigid body yielding the Lagrangian

L =
1

2
Mtotẋ

2
cm +

1

2
Iω2 −Mtota0x− U0(x) , (24)

where U0(x) is potential in the absence of acceleration.
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(e) The system has a first integral and therefore

E =
1

2
meff(x)ẋ2 + U(x) (25)

is constant. Thus

1

2
meff(x)ẋ2 + U(x)

∣∣∣∣
final

=
1

2
meff(x)ẋ2 + U(x)

∣∣∣∣
initial

(26)

Since the initial kinetic energy is zero and the initial potential energy is mgR

1

2
meff(x)ẋ2 = mgR− U(x) (27)

After two turns x = −2(2πR) and φ = 4π. Thus U(x) = −(M + m)a0(4πR) + mgR, while
the mass is

meff(xfinal) = 2M + 4m (28)

So we find

ẋ =

√
4πa(M +m)R

2M + 4m
(29)
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Electromagnetism 1

A conducting wedge inside a cylinder

A hollow cylinder of radius R has a potential V (R, φ) maintained on its surface, as shown
in the figure below. A conducting wedge with surfaces at φ = 0 and φ = β and its apex
at the symmetry axis of the cylinder (as shown by the shaded region), is placed inside the
cylinder and held at a potential of V = 0 (ρ =

√
x2 + y2 denotes the radial coordinate).

2.15. A CONDUCTING WEDGE INSIDE A CYLINDER EM

2.15 A Conducting Wedge inside a Cylinder

A hollow cylinder of radius R has a poten-
tial V (R,�) maintained on its surface, as
shown in the figure. A conducting wedge
with surfaces at � = 0 and � = �, and its
apex at the symmetry axis of the cylinder
(as shown by the shaded region), is placed
inside the cylinder and held at a potential
of V = 0 (s denotes the radial coordinate).

A. [10 points] Derive the most general form for the potential inside the cylinder for 0 < � < �
for a general boundary-condition V (R,�). 1

B. [10 points] Determine the potential resulting from the boundary condition

V (R,�) = V 1 sin

✓
⇡�

�

◆
+ V 3 sin

✓
3⇡�

�

◆
,

where V 1,3 are constants.

C. [20 points] Determine the electric field at each point inside the cylinder for 0 < � < �,
and determine the charge density on the � = 0 and � = 2⇡ � � surfaces of the wedge.
Comment on the behavior of the electric field near the tip of the wedge as a function of
the wedge apex-angle, 2⇡ � �.

D. [10 points] For the situation where � = ⇡ and V 3 = 0, draw the electric field lines and
equi-potential surfaces inside the cylinder.

1Possibly useful: r2 = @2

@x2 + @2

@y2 + @2

@z2 = 1
⇢

@
@⇢ ⇢

@
@⇢+ 1

⇢2
@2

@�2 + @2

@z2 = 1
r2

@
@r r2 @

@r + 1
r2 sin ✓

@
@✓ sin ✓ @

@✓ + 1
r2 sin ✓

@2

@�2 .

2001au,2010au 79

� = 0

� = �

⇢

(a) (6 points) Derive the most general form for the potential inside the cylinder for 0 <
φ < β for a general boundary-condition V (R, φ). 2

(b) (2 points) Determine the potential for 0 < φ < β resulting from the boundary condition

V (R, φ) = V 1 sin

(
πφ

β

)
+ V 3 sin

(
3πφ

β

)
(1)

where V 1,3 are constants.

(c) (6 points) Determine the electric field at each point inside the cylinder for 0 < φ < β,
and determine the surface charge per area on the φ = 0 and φ = β surfaces of the
wedge for the boundary conditions of (b).

(d) (3 points) Describe qualitatively the behavior of the electric field (sketch the field lines)
and the surface charge per area of part (c) near the tip of the wedge as a function of
the wedge apex-angle, 2π − β.

2Possibly useful:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2
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(e) (3 points) For the situation where β = π and V 3 = 0, draw the electric field lines and
equi-potential surfaces inside the cylinder.

17



Solution

(a) Separating the Laplace equation we try solutions of the form ϕ = R(ρ)Φ(φ)

− ρ2

ϕ
∇2ϕ =

−ρ
R

∂

∂ρ

(
ρ
∂R

∂ρ

)
+
−1

Φ

∂2Φ

∂φ2
= 0 , (2)

which yields two equations
∂2Φ

∂φ2
= −α2Φ , (3)

and
ρ
∂

∂ρ

(
ρ
∂R

∂ρ

)
= α2R . (4)

The solutions to the first equations which satisfy Φ(0) = Φ(β) = 0 are given by

Φm = sin(mπφ/β) m = 1, 2, 3 . . . . (5)

Then, the radial direction takes the form R = ργ with γ = ±mπ/β. This yields a general
solution. Only the positive value of γ yields a regular solution near the origin, leading to the
following general form for the regular solution

ϕ =
∞∑

m=1

Cmρ
mπ/β sin(mπφ/β) . (6)

(b) For the specific case at hand, we have only the m = 1 and m = 3 terms in the expansion
and thus the solution takes the form

ϕ = V 1

( ρ
R

)π/β
sin(πφ/β) + V 3

( ρ
R

)3π/β

sin(3πφ/β) . (7)

(c) The electric field is given by the gradient of the ϕ

E = −∂ϕ
∂ρ
ρ̂+−1

ρ

∂ϕ

∂φ
φ̂ . (8)

Differentiating we find the electric field takes the form

E(ρ, φ) = E1 +E3 , (9)

where

Em =
−V 1

R

(
mπ

β

)( ρ
R

)mπ/β−1 [
sin(mπφ/β)ρ̂+ cos(mπφ)φ̂

]
. (10)

Similarly, the charge density at φ = 0 is of the form

σ = σ1 + σ3 , (11)

18



where

σm = φ̂ ·Em

∣∣∣
φ=0

, (12)

=
−V 1

R

(
mπ

β

)( ρ
R

)mπ/β−1

. (13)

The charge density at φ = β is the same as at φ = 0 by symmetry. Technically this works
out because the normal to the surface n is −φ̂.

σm = −φ̂ ·Em

∣∣∣
φ=β

, (14)

=
−V 1

R

(
mπ

β

)( ρ
R

)mπ/β−1

. (15)

(d) The geometry and boundary conditions are reflection symmetric around φ = β/2. Also
near the tip, the field and surface densities are dominated by the first term in the expansion

E ' E1 , σ ' σ1 . (16)

We will take V 1 to be negative so that the field lines are outward directed, and normal to
the surface of the wedge. This fact, together with the symmetry of the geometry (which
guarantees that the field lines do not cross the φ = β/2 line), leads to Fig. 1.

The surface charge density is singular if β > π, and therefore increases without bound as
ρ→ 0 as ρπ/β−1. The surface charge density is bounded for β < π.

(e) For β = π and V3 = 0 the potential is just

ϕ = ρ sin(φ) = y . (17)

This potential is just that of a constant electric field in the “y” direction, i.e. perpendicular
to the wedge surfaces. The surface charge density is just a constant. This is is shown in
Fig. 2.
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Figure 1: The field lines near the tip of the geometry. The colors indicate the magnitude
of the electric field. The density of field lines also indicates the magnitude of the field.

Figure 2: The field lines near the tip of the geometry for β = π. The electric field is
constant.
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Electromagnetism 2

Line with rising current

A neutral wire along the z-axis carries a current I(t) that varies with time t as

I(t) =

{
α t t ≥ 0

0 t < 0
, (1)

where α is a positive constant.

a. 9 points Determine the time-dependence of the electric and magnetic fields around
the wire at a point (r, φ = 0, z = 0), in a cylindrical coordinate system where r =

√
x2 + y2.

b. 4 points Use your result to determine the fields for long times. Give a physical in-
terpretation of your answer.

c. 4 points Use your result to determine the fields for short times. Give a physical in-
terpretation of your answer.

d. 3 points Describe briefly the overall physical onset of the fields in time.
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Solution

a. Since the wire remains neutral as the current flows, the retarded scalar potential ϕ is null
at all times. Also, since the flow is linear in the z-direction, the he retarded vector potential
reads

Az(t, x) =

∫
dx′

Jz(t−R/c, x′)
cR

=

∫ +z0

−z0
dz

I dz

cR
(2)

with R = |x − x′|. The last equation follows for an observer at (r, 0, 0), with a current
line along (0, 0, z) and R2 = r2 + z2 in cylindrical coordinates. The integration boundary
in z follows from the causal support of the light cone (ct)2 > R2 = r2 + z2 or |z| < z0 =

((ct)2 − r2)
1
2 . More specifically

Az(t, r, 0, 0) =

∫ +z0

−z0

αt

c((ct)2 − r2)
1
2

=
2αt

c
ln

(
z0 + ct

r

)
(3)

The electric and magnetic fields follow from

Bφ = (∇× A)φ = −∂Az
∂r

=
2αz0

c2r

Ez =

(
−∇ϕ− 1

c

∂Az
∂t

)

z

= −1

c

∂Az
∂t

= −2α

c2
ln

(
z0 + ct

r

)
(4)

b. For long times and fixed r, i.e. ct� r and z0 ≈ ct we have

Bφ =
2αt

cr
=

2I(t)

cr
= B0(t)

Ez = −2α

c2
ln

(
2ct

r

)
= −B0(t)

r

ct
ln

(
2ct

r

)
� B0(t) (5)

with B0(t) = 2I(t)/cr the instantaneous magnetic field produced by the current I(t) = αt.
Magnetostatics is recovered at large times.

c. For short times we can set ct = r + ε with ε� r, so that z0 ≈
√

2εr. In this regime,

Bφ = +
2α

c2

√
2ε

r

Ez = −2α

c2
ln

(
r + ε+

√
2εr

r

)
≈ −2α

c2

√
2ε

r
= −Bφ (6)

the fields are radiative: E,B are equal in magnitude, orthogonal and transverse to the line
of sight. They travel outwardly at the speed of light. Note that the fall-off is 1/

√
r due to

22



the cylindrical character of the radiation.

d. The fields develop after only a time ct ≥ r by causality. They are initially radiative
and cylindrical and move outward at the speed of light. However, for fixed r as time passes,
magnetostatics settles.
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Electromagnetism 3

A rotating sphere

Consider an infinitely large metal sheet of thickness t and conductivity σ, in a homoge-
neous magnetic field pointing in the x direction, B = B0x̂. The sheet has an inclination
angle θ relative the x axis (see below), and is moving non-relativistically with velocity v in
the y direction (into the page)

B0

✓

infinite conducting
sheet moving

into page

y
x

zt

(a) (4 points) Determine the charge per area on the surfaces of the sheet. Draw a sketch.

(b) (4 points) Determine the current density in the sheet and the energy dissipated per
surface area.

Now consider a thin metal spherical shell of thickness t, conductivity σ, and radius R. The
shell is placed in the same magnetic field directed along the x axis, B = B0x̂. The sphere is
rotated with angular velocity ω around the z axis.

B0

y
x

z

!

t

(c) (4 points) Use part (b) to estimate the total energy dissipated in the sphere per time
in terms of σ, ω,R, t and B0 up to an order one numerical factor.
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(d) (3 points) Determine charge per area on on the inner and outer surfaces of the sphere
and the radial component of the electric field in the metal.

(e) (3 points) Determine the electrostatic potential in the metal consistent with (d) by
solving the Laplace equation. Find all components of the electric field in the metal.

Some formulas on the Laplace equation in spherical coordinates are compiled below.

(f) (2 points) Determine the current density J in the sphere.

The Laplace equation in spherical coordinates:

• Gradient in spherical coordinates:

∇ψ =
∂ψ

∂r
r̂ +

1

r

∂ψ

∂θ
θ̂ +

1

r sin θ

∂ψ

∂φ
φ̂

• Laplacian in spherical coordinates:

∇2ψ =
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2

• Separated solutions to the Laplace equation take the form:

ψ(r, θ, φ) =
∑

`m

(
A`m
r`+1

+B`mr
`

)
Y`m(θ, φ) .

Here Y`m(θ, φ) are spherical harmonics and A`m and B`m are constants.

• The lowest spherical harmonics are:

Y0,0 =
1√
4π

Y10 =

√
3

4π
cos θ

Y1,±1 =∓
√

3

8π
sin θe+iφ

Y2,0 =

√
5

16π

(
3 cos2 θ − 1

)

Y2,±1 =∓
√

15

8π
sin θ cos θe±iφ

Y2,±2 =

√
15

32π
sin2 θe±i2φ
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n1

n2

Solution

(a) Let n1 be the normal to the sheet (“outward” directed) and n2 be parallel to the sheet
as shown above. The current density is

J = σ(E +
v

c
×B) . (7)

Let us first momentarily assume that E is zero. Then writing

B = B0x̂ v = vŷ (8)

we find
σ
v

c
×B = −σvB

c
ẑ =

σvB

c
(sin θn2 − cos θn1 ) . (9)

Of course the current can not flow off the sheet. So the charge must build up on both
sides of the sheet, so that the component of the current normal to the surface vanishes. The
induced electric field thus has a component perpendicular to the sheet

E =
σvB

c
cos θn1 , (10)

so that the n1 components of E + (v/c)×B is zero.

Recognizing a formal similarity with a parallel plate capacitor, on the top half of the
sheet we have3

κ = −σvB
c

cos θ , (11)

while on the bottom half of the sheet we have

κ = +
σvB

c
cos θ . (12)

3We use κ instead of the σ to denote the surface charge density.
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(b) The current is
J = σ(E +

v

c
×B) , (13)

and so
J =

σvB

c
sin θn2 . (14)

The energy dissipated per volume is J2/σ, and thus the energy lost per area A is

1

A
dW

dt
= σ

(
vB sin θ

c

)2

t . (15)

(c) Estimating the typical velocity of the sphere v ∼ ωR, and the area A ∼ R2, we find

dW

dt
∼ σ

(
ωRB0

c

)2

R2t . (16)

(d) The current density is given by

J = σ(E +
v

c
×B) (17)

Let us momentarily assume that E is zero. Then writing

B = B0x̂ v = ωr sin θ φ̂ , (18)

and using
φ̂ = − sinφ x̂+ cosφ ŷ , (19)

we find that the B-field tries to create the current

σ

c
v ×B = −σωB0

c
r sin θ cosφ ẑ = −σωB0

c
r sin θ cosφ

(
− sin θ θ̂ + cos θ r̂

)
. (20)

The current will cause the charge to build up on the surface of the sphere, until the the
component of the current normal to the surface will vanish. Thus we require that at the
surfaces of the sphere the r component is

σEr =
σωB0

2c
r (2 sin θ cos θ cosφ) ≡ σωB0

2c
Y (θ, φ) (21)

where we have defined Y ≡ 2 sin θ cos θ cosφ. Then using the electrostatic boundary condi-
tions4

κ = r̂ · (E2 −E1) (22)

we find that on the outer surface the charge is

κ = −ωB0

2c
rY (θ, φ) (23)

4To avoid confusion with the conductivity, we will use κ rather than σ to denote the surface charge
density.
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while on the inner surface the charge is of opposite sign

κ =
ωB0

2c
rY (θ, φ) (24)

We have tacitly assumed that the electric field vanishes outside of the metal. This is a valid
assumption provided the thickness is small. The inner and outer surface act like a parallel
plate capacitor.

(e) We also require that E = −∇ϕ where ϕ satisfies the Laplace equation. Recognizing that
the span of the ` = 2 spherical harmonics constains the function Y = 2 sin θ cos θ cosφ ∝
Y21 + Y2−1, and knowing that the general solution to the Laplace equation takes the form

ϕ =
∑

`m

(
A`m
r`+1

+ r`B`m

)
Y`m , (25)

we conclude that solution takes the form

ϕ =

(
A

r3
+ r2B

)
Y . (26)

Now want −∂rϕ = Er with Er given by Eq. (21), which fixes the constant A = 0 and B,
leading to

ϕ = −1

2
r2ωB0

2c
Y . (27)

The electric field is E = −∇ϕ

E = = −∂rϕ r̂ −
1

r
∂θϕ θ̂ +

1

r sin θ
∂φϕ φ̂ , (28)

and we thus find

σE =
σωB0

2c
r

(
Y r̂ +

1

2
∂θY θ̂ +

1

2 sin θ
∂φY φ̂

)
. (29)

(f) We now only need to compute J = σ(E + v/c×B). Writing

σ
v

c
×B =

σωB0

2c
r
(

2 sin2 θ cosφ θ̂ − Y r̂
)
, (30)

=
σωB0

2c
r

(
(cosφ− 1

2
∂θY ) θ̂ − Y r̂

)
, (31)

we find a current flow which is parallel to the surface

J =
σωB0

2c
R
(

cosφ θ̂ − cos θ sinφ φ̂
)
. (32)

One can check that ∇ · J = 0. The current flow is displayed graphically in Fig. 1.
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Figure 1: Current flow in the rotating sphere
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Not on exam: So then, the total energy dissipated per time is

dW

dt
=

∫
dV

J2

σ
. (33)

Writing the volume as dV = 4πR2t (dΩ/4π) we have

dW

dt
=σ

(
ωRB0

2c

)2

4πR2t

∫
dΩ

4π

(
cosφ2 + cos2 θ sin2 φ

)
, (34)

yielding a final result
dW

dt
= σ

(
ωRB0

c

)2

R2t

(
2π

3

)
. (35)

This determines the order one numerical factor of part (c).
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Quantum Mechanics 1

Angular momentum and Wigner functions

(a) (5 pts) Use the properties of the angular momentum operators ~J = {Jx, Jy Jz}, and
the properties of the standard angular momentum eigenstates |j,m〉 to find the average and
the magnitude of the fluctuations of the x component of the angular momentum in the
eigenstates |j,m〉:

〈j,m|Jx|j,m〉, 〈j,m|J2
x |j,m〉 .

For a given j, find the value of m which minimizes the standard deviation σ of Jx. Provide
a brief (no more than two sentences) qualitative interpretation of the result.

(b) (5 pts) Using again the properties of ~J , calculate the rotated operator

eiβJy/~Jze
−iβJy/~ .

Compare the obtained expression to the classical vector rotation.

(c) (7 pts) From the results of parts (a) and (b), calculate the following characteristics
of the Wigner functions dm′m(β):

∑

m′

m′|dm′m(β)|2,
∑

m′

m′2|dm′m(β)|2.

As a reminder, dm′m(β) = 〈j,m′|e−iβJy/~|j,m〉.
(d) (3 pts) Characteristics of the Wigner functions calculated in part (c) can be viewed

as the average and the fluctuations of an operator. Identify the operator and calculate its
standard deviation. Make a brief comparison to part (a).
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Solution

(a) The x component of the momentum can be expressed in terms of the standard oper-
ators “raising” and “lowering” the projection m of the angular momentum on the z axis:

Jx =
1

2
(J+ + J−) ,

with the known matrix elements in the |j,m〉 basis:

〈j,m′|J±|j,m〉 = [(j ∓m)(j ±m+ 1)]1/2δm′,m±1.

These relations show explicitly that the average of Jx vanishes in any of the states |j,m〉:

〈j,m|Jx|j,m〉 = 0 .

and

〈j,m|J2
x |j,m〉 =

1

4
〈j,m|(J+J−+J−J+)|j,m〉 =

~2

4
[(j+m)(j−m+1)+(j−m)(j+m+1)] =

~2

2
[j(j+1)−m2] .

One can see immediately that the standard deviation σ of Jx is reached for m = ±j:

σ = 〈j,m|J2
x |j,m〉1/2|m=±j = ~

√
j/2 .

In this case, the angular momentum vector is aligned to the largest extent possible along the
z axis, either in the positive or negative direction. Because of this, its fluctuations in the x
direction orthogonal to z are minimized.

(b) The most direct way to find the rotated operator Jz is to use the Baker-Hausdorff
formula:

eiβJy/~Jze
−iβJy/~ = Jz + i

β

~
[Jy, Jz] +

(iβ)2

2~2
[Jy, [Jy, Jz]] + ...+

(iβ)k

k!~k
[Jy, [Jy, ...[Jy, Jz]...]] + ... ,

where the last (general) terms contains k commutators. Using the fact that

[Jy, Jz] = i~Jx , [Jy, Jx] = −i~Jz ,

we see that the operator part of all odd terms in the series is equal to Jx, while of all even
terms – Jz, while the numerical factors sum up to sine and cosine, respectively:

eiβJy/~Jze
−iβJy/~ = Jz cos β − Jx sin β .

This formula agrees precisely with the classical expression for the components of the vector
oriented originally in the positive z direction and rotated around the y axis, if we interpret
the direction of rotation in this expression to be clockwise.

(c) To determine the properties of the Wigner functions dm′m(β), we start with the
definition:

dm′m(β) = 〈j,m′|e−iβJy/~|j,m〉 ,
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which shows that the sum we need to find can be expressed as follows:
∑

m′

m′|dm′m(β)|2 =
∑

m′

m′dm′m(β)d∗m′m(β) =
∑

m′

m′dm′m(β)(d†)mm′(β)

=
∑

m′

〈j,m|eiβJy/~|j,m′〉m′〈j,m′|e−iβJy/~|j,m〉 =
1

~
〈j,m|eiβJy/~Jze−iβJy/~|j,m〉 .

As was shown in part (b), the last expression can be written as

1

~
〈j,m|Jz cos β − Jx sin β|j,m〉 = m cos β .

This result can be viewed as a direct consequence of the vector character of the angular
momentum ~J : if the initial z component of the momentum is m, it becomes equal to m cos β
after the rotation by angle β.

In the same way, we can express the sum as the matrix element of the square of the
rotated Jz operator:

∑

m′

m′2|dm′m(β)|2 =
1

~2
〈j,m|

[
eiβJy/~Jze

−iβJy/~
]2

|j,m〉 =
1

~2
〈j,m|(Jz cos β − Jx sin β)2|j,m〉 .

Using the results of part (a) we transform this further as

m2 cos2 β + sin2 β
1

~2
〈j,m|J2

x |j,m〉 =
1

2

[
j(j + 1) sin2 β +m2(3 cos2 β − 1)

]
.

(d) From the derivations in part (c), we see that the operator in question is the rotated
Jz operator from part (b). The standard deviation σ of this operator is:

σ = [〈j,m|(Jz cos β − Jx sin β)2|j,m〉 − 〈j,m|Jz cos β − Jx sin β|j,m〉2]1/2

= [(j(j + 1)−m2)/2]1/2 sin β

We see that apart from the overall factor sin β, this is the same expression as in part (a). This
is natural, since the Jz part of the rotated operator does not contribute to the fluctuations,
since the average is taken over the eigenstates of Jz.
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Quantum Mechanics 2

Two particles in a box – perturbative, adiabatic & diabatic changes

Two spin-1/2 fermions of mass µ interact only though a “ferromagnetic” spin-spin inter-
action:

V = −u~σ1 · ~σ2 , u > 0,

where
σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

(a) (3 pts) What is the spin contribution Es,t to the particle energy in the singlet and
the triplet states, respectively.

(b) (5 pts) The particles are confined to the one-dimensional interval 0 < x < a (box
with width a). What are the (total) eigenenergies En,m and the wavefunctions ψn,m(x1, x2)
of the two particles? Indicate when the ground state is singlet or triplet and explain why.

(c) (4 pts) A perturbation potential

U(x) =

{
δ x > a/2

−δ x < a/2
.

is applied to the particles. Find the first-order correction to the energy of a singlet ground
state.

(d) (4 pts) Consider making changes to the box potential by adjusting the width to a
different value b. If this width is changed smoothly and slowly, how does the wave function
and energy of the particles change with time if they start in the ground state in the original
box?

(e) (4 pts) Consider starting with the system in the lowest energy singlet state and
adjusting the size of the box suddenly to b = 2a. How does the wave function and energy of
the particles change with time? Calculate the probability p of still finding the particles in
the (new) ground state right after the sudden expansion.
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Solution

(a) For Fermions, the total wavefunction must be antisymmetric with respect to exchange
of the two particles. If one aims to construct the total wavefunction as a product of spin and
spatial portions, then the spin portion can by symmetric or antisymmetric, corresponding
to triplet or singlet states. The triplet state, with total spin M = 0,±1 along the z-axis, is
symmetric in the spins

χ3(M) =





| ↑↑〉 M = 1,

| ↓↓〉 M = −1,
1√
2

(| ↑↓〉+ | ↓↑〉) M = 0 .

, (1)

while the singlet state is antisymmetric in the spins

χ1 =
1√
2

(| ↑↓〉 − | ↓↑〉) . (2)

The expectation value of V for the triplet states is −u, whereas for the singlet state it is u.

(b) For a single particle in a box of width a, the wave function is given by:

ψn(x) =

√
2

a
sin(nπx/a) (3)

For two identical particles in a box, the spatial portion of the total wavefunction is given by:

ψ±n,m(x1, x2) =
1

a
(sin(nπx1/a) sin(mπx2/a)± sin(mπx1/a) sin(nπx2/a)) . (4)

The complete wavefunction of the triplet state is

Ψn,m;M(x1, x2) = ψ−n,m(x1, x2)χ3(M) , (5)

while the complete wavefunction of the singlet state is

Ψn,m(x1, x2) = ψ+
n,m(x1, x2)χ1 . (6)

The total energies are given by:

En,m =
n2h2

8µa2
+
m2h2

8µa2
± u (7)

For a triplet state, n6= m, so the energy of the state with the lowest n,m values is given by:

Et,1,2 =
5h2

8µa2
− u (8)

For a singlet state, n = m = 1, and the energy is given by:

Es,1,2 =
2h2

8µa2
+ u (9)
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The ground state is triplet if:

E1,2 =
5h2

8µa2
− u < 2h2

8µa2
+ u (10)

i.e., if

E1,2 =
3h2

8µa2
< 2u (11)

(c) The first order shift to the singlet ground state is trivially zero

E(1) =〈Ψ|H ′|Ψ〉 =
4δ

a2

∫ a

0

∫ a

0

dx1dx2 sin2(πx1/a) sin2(πx2/a) (U(x1) + U(x2)) = 0 (12)

This follows because the wave functions are even and the perturbing potential is odd.

(d) The spatial portion of the wave function smoothly evolves to:

ψn,m(x1, x2) =
1

b
(sin(nπx1/b) sin(mπx2/b)± sin(mπx1/b) sin(nπx2/b)) (13)

and the energies are given by

En,m =
n2h2

8µb2
+
m2h2

8µb2
± u (14)

(e) In the sudden approximation, the wave function does not have time to adjust to
the change in potential and remains unchanged, projecting onto the eigenstates of the new
potential. The probability of finding the particles in the new ground state is given by the
projection of the initial ground state state onto the final one:

p =
∣∣〈ψa1,1(x1, x2)|ψb1,1(x1, x2)

〉∣∣2

=

∣∣∣∣
2

a

2

b

∫ a

0

∫ a

0

dx1dx2 (sin(πx1/a) sin(πx2/a) sin(πx1/b) sin(πx2/b))

∣∣∣∣
2

=

∣∣∣∣
4

ab

∫ a

0

∫ a

0

dx1dx2 (sin(πx1/a) sin(πx2/a) sin(πx1/2a) sin(πx2/2a))

∣∣∣∣
2

=
1

4

∣∣∣∣
8

3π

∣∣∣∣
4

= 0.13

(15)

36



Quantum Mechanics 3

Isotropic 3D harmonic oscillator

The Hamiltonian of an isotropic 3D harmonic oscillator of mass µ and frequency ω is:

H =
p2

2µ
+
µω2r2

2
.

(a) (5 pts) Show that the time-independent Schrödinger equation separates in Carte-
sian coordinate system. Determine the eigenenergies En and their degeneracies gn of the
stationary states of the oscillator.

(b) (5 pts) Express the Cartesian components of the angular momentum operator ~L =
{Lx, Ly, Lz} in terms of the raising and lowering operator a†j, aj, where j = x, y, z. Find the
time dependence of ~L in Heisenberg representation.

(c) (5 pts) Calculate the operator L2 of the angular momentum and express it through
the operator n of the total number of the excitations, and operators Q and Q†:

n =
∑

j

a†jaj , Q =
∑

j

a2
j .

(d) (5 pts) Consider the subspace of the degenerate energy eigenstates |nx, ny, nz〉 of the
oscillator with energy E = (7/2)~ω. Using the previous results in this problem, construct
the state with vanishing angular momentum, |L2 = 0〉, in this subspace.
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Solution

(a) In Cartesian coordinates, one sees immediately that the Hamiltonian of a 3D harmonic
oscillator is a sum of the three equivalent 1D oscillators, each for one coordinate:

H = Hx +Hy +Hz .

By the standard logic, this means that the time-independent Schrödinger equation can be re-
duced to three independent Schrödinger equations, one for each coordinate, and the eigenen-
ergies En of the stationary states of the 3D oscillator are the sums of the three energies of
each of the 1D oscillators. This means that

En = ~ω(n+
3

2
) n = nx + ny + nz , nj = 0, 1, 2, ... , j = x, y, z.

Degeneracy gn of the energy level En is then given by the number of way in which a positive
integer n can be represented as a sum of the three non-negative integers, and can be found
directly. If the number of excitations in the x oscillator is nx, the remaining n− nx quanta
can be distributed between the y and z oscillators in the n − nx + 1 ways. Therefore, the
total number of ways to distribute n quanta over the three coordinates is

gn =
n∑

nx=0

(n− nx + 1) = (n+ 1)2 − n(n+ 1)

2
=

(n+ 1)(n+ 2)

2
.

(b) One starts by expressing the operators of coordinates and the corresponding momenta
in terms of the raising and lowering operators, e.g.

x =

√
~

2mω
(ax + a†x) , px = −i

√
mω~

2
(ax − a†x) .

Using these relations in the definition of the component of the angular momentum, e.g.,
Lz = xpy − ypx, we find:

Lz =
i~
2

[
(ay + a†y)(ax − a†x)− (ax + a†x)(ay − a†y)

]
= i~(axa

†
y − aya†x) .

note that the order of operators in each of the products is arbitrary, since raising and lowering
operators for different coordinates commute. The other two component are obtained similarly

Lx = i~(aya
†
z − aza†y) , Ly = i~(aza

†
x − axa†z) .

One can check that these expressions satisfy the necessary momentum commutation relations

[Lx, Ly] = i~Lz ,

plus cyclic permutations of x, y, z. Using these expressions, one can check explicitly that
every component of the angular momentum operator ~L commutes with the Hamiltonian:

[H,Lx] = [H,Ly] = [H,Lz] = 0 .
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This means that the equation of motion of the ~L in the Heisenberg representation is

d~L/dt = 0 ,

i.e. angular momentum is a constant of motion, as one should expect for a spherically
symmetric system.

(c) The operator L2 is calculated directly by squaring each of the components:

L2
z = ~2

[
a†yayaxa

†
x + a†xaxaya

†
y − a†ya†yaxax − a†xa†xayay

]
,

L2
x = ~2

[
a†yayaza

†
z + a†zazaya

†
y − a†ya†yazaz − a†za†zayay

]
,

L2
y = ~2

[
a†zazaxa

†
x + a†xaxaza

†
z − a†za†zaxax − a†xa†xazaz

]
.

The sum of all these components: L2 = L2
x +L2

y +L2
z can be expressed through the operator

n of the total number of excitations, n =
∑

j a
†
jaj, if one adds and subtracts the sum of the

"diagonal" terms
∑

j(a
†
jaj)

2. Then, one finds directly that

L2 = ~2
[
n(n+ 1)−Q†Q

]
, Q =

∑

j

a2
j .

(d) For states with energy E = (7/2)~ω, there are two excitations: n = 2, and in total,
there are g2 = 6 such states:

|2, 0, 0〉 , |0, 2, 0〉 , |0, 0, 2〉 , |1, 1, 0〉 , |1, 0, 1〉 , |0, 1, 1〉 .

Operator Q annihilates all “1-1” states, since it destroys two excitations in each coordinate:

Q|1, 1, 0〉 = Q|1, 0, 1〉 = Q|0, 1, 1〉 = 0 .

Expression derived in part (c) means then that these states correspond to L2 = 6~2 and
can not participate in the L2 = 0 state. The part Q†Q of the L2 operator has the following
matrix form in the basis of the remaining 3 states, |2, 0, 0〉 , |0, 2, 0〉 , |0, 0, 2〉:

Q†Q =




2 2 2
2 2 2
2 2 2


 .

Characteristic equation for this matrix:

λ2(λ− 6) = 0

gives the eigenvalues 0, 0, 6. Expression for L2 obtained in (c) shows that the L2 = 0 state
is the eigenvector of this matrix with the eigenvalue 6. The corresponding vector is found
immediately from the form of the matrix as

|L2 = 0〉 =
1√
3

[|2, 0, 0〉+ |0, 2, 0〉+ |0, 0, 2〉] .
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Statistical Mechanics 1

Specific heat, magnetic susceptibility, and the Stoner instability

Consider electrons in a band with a density of states (for a single spin) of the form

g(ε) = g0

(
1− ε2

ε20

)
, (1)

for −ε0 < ε < ε0 and zero otherwise. The band is half-filled5 at T = µ = 0. Assuming first
that the electrons do not interact, the grand potential is

Ω(T, V, µ,H) = −V T
∑

σ

∫ ε0

−ε0
dε g(ε) ln[1 + e−β(ε+2µBσH−µ)] . (2)

Here β = 1/T , V is the volume, µB is the Bohr magneton, H is the magnetic field and
σ = ±1/2 is the electron spin.

We will start with zero magnetic field, H = 0.

(a) (3 points) Derive an expression from Ω for the number of electrons N and the energy of
the electrons E in terms of g(ε), T , V and µ (you may leave any integrals unevaluated).

(b) (1 point) Compute N at half filling, i.e. the value of N at T=µ=0.

(c) (2 points) Show that the chemical potential is independent of temperature (and hence
zero) if the number of electrons is kept at its half filling value of part (b).

(d) (5 points) For low temperatures and N at half filling, compute the specific heat, C =
1
V
∂E
∂T

, keeping the lowest term in the expansion C = c0 + c1T + c2T
2 + . . ..

Formulate your answer in terms of ε0, g0 and numerical coefficients. Some helpful
integrals are given at the end.

Now we look at non-zero magnetic field, assuming µBH � T .

(e) (5 points) For low temperature and N at half filling, compute the magnetization M
(where M is proportional to H) and the susceptibility, χ = 1

V
∂M
∂H

= 1
V
M
h
, keeping the

lowest term in the expansion χ = b0 + b1T + b2T
2 + . . ..

Formulate your answer in terms of ε0, g0 and numerical coefficients. Some helpful
integrals are given at the end.

(f) (1 point) What is the value of the ratio C/T

χ/µ2B
? (Note: If you do this correctly, this

quantity is independent of the density of states.)
5This description is relevant in transition metals, where the Fermi energy lies in a narrow band originating

from the d electrons.
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Now we turn to interacting electrons. We represent the interaction by a “mean field”
contribution to the energy:

Eint = γ
N+N−
V

(3)

where γ is the so-called Stoner coupling constant and N+ and N− are the number of electron
in the spin up and spin down state, respectively. This interaction (the exchange interaction)
describes the fact that Coulomb repulsion between the electrons is reduced for electrons with
parallel spins, when the spacial component of the wave function has to be anti-symmetric.

(g) (3 points) At zero temperature the system develops spontaneous magnetization if γ >
γcrit. What is the value of γcrit ?

Integrals you may need:

We define
αn ≡

∫ ∞

−∞

xnex

(ex + 1)2
. (4)

The first few coefficients are

α0 =1 , (5)
α1 =0 , (6)

α2 =
π2

3
, (7)

α3 =0 , (8)

α4 =
7π4

15
. (9)
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Solution

We define the Fermi function

f(ε) =
1

eβ(ε−µ) + 1
(10)

Here is a summary of some basic properties of the Fermi function:

f ′ =
df

dε
=
−βeβ(ε−µ)

(eβ(ε−µ) + 1)2
=

−β
(eβ(ε−µ)/2 + e−β(ε−µ)/2)2

(11)

The function −f ′ is symmetric around ε = µ and it approaches a Dirac delta function at low
temperatures. Other derivatives of f can be expressed with this function

df

dβ
=

−(ε− µ)

(eβ(ε−µ)/2 + e−β(ε−µ)/2)2
=
ε− µ
β

f ′ (12)

df

dT
= −ε− µ

T
f ′ (13)

See the Appendix for a quick guide on how to handle integrals involving f ′(ε).

(a) At zero field the
∑

σ brings in a factor 2. The particle number is

N = −∂Ω

∂µ
= −2TV

∫ ∞

−∞
g(ε)
−βe−β(ε−µ)

1 + e−β(ε−µ)
dε = 2V

∫ ∞

−∞
g(ε)f(ε)dε (14)

For the energy:
E = Ω− TS − µN (15)

Here the entropy is

S = −∂Ω

∂T
= 2V

∫ ∞

−∞
g(ε)

(
ln[1 + e−β(ε−µ)] +

d

dT
ln[1 + e−β(ε−µ)]

)
dε (16)

The second term is

d

dT
ln[1 + e−β(ε−µ)] =

e−β(ε−µ)

1 + e−β(ε−µ)
[−(ε− µ)]

(
− 1

T 2

)
(17)

and therefore

S = 2V

∫ ∞

−∞
g(ε)

(
ln[1 + e−β(ε−µ)] +

T

1 + eβ(ε−µ)

ε− µ
T 2

)
dε (18)

When inserted to E = Ω− TS − µN the first (logarithmic) term is canceled with Ω and in
the second term the part that contains µ is canceled with µN . The remaining part is

E = 2V

∫ ∞

−∞
εg(ε)f(ε)dε (19)
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(b) At T = 0, the fermi function is unity below µ and zero above µ here µ = 0. The number
therefore reduces to

N =2V

∫ 0

−ε
g(ε) (20)

=
4V g0ε0

3
(21)

(c) It is easy to show that using µ = 0 yields the same particle number, independent of
temperature:

dN

dβ
= 2V

∫ ∞

−∞
g(ε)

df(ε)

dβ
dε = 0 (22)

because g(ε) is an even function of ε and df(ε)
dβ

= ε
β
f ′ is an odd function. Therefore the

chemical potential is entirely independent of the temperature

(d) Now we will work out the specific heat. From now on we will use µ = 0. Since CV =
∂E/∂T we find

CV = 2V
d

dT

∫ −∞

−∞
εg(ε)f(ε)dε = 2V

∫ −∞

−∞
εg(ε)

df(ε)

dT
dε = 2V

∫ −∞

−∞
εg(ε)[−f ′(ε)] ε

T
dε (23)

We use the low temperature expansion developed in the appendix. We take K = ε2g(ε) (see
Appendix), with K ′ = 2εg+ε2g′, K ′′ = 2g+4εg′+ε2g′′, all evaluted at the chemical potential
ε = µ = 0 where K ′′ = 2g(ε = 0) = g0. The expansion yields:

CV =
2V

T

(α2

2
T 2 2g0

)
+ higher (24)

The final result is
C = 2α2g0T + ... (25)

It turns out that the leading term is proportional to the density of states.

(e) Now we will work out the magnetic susceptibility. The magnetization reads

M = − ∂Ω

∂H
= −TV

∑

σ

∫ ∞

−∞
g(ε)

2µBσβe
−β(ε+2µBσH−µ)

1 + e−β(ε+2µBσH−µ)
dε (26)

We introduce ∆ = µBH and write out the two terms of the sum

M = −V µB
∫ ∞

−∞
[g(ε)[f(ε+ ∆)− f(ε−∆)]dε (27)

We expand the Fermi function, f(ε+ ∆) = f + f ′∆

M = 2V µ2
BH

∫ ∞

−∞
g(ε)[−f ′(ε)]dε (28)

Here the leading term is in the 0th order and
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M = 2V µ2
BH[g(ε = 0) +

α2

2
T 2g′′(ε = 0)] + . . . (29)

The leading order susceptibility is
χ = 2µ2

Bg0 (30)

(f) Using parts (d) and (e) we find that C/T

χ/µ2B
= α2.

(g) Now we will analyze the Stoner-instability. The energy and the particle number with
non-zero field are
E

V
=

∫ ∞

−∞
εg(ε)[f(ε+ ∆) + f(ε−∆)]dε = 2

∫ ∞

−∞
εg(ε)f(ε)dε+ ∆2

∫ ∞

−∞
εg(ε)f ′′(ε)dε (31)

N

V
=

∫ ∞

−∞
g(ε)[f(ε+ ∆) + f(ε−∆)]dε = 2

∫ ∞

−∞
g(ε)f(ε)dε+ ∆2

∫ ∞

−∞
g(ε)f ′′(ε)dε (32)

where we used the expansion f(ε + ∆) + f(ε −∆) = 2(f + 1
2
f ′′∆2). By partial integration

we can turn the second term in the particle number into

∆2

∫ ∞

−∞
g(ε)f ′′(ε)dε = −∆2

∫ ∞

−∞
g′(ε)f ′(ε)dε (33)

because gf ′|±∞ = 0. This integral is zero, because g′ and all higher order odd derivatives of
g are zero. That is good news, the chemical potential remains µ = 0, even in magnetic field.

For the energy, the temperature dependence of the first term can be reconstructed from
the specific heat:

2

∫ ∞

−∞
εg(ε)f(ε)dε =

E0

V
+

∫
CdT =

E0

V
+ α2g0T

2 (34)

where E0 is the ground state energy. For the second term the partial integration yields

∆2

∫ ∞

−∞
εg(ε)f ′′(ε)dε = −∆2

∫ ∞

−∞
(g + εg′)f ′dε (35)

We do not need to care about temperature dependence (because of the ∆2 pre-factor), and
we can just keep the leading term, −

∫∞
−∞(g + εg′)f ′dε = g0 Finally we get

E

V
=
E0

V
+ α2g0T

2 + ∆2g0 (36)

This expression has and energy minimum at ∆ = 0. Let us take a look at the interaction
term. First we express N+ and N−:

N±
V

=

∫ ∞

−∞
g(ε)f(ε±∆) =

∫ ∞

−∞
gfdε±∆

∫ ∞

−∞
g(ε)f ′(ε)dε =

N

2V
±∆

∫ ∞

−∞
g(ε)f ′(ε)dε (37)

Again, ±
∫∞
−∞ g(ε)f ′(ε)dε = ∓g0, and the product entering into the interaction term is

N+N−
V 2

=
N2

4V 2
−∆2g2

0 (38)
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The energy of the interacting system is

E

V
=
E0

V
+ α2g0T

2 + ∆2g0 +
N2

4V 2
−∆2g2

0 =
E0

V
+

N2

4V 2
+ α2g0T

2 + ∆2g0(1− γg0) (39)

The critical value of the coupling is reached when there is no longer an energy minimum at
∆ = 0. At zero temperature this happens when γcrit = 1/g0.

At zero temperature, the Stoner instability can be solved without using the Bethe-
Sommerfeld expansion, simply taking the Fermi function as a step function and evaluating
the integrals with constant density of states, g0.

Appendix: The Bethe - Sommerfeld expansion.

Assume we want to calculate an integral of type

F =

∫ ∞

−∞
K(ε)[−f ′(ε)]dε (40)

We expand K into a Taylor series around ε = µ:

K =
∞∑

n=0

(ε− µ)n

n!

dnK

dεn
dε (41)

and we get

F =
∞∑

n=0

∫ ∞

−∞
[−f ′(ε)](ε− µ)n

n!

dnK

εdn
dε (42)

We substitute x = β(ε− µ) to get

F =
∞∑

n=1

αn
n!

dnK

dεn
(43)

The coefficients are
αn =

∫ ∞

−∞
xn[−f ′(x)]dx (44)

Since f ′ is an even function, αn = 0 for odd n. The first few non-vanishing coefficients
are

α0 = 1 (45)

α2 =

∫ ∞

−∞

x2ex

(ex + 1)2
dx =

π2

3
(46)

α4 =

∫ ∞

−∞

x4ex

(ex + 1)2
dx =

7π4

15
(47)
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Statistical Mechanics 2

Thermodynamics of weak solutions

This problem explores thermodynamics of a weak solution consisting Ns molecules of
solvent and N molecules of solute (minor component) with small relative concentration
c = N/Ns � 1. The Gibbs potential of such dilute solution can be approximated as

Φ(p, T,Ns, N) ≈ Nsµs0 +Nφ(p, T ) +NT log
N

Ns

(1)

where µs0 is the chemical potential of pure solvent (N = 0), φ(p, T ) is the contribution
of a single solute molecule to the Gibbs potential, and the third term describes the en-
tropy correction due to indistinguishable nature of solute molecules and is closely related
to the “Boltzmann’s factor” in the ideal gas. Note that this Gibbs potential is extensive,
Φ(p, T,Ns, N) = Nsf(p, T, c), c = N/Ns.

(A) [3pt] How much mechanical work can be extracted in a process where such solution
is further diluted by a factor of 2 (assuming constant temperature and pressure)?

(B) [3pt] Compute the chemical potential of solvent molecules for solute concentration
c > 0.

(C) [5pt] Consider a volume of solution (c1 = c) and a volume of pure solvent (c2 = 0)
separated by a heat-conducting membrane impermeable to the solute molecules. What is
the condition for their equilibrium? Find the osmotic pressure acting on the membrane
∆p = p1 − p2.

(D) [5pt] Now consider equilibrium of salty water and ice (which cannot contain any signif-
icant amount of salt). How does the melting temperature change for fixed c = const?

Hint: examine how the derivation of Clausius-Clapeyron equation dP
dT

= s1−s2
v1−v2 is modified if

one of the phases can contain solute.

(E) [4pt] Estimate the shift in the ice melting temperature in equilibrium with 1g NaCl/liter
salt water.

Some useful physical quantities (at 1 atm) are given on the next page:
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Water specific heat ≈ 4.2 kJ/(kg ·K)

Ice specific heat ≈ 2.1kJ/(kg ·K)

Ice melting latent heat (1atm) L = 334 kJ/kg
Standard atomic weight, Na µNa ≈ 22.99 g/mol
Standard atomic weight, Cl µCl ≈ 35.45 g/mol
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Solution

Introduction: For pure solvent (N = 0), only the first term contributes, so it represents
the chemical potential of pure solvent molecules. The 2nd and 3rd terms in Eq. (1) can
be thought of the effect of adding solute molecules one by one. As long as the relative
concentration N/Ns � 1 is small, their contributions to the enthalpy are independent from
each other and are represented by the 2nd term. This results in total contribution ∝ N ,
where φ(p, T ) does not depend on the concentration N/Ns reflecting the fact that solute
molecules are too dilute to interact with each other. The 3rd term represents correction
to the entropy similar to the Boltzmann factor in the canonical statistical sum of an ideal
gas. Since all the solute molecules are identical, the statistical weight of their any particular
configuration in the solution is reduced by factor 1/N !, which amounts to negative shift
in entropy ∆s(B) = − logN ! and the corresponding positive shift in the Gibbs potential
∆G(B) = −T∆s(B). The Gibbs potential is an extensive quantity, so this correction must
scale as ∝ N if the concentration N/Ns = const; therefore,

∆G(B) = T ·N log
N

Ns

. (2)

In other words, the 3rd term compensates for over-estimation of solute entropy that would
happen if solute molecules are considered distinguishable. The actual entropy is smaller than
that by log N

cNs
because each new molecule can be permuted with all the previously added

identical solute molecules. The − log(cNs) term is necessary to ensure that the entropy is
extensive, where c is an arbitrary constant, amounts to an inconsequential additive constant
shift in φ(p, T ).

(A) The maximal work that can be performed by an out-of-equilibrium system is equal to
the change of its Gibbs potential.

(Wmax)p,T=const = Ginitial −Gfinal . (3)

The initial system consists of N solute and Ns pure solvent, and the final system consists of
the same amount of solute and 2Ns solvent, so

(Wmax)p,T=const ≈
[
Nsµs0 +Nφ(p, T ) +NT log

N

Ns

]
+Nsµs0

−
[
2Nsµs0 +Nφ(p, T ) +NT log

N

2Ns

]

= NT log 2 .

(4)

(B) [3pt] The chemical potential is Gibbs energy per particle,

µs(p, T ) =

(
∂G

∂Ns

)

p,T,N

= µs0 +NT
(
− 1

Ns

)
= µs0 − cT , (5)

where c = N/Ns. The second term appears due to reduced entropy of the solute molecules
as they are diluted by adding one molecule of solvent.
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(C) Note that pressures p1,2 can be different because the two parts are not in direct me-
chanical contact. Since the membrane is impenetrable to the solute molecules, the condition
of equilibrium is the equality of chemical potentials of the solvent on both sides of the
membrane.

µs(p1, T, c) = µs(p2, T, c = 0)

⇔ µs0(p1, T )− cT = µs0(p2, T ) ≈ µs0(p1, T ) +

(
∂µs0
∂p

)

T

(p2 − p1)

⇔ ∆p = p1 − p2 =

(
∂µs0
∂p

)−1

T

cT

(6)

The partial derivative
(
∂µs0
∂p

)
T

= vs is easily found from the identity for the chemical (Gibbs)
potential dµ = −sdT +vdp, where vs is the volume per solvent molecule, and the final result
is

∆p =
cT

vs
=

NT

Nsvs
=
NT

V
. (7)

(D) The Clapeyron-Clausius equation follows from the fact that chemical potentials of the
two phases must have equal changes ∆µI = ∆µs for equal changes in temperature T →
T + ∆T and pressure p→ p+ ∆p, because the the phases remain in thermal and mechanical
contact. If one of the phases has a small relative concentration c of solute, the solvent (water)
chemical potential is modified by (−cT ). If the pressure does not change (∆p = 0), the phase
equation ∆µI = ∆µW is

(
∂µI
∂T

)

p

∆T = ∆µI = ∆µW =

(
∂µW
∂T

)

p

∆T − cT , (8)

With relation
(
∂µ
∂T

)
p

= s (entropy per molecule) and T (sW − sI) = l (latent heat per
molecule), one arrives at

∆T = − cT

sW − sI
=
cT 2

l
. (9)

(E) The molecular weight of water is µW = 18 mol/g, so the latent heat of melting ice per
molecule is

l =
LµW
NA

≈ 334 J/g · 18g/mol
NA

≈ 6.01 kJ/mol ·N−1
A (10)

The relative salt concentration is

c =
Nsalt

NW

=
msalt/µsalt
mW/µW

≈ 3.08 · 10−4 � 1 , (11)

and the relative shift in temperature is

∆T

T
=
cT [J]

l[J]
=
ckBT [K]

l
=
c(kBNA)T

LµW
≈ 3.08 · 10−4 · 8.31 J/(mol K) · 273 K

6.01 · 103 J/mol
≈ 1.16 · 10−4

(12)
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so that the absolute temperature shift is

∆T ≈ 0.0317 K . (13)

Since the problem only asks for an estimate, answers with one-digit precision are acceptable.
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Statistical Mechanics 3

Shock wave in ideal gas

Consider a shock wave steadily propagating through an ideal gas
from right to left : the gas in front of the shock is initially in
the state 1, and behind the shock wave it is in the state 2. The
density and temperature change from (ρ1, T1) to (ρ2, T2) only
within the thin wave front. The gas before and after the shock
wave is in equilibrium.

It is convenient to consider the reference frame (see figure) in which the shock wave is sta-
tionary while the density, temperature, and velocity of the gas change as the gas passes from
left (state 1) to right (state 2) through the front. Assume also that the constant-volume heat
capacity per molecule CV /N = c of the gas is independent of density and temperature.

(A) [3pt] What is the entropy of such gas in equilibrium at temperature T and pressure
P?

Even though the density, temperature, and velocity change discontinuously at the front, the
following quantities are conserved (neglect any vertical motion of the gas as a whole):

ρ1v1 = ρ2v2 , (1)
p1 + ρ1v

2
1 = p2 + ρ2v

2
2 , (2)

ε1 + p1

ρ1

+
1

2
v2

1 =
ε2 + p2

ρ2

+
1

2
v2

2 , (3)

where ε1,2 = E1,2/V1,2 are the volume densities of the gas internal energy.

(B) [3pt] Explain the physical origin and derive the conservation laws (1,2,3).

(C) [4pt] Using these conservation laws, find the change of the temperature y = T2/T1

if the density is increased by factor x = ρ2/ρ1 > 1 behind the shock wave.

(D) [5pt] How does the entropy of the gas change? Compute the change of entropy per
particle ∆s = s2 − s1 and provide qualitative explanation for its sign (you may expand in
(x− 1)� 1).

(E) [5pt] Compute the speed of the shock wave u = v1 in the reference frame of the initial
gas and compare it to the adiabatic speed of sound u1. What about v2 and u2 (the same
behind the shock wave)?
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Shock wave in ideal gas: Solutions

(A) Solutions from either microscopic description of the gas (with reasonable assumptions)
or integrating thermodynamic identities are accepted for the full grade.

From the thermodynamic point of view, one can integrate the constant-volume heat
capacity

C = T

(
∂S

∂T

)

V

, S(T2, V )− S(T1, V ) =

∫ T2

T1

Nc dT

T
= Nc log

T2

T1

. (4)

If the gas expands reversibly at constant temperature, its internal energy dU = δQ − p dV
does not change (since c does not depend on the volume) and its entropy changes due to
heat exchange equal to the work done by the gas,

dS =
δQ

T
=
p dV

T
, S(V2, T )− S(V1, T ) =

∫ V2

V1

1

T

NT

V
dV = N log

V2

V1

(5)

Finally, the entropy of the gas is equal to

S(T, V ) = N
(
c log

T

T0

+ log
V

V0

)
+ S0 , (6)

or, expressing it through pressure and temperature,

S(T, P ) = N
(
c log

T

T0

− log
P

P0

)
+ S0 , (7)

where the constant is determined by the entropy at the reference point S0 = S(T0, P0).

(B) The gas passing through area A of the wave front in time ∆t is compressed from volume
∆V1 = Av1∆t to volume ∆V2 = Av2∆t, while its mass is conserved,

ρ1∆V1 = ∆M = ρ2∆V2 ⇔ ρ1v1 = ρ2v2 . (8)

The momentum of the gas passing through the wave front is changed because of the pressure
difference before and after the shock wave p1 6= p2,

∆Mv2 −∆Mv1 = (p1 − p2)A∆t ⇔ p1 + ρ1v
2
1 = p2 + ρ2v

2
2 . (9)

Similarly, the total kinetic + internal energy of the gas is increased due to work done by the
pressures on both sides of the shock wave front. Denoting the density of the internal energy
as ε1,2, (

ε2 +
1

2
ρ2v

2
2

)
∆V2 −

(
ε1 +

1

2
ρ1v

2
1

)
∆V1 = p1∆V1 − p2∆V2

⇔ v1

(
ε1 + p1 +

1

2
ρ1v

2
1

)
= v2

(
ε2 + p2 +

1

2
ρ2v

2
2

)

⇔ ε1 + p1

ρ1

+
1

2
v2

1 =
ε2 + p2

ρ2

+
1

2
v2

2

(10)
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In the last line, we used mass conservation condition v ∝ 1/ρ (8) and the combination
(ε+ p)/ρ represents enthalpy per unit mass.

(C) Using mass and momentum conservation (1,2) from above, it is straightforward to find
the mass flux j = ρ1v1 = ρ2v2 as

j2 =
( 1

ρ1

− 1

ρ2

)−1 (
p2 − p1

)
, (11)

from which it follows that the pressure will also increase. Combining this with the energy
conservation condition (3), one obtains

ε2

ρ2

− ε1

ρ1

=
1

2

( 1

ρ1

− 1

ρ2

)(
p1 + p2

)
. (12)

Using then the ideal gas equation of state p = nT = ρ
m
T and internal energy density

ε = cnT = cρT
m

, where m is the molecular mass, the equation is easily expressed in terms of
x = ρ2/ρ1 and y = T2/T1:

c(y − 1) =
1

2
(1− 1

x
)(1 + xy) (13)

and its solution yields
T2

T1

= y =
2c+ 1− 1/x

2c+ 1− x (14)

Note that increase in density leads on increase in temperature.

(D) The entropy of ideal gas with heat capacity CV = Nc is

S = N [c log T − log
N

V
+ const] (15)

so that its change per molecule is

∆s =
S2

N
− S1

N
= c log

T2

T1

− log
ρ2

ρ1

= c log
2c+ 1− 1/x

2c+ 1− x − log x (16)

In order to find the direction of the change of entropy, one can compute its derivative with
respect to x = ρ2/ρ1:

∂s

∂x
=

(c+ 1)(2c+ 1)(x− 1)2

x(2c+ 1− x)(x(2c+ 1)− 1)
> 0 , (17)

for (2c+ 1)−1 < x < (2c+ 1), i.e., the entropy per particle increases.
Since the shock wave propagation is a spontaneous process, the entropy of the gas must

increase as it passes through the shock wave front.

(E) The speed of sound is governed by adiabatic compressibility,

u2
1 =

(
∂p

∂ρ

)

S

= γ
p

ρ
=
c+ 1

c

T1

m
, (18)
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where γ = Cp/CV = (c + 1)/c. The speed of the shock wave in the rest frame of the initial
gas is equal to v1, which is easily found from the mass flux j above:

v1 =
j

ρ1

=
1

ρ1

√( 1

ρ1

− 1

ρ2

)−1 (
p2 − p1

)
=

√
T1

m

(
1− 1

x

)−1
(xy − 1) (19)

The ratio of the speed of shock wave and sound wave is

v1

u1

=

√
c

c+ 1

(
1− 1

x

)−1
(xy − 1) , (20)

and substituting the temperature ratio y,

v1

u1

=

√
2cx

2c+ 1− x , (21)

which is larger than 1 for x > 1, i.e. the shock wave travels faster than sound in the initial
gas.

The ratio v2/u2 for the gas behind the shock wave can be found by simply replacing
x→ 1/x. Alternatively,

v2

u2

=
v2

v1

· u1

u2

· v1

u1

=
ρ1

ρ2

·
√
T1

T2

· v1

u1

=

√
1

x2y

2cx

2c+ 1− x =

√
2c/x

2c+ 1− 1/x
< 1 , (22)

i.e., behind the shock wave, the sound propagates faster than the former. Note also that in
the initial gas reference frame, the gas behind the shock wave travels with speed (v1−v2) > 0
to the left.
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