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Abstract of the Dissertation

Holographic Mellin Amplitudes

by

Xinan Zhou

Doctor of Philosophy

in

Physics

Stony Brook University

2018

This dissertation focuses on developing e�cient modern methods to com-
pute holographic four-point correlators in superconformal field theories in
various spacetime dimensions.

Three approaches are presented in this dissertation, which are inspired by
the bootstrap philosophy and the on-shell methods of scattering amplitudes
in flat space. I first review the inherent di�culties of the traditional method,
and suggest an improved algorithm that drastically simplifies the calculation.
I further show that by translating the problem into Mellin space many dif-
ficulties encountered in position space are avoided. Holographic correlators
become Mellin amplitudes in Mellin space, which are the natural analogue of
the flat space S-matrix. I argue that imposing constraints from superconfor-
mal symmetry and general consistency conditions is enough to fix the Mellin
amplitude, avoiding all details of the complicated e↵ective Lagrangian. I
develop two complementary Mellin space techniques, and obtain many novel
results for holographic four-point functions in AdS5 ⇥ S

5, AdS7 ⇥ S
4 and

AdS4 ⇥ S
7.
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Chapter 1

Introduction

Arguably the development of Quantum Field Theory (QFT) – a mathemat-
ical framework that unifies Quantum Mechanics and Special Relativity – is
one of the biggest triumphs of the 20th century physics. This versatile frame-
work underlies many branches of modern physics research. For example, it is
the cornerstone of the most successful theory to date, the Standard Model,
whose accuracy has been tested down to a scale at least 1/1000th the size
of an atomic nucleus. In Condensed Matter Physics, QFT provides e↵ective
description for systems at long distances. QFT is also useful in cosmology,
for example to describe early universe inflation. However our understand-
ing of QFT is still largely incomplete: most of the knowledge is limited in
the realm where the constituents of the system are interacting weakly (the
weak coupling limit) so that we can treat the system perturbatively around
its (trivial) free limit. At strong coupling, on the other hand, we have no
systematic method to make progress. Taming QFTs at strong coupling is
an urgent task for 21th century physicists, and its importance cannot be
overemphasized by a long list of important unsolved problems in modern-
day physics. We just name a few here: the generation of a mass gap in
Yang-Mills theory (one of the seven Millennium Prize Problems defined by
the Clay Mathematics Institute); the confinement of quarks and chiral sym-
metry breaking in Quantum Chromodynamics; and the mechanism of high
temperature superconductors.

Recent years have witnessed some promising progress towards under-
standing strongly coupled QFTs. One is the revival of the old bootstrap
philosophy [8] stemmed from the work of Rattazzi, Rychkov, Tonni and Vichi
[9]. The idea of the bootstrap program is to extract the full physical con-
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tent of a theory – even at strong coupling – solely based on symmetries,
self-consistency conditions and a small amount of additional physical input,
without resorting to any approximation. This line of attack is most e↵ec-
tive on theories constrained by a large amount of symmetries. Among them
are Conformal Field Theories (CFTs), which are QFTs with additional con-
formal symmetry and describe the critical behavior of second order phase
transitions. The most spectacular highlight of bootstrap’s modern comeback
is the numerical solution of the three-dimensional Ising model at its critical
point [10, 11], whose precision eclipses any other existing methods. Another
breakthrough comes from a remarkable conjecture that goes under the name
of AdS/CFT duality or holography principle [12, 13, 14]. This conjecture
equates strongly coupled conformal field theories to gravitational theories in
a higher dimensional spacetime, and has passed numerous non-trivial checks.
Taking the duality conjecture as a truth, we can obtain analytic results in
strongly coupled theories by doing only perturbative calculations in the dual
side.

The goal of this dissertation is to combine the bootstrap idea with holog-
raphy to gain analytic insight into strongly coupled QFTs. We aim to com-
pute analytically correlation functions – the physical observables that quan-
tify how fluctuations at di↵erent spacetime points are correlated – in various
strongly interacting theories in di↵erent spacetime dimensions. By analyzing
these correlators, a wealth of information can be extracted. Holographically,
the correlation functions of the boundary theory are represented by scatter-
ing amplitudes in a curved bulk spacetime, the Anti-de-Sitter space, sourced
by boundary fluctuations. Computing these AdS space scattering amplitudes
has a long history [15, 16] that can be tracked back to the beginning of the
AdS/CFT correspondence. There is a straightforward algorithm based on
perturbative expansion of the e↵ective Lagrangian and correlators are com-
puted as sums of Feynman diagrams in AdS space (the Witten diagrams).
However due to the extraordinary complexity, this algorithm quickly turned
out to be inadequate. Even for the most canonical duality pair, namely four
dimensional N = 4 Super Yang-Mills theory at infinite ’t Hooft coupling
and IIB supergravity on AdS5 ⇥ S

5, the computation of all the four-point
functions1 remained a longstanding problem for twenty years2. In this dis-

1Two-point functions and three-point functions are trivial as their structures are com-
pletely fixed by symmetry.

2Prior to publication [1].
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sertation, we present modern methods which circumvent the di�culties of
the traditional method. These methods allow us to e�ciently compute holo-
graphic correlators and have led to a number of novel results. The most
noticeable outcome of our endeavor is an elegantly simple solution of all one-
half BPS four-point functions for the paradigmatic N = 4 Super Yang-Mills
theory. The methods described here are inspired by the bootstrap program:
we compute the holographic correlators by using only symmetry principles
and consistency conditions, avoiding all details of the complicated e↵ective
Lagrangian. Our results also share a lot of similarities with the on-shell scat-
tering amplitude in flat space. This analogy becomes particularly clear after
we use the Mellin representation formalism, in which the correlators become
Mellin amplitudes. The similar intricate structures in Mellin amplitudes
makes it tantalizing to contemplate the possibility of having a full-fledged
program of AdS scattering amplitudes that parallels the highly successful
paradigm in flat space. The progress reported in this dissertation can be
viewed as a modest first step towards such a systematic understanding.

In the following, we briefly review the theories in this dissertation for
which we will compute correlators, and summarize our main results.

Four-Dimensional N = 4 Super Yang-Mills Theory

SU(N) N = 4 Super Yang-Mills theory can be viewed as the supersymmetric
generalization of the SU(3) Yang-Mills theory that governs the strong inter-
action, with the maximal amount of supersymmetry allowed in four dimen-
sions. The theory is further conformal, which enhances the global symmetry
to be the superconformal group PSU(2, 2|4). Holographically, N = 4 SYM
is dual to type IIB string theory on AdS5 ⇥ S

5 background. In the limit
of taking N large and further sending the ’t Hooft coupling � = g

2
YMN to

infinity, the AdS theory reduces to IIB supergravity.
In this dissertation, we are interested in computing the four-point func-

tions of the one-half BPS operators (see Section 2.1 for their definition).
The holographic computation for these four-point functions has only been
performed for a handful of cases due to unsurmountable computational com-
plexities: three cases of equal weight correlators [17, 18, 19] and correlators
with the “next-next-to-extremal” configuration [20, 21, 22]. A conjecture for
correlators with arbitrary equal weights k was made in [23]. In Section 2.3
we introduce a “position space method” which overcomes some of the di�-
culties of the traditional algorithm. Using this method, we reproduced the
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k = 2, 3, 4 results in [17, 18, 19] and computed a new k = 5 case which is
in agreement with the conjectural expression in [23]. A more elegant solu-
tion comes from formulating an algebraic bootstrap problem in Mellin space
(Chapter 3), by combining symmetry constraints and self-consistency con-
ditions (Section 4.1). The solution to this algebraic problem gives all the
one-half BPS four-point functions (Section 4.2).

Six-Dimensional N = (2, 0) SCFTs

The existence of non-trivial fixed point in dimension higher than four is
quite remarkable from the Renormalization Group point of view. The most
famous, yet mysterious, conformal field theories in six dimensions are the
N = (2, 0) superconformal CFTs. These strongly interacting theories can
be realized as the low energy e↵ective description of n coinciding M5-branes,
and have the maximal amount of superconformal symmetry OSp(8⇤|4) in
six dimensions.3 At large n, the SCFT can be equivalently described by a
Kaluza-Klein supergravity theory onAdS7⇥S

4 that comes from the reduction
of eleven dimensional supergravity. The only four-point function computed
for this background is the four-point function of the stress-tensor multiplet
[25]. We reproduced this result and further computed massive KK correlators
using the position space method. We also set up an algebraic bootstrap in
Mellin space (Section 4.3) and gave some of the solutions to this problem
(Section 4.4). Moreover, we solved all the next-next-to-extremal correlators
in Mellin space using another technique from Chapter 5.

Three-Dimensional Aharony-Bergman-Ja↵eris-Maldalcena
Theories

The Aharony-Bergman-Ja↵eris-Maldalcena (ABJM) Theories [26] are Chern-
Simons-matter theories in three dimensions with gauge group U(N)k⇥U(N)�k

and k = 1, 2. These theories have N = 8 superconformal symmetries and
describe the e↵ective theory on N coinciding M2-branes. The k = 1 theories
were conjectured to be dual to eleven dimensional supergravity on AdS4⇥S

7,
in the limit of large N . Though of tremendous physical interest, no four-point
functions had ever been computed for this background. This is partly due to

3By a classic result of Nahm [24], this is also the largest spacetime dimension that
allows superconformal field theories.
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the technical di�culty that exchange diagrams in the traditional algorithm
cannot be evaluated in closed form (see Section 2.1), which renders the po-
sition space method from Section 2.3 ine↵ective as well. What’s worse, this
theory is also inaccessible by the Mellin space method in Chapter 4. To this
end, we introduced a complementary approach in Chapter 5, which allowed
us to compute the first four-point function in this theory (Section 5.2).

Outline of the Thesis

The rest of this dissertation is organized as follows. In Chapter 2 we discuss
the computation of correlators in position space. After reviewing the di�-
culties of the traditional algorithm in Section 2.1, we introduce an improved
position space method in Section 2.3. This method is applied in Section
2.3.1 to compute correlators in AdS5 ⇥ S

5 and AdS7 ⇥ S
4. In Chapter 3

we introduce the Mellin representation formalism. In Section 3.1 we review
the formalism for a general CFT. In Section 3.2 we make a small digression
to extend this formalism to include CFTs with a conformal boundary or a
defect (interface). In Chapter 4 we introduce a Mellin space method which
translates the task of computing four-point functions into solving an alge-
braic bootstrap problem. The problem is set up for AdS5⇥S

5 in Section 4.1
and the full solution is given in Section 4.2. A similar problem is set up for
AdS7 ⇥ S

4 in Section 4.3 and partial solutions are given in Section 4.4. In
Chapter 5 we introduce another Mellin space technique that is complemen-
tary to the method in Chapter 4. We discuss the application of this method
to various backgrounds in Section 5.2. Technical details of this dissertation
have been relegated to the four appendices.

The content of dissertation has appeared in the papers [1, 3, 4, 5, 6].
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Chapter 2

Computations in Position Space

2.1 The Traditional Algorithm

The standard recipe to calculate holographic correlation functions follows
from the most basic entry of the AdS/CFT dictionary [13, 12, 14], which
states that the generating functional of boundary CFT correlators equals
the AdS path integral with boundary sources. Schematically,

⌦
e
i
R
@AdS '̄iOi

↵
CFT

= Z['̄i] =

Z

AdS

D'i e
iS

����
'i

��
z!0

='̄�

. (2.1)

Here and throughout the thesis we use the Poincaré coordinates

ds
2 = R

2 dz
2 + d~x

2

z2
. (2.2)

The AdS radius R will be set to one by a choice of units, unless otherwise
stated.

We focus on the limit of the duality where the bulk theory becomes a
weakly coupled gravity theory. To make the following discussion concrete,
let us take the canonical duality pair of N = 4 SYM and type IIB string
theory on AdS5 ⇥ S

5. This limit of the duality amounts to taking the num-
ber of colors N large and further sending the ’t Hooft coupling � = g

2
YMN

to infinity. In this limit, the bulk theory reduces to IIB supergravity with
a small five-dimensional Newton constant 

2
5 = 4⇡2

/N
2 ⌧ 1. The task of

computing correlation functions in the strongly coupled planar gauge theory
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has thus become the task of computing suitably defined “scattering ampli-
tudes” in the weakly coupled supergravity on an AdS5 background. The
AdS supergravity amplitudes can be computed by a perturbative diagram-
matic expansion, in powers of the small Newton constant, where the so-called
“Witten diagrams” play the role of position space Feynman diagrams. The
Witten diagrams are “LSZ reduced”, in the sense that their external legs (the
bulk-to-boundary propagators) have been put “on-shell” with Dirichlet-like
boundary conditions at the boundary @AdSd+1.

We restrict ourselves to the evaluation of four-point correlation functions
of the single-trace one-half BPS operators,

O(k)
I1...Ik

⌘ TrX{I1 . . . X
Ik} , k > 2 , (2.3)

where X
I , I = 1, . . . 6 are the scalar fields of the SYM theory, in the 6 rep-

resentation of SO(6) ⇠= SU(4) R-symmetry. The symbol {. . .} indicates the
projection onto the symmetric traceless representation of SO(6) – in terms
of SU(4) Dynkin labels, this is the irrep denoted by [0, k, 0]. In the notations
of [27], the operators (2.3) are the superconformal primaries of the one-half

BPS superconformal multiplets B( 12 ,
1
2 )

[0,k,0]. They are annihilated by half of the
Poincaré supercharges and have protected dimensions � = k. By acting
with the other half of the supercharges, one generates the full supermul-
tiplet, which comprises a finite number of conformal primary operators in
various SU(4) representations and spin 6 2 (see, e.g., [27] for a complete

tabulation of the multiplet). Each conformal primary in the B( 12 ,
1
2 )

[0,k,0] multiplet
is dual to a supergravity field in AdS5, arising from the Kaluza-Klein reduc-
tion of IIB supergravity on S

5 [28], with the integer k corresponding to the
KK level. For example, the superprimary O(k) is mapped to a bulk scalar
field sk, which is a certain linear combination of KK modes of the 10d metric
and four-form with indices on the S

5.
The traditional method evaluates the correlator of four operators (2.3)

as the sum of all tree level diagrams with external legs sk1 , sk2 , sk3 , sk4 .
One needs the precise values of the cubic vertices responsible for exchange
diagrams (Figure 2.1), and of the quartic vertices responsible for the contact
diagrams (Figure 2.2). The relevant vertices have been systematically worked
out in the literature [29, 30, 31, 32] and take very complicated expressions.
Our methods in this thesis, on the other hand, do not require the detailed
form of these vertices, so we will only review some pertinent qualitative
features.

7



Let us first focus on the cubic vertices. The only information that we need
are selection rules, i.e., which cubic vertices are non-vanishing. An obvious
constraint comes from the following product rule of SU(4) representations,

[0, k1, 0]⌦ [0, k2, 0] =
min{k1,k2}X

r=0

min{k1,k2}�rX

s=0

[r, |k2 � k1|+ 2s, r] , (2.4)

which restricts the SU(4) representations that can show up in an exchange
diagram. We collect in Table 2.1 (reproduced from [27, 19]) the list of bulk
fields {'µ1...µ`

} that are a priori allowed in an exchange diagram with external
spi legs if one only imposes the R-symmetry selection rule.

fields sk Aµ,k Cµ,k �k tk 'µ⌫,k

irrep [0, k, 0] [1, k � 2, 1] [1, k � 4, 1] [2, k � 4, 2] [0, k � 4, 0] [0, k � 2, 0]
m

2
k(k � 4) k(k � 2) k(k + 2) k

2 � 4 k(k + 4) k
2 � 4

� k k + 1 k + 3 k + 2 k + 4 k + 2
twist k k k + 2 k + 2 k + 4 k

Table 2.1: AdS5 ⇥ S
5: KK modes contributing to exchange diagrams with

four external superprimary modes sk.

From the explicit expressions of the cubic vertices [30] one deduces two
additional selection rules on the twist � � ` of the field �µ1...µ`

in order for
the cubic vertex sk1sk2�µ1...µ`

to be non-vanishing,

�� ` = k1 + k2 (mod 2) , �� ` < k1 + k2 . (2.5)

The selection rule on the parity of the twist can be understood as follows.
In order for the cubic vertex sk1sk2�µ1...µ`

to be non-zero, it is necessary for
the “parent” vertex sk1sk2sk3 be non-zero, where sk3 is the superprimary of
which �µ1...µ`

is a descendant. By SU(4) selection rules, k3 must have the
same parity as k1 + k2. One then checks that all descendants of sk3 that
are allowed to couple to sk1 and sk2 by SU(4) selection rules have the same
twist parity as k3. On the other hand, the selection rule hOk1Ok2Ok1+k2i is
not fully explained by this kind of reasoning. To understand it, we first need
to recall that the cubic vertices obtained in [29, 30] are cast in a “canonical
form” Z

AdS5

cijk 'i'j'k , (2.6)

8



by performing field redefinitions that eliminate vertices with spacetime deriva-
tives. This is harmless so long as the twists of the three fields satisfy a
strict triangular inequality, but subtle for the “extremal case” of one twist
being equal to the sum of the other two [33]. For example, for the su-
perprimaries, one finds that the cubic coupling sk1sk2sk1+k2 is absent, in
apparent contradiction with the fact that the in N = 4 SYM three-point
function hOk1Ok2Ok1+k2i is certainly non-vanishing. One way to calculate
hOk1Ok2Ok3=k1+k2i is by analytic continuation in p3 [29, 33]. One finds that
while the coupling constant ck1k2k3 ⇠ (k3 � k2 � k1), the requisite cubic con-
tact Witten diagram diverges as 1/(k3�k1�k2), so that their product yields
the finite correct answer.1 From this viewpoint, it is in fact necessary for the
extremal coupling ck1k2k1+k2 to vanish, or else one would find an infinite an-
swer for the three-point function. This provides a rationale for the selection
rule � � ` < k1 + k2. When it is violated, the requisite three-point contact
Wittten diagram diverges, so the corresponding coupling must vanish. We
will see in Section 3.1.1, 3.1.2 of the next chapter that the selection rule has
also a natural interpretation in Mellin space.

The requisite quartic vertices were obtained in [32]. The quartic terms in
the e↵ective action for the sk fields contain up to four spacetime derivatives,
but we argued in [1] that compatibility with the flat space limit requires
that holographic correlators can get contributions from vertices with at most
two derivatives. The argument is easiest to phrase in Mellin space and will
be reviewed in Section 3.1.3. That is indeed the case in the handful of
explicitly calculated examples [17, 18, 19, 20, 21, 22]. Our claim has been
recently proven in full generality [35]. These authors have shown that the
four-derivative terms e↵ectively cancel out in all four-point correlators of
one-half BPS operators, thanks to non-trivial group theoretic identities.

The rules of evaluation of Witten diagrams are entirely analogous to the

1 If one wishes to work exactly at extremality k3 = k1 + k2, one can understand the
finite three-point function as arising from boundary terms that are thrown away by the
field redefinition that brings the cubic vertex to the canonical non-derivative form [33].
One can rephrase this phenomenon as follows [34]: the field redefinition on the supergravity
side (which throws away boundary terms) amounts to a redefinition of the dual operators
that adds admixtures of multi-trace terms, Op ! Op + 1/N

Pp
k=2 c

p
k Op�kOk + . . . . The

double-trace terms contribute to the extremal three point functions at leading large N

order, but are subleading away from extremality. The operators dual to the redefined
fields sp (which have only non-derivative cubic couplings) are linear combinations of single
and double-trace terms such all extremal three-point functions are zero, in agreement with
the vanishing of the extremal three-point vertices sp1sp2sp1+p2 .
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Figure 2.1: An exchange Witten diagram.

Figure 2.2: A contact Witten diagram.

ones for position space Feynman diagrams: we assign a bulk-to-bulk propaga-
tor GBB(z, w) to each internal line connecting two bulk vertices at positions
z and w; and a bulk-to-boundary propagator GB@(z, ~x) to each external line
connecting a bulk vertex at z and a boundary point ~x. These propagators are
Green’s functions in AdS with appropriate boundary conditions. Finally, in-
tegrations over the bulk AdS space are performed for each interacting vertex
point. The simplest connected Witten diagram is a contact diagram of exter-
nal scalars with no derivatives in the quartic vertex (Figure 2.2). It is given
by the integral of the product of four scalar bulk-to-boundary propagators
integrated over the common bulk point,

Acon(~xi) =

Z

AdS

dz GB@(z, ~x1) GB@(z, ~x2) GB@(z, ~x3) GB@(z, ~x4) . (2.7)
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Here, the scalar bulk-to-boundary propagator is [13]2,

GB@(z, ~xi) =

✓
z0

z20 + (~z � ~xi)2

◆�i

(2.8)

where �i is the conformal dimension of the ith boundary CFT operator. The
integral can be evaluated in terms of derivatives of the dilogarithm function.
It is useful to give it a name, defining the so-called D-functions as the four-
point scalar contact diagrams with external dimensions �i,

D�1�2�3�4(x1, x2, x3, x4) ⌘
Z

1

0

dz0

z
d+1
0

Z
d
d
x

4Y

i=1

✓
z0

z20 + (~z � ~xi)2

◆�i

. (2.9)

The other type of tree-level four-point diagrams are the exchange diagrams
(Figure 2.1),

Aex(~xi) =

Z

AdS

dzdwGB@(z, ~x1)GB@(z, ~x2)GBB(z, w)GB@(w, ~x3)GB@(w, ~x4)

(2.10)
Exchange diagrams are usually di�cult to evaluate in closed form. In [36]
a technique was invented that allows, when certain “truncation conditions”
for the quantum numbers of the external and exchanged operators are met,
to trade the propagator of an exchange diagram for a finite sum of contact
vertices. In such cases, one is able to evaluate an exchange Witten diagram as
a finite sum of D-functions. Fortunately, the spectrum and selection rules of
IIB supergravity on AdS5⇥S

5 are precisely such that all exchange diagrams
obey the truncation conditions. We will exploit this fact in our position
space method. The formulae for the requisite exchange diagrams have been
collected in Appendix A.

In closing, let us mention that the qualitative features of eleven dimen-
sional supergravity compactified on AdS7 ⇥ S

4 is the same: only contact
diagrams with up to two derivatives contribute and all exchange Witten di-
agrams truncate. However for eleven dimensional supergravity compactified
on AdS4 ⇥ S

7, the truncation condition is not met and the exchange Witten
diagrams can not be evaluated as a finite sum of contact Witten diagrams.

2Note that we are using the unnormalized propagator, to avoid cluttering of several for-
mulae. In a complete calculation, care must be taken to add the well-known normalization
factors [15].
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2.2 Some Superconformal Kinematics

In this section, let us discuss some superconformal kinematics of the four-
point functions of one-half BPS operators. The discussion will be quite gen-
eral: it applies to superconformal algebras in d = 3, 4, 5, 6 dimensions whose
R-symmetry group is locally isomorphic to an SO(n) group.3 For such alge-
bras, the one-half BPS operatorsOI1...Ik

k are in the rank-k symmetric-traceless
representation of SO(n) and have quantized conformal dimension

� = ✏k , ✏ ⌘ d

2
� 1 . (2.11)

The operators we discussed in the last section correspond to d = 4 N = 4
and n = 6.

It is convenient to take care of the R-symmetry indices by contracting
them with auxiliary null vectors tI

Ok(x, t) ⌘ OI1...Ik
k (x) tI1 . . . tIk , t

I
tI = 0 . (2.12)

Then the four-point functions of such one-half BPS operators are index-
free and depend on both the spacetime coordinates xi and the internal R-
symmetry coordinates ti

G(xi, ti) ⌘ hOk1(x1, t1)Ok2(x2, t2)Ok3(x3, t3)Ok4(x4, t4)i . (2.13)

Define tij ⌘ ti · tj, the R-symmetry covariance and null property require that
the ti variables can only appear as sum of monomials

Q
i<j(tij)

�ij where the
powers �ij are non-negative integers. Moreover, in order to have the correct
scaling behavior when independently rescaling each null vector ti ! ⇣iti, the
exponents �ij need to be further constrained by the condition

P
i 6=j �ij = kj.

This set of constraints is solved with the following parameterization,

�12 = � a

2
+

k1 + k2

2
, �34 = �a

2
+

k3 + k4

2
,

�23 = � b

2
+

k2 + k3

2
, �14 = � b

2
+

k1 + k4

2
,

�13 = � c

2
+

k1 + k3

2
, �24 = � c

2
+

k2 + k4

2
,

(2.14)

with the additional condition a+ b+ c = k1 + k2 + k3 + k4.

3They include 3d OSp(4|N ) (N even), 4d (P )SU(2, 2|N ) with N = 2, 4, 5d F (4) and
6d OSp(8⇤|2N ) with N = 1, 2.
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Figure 2.3: Solution to the �ij constraints.

We can assume k1 > k2 > k3 > k4 without loss of generality. It leaves us
with two possibilities, namely,

k1 + k4 6 k2 + k3 (case I) and k1 + k4 > k2 + k3 (case II) . (2.15)

The inequality constraints �ij > 0 define in either case a cube inside the
parameter space (a, b, c), as shown in Figure 2.3. The condition a+ b + c =
k1 + k2 + k3 + k4 further restricts the solution to be the equilateral triangle
inside the cube shown shaded in the figure. We denote the coordinates of
vertices of the cube closest and furthest from the origin as (amin, bmin, cmin)
and (amax, bmax, cmax). Then

amax = k3 + k4 , amin = k3 � k4 , amax = k3 + k4 , amin = k1 � k2 ,

bmax = k1 + k4 , amin = k1 � k4 , bmax = k2 + k3 , amin = k1 � k4 ,

cmax = k2 + k4 , amin = k2 � k4 , cmax = k2 + k4 , amin = k1 � k3 .

(case I) (case II)
(2.16)

Let 2L be the length of each side of the cube, we find

L = k4 (case I) , L =
k2 + k3 + k4 � k1

2
(case II) . (2.17)

It is clear from the parametrization (2.14) that �ij has lower bounds �ij � �
0
ij.

These �0
ij are obtained by substituting the maximal values (amax, bmax, cmax),

13



�
0
12 =

k1 + k2 � k3 � k4

2
,

�
0
13 =

k1 + k3 � k2 � k4

2
,

�
0
34 = �

0
24 = 0 ,

�
0
14 = 0 (case I),

k1 + k4 � k2 � k3

2
(case II) ,

�
0
23 =

k2 + k3 � k1 � k4

2
(case I), 0 (case II) .

(2.18)

We now factor out the product
Q

i<j

⇣
tij
x2✏
ij

⌘�0
ij

from the correlator – each
⇣

tij
x2✏
ij

⌘k
is the two-point function of a weight-k one-half BPS operator. The

object we obtain has the scaling behavior of a four-point function with equal
weights L. This behavior further motivates us to define

G(xi, ti) =
Y

i<j

✓
tij

x2✏
ij

◆�0
ij
✓

t12t34

x2✏
12x

2✏
34

◆L

G(U, V ; �, ⌧) . (2.19)

The outstanding factors take care of the covariance under the conformal and
R-symmetry group, and the correlator is reduced into a function G(U, V ; �, ⌧)
depending on only four invariant variables. Here we used the usual conformal
cross ratios

U =
(x12)2(x34)2

(x13)2(x24)2
, V =

(x14)2(x23)2

(x13)2(x24)2
(2.20)

and analogously the R-symmetry cross ratios

� =
(t13)(t24)

(t12)(t34)
, ⌧ =

(t14)(t23)

(t12)(t34)
. (2.21)

It is not di�cult to see that G(U, V ; �, ⌧) is a polynomial of � and ⌧ with
degree L.

So far we have only required the correlator to be covariant under the
bosonic part of the superconformal group. The fermionic generators impose
further constraints on G(U, V ; �, ⌧) in the form of a superconformal Ward

identity. It is useful to make a change of variables

U = ��
0
, V = (1� �)(1� �

0) ,

� = ↵↵
0
, ⌧ = (1� ↵)(1� ↵

0) .
(2.22)
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In terms of these variables, the superconformal Ward identity takes the uni-
versal form [37]

(�@� � ✏↵@↵)G(�,�0;↵,↵0)
��
↵=1/�

= 0 . (2.23)

2.3 An E�cient Position Space Method

As we reviewed in Section 2.1, a prerequisite of the traditional algorithm is
the set of precise cubic and quartic vertices needed to compute the Witten
diagrams. These vertices are usually obtained from the e↵ective supergravity
Lagrangian by perturbative expansion. However the devilishly complicated
Kaluza-Klein supergravity makes such an expansion extremely di�cult. Gen-
eral vertices for arbitrary Kaluza-Klein modes have only been explicitly ob-
tained by Arutyunov and Frolov for the case of IIB supergravity on AdS5⇥S

5

[32]. Their final results for the quartic vertices filled a stunning 15 pages. For
eleven dimensional supergravity compactified on AdS7 ⇥ S

4 and AdS4 ⇥ S
7,

no such general result exists in the literature. Therefore these complicated
vertices present a huge obstacle to implement the traditional method. In this
section, we introduce an e�cient method that circumvents the di�culty of
obtaining vertices by exploiting symmetry.

The idea is to write the write full amplitude as a sum of exchange dia-
grams and contact diagrams, but parametrizing the vertices with undeter-
mined coe�cients. The spectra of IIB supergravity on AdS5⇥S

5 and eleven
dimensional supergravity on AdS7 ⇥ S

4 are such that all the exchange dia-
grams can be written as a finite sum of contact diagrams, i.e., D-functions,
making the whole amplitude a sum of D-functions. We then use the prop-
erty of D-functions to decompose the amplitude into a basis of independent
functions. The full amplitude is encoded into four rational coe�cient func-
tions. Imposing the superconformal Ward identity we find a large number of
relations among the undetermined coe�cients. Uniqueness of the maximally
supersymmetric Lagrangian guarantees that all the coe�cients in the ansatz
can be fixed up to overall rescaling. Finally the overall constant can be de-
termined by demanding that the OPE coe�cient of an intermediate one-half
BPS operator has the correct value. Alternatively, for AdS5 ⇥S

5, we can fix
the overall constant by comparing with the free field result after restricting
the R-symmetry cross ratios to a special slice [38]. We emphasize that there
is no guesswork anywhere. The position space method is guaranteed to give
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the same results as a direct supergravity calculation, but it is technically
much simpler.

Let us now spell out the details. For simplicity, we focus on the equal-
weight case where ki = k. The ansatz is labelled by the integer k and takes
the form

Ak(U, V ; �, ⌧) = Ak,exchange(U, V ; �, ⌧) +Ak,contact(U, V ; �, ⌧) . (2.24)

Here we are working with the reduced correlator which depends only on the

cross ratios and is obtained by stripping o↵ the kinematic factor
⇣

t12 t34
x2✏
12x

2✏
34

⌘k

(✏ = 1 corresponds to AdS5⇥S
5 and ✏ = 2 corresponds to AdS7⇥S

4). In this
ansatz the exchange amplitude is summed over the three channels, related
to one another by crossing,

Ak,exchange = Ak,s�ex +Ak,t�ex +Ak,u�ex , (2.25)

Ak,t�ex(U, V ; �, ⌧) =

✓
U

2
⌧

V 2

◆k

Ak,s�ex(V, U ; �/⌧, 1/⌧) ,

Ak,u�ex(U, V ; �, ⌧) =
�
U

2
�
�k Ak,s�ex(1/U, V/U ; 1/�, ⌧/�) .

(2.26)

The s-channel exchange amplitude Ak,s�ex is given by the sum of all s-channel
exchange Witten diagrams compatible with the selection rules for the cubic
vertices. Schematically,

Ak,s�ex =
X

X

�XYRX (�, ⌧)EX(U, V ) . (2.27)

Here the label X runs over the exchanged fields, EX denotes the correspond-
ing exchange Witten diagram, YRX (�, ⌧) is the polynomial associated with
the irreducible representation RX of the field X and finally �X are the un-
known coe�cients to be determined. The expressions for the R-symmetry
polynomials YRX (�, ⌧) will be given shortly when we discuss concrete exam-
ples. The expressions for the exchange Witten diagrams have been given in
Appendix A.

The discussion of contribution from contact diagrams should distinguish
two di↵erence cases, as we explain in Appendix B. When �i = d, we should
include in the ansatz both the contributions from contact vertices with no
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derivatives and with two-derivatives. When �i 6= d, the zero-derivative con-
tribution can be absorbed into the two-derivative contribution by redefining
the parameters in the ansatz. Because of crossing symmetry, it is also conve-
nient to split the two-derivative contribution into channels. The full contact
vertex is the crossing symmetrization of the following s-channel contribution,

S↵1↵2↵3↵4

Z

AdSd+1

dX
1

16
(Os↵1

Os
↵2s

↵3s
↵4 + s

↵3s
↵4
Os

↵1
Os

↵2) , (2.28)

where s
↵ is the scalar field dual to the one-half BPS operator and ↵i collec-

tively denote the indices of the symmetric traceless representation. S↵1↵2↵3↵4

is an unspecified tensor symmetric under (1 $ 2, 3 $ 4). When contracted
with the R-symmetry null vectors the above vertices lead to the following
contribution to the s-channel contact amplitude,

Ak,s�cont /
X

0a+bk

cab�
a
⌧
b
U

✏k(D̄✏k,✏k,✏k,✏k �
2(2✏k � ✏� 1)

✏2k2
UD̄✏k,✏k,✏k+1,✏k+1) .

(2.29)
Here we have used the so-called D̄-functions4 defined by stripping o↵ some
kinematic factors from the D-functions,
Q4

i=1 �(�i)

�(⌃� 1
2d)

2

⇡
d
2

D�1�2�3�4(x1, x2, x3, x4) =
r
⌃��1��4
14 r

⌃��3��4
34

r
⌃��4
13 r

�2
24

D̄�1�2�3�4(U, V ) ,

(2.31)
with ⌃ = 1

2(�1+�2+�3+�4). The coe�cients cab in (2.29) are symmetric
thanks to the exchange symmetry (1 $ 2, 3 $ 4). When �i = d, we need to
also include the zero-derivative contribution

X

0a+bk

c
0

ab�
a
⌧
b
U

✏k
D̄✏k,✏k,✏k,✏k , c

0

ab = c
0

ba . (2.32)

4We emphasize that D̄-functions are independent of the spacetime dimension d. This
is clearest from their Mellin-Barnes representation (See Section 3.1 for more details),

D̄�1,�2,�3,�4 =

Z
ds

2

dt

2
U

s
2V

t
2�[�s

2
]�[�s

2
+

�3 +�4 ��1 ��2

2
]

⇥�[� t

2
]�[� t

2
+

�1 +�4 ��2 ��3

2
]

⇥�[�2 +
s+ t

2
]�[

s+ t

2
+

�1 +�2 +�3 ��4

2
] ,

(2.30)

where d completely drops out.
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The crossed channel contributions Ak,t�cont and Ak,u�cont can then be ob-
tained from Ak,s�cont using the crossing relation (2.26).

Putting all these pieces together, we now have an anstaz Ak(U, V ; �, ⌧)
of the four-point function as a finite sum of D̄-functions. It has polynomial
dependence on � and ⌧ and contains linearly all the unspecified coe�cients
�X , cab, c0ab. These coe�cients must to be fine-tuned in order to satisfy the
superconformal Ward identity (2.23),

(�0
@�0 � ✏↵

0
@↵0)Gk(�,�

0;↵,↵0)
��
↵0!1/�0 = 0 . (2.33)

The ansatz Ak is not yet in a form such the superconformal Ward identity
can be conveniently exploited. Fortunately, all D̄-functions that appear in
the ansatz can be reached from the basic D̄-function D̄1111 with the repetitive
use of six di↵erential operators,

D̄�1+1,�2+1,�3,�4 = D12D̄�1,�2,�3,�4 := �@UD̄�1,�2,�3,�4 ,

D̄�1,�2,�3+1,�4+1 = D34D̄�1,�2,�3,�4 := (�3 +�4 � ⌃� U@U)D̄�1,�2,�3,�4 ,

D̄�1,�2+1,�3+1,�4 = D23D̄�1,�2,�3,�4 := �@V D̄�1,�2,�3,�4 ,

D̄�1+1,�2,�3,�4+1 = D14D̄�1,�2,�3,�4 := (�1 +�4 � ⌃� V @V )D̄�1,�2,�3,�4 ,

D̄�1,�2+1,�3,�4+1 = D24D̄�1,�2,�3,�4 := (�2 + U@U + V @V )D̄�1,�2,�3,�4 ,

D̄�1+1,�2,�3+1,�4 = D13D̄�1,�2,�3,�4 := (⌃��4 + U@U + V @V )D̄�1,�2,�3,�4 .

(2.34)

The special function D̄1111 is in fact the familiar scalar one-loop box integral
in four dimensions and will be denoted as � from now on. It has a well-known
representation in terms of dilogarithms,

�(�,�0) =
1

�� �0

✓
log(��0) log(

1� �

1� �0
) + 2Li(�)� 2Li(�0)

◆
, (2.35)

and enjoys the following beautiful di↵erential recursion relations [39]

@�� = � �

�� �0
� ln[(�1 + �)(�1 + �

0)]

�(�� �0)
+

ln[��0]

(�1 + �)(�� �0)
,

@�0� =
�

�� �0
+

ln[(�1 + �)(�1 + �
0)]

�0(�� �0)
� ln[��0]

(�1 + �0)(�� �0)
.

(2.36)

Using the above properties of D̄-functions, we can unambiguously decompose
the supergravity ansatz into a basis spanned by �, logU , log V and 1,

Ak(�,�
0;↵,↵0) = R��(�,�

0) +RlogU logU +Rlog V log V +R1 , (2.37)
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where the four coe�cients functions R�, RlogU , Rlog V and R1 are rational
functions of �, �0 and polynomials of ↵, ↵0. This decomposition makes it
straightforward to enforce the superconformal Ward identity (2.23) on Ak.
Upon acting on Ak(�,�0;↵,↵0) with the di↵erential operator (�0

@�0 � 2↵0
@↵0)

from (2.23) and setting ↵
0 = 1/�0, a new set of coe�cient functions eR�,

eRlogU , eRlog V
eR1 are generated from R�, RlogU , Rlog V , R1 with the help of

the di↵erential recursion relation of �. The superconformal Ward identity
then dictates the following conditions

eR�(�,�
0;↵, 1/�0) = 0 ,

eRlogU(�,�
0;↵, 1/�0) = 0 ,

eRlog V (�,�
0;↵, 1/�0) = 0 ,

eR1(�,�
0;↵, 1/�0) = 0 ,

(2.38)

which imply a large set of linear equations for the unknown coe�cients. This
set of equations is constraining enough to fix all relative coe�cients up to an
overall constant. That the overall constant should remain undetermined is
inevitable because the condition (2.23) is homogeneous. To fix it, we demand
that the OPE coe�cient of the intermediate one-half BPS operator O(2) has
the correct value. The details of this calculation are discussed in Appendix
B of [5]. For AdS5⇥S

5 where the dual 4d N = 4 SYM theory has a marginal
coupling, we can also use the free theory limit.

Now let us apply this method to compute some holographic four-point
functions.

2.3.1 Sample Computations

k = 2 for AdS5 ⇥ S
5

In the s-channel, we know from Table 2.1 and the twist cut-o↵ ⌧ < 4 that
there are only three fields which can be exchanged: there is an exchange of
scalar with dimension two and in the representation [0, 2, 0],

Ascalar =
1

8
⇡
2
�sU(3� + 3⌧ � 1)D̄1122 , (2.39)

a vector of dimension three in the representation [1, 0, 1]

Avector =
3

8
⇡
2
�vU(� � ⌧)

�
D̄1223 � D̄2123 + D̄2132 � V D̄1232

�
, (2.40)
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and a massless symmetric graviton in the singlet representation,

Agraviton =
1

3
(�2)⇡2

�gU
�
2D̄1122 � 3

�
D̄2123 + D̄2132 � D̄3133

��
. (2.41)

In the above expressions we have used the formulae for exchange Witten
diagrams from Appendix A and multiplied with the explicit expression of
R-symmetry polynomials Y00, Y11, Y10. These R-symmetry polynomials Ymn

are derived in [38], and read

Ynm(↵, ↵̄) =
Pn(↵)Pm(↵̄)� Pm(↵)Pn(↵̄)

↵� ↵̄
, (2.42)

The constants �s, �v and �g are undetermined parameters.
For the contact diagram, we only need to consider two-derivative vertices.

The most general contribution is as follows (only in the s-channel, as we will
sum over the channels in the next step),

A2,s�con = �
✓ X

0a+b2

cab�
a
⌧
b

◆
2⇡2

U
2(�2D̄2222 + D̄2233 + UD̄3322) (2.43)

where cab = cba because the s-channel is symmetric under the exchange of 1
and 2.

Being a sum of D̄-functions, A2 can be systematically decomposed into
�, lnU , lnV and the rational part. For example, the coe�cient function of
� is of the form

R�(z, z̄,↵, ↵̄) =
T (z, z̄,↵, ↵̄)

(z � z̄)6
(2.44)

where the numerator T (z, z̄,↵, ↵̄) a polynomial of degree 2 in ↵, ↵̄ and
of degree 12 in z and z̄. The superconformal Ward identity then requires
T (z, z̄;↵, 1/z̄) = 0 and reduces to a set of homogenous linear equations.
Their solution is

�s = ⇠, �v = �1

2
⇠, �g =

3

16
⇠ ,

c00 =
3

32
⇠, c01 = �3

8
⇠, c02 =

3

32
⇠, c11 = � 3

16
⇠ ,

(2.45)

where ⇠ is an arbitrary overall constant. We then compute “twisted” corre-
lator

A2(↵, 1/z̄, z, z̄) = �3⇡2
⇣ (↵2

z
2 � 2↵z2 + 2↵z � z)

8N2(z � 1)
, (2.46)
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and compare it to the free field result

Gfree,conn(↵, 1/z̄, z, z̄) = �4 (↵2
z
2 � 2↵z2 + 2↵z � z)

N2(z � 1)
. (2.47)

The functional agreement of the two expressions provides a consistency check,
and fixes the value of the last undetermined constant,

⇠ =
32

3N2⇡2
. (2.48)

The final answer agrees with the result in the literature [17].

k = 4 for AdS5 ⇥ S
5

The computation of k = 3 is similar to that of k = 2. Therefore let us move
onto the next example of k = 4 where the computation is slightly di↵erent.
The k = 4 case is special in that we cannot use two-derivative contact vertices
to absorb the contribution of zero-derivative ones by redefinition the param-
eters. Therefore in this case we must include both types of contributions in
the ansatz. The s-channel ansatz is given by

A4,s�channel = �s2As2 + �A2AA2 + �'2A'2

+�s4As4 + �A4AA4 + �'4A'4 + �C4AC4 + ��4A�4

+�s6As6 + �A6AA6 + �'6A'6

+Acontact

(2.49)

where

A4,s�cont =

✓ X

0a+b4

cab�
a
⌧
b

◆
5⇡2

U
2

216
(4D̄4444 � 3UD̄5544)

+

✓ X

0a+b4

c
0

ab�
a
⌧
b

◆
5⇡2

U
2

108
D̄4444.

(2.50)

The superconformal Ward identity is expected not to fix all the coe�cients
because we know certain crossing symmetric choice of the two-derivative
contact coupling will give a zero contribution. As it turned out, all these
unsolved coe�cients are multiplied by a common factor

�8D̄4444 + D̄4455 + D̄4545 + V D̄4554 + D̄5445 + D̄5454 + UD̄5544 (2.51)
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which is identically zero by D̄-identities. These coe�cients can be set to zero
at our convenience.

The solution is

�s2 =
3456

⇡2N2
, �A2 = � 384

⇡2N2
, �'2 =

18

⇡2N2
,

�s4 =
18432

5⇡2N2
, �A4 = � 1728

5⇡2N2
, �'4 =

288

25⇡2N2
,

�C4 = � 192

25⇡2N2
, ��4 =

576

5⇡2N2
,

�s6 =
15552

35⇡2N2
, �A6 = � 5184

175⇡2N2
, �'6 =

18

25⇡2N2
,

c12 =
1728

5⇡2N2
, c13 =

576

5⇡2N2
, c22 =

2304

5⇡2N2
,

c
0

04 =
216

5⇡2N2
, c

0

12 = � 16848

5⇡2N2
, c

0
13 !

576

5⇡2N2
, c

0
22 = � 8928

5⇡2N2

(2.52)

with all the other unlisted coe�cients being zero.

k = 2 for AdS7 ⇥ S
4

We now use the position space method to compute four-point functions for
eleven dimensional supergravity on AdS7 ⇥ S

4. The cubic selection rules are
similar: exchanged fields are subject to R-symmetry selections as well as a
twist cut-o↵. We also collect below the requisite R-symmetry polynomials
[38] for k = 2, 3:

Y00 =1 ,

Y10 =� � ⌧ ,

Y11 =� � ⌧ � 2

d
,

Y20 =�
2 + ⌧

2 � 2�⌧ � 2

d� 2
(� + ⌧) +

2

(d� 2)(d� 1)
,

Y21 =�
2 � ⌧

2 � 4

d+ 2
(� � ⌧) ,

Y22 =�
2 + ⌧

2 + 4�⌧ � 8

d+ 4
(� + ⌧) +

8

(d+ 2)(d+ 4)
.

(2.53)

In the above expressions d ⌘ 5. The USp(4) Dynkin labels [2(a� b), 2b] are
related to the labels (m,n) in Ynm via n = a, m = b.
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field ` R-irrep m
2 � k = 2 k = 3 k = 4

'µ⌫,k 2 [0, k � 2] 4(k � 2)(k + 1) 2k + 2 6 8 10
Aµ,k 1 [2, k � 2] 4k(k � 2) 2k + 1 5 7 9
Cµ,k 1 [2, k � 4] 4(k � 1)(k + 1) 2k + 3 - - 11
sk 0 [0, k] 4k(k � 3) 2k 4 6 8
tk 0 [0, k � 4] 4(k � 1)(k + 2) 2k + 4 - - 12
rk 0 [4, k � 4] 4(k � 2)(k + 1) 2k + 2 - - 10

Table 2.2: AdS7 ⇥ S
4: KK modes contributing to exchange diagrams allowed by

R-symmetry selection rules.

We start with the k = 2 one-half BPS operator O
(2) which sits in the

same short supermultiplet as the stress tensor. Its four-point function was
first calculated in [25] and we will reproduce their result. By the two selection
rules of cubic vertices the allowed exchanges are identified to be all the fields
that belong to the k = 2 family in the following Table 2.2. Explicitly, the
exchange Witten diagrams in the s-channel contribute

A2, s�exchange = Y11�s2Es2 + Y10�A2EA2 + �'2E'2 . (2.54)

As was discussed above, the contribution of contact Witten diagrams can be
split into channels and then cross-symmetrized. Moreover, because �i 6= d

we can absorb the contribution of the zero-derivative terms into the two-
derivative terms. Hence we have the following s-channel ansatz for the con-
tact contributions,

A2, s�contact =
X

0a+b2

cab⌧
a
�
b⇡

3
U

4

432
(8D̄4444 � 5UD̄5544) (2.55)

where cab = cba follows from symmetry under exchanging operators 1 and
2. The total amplitude A2 is obtained from cross-symmetrizing the above
s-channel amplitude,

A2(U, V ; �, ⌧) = A2,s(U, V ; �, ⌧) +

✓
U

2
⌧

V 2

◆2

A2,s(V, U ; �/⌧, 1/⌧)

+
�
U

2
�
�2 A2,s(1/U, V/U ; 1/�, ⌧/�) ,

A2,s(U, V ; �, ⌧) = A2, s�exchange(U, V ; �, ⌧) +A2, s�contact(U, V ; �, ⌧) .

(2.56)
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Decomposing this ansatz into the basis of functions �, logU , log V and 1
and enforcing the superconformal Ward identity (2.38), we find enough con-
straints to fix all the coe�cients up to an overall factor ⇠,

�s2 = ⇠, �A2 = �1

9
⇠, �'2 =

1

576
⇠,

c00 =
1

36
⇠, c01 = �1

9
⇠, c02 =

1

36
⇠, c11 = � 1

12
⇠ .

(2.57)

The last coe�cient can be determined by demanding that the relevant term
in the OPE is compatible with the known value of the three-point coupling
hO2O2O2i. The details of this computation are discussed in Appendix B of
[5]. The result is

⇠ =
15552

⇡3n3
. (2.58)

k = 3 for AdS7 ⇥ S
4

The calculation of the k = 3 correlator for AdS7 ⇥ S
4 is similar to k = 4

for AdS5 ⇥ S
5. The allowed exchanges include the three component fields

of the k = 2 family in Table 2.2 and all other fields of the k = 4 family
except for the field t4. This field is ruled out because it has twist 12, which
violates the twist upper bound. The k = 3 family, on the other hand, is
absent because of the R-symmetry selection rule. For the contact diagrams
we notice that in this case the conformal dimension of the external operators
coincides with the boundary spacetime dimension � = d. As was discussed
in the Appendix B, the zero-derivative contribution can no longer be reab-
sorbed into the two-derivative contribution. We need to include in our ansatz
both set of parameters for the quartic vertices, even if this will lead to some
(harmless) ambiguities in fixing the coe�cients of contact vertices when we
use the superconformal Ward identity.

The s-channel ansatz is again given by an exchange part A3, s�exchange and
a contact part A3,s�contact

A3, s�exchange =Y11�s2Es2 + Y10�A2EA2 + Y00�'2E'2

+Y22�s4Es4 + Y21�A4EA4 + Y11�'4E'4 + Y20�r4Er4 + Y10�C4EC4 ,

(2.59)
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A3,s�contact =
X

0a+b3

cab⌧
a
�
b7⇡

3
U

6

72000
(2D̄6666 � UD̄7766)

+
X

0a+b3

c
0

ab⌧
a
�
b7⇡

3
U

6

36000
D̄6666

(2.60)

where the coe�cients cab = cba, c0ab = c
0

ba are symmetric. The total am-
plitude ansatz is obtained by further including the t-channel and u-channel
contributions which are obtained from the above s-channel contribution by
crossing. Due to the ambiguity in the parameterizing of contact vertices,
the superconformal Ward identity fixes only the coe�cients of the exchange
diagrams, leaving a subset of cab, c0ab unfixed,

�s2 = ⇠, �A2 = � 3

50
⇠, �'2 =

1

3600
⇠,

�s4 =
224

135
⇠, �A4 = � 8

105
⇠, �'4 =

1

5040
⇠, �C4 = � 1

4900
⇠, �r4 =

16

945
⇠,

c12 =
1

140
⇠, c

0

03 =
1

630
⇠, c

0

11 = � 17

630
⇠, c

0

12 = � 13

1260
⇠ .

(2.61)

These unfixed coe�cients are actually redundant: the corresponding expres-
sions are proportional to a sum of D̄-functions which is zero in disguise,
thanks to D̄-function identities. We can then set them to zero (or to any
convenient value). The last coe�cient is fixed by enforcing the correct value
of the OPE coe�cient of O(2), which gives

⇠ =
1080000

n3⇡3
. (2.62)

2.4 Conclusion

The position space method we introduced in this chapter circumvents many
di�culties in the traditional algorithm. In particular, it is no longer necessary
to input the precise e↵ective Lagrangian from which the requisite vertices in
the traditional algorithm are obtained. The contribution of each diagram is
instead e�ciently fixed by exploiting the superconformal symmetry. Using
this improved method, we not only reproduced the k = 2, 3, 4 results for
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AdS5⇥S
5 [17, 18, 19], but also computed the new case k = 5 [4], confirming

a conjectural result in [23]. For AdS7 ⇥ S
4 we extended the known k = 2

result [25] by computing two more cases with k = 3 and k = 4 [5]. Though
streamlined and much simpler than the traditional algorithm, the position
space method has its own shortcomings. This method also encounters in-
tractable computational di�culty as the weighs of the external operators are
increased. The di�culty is associated with the proliferation of exchange dia-
grams, and is also related to the increasing computing time of decomposing
D-functions with large conformal dimensions. Moreover, because the position
space method leverages the special property that exchange Witten diagrams
on certain background can be expressed as finitely contact diagrams, the
range of its applicability is limited. The position space method cannot be
extended to other physically interesting theories (such as k=1 ABJM which
is dual to eleven dimensional supergravity on AdS4 ⇥ S

7) where this feature
is absent.

Nevertheless, the most important part of this method is the idea of boot-
strapping holographic correlators. This idea will be inherited, but we will
need a better formalism in which we can have more analytic control. This
formalism is the the Mellin representation formalism that we will discuss in
the next Chapter. In this thesis, we will combine this formalism with super-
conformal symmetry, and formulate two complimentary methods to overcome
the di�culties mentioned above.
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Chapter 3

Mellin Representation
Formalism

In this chapter, we give a detailed exposition of the Melin representation
formalism [40, 41]. In particular we will emphasize the holographic use of
this formalism which is most relevant to application in this thesis.1 We also
make an extension of this formalism to conformal field theories admitting a
conformal boundary or a defect (interface) [3].

3.1 Mellin Formalism for Conformal Field The-
ories

We consider a general correlation function of n scalar operators with confor-
mal dimensions �i. Conformal symmetry restricts its form to be

G�1,...,�n(x1, . . . , xn) =
Y

i<j

(x2
ij)

��0ijG(⇠r) , (3.1)

where ⇠r are the conformally invariant cross ratios constructed from x
2
ij,

(xi � xj)2(xk � xl)2

(xi � xl)2(xk � xj)2
. (3.2)

1See [41, 42, 43, 44, 45, 46, 47, 48, 49, 1, 50, 3, 4, 51, 5, 6] for applications at tree level
and [45, 52, 53] at loop level.
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Requiring that the correlator transforms with appropriate weights under con-
formal transformations, one finds the constraints

X

j 6=i

�
0
ij = �i . (3.3)

The number of independent cross ratios in a d-dimensional spacetime is given
by

n < d+ 1 :
1

2
n(n� 3) ,

n > d+ 1 : nd� 1

2
(d+ 1)(d+ 2) ,

(3.4)

as seen from a simple counting argument. We have a configuration space of n
points which is nd-dimensional, while the dimension of the conformal group
SO(d+ 1, 1) is 1

2(d+ 1)(d+ 2). For su�ciently large n, the di↵erence of the
two gives the number of free parameters unfixed by the conformal symmetry,
as in the second line of (3.4). However this is incorrect for n < d+1 because
we have overlooked a nontrivial stability group. To see this, we first use a
conformal transformation to send two of the n points to the origin and the
infinity. If n < d+1, the remaining n�2 points will define a hyperplane and
the stability group is the rotation group SO(d+ 2� n) perpendicular to the
hyperplane. After adding back the dimension of the stability group we get
the first line of the counting. To phrase it di↵erently, when the spacetime
dimension d is high enough, there are always 1

2n(n�3) conformal cross ratios,
independent of the spacetime dimension. But when n � d + 1 there exist
nontrivial algebraic relations among the 1

2n(n� 3) conformal cross ratios.
The constraints (3.3) admit 1

2n(n� 3) solutions, in correspondence with
the 1

2n(n�3) cross ratios (ignoring the algebraic relations that exist for small
n). Mack [40] suggested instead of taking �0ij to be fixed, we should view them
as variables �ij satisfying the same constraints,

�ij = �ji ,

X

j

�ij = �i , (3.5)

and write the correlator as an integral transform with respect to these vari-
ables. More precisely, one defines the following (inverse) Mellin transform

28



for the connected
2 part of the correlator,

G
conn
�1,...,�n

(x1, . . . , xn) =

Z
[d�ij]M(�ij)

Y

i<j

(x2
ij)

��ij (3.6)

The integration is performed with respect to the 1
2n(n�3) independent vari-

ables along the imaginary axis. We will be more specific about the integration
in a moment. The correlator G(⇠r)conn is captured by the function M(�ij),
which following Mack we shall call the reduced Mellin amplitude.

The constraints (3.5) can be solved by introducing some fictitious “mo-
mentum” variables pi living in a D-dimensional spacetime,

�ij = pi · pj . (3.7)

These variables obey “momentum conservation”

nX

i=1

pi = 0 (3.8)

and the “on-shell” condition

p
2
i = ��i . (3.9)

The number of independent Lorentz invariants �ij (“Mandelstam variables”)
in a D-dimensional spacetime is given by

n < D :
1

2
n(n� 3) ,

n > D : n(D � 1)� 1

2
D(D + 1) .

(3.10)

The counting goes as follows. The configuration space of n on-shell momenta
in D dimensions is n(D � 1)-dimensional, while the Poincaré group has di-
mension 1

2D(D + 1). Assuming that the stability group is trivial, there will
be n(D � 1) � 1

2D(D + 1) free parameters, giving the second line of (3.10).
However for n < D there is a nontrivial stability group SO(D�n+1). This
can be seen by using momentum conservation to make the n momenta lie in
a n� 1 dimensional hyperplane – the rotations orthogonal to the hyperplane

2The disconnected part is a sum of powers of x2
ij and its Mellin transform is singular.
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generate the stability group SO(D�n+1). Adding back the dimension of the
stability group we obtain the first line of (3.10). Again we see when D is high
enough, the number of independent Mandelstam variables is aD-independent
number 1

2n(n � 3). When n � D, the 1
2n(n � 3) Mandelstam variables are

subject to further relations. This is the counterpart of the statement we
made about the conformal cross ratios. We conclude that the counting of
independent Mandelstam variables in D dimensions coincides precisely with
the counting of independent conformal cross ratios in d dimensions if we set
D = d+ 1.

The virtue of the integral representation (3.6) is to encode the conse-
quences of the operator product expansion into simple analytic properties
for M(�ij). Indeed, consider the OPE

Oi(xi)Oj(xj) =
X

k

c
k
ij

⇣
(x2

ij)
�

�i+�j��k
2 Ok(xk) + descendants

⌘
, (3.11)

where for simplicity Ok is taken to be a scalar operator. To reproduce the
leading behavior as x2

ij ! 0, M must have a pole at �ij =
�i+�j��k

2 , as can
be seen by closing the �ij integration contour to the left of the complex plane.
More generally, the location of the leading pole is controlled by the twist ⌧ of
the exchanged operator (⌧ ⌘ ��`, the conformal dimension minus the spin).
Conformal descendants contribute an infinite sequence of satellite poles, so
that all in all for any primary operator Ok of twist ⌧k that contributes to the
OiOj OPE the reduced Mellin amplitude M(�ij) has poles at

�ij =
�i +�j � ⌧k � 2n

2
, n = 0, 1, 2 . . . . (3.12)

Mack further defined Mellin amplitude M(�ij) by stripping o↵ a product of
Gamma functions,

M(�ij) ⌘
M(�ij)Q
i<j �[�ij]

. (3.13)

This is a convenient definition because M has simpler factorization proper-
ties. In particular, for the four-point function, the s-channel OPE (x12 ! 0)
implies that the Mellin amplitude M(s, t) has poles in s with residues that
are polynomials of t. These Mack polynomials depend on the spin of the
exchanged operator, in analogy with the familiar partial wave expansion of
a flat-space S-matrix. (The analogy is not perfect, because each operator
contributes an infinity of satellite poles, and because Mack polynomials are
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significantly more involved than the Gegenbauer polynomials that appear in
the usual flat-space partial wave expansion.) We will see in Section 3.1.1
that Mack’s definition of M is particularly natural for large N theories.

Finally let us comment on the integration contours in (3.6). The pre-
scription given in [40] is that the real part of the arguments in the stripped
o↵ Gamma functions be all positive along the integration contours. To be
more precise, one is instructed to integrate 1

2n(n� 3) independent variables
sk along the imaginary axis, where sk are related to �ij via

�ij = �
0
ij +

1
2n(n�3)X

k=1

cij,ksk . (3.14)

Here �
0
ij is a special solution of the constraints (3.5) with <(�0ij) > 0. The

coe�cients cij,k are any solution of

cii,k = 0 ,

nX

j=1

cij,k = 0 ,
(3.15)

which is just the homogenous version (3.5). There are 1
2n(n�3) independent

coe�cients cij,k for each k. We can choose to integrate over cij,k with 2  i <

j  n except for c23,k, so that the chosen cij,k forms a n(n�3)
2 ⇥ n(n�3)

2 square
matrix (the row index are the independent elements of the pair (ij) and the
column index is k). We normalize this matrix to satisfy

| det cij,k| = 1 . (3.16)

For four-point amplitudes, which are the focus of this thesis, it is conve-
nient to introduce “Mandelstam” variables s, t, u, and write

�12 = � s

2
+

�1 +�2

2
, �34 = �s

2
+

�3 +�4

2
,

�23 = � t

2
+

�2 +�3

2
, �14 = � t

2
+

�1 +�4

2
,

�13 = � u

2
+

�1 +�3

2
, �24 = �u

2
+

�2 +�4

2
.

(3.17)

With this parametrization, the constraints obeyed by �ij translate into the
single constraint

s+ t+ u = �1 +�2 +�3 +�4 . (3.18)
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We can take s and t as the independent integration variables, and rewrite
the integration measure as

Z
[d�ij] =

1

4

Z s0+i1

s0�i1

ds

Z t0+i1

t0�i1

dt . (3.19)

In fact this simple contour prescription will need some modification. In
the context of the AdS supergravity calculations, we will find it necessary
to break the connected correlator into several terms and associate di↵erent
contours to each term, instead of using a universal contour. There are usually
poles inside the region specified by <(�0ij) > 0, and the answer given by the
correct modified prescription di↵ers from the naive one by the residues that
are crossed in deforming the contours.

3.1.1 Large N

The Mellin formalism is ideally suited for large N CFTs. While in a gen-
eral CFT the analytic structure of Mellin amplitudes is rather intricate, it
becomes much simpler at large N . To appreciate this point, we recall the
remarkable theorem about the spectrum of CFTs in dimension d > 2 proven
in [54, 55]. For any two primary operators O1 and O2 of twists ⌧1 and ⌧2, and
for each non-negative integer k, the CFT must contain an infinite family of
so-called “double-twist” operators with increasing spin ` and twist approach-
ing ⌧1 + ⌧2 + 2k as ` ! 1 [55, 54]. This implies that the Mellin amplitude
has infinite sequences of poles accumulating at these asymptotic values of
the twist, so it is not a meromorphic function.3

As emphasized by Penedones [41], a key simplification occurs in large N

CFTs, where the double-twist operators are recognized as the usual double-
trace operators. Thanks to large N factorization, spin ` conformal primaries
of the schematic form : O1⇤

n
@
`O2 :, where O1 and O2 are single-trace opera-

tors, have twist ⌧1+⌧2+2n+O(1/N2)4 for any `. Recall also that the Mellin

3In two dimensions, there are no double-twist families, but one encounters a di↵erent
pathology: the existence of infinitely many operators of the same twist, because Virasoro
generators have twist zero.

4For definiteness, we are using the large N counting appropriate to a theory with matrix
degrees of freedom, e.g., a U(N) gauge theory. In other kinds of large N CFTs the leading
correction would have a di↵erent power – for example, O(1/N3) in the AN six-dimensional
(2, 0) theory, and O(1/N) in two-dimensional symmetric product orbifolds.
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amplitude is defined in terms of the connected part of the k-point correla-
tor, which is of order O(1/Nk�2) for unit-normalized single-trace operators.
The contribution of intermediate double-trace operators arises precisely at
O(1/N2), so that to this order we can use their uncorrected dimensions. Re-
markably, the poles corresponding to the exchanged double-trace operators
are precisely captured by the product of Gamma functions

Q
i<j �(�ij) that

Mack stripped o↵ to define the Mellin amplitude M. All in all, we conclude
that the O(1/Nk�2) Mellin amplitude M is a meromorphic function, whose
poles are controlled by just the exchanged single-trace operators.

Let us analyze in some detail the case of the four-point function. For four
scalar operators Oi of dimensions �i, conformal covariance implies

hO1O2O3O4i =
(x2

24)
�1��2

2 (x2
14)

�3��4
2

(x2
12)

�1+�2
2 (x2

34)
�3+�4

2 (x2
14)

�1��2
2 (x2

13)
�3��4

2

G(U, V ) , (3.20)

where U and V are the usual conformal cross-ratios5

U =
x
2
12x

2
34

x2
13x

2
24

, V =
x
2
14x

2
23

x2
13x

2
24

. (3.21)

Taking the operators Oi to be unit-normalized single-trace operators, and
separating out the disconnected and connected terms,6

G = Gdisc + Gconn , (3.22)

we have the following familiar large N counting:

Gdisc = O(1) , Gconn =
1

N2
G(1) +

1

N4
G(2) + . . . (3.23)

We also recall that the Mellin amplitude M is defined for the connected part
of the correlator by the integral transform

Gconn =

Z i1

�i1

ds

2

dt

2
U

s
2V

t
2�

�2+�3
2 M(s, t)�[

�1 +�2 � s

2
]�[

�3 +�4 � s

2
]

⇥ �[
�1 +�4 � t

2
]�[

�2 +�3 � t

2
]�[

�1 +�3 � u

2
]�[

�2 +�4 � u

2
] ,

(3.24)

5We use capital letters because the symbol u is already taken to denote the Mandelstam
invariant, (3.17).

6The disconnected term Gdisc will of course vanish unless the four operators are pairwise
identical.
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with s+ t+ u = �1 +�2 +�3 +�4.
Let us first assume that the dimensions �i are generic. In the s-channel

OPE, we expect contributions to Gconn from the tower of double-trace opera-
tors of the form7 : O1⇤

n
@
`O2 :, with twists ⌧ = �1+�2+2n+O(1/N2), and

from the tower : O3⇤
n
@
`O4 :, which have twists ⌧ = �1+�2+2n+O(1/N2).

The OPE coe�cients scale as

hO1O2 : O1⇤
n
@
`O2 :i = O(1), hO3O4 : O1⇤

n
@
`O2 :i = O(N�2) ,

hO3O4 : O3⇤
n
@
`O4 :i = O(1), hO1O2 : O3⇤

n
@
`O4 :i = O(N�2) ,(3.25)

so that to leading O(1/N2) order, we can neglect the 1/N2 corrections to
the conformal dimensions of the double-trace operators. All in all, we expect
that these towers of double-trace operators contribute poles in s at

s = �1 +�2 + 2m12 , m12 2 Z>0 ,

s = �3 +�4 + 2m34 , m34 2 Z>0. .
(3.26)

These are precisely the locations of the poles of the first two Gamma functions
in (3.24). In complete analogy, the poles in t and u in the other Gamma func-
tions account for the contributions of the double-trace operators exchanged
in the t and u channels.

If �1 +�2 � (�3 +�4) = 0 mod 2, the two sequences of poles in (3.26)
(partially) overlap, giving rise to a sequence of double poles at

s = max{�1 +�2,�3 +�4}+ 2n , n 2 Z>0 . (3.27)

A double pole at s = s0 gives a contribution to Gconn(U, V ) of the from
U

s0/2 logU . This has a natural interpretation in terms of the O(1/N2)
anomalous dimensions of the exchanged double-trace operators. Indeed, a
little thinking shows that in this case both OPE coe�cients in the s-channel
conformal block expansion are of order one (in contrast with the generic
case (3.26)), so that the O(1/N2) correction to the dilation operator gives a
leading contribution to the connected four-point function.

Let’s see this more explicitly. Let’s take for definiteness �1 + �2 6

�3 +�4, so that �3 +�4 = �1 +�2 + 2k for some non-negative integer k.
Then the double-trace operators of the schematic form

: O1⇤
n+k

@
`O2 : and : O3⇤

n
@
`O4 : (3.28)

7In fact for fixed n and `, there are in general multiple conformal primaries of this
schematic form, which di↵er in the way the derivatives are distributed.
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have the same conformal dimension to leading large N order, as well as
the same Lorentz quantum numbers. They are then expected to mix under
the action of the O(1/N2) dilation operator. It is important to realize that
the mixing matrix that relates the basis (3.28) to the double-trace dilation
eigenstatesODT

↵ is of order one. The OPE coe�cients hO1O2ODT
↵ i = c12↵ and

hO3O4ODT
↵ i = c34↵ are then both O(1), as claimed. The twist ⌧↵ = �↵ � `

has a large N expansion of the form ⌧↵ = �3+�4+2n+�
(1)
↵ /N

2+O(1/N4).
All is all, we find a contribution to Gconn of the form

c12↵c34↵ �
(1)
↵

N2
U

�3+�4
2 +n logU . (3.29)

In Mellin space, this corresponds to a double-pole at s = �3 + �4 + 2n,
just as needed. In summary, the explicit Gamma functions that appear in
Mack’s definition provide precisely the analytic structure expected in a large
N CFT, if we take the O(1/N2) Mellin amplitudeM to have poles associated
with just the exchanged single-trace operators. The upshot is that to leading
O(1/N2) order, fixing the single-trace contributions to the OPE is su�cient
determine the double-trace contributions as well.8

By following a similar reasoning, we will now argue that compatibility
with the large N OPE imposes some further constraints on the analytic struc-
ture ofM. We have seen that to leading O(1/N2) order the Mellin amplitude
M(s, t, u) is a meromorphic function with only simple poles associated to the
exchanged single-trace operators. In the generic case, a single-trace operator
OST of twist ⌧ contributing to the s-channel OPE is responsible for an infinite
sequence of simple poles at s = ⌧ + 2n, n 2 Z>0 (and similarly for the other
channels). But this rule needs to be modified if this sequence of “single-trace
poles” overlaps with the “double-trace poles” from the explicit Gamma func-
tions in (3.24). This happens if ⌧ = �1 + �2 mod 2, or if ⌧ = �3 + �4

mod 2. (We assume for now that �1 + �2 6= �3 + �4 mod 2, so that only
one of the two options is realized.) In the first case, the infinite sequence
of poles in M must truncate to the set {⌧, ⌧ + 2, . . . , ⌧ + �1 + �2 � 2},
and in the second case to the set {⌧, ⌧ + 2, . . . , ⌧ + �3 + �4 � 2}9. This

8This is particularly apparent in Mellin space but can also be argued by more abstract
CFT reasoning [56, 57, 50, 58].

9Note that the first set empty if �1 + �2 < ⌧ (again we are assuming �1 + �2 = ⌧

mod 2) and the second is empty if �3 + �4 < ⌧ (with �3 + �4 = ⌧ mod 2). In these
cases, OST does not contribute any poles to M.
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truncation must happen because double poles in s, translating to ⇠ logU
terms in Gconn, are incompatible with the large N counting. Indeed, the OPE
coe�cients already provide an O(1/N2) suppression, so that we should use
the O(1) dilation operator, and no logarithmic terms can arise in Gconn to
leading O(1/N2) order.10

3.1.2 Mellin Amplitudes for Witten Diagrams

The e↵ectiveness of Mellin formalism is best illustrated by its application
to the calculation of Witten diagrams. Conceptually, Mellin space makes
transparent the analogy of holographic correlators and S-matrix amplitudes.
Practically, Mellin space expressions for Witten diagrams are much simpler
than their position space counterparts. For starters, the Mellin amplitude of
a four-point contact diagram, which is the building blocks of AdS four-point
correlators as we reviewed in Section 2.1, is just a constant,

D�1�2�3�4 =

Z
[d�ij]

 
⇡
d/2�[

P
�i

2 � d/2]Q
�[�i]

!
⇥
Y

i<j

�[�ij](x
2
ij)

��ij . (3.30)

As was shown in [41], this generalizes to n-point contact diagram with a
non-derivative vertex: their Mellin amplitude is again a constant. Contact
diagrams with derivative vertices are also easily evaluated. It will be impor-
tant in the following that the Mellin amplitude for a contact diagram arising
from a vertex with 2n derivatives is an order n polynomial in the Mandelstam
variables �ij.

Exchange diagrams are also much simpler in Mellin space. The s-channel
exchange Witten diagram with an exchanged field of conformal dimension
� and spin J has a Mellin amplitude with the following simple analytic
structure [44],

M(s, t) =
1X

m=0

QJ,m(t)

s� ⌧ � 2m
+ PJ�1(s, t) , (3.31)

10In the even more fine-tuned case ⌧ = �1+�2 = �3+�4 mod 2, clearly the poles in s

in the O(1/N2) Mellin amplitude M must truncate to the set {⌧, ⌧ +2, . . . , ⌧ +min{�1 +
�2,�3 + �4} � 2}. The double poles at {min{�1 + �2,�3 + �4},min{�1 + �2,�3 +
�4}+ 2 . . . ,max{�1 +�2,�3 +�4}� 2} can be ruled out by the same reasoning, while
the triple poles at s = max{�1 +�2,�3 +�4}+ 2n would give rise to ⇠ (logU)2 terms,
which absolutely cannot appear to O(1/N2).
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where ⌧ = � � J is the twist. Here QJ,m(t) are polynomials in t of degree
J and PJ�1(s, t) polynomials in s and t of degree J � 1. These polynomials
depend on the dimensions �1,2,3,4, �, as well as the spin J . The detailed ex-
pressions for these polynomials are quite complicated but will not be needed
for our analysis. The m = 0 pole at s = ⌧ is called the leading pole, corre-
sponding to the primary operator that is dual to the exchanged field, while
the m > 0 poles are called satellite poles, and they are associated with con-
formal descendants.

It has been observed (see, e.g., [41]) that the infinite series of poles in
(3.31) truncates to a finite sum if ⌧ = �1 + �2 mod 2 or if ⌧ = �3 + �4

mod 2. One finds that the upper limit of the sum mmax is given by ⌧ �
�1 ��2 = 2(mmax + 1) in the first case and by ⌧ ��3 ��4 = 2(mmax + 1)
in the second case. This is the Mellin space version of the phenomenon
described in Section 2.1: an exchange Witten diagram with these special
values of quantum numbers can be written as a finite sum of contact Witten
diagrams. As we have explained in the previous subsection, this remarkable
simplification is dictated by compatibility with the large N OPE in the dual
CFT.

3.1.3 Asymptotics and the Flat Space Limit

In the next section we will determine the supergravity four-point Mellin am-
plitude using general consistency principles. A crucial constraint will be
provided by the asymptotic behavior of M(s, t) when s and t are simultane-
ously scaled to infinity. On general grounds, one can argue [41] that in this
limit the Mellin amplitude should reduce to the flat-space bulk S-matrix (in
Rd,1).

A precise prescription for relating the massless11 flat-space scattering am-
plitude T (Ki) to the asymptotic form of the holographic Mellin amplitude
was given in [41] and justified in [45],

M(�ij) ⇡
R

n(1�d)/2+d+1

�(12
P

i �i � d
2)

Z
1

0

d��
1
2

P
i �i�

d
2�1

e
��T

✓
Sij =

2�

R2
sij

◆
.

(3.32)
where Sij = �(Ki + Kj)2 are the Mandelstam invariants of the flat-space
scattering process. We have a precise opinion for asymptotic behavior of the

11For massive external particles, see the discussion in [59].
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flat-space four-point amplitude T (S, T ) – it can grow at most linearly for
large S and T . Indeed, a spin ` exchange diagrams grows with power `� 1,
and the highest spin state is of course the graviton with ` = 2. Similarly,
contact interactions with 2n derivatives give a power n growth. IIB super-
gravity (in ten-dimensional flat space) and eleven dimensional supergravity
contain contact interactions with at most two derivatives. From (3.32) we
then deduce

M(�s, �t) ⇠ O(�) for � ! 1 . (3.33)

It is of course crucial to this argument that we are calculating within the
standard two-derivative supergravity theory. Stringy ↵

0-corrections and M-
theory correction would introduce higher derivative terms and invalidate this
conclusion.12

Curiously, the asymptotic behavior (3.33) is not immediately obvious if
one for example computes holographic correlators in AdS5 ⇥ S

5 by the stan-
dard diagrammatic approach. Exchange Witten diagrams have the expected
behavior, with growth at most linear from spin two exchanges, see (3.31).13

However, the AdS5 e↵ective action [32] obtained by Kaluza-Klein reduction
of IIB supergravity on S

5 contains quartic vertices with four derivatives (or
fewer). The four-derivative vertices are in danger of producing an O(�2)
growth, which would ruin the expected flat space asymptotics. On this ba-
sis, we made the assumption in [1] that the total contribution of the four-
derivative vertices to a holographic correlator must also grow at most linearly
for large �. Indeed, this was experimentally the case in all the explicit su-
pergravity calculations performed at the time. Fortunately, the conjectured
cancellation of the O(�2) terms has been recently proved in full generality
[35].

12In a perturbative ↵0-expansion, we expect increasing polynomial growth, but for finite
↵
0 the behavior should be very soft, as in string theory.
13The AdS5 e↵ective theory contains an infinite tower of spin two massive states that

arise from the Kaluza-Klein reduction of the ten-dimensional graviton, and of course no
states of spin higher than two.
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3.2 Digression: Mellin Formalism for CFTs
with a Conformal Interface

In this section we make a digression to discuss the extension of the Mellin
representation formalism to conformal field theories whose conformal sym-
metry is partially broken by a boundary or a co-dimension one defect (an
interface) [3].14 There are compelling motivations for developing the Mellin
technology for conformal theories with interfaces and boundaries. First, these
theories are very interesting in their own right. They have important physi-
cal applications in statistical mechanics and condensed matter physics (see,
e.g., [61]), formal field theory (see, e.g., [62] for supersymmetric examples)
worldsheet string theory, (where D-branes are defined by boundaries on the
string world sheet) and holography [63, 64], to give only an unsystematic
sampling of a large literature. Second, boundary and interface conformal
field theories are a useful theoretical arena to develop the bootstrap program
[65, 66, 67, 68, 69, 70, 71, 72], especially if one’s goal is to gain analytic
insight. Indeed, the simplest non-trivial ICFT correlator is the two-point
function with two “bulk” insertions (i.e., two operators inserted at x? 6= 0).
Being a function of a single cross ratio, it is more tractable than the four-point
function in an ordinary CFT, which has two cross ratios.

The organization of this section is as follows. In Section 3.2.1 we review
the embedding formalism of CFTs with a conformal interface which makes
the subsequent discussion easier. In Section 3.2.2 we set up the Mellin rep-
resentation formalism. Finally in Section 3.2.3 we apply this formalism to a
simple holographic setup where we perform a systematic study of the Witten
diagrams.

3.2.1 Conformal Covariance in Embedding Space

To facilitate the discussion in this section, it is useful to first introduce the
embedding formalism under which the action of the conformal group is lin-
earized. We start by deriving the general form of the correlation function of
n bulk scalar operators and m interface scalar operators. (For definiteness,
we will use the language appropriate to the interface case, but all formulae
will be valid for the boundary case with the obvious modifications). We will
use the standard Euclidean coordinates xµ = (x1

, . . . , x
d�1

, x?) and place the

14Further generalization to defects with generic co-dimensions appeared recently in [60].
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interface at x? = 0. The coordinates parallel to the interface will be denoted
as ~x. As is familiar, a convenient way to make the conformal symmetry
manifest is to to lift this space to an “embedding space” of dimension d+ 2
and signature (�,+,+, . . .). In the embedding space, points are labelled by
lightcone coordinates which we denote as P

A = (P+
, P

�
, P

1
, . . . , P

d). The
physical space has only d coordinates and is restricted to be on a projective
null cone in the embedding space,

P
A
PA = 0 with P

A ⇠ �P
A
. (3.34)

The physical space coordinates x are related to the embedding space by the
map

x
µ =

P
µ

P+
. (3.35)

Using the scaling freedom we can fix P
+ to be 1, so that

P
A = (1, ~x2 + x

2
?
, ~x, x?) . (3.36)

The conformal group SO(d+1, 1) which acts non-linearly on x
µ is now real-

ized linearly as the Lorentz group on the embedding coordinates PA. Con-
formal invariants in the physical space can be conveniently constructed from
the embedding space as SO(d+ 1, 1) invariants.

In the presence of the interface, the conformal group is broken down
to the subgroup SO(d, 1). In the embedding space language, this can be
conveniently described by introducing a fixed vector BA,

B
A = (0, 0,~0, 1) . (3.37)

Points on the boundary uplift to vectors bPA = (1, ~x2
, ~x, 0) that are trans-

verse to B
A, bPAB

A = 0. The residual conformal transformations SO(d, 1)
correspond to the linear transformations of PA that keep B

A fixed.
In this section we shall focus on scalar operators. Scalar operators are as-

sumed to transform homogeneously under rescaling in the embedding space,

O�(�P ) = �
��

O�(P ) , bOb�(�
bP ) = �

�b� bOb�(
bP ) . (3.38)

Here O� is a bulk operator and bOb� an interface operator, with � and b� their
respective conformal dimensions. (Hatted quantities will always be interface
quantities).
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The correlator of n bulk and m interface operators,

Cn,m ⌘ hO�1(P1) . . . O�n(Pn) bOb�1
( bP1) . . . bOb�m

( bPm)i , (3.39)

should be invariant under the residual SO(d, 1) symmetry and have the cor-
rect scaling weights when we rescale the embedding coordinate of each oper-
ator. There are only a handful of SO(d, 1) invariant structures,

�2Pi · Pj = (xi � xj)
2 ⌘ (~xi � ~xj)

2 + (x?i � x?j)
2 (3.40)

�2Pi · bPI = (~xi � ~xJ)
2 + (x?i)

2 (3.41)

�2 bPI · bPJ = (~xI � ~xJ)
2 (3.42)

Pi · B = x?i , (3.43)

where i = 1, . . . n and I = 1, . . .m. The most general form of the scalar
correlator is

Cn,m =

0

@
Y

i<j

(�2Pi · Pj)
��0ij

Y

i,I

(�2Pi · bPI)
��0

iI

Y

I<J

(�2 bPI · bPJ)
��0

IJ ,

Y

i

(Pi ·B)�↵0
i

1

A f(⇠r)

(3.44)

where the exponents must obey
X

j

�
0
ij +

X

I

�
0
iI + ↵

0
i = �i ,

X

i

�
0
iI +

X

J

�
0
IJ = b�I

(3.45)

in order to give the correct scaling weights, while f is an arbitrary function
that depends on the cross ratios ⇠r, which are ratios of the invariants (3.40)
with zero scaling weights.

Let us also recall that anti de Sitter space admits a simple description
using the embedding coordinates. Euclidean AdSd+1 is just the hyperboloid
defined by the equation

Z
2 = �R

2
, Z

0
> 0, Z 2 R1,d+1

. (3.46)

We will usually set R = 1. The Poincaré coordinates of AdSd+1 are related
to the embedding coordinates as

Z
A =

1

z0
(1, z20 + ~z

2 + z
2
?
, ~z, z?) . (3.47)
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3.2.2 Mellin Formalism for Interface CFTs

After these preliminaries, we are ready to define the Mellin representation
for interface CFTs. Recalling that a scalar correlator Cn,m with n bulk and
m interface insertions takes the general form (3.44), it is natural to write it
in terms of the following integral transform,

Cn,m =

Z Y

i<j

d�ij(�2Pi · Pj)
��ij

Y

i,I

d�iI(�2Pi · bPI)
��iI

Y

I<J

d�IJ(�2 bPI · bPJ)
��IJ

⇥
Y

i

d↵i(Pi ·B)�↵iM(�ij , �iI ,�IJ ,↵i) .

(3.48)

The variables �ij, �iI , �IJ , ↵i are constrained to obey

X

j

�ij +
X

I

�iI + ↵i = �i ,

X

i

�iI +
X

J

�IJ = b�I .

(3.49)

A simple counting tells that there are

n(n� 1)

2
+

m(m� 1)

2
+ nm�m (3.50)

independent such variables, in one-to-one correspondence with the indepen-
dent conformal cross ratios so long as the spacetime dimension is high enough,
namely for d > n+m.

By a natural generalization of the case with no interface, the constraints
(3.49) can be solved in terms of some fictitious momenta. We assign to each
bulk operator a (d+1)-dimensional momentum pi, to each interface operator
a d-dimensional momentum bpI and to the interface itself a (d+1)-dimensional
momentum P . The momenta need to be conserved and on-shell,

X

i

pi +
X

I

bpI + P = 0 , p
2
i = ��i , bp2I = �b�I . (3.51)

Moreover, the momenta of the interface operators must be orthogonal to P

bpI · P = 0 . (3.52)

42



Then we can write

�ij = pi · pj , �iI = pi · bpI , �IJ = bpI · bpJ , ↵i = pi · P . (3.53)

From (3.51) and (3.52), we can replace P2 by �
P

i P · pi and P · pi by
�
P

j pi ·pj�
P

I pi ·bpI . For the remaining bilinears there are still m equations
relating pi · bpI to bpI · bpJ :

P
i pi · bpJ +

P
I bpI · bpJ = 0. So the number of

independent momentum bilinears is

n(n� 1)

2
+

m(m� 1)

2
+ nm�m if d > n+m, (3.54)

in agreement with the number of independent conformal cross ratios. This
is the appropriate counting for d > n+m. For d  n+m, both the counting
of independent Mandelstam invariants (3.53) and the counting of conformal
cross-ratios for a configuration of n bulk and m interface operators give in-
stead

nd+m(d� 1)� 1

2
d(d+ 1) if d  n+m. (3.55)

Clearly, the parametrization (3.53) corresponds to the kinematic setup of a
scattering process o↵ a fixed target, with n particles having arbitrary mo-
menta pi, m particles having momenta p̂I parallel to the target and P the
momentum transfer in the direction perpendicular of the infinitely heavy
target.

Following Mack’s terminology, we call M the reduced Mellin amplitude.
In our case, we wish to define the Mellin amplitude M by

M =
M(�ij, �iJ , �IJ ,↵i)Q

i<j �(�ij)
Q

i,J �(�iJ)
Q

I<J �(�IJ)
Q

i �(↵i)
· �(�P2)

�(�P2

2 )
. (3.56)

The Gamma functions in the denominator of the first fraction are the coun-
terpart of the Gamma function (3.13), accounting for the expected contri-
butions in a holographic interface theory. To wit, the poles in �(�ij) cor-
respond to double-trace bulk operators of the form Oi⇤

nOj, the poles in
�(�iJ) to double-trace bulk-interface operators of the form Oi⇤

nÔJ , and
the poles in �(�IJ) to double-trace interface-interface operators of the form
ÔI⇤

nÔJ . The poles in �(↵i) correspond to interface operators of the form
@
n
?
Oi(~x, x? = 0), i.e., to the restriction to the interface of a bulk opera-

tor and its normal derivatives – these operators are indeed present in the
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simple holographic setup for ICFT that we consider below.15 The factor
of �(�P2)/�(�P

2

2 ) has a di↵erent justification. We have introduced it to
ensure that the Mellin amplitude of a contact Witten diagram is just a con-
stant, as we will show in Section 3.2.3 below. Note that if there are only
interface operators (n = 0), the constraints imply P ⌘ 0. The additional
factor �(�P2)/�(�P

2

2 ) becomes simply 2 and our definition of M reduces
to Mack’s, up to an overall normalization.

Let us specialize the formalism to the important case of two bulk inser-
tions (n = 2) and no interface insertion (m = 0). We have

hO�1O�2i =
Z

d[↵, �](�2P1 · P2)
��12(P1 · B)�↵1(P2 · B)�↵2

⇥ �(�12)�(↵1)�(↵2)
�(�P

2

2 )

�(�P2)
M(↵, �) .

(3.57)

The variables �12, ↵1, ↵2 must obey

�12 + ↵1 = �1 , �12 + ↵2 = �2 . (3.58)

The constraints can be solved using the parameterization

�12 = �p1 · p2 , ↵1 = �p1 · P , ↵2 = �p2 · P , (3.59)

with the constraints

p1 + p2 + P = 0 , p
2
1 = ��1, p

2
2 = ��2 . (3.60)

These constraints leave only one independent variable that is bilinear in the
momenta, namely P2,

p1 · p2 =
P2 +�1 +�2

2
,

p1 · P =
�P2 +�1 ��2

2
,

p2 · P =
�P2 ��1 +�2

2
.

(3.61)

15In a holographic BCFT setup, one would need to impose boundary conditions that
would remove some of these operators, i.e., Dirichlet boundary conditions would remove
Oi(~x, x? = 0) while Neumann boundary conditions would remove @?Oi(~x, x? = 0).
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It turns out to be convenient to make a change of variable

P2 = 2⌧ ��1 ��2 . (3.62)

The Mellin representation becomes

hO�1O�2i =
1

(2x1,?)�1(2x2,?)�2

Z i1

�i1
d⌧

⇣
⌘

4

⌘�⌧ �(⌧)�(�1 � ⌧)�(�2 � ⌧)

�(1+�1+�2
2 � ⌧)

M(⌧) ,

(3.63)
where ⌘ is the standard conformal cross ratio,

⌘ =
(x1 � x2)2

x1,?x2,?
=

(~x1 � ~x2)2 + (x1,? � x2,?)2

x1,?x2,?
. (3.64)

3.2.3 Application to Witten Diagrams in the Probe
Brane Setup

In this subsection, we consider the simplest holographic framwork which is
the simplest version of the Karch-Randall setup [63, 73]. The dual geometry
is taken to be AdSd+1 with a preferred AdSd subspace. In string theory, this
geometry can be obtained by taking the near horizon limit of a stack of N
“color” D-branes, intersecting a single “flavor” brane along the interface. At
large N , the backreaction of the flavor brane can be ignored. Schematically,
the e↵ective action is taken to be

S =

Z

AdSd+1

Lbulk[�i] +

Z

AdSd

�
Linterface[�I ] + Lbulk/interface[�i,�I ]

�
. (3.65)

where �i denotes the fields that live in the full space AdSd+1, while �I denotes
the additional fields living on the AdSd brane. The holographic dictionary
associates to �i the local operators Oi of the bulk16 CFTd, and to �I the
operators living on the (d� 1)-dimensional interface at x? = 0. We perform
a systematic study of the Witten diagrams in this geometry. Some special
cases of the Witten diagrams have been previously studied in [74].
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Figure 3.1: A contact Witten diagram with n = 2 points in the bulk and
m = 0 points on the interface.

Contact Witten Diagrams

We consider contact Witten diagram with n operators in the bulk and m

operators on the interface. In Figure 3.1, we illustrated the case where we
have 2 points in the bulk and no point on the interface. In the following
calculation, we only assume n � 1 since otherwise the calculation reduces to
the known case where an interface is absent. Such a contact Witten diagram
was denoted as Wn,m and it is the following integral

Wn,m ⌘ hO�1(x1) . . . O�n(xn) bOb�1
(y1) . . . bOb�m

(ym)icontact

=

Z
dw0d~w

wd
0

Y

i

 
w0

w2
0 + x2

?,i + (~w � ~xi)2

!�iY

I

✓
w0

w2
0 + (~w � ~yI)2

◆b�I

.

(3.66)

We use Schwinger’s trick to bring the denominators into the exponent and
perform the integrals of dw0 and d~w, which leads to

Wn,m =
⇡

d�1
2 �(

P
i �i+

P
I
b�I�d+1

2 )

2
Q

i �(�i)
Q

I �(
b�I)

Z 1

0

Y

i

dti

ti
t
�i
i

dsI

sI
s
b�I
I (
X

i

ti +
X

I

sI)
�

P
i �i+

P
I

b�I
2

⇥ exp

2

64�

P
i<j

titj(�2Pi · Pj) + (
P
i
tiPi ·B)2 +

P
I<J

sIsJ(�2 bPI · bPJ) +
P
i,I

tisI(�2Pi · bPI)

P
i
ti +

P
I
sI

3

75 .

(3.67)

16Holographic boundary CFTs su↵er from the terminological nightmare that “bulk” and
“boundary” have twofold meanings. To minimize confusion, we will mostly use “bulk” in
the meaning of this sentence, e.g., to refer to the CFT operators that lives in the full Rd,
to be contrasted to the interface or boundary operators that live at x? = 0.
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To proceed, we insert
Z

1

0

d⇢ �(⇢�
X

i

ti �
X

I

sI) = 1 (3.68)

to replace all
P

i ti +
P

I sI by ⇢. Then we rescale ti and sI by ⇢
1/2 so that

all the powers of ⇢ are removed. Notice, after the rescaling, the only integral
in ⇢ is the following delta function

Z
1

0

d⇢ �(⇢�p
⇢(
X

i

ti +
X

I

sI)) = 2 . (3.69)

This turns the integral into

Wn,m =
⇡

d�1
2 �(

P
i �i+

P
I
b�I�d+1

2 )
Q
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3

5 .

(3.70)

We use the Mellin representation of exponential for the following terms in the
exponent: all titj, all sIsJ and the tisI with i > 1. Their conjugate variables
are respectively denoted as �ij, �IJ and �iI . We then get the following integral

Wn,m =
⇡

d�1
2 �(

P
i �i+

P
I
b�I�d+1
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(3.71)

Here in the third line we denoted the Kronecker delta function as �(a, b)
in order to distinguish it from the Mellin variable �ij, and we hope that it
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will not cause any confusion to the reader. The s-integral can now be easily
performed, giving

Y

I

2

4(�2P1 · bPI)
�b�I+

P
J 6=I �IJ+

P
i>1 �iI�(b�I �

X

J 6=I

�IJ �
X

i>1

�iI)

3

5

⇥ t
�

P
I(

b�I�
P

J 6=I �IJ�
P

i>1 �iI)
1 .

(3.72)

We notice that the combination b�I �
P

J 6=I �IJ �
P

i>1 �iI is just �1I by
(3.49). Plugging the s-integral result into the total integral, the t-integral
just becomes

Z
1

0

nY

i=1

dti

ti
t
�i�

P
j 6=i �ij�

P
I �iI

i exp

 
�(
X

i

tiPi · B)2
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(3.73)

where we have used �1I ⌘ b�I �
P

J 6=I �IJ �
P

i>1 �iI . We can evaluate this
integral by inserting

Z
1

0

d� �(��
X

i

ti) = 1 , (3.74)

and rescaling ti ! �ti. Define ↵i ⌘ �i �
P

j 6=i �ij �
P

I �iI as in (3.49), the
new integral is

Z
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, (3.75)

and it is not di�cult to find that this integral evaluates to

1

2
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i

�(↵i)(Pi · B)�↵i

!
�(

P
i ↵i

2 )

�(
P

i ↵i)
. (3.76)
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Figure 3.2: An exchange Witten diagram in the bulk channel.

All in all, we have obtained the following result for the general contact Witten
diagram

Wn,m =
⇡

d�1
2 �(
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i �i+
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I
b�I�d+1
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2
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⇣
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�(
P

i ↵i)

(3.77)

where the integration variable are subject to the constraints (3.49).
Now let us extract the Mellin amplitude. Thanks to the relation

X

i

↵i =
X

i

�i�
X

i,I

�iI �
X

i 6=j

�ij = �
X

i,j

pi · pj �
X

i,I

pi · bpI = �P2
, (3.78)

the outstanding ratio of Gamma functions therefore is just the one that
appears in the definition (3.56). We thus find that such contact Witten
diagrams all have constant Mellin amplitudes.

Bulk-Channel Exchange Witten Diagram

An exchange Witten diagram in the bulk channel is illustrated in Figure 3.2.
We now evaluate this diagram using two di↵erent methods.

The first method uses the techniques from [36] to reduce an exchange
Witten diagram to a finite sum of contact Witten diagrams. This method
applies when the quantum numbers of the operators satisfy special relations.
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The Witten diagram is given by the following integral,

Wbulk =

Z

AdSd

dW

Z

AdSd+1

dZ G
�1
B@(P1, Z) G

�2
B@(P2, Z) G

�
BB(Z,W ) . (3.79)

The Z-integral has been performed in [36] “without really trying”. Let us
briefly review that method. Denote the Z-integral as

A(W,P1, P2) =

Z

AdSd+1

dZ G
�1
B@(P1, Z) G

�2
B@(P2, Z) G

�
BB(Z,W ). (3.80)

It is convenient to perform a translation such that

x1 ! 0 , x2 ! x21 ⌘ x2 � x1 . (3.81)

This is followed by a conformal inversion,

x
0

12 =
x12

(x12)2
, z

0 =
z

z2
, w

0 =
2

w2
. (3.82)

After these transformations the integral becomes,

A(W,P1, P2) = (x12)
�2�2I(w0 � x

0

12) (3.83)

where

I(w) =

Z
d
d+1

z

z
d+1
0

G
�
BB(�2Z ·W ) z�1

0

⇣
z0

z2

⌘�2

. (3.84)

The scaling behavior of I(w) under w ! �w together with the Poincaré
symmetry dictates that I(w) takes the form

I(w) = w
�1��2
0 f(t) (3.85)

where

t =
w

2
0

w2
(3.86)

On the other hand f(t) is constrained by the following di↵erential equation,

4t2(t� 1)f 00 + 4t[(�1 ��2 + 1)t��1 +�3 +
d

2
� 1]f 0

+ [(�1 ��2)(d��1 +�2) +m
2]f = t

�2

(3.87)
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where m
2 = �(� � d). This equation comes from acting with the equation

of motion of the field in the bulk-to-bulk propagator,

�⇤AdSd+1,WG
�
BB(Z,W ) +m

2
G

�
BB(Z,W ) = �(Z,W ) (3.88)

and it collapses the bulk-to-bulk propagator to a delta-function. The solution
to this equation is generically hypergeometric functions of type 2F1 which
expands to an infinite series, however with appropriate choice of conformal
dimensions, f(t) admits a polynomial solution:

f(t) =
kmaxX

k=kmin

akt
k (3.89)

with

kmin = (���1 +�2)/2 , kmax = �2 � 1 ,

ak�1 = ak
(k � �

2 + �1��2
2 )(k � d

2 +
�
2 + �1��2

2 )

(k � 1)(k � 1��1 +�2)
,

a�2�1 =
1

4(�1 � 1)(�2 � 1)

(3.90)

and this truncation happens when �1 + �2 � � is a positive even integer.
After obtaining this solution, we can undo the inversion and translation and
the upshot is that A(W,P1, P2) becomes a sum of contact vertices at W ,

A(W,P1, P2) =
kmaxX

k=kmin

ak(�2P1 · P2)
k��2G

k+�1��2
B@ (P1,W ) Gk

B@(P2,W )

(3.91)
This identity is illustrated in Figure 3.3.

We can then use the formula for two-point contact Witten diagrams
(which is a special case of (3.77)) to obtain the Mellin amplitude of a bulk
exchange Witten diagram,

Mbulk = ⇡
d/2

kmaxX

kmin

ak�(
�1��2+2k�(d�1)

2 )

�(�1 ��2 + k)�(k)

�(⌧ + k ��2)

�(⌧)
. (3.92)

This Mellin amplitude has finitely many simple poles in ⌧ . Alternatively in
terms of the squared interface momentum P2 = 2⌧ � �1 � �2, the simple
poles of the Mellin amplitude are located at

��,��� 2, . . . ,��1 ��2 + 2 (3.93)
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Figure 3.3: A bulk exchange Witten diagram is replaced by a sum of contact
Witten diagrams when �1 +�2 �� is a positive even integer.

Figure 3.4: Using the split representation of the bulk-to-bulk propagator the
bulk exchange Witten diagram is reduced to the product of a three-point
contact Witten diagram and an one-point contact Witten diagram.

resembling a resonance amplitude with intermediate particles whose squared
masses are �,�+ 2, . . . ,�1 +�2 � 2.

The second method exploits the split representation of the bulk-to-bulk
propagator and applies to diagrams with general quantum numbers.

To begin, we use the spectral representation of the bulk-to-bulk propaga-
tor [41],

G
�
BB(Z,W ) =

Z i1

�i1

dc

(�� h)2 � c2

�(h+ c)�(h� c)

2⇡2h�(c)�(�c)

Z
dP (�2P ·Z)h+c(�2P ·W )h�c

,

(3.94)
where h = d

2 . Using this representation, the exchange Witten diagram is
written as a product of three-point contact Witten diagram in AdSd+1 and
an one-point function. There is a common point P sitting on the boundary of
AdSd+1 which is integrated over. This is schematically represented by Figure
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3.4.
Explicitly, denoting the three-point function by hO�1(P1)O�2(P2)Oh+c(P )i

and the one-point function by hOh�c(P )i, the Witten diagram is given by

Wbulk =

Z
dP

Z
dc

hO�1(P1)O�2(P2)Oh+c(P )ihOh�c(P )i
(�� h)2 � c2

�(h+ c)�(h� c)

2⇡2h�(c)�(�c)
.

(3.95)
The three-point Witten diagram can be easily evaluated,

hO�1(P1)O�2(P2)Oh+c(P )i = ⇡
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(3.96)

The one-point function is

hOh�c(P )i = ⇡
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2

2

�(h�c
2 )�(�h�c+1)
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�(h� c)

1

(P · B)h�c
. (3.97)

Then the only non-trivial integral remains to be evaluated is the P -integral
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◆
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(3.98)

We insert into the integral the identity

1 =

Z
d� �(�� (s+ t+ u))

Z
d⇢ �(⇢� (t+ u)) (3.99)

and rescale first t ! ⇢t, u ! ⇢u, followed by � ! �⇢ and the use of an
inverse Mellin transformation on the (tx? + uy?)2 exponent. The integrals
then become elementary. The final result for the bulk exchange Witten
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Figure 3.5: An exchange Witten diagram in the interface channel.

diagram is

Wbulk =
⇡
h� 1

2

2�(�1)�(�2)x
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�i1

dc

Z +i1

�i1

d⌧
f(c, ⌧)f(�c, ⌧)

(�� h)2 � c2
⌘
⌧�

�1+�2
2

⇥
�(⌧)�(⌧ + �1��2

2 )�(⌧ + �2��1
2 )

�(12 � ⌧)�(2⌧)
,

(3.100)

where h = d/2 and

f(c, ⌧) =
�(�1+�2�h+c

2 )�(1+c�h
2 )�(h+c
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2�(c)
. (3.101)

Interface-Channel Exchange Witten Diagram

An exchange Witten diagram in the interface channel is illustrated in Figure
3.5. Similarly this diagram can also be evaluated using two methods.

We start first with the truncation methods assuming the quantum num-
bers of the operators are fine-tuned to satisfy special relations. The interface
exchange Witten diagram represented by Figure 3.5 is given by the following
integral,

Winterface =

Z

AdSd

dW1dW2 G
�1
B@(P1,W1) G

�
BB, AdSd

(W1,W2) G
�2
B@(P2,W2) .

(3.102)
We focus on the integral of W1 denoted as

A(P1,W2) =

Z

AdSd

dW1 G
�1
B@(P1,W1) G

�
BB, AdSd

(W1,W2) . (3.103)
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This integral has AdSd isometry and should depend on a single variable t

invariant under the scaling w2 ! �w2, x1 ! �x1

t ⌘ P1 ·W2

P1 · B
=

w
2
2,0 + x

2
1,? + (~w2 � ~x1)2

w2,0x1,?
. (3.104)

The function A(P1,W2) therefore takes the form

A(P1,W2) = x
��1
1,? f(t) . (3.105)

To work out f(t), we use the equation of motion for the bulk-to-bulk propa-
gator inside AdSd. It leads to the following equation

(�⇤W2,AdSd
+m

2)(x��1
1,? f(t)) = x

��1
1,? t

��1 (3.106)

where m
2 = �(�� (d� 1)). The Laplacian acts on a function of t as

⇤W2,AdSd
f(t) = (t2 � 4)f 00(t) + dtf

0(t) . (3.107)

The function f(t) also admits a polynomial solution when � < �1 and has
even integer di↵erence,

f(t) =
kmaxX

kmin

akt
k
, (3.108)

where

ak+2 =
(k +�)(k � (�� (d� 1)))

4(k + 1)(k + 2)
ak ,

kmin = ��1 + 2 ,

kmax = �� ,

akmin =
1

4(��1 + 2)(��1 + 1)
.

(3.109)

Using the definition of t in (3.104), we find that each monomial of t

corresponds to a contact vertex. The polynomial solution to f(t) means
we can express the exchange Witten diagram as a sum of contact Witten
diagrams (Figure 3.6),

Winterface =

Z

AdSd

dW2

kmaxX

kmin

akx
��1�k
1,? G

�k
B@(P1,W2) G

�2
B@(P2,W2) . (3.110)
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Figure 3.6: The interface exchange Witten diagram is replaced by a finite
sum of contact Witten diagrams when �1 �� is a positive even integer.

Figure 3.7: Using the split representation of the bulk-to-bulk propagator the
interface exchange Witten diagram is reduced to the product of two bulk-
interface two-point contact Witten diagrams.

Using the Mellin formula for contact Witten diagrams (3.77), we get the
Mellin amplitude for the interface exchange Witten diagram

Minterface = ⇡
d
2

kmaxX

kmin

ak2
k+�1

�(�2�k�(d�1)
2 )

�(�k)�(�2))
⇥

�(�k � ⌧)�(�1+�2+1
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�(�1 � ⌧)�(�k+�2+1
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.

(3.111)
When the operators have generic quantum numbers, this method no

longer applies. To evaluate these exchange Witten diagrams, we use a similar
method exploiting the spectral representation of the bulk-to-bulk propagator
in AdSd.
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The AdSd propagator can be written as

G
�,AdSd
BB =

Z i1

i1

dc
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Z
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h0+c(�2 bP ·W2)
h0
�c

(3.112)
with h

0 = (d�1)/2 to write the Witten diagram into the product of two bulk-
interface two-point functions W1,1. This splitting is schematically illustrated

in Figure 3.7. Notice the point bP being integrated over is sitting at the
boundary of AdSd. Denoting the two-point functions by hO�1(P1) bOh0+c( bP )i
and hO�2(P2) bOh0�c( bP )i, the Witten diagram now takes the form

Winterface =

Z
d bP
Z

dc
hO�1(P1) bOh0+c( bP )hO�2(P2) bOh0�c( bP )i

(�� h0)2 � c2
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2⇡2h0�(c)�(�c)
.

(3.113)
The two-point functions have been worked out as a special case of (3.77).
The only integral we need to do is the bP -integral

Z
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~p (x2
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. (3.114)

Evaluating this integral presents little di�culty using the techniques we have
developed in the previous sections. The answer is simply

⇡
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(3.115)
Hence the interface exchange Witten diagram is given by the following spec-
tral representation

Winterface =
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?
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(3.116)

where h
0 = (d� 1)/2 and

f(c, ⌧) =
�(h0 + c� ⌧)�(�1�h0+c

2 )�(�2�h0+c
2 )
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. (3.117)
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Chapter 4

An Algebraic Bootstrap
Problem in Mellin Space

While simpler than the standard perturbative recipe, the position space
method in Section 2.3 also quickly runs out of steam as the KK level is in-
creased. What’s worse, the answer takes a completely unintuitive form, with
no simple general pattern. On the other hand, the Witten diagrams admit
significantly simpler representation in Mellin space compared to the position
space. Their simple analytic structure gives us more control in the analysis.
In this Chapter and the subsequent Chapter 5, we take advantage of this
simplicity and introduce two complimentary methods to compute four-point
functions in Mellin space.

The method that we will introduce in this section is based on the idea
of bootstrap: we view the task of computing four-point functions as solv-
ing an algebraic problem formulated by imposing symmetry constraints and
self-consistency conditions. More precisely, tree-level holographic correlators
in AdS5 ⇥ S

5 and AdS7 ⇥ S
4 are rational functions of Mandelstam-like in-

variants, with poles and residues controlled by OPE factorization, in close
analogy with tree-level flat space scattering amplitudes. Additionally, the
amplitude enjoys Bose symmetry and has well-behaved asymptotic limit.
Superconformal symmetry is made manifest by solving the superconformal
Ward identity in terms of an “auxiliary” Mellin amplitude. The consistency
conditions that this amplitude must satisfy define a very constrained alge-
braic problem, which very plausibly admits a unique solution. While the
position space method is implemented on a case-by-case basis for di↵erent
correlators, the Mellin algebraic problem takes a universal form. We were
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able to solve the problem in one fell swoop for all half-BPS four-point function
of AdS5 ⇥ S

5 with arbitrary weights – a feat extremely di�cult to replicate
in position space.

In Section 4.1 and Section 4.3, we set up the algebraic bootstrap problems
for AdS5 ⇥ S

5 and AdS7 ⇥ S
4. A key step is to translate the position space

solution of the superconformal Ward identity into Mellin space. Though the
strategy is the same, the AdS7 case is significantly more involved. In Section
4.2 we present the complete solution for one-half BPS four-point functions in
AdS5 ⇥ S

5 with arbitrary KK modes. For AdS7 ⇥ S
4, we have not yet been

able to obtain the general solution. We present partial results in Section 4.4.

4.1 Formulating an Algebraic Bootstrap Prob-
lem: AdS5 ⇥ S

5

4.1.1 Rewriting the Superconformal Ward Identity

In four dimensions, ✏ = 2 and the superconformal Ward identity (2.23) can
be easily solved in position space. The solution is [39, 38]1

G(U, V ; �, ⌧) = Gfree(U, V ; �, ⌧) +RH(U, V ; �, ⌧) , (4.1)

where Gfree is the answer in free SYM theory and

R = ⌧ 1 + (1� � � ⌧)V + (�⌧ � �⌧ + ⌧
2)U + (�2 � � � �⌧)UV

+�V
2 + �⌧ U

2

= (1� z↵)(1� z̄↵)(1� z↵̄)(1� z̄↵̄) . (4.2)

All dynamical information is contained in the a priori unknown function
H(U, V ; �, ⌧). Note that H(U, V ; �, ⌧) is a polynomial in �, ⌧ of degree L�2.

We now turn to analyze the constraints of superconformal symmetry on
the Mellin amplitude by translating the above solution into Mellin space. We
rewrite (4.1) for the connected correlator,

Gconn(U, V ; �, ⌧) = Gfree,conn(U, V ; �, ⌧) +R(U, V ; �, ⌧)H(U, V ; �, ⌧) , (4.3)

1There is an implicit regularity assumption for H(U, V ;�, ⌧) as ↵̄ ! 1/z̄, otherwise the
following equation would be an empty statement.

59



and take the Mellin transform of both sides of this equation. The transform2

of the left-hand side gives the reduced Mellin amplitude M ,

M(s, t; �, ⌧) =

Z
1

0

dUdV U
�s+k3+k4�2L�2

2 V
�t+min{k1+k4,k2+k3}�2

2 Gconn(U, V ; �, ⌧) ,

(4.4)
from which we define the Mellin amplitude M,

M(s, t; �, ⌧) ⌘ M(s, t; �, ⌧)

�k1k2k3k4

, (4.5)

where

�k1k2k3k4 ⌘ �[�s

2
+

k1 + k2

2
]�[�s

2
+

k3 + k4

2
]�[� t

2
+

k2 + k3

2
]

⇥�[� t

2
+

k1 + k4

2
]�[�u

2
+

k1 + k3

2
]�[�u

2
+

k2 + k4

2
] ,

u ⌘ k1 + k2 + k3 + k4 � s� t .

(4.6)

On the right-hand side of (4.3), the first term is the free part of the correlator.
It consists of a sum of terms of the form �

a
⌧
b
U

m
V

n, where m, n are integers
and a, b non-negative integers. The Mellin transform of any such term is
ill-defined. As we shall explain in Section 4.1.3, there is a consistent sense in
which it can be defined to be zero. The function Gfree,conn(U, V ; �, ⌧) will be
recovered as a regularization e↵ect in transforming back from Mellin space
to position space.

We then turn to the second term on the on the right-hand side of (4.3). We

define an auxiliary amplitude fM from the Mellin transform of the dynamical
function H,

fM(s, t; �, ⌧) =

R
1

0 dUdV U
�s+k3+k4�2L�2

2 V
�t+min{k1+k4,k2+k3}�2

2 H(U, V ; �, ⌧)

�̃k1k2k3k4

,

(4.7)

2This definition should be taken with a grain of salt. In general, the integral transform
of the full connected correlator is divergent. In the supergravity limit, there is a natural
decomposition of Gconn into a sum of D̄ functions, each of which has a well-defined Mellin
transform in a certain region of the s and t complex domains. However, it is often the
case that there is no common region such that the transforms of the D̄ functions are all
convergent. On the other hand, the inverse Mellin transform (4.10) is well-defined, but
care must be taken in specifying the integration contours. We will come back to this
subtlety in Section 4.1.3.
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with

�̃k1k2k3k4 ⌘ �[�s

2
+

k1 + k2

2
]�[�s

2
+

k3 + k4

2
]�[� t

2
+

k2 + k3

2
]

⇥�[� t

2
+

k1 + k4

2
]�[� ũ

2
+

k1 + k3

2
]�[� ũ

2
+

k2 + k4

2
] .

(4.8)

Note that we have introduced a “shifted” Mandelstam variable ũ,

ũ ⌘ u� 4 = k1 + k2 + k3 + k4 � 4� s� t . (4.9)

This shift is motived by the desire to keep the crossing symmetry properties
of H as simple as possible, as we shall explain shortly. Let us also record the
expressions of the inverse transforms,

Gconn =

Z
ds

2

dt

2
U

s�k3�k4
2 +L

V
t�min{k1+k4,k2+k3}

2 M(s, t; �, ⌧)�k1k2k3k4(4.10)

H =

Z
ds

2

dt

2
U

s�k3�k4
2 +L

V
t�min{k1+k4,k2+k3}

2 fM(s, t; �, ⌧)�̃k1k2k3k4 ,(4.11)

where the precise definition of the integration contours will require a careful
discussion in Section 4.1.3 below.

We are now ready to write down the Mellin translation of (4.3). It takes
the simple form

M(s, t; �, ⌧) = bR � fM(s, t, ; �, ⌧) . (4.12)

The multiplicative factor R has turned into a di↵erence operator bR,

bR = ⌧ 1+(1���⌧) bV +(�⌧��⌧+⌧
2) bU+(�2����⌧)dUV +�cV 2+�⌧ cU2 ,

(4.13)
where the hatted monomials in U and V are defined to act as follows,

\UmV n � fM(s, t; �, ⌧) ⌘ fM(s� 2m, t� 2n); �, ⌧)⇥
✓
k2 + k4 � u

2

◆

2�m�n

⇥
✓
k1 + k2 � s

2

◆

m

✓
k3 + k4 � s

2

◆

m

✓
k2 + k3 � t

2

◆

n

⇥
✓
k1 + k4 � t

2

◆

n

✓
k1 + k3 � u

2

◆

2�m�n

,

(4.14)

with (a)n ⌘ �[a+ n]/�[a] the usual Pochhammer symbol.
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Crossing symmetry and ũ

The Mellin amplitude M satisfies Bose symmetry, namely, it is invariant un-
der permutation of the Mandelstam variables s, t, u if the external quantum
numbers are also permuted accordingly. The auxiliary amplitude fM has
been defined to enjoy the same symmetry under permutation of the shifted

Mandelstam variables s, t, ũ. The point is that the factor R multiplying H
is not crossing-invariant, and the shift in u precisely compensates for this
asymmetry. Let us see this in some detail.

To make expressions more compact, we introduce some shorthand nota-
tions for the following combinations of coordinates,

A = x
2
12x

2
34 , B = x

2
13x

2
24 , C = x

2
14x

2
23 ,

a = t12t34 , b = t13t24 , c = t14t23 .
(4.15)

In the equal-weights case (on which we focus for simplicity), the four-point
function G(xi, ti) is related to G(U, V ; �, ⌧) by

G(xi, ti) =
⇣
a

A

⌘L
G(U, V ; �, ⌧) . (4.16)

Substituting into this expression the inverse Mellin transformation (4.10),
one finds

G(xi, ti) =

Z i1

i1

dsdt

X

I+J+K=L

A
s
2�L

B
u
2�L

C
t
2�L

a
K
b
I
c
JMIJK(s, t)

⇥ �2[�s

2
+ L]�2[� t

2
+ L]�2[�u

2
+ L] ,

(4.17)

where we defined
P

I+J+K=L
a
K
b
I
c
JMIJK(s, t) ⌘ a

LM(s, t; �, ⌧). In terms
of these new variables, crossing amounts to permuting simultaneously (A,B,C)
and (a, b, c):

1 $ 4 :

⇢
� $ 1/�, ⌧ $ �/⌧,

U $ 1/U, V $ V/U

�
or

⇢
A $ B

a $ b

�
,

1 $ 3 :

⇢
� $ �/⌧, ⌧ $ 1/⌧,
U $ V, V $ U

�
or

⇢
A $ C

a $ c

�
.

(4.18)

Invariance of the four-point function under crossing implies that the Mellin
amplitude M(s, t; �, ⌧) must obey

�
LM(u, t; 1/�, ⌧/�) = M(s, t; �, ⌧) ,

⌧
LM(t, s; �/⌧, 1/⌧) = M(s, t; �, ⌧) .

(4.19)
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On the other hand, a similar representation exists for RH. The factor R can
be expressed as

R =
1

a2B2

�
a
2
BC + b

2
AC + c

2
AB � abAC � abBC + abC

2

� acAB + acB
2 � acBC + bcA

2 � bcAB � bcAC
�

⌘ R

a2B2
,

(4.20)

with a crossing-invariant numerator R but a non-invariant denominator.
When we go to the Mellin representation of

�
a
A

�L
RH by substituting in

(4.11), we find that the power of B receives an additional �2 from the de-
nominator of R in (4.20), explaining the shift from u to ũ,

⇣
a

A

⌘L
RH =

Z i1

i1

dsdt

X

i+j+k=L�2

A
s
2�L

B
ũ
2�L

C
t
2�L

a
k
b
i
c
j R fMijk(s, t)

⇥ �2[�s

2
+ L]�2[� t

2
+ L]�2[� ũ

2
+ L] .

(4.21)

Here we have similarly defined

X

i+j+k=L�2

a
k
b
i
c
j R fMijk(s, t) = a

L�2 fM(s, t; �, ⌧) . (4.22)

Invariance of this expression under crossing implies the following transfor-
mation rules for fM,

�
L�2 fM(ũ, t; 1/�, ⌧/�) = fM(s, t, ; �, ⌧) ,

⌧
L�2 fM(t, s; �/⌧, 1/⌧) = fM(s, t; �, ⌧) .

(4.23)

We see that in the auxiliary amplitude fM, the role of u is played by ũ. This
generalizes to the unequal-weight cases.

4.1.2 An Algebraic Problem

Let us now take stock and summarize the properties of M that we have
demonstrated so far:
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1. Superconformal symmetry. The Mellin amplitude M can be expressed
in terms of an auxiliary amplitude fM,

M(s, t; �, ⌧) = bR � fM(s, t; �, ⌧) , (4.24)

with the help of the di↵erence operator bR defined in (4.13).

2. Bose symmetry. M is invariant under permutation of the Mandelstam
variables, if the quantum numbers of the external operators are per-
muted accordingly. For example, when the conformal dimensions of
the four half-BPS operators are set to equal ki = L, Bose symmetry
gives the usual crossing relations

�
LM(u, t; 1/�, ⌧/�) = M(s, t, ; �, ⌧) ,

⌧
LM(t, s; �/⌧, 1/⌧) = M(s, t; �, ⌧) .

(4.25)

3. Asymptotics. The asymptotic behavior of the Mellin amplitude M is
bounded by the flat space scattering amplitude. At large values of the
Mandelstam variables, M should grow linearly

M(�s, �t; �, ⌧) ⇠ O(�) for � ! 1 . (4.26)

4. Analytic structure. M has only simple poles and there are a finite
number of such simple poles in variables s, t, u, located at

s0 = sM � 2a , s0 � 2 ,

t0 = tM � 2b , t0 � 2 ,

u0 = uM � 2c , u0 � 2 (4.27)

where

sM = min{k1 + k2, k3 + k4}� 2 ,

tM = min{k1 + k4, k2 + k3}� 2 ,

uM = min{k1 + k3, k2 + k4}� 2 , (4.28)

and a, b, c are non-negative integers. The position of these poles are
determined by the twists of the exchanged single-trace operators in the
three channels – see Table 2.1 and related discussion in Section 2.1.
Moreover, at each simple pole, the residue of the amplitude M must
be a polynomial in the other Mandelstam variable.
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These conditions define a very constraining “bootstrap” problem. To start
unpacking their content, let us recall that the dependence on the R-symmetry
variables � and ⌧ is polynomial, of degree L and L � 2 for M and fM,
respectively,

M(s, t; �, ⌧) =
X

I+J+K=L

�
I
⌧
JMIJK(s, t) ,

fM(s, t; �, ⌧) =
X

i+j+k=L�2

�
i
⌧
j fMijk(s, t) .

(4.29)

Bose symmetry amounts to the invariance of MIJK(s, t) under permutation
of (I, J,K) accompanied by simultaneous permutation of (s, t, u), with u ⌘P4

i=1 ki � s � t. Analogously, fMijk(s, t) is invariant under simultaneous
permutation of (i, j, k) and (s, t, ũ), with ũ ⌘

P4
i=1 ki � s � t � 4. A little

combinatoric argument shows that the number NL of independent MIJK

functions is given by

NL =
(L+ 5)(L+ 1)

12
+

17

72
+

(�1)L

8
+

2

9
cos

✓
2⇡L
3

◆
. (4.30)

The superconformal Ward identity (4.24) expresses theNL functionsMIJK(s, t)

in terms of the NL�2 functions fMijk(s, t). Clearly since NL > NL�2 the dif-

ference operator bR cannot be invertible, i.e., (4.24) represents a non-trivial
constraint onM. By assumption 4,MIJK(s, t) are rational functions of s and

t. We will now show that compatibility with (4.24) requires that fMijk(s, t)
must also be rational functions. (The argument that follows is elementary
but slightly elaborate and can be safely skipped on first reading.)

The two sets of R-symmetry monomials {�I
⌧
J} and {�i

⌧
j} can be con-

veniently arranged into two equilateral triangles, illustrated respectively by
Figure 4.1 and Figure 4.2. The Bose symmetry that relates di↵erent R-
symmetry monomials corresponds to the S3 the symmetry of the equilateral
triangle. Let us start by considering the monomial 1 in M, which is associ-
ated to the coe�cient M0,0,L(s, t). This monomial can only be reproduced

by the monomial 1 in fM, i.e., the term fM0,0,L�2(s, t), via the action of the

65



Figure 4.1: R-symmetry monomials in M.

Figure 4.2: R-symmetry monomials in fM.
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operator bV in bR,

M0,0,L(s, t) = bV � fM0,0,L�2(s, t)

= fM0,0,L�2(s, t� 2)

✓
k2 + k3 � t

2

◆✓
k1 + k4 � t

2

◆

⇥
✓
k1 + k3 � u

2

◆✓
k2 + k4 � u

2

◆
.

(4.31)

We can then fM0,0,L�2(s, t) in terms of M0,0,L(s, t)

fM0,0,L�2(s, t) =
M0,0,L(s, t)�

k2+k3�t
2

� �
k1+k4�t

2

� �
k1+k3�u

2

� �
k2+k4�u

2

�
����
t!t+2

, (4.32)

which makes it clear that fM0,0,L�2(s, t) is rational given that M0,0,L(s, t)
is assumed to be rational. Similarly, one can easily see that �

LML,0,0(s, t)

can only be reproduced from �
L�2 fML�2,0,0(s, t) via the action of �2dUV and

⌧
LM0,L,0(s, t) can only come from ⌧

L�2 fM0,L�2,0(s, t) with the action ⌧
2 bU .

These two sets of MIJK and fMijk correspond to the six corners of the two
triangles and are in the same orbit under the action of the Bose symmetry.
Using the explicit form of the operators dUV and bU it is apparent that both
fML�2,0,0(s, t) and fM0,L�2,0(s, t) can be analogously solved and have finitely
many poles in the Mandelstam variables. Now let us move on to consider
�M1,0,L�1(s, t) which receives contribution from fM0,0,L�2(s, t) with the ac-

tion of ��bV � �dUV + �cV 2 as well as from �fM1,0,L�3(s, t) with the action of
bV

M1,0,L�1(s, t) = (�bV �dUV +cV 2)� fM0,0,L�2(s, t)+ bV � fM1,0,L�3(s, t) . (4.33)

Since we have deduced the finiteness of the number of poles in fM0,0,L�2(s, t),

it is obvious from the above equation that fM1,0,L�3(s, t) also has a finite num-
ber of poles. By the same logic, one can easily convince oneself that the num-
ber of poles in fM0,1,L�3(s, t), fML�3,1,0(s, t), fML�3,0,1(s, t), fM0,L�3,1(s, t),
fM1,L�3,0(s, t) is also finite. The strategy is now clear. We start from the
corners of the triangle and move along the edges. Each time we encounter
a new element of fMi,j,k(s, t) multiplied by a single di↵erence operator of

the type \UmV n and by recursion we can prove this new term has finitely
many poles. After finishing the outer layer of the R-symmetry triangle,
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we move onto the adjacent layer, again starting from the three corners and
then moving along the edges. It is not hard to see that at each step the
same situation occurs and we only need to deal with one new element at a
time. For example, �⌧M1,1,L�2(s, t), which is on the top corner of the second

layer, is generated by fM0,0,L�2(s, t) with the action of ��⌧ bU��⌧dUV +�⌧cU2,

�fM1,0,L�3(s, t) with �⌧ bV �⌧ bU+⌧b1, ⌧ fM0,1,L�3(s, t) with ��bV ��dUV +�cV 2

and �⌧ fM1,1,L�3(s, t) with bV . Among these four elements of the auxiliary

amplitude fM0,0,L�2(s, t), �fM1,0,L�3(s, t), ⌧ fM0,1,L�3(s, t) belong to the outer
layer which are determined to be rational in the previous round. Only the
element �⌧ fM1,1,L�3(s, t) belongs to the inner layer and is acted on by the

simple di↵erence operator bV . This concludes by recursion that fM1,1,L�3(s, t)
is also rational. In finitely many steps, we can exhaust all the elements of
fMijk. This concludes the proof of rationality of fM. It might at first sight
appear that this procedure amounts to an algorithm to invert the di↵erence
operator bR, but of course this is not the case. For general MIJK , one would
find contradictory results for some element fMijk applying the recursion pro-
cedure by following di↵erent paths in the triangle.

4.1.3 Contour Subtleties and the Free Correlator

In this subsection we address some subtleties related to s and t integration
contours in the Mellin representation. These subtleties are related to the
decomposition of the position space correlator into a “free” and a dynamical
term. In transforming to Mellin space, we have ignored the term Gfree,conn.
We are going to see how this term can be recovered by taking the inverse
Mellin transform with proper integration contours.

The four-point function calculated from supergravity with the traditional
method is a sum of four-point contact diagrams, known as D̄-functions.
(Their precise definition is given in (2.31)). Through the repeated use of
identities obeyed the D̄ functions, the supergravity answer can be massaged
into a form that agrees with the solution to the superconformal Ward identity
– with a singled-out “free” piece. Manipulations of this sort can be found in,
e.g., [75, 18, 19, 22]. Most of the requisite identities have an elementary proof
either in position space or in Mellin space, but the crucial identity which is
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key to the separation of the free term, namely

�
D̄�1+1�2�3+1�4 + UD̄�1+1�2+1�3�4 + V D̄�1�2+1�3+1�4

�
����
�4=�1+�2+�3

=
3Y

i=1

�(�i),

(4.34)

requires additional care. The Mellin transform of the rhs is clearly ill-defined.
We will now show that the Mellin transform of the lhs is also ill-defined,
because while each of the three terms has a perfectly good transform for a
finite domain of s and t (known as the “fundamental domain”), the three
domains have no common overlap. A suitable regularization procedure is
required to make sense of this identity. Let us see this in detail.

Recall that the Mellin transform of an individual D̄-function is just a
product of Gamma functions. Its fundamental domain can be characterized
by the condition that all the arguments of Gamma functions are positive [76].
For the three D̄-functions appearing on the lhs of (4.34), we have

D̄�1+1�2�3+1�4 =
1
4

R
C1
dsdtU

s/2
V

t/2�[� s
2 ]�[�

t
2 ]�[

s+t+�1+�2+�3��4+2
2 ]

⇥�[� s
2 +

�4+�3��1��2
2 ]�[� t

2 +
�4+�1��2��3

2 ]�[ s+t
2 +�2] ,

D̄�1+1�2+1�3�4 =
1
4

R
C2
dsdtU

s/2
V

t/2�[� s
2 ]�[�

t
2 ]�[

s+t+�1+�2+�3��4+2
2 ]

⇥�[� s
2 +

�4+�3��1��2
2 � 1]�[� t

2 +
�4+�1��2��3

2 ]�[ s+t
2 +�2 + 1] ,

D̄�1�2+1�3+1�4 =
1
4

R
C3
dsdtU

s/2
V

t/2�[� s
2 ]�[�

t
2 ]�[

s+t+�1+�2+�3��4+2
2 ]

⇥�[� s
2 +

�4+�3��1��2
2 ]�[� t

2 +
�4+�1��2��3

2 � 1]�[ s+t
2 +�2 + 1] .

(4.35)

Here Z

Ci

dsdt =

Z s0i+i1

s0i�i1

ds

Z t0i+i1

t0i�i1

dt , (4.36)

so the contours are specified by selecting a point inside the fundamental
domains, (s0i, t0i) 2 Di. With �4 = �1 + �2 + �3, one finds that the
fundamental domains are given by

D1 = D2 = D3 = {(s0, t0)|<(s) < 0,<(t) < 0,<(s) + <(t) > �2} . (4.37)

Multiplication by U and V in the second and the third terms, respectively,
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shifts3 the domains D2 and D3 into new domains D0

2 and D0

3,

D0

2 = {(s0, t0)|<(s) < 2,<(t) < 0,<(s) + <(t) > 0} ,

D0

3 = {(s0, t0)|<(s) < 0,<(t) < 2,<(s) + <(t) > 0} .
(4.38)

This is problematic because

D1

\
D0

2

\
D0

3 = ; . (4.39)

Clearly it makes no sense to add up the integrands if the contour integrals
share no common domain. On the other hand, if one is being cavalier and
sums up the integrands anyway, one finds that the total integrand vanishes.
This is “almost” the correct result, since the rhs of the identity (4.34) is
simply a constant, whose Mellin transform is ill-defined and was indeed set
to zero in our analysis in the previous section. We can however do better
and reproduce the exact identity if we adopt the following “regularization”
prescription: we shift s+ t ! s+ t+ ✏, with ✏ a small positive real number.
After this shift, the three domains develop a small common domain of size
✏,

Figure 4.3: The regularized domains. The common domain of size ✏ is de-
picted as the shaded region.

3To absorb U
m
V

n outside the integral into U
s/2

V
t/2 inside the integral and then shift

s and t to bring it back to the form U
s/2

V
t/2. Doing so amounts to shift D to D0 by a

vector (2m, 2n).
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D1

\
D0

2

\
D0

3 ⌘ D✏ = {(s0, t0)|<(s) < 0,<(t) < 0,<(s) + <(t) > �✏} .

(4.40)
We can therefore place the common integral contour inside D✏ and combine
the integrands,

LHS =
1

4

Z

D✏

dsdtU
s/2

V
t/2(

s+ t+ ✏

2
� s

2
� t

2
)�[�s

2
]�[� t

2
]�[

s+ t+ ✏

2
]

⇥ �[�s

2
+�3]�[�

t

2
+�1]�[

s+ t

2
+�2]

=
1

4

Z

D✏

dsdtU
s/2

V
t/2 ✏

2
�[�s

2
]�[� t

2
]�[

s+ t+ ✏

2
]

⇥ �[�s

2
+�3]�[�

t

2
+�1]�[

s+ t

2
+�2] .

(4.41)

As ✏ ! 0, we can just substitute s = t = 0 into the non-singular part of the
integrand. The resulting integral is easily evaluated,

LHS =
1

2
�[�1]�[�2]�[�3]

Z

D✏

ds

2

dt

2
✏�[�s

2
]�[� t

2
]�[

s+ t+ ✏

2
] = �[�1]�[�2]�[�3]

= RHS .

(4.42)

This amounts to a “proof” of the identity (4.34) directly in Mellin space. This
exercise contains a useful general lesson. As we have already remarked, the
identity (4.34) is responsible for generating the term Gfree,conn by collapsing
sums of D̄ functions in the supergravity answer. We have shown that it
is consistent to treat the Mellin transform of Gfree,conn as “zero”, provided
that we are careful about the s, t integration contours in the inverse Mellin
transform. In general, when one is adding up integrands, one should make
sure the integrals share the same contour, which may require a regularization
procedure of the kind we have just used. A naively “zero” Mellin amplitude
can then give nonzero contributions to the integral if the contour is pinched
to an infinitesimal domain where the integrand has a pole. In Appendix C
we illustrate in the simplest case of equal weights ki = 2 how the free field
correlator is correctly reproduced by this mechanism.

We conclude by alerting the reader about another small subtlety. The
free term Gfree,conn depends on the precise identification of the operators dual
to the supergravity modes sp. As explained in footnote 1, if one adopts the
scheme where the fields sk contain no derivative cubic couplings, the dual
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operators are necessarily admixtures of single- and multi-trace operators.
While the multi-trace pieces are in general subleading, they can a↵ect the
free-field four-point function if the four weights are su�ciently “unbalanced”.
This phenomenon was encountered in [21, 22], where the four-point functions
with weights (2, 2, k, k) were evaluated from supergravity. A discrepancy
was found for k � 4 between the function Gfree,conn obtained by writing the
supergravity result in the split form (4.3) and the free-field result obtained in
free field theory fromWick contractions, assuming that the operators are pure
single-traces. The resolution is that supergravity is really computing the four-
point function of more complicated operators with multi-trace admixtures.
Note that the contribution to the four-point functions from the multi-trace
terms takes the form of a product of two- and three-point functions of one-
half BPS operators, and is thus protected [34]. The ambiguity in the precise
identification of the dual operators can then only a↵ect Gfree,conn and not the
dynamical part.

4.2 General Solution for AdS5 ⇥ S
5

Experimentation with low-weight examples led us to the following ansatz for
fM,

fM(s, t, ũ; �, ⌧) =
X

i + j + k = L � 2,

0  i, j, k  L � 2

aijk�
i
⌧
j

(s� sM + 2k)(t� tM + 2j)(ũ� ũM + 2i)

(4.43)
where

sM = min{k1 + k2, k3 + k4}� 2 ,

tM = min{k1 + k4, k2 + k3}� 2 ,

ũM = min{k1 + k3, k2 + k4}� 2 .

(4.44)

The reader can check that this ansatz leads to anM that satisfies the asymp-
totic requirement, obeys Bose symmetry and has simple poles at the required
location. The further requirements that the poles have polynomials residues
fixes the coe�cients aijk uniquely up to normalization,

aijk =
Ck1k2k3k4

�
L�2
i,j,k

�

(1 + |k1�k2+k3�k4|
2 )i(1 +

|k1+k4�k2�k3|
2 )j(1 +

|k1+k2�k3�k4|
2 )k

, (4.45)
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where
�
L�2
i,j,k

�
is the trinomial coe�cient. The overall normalization

Ck1k2k3k4 =
f(k1, k2, k3, k4)

N2
(4.46)

cannot be fixed from our homogenous consistency conditions.
There are several ways to fix this normalization. In principle, it can be

determined by transforming back to the position-space expression (4.3). As
we shall show below, the term Gfree,conn arises as a regularization e↵ect in
the inverse Mellin transformation. The constant f(k1, k2, k3, k4) is fixed by
requiring that the regularization procedure gives the correctly normalized
free-field correlator. In practice, this is very cumbersome, and it is easier to
take instead Gfree,conn as an input from free-field theory. The overall normal-
ization ofM is then fixed by imposing the cancellation of spurious singularity
associated to single-trace long operators [23], which are separately present
in Gfree,conn and in RH but must cancel in the sum. This method has been
used in [77] to determine f(p, p, q, q), the normalization in all cases with pair-
wise equal weights. A more elegant method appeared recently in [78] where
the normalization for the most general correlator is fixed. This method in-
volves taking a light-like limit where the points x1, x2, x3, x4 are sequentially
light-like separated. It exploits a property of the correlator that

lim
U,V!0

P�1
Gconn(xi, ti) = 0 ,

U

V
fixed , (4.47)

which can be proved on general grounds [78]. And P is a product of two-point
functions

P =

✓
t34

x234

◆ k3+k4+k2�k1
2

✓
t14

x214

◆ k1+k4�k2�k3
2

✓
t13

x213

◆ k1+k3�k2�k4
2

✓
t12

x212

◆k2

. (4.48)

Using this vanishing relation, the remaining factor is fixed to be

f(k1, k2, k3, k4) =
�25k1k2k3k4⇣

|k1+k2�k3�k4|
2

⌘
!
⇣
|k1+k4�k2�k3|

2

⌘
!
⇣
|k2+k4�k1�k3|

2

⌘
!(L� 2)!

.

(4.49)
Our result of one-half BPS four-point function with general weights has

recently led to impressive progress in the quantitative understanding of the
N = 4 SYM at large N and infinite ’t Hooft coupling, where a great deal
of its OPE data has been learned. For example, as we discussed in Section
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3.1.1, the double poles in the reduced Mellin amplitude give rise to, after the
s integration, logU terms which encode tree-level anomalous dimensions of
double-trace operators. The complete spectrum of the double-trace operators
has been recently computed in [78] to the order O(1/N2).4. In obtaining the
spectrum, a complexity which one faces is the operator mixing of double-trace
operators. To solve this mixing problem, our general formula is a necessary
input. Moreover, inputting the tree level data, one is able to bootstrap loop
corrections to IIB supergravity on AdS5 ⇥ S

5, see [80, 79, 77, 81, 82] for
recent progress using various techniques. It would be interesting to repeat
the loop level analysis in Mellin space.

4.2.1 Uniqueness for ki = 2

Uniqueness of the ansatz (4.43) is in general di�cult to prove. However in
simple examples it is possible to solve the algebraic problem directly, thereby
proving that the answer is unique. In this subsection we demonstrate it for
the simplest case, the equal-weights case with k = 2. This case is particularly
simple because fM has no �, ⌧ dependence.

Recall that the Mellin amplitude M has simple poles in s, t and u whose
positions are restricted by the condition (4.28). Specifically in the case of
ki = 2, it means that the Mellin amplitude can only have simple poles at
s = 2, t = 2 and u = 2. On the other hand, fM must also have poles because
the Pochhammer symbols in the di↵erence operators (4.14) do not introduce

additional poles. To fix the position of these poles in fM, let us look at the
R-symmetry monomial �I

⌧
J in M(s, t; �, ⌧) with I = J = 0. The �I

⌧
J term

in M(s, t; �, ⌧) with I = J = 0 can then only be produced from fM(s, t) with
the action of the term bV in (4.13)

bV � fM(s, t) = fM(s, t� 2)

✓
4� t

2

◆

1

✓
4� u

2

◆

1

�2
. (4.50)

For s to have simple pole at s = 2 in M, it is easy to see that the only
possible s-pole in fM(s, t) is a simple pole at s = 2. For t, a simple pole

at t = 0 in fM(s, t) is allowed, which after the shift on the right side of
(4.50) gives a simple pole at t = 2 in M. But there is also an additional
pole in t allowed due to the presence of the Pochhammer symbol. Since the

4Previous partial results have been reported in [79, 77].
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Pochhammer symbol gives a degree-two zero at t = 4 we can have a pole at
t = 2 in fM(s, t) with pole degree up to two. These two possibilities exhaust

all the allowed t-poles in fM(s, t) that are compatible with the pole structure
of M. Now the story for ũ-poles is exactly the same as t. To see this, we
note that under the shift t ! t� 2,

ũ ! ũ+ 2 = (u� 4) + 2 = u� 2 . (4.51)

By the same argument ũ can have in fM(s, t) a simple pole at ũ = 0 and at
most a double pole at ũ = 2.

Now we use the constraints from Bose symmetry (actually crossing sym-
metry in this case) and the asymptotic condition to further narrow down the
possibilities. Bose symmetry requires

fM(s, t) = fM(s, ũ) = fM(t, s) . (4.52)

Since fM(s, t) cannot have a pole at s = 0, the poles at t = 0, ũ = 0 are
prohibited. On the other hand the asymptotic condition further requires
M(s, t) to have growth rate one at large s, t, u. Consequently by simple

power counting fM(s, t) should have growth rate �3. This leaves us with the
unique crossing symmetric ansatz

fM(s, t) / 1

(s� 2)(t� 2)(ũ� 2)
(4.53)

which is just our solution (4.43).

4.3 Formulating an Algebraic Bootstrap Prob-
lem: AdS7 ⇥ S

4

4.3.1 Rewriting the Superconformal Ward Identity

Solution in Position Space

We now turn to set up the algebraic bootstrap problem for AdS7 ⇥ S
4. The

theory has a superconformal group OSp(8⇤|4), whose bosonic subgroup is
the direct product of the conformal group SO(6, 2) and R-symmetry group
SO(5). We follow the same strategy for AdS5 ⇥S

5 and first solve the super-
conformal Ward identity (2.23) in position with ✏ = 2. For the simplicity of
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the discussion, we will focus on the case where external operators all have
weight k.

We can first obtain a partial solution to the superconformal Ward identity
by restricting the four-point function to a special slice of R-symmetry cross
ratios such that ↵ = ↵

0 = 1/�0. Then the superconformal Ward identity
(2.23) reduces to

�
0
@�0Gk(�,�

0; 1/�0
, 1/�0) = 0 , (4.54)

whose solution is simply any “holomorphic” function5 of �,

Gk(�,�
0; 1/�0

, 1/�0) = f(�) . (4.55)

Up to kinematic factors, the function f(�) coincides with the four-point cor-
relator of the two-dimensional chiral algebra associated to the (2, 0) theory
by the cohomological procedure introduced in [83, 84]. There is a compelling
conjecture [84] that the chiral algebra associated to the (2, 0) theory of type
An is the familiar Wn algebra, with central charge c2d = 4n3 � 3n � 1. In
our holographic setting, we are instructed to take a suitable large n limit of
the Wn algebra, as explained in detail in [84]. In that limit, the structure
constants of the Wn algebra were matched with the three-point functions
of the one-half BPS operators computed holographically by standard super-
gravity methods. In this thesis, we have used the position space method to
compute holographic four-point functions of one-half BPS operators. As an
important consistency check, we will match their “holomorphic” piece f(�)
with the corresponding four-point functions in the Wn!1 algebra.

The full solution of the superconformal Ward identity (2.23) was found in
[37]. We reproduce it here with a few crucial typos fixed. A general solution
Gk of (2.23) can be written as

Gk(U, V ; �, ⌧) = Fk(U, V ; �, ⌧) +Kk(U, V ; �, ⌧) , (4.56)

where Fk and Kk are respectively an “inhomogeneous” solution” and a “ho-
mogenous” solution. By this we mean that upon performing the “twist”
↵ = ↵

0 = 1/�0, Fk becomes a purely “holomorphic” function of �, while Kk

must vanish identically. The homogenous part Kk can further be expressed

5In Euclidean signature, the variables � and �
0 are complex conjugate of each other,

so this terminology is appropriate. In Lorentzian signature � and �
0 are instead real

independent variables. Hence “holomorphic” in quotes.
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in terms of a di↵erential operator ⌥ acting on an unconstrained function
H(U, V ; �, ⌧), which is a polynomial in � and ⌧ of degree k� 2. Explicitly,6

Kk(U, V ; �, ⌧) =
�
�
2D0

✏UV + ⌧
2D0

✏U +D0

✏V � �D0

✏V (U + 1� V )

�⌧D0

✏(U + V � 1)� �⌧D0

✏U(V + 1� U)
�
Hk(U, V ; �, ⌧)

=:⌥ �Hk(U, V ; �, ⌧) ,
(4.57)

where the di↵erential operator D0

✏ is defined as

D0

✏ :=


D✏ �

✏

V
(D+

0 �D
+
1 + ✏@��)⌧@⌧

+
✏

UV
(�V D

+
1 + ✏(V @�� + @⌧⌧ � 1))(@�� + @⌧⌧)

�✏�1

,

D✏ :=
@
2

@�@�0
� ✏

1

�� �0
(
@

@�
� @

@�0
) ,

D
+
0 :=

@

@�
+

@

@�0
,

D
+
1 := �

@

@�
+ �

0
@

@�0
.

(4.58)

While the expression of the di↵erential operator ⌥ is not very transparent,
its transformation properties under crossing however are surprisingly simple.
Let g1, g2 be the two generators of the crossing-symmetry group S3 under
which the cross ratios transform as

g1 : U ! U

V
, V ! 1

V
, � ! ⌧ , ⌧ ! � ,

g2 : U ! 1

U
, V ! V

U
, � ! 1

�
, ⌧ ! ⌧

�
.

(4.59)

We have found that ⌥ satisfies7

g1 �⌥ = �
1
2 (���⇢)

⌧
⇢/2

U
��
V

�⇢⌥�
�+⇢
2 ⌧

�
⇢
2U

�
V

⇢
,

g2 �⌥ = �
⇢� �

2 ⌧
�⇢
V

2⇢
U

��⌥�
�
2�⇢�2

⌧
⇢
V

�2⇢
U

�
,

(4.60)

6Here and below, the parameter ✏ takes the fixed value 2. We keep it as ✏ to facilitate
compare with the expressions in [37], but we stress that the solution to the superconformal
Ward identity takes this particular form only for d = 6.

7It is understood here that both sides of (4.60) are acting on the same arbitrary function
of the cross-ratios.
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where � and ⇢ are arbitrary parameters.
We can always find a decomposition of Gk such that the two functions Fk

and Hk do not mix into each other under crossing. Then the full correlator
Gk and and the inhomogenous part Fk have the same crossing properties

Gk(U, V ;�, ⌧) =

✓
U

2
⌧

V 2

◆k

Gk(V, U ;�/⌧, 1/⌧) =
�
U

2
�
�k Gk(1/U, V/U ; 1/�, ⌧/�) ,

Fk(U, V ;�, ⌧) =

✓
U

2
⌧

V 2

◆k

Fk(V, U ;�/⌧, 1/⌧) =
�
U

2
�
�k Fk(1/U, V/U ; 1/�, ⌧/�) .

(4.61)

Using the crossing identities obeyed by the operator ⌥, it is then easy to find
the crossing relations obeyed by the unconstrained function Hk,

Hk(U, V ; �, ⌧) = Hk(U/V, 1/V ; ⌧, �) = U
2k
�
k�2Hk(1/U, V/U ; 1/�, ⌧/�) .

(4.62)
In closing, we should emphasize that the decomposition (4.56) is not

unique, since obviously one can add any “homogeneous” term to Fk and
subtract the same term from Kk. In the case of N = 4 super Yang-Mills,
where the solution of the superconformal Ward identity takes a similar form,
there is a natural choice for Fk, namely the value of the correlator in the free
field limit: Fk is then a simple rational function of U and V . A priori there
is no reason that an analogous natural choice for Fk should exist in the (2, 0)
theory, but we will find experimentally that there is one, even in the absence
(obvious) connection with free field theory.

Solution in Mellin Space

In position space, superconformal symmetry of the four-point function is
encoded in the solution of the superconformal Ward identity,8

Gk,conn = Fk,conn +⌥ �Hk,conn . (4.63)

Now we begin to translate this solution into Mellin space.
We start by writing the Mellin transformation of the left-hand side of

(4.63),

Gk,conn =

Z i1

�i1

ds

2

dt

2
U

s
2V

t
2�2kMk(s, t;�, ⌧)�

2[�s

2
+ 2k]�2[� t

2
+ 2k]�2[�u

2
+ 2k] .

(4.64)

8As the Mellin transformation of the disconnected part of the correlator is ill-defined,
we focus on the connected part.
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Consider now the right-hand side of (4.63). The Mellin transform of the
rational function Fk,conn is ill-defined. As explained in [4], it can be de-
fined as “zero”.9 On the other hand, we can write a Mellin representation
for the dynamical function Hk in terms of an “auxiliary” Mellin amplitude
fMk(s, t; �, ⌧)

Hk =

Z i1

�i1

ds

2

dt

2
U

s
2+1

V
t
2�2k+1fMk(s, t;�, ⌧)�

2[�s

2
+ 2k]�2[� t

2
+ 2k]�2[� ũ

2
+ 2k]

(4.65)
where ũ = u�6. As we demonstrate the shift has the virtue of giving simple
transformation properties to fMk(s, t; �, ⌧) under crossing,

�
p�2 fMk(ũ, t; 1/�, ⌧/�) = fMk(s, t, ; �, ⌧) ,

⌧
p�2 fMk(t, s; �/⌧, 1/⌧) = fMk(s, t; �, ⌧) .

In the auxiliary amplitude fMk(s, t; �, ⌧), the triplet variables (s, t, ũ) re-
places (s, t, u) to become the set of variables that permute under crossing.
This becomes especially evident after we restore all the factors of x2

ij and
tij. Restoring this factor will also facilitate the extraction of the di↵erence
operator. Let us see this in detail.

We first note that the combination

a
k
A

�2k⌥ �Hk (4.66)

is crossing invariant, since it has the same crossing properties as Gk. Upon in-
serting the inverse Mellin transformation (4.65) into (4.66) and decomposing
the auxiliary amplitude with respect to the R-symmetry monomials,

fM(s, t; �, ⌧) =
X

l+m+n=k�2

�
m
⌧
n fMk, lmn(s, t) , (4.67)

we find

(
a

A2
)k ⌥ �

X

l+m+n=k�2

Z i1

�i1

ds

2

dt

2
U

s/2+1
V

t/2�2k+1
�
m
⌧
n fMk, lmn(s, t) �̃3(s, t) .

(4.68)

9Fk,conn can be recovered as a subtle regularization e↵ect in properly defining the
contour integrals of the inverse Mellin transformation [4].
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Here the factor �̃3(s, t) is short-hand for �2[� s
2 +2k]�2[� t

2 +2k]�2[� ũ
2 +2k].

We now let the di↵erential operator⌥ act on the monomial U s/2+1
V

t/2�2k+1
�
m
⌧
n,

leading to the following integral

Z i1

�i1

ds

2

dt

2

X

l+m+n=k�2

a
l
b
m
c
n
A

s/2�2k
B

ũ/2�2k
C

t/2�2k ⇥ fMk, lmn(s, t) �̃3(s, t) ,

(4.69)
where U = A/B, V = C/B, � = b/a, ⌧ = c/a have been substituted
back into the expression. The factor ⇥ is a polynomial of A, B, C, a,
b, c and s, t obtained from the action of the di↵erential operator ⌥ on
the monomial U s/2+1

V
t/2�2k+1

�
m
⌧
n. To write an explicit expression for ⇥,

it is useful further to introduce the following combinations of Mandelstam
variables,

X = s+ 4l � 4k + 2 ,

Y = t+ 4n� 4k + 2 ,

Z̃ = ũ+ 4m� 4k + 2 .

(4.70)

In terms of these variables, ⇥ reads

⇥ = � 1

4


abC

3
XZ̃ + aB

3
cXY +A

3
bcY Z̃

+A
2
bC(c(X + 4)Z̃ � (Y + 2)Z̃(a� b+ c)) +AbC

2(a(Y + 4)Z̃ � (X + 2)Z̃(a� b+ c))

+aBC
2(X(Z̃ + 2)(a� b� c) + bX(Y + 4)) +A

2
Bc(b(4 +X)Y � (a+ b� c)Y (2 + Z̃))

+aB
2
C((a� b� c)X(2 + Y ) + cX(4 + Z̃))

+AB
2
c((�a� b+ c)(2 +X)Y + aY (4 + Z̃))

+ABC
�
a
2(Y + 2)(Z̃ + 2) + b

2(X + 2)(Y + 2) + c
2(X + 2)(Z̃ + 2)

+ bc(2 +X)(4 +X) + ab(2 + Y )(4 + Y ) + ac(2 + Z̃)(4 + Z̃)
��

.

(4.71)

The reader should not focus on this complicated expression because further
manipulations will soon lead to a major simplification. At this stage we
only want to point out that the above expression of ⇥ can be checked to be
crossing invariant under any permutation of the triplets

(a,A, s) , (b, B, ũ) , (c, C, t) . (4.72)

Crossing invariance of (4.69) implies the following crossing identities for

80



fMk, lmn(s, t),

fMk, nml(t, s) = fMk, lmn(s, t) ,

fMk, mnl(ũ, t) = fMk, lmn(s, t) ,
(4.73)

from which the crossing identities (4.66) of fMk(s, t; �, ⌧) immediately follow.
As in Section 4.1, we should reinterpret the monomials of A, B, C in

(4.71) as di↵erence operators acting on functions of s, t in the integrand,
thus promoting the factor ⇥ to an operator b⇥. This operator b⇥ can be
written in a compact form if the respective shift on X, Y and Z̃ has first
been performed, as we now show. All monomials that appear in ⇥ have
the form A

↵
B

3�↵��
C

�. Multiplying an inverse Mellin integral by such a
monomial, we have

A
↵
B

3�↵��
C

�

Z

C

dsdtA
s/2�2k

B
ũ/2�2k

C
t/2�2k

F (s, t) = (4.74)
Z

C0
dsdtA

s/2�2k
B

u/2�2k
C

t/2�2k
F (s� 2↵, t� 2�) .

(The shift of the integration contour is important in producing rational terms
by the mechanism discussed in Section 4.1.3 and Appendix C. Here we are
focusing on the Mellin amplitude and ignore contour issues.) Note that in
the first term we use the shifted Mandelstam variable ũ = u� 6 = 8k � s�
t � 6, while the unshifted u appears in the second term. We conclude that
multiplication by the monomial A↵

B
3�↵��

C
� corresponds in Mellin space to

a di↵erence operator that shifts s ! s� 2↵ and t ! t� 2�.
Interpreting every monomials in ⇥ in this fashion we find a di↵erence

operator b⇥. We can make the expression of b⇥ very compact by performing
the shift in two stages: first we shift on the factor of X, Y , Z̃ multiplying
each monomial A↵

B
3�↵��

C
� and bring it the left; then A

↵
B

3�↵��
C

� remains
an operator to act on whatever is in the integrand on the right. We arrive
at the following simple expression,

b⇥ = �1

4

�
(XY )dBR+ (XZ)dCR+ (Y Z)dAR

�
(4.75)

where we defined an “unshifted” Z variable

Z := Z̃ + 6 = u+ 4m� 4k + 2 (4.76)
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and the crossing-invariant factor R is given by10

R = a
2
BC+b

2
AC+c

2
AB+abC(�A�B+C)+acB(�A+B�C)+bcA(A�B�C)

(4.77)

The expressions dAR, dBR, dCR are written shorthands that should be under-
stood as follows: one first expandsAR, BR, CR into monomialsA↵

B
3�↵��

C
�

and then regards each of them as the operator \A↵B3�↵��C�. These opera-
tors will only act on objects multiplied from the right and will no longer shift
the X, Y , Z factors multiplied from the left.

We can now give the explicit action of \A↵B3�↵��C� as an operator that
transforms a term of fMk into a term of Mk,

\A↵B3�↵��C� � fMk, lmn(s, t) : = fMk, lmn(s� 2↵, t� 2�)

⇥
�2[� s

2 + 2k + ↵]�2[� t
2 + 2k + �]�2[�u

2 + 2k + (3� ↵� �)]

�2[� s
2 + 2k]�2[� t

2 + 2k]�2[�u
2 + 2k]

.

(4.78)

This action is obtained by applying the aforementioned shift of s and t on
the integrand and taking into consideration the di↵erence of Gamma function
factors between the definitions (4.64) and (4.69).

All in all, the superconformal Ward identity implies that the full Mellin
amplitude Mk can be written in terms of an auxiliary amplitude fMk acted
upon by the di↵erence operator b⇥,

Mk = b⇥ � fMk . (4.79)

The operator b⇥ is given by (4.75) where each monomial operator acts as in
(4.81).

Finally, let us mention that the generalization of the di↵erence operator
to amplitudes with unequal weights is straightforward. Following a similar
procedure, we find that in the general case we only need to modify the
definitions of X, Y , Z by

X = s+ 4l + 2� 2min{k1 + k2, k3 + k4} ,

Y = t+ 4n+ 2� 2min{k1 + k4, k2 + k3} ,

Z = u+ 4m+ 2� 2min{k1 + k3, k2 + k4} ,

(4.80)

10Curiously, this factor also appeared in the solution of the 4d N = 4 superconformal
Ward identity (4.20). We don’t have a deep understanding of this observation.
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and let each monomial act as

\A↵B3�↵��C� � fMlmn(s, t) ⌘ fMlmn(s� 2↵, t� 2�)⇥
✓
2(k1 + k2)� s

2

◆

↵

⇥
✓
2(k3 + k4)� s

2

◆

↵

✓
2(k1 + k4)� t

2

◆

�

✓
2(k2 + k3)� t

2

◆

�

⇥
✓
2(k1 + k3)� u

2

◆

3�↵��

✓
2(k2 + k4)� u

2

◆

3�↵��

.

(4.81)

4.3.2 An Algebraic Problem

We now take stock and summarize the conditions on the Mellin amplitude
that follow from our discussion in the previous sections:

1. Crossing symmetry: As the external operators are identical bosonic
operators, the Mellin amplitude Mk satisfies the crossing relations

�
kMk(u, t; 1/�, ⌧/�) = Mk(s, t, ; �, ⌧)

⌧
kMk(t, s; �/⌧, 1/⌧) = Mk(s, t; �, ⌧) .

(4.82)

2. Analytic properties: Mk has only simple poles in correspondence with
the exchanged single-trace operators. Denoting the position of the
simple poles in the s-, t- and u-channel as s0, t0, u0, they are:

s0 = 4, 6, . . . , 4k � 2 ,

t0 = 4, 6, . . . , 4k � 2 ,

u0 = 4, 6, . . . , 4k � 2 .

(4.83)

Moreover, the residue at any of the poles must be a polynomial in the
other Mandelstam variable.

3. Asymptotic behavior: Mk should grow at most linearly in the asymp-
totic regime of large Mandelstam variables,

Mk(�s, �t, �u,�, ⌧) ⇠ O(�) , � ! 1 . (4.84)
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4. Superconformal symmetry: Mk can be written in terms an auxiliary
amplitude fMk acted upon by the di↵erence operator b⇥,

Mk = b⇥ � fMk , (4.85)

where the action of b⇥ has been defined in the previous subsection.

The name of the game is to find a function fMk(s, t; �, ⌧) such that all the con-
ditions are simultaneously satisfied. We leave a detailed analysis of this very
constrainted “bootstrap” problem for the future. As in the four-dimensional
case analyzed in Section 4.1 and Section 4.2, we find it very plausible that
this problem has a unique solution (up to overall rescaling).

4.4 Partial Solution for AdS7 ⇥ S
4

In this subsection we give solutions to the algebraic problem defined above
for k = 2, 3. These solutions are obtained from the position space results,
but look much simpler in Mellin space when the prescription (4.85) is imple-
mented.

k = 2

We start from the simplest example of k = 2. In this case, the homogenous
part H2 is a degree-0 polynomial of � and ⌧ . Therefore there is only one
R-symmetry structure in the auxiliary amplitude fM2. The answer is given
by

fM2(s, t; �, ⌧) =
32

n3(s� 6)(s� 4)(t� 6)(t� 4)(ũ� 6)(ũ� 4)
(4.86)

which is manifestly symmetric under the permutation of s, t and ũ.

k = 3

Moving on to the next simplest case of k = 3, we know that H3 is a degree-
one polynomial of � and ⌧ and therefore consists of three terms. The three
R-symmetry monomials �, ⌧ , 1 are in the same orbit under the action of the
crossing symmetry group. Hence, fM3,010 and fM3,001 are related to fM3,100

via (4.73)

fM3,010(s, t) = fM3,100(ũ, t), fM3,001(s, t) = fM3,100(t, s). (4.87)
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Finally, fM3,100 is given by

fM3,100(s, t) =
8(s� 7)

3n3(s� 8)(s� 6)(s� 4)(t� 10)(t� 8)(ũ� 10)(ũ� 8)
,

(4.88)
and the full auxiliary Mellin amplitude is

afM3(s, t; �, ⌧) = afM3,100(s, t) + bfM3,010(s, t) + cfM3,001(s, t) . (4.89)
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Chapter 5

Superconformal Ward
Identities for Mellin
Amplitudes

In the previous chapter we showed how to translate the task of computing
four-point functions into solving an algebraic bootstrap problem. A key step
of this approach is to rewrite the position space solution to the supercon-
formal Ward identity in Mellin space. However, the form of the position
space solution is highly sensitive to the number of spacetime dimensions: in
d = 4, it is simply given by (4.1); in d = 6, though (4.56) is schematically
the same as (4.1), a very complicated di↵erential operator ⌥ (4.57) replaced
the role of the simple factor R (4.2). The situation becomes even worse in
odd spacetime dimensions where non-local di↵erential operators appear in
the solution [37]. These non-local di↵erential operators makes the meaning
of the solution extremely obscure in Mellin space. On the other hand, the
superconformal Ward identity (2.23)

(�@� � ✏↵@↵)G(�,�0;↵,↵0)
��
↵=1/�

= 0 . (5.1)

takes a universal form for d where the dependence on the spacetime dimen-
sion only enters in the factor ✏ = d

2 � 1 in the identity. This motivates us
to translate only the superconformal Ward identity itself into Mellin space.
The upshot of this rewriting is that we obtain a set of di↵erence identities of
the Mellin amplitudes which should be viewed as the Mellin amplitude su-
perconformal Ward identities. We present this d-independent treatment for
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imposing superconformal constraints on Mellin amplitudes in Section 5.1.
Then in Section 5.1.1 we discuss how to use this technique to bootstrap
holographic Mellin amplitudes. We apply this method to a number of ex-
amples in Section 5.2, among which the stress tensor four-point function in
AdS4 ⇥ S

7 is of special interest. The dual theory is a canonical example of
3d SCFT, namely, ABJM theory at k = 1. This correlator was not accessible
using any prior method, and was computed in the first time in 20 years [6]
using the method of this chapter.

5.1 Translating the Position Space Supercon-
formal Ward Identity into Mellin Space

From the Mellin space point of view the superconformal Ward identity (2.23)
seems rather unappealing at first sight. Our ideal scenario is to have factors
in the form of Um

V
n multiplying an inverse Mellin transformation. We can

absorb such factors by shifting the s, t variables and trade them for di↵erence
operators that act on the integrand. However, the variables � and �

0 appear
asymmetrically on the left side of the identity (2.23). If one naively solved �

and � in terms of U , V , one would encounter square roots in these variables,
making how to proceed unclear.

We now o↵er in this section a simple observation. This observation allows
us to obtain relations in the Mellin amplitude from the position space identity
(2.23), and these relations constitute the superconformal Ward identities in
Mellin space. For starters, let us write the di↵erential operator �@� as

�
@

@�
= U

@

@U
+ V

@

@V
� 1

1� �
V

@

@V
. (5.2)

We act this operator on Gconn(U, V ; �, ⌧) =
P

L+M+N=L
�
M
⌧
NGconn,LMN(U, V )

but do not evaluate the action of U@U and V @V on Gconn,LMN(U, V ) at this
stage. For the R-symmetry part, acting with ↵@↵ and then setting ↵ = 1/�
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turn the monomials �i
⌧
j into some simple rational functions

1 ! 0 ,

� !
✓
1

�

◆
↵ ,

⌧ !
✓
1

�

◆
↵
0 � 1

�
,

�
2 !

✓
2

�2

◆
↵
02
, (5.3)

�⌧ !
✓
2� �

�2

◆
↵
02 �

✓
2� �

�2

◆
↵
0
,

⌧
2 !

✓
2(1� �)

�2

◆
↵
02 +

✓
4(1� �)

�2

◆
↵
0 +

✓
2(1� �)

�2

◆
,

. . . . . .

Performing the twist ↵ = 1/� alone on �
i
⌧
j also produces similar rational

functions. We notice that the highest power of ↵ in G is L, as it follows from
the fact that G is a degree-L polynomial of � and ⌧ . It is easy to see that
the action of these operations does not change this degree. This instructs us
to take out a factor (1��)�1

�
�L from (2.23), so that the left side becomes a

degree-(L+1) polynomial of �. Schematically, we can write the new identity
as

f0 + �f1 + �
2
f2 + . . .+ �

L+1
fL+1 = 0 (5.4)

where fi = fi(U, V ;↵0) are functions of the conformal cross ratios U , V and
the untwisted R-symmetry variable ↵

0. Note that an ambiguity exists in
the change of variables (2.22), namely, under the exchange of � $ �

0 the
variables U and V remain the same. Hence by exchanging � with �

0 we get
from (5.4) another copy of the identity for free

f0 + �
0
f1 + �

02
f2 + . . .+ �

0L+1
fL+1 = 0 . (5.5)

Taking the sum of these two identities, we arrive at the following equation

2f0 + (�+ �
0)f1 + (�2 + �

02)f2 + . . .+ (�L+1 + �
0L+1)fL+1 = 0 . (5.6)

Crucially, the appearance of � and �
0 is now symmetrized and each �

n +�
0n

can be rewritten as a finite linear combination of Um
V

n1. After making this

1This is easy to see by induction:

�
n + �

0n = (�n�1 + �
0n�1)(�+ �

0)� ��
0(�n�2 + �

0n�2) . (5.7)
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replacement, we can now exploit the superconformal Ward identity in Mellin
space using elementary manipulations of the inverse Mellin transformation.

Substituting Gconn,LMN(U, V ) with its inverse Mellin representation,

Gconn,LMN (U, V ) =

Z i1

�i1

ds

4⇡i

dt

4⇡i
U

s
2�

✏(k3+k4)
2 +✏L

V
t
2�

✏min{k1+k4,k2+k3}
2

⇥MLMN (s, t)�k1k2k3k4 ,

(5.8)

�k1k2k3k4 ⌘ �[�s

2
+

✏(k1 + k2)

2
]�[�s

2
+

✏(k3 + k4)

2
]�[� t

2
+

✏(k2 + k3)

2
]

⇥�[� t

2
+

✏(k1 + k4)

2
]�[�u

2
+

✏(k1 + k3)

2
]�[�u

2
+

✏(k2 + k4)

2
] ,

(5.9)

the following dictionary then becomes clear

U
@

@U
)


s

2
� ✏(k3 + k4)

2
+ ✏L

�
⇥ , (5.10)

V
@

@V
)


t

2
� ✏min{k1 + k4, k2 + k3}

2

�
⇥ , (5.11)

U
m
V

n ) shift s by �2m and t by �2n. (5.12)

Note the shifts in the third line act on the reduced Mellin amplitude, i.e.,
both the Mellin amplitude and the Gamma functions. It becomes more
convenient if we preserve in each integrand a common factor of Gamma
functions �k1k2k3k4 as defined in (5.9) when we add up the inverse Mellin

transformations. The monomial Um
V

n then becomes an operator \UmV n2

that only acts on the Mellin amplitude in the following way

U
m
V

n ) \UmV n (5.13)

\UmV n �M(s, t) = M(s� 2m, t� 2n)

✓
✏(k1 + k2)� s

2

◆

m

✓
✏(k3 + k4)� s

2

◆

m

⇥
✓
✏(k1 + k4)� t

2

◆

n

✓
✏(k2 + k3)� t

2

◆

n

✓
✏(k1 + k3)� u

2

◆

�m�n

⇥
✓
✏(k2 + k4)� u

2

◆

�m�n

.

(5.14)

Note ��
0 = U and for n = 1, �+ �

0 = U � V + 1.
2This operator should not be confused with the operator \UmV n used in Chapter 4. We

put an underline to distinguish it.
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Here (a)n is the Pochhammer symbol. Since (5.6) is a degree-L polynomial
of ↵0, we get in total L + 1 identities for the Mellin amplitude M(s, t; �, ⌧).
These are the Mellin space superconformal Ward identities.

To close this subsection, let us summarize the procedure for implementing
the superconformal Ward identity in Mellin space:

1. We start with (�@�� ✏↵@↵)G(�,�0;↵,↵0). G(�,�0;↵,↵0) is decomposed
into R-symmetry monomials

P
L+M+N=L

�
M
⌧
NGconn,LMN(U, V ) and �

and ⌧ are related to ↵, ↵0 via (2.22). We write the action of �@� as
(5.2) and perform the action of ↵@↵. The action of U@U and V @V on
Gconn,LMN(U, V ) are not evaluated at this step.

2. We perform the twist ↵ = 1/� and multiply the expression with (1 �
�)�L to make it a polynomial of �.

3. We replace all � with �
0 and add up the two expressions. All the � and

�
0 are then rewritten as polynomials of U and V .

4. We use the inverse Mellin representations of the correlator. This amounts
to replacing each Gconn,LMN with MLMN . There are additional factors
and derivatives of U and V . For U@U and V @V , we replace them with
the factors (5.10) and (5.11) that multiply the Mellin amplitude. For

monomials U
m
V

n, we replace them with the operator \UmV n whose
action on the Mellin amplitude is given by (5.14).

5. We organize the expression by powers of ↵0. All the polynomial co-
e�cients of ↵0 are linear functions of MLMN with shifted arguments,
and they are required to be zero. These equations are the Mellin space
superconformal Ward identities.

5.1.1 Bootstrapping Holographic Mellin Amplitudes

Now we are equipped with the Mellin space superconformal Ward identi-
ties, we can formulate another bootstrap-inspired approach which computes
holographic correlators entirely within the Mellin space. The idea is straight-
forward: we formulate an ansatz for the Mellin amplitude and then solve the
ansatz using superconformal symmetry. As was reviewed in Section 3.1, the
structure of supergravity Mellin amplitudes is very simple. As a function of
the Mandelstam variables s and t, the Mellin amplitude splits into a singu-
lar part and a regular part. The singular part has only simple poles in s,
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t and u, whose locations are determined by the spectrum of the theory and
the cubic coupling selection rules. At each simple pole, the residue has to
be a polynomials of the other independent Mandelstam variable – it is the
linear superposition of Mack polynomials. Because we have in the spectrum
particles with maximal spin two, the degree of such a residue polynomial is
bounded to be two. The regular part is even simpler. It is a linear poly-
nomial of the Mandelstam variables as is required by the consistency with
the flat space limit. Of course each term also depends polynomially on the
R-symmetry variables � and ⌧ , with a degree L determined by the weights
ki of the external operators. Computing the Mellin amplitudes amounts to
fixing the coe�cients in the residues and in the regular part, and the Mellin
space superconformal Ward identities in Section 5.1 help us achieve precisely
that.

Let us now divide the further description of the ansatz into two scenarios,
depending on the number of simple poles in the singular part of the Mellin
amplitude is finite or infinite. The former situation occurs in AdS5 ⇥ S

5

and AdS7 ⇥ S
4. In this case we can use a totally general ansatz: we do

not make any specification of the coe�cients in the residue polynomials and
the regular part, and they are left as unknowns to be solved. When the
four external operators are identical, the Mellin amplitude ansatz is further
required to have crossing symmetry. This is the most general ansatz one
can write down that is compatible with the qualitative information of the
bulk supergravity. Applying and solving the Mellin space superconformal
Ward identities are completely straightforward as it is a finite problem. For
the latter scenario, such as in AdS4 ⇥ S

7 , proceeding with such a generic
ansatz appears to be technically involved because we need infinitely many
coe�cients to parameterize the ansatz. We simplify the problem by using an
ansatz parallel to the ones used in the position space method. To be precise,
we will use the explicit Mellin amplitudes of the exchange Witten diagrams
(but only the singular part) and write the singular part of the ansatz as a
linear combination of such exchange Mellin amplitudes. These amplitudes
are not hard to obtain because it is known that the Mellin amplitude of a
conformal block with the same quantum numbers of the exchanged single-
trace operator has the same pole and same residues. The Mellin amplitude
of conformal blocks can be found in, e.g., [40, 45]. For the regular part, we
will use the same general parameterization as in the former case. Such an
ansatz is general enough to encompass the correct answer, but does not have
as much power to exclude other regions in the space of ansatz as it did for
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AdS5 ⇥ S
5 and AdS7 ⇥ S

4.

5.2 Applications

5.2.1 Stress Tensor Four-Point Functions for AdS5⇥S
5

As a simplest application, we reproduce in this subsection the four-point
function hO2O2O2O2i for IIB supergravity on AdS5 ⇥ S

5. From the selec-
tion rules we know that the only contributing fields in the exchange Witten
diagrams are: the scalar field itself, a vector field with � = 3 and a graviton
field with � = 4. All these fields have coinciding conformal twist ⌧ = 2. The
simple poles in their Mellin amplitudes should truncate to just a single one
at 2. Hence the singular part of the ansatz should consist of the following
terms

Ms +Mt +Mu (5.15)

where

Ms =
X

0  i, j  2,

0  i + j  2

X

0a2

�
(s)
ij;a �

i
⌧
j
t
a

s� 2
, (5.16)

Mt =
X

0  i, j  2,

0  i + j  2

X

0a2

�
(t)
ij;a �

i
⌧
j
u
a

t� 2
, (5.17)

Mu =
X

0  i, j  2,

0  i + j  2

X

0a2

�
(u)
ij;a �

i
⌧
j
s
a

u� 2
, (5.18)

and s + t + u = 8. We should also add to ansatz the following polynomial
term that represents the contact interactions

Mc =
X

0  i, j  2,

0  i + j  2

X

0  a, b  1,

0  a + b  1

µij;ab �
i
⌧
j
s
a
t
b
. (5.19)

The most general ansatz in the supergravity result is therefore

Mansatz = Ms +Mt +Mu +Mc , (5.20)
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and it should satisfy in addition the following crossing equations

Mansatz(s, t; �, ⌧) = ⌧
2Mansatz(t, s; �/⌧, 1/⌧) = �

2Mansatz(u, t; 1/�, ⌧/�) .
(5.21)

We now impose the Mellin space superconformal Ward identities follow-
ing the procedure given in Section 5.1. We obtain three sets of equations of
Mansatz with shifted arguments, as (5.6) is degree-two in ↵

0 and the coe�-
cients of ↵0n must separately vanish. Bringing all terms in each equation to
the minimal common denominator, the numerator is a polynomial in s and
t with coe�cients linearly depending on the unfixed parameters. Requiring
these coe�cients to vanish gives us a set of linear equations.

We solve these equations together with the crossing equations and we
arrive at the following solution

M =C
�(4u� 4t+ 8) + ⌧(4t� 4u+ 8) + (u2 + t

2 � 6u� 6t+ 16)

s� 2

+ C
⌧(�(4u� 4s+ 8) + ⌧(s2 + u

2 � 6s� 6u+ 16) + (4s� 4u+ 8))

t� 2

+ C
�(�(s2 + t

2 � 6s� 6t+ 16) + ⌧(4t� 4s+ 8) + (4s� 4t+ 8))

u� 2
+ C(�s� u�

2 � t⌧
2 + 4(t+ u� 2)�⌧ + 4(s+ u� 2)� + 4(s+ t� 2)⌧)

(5.22)

where C is an unfixed overall coe�cient. This answer agrees with the original
supergravity result [17].

5.2.2 Next-Next-to-Extremal Four-Point Functions for
AdS7 ⇥ S

4

In this section we apply the Mellin space method to compute next-next-to-
extremal correlators for the eleven dimensional supergravity compactified on
AdS7 ⇥ S

4. The extremality of a four-point function is defined by

E = k1 � k2 � k3 � k4 (5.23)

where the ordering of the weights k1 � k2 � k3 � k4 is assumed. R-symmetry
selection rules determine that E is an even integer. When E = 0, 2, the four-
point functions are respectively said to be extremal and next-to-extremal. For
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N = 4 SYM in 4D, such correlators are protected by non-renormalization
theorems [33, 85, 86, 87, 88] and they have the same value as in the free limit
of the theory. For 6D (2,0) theories, the notion of “non-renormalization” is
moot due to the absence of an exactly marginal coupling. However, one can
still argue from the finiteness of the boundary correlator that the supergravity
couplings should vanish as the relevant Witten diagrams are divergent [89].
A regularization procedure needs to be taken, and the end result is that the
correlators computed from supergravity are rational functions of the cross
ratios – the dependence on the cross ratios is similar to that in a generalized
free field theory. The E = 4 case is the first case free of such subtleties
and the four-point function starts to depend on the cross ratios in a more
non-trivial manner. Such next-next-to-extremal correlators will be the focus
of this section. We will take two operators with k3 = k4 = k + 2 and the
other two operators with k1 = n+k, k2 = n�k. The same class of four-point
functions have been studied for IIB AdS5 ⇥ S

5 supergravity in [21] and we
will find that the solution for AdS7 ⇥ S

4 takes a very similar form.
Let us start by writing down an ansatz for next-next-to-extremal corre-

lators for AdS7⇥S
4. From the selection rules of the cubic couplings, we find

that only the following fields in Table 2.2 can be exchanged in the s-channel:
the scalar field s2k+2, the vector field Aµ,2k+2 and the massive symmetric
tensor field 'µ⌫,2k+2. These three fields all have the same conformal twist
⌧ = 4k + 4. The Mellin amplitude should therefore have a leading simple
pole at s = 4k + 4 and a satellite pole at s = 4k + 6. Moreover, since the
maximal spin of the exchanged fields is two, we anticipate that the residues
at these simple poles are degree-two polynomials in the other Mandelstam
variable t. The following terms therefore should be part of the ansatz for the
total Mellin amplitude

Ms(s, t; �, ⌧) =
X

0  i, j  2,

0  i + j  2

X

0a2

�
(s,1)
ij;a �

i
⌧
j
t
a

s� (4k + 4)
+

X

0  i, j  2,

0  i + j  2

X

0a2

�
(s,2)
ij;a �

i
⌧
j
t
a

s� (4k + 6)
.

(5.24)
Notice that in the residues in the above ansatz we have left the dependence
on the R-symmetry variables and t completely arbitrary, apart from the
bounded degrees.

Similarly, for t and u-channel, we also have three types of field exchanges:
s2n, Aµ,2n and 'µ⌫,2n. The three fields have the same conformal twist ⌧ = 2n
and maximal spin two, and therefore lead to simple poles at t = 2n, t = 2n+2,
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u = 2n and u = 2n+2. The residues at these simple poles are also degree-two
polynomials. We therefore further include the following Mt and Mu

Mt(s, t; �, ⌧) =
X

0  i, j  2,

0  i + j  2

X

0a2

�
(t,1)
ij;a �

i
⌧
j
u
a

t� 2n
+

X

0  i, j  2,

0  i + j  2

X

0a2

�
(t,2)
ij;a �

i
⌧
j
u
a

t� (2n+ 2)
,

(5.25)

Mu(s, t; �, ⌧) =
X

0  i, j  2,

0  i + j  2

X

0a2

�
(u,1)
ij;a �

i
⌧
j
s
a

u� 2n
+

X

0  i, j  2,

0  i + j  2

X

0a2

�
(u,2)
ij;a �

i
⌧
j
s
a

u� (2n+ 2)
,

(5.26)
with u = 4(n+ k + 2)� s� t.

This has exhausted all the poles in the Mellin amplitude. Additionally
we should also have the following polynomial piece to account for the contact
interactions

Mc(s, t; �, ⌧) =
X

0  i, j  2,

0  i + j  2

X

0  a, b  1,

0  a + b  1

µij;ab �
i
⌧
j
s
a
t
b
. (5.27)

The full general ansatz is then the sum of the four parts

Mansatz = Ms +Mt +Mu +Mc . (5.28)

Now we impose the Mellin space superconformal Ward identity. Note
Mansatz has finitely many terms and contains only finitely many unknown
parameters. The problem is therefore completely finite and elementary. Solv-
ing these constraints is very straightforward and we find the answer is unique
up to an overall constant. For arbitrary n and k, we find the following solu-
tion

M(s, t; �, ⌧) = M1(s, t) + �
2M�2(s, t) + ⌧

2M⌧2(s, t) + �M�(s, t)

+ ⌧M⌧ (s, t) + �⌧M�⌧ (s, t) ,
(5.29)
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with the R-symmetry partial amplitudes given by

M1(s, t) = �Cn,k
(k + 1)(4k + 2n� t+ 4)(4k � 2n+ t)

8(s� 4k � 4)

� Cn,k

32
(2k + 2n+ 1)(4k + 2n� t+ 4)

+ Cn,k
(2k � 2n+ 3)(4k + 2n� t+ 4)(4k � 2n+ t+ 2)

32(s� 4k � 6)
,

M�2(s, t) = Cn,k
n(4k + 2n� t+ 4)(�4k + 2n+ t� 8)

16(s+ t� 4k � 2n� 8)

� Cn,k

32
(2k + 2n+ 1)(4k + 2n� t+ 4)

� Cn,k
(2k + 1)(4k � 2n� t+ 6)(4k + 2n� t+ 4)

32(s+ t� 4k � 2n� 6)
,

M⌧2(s, t) = �Cn,k
n(s� 4)(4n� s)

16(t� 2n)
� Cn,k

(2k + 1)(s� 2)(4n� s)

32(t� 2n� 2)

� Cn,k

32
(2k + 2n+ 1)(4n� s) ,

(5.30)

M�(s, t) =Cn,k
(k + 1)(4k + 3)(4k + 2n� t+ 4)

4(s� 4k � 4)
� Cn,k

(2k + 1)n(4k + 2n� t+ 4)

8(s+ t� 4k � 2n� 6)

� Cn,k
(k + 1)(2k � 2n+ 3)(4k + 2n� t+ 4)

4(s� 4k � 6)

� Cn,k
n(2n� 1)(4k + 2n� t+ 4)

8(s+ t� 4k � 2n� 8)
+

Cn,k

16
(2k + 2n+ 1)(4k + 2n� t+ 4) ,

M⌧ (s, t) =Cn,k
(k + 1)(4k + 3)(4k � 2n+ t)

4(s� 4k � 4)
+ Cn,k

(2k + 1)n(s� 2)

8(t� 2n� 2)

+ Cn,k
n(2n� 1)(s� 4)

8(t� 2n)
� Cn,k

(k + 1)(2k � 2n+ 3)(4k � 2n+ t+ 2)

4(s� 4k � 6)

+
Cn,k

16
(2(k + n)(4k + s+ t)� 2n+ s+ t� 4)

M�⌧ (s, t) =Cn,k
n(2n� 1)(4n� s)

8(t� 2n)
+ Cn,k

(2k + 1)n(4n� s)

8(t� 2n� 2)

� Cn,k
(2k + 1)n(�4k + 2n+ t� 6)

8(s+ t� 4k � 2n� 6)
� Cn,k

n(2n� 1)(�4k + 2n+ t� 8)

8(s+ t� 4k � 2n� 8)

+
Cn,k

16
(�2s(k + n) + 4n(3k + 3n+ 1)� s) .

(5.31)

The number Cn,k above is an overall normalization that depends on the
value of n, k and cannot be fixed by the symmetry considerations alone.
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This remaining parameter can be however determined by using, e.g., the
three-point function of the three scalar fields.

The next-next-to-extremal four-point Mellin amplitude has a hidden sim-
plicity. Using the prescription from Section 4.3.1, we find that the next-next-
to-extremal Mellin amplitude can be written into the following remarkably
simple one-term expression in terms of the auxiliary Mellin amplitude

fM(s, t) =
Cn,k

(s� 4k � 6)(s� 4k � 4)(t� 2n� 2)(t� 2n)(ũ� 2n� 2)(ũ� 2n)
.

(5.32)
Translating the above result into position space, we find H consists of

only one single D̄-function

H = 64 Cn,kU
2n�2k+1

V
�1
D̄2n+2k+3,2n�2k�1,2k+3,2k+3 . (5.33)

This is very similar to the AdS5 ⇥ S
5 case [22], for which the next-next-to-

extremal four-point functions have H = C̃n,kU
n�k

V
�1
D̄n+k+2,n�k,k+2,k+2 and

C̃n,k is some constant.
When we take the special value of n = 2, k = 0 in the above results,

the four-point function becomes the equal-weight stress-tensor multiplet cor-
relator hO2O2O2O2i. This special case matches precisely our earlier result
(4.86).

5.2.3 Stress Tensor Four-Point Functions for AdS4⇥S
7

In this section, we compute the holographic one-half BPS four-point function
of operators with ki = 2 from eleven dimensional supergravity compactified
on AdS4⇥S

7 at tree-level. The supergravity theory is conjectured to be dual
to an N = 8 SCFT in three dimensions which describes the infrared limit
of the e↵ective theory on a large number N of coincident M2-branes in flat
space. An explicit realization of this e↵ective theory is the ABJM theory
[26] with Chern-Simons level k = 1 and large N . The theory has OSp(4|8)
superconformal symmetry3 which includes the conformal symmetry group
SO(3, 2) and R-symmetry group SO(8) as bosonic subgroups.

The one-half BPS operator OIJ
k=2 is the superconformal primary of the

N = 8 stress-tensor multiplet. It has conformal dimension � = 1 and trans-
forms as the symmetric-traceless representation 35c (the rank-two symmetric

3The full N = 8 superconformal symmetry of k = 1 ABJM theory is not manifest
at the classical level, but an enhancement from N = 6 to N = 8 is anticipated at the
quantum level from string theory arguments.
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traceless product of the 8c) under the SO(8) R-symmetry group. In the bulk
supergravity dual, it corresponds to a scalar field in AdS4 with squared mass
m

2 = �2. From the supergravity selection rules, we find that only three
fields can be exchanged in each channel, namely, the same scalar field itself,
a vector field with dimension � = 2 in the representation 28 and a graviton
field with dimension � = 3 in the singlet representation. However all the
three fields have conformal twist ⌧ = 1, the truncation condition of exchange
Witten diagrams therefore cannot be met and the Mellin amplitude will have
an infinite series of poles. In the position space language, this means that the
“without really trying” method of [36] is no longer e↵ective and the exchange
diagrams can only be expressed as a infinite sum of D-functions.

This property of the exchange diagrams presents some technical challenge
even when we are working directly in Mellin space. Since the series of simple
poles in the three channels do not truncate, we would need infinitely many
parameters to parameterize the residues if we were to work with an ansatz
such as used in the AdS5 and AdS7 cases. We postpone the analysis with
such a general ansatz and take a more restrictive ansatz where the Mellin
amplitudes of the exchange Witten diagrams are used. In total, the ansatz
is a crossing-symmetric sum of the exchange Mellin amplitudes plus contact
Mellin amplitudes. This reduces the variable coe�cients to a finite set, with
three of them tracking the contribution of the scalar, vector and graviton
exchanges, and a few more for the contact diagrams. Such an ansatz is
precisely what was used in the AdS5 and AdS7 position space method in
Section 2.3. Note that the same ansatz for AdS4 does not give us much
mileage in position space because of the di�culty to handle an infinite sum
of D-functions. However, taking advantage of the simple structure of the
Mellin amplitudes, it is possible to obtain a closed form answer by solving
the Mellin space version of the superconformal Ward identities. Let us now
spell out the details.

As mentioned above, our ansatz for the full Mellin amplitude is a sum of
the exchange diagram amplitudes and contact diagram amplitudes

M(s, t; �, ⌧) = Ms-exchange +Mt-exchange +Mu-exchange +Mcontact . (5.34)

The s-channel exchange amplitude Ms-exchange is comprised of the amplitudes
from exchanging three fields

Ms-exchange = �gMgraviton(s, t)+�v(��⌧)Mvector(s, t)+�s(4�+4⌧�1)Mscalar(s, t)
(5.35)
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where the factors 1, (� � ⌧), (4� + 4⌧ � 1) are the R-symmetry polynomials
associated with the irreducible representations of the exchanged fields. The
numbers �g, �v and �s are the unknown coe�cients that need to be fixed.
Generally, the Mellin amplitude of an exchange Witten diagram contains a
singular part which is a sum of simple poles and a regular part which is
a polynomial. As was alluded to before, the singular part of the exchange
Mellin amplitude has the same poles and residues as the Mellin space expres-
sion of an conformal block whose conformal dimension and spin are identical
to those of the exchanged single-trace operator. On the other hand, since we
have a contact part Mcontact in the ansatz, we do not need to keep track of
the polynomial piece in the exchange amplitudes. Such polynomial terms can
just be swept into Mcontact with a redefinition of the parameters. Therefore
we only write down the singular pieces in Mgraviton, Mvector, Mscalar, and
using the expressions in [45] we have

Mgraviton =
1X

n=0

3
p
⇡ cos[n⇡]�[�3

2 � n]

4n!�[12 � n]2

⇥ 4n2 � 8ns+ 8n+ 4s2 + 8st� 20s+ 8t2 � 32t+ 35

s� (2n+ 1)
,

Mvector =
1X

n=0

p
⇡ cos[n⇡]

(1 + 2n)�[12 � n]�[1 + n]

2t+ s� 4

s� (2n+ 1)
,

Mscalar =
1X

n=0

p
⇡ cos[n⇡]

n!�[12 � n]

1

s� (2n+ 1)
.

In the above expressions we have appropriately symmetrized these ampli-
tudes such that the residues in Mgraviton and Mscalar are symmetric under
exchanging t $ u while the residues of Mvector are antisymmetric. Here,
u = 4 � s � t. These symmetry properties follow from the usual four-point
amplitude kinematics. The t-channel and u-channel exchange amplitudes are
related to the s-channel amplitude by crossing symmetry

Mt-exchange(s, t; �, ⌧) = ⌧
2Ms-exchange(t, s; �/⌧, 1/⌧) , (5.36)

Mu-exchange(s, t; �, ⌧) = �
2Ms-exchange(u, t; 1/�, ⌧/�) . (5.37)

For the contact contribution Mcontact, we have the ansatz

Mcontact(s, t; �, ⌧) =
X

0  i, j  2,

0  i + j  2

X

0  a, b  1,

0  a + b  1

µij;ab �
i
⌧
j
s
a
t
b
, (5.38)
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together with the crossing symmetry condition that

Mcontact(s, t; �, ⌧) = ⌧
2Mcontact(t, s; �/⌧, 1/⌧) = �

2Mcontact(u, t; 1/�, ⌧/�) .
(5.39)

The fact that Mcontact has degree two in � and ⌧ is in agreement with the
fact that L = 2, and its linear dependence on s and t is required by the flat
space limit.

We now plug this ansatz into the Mellin space Ward identities. Solving
these identities now becomes a bit nontrivial compared to the previous cases
because we have infinitely many poles. Some observation can be made which
allows us to solve all the coe�cients in two steps. First notice all the poles
of s, t and u at odd integer positions can only come from the exchange part.
This is because the shift operations always shift the arguments by an even
integer amount and the parity of poles are preserved. Requiring those poles
to vanish gives

�v = �4�s , �g =
�s

3
. (5.40)

These values are in agreement with the 3d N = 8 superconformal block [90]4.
To relate to the contact term parameters µij;ab, we need to look at the poles
in the superconformal Ward identities5 at s + t = 4, 6, 8. Such poles come
from the shifted Gamma functions in the reduced Mellin amplitudes. It is
easiest if we first pick a specific n for Mgraviton, Mvector, Mscalar and obtain
the residues. Then we resum in n to get an expression, which needs to be
canceled with the term coming from the contact part Mcontact. Requiring
that and the crossing identity (5.39), we obtain enough equations to solve all
the µij;ab coe�cients with respect to �s. Plugging this solution into Mcontact,

4To see this, let us take the residue of the leading pole at s = 1 and perform the
t-integral. The scalar contributes to the four-point function by �2⇡3

�sU
1
2 g

coll
1,0 (V ). Here

g
coll
�,`(V ) is the collinear block

g
coll
�,`(V ) ⌘ g

(0)
�,`(V ) = (1� V )`2F1

✓
�+ `

2
,
�+ `

2
,�+ `, 1� V

◆
. (5.41)

Similarly, the vector contributes ⇡3

4 (� � ⌧)U
1
2�sg

coll
2,1 (V ) and the graviton contributes

� 1
256

�
3⇡3
�
U

1
2�sg

coll
3,2 (V ). Taking into account the normalization di↵erence, g

there =
(✏)`

4�(2✏)`
g
here, we find the ratio 1 : �1 : 1

4 in (C.1-3) of [90].
5Note that we extract from all terms a common Gamma factor �2[2 � s/2]�2[2 �

t/2]�2[2� u/2].
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we get

Mcontact =
⇡�s

2

�
�s� u�

2 � t⌧
2 + 4(t+ u)�⌧ + 4(s+ u)� + 4(s+ t)⌧

�
.

(5.42)
Now let us fix the last coe�cient �s. In [91] the three-point functions of

the half-BPS operators were computed from supergravity

hOI1
2 OI2

2 OI3
2 i = 21/4

p
3⇡

N3/4
⇥ hCI1C

I2C
I3i

x2
12x

2
13x

2
23

(5.43)

where hCI1C
I2C

I3i is some R-symmetry tensor structure. In the small U
and small V limit, the s-channel exchange of operator O2 contributes to the
four-point function by (see Appendix B of [5] for relating the C-symbols to
the R-symmetry polynomials)

1

2

 
21/4

p
3⇡

N3/4

!2

(� + ⌧ � 1

4
) U1/2

g
coll
1,0 (V ) + . . . . (5.44)

On the other hand, closing the contours in the inverse Mellin representation
gives the following leading contribution in the (�+⌧� 1

4) R-symmetry channel

�2⇡3
�s (� + ⌧ � 1

4
)⇥ U

1/2
g
coll
1,0 (V ) + . . . . (5.45)

Matching these two expressions gives

�s = � 3
p
2

4⇡2N3/2
. (5.46)

Analysis of Anomalous Dimension

In [92, 93, 94], it was observed that supergravity duals saturate the conformal
bootstrap bounds for CFTs with maximal supersymmetry in four and six
dimensions. A curious question therefore is if the same phenomenon persists
also in three dimensions. In this subsection, we extract CFT data from
the Mellin amplitude. We focus here on the anomalous dimension of the
R-symmetry singlet scalar double-trace operators [O2O2]�=2,`=0,singlet. We
compare the analytic result with the bound obtained from the numerical
bootstrap. We find that the bootstrap estimation of the bound on the 1/CT

slope at large CT is reasonably close to the supergravity prediction.
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Let us start with the leading disconnect piece of the four-point correlator

Gdisc = 1 + �
2
U +

⌧
2
U

V
. (5.47)

Decomposing this correlator into di↵erent R-symmetry channels requires the
use of the following SO(8) R-symmetry polynomials which form a basis of
degree-two polynomials

1 : 1 ,

28 : � � ⌧ ,

35c : � + ⌧ � 1
4 ,

300 : �
2 � 2�⌧ + ⌧

2 � 1
3� � 1

3⌧ + 1
21 ,

567c : �
2 � ⌧

2 � 2
5� + 2

5⌧ ,

294c : �
2 + 4�⌧ � 2�

3 + ⌧
2 � 2⌧

3 + 1
15 . (5.48)

The projection of the disconnect correlator onto the R-symmetry singlet
channel gives

Gdisc, singlet = 1 +
U(1 + V )

35V
. (5.49)

The first term of this singlet sector correlator is due to the exchange of the
identity operator. The second term admits a decomposition into conformal
blocks of double-trace operators [O2O2]�=2+2n+`,`,singlet of the schematic form
: OIJ

2 ⇤
n
@
`OIJ

2 : with ` even and their R-symmetry singlet superconformal
descendants. For double-trace operators with � = 2, ` = 0, there is one
unique such operator, namely, [O2O2]�=2,`=0,singlet. We can easily extract its
zeroth order squared OPE coe�cient from the above disconnected correlator
and we get

a
(0)
n=0,`=0 =

2

35
. (5.50)

In the small U and small V limit, the anomalous dimension �
(1)
n=0,`=0 of this

double-trace operator appears inside the term proportional to U logU of the
four-point function

Gsinglet(U, V ) = A(V )U log(U) + . . . ,

A(V ) =
1

2
a
(0)
n=0,`=0�

(1)
n=0,`=0g

coll
2,0 (V ) +

1X

`�2, even

X

i

1

2
a
(0)
n=0,`;i�

(1)
n=0,`;ig

coll
2+`,`(V ) .

(5.51)
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The U log(U) term comes from the residue at the double pole s = 2 in the
inverse Mellin transformation, and the function A(V ) is further obtained
by closing the contour of t. To extract the ` = 0 contribution, we use the
following orthogonality property of 2F1 [95],

Fa(z) ⌘ 2F1(a, a; 2a; z) ,I

z=0

dz

2⇡i
z
m�m0

�1
F�+m(z)F1���m0(z) = �m,m0 .

(5.52)

Evaluating the integrals, we find that the contact part of the Mellin amplitude
contributes to a

(0)
n=0,`=0�

(1)
n=0,`=0 by �36⇡

35 �s and the exchange part contributes
to it by 106⇡

35 �s. The total anomalous dimension therefore is

�
(0)
n=0,`=0 = 35⇡�s = �1120

⇡2

1

CT
⇡ �113.5

1

CT
(5.53)

where CT = 64
p
2

3⇡ N
3/2 in the convention of [90]. Supergravity hence yields

the following large CT expansion for the conformal dimensions of the double-
trace operators

�0 ⇡ 2� 113.5
1

CT
+ . . . . (5.54)

In [90], a numerical upper bound for the spin zero operator was reported,
�⇤

0 & 2.03 � 94.6/CT + . . .. We see that this bound is compatible with the
conjecture that supergravity should saturate the bootstrap bound, although
the di↵erence is still quite significant. This discrepancy can be partially
explained by the slow convergence in the numerics for the scalar sector.6

Indeed, with more computational power a better estimation of the bound is
[96]

�⇤

0 & 2.01� 104/CT + . . . , (5.55)

and shows improved agreement with the supergravity result.
Here for simplicity, we computed only the scalar singlet double-trace op-

erator with the lowest conformal dimension. A more systematic analysis that
extracts the low-lying CFT data from our amplitude was recently performed
in [97]. It was found that for half and quarter-BPS operators, the correction
to the OPE coe�cients agree precisely with the localization result [96]. OPE
coe�cients for other BPS and anomalous dimensions for non-BPS operators
were compared with the 3d N = 8 bootstrap results at large central charge
and matched nicely with the numerics.

6The same phenomenon was observed in [92, 93].
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Chapter 6

Conclusions and Open
Questions

Computing boundary correlation functions from AdS/CFT used to be a no-
toriously di�cult task, with only a handful results obtained in the literature.
These holographic correlators, despite being very important observables, re-
mained very mysterious twenty years after the birth of AdS/CFT. In this
thesis we started developing a deeper understanding of these objects. We
presented three complementary approaches, which allow us to e�ciently com-
pute holographic correlators in a number of theories in di↵erent spacetime
dimensions. Our novel results not only showed that holographic correlators
are much simpler than previously understood, but also revealed intricate
structures and principles in terms of which these correlators are organized.
It should be apparent that there is a great deal more to learn about this
subject. The investigations of this thesis open many interesting questions for
future studies. We conclude with a list of natural next steps, some of which
we are currently pursuing.

• The remarkable simplicity of the general formula (4.43) for all one-half
BPS four-point functions in N = 4 SYM is a welcome surprise. But
does this succinct auxiliary object have an intrinsic physical meaning?
It is also interesting to see how our results of four dimensional N = 4
SYM at infinite ’t Hooft coupling can be connected to the integrability
program1.

1See, e.g., [98, 99, 100] for recent work on four-point functions.
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• In Chapter 4, we reformulated the task of computing holographic four-
point functions into solving an algebraic bootstrap problem. How do we
generalize this approach to set up a problem for higher-point correlation
functions?

• Alternatively, we may ask if there is a more constructive approach
to reproduce our results, based on on-shell recursion relations (à la

BCFW [101]). Such an approach if exists will lend itself more easily to
the generalization to n-point functions.

• For correlators in the AdS4⇥S
7 background, a curious question remains

whether the Mellin amplitude also admits some hidden structure which
allows them to be repackaged in terms of some simpler auxiliary ampli-
tude. The answer to this question is not obvious from the position space
solution to the superconformal Ward identity because we do not know
how to interpret the non-local di↵erential operators in Mellin space. In
this dissertation we have only considered the lowest KK modes. The
natural next step is to extend our results to four-point functions of
massive KK modes, in particular, the next-next-to-extremal correla-
tors. It might be possible to spot these structures directly from the
Mellin amplitudes themselves.

• In this dissertation, we focused on models with maximal supercon-
formal symmetry. The techniques from Chapter 5 can also be adapted
to consider backgrounds with less superconformal symmetry, e.g., eight
Poincaré supercharges [7]. The computation of one-half BPS four-point
correlators in such backgrounds was explored in [7] for two interesting
models, namely, the Seiberg theories in five dimensions [102] and E-
string theories in six dimensions [103, 104]. Both theories admit ap-
propriate limit in which they can be approximated by bulk supergravity
theories. We focused in [7] on the correlators involving only massless
modes. It would be interesting to further study massive correlators. It
would also be interesting to apply the techniques to other theories in
other spacetime dimensions, e.g., 4d N = 2 theories.
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Appendix A

Formulae for Exchange Witten
Diagrams

We are interested in here the case where the exchange diagrams truncate to
a finite number of D-functions, as a result of the conspiracy of the spectrum
and the space-time dimension. A simple general method for calculating such
exchange diagrams in AdSd+1 was found [36]. We collect in this Appendix
the relevant formulae needed in the computation of four-point function of
identical scalars. The external operators have conformal dimension � and
the exchanged operator conformal dimension �.

Scalar exchanges

S(x1, x2, x3, x4) =
��1X

k=�/2

ak|x12|�2�+2k
Dk,k,�,� , (A.1)

where

ak�1 =
(k � �

2)(k � d
2 +

�
2)

(k � 1)2
ak (A.2)

and

a��1 =
1

4(�� 1)2
. (A.3)
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Vector exchanges

V (x1, x2, x3, x4) =
kmaxX

k=kmin

|x12|�2�+2k
ak�

✓
x24

2
Dk,k+1,�,�+1

+ x13
2
Dk+1,k,�+1,� � x23

2
Dk,k+1�+1,� � x14

2
Dk+1,k,�,�+1

◆
,

(A.4)

where

kmin =
d� 2

4
+

1

4

p
(d� 2)2 + 4(� � 1)(� � d+ 1) ,

kmax = �� 1 ,

ak�1 =
2k(2k + 2� d)� (� � 1)(� � d+ 1)

4(k � 1)k
ak ,

a��1 =
1

2(�� 1)
.

(A.5)

Graviton exchanges

G(x1, x2, x3, x4) =
kmaxX

k=kmin

x12
�2�+2k

ak

✓
(�2 +

1

d� 1
�(�� d))Dk,k,�,�

� 2�2
�
x13

2
Dk+1,k,�+1,� + x14

2
Dk+1,k,�,�+1

�

+ 4�2
x13

2
x14

2
Dk+2,k,�+1,�+1

◆
,

(A.6)

where

kmin =
d

2
� 1 ,

kmax = �� 1 ,

ak�1 =
k + 1� d

2

k � 1
ak ,

a��1 = � �

2(�� 1)
.

(A.7)
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Massive symmetric tensor exchanges

The Witten diagrams for massive symmetric tensor exchange were worked
out in [18] for the general case1 of AdSd, and applied to the AdS5 case. We
fixed a small error in [18], which only a↵ects the results for d 6= 5 and thus
leaves the conclusions of [18] unaltered. For future reference, we reproduce
the general calculation here. Due to the complexity of the explicit form of
the general solution, we will not present here the answer as a sum of D-
functions. Instead we will break down the evaluation into a few parts and
give the prescription of how to assemble them into a sum of D-functions.

The four-point amplitude T (x1, x2, x3, x4) due to the exchange of a mas-
sive symmetric tensor of dimension � is

T (x1, x2, x3, x4) =

Z

AdS

dwAµ⌫(w, x1, x2)T
µ⌫(x3, x4, w) (A.8)

where

Tµ⌫ = @µK�(x3)@⌫K�(x4)�
gµ⌫

2

�
@⇢K�(x3)@⇢K�(x4)

�

+
gµ⌫

4

�
(2�(�� d+ 1)� f)K�(x3)K�(x4)

�
.

(A.9)

Here f = �(� � d+ 1) is the m
2 of the exchanged massive tensor and

Kn(xi) =

✓
w0

(w � x)2

◆n

(A.10)

is the scalar bulk-to-boundary propagator. By conformal inversion and trans-
lation Aµ⌫ can be rewritten as

Aµ⌫(w, 0, x) =
1

x2�w4
Jµ�J⌫⇢I�⇢(w

0 � x
0) , (A.11)

with w
0

µ = wµ

w2 , x0

µ = xµ

x2 . The ansatz is

Iµ⌫(w) = gµ⌫h(t) + PµP⌫�(t) + OµO⌫X(t) + O(µP⌫)Y (t) . (A.12)

1For easier comparison with the equations of [18], in this subsection we change our
conventions such that d is the bulk dimension. In this subsection and in this subsection
only, we are working in AdSd rather than in AdSd+1.
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For any scalar function b(t),

OµO⌫b(t) =
2wµw⌫

w4
tb

0(t) + 6(Pµ �
wµ

w2
)(P⌫ �

w⌫

w2
)tb0(t)

+ 4(Pµ �
wµ

w2
)(P⌫ �

w⌫

w2
)t2b00(t)� 2gµ⌫tb

0(t) ,
(A.13)

O(µP⌫)b(t) = 2(PµP⌫ � gµ⌫)b(t) + 2(2PµP⌫ �
Pµw⌫ + P⌫wµ

w2
)tb0(t) . (A.14)

Here, as standard in the literature, we have denoted

Pµ =
�0µ

w0
, t =

(w0)2

w2
. (A.15)

The functions h(t), �(t), X(t), Y (t) are subject to the following set of equa-
tions,

h(t) = � 1

d� 2
�(t) +

f

d� 2
X(t) , (A.16)

Y (t) = a+
1

2f
(4t(t� 1)�0(t) + (2d� 6)�(t) + 2�t

�) , (A.17)

X(t) =
1

2(d� 1)f(d+ f � 2)

✓
2a(d� 2)(2d� 3)f +

⇥
2(d� 3)(d� 2)2 + df

⇤
�(t)

+ (d� 2)


t
�(�f + 2(��2 +�(d� 2) + 2�2

t)) + 2t(2t+ d� 3)(4t� 3)�0(t)

+ 4t2(t� 1)(2t� 1)�00(t)

�◆
,

(A.18)

4t2(t�1)�00(t)+(12t2+(2d�14)t)�0(t)+(f+2d�6)�(t)+2fa+2�(�+1)t� = 0 ,

(A.19)
where a is an integration constant that will cancel out when we substitute
the solution into the ansatz for Iµ⌫ . These equations come from the action of
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the modified Ricci operator Wµ⌫
⇢�2 on Aµ⌫ and equating terms of the same

structure. We omitted the tedious algebra here.
We start from the last equation and look for a polynomial solution for

�(t). As we will see shortly, a polynomial solution will lead to a truncation
of the exchange diagram to finitely many D-functions. We find

�(t) = � 2a�(� � d+ 1)

(� � 2)(� � d+ 3)
+

kmaxX

k=kmin

akt
k
,

kmin =
� � 2

2
,

kmax = �� 1 ,

ak�1 =
(k + 3�d+�

2 )(1 + k � �
2)

(k � 1)(k + 1)
ak ,

a��1 = � �

2�� 1
.

(A.21)

For the polynomial solution to exist, kmax � kmin = � � �/2 must be an
non-negative integer. When 2� = � � 2, which is the extremal case, we see
the polynomial solution will stop from existing.

After obtaining the polynomial solution for �(t), we can easily solve out
h(t), X(t), Y (t) from the rest three equations. And it is easy to see Iµ⌫(t)
contains only finitely many terms of the following four types

gµ⌫t
n
,

Pµw⌫

w2
t
n
,

wµw⌫

w4
t
n
, PµP⌫t

n
. (A.22)

We can get Aµ⌫ from Iµ⌫(w0 � x
0) with the following substitutions:

P
0

⌫

Jµ⌫

w2
! Rµ ⌘ Pµ � 2

(w � x1)µ
(w � x1)2

,

Jµ⌫

w2

(w0 � x
0)µ

(w0 � x0)2
! Qµ ⌘ �(w � x1)µ

(w � x1)2
+

(w � x2)µ
(w � x2)2

,

Jµ⇢

w2
g
0

⇢�

J�⌫

w2
! gµ⌫ , t

0n ! x
2n
12Kn(x1)Kn(x2) .

(A.23)

2There is an error in (E.4) of [18] that must be fixed in order to generalize to arbitrary
d. The correct equation is [105]

Wµ⌫
⇢�
�⇢� = �O⇢O

⇢
�µ⌫+O⌫O

⇢
�⇢µ+O⌫O

⇢
�⇢⌫�OµO

⌫
�
⇢
⇢�((2�f)�µ⌫+

2d� 4 + f

2� d
gµ⌫�

⇢
⇢)

(A.20)
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The last step is to contract Aµ⌫ with Tµ⌫ . We list below the following handy
contraction formulae,

QµQµ = x
2
12K1(x1)K1(x2) ,

Qµ@µK�(xi) = �K�+1(xi)(�x
2
1iK1(x1) + x

2
2iK1(x2)) ,

RµRµ = 1 ,

Rµ@µK�(xi) = �(K�(xi)� 2x2
1iK1(x1)K�+1(xi)) ,

RµQµ = x
2
12K1(x1)K1(x2) .

(A.24)

The above derivation amounts to an algorithm to write the requisite exchange
diagrams as a sum of D-function. The explicit final result is too long to be
reproduced here.
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Appendix B

Simplification in the Contact
Diagrams

In this Appendix we show that the zero-derivative contact vertex can be
absorbed into the two-derivative ones when the dimension of external scalar
particle does not equal the spacetime dimension of the boundary theory.

A zero-derivative contact vertex takes the form of

V0�@ = C↵1↵2↵3↵4

Z

AdSd+1

dXs
↵1(X)s↵2(X)s↵3(X)s↵4(X) , (B.1)

while a two-derivative contact vertex is

V2�@ = S↵1↵2↵3↵4

Z

AdSd+1

dXOs
↵1(X)Os↵2(X)s↵3(X)s↵4(X) . (B.2)

Here ↵i collectively denotes the R-symmetry index of ith field s.
Following the standard procedure in AdS supergravity calculation, we

substitute in the on-shell value of scalar field

s
↵(X) =

Z

Rd

dPK�(X,P )s↵(P ) (B.3)

so that it is determined by its boundary value s↵(P ). Then the two types of
contact vertices become

V0�@ = C↵1↵2↵3↵4

Z

AdSd+1

dX

Z

Rd

Y
dPi

⇥K�(X,P1)K�(X,P2)K�(X,P3)K�(X,P4)s
↵1(P1)s

↵2(P2)s
↵3(P3)s

↵4(P4) ,

(B.4)
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V2�@ = S↵1↵2↵3↵4

Z

AdSd+1

dX

Z

Rd

Y
dPi s

↵1(P1)s
↵2(P2)s

↵3(P3)s
↵4(P4)

⇥5K�(X,P1)5K�(X,P2)K�(X,P3)K�(X,P4) .

(B.5)

Because the external fields are identical, C↵1↵2↵3↵4 is totally symmetric while
S↵1↵2↵3↵4 is only required to be symmetric under ↵1 $ ↵2, ↵3 $ ↵4 and
(↵1↵2) $ (↵3↵4). This in particular means that the totally symmetric
C↵1↵2↵3↵4 can be a S↵1↵2↵3↵4 . Let us see what the consequence is if we take
S↵1↵2↵3↵4 = C↵1↵2↵3↵4 ,

V2�@ = C↵1↵2↵3↵4

Z
dX

Z Y
dPiOK1OK2K3K4s

↵1s
↵2s

↵3s
↵4

=
1

6
C↵1↵2↵3↵4

Z
dX

Z Y
dPi s

↵1s
↵2s

↵3s
↵4

⇥(OK1OK2K3K4 + OK1K2OK3K4 + OK1K2K3OK4

+K1OK2OK3K4 +K1OK2K3OK4 +K1K2OK3OK4)

(B.6)

Here Ki ⌘ K�(Pi) and we have used the total symmetry of C↵1↵2↵3↵4 to
symmetrize the expression. If we now perform the AdS integral first, each
term can be written as a sum of D-functions. For example
Z

AdSd+1

dXOK1OK2K3K4 = �2(D�,�,�,� � 2x12
2
D�+1,�+1,�,�) . (B.7)

The two-derivative vertex then becomes

V2�@ =
�2

6
C↵1↵2↵3↵4

Z Y
dPis

↵1s
↵2s

↵3s
↵4 ⇥ (6D�,�,�,� � 2x12

2
D�+1,�+1,�,�

� 2x13
2
D�+1,�,�+1,� � 2x14

2
D�+1,�,�,�+1 � 2x23

2
D�,�+1,�+1,�

� 2x24
2
D�,�+1,�,�+1 � 2x34

2
D�,�,�+1,�+1) .

(B.8)

Using the identity

(2�� d/2)

�
D�,�,�,� = x

2
14D�+1,�,�,�+1+x

2
24D�,�+1,�,�+1+x

2
34D�,�,�+1,�+1 ,

(B.9)
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we simplify the expression to

V2�@ =
�2

6
C↵1↵2↵3↵4

Z Y
dPis

↵1s
↵2s

↵3s
↵4(6D�,�,�,� � 2(4�� d)

�
D�,�,�,�)

=
�(d��)

3
C↵1↵2↵3↵4

Z Y
dPis

↵1s
↵2s

↵3s
↵4D�,�,�,�

=
�(d��)

3
V0�@ .

(B.10)

We have therefore proved that when � 6= d, we can absorb the contribution
from zero-derivative contact vertices into the two-derivative ones.
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Appendix C

k = 2 : A Check of the
Domain-Pinching Mechanism

We computed the k = 2 correlator from supergravity, using the position
space method of Section 2.3. We found

Gsugra
conn (U, V ;�, ⌧) = �

2U

N2V
⇥

✓
� �⌧D̄3,2,1,2U

2 + ⌧D̄3,2,1,2U
2 + V �D̄3,2,2,1U

2

�V �⌧D̄3,2,2,1U
2 + V �2D̄3,3,2,2U

2 + V ⌧2D̄3,3,2,2U
2 + V D̄3,3,2,2U

2 � 4V �D̄3,3,2,2U
2

�4V ⌧D̄3,3,2,2U
2 � 2V �⌧D̄3,3,2,2U

2 + 2⌧2D̄2,1,1,2U � 2�⌧D̄2,1,1,2U � 2⌧D̄2,1,1,2U

+2V �2D̄2,1,2,1U � 2V �D̄2,1,2,1U � 2V �⌧D̄2,1,2,1U � 2⌧2D̄2,1,2,3U � �⌧D̄2,1,2,3U

+⌧D̄2,1,2,3U � 2V �2D̄2,1,3,2U + V �D̄2,1,3,2U � V �⌧D̄2,1,3,2U + �⌧D̄2,2,1,3U

�⌧D̄2,2,1,3U � 6V �2D̄2,2,2,2U � 6V ⌧2D̄2,2,2,2U � 6V D̄2,2,2,2U + 20V �D̄2,2,2,2U

+20V ⌧D̄2,2,2,2U + 20V �⌧D̄2,2,2,2U � V 2�D̄2,2,3,1U + V 2�⌧D̄2,2,3,1U

+V �2D̄2,2,3,3U + V ⌧2D̄2,2,3,3U + V D̄2,2,3,3U � 4V �D̄2,2,3,3U � 4V ⌧D̄2,2,3,3U

�2V �⌧D̄2,2,3,3U + V �2D̄2,3,2,3U + V ⌧2D̄2,3,2,3U + V D̄2,3,2,3U � 4V �D̄2,3,2,3U

�2V ⌧D̄2,3,2,3U � 4V �⌧D̄2,3,2,3U + V 2D̄2,3,3,2U + V 2�2D̄2,3,3,2U + V 2⌧2D̄2,3,3,2U

�2V 2�D̄2,3,3,2U � 4V 2⌧D̄2,3,3,2U � 4V 2�⌧D̄2,3,3,2U � 2V �2D̄3,1,2,2U

�2⌧2D̄3,1,2,2U � V �D̄3,1,2,2U + V �⌧D̄3,1,2,2U + �⌧D̄3,1,2,2U

�⌧D̄3,1,2,2U + 2V �2D̄3,1,3,3U + 2⌧2D̄3,1,3,3U + V �2D̄3,2,2,3U + V ⌧2D̄3,2,2,3U

+V D̄3,2,2,3U � 2V �D̄3,2,2,3U � 4V ⌧D̄3,2,2,3U � 4V �⌧D̄3,2,2,3U + V �2D̄3,2,3,2U

+V ⌧2D̄3,2,3,2U + V D̄3,2,3,2U � 4V �D̄3,2,3,2U � 2V ⌧D̄3,2,3,2U � 4V �⌧D̄3,2,3,2U

+2V D̄1,1,2,2 � 2V �D̄1,1,2,2 � 2V ⌧D̄1,1,2,2 + V �D̄1,2,2,3 � V ⌧D̄1,2,2,3

�V 2�D̄1,2,3,2 + V 2⌧D̄1,2,3,2 � 2V D̄2,1,2,3 � V �D̄2,1,2,3 + V ⌧D̄2,1,2,3

�2V D̄2,1,3,2 + V �D̄2,1,3,2 � V ⌧D̄2,1,3,2 + 2V D̄3,1,3,3

◆
.

(C.1)

We can get the Mellin transform of Gsugra,conn(U, V ; �, ⌧) by Mellin-transforming
each D̄-function in Gsugra,conn. Formally, the transformation reads

M(s, t;�, ⌧) =

Z
1

0
dUdV U

�s/2�1
V

�t/2+2�1Gsugra,conn(U, V ;�, ⌧) , (C.2)
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but notice each D̄-function may come with a di↵erent fundamental domain
of s and t in which the integrals converge. These fundamental domains
are defined by the positivity condition of the Gamma function arguments.
Although no ambiguity arises when analytically continue the Mellin transfor-
mation outside this domain due to the absence of branch cuts, it is imperative
to have the knowledge of the fundamental domain as the contour needs to
be placed inside the fundamental domain in order to reproduce precisely the
D̄-function via the inverse Mellin-transformation. To keep track of this in-
formation, in the following expression we simply keep the Gamma functions
from each D̄-function, and the domain information can be extracted by re-
quiring that the arguments of the Gamma functions have positive real part.
With this proviso, the reduced Mellin amplitude reads
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. (C.3)

We can use this example to illustrate how the free field correlator Gfree,conn

arises when one takes the inverse Mellin transform by the “contour pinch-
ing mechanism” described in Section 4.1.3. We will compare the expression
that arises directly from the explicit supergravity calculation and the ex-
pression in the split form (4.1), both written as inverse Mellin transforma-
tions. Each summand in (C.3) contains a common Gamma function factor
�[2 � s

2 ]�[2 � t
2 ]�[

s+t�4
2 ] which sets common bounds for the boundaries of

all the fundamental domains – the real parts of s and t must be inside the
big black-framed triangle in Figure. C.1. A closer look shows that some
the summands in (C.3) have smaller domains. Imposing positivity of the
rest of the Gamma functions in each term shows that there are four types of
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domains: the red {(2, 4), (4, 2), (4, 4)}, green {(2, 2), (4, 0), (4, 2)} and orange
{(0, 4), (2, 2), (2, 4)} triangles of size two (where by size we mean the length
of its projection onto the <(s) axis or <(t) axis) and the bigger grey triangle
{(0, 4), (4, 0), (4, 4)} of size four.

Figure C.1: The fundamental domains for the “unmassaged” supergravity
result.

Now we take a look at the other form of the result where it has been split
into two parts,

Gconn = Gfree,conn +RH . (C.4)

The factor R was introduced before and we repeat here for reader’s conve-
nience,

R = ⌧1+(1��� ⌧)V +(�⌧ ��⌧ + ⌧
2)U +(�2����⌧)UV +�V

2+�⌧U
2
.

(C.5)
The first term Gfree,conn is the connected free field four-point function, which
can be computed by Wick contractions,

Gfree,conn =
4

N2

U

V
(⌧ + V � + U�⌧) . (C.6)

The function H was obtained in [106],

H = � 4

N2
U

2
D̄2422 . (C.7)
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We write H as an inverse Mellin transform,

H = � 4

N2
⇥1

4

Z

C

dsdtU
s/2

V
t/2�2�[2�s

2
]�[1�s

2
]�[2� t

2
]�[1� t

2
]�[

s+ t

2
�1]�[

s+ t

2
] ,

(C.8)
where C is associated with a point inside the fundamental domain

(s0, t0) 2 D = {(s0, t0)|<(s) < 2,<(t) < 2,<(s) + <(t) > 2} , (C.9)

represented by the yellow size-two triangle in Figure C.2. When multiplied
by R, this domain will lead to six di↵erent domains generated by the six
di↵erent shifts in R, namely, 1, U , V , UV , U2, V 2. They are the six colored
triangles1 in Figure C.2.

Figure C.2: The fundamental domains for the Mellin transform of RH.

Having stated the results for the two sides of (C.4) (the “unmassaged”
lhs, whose Mellin transform is given by (C.3), and the “massaged” rhs, where
the Mellin transform of H is given by (C.8)), we will now try to match them.
Compared to the supergravity answer, there are three more size-two triangles
on the right side. They are in the colors of yellow, pink and blue, and are

1In addition to the previously defined red, green, orange triangles, there are also size-
two pink {(0, 6), (2, 4), (2, 6)}, yellow {(0, 2), (2, 0), (2, 2)} and blue {(4, 2), (6, 0), (6, 2)}
triangles.
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respectively due to the shifts caused by the terms ⌧ , V 2
� and U

2
�⌧ . Using

the regularization procedure we introduced in Section 4.1.3, they can be
eliminated by combining with terms from the other triangles that we want
to keep. Let us now describe in detail how this can be done.

We first pay attention to the terms multiplied by ⌧ in R. We will combine
it with terms multiplied by �⌧V and �⌧U from R. Naively the three shifted
domains will not overlap. Under the regularization, these three domains grow
a small overlap and allows us to add the integrands once the contours have
all been moved there

⌧(1� V � U)H = � ⌧

N2

Z

C(2,2),✏

dsdtU
s/2

V
t/2�2 ⇥


st� 4

2
+

s+ t� 3

2
✏+

✏
2

4

�

⇥�[2� s

2
]�[1� s

2
]�[2� t

2
]�[1� t

2
]�[

s+ t+ ✏

2
� 2]�[

s+ t+ ✏

2
� 1] .

(C.10)

Here C(2,2),✏ denotes that we put the contour inside the size-✏ triangle (not
shown in the picture) at (2, 2) shared by these three triangles. We now
analyze the terms in this integral.

The ✏
1 term is the same integral as the one that we have encountered in

the proof of the identity. It is evaluated to give

�⌧
4

N2
UV

�1
. (C.11)

The ✏
2 term is easily seen to be zero. For the ✏

0 term, we rewrite it as

st� 4

2
=

1

2
(s� 2)(t� 2) + (s� 2) + (t� 2) . (C.12)

The point of this rewriting is that these zeros of (s � 2) and (t � 2) will
cancel the same poles in the Gamma functions, such that one is allowed to
“open up the boundaries” to enter a bigger domain. For example, consider
the above term (s�2). Its contour was originally placed at the size-✏ domain
at (2, 2) but now it can be moved into size-two green triangle because (s�2)
cancels the simple pole at s = 2 from �[1 � s

2 ]. Similarly the domain of the
1
2(s � 2)(t � 2) term can be extended to the size-four grey triangle and the
(t� 2) term extended to the size-two orange triangle with the same reason.

On the other hand, for the �V 2 triangle, we will combine it into �(�V +
V

2 � UV )H. The goal of splitting the O(✏0) term here is to open up the
boundaries into the orange, red and grey triangle and from the ✏

1 term one
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will get a monomial ��
4
N2U . For the �⌧U

2 triangle, one combines into
�⌧(�U + U

2 � UV )H. The ✏ term from the rewriting generates a mono-
mial ��⌧

4
N2U

2
V

�1. Already, collecting these monomials, one get �Gfree,conn,
canceling precisely the free field part in the split formula.

To carry out the rest of the check, it is simplest to check by gathering
terms with the same R-symmetry monomial. In the p = 2 case one has six
R-symmetry monomials and one can divide them into two groups: first check
1, �2 and ⌧

2, then ⌧ , �, �⌧ . In fact, checking just one term in each class
is enough, because both the supergravity result and the result written in a
split form have crossing symmetry. These two classes of monomials form
two orbits under the S3 crossing symmetry group. One will need also to
use the above trick of using zeros to open up boundaries (or the opposite,
use poles to close). But the here one will find it is only necessary to shrink
or expand between the size-four grey triangle and a size-two orange, red,
green triangles. Because the manipulation is from a finite-size domain to
another finite-size domain, the contour will always have room to escape and
one will never get additional terms from the “domain-pinching” mechanism.
We performed this explicit check and found a perfect match.
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Appendix D

AdS7 ⇥ S
4 Four-Point Functions

and the Wn!1 algebra

Using the position space method, we computed in Section 2.3.1 the four-
point functions for AdS7 ⇥ S

4 with k = 2 and k = 3. The results can be
massaged into a form that is manifestly consistent with the solution of the
superconformal Ward identity (4.56).

For k = 2, the result can be written as

A2 =
�⌧U

4

n3V 2
+

�U
2

n3
+

⌧U
2

n3V 2
+⌥ �

✓
U

5

2n3V
D̄7333

◆
(D.1)

where the di↵erential operator ⌥ was defined in (4.57). Upon performing the
chiral algebra twist, we get a holomorphic correlator,

A2(�,�
0; 1/�0

, 1/�0) =
2�2((�� 1)�+ 1)

n3(�� 1)2
. (D.2)

Similarly, for k = 3 the answer can be written as

A3 = F3 +⌥ �H3 . (D.3)

Here F3,conn is a simple rational function of the cross ratios,

F3,conn =
9

4n3

✓
�⌧

2
U

6

V 4
+

�
2
⌧U

6

V 2
+ �

2
U

4 +
⌧
2
U

4

V 4
+ �U

2 +
⌧U

2

V 2

◆
, (D.4)
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while H3 is given in terms of D̄-functions by the following expression,

H3 =
U

5

48n3V

✓
U

2(9D̄9533 + 7D̄9544 + 2D̄9555) + �(9D̄3539 + 7D̄4549 + 2D̄5559)

+ ⌧V
2(9D̄3593 + 7D̄4594 + 2D̄5595)

◆
.

(D.5)

After we twist the R-symmetry variables, we extract another holomorphic
correlator

A3(�,�
0; 1/�0

, 1/�0) =
9�2 (2�6 � 6�5 + 9�4 � 8�3 + 9�2 � 6�+ 2)

4n3(�� 1)4
.

(D.6)
The above holomorphic correlators are conjectured be the four-point func-

tions of Wn!1 algebra. In the rest of the appendix, we perform an inde-
pendent 2d calculation to check this proposal. We will use the “holomorphic
bootstrap” method of [107] to compute four-point functions of the Wn!1

algebra.
We start by recalling that in a chiral algebra the four-point function of

identical quasi-primary operators,

hOh(z1)Oh(z2)Oh(z3)Oh(z4)i = (z12z34)
�2hF(�) , (D.7)

satisfies the following crossing equation

F(�) = �
2hF(1/�) = �

2h(1� �)�2hF(1� �) . (D.8)

The function F(�) can be written as a sum of the SL(2,R) blocks

F(�) =
X

i

C
2
hhi�

hi
2F1(hi, hi; 2hi;�) . (D.9)

Here Chhi is the three-point coupling in

hOh(z1)Oh(z2)Ohi(z3)i =
Chhi

z
2h�hi
12 z

hi
13z

hi
23

, (D.10)

and all two-point functions are normalized to unity. Combining the crossing
equation with the conformal block decomposition, we find that the singular-
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ities of F at � = 1 and � ! 1 are

F(�) = (�1)4h
X

i

C
2
hhi(1� �)hi�2h

2F1(hi, hi; 2hi; 1� �)�2h

⇡
2hX

n=1

�n(1� �)�n + . . . as � ! 1 ,

F(�) = (�1)4h
X

i

C
2
hhi�

2h�hi
2F1(hi, hi; 2hi; 1/�)

⇡
2hX

n=1

�n�
n + . . . as � ! 1 .

(D.11)

Here ↵n and �n are computable numbers given the three-point functions
coe�cients Chhi with hi < 2h.

The meromorphic F(�) is completely determined by these singularities
and by its value at � = 0,

F(�) = 1 +
2hX

n=1

↵n�
n +

2hX

n=1

�n[(1� �)�n � 1] . (D.12)

Alternatively, we can cast F(�) into the following more convenient parame-
terization [107],

F(�) =
[2h/3]X

n=0

cn
�
2n(1� �+ �

2)2h�3n

(1� �)2h�2n
, (D.13)

which is manifestly crossing-symmetric and has the same singularity struc-
ture, where the finitely many constants cn are determined from the conformal
block decomposition at � = 0.

k = 2

We first look at the k = 2 case which corresponds to 2d stress tensor. The
general form of F(�) for h = k = 2 reads

F(�) =
c0 (�2 � �+ 1)4 + c1(1� �)2�2 (�2 � �+ 1)

(1� �)4
. (D.14)
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To fix the constants cn we only need to match with the OPE coe�cients of
TT1 and TTT

CTT1 = 1 , CTTT = 23/2c�1/2
. (D.15)

We find

c0 = 1 , c1 =
8

c
� 4 . (D.16)

In the 1/c expansion, the four-point function with the above solution of cn
simply reads

F(�) = 1 + �
4 +

�
4

(1� �)4
+

1

c

✓
8�2(1� �+ �

2)

(1� �)2

◆
+O(c�2) . (D.17)

Notice the leading term is nothing but the disconnected piece of the full
four-point function under the chiral algebra twist and is anticipated from
the large-c factorization. The subleading term in 1/c on the other hand
reproduces precisely the holomorphic four-point function we obtained from
the supergravity computation, upon recalling that c ⇠ 4n3 in the large n

limit.

k = 3

In the case of k = 3, the general form of F(�) admits three parameters,

F(�) =
c0 (�2 � �+ 1)6 + c1(1� �)2�2 (�2 � �+ 1)3 + c2(1� �)4�4

(1� �)6
.

(D.18)
This chiral four-point function is to be matched with the W3W31 coe�cient
as well as W3W3T , W3W3W4 coe�cients which are given in [91, 108]. The
end result is

c0 = 1 , c1 =
18

c
� 6 , c2 =

3(c� 9)

c
. (D.19)

The large c expansion of F(�) gives

F(�) = 1 + �
6 +

�
6

(1� �)6

+
1

c

✓
9�2 (2�6 � 6�5 + 9�4 � 8�3 + 9�2 � 6�+ 2)

(�� 1)4

◆
+O(c�2) ,

(D.20)

matching again the supergravity result.
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