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Abstract of the Dissertation

Studies of Chiral Gauge Theories and Heavy-Quark Hadrons

by

Yanliang Shi

Doctor of Philosophy

in

Physics

Stony Brook University

2018

In this dissertation we study two aspects of strongly coupled quantum
field theories: ultraviolet to infrared evolution and non-perturbative behav-
ior of chiral gauge theories and properties of hadronic bound-states in quan-
tum chromodynamics (QCD). We first calculate the ultraviolet to infrared
evolution and analyze possible types of infrared behavior for several fam-
ilies of asymptotically free chiral gauge theories with gauge group SU(N)
and massless chiral fermions transforming according to higher-dimensional
representations.

Next, we analyze patterns of dynamical gauge symmetry breaking in
strongly coupled chiral gauge theories with direct-product gauge groups. We
find that the symmetry-breaking behavior depends sensitively on the rela-
tive sizes of the gauge couplings of the different factor groups in the direct
product.

Finally, we study the radiative decay of a 1+− heavy QQ̄ meson via the
channel 1+− → 0−+ + γ in the covariant light-front quark framework. In
particular, we calculate the decay widths for the specific decay channels
hc(1P ) → ηc(1S) + γ and hb(1P ) → ηb(1S) + γ. We compare our results
with experimental data, finding reasonable agreement.
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5.2.2 Evolution of SU(5) SĀ Theory to a Non-Abelian Coulom-

b Phase in the IR . . . . . . . . . . . . . . . . . . . . . 63
5.2.3 Dynamical Breaking of SU(5) to SU(4) Gauge Symmetry 64
5.2.4 Analysis of SU(4) Descendant Theory . . . . . . . . . 64
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Chapter 1

Introduction

In this chapter, we will briefly review some basic concepts of chiral gauge
theories and discuss the motivation for studies of chiral gauge theories. We
also give a brief introduction to the radiative decay of heavy-quark hadrons.
We present an outline of this thesis at the end of this chapter. The content
of this thesis is mainly based on published papers [1–5].

1.1 Chiral Gauge Theories

1.1.1 Chiral Gauge Symmetry

In quantum field theories that contain gauge fields and massless matter field
(fermions), we have the Lagrangian:

L =
m∑
i=1

ψ̄a,i,LiD/L ψ
a
i,L +

n∑
j=1

χ̄b,j,RiD/R χ
b
j,R , (1.1)

where a, b and i, j denote gauge and flavor indices, respectively. We as-
sume left-handed fermions ψ couple to gauge group GL in R1 representation
and right-handed fermions χ couple to gauge group GR in R2 representa-
tion. For most of our studies, GL = GR, but here we keep a formal dis-
tinction between these groups. The covariant derivatives are defined as D/

L = γµ(∂µ − igLAαL,µTL,α) and D/R = γµ(∂µ − igRAαR,µTR,α), where gL, gR de-
note the gauge field couplings, AαL,µ, A

α
R,µ denote gauge fields and TL,α, TR,α

are generators of the Lie algebras of these groups, acting in the space of
the given representations of matter fields. The indices L, R represent the

1



properties that the gauge groups act on left- and right-handed fermions, re-
spectively. Here for the purpose of illustration, we only define gauge groups
to be GL and GR. One can easily generalize the discussion here to more
complicated situations. The index α is the index of generators of groups.
ψa,i,L represents the left-handed fermionic fields

ψai,L =

(
1− γ5

2

)
ψai , (1.2)

and χa,i,R represents the right-handed fermionic fields

χbj,R =

(
1 + γ5

2

)
χbj . (1.3)

Under a gauge transformation, ψL transforms as

ψL → U1ψL , U1 ∈ GL(R1) , (1.4)

and
χR → U2χR , U2 ∈ GR(R2) . (1.5)

With no loss of generality, we can rewrite all fields in terms of left-handed
spinors. Then the kinetic term in the lagrangian can be rewritten in terms
of left-handed spinors

n∑
j=1

χ̄b,j,RiD/R χ
b
j,R →

n∑
j=1

χ̄′b,j,LiD/
′
R χ
′b
j,L (1.6)

where the renamed left-handed fermion field χ′L transforms in the conjugate
representation R̄2 of GR:

χ′L → U∗2χ
′
L , U∗2 ∈ GR(R̄2) . (1.7)

In the special case where GL = GR, the numbers of left-handed fermions
ψL and right-handed fermions χR(χ′L) are the same, and the representations
satisfies condition R1 = R2, then the fermions are in a real representation of
the gauge group. We call such theories vectorial gauge theories. Quantum
chromodynamics (QCD) in the Standard Model is an example of a vectorial
gauge theory. Another special case is where R1 and R2 are both real or
pseudo-real, leading again to a vectorial gauge theory.
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Apart from these special cases, the gauge field theory is intrinsically chi-
ral, so left- and right-handed fermions transform differently under gauge
transformation. We call such quantum field theory as chiral gauge theory.
We define a chiral gauge theory as irreducibly chiral if it does not contain
any vectorial subset among its fermions.

1.1.2 Global chiral symmetry

In the absence of Dirac and Majorana mass terms,

M ij
D ψ̄a,i,Lχ

a
j,R +M ij

L (ψaj,R)TCψai,R +M ij
R (χaj,R)TCχaj,R + h.c. , (1.8)

the theory is invariant under the following global flavor symmetry transfor-
mation:

ψai,L → (UL)kiψ
a
k,L , (UL)ij ∈ U(m) = SU(m)⊗ U1(1) , (1.9)

χaj,R → (UR)kjχ
a
k,R , (UR)ij ∈ U(n) = SU(n)⊗ U2(1) . (1.10)

Hence the theory has a classical global flavor symmetry:

Gf = SU(m)⊗ SU(n)⊗ U1(1)⊗ U2(1) . (1.11)

Due to instantion effects of gauge interaction [6], classical global U(1) sym-
metries U1(1) and U2(1) are broken. Depending on the content of gauge
groups, one may find a residual unbroken global U(1) symmetry which is a
linear combination of U1(1) and U2(1). Detailed discussions on the global
U(1) symmetries can be found in the following chapters.

1.1.3 Chiral Symmetry Breaking

In an asymptotically free chiral gauge theory, in the renormalization-group
(RG) evolution of the theory from the ultraviolet (UV) at high Euclidean en-
ergy/momentum scales µ to the infrared (IR) at low µ, the gauge interaction
may become strong enough that it produces bilinear fermion condensate(s),
of the form

〈ψ̄a,i,Lχaj,R〉+ h.c. , 〈(ψaj,R)TCψai,R〉+ h.c. , 〈(χaj,R)TCχaj,R〉+ h.c. . (1.12)

In an irreducibly chiral gauge theory, these condensates dynamically break
the gauge symmetry. They also generically break chiral flavor symmetries.
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As a result of the dynamical breaking of the gauge symmetries, the gauge
bosons that correspond to broken generators of the gauge group become
massive. For spontaneously broken global flavor chiral symmetries, there
will also be massless Nambu-Goldstone bosons (NGBs).

1.1.4 Examples of Chiral Gauge Theories

Chiral gauge theories are an important subject in the study of general quan-
tum field theories. The electroweak part of the Standard Model is an example
of a chiral gauge theory in which fermions couple to gauge field in a parity-
violating manner. In the Standard Model, left-handed fermions (quarks and
leptons)

EL,i =

(
ν`L,i

`−L,i

)
= (2,−1) , QL,i =

(
uL,i
dL,i

)
= (2, 1/3) (1.13)

transform in the fundamental representation of weak SU(2) interaction with
hypercharges Y = −1 and +1/3, respectively. While right-handed fermions

`R,i = (1,−2) , uR,i = (1,+4/3) , dR,i = (1,−2/3) (1.14)

are singlets of SU(2) with hypercharges Y = −2, +4/3 and −2/3.
Another example of chiral gauge theory is the Georgi-Glashow model,

which is a particular grand unification theory (GUT) [7]. In this theory, the
gauge group is SU(5). Non-singlet left-handed fermions of each generation
transform as a 5̄ and 10 representation of the gauge group.

1.2 Motivation for Studying Chiral Gauge The-

ories

Chiral gauge theories (without scalars) that are asymptotically free and
can therefore become strongly coupled at low energies are of intrinsic field-
theoretic interest in their own right. They have been of interest in the past
for several specific reasons.

1.2.1 Light Composite Fermions

One motivation involved an effort to understand the pattern of masses of
quarks and leptons in the Standard Model. Since the respective lower bounds
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on the compositeness scales of these Standard-Model fermions are much larg-
er than their masses, a plausible approach was to begin by using a theoretical
framework in which they were massless. Strongly coupled irreducibly chiral
gauge theories are a natural candidate for such a framework, since the chi-
ral gauge invariance forbids any mass terms. If such a theory satisfies the
’t Hooft global anomaly-matching conditions, then, as the gauge coupling
becomes sufficiently strong in the infrared, the gauge interaction could con-
fine and produce massless gauge-singlet composite spin-1/2 fermions [8–14].
Additional ingredients were assumed to produce the observed masses of the
quarks and leptons. This was a very ambitious program, and although it did
not produce an actual calculation of the observed fermion mass spectrum, it
introduced a number of intriguing ideas concerning possible compositeness
of these fermions that might be part of a deeper theory going beyond the
Standard Model.

1.2.2 Dynamical Electroweak Symmetry Breaking and
Fermion Mass Generation

A different motivation for studying strongly coupled chiral gauge theories
arose in the context of models that sought to explain both dynamical elec-
troweak symmetry breaking and fermion mass generation. In models of dy-
namical electroweak symmetry breaking [15], a vectorial, asymptotically free
gauge interaction would become strongly coupled at the TeV scale and would
produce bilinear fermion condensates involving a set of fermions that are
nonsinglets under the electroweak gauge group GEW = SU(2)L ⊗ U(1)Y . In
this scenario, the interaction that becomes strong is vectorial and breaks the
weakly coupled chiral gauge interaction GEW to a vectorial subgroup gauge
symmetry, namely, U(1)em of the electromagnetic interaction. Modern the-
ories of this type feature a slowly running coupling due to an approximate
IR fixed point of the renormalization group. In turn, this produces an ap-
proximately scale-invariant behavior over a substantial interval of Euclidean
energy/momenta. When this approximate scale (i.e., dilatation) invariance
is broken spontaneously by the formation of the bilinear fermion conden-
sates, a light, approximate Nambu-Goldstone boson, the dilaton, is produced.
This dilaton has properties similar to those of the Standard-Model Higgs bo-
son [16]. Thus, in this type of UV extension of the Standard Model, the
Higgs boson is composite, and the naturalness problem is solved because its
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mass is protected by the fact that it is a nearly Nambu-Goldstone boson of
an approximate dilatation symmetry in the strongly coupled gauge theory.

In order to give masses to Standard-Model fermions, theories with dy-
namical electroweak symmetry breaking are embedded in larger theories [17].
These UV extensions are designed to try to explain also the generational
hierarchy observed in these fermion masses. A basic property of a chiral
gauge theory is that if it becomes strongly coupled, it can produce bilin-
ear fermion condensates that self-break the gauge symmetry [18, 19]. Rea-
sonably UV-complete models for dynamical electroweak symmetry break-
ing and Standard-Model fermion mass generation made use of this feature
(e.g., [1, 20–26]). These involved strongly coupled chiral gauge interactions
that led to the formation of various fermion condensates which broke the
initial chiral gauge symmetry in a sequence of stages that might plausibly
explain the Standard Model quark and charged lepton masses masses and
their generational hierarchy. A low-scale seesaw mechanism was presented
in [20] that also can provide a dynamical explanation for neutrino masses.
This sequential breaking was such as to yield, as a residual symmetry, the
vectorial gauge symmetry that is strongly coupled at the TeV scale. Ref. [20]
used a direct-product chiral gauge group with two strongly coupled gauge
interactions and pointed out that different patterns of sequential gauge sym-
metry breaking (denoted Ga and Gb in [20]) could occur, depending on the
relative sizes of gauge couplings corresponding to these two factor group-
s. A similar phenomenon was noted in other models studied in [21]. This
property of the nonperturbative behavior of direct-product chiral gauge the-
ories will be discussed in detail in Chapter 7. The current data on the 125
GeV Higgs boson discovered at the CERN Large Hadron Collider (LHC) in
2012 are consistent with the predictions of the Standard Model, in which the
Higgs is a pointlike particle. However, the question of whether, in fact, the
Higgs boson is a pointlike particle or is composite, remains the subject of
continuing experimental and theoretical investigation. Theories of dynam-
ical electroweak symmetry breaking that produce a composite Higgs boson
as a quasi-dilaton thus remain of interest, both as regards possible Higgs
compositeness and because they provide a possible ultraviolet completion of
the Standard Model that can explain the origin of the masses and genera-
tional hierarchy of quarks and leptons. The role of self-breaking of strongly
coupled chiral gauge theories in producing this generational hierarchy is a
central aspect of these theories, and further motivates their analysis.
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1.2.3 Pattern of Gauge Symmetry Breaking

Another motivation for the present study is the fact that patterns of gauge
symmetry breaking by Higgs fields depend on parameters in the Higgs po-
tential V , which one can choose at will, subject to the constraint that V
should be bounded from below. This reduces the predictiveness of such the-
ories. In contrast, once one has specified the gauge and fermion content of
a chiral gauge theory, together with the values of the gauge couplings at a
reference point (which is naturally chosen to be in the deep UV for theories
with asymptotically free non-Abelian gauge interactions), then the dynam-
ics determines the pattern of gauge symmetry breaking uniquely [27]. In
principle, such theories are thus more predictive than theories with various
parameters that can be chosen arbitrarily. For example, in the Standard
Model, the coefficient of the quadratic term in the Higgs potential, φ†φ, is
chosen to be negative, when, in principle it could have been chosen to be
positive. Because of this, the Standard Model accommodates, but does not
explain, electroweak symmetry breaking, because it gives no fundamental ex-
planation for why the coefficient of the φ†φ term in the Higgs potential was
chosen to be negative. This is the analogue of how the σ model describes
spontaneous chiral symmetry breaking (SχSB) in QCD; again, it sets the co-
efficient of a quadratic term in the scalar potential negative in order to induce
a vacuum expectation value for the σ field. But the underlying explanation
for SχSB in QCD is the dynamical formation of a bilinear quark condensate.
The negative coefficient of the quadratic term in the σ model is only a phe-
nomenological device to model this phenomenon. A similar comment applies
for the way in which the Standard Model accommodates, but does not really
explain, quark and lepton masses and mixing by means of Yukawa couplings.
In contrast, chiral gauge theories with sequential symmetry breaking can dy-
namically produce and hence have the potential to explain, the generational
hierarchy observed among the quark and lepton masses.

1.3 Radiative Decays of Heavy Hadrons

We next discuss a second main area of research contained in our Ph.D. thesis.
Heavy-quark QQ̄ bound states play a valuable role in elucidating the prop-
erties of quantum chromodynamics (QCD). Here, the term “heavy quark”
refers to a quark with a mass large compared with the QCD scale, ΛQCD ' 0.3
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GeV. Since the discoveries of the J/ψ in 1974 [28,29] and other cc̄ charmoni-
um states, and the Υ in 1977 [30,31] and other bb̄ states, we now have a very
substantial set of data on the properties and decays of these heavy quarkoni-
um states. Some reviews include [32]- [42]. The goal of understanding these
data motivates theoretical studies, in particular, studies of the decays of QQ̄
states. Indeed, a number of exotic hadrons containing heavy quarks have
also been observed. The present writer coauthored a paper on one of these
exotic hadrons (H.-W. Ke, X.-Q. Li, Y.-L. Shi, G.-L. Wang and X.-H. Yuan,
Is Zb(10610) a Molecular State?, JHEP 1204, 056 (2012) [arXiv:1202.2178])
as an undergraduate.

Among various decay channels, radiative decays are a very good testing
ground for models, since the emitted photon is directly detected, and the
electromagnetic interaction is well understood. An electric dipole (E1) tran-
sition is one the simplest types of radiative decays. Here we consider E1
transitions of the form

1P1 → 1S0 + γ, (1.15)

where a spin-singlet P-wave QQ̄ quarkonium state decays to a spin-singlet
S-wave QQ̄ state. In terms of the spin J and the charge and parity quantum
numbers P and C, indicated as JPC , a radiative decay of this type has the
form 1+− → 0−+ + γ.

Several theoretical analyses of the E1 transition rates for these decays
have been carried out, using various models [43]- [53]. A number of these
models utilize the non-relativistic quantum mechanics formula for an E1
transition, involving the calculation of the overlap integral of the quarkonium
wavefunctions of the initial and final states. The quarkonium wavefunction is
obtained from the solution of the Schrödinger equation with non-relativistic
potentials, such as the Cornell potential, V = −(4/3)αs(mQ)/r + σr. The
first term in this potential is a non-Abelian Coulomb potential representing
one-gluon exchange at short distances, where αs(mQ) = gs(µ)2/(4π) is the
strong coupling evaluated at the scale of the heavy quark mass, mQ, and the
second term is the linear confining potential, where σ is the string tension.
Current data yield a fit to αs(µ) such that αs ' 0.33 at the scale µ = 1.5 GeV
relevant for cc̄ states and αs ' 0.21 at the scale µ = 4.7 GeV relevant for
bb̄ states [54]. Relativistic corrections have also been calculated by replacing
the Schrödinger equation by the Dirac equation, and computing corrections
in powers of v/c, where v is the velocity of the heavy (anti)quark in the rest
frame of the QQ̄ bound state.
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It is of interest to study the radiative decays (1.15) with a fully relativis-
tic approach, namely the light-front quark model (LFQM) [55]- [65]. This
approach naturally includes relativistic effects of quark spins and the inter-
nal motion of the constituent quarks. Another advantage of the light-front
quark model is that it is manifestly covariant. Hence it is easy to boost a
hadron bound state from one inertial Lorentz frame to another one when
the bound state wavefunction is known in a particular frame [59]. The light-
front approach has been used to study semileptonic and nonleptonic decays
of heavy-flavor D and B mesons and also to evaluate radiative decay rates
of heavy mesons [66–70].

1.4 Outline of Thesis

This thesis is organized as follows. In Chapter 2 we introduce some back-
ground knowledge that is relevant for the UV to IR evolution of chiral gauge
theories. In Chapter 3 we discuss our general theoretical framework and
methods of analysis. In Chapter 4,5, 6 we study several classes of chiral gauge
theories in which fermions are in various representations of a single SU(N)
gauge group. In Chapter 7 we study a variety of different chiral gauge theo-
ries with a direct-product gauge groups and fermion contents. These involve
both unitary and orthogonal gauge groups. Finally, in Chapter 8 we discuss
radiative decays of heavy-quark hadrons in the light-front approach.
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Chapter 2

Generalities on UV to IR Flows
in Chiral Gauge Theories

In this chapter we summarize generalities on UV to IR flows in chiral gauge
theories.

2.1 Renormalization-Group

The properties of asymptotically free chiral gauge theories change as function-
s of the Euclidean momentum scale µ at which one measures these properties.
We use the renormalization-group to study momentum scale µ dependence
of physical quantities. The Callan-Symanzik equation [71, 72] is one specific
form of renormalization-group equations. This has the form[

µ
∂

∂µ
+ β(g)

∂

∂g
+ nγ

]
G(n)({xi};µ, g) = 0 (2.1)

where G(n)({xi};µ, g) is a renormalized n-point correlation function, and γ is
an anomalous dimension. The beta function β(g) describes the dependence
of g on the momentum scale µ:

β(g) = µ
d

dµ
g =

d

d lnµ
g =

dg

dt
, (2.2)

where we define dt = d lnµ. Equivalently, we may define

βα =
dα

dt
, (2.3)
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where α = g2/(4π), so that βα = [g/(2π)]β(g). Let us define a = g2/(16π2) =
α/(4π). The beta function can be expressed as a series expansion

βα = −2α
∞∑
`=1

b`a
` (2.4)

where b` is the `-th loop coefficient. We are interested in non-Abelian chi-
ral gauge theories which are asymptotically free, i.e. (with the minus sign
extracted as above), theories in which the first-loop coefficient b1 > 0. The
coupling constant g approaches zero in the UV limit µ→∞ and hence these
are well-defined free theories in this UV limit. For sufficiently large µ in
the deep UV, a theory of this type is weakly coupled and can be described
by perturbative methods. As µ decreases, the gauge coupling increases and
there can be several infrared (IR) phases of chiral gauge theories.

2.2 Phases of Chiral Gauge Theory

We next discuss the possible types of behavior that might occur as the theory
evolves (“flows”) from the deep UV to the IR.

2.2.1 Non-Abelian Coulomb Phase

If b1 > 0 and b2 < 0, we can find a zero of the beta function at the two-loop
level, which occurs at αIR,2` = −4πb1/b2. One can then calculate higher-order
corrections to this. Let us denote the IR zero of the beta function as αIR. If
αIR is smaller than a critical value αcr that triggers the formation of bilinear
fermion condensates, then it is an exact stable IR fixed point (IRFP) of the
renormalization group. In this case, the chiral gauge theory will flow to this
point in the UV to IR evolution. Here and below we will consider a formal
continuation of the number(s) of fermions in various representations from
positive integer to positive real values. If the fermion content is such that b1

is positive but small, and b2 < 0, then this IRFP occurs at a weak value and
the IR theory is expected to be in a deconfined non-Abelian Coulomb phase
(NACP). This is the analogue, for chiral gauge theories, to a weakly coupled
IRFP in vectorial gauge theories discussed in [73].
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2.2.2 Confinement without Spontaneous Chiral Sym-
metry Breaking

In contrast, depending on the gauge group and the fermion content, the
theory may become strongly coupled during the UV to IR evolution. For
example, the beta function may not have any (perturbative) IRFP, so that
the gauge coupling will continue to grow as it flows from the UV to the IR.
In the strong-interaction region, if the theory satisfies the ’t Hooft global
anomaly-matching conditions (See discussion in 3.3), then it might confine
and produce massless gauge-singlet composite spin-1/2 fermions [8–14].

2.2.3 Spontaneous Chiral Symmetry Breaking

Another possible phase in the strong-interaction region is the formation of
bilinear fermion condensates. These bilinear fermion condensates partially
or completely break global chiral symmetry, and also break chiral gauge
symmetry if bilinear fermion condensates carry uncontracted gauge indices.
Gauge bosons correspond to broken generators of gauge symmetry will be
massive. Besides, there will be production of massless Nambu-Goldstone
bosons correspond to broken generators of global flavor symmetry.

2.3 Gauge Anomalies in Chiral Gauge Theo-

ries

At the classical level, there is no restriction on the representations of chiral
fermions in chiral gauge theories. However, at the quantum level, the axial
vector (chiral) anomaly puts strong constraints on representations of chiral
fermions. Consider the gauge symmetry current for left-handed fermions in
the R representation:

jµ,a = ψ̄i,Lγ
µtαψL,i (2.5)

where we omit the gauge group indices. The divergence of this gauge current
is given by

〈p, ν, b; k, λ, c|∂µjµ,a|0〉 =
g2

8π2
εανβλpαkβ · Aabc(R) , (2.6)

where Aabc(R) is defined as

Aabc(R) = TrR(Ta, {Tb, Tc}) = A(R)dabc . (2.7)

12



Eq.(2.6) implies that the gauge current jµ,a is not conserved unless ·Aabc(R)
vanishes. If such a violation of gauge current conservation occurred, it would
spoil the renormalizability of the theory (e.g., [74]).

In order to avoid this problem in a chiral gauge theory, it is necessary ei-
ther that the theory is intrinsically anomaly-free, i.e., has vanishing Aabc(R)
for all R or that the fermion contributions cancel each other in their con-
tribution to the overall anomaly. In either case, one says that the theory
is anomaly-free. An example of an intrinsically anomaly-free chiral gauge
theory is one with a gauge group SO(4k + 2) with k ≥ 2 and fermions in
the spinor representation (e.g., the SO(10) grand unified theory). For gen-
eral chiral gauge theories with nonzero Aabc(R), the requirement that they
must be anomaly-free gives non-trivial constraints on the representations and
numbers of non-singlet fermions. For example, in a chiral gauge theory with
nS copies of fermion in symmetric rank-2 (S) representation and nF̄ copies
of fermions in conjugate fundamental representation (F̄ ), the requirement of
a vanishing chiral anomaly requires that nF̄ = (N + 4)nS, where we use the
property that A(S) = −(N + 4)A(F̄ ).
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Chapter 3

Theoretical Framework and
Methods of Analysis

In this chapter we introduce some useful methods for constructing and ana-
lyzing chiral gauge theories.

3.1 Renormalization-Group Evolution and Be-

ta Function

We discussed the beta function above and recall that

βα = −2α
∞∑
`=1

b` a
` = −2α

∞∑
`=1

b̄` α
` , (3.1)

where we have extracted an overall minus sign, b` is the `-loop coefficient,
and b̄` = b`/(4π)`. The n-loop beta function, denoted βα,n`, is given by Eq.
(3.1) with the upper limit on the `-loop summation equal to n instead of ∞.
The property of asymptotic freedom means that βα < 0 for small α. With
the minus sign extracted in the perturbative expansion (3.1), this is satisfied
if b1 > 0. The one-loop and two-loop coefficients b1 [75] and b2 [76] are
independent of the scheme used for regularization and renormalization [77],
while the b` with ` ≥ 3 are scheme-dependent.

In the analysis of phases of chiral gauge theories we first calculate the
one-loop coefficient b1 and two-loop coefficient b2. For the theory with b2 >
0, we infer that it is likely to be strongly coupled in the IR limit. For
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the theory with b2 < 0, we calculate the fixed-point value αIR,2` at which
two-loop beta function is zero, namely αIR,2` = −4πb1/b2, as given above.
We then compare αIR,2` to the estimated critical value for the formation of
bilinear condensate αcr,Ch(see definition in Eq.(3.4)) in a give channel, Ch.
If αIR,2` is substantially less than αcr,Ch, then the coupling will remain as
approximately αIR,2` in the IR limit approximately. If, on the other hand,
αIR,2` is substantially larger than αcr,Ch, then the would-be IR zero of the
beta function is not exact. Rather than evolving to this would-be IRFP,
there will generically be fermion condensate formation at some scale µc. As
a result, the fermions involved in the condensate will gain dynamical masses
and be integrated out of the low-energy field theory that describes the physics
for scales µ < µc. Therefore, the coefficients in the beta function will change.
Indeed, in an irreducibly chiral gauge theory, this condensate breaks the
gauge symmetry, so that the resultant subgroup gauge symmetry in this low-
energy effective field theory will be different from that in the UV theory.
The low-energy theory then generically evolves to further strong coupling as
µ decreases further in the IR.

3.2 Most Attractive Channel (MAC) Crite-

rion

In a theory whose UV to IR evolution leads to a gauge coupling that is strong
enough to produce several different types of fermion condensates, one method
that has been widely used to predict which type of condensate is most likely
to form is the most-attractive-channel (MAC) approach [18]. Consider a
condensation channel in which fermions in the representations R1 and R2

of a given gauge group form a condensate that transforms according to the
representation Rcond. of this group, denoted

R1 ×R2 → Rcond. . (3.2)

An approximate measure, based on one-gluon exchange, of the attractiveness
of this condensation channel, is

∆C2 = C2(R1) + C2(R2)− C2(RCh) , (3.3)

where C2(R) is the quadratic Casimir invariant for the representation R,
and RCh ≡ Rcond.. At this level of one-gluon exchange, if ∆C2 is positive
(negative), then the channel is attractive (repulsive).
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An analysis of the Schwinger-Dyson equation for the propagator of a
massless fermion transforming according to the representation R of a gauge
group G shows that, in the ladder (i.e., iterated one-gluon exchange) approx-
imation the minimum value of α for which fermion condensation occurs in
a vectorial gauge theory is given by the condition that 3αcrC2(R)/π ∼ 1,
or equivalently, 3αcr∆C2/(2π) = 1, since ∆C2 = 2C2(R) in this case [78].
Therefore, a rough estimate for the minimal value of the running coupling
which is sufficient to cause condensation in a given channel Ch is

αcr,Ch ∼
2π

3∆C2(R)Ch
. (3.4)

Because of the strong-coupling nature of the fermion condensation process,
Eq. (3.4) is only a rough estimate. For the expression of Eq.(3.4), we can see
that αcr,Ch is proportional to the inverse of ∆C2(R)Ch, which implies that
during the UV to IR evolution, the channel that has the maximum value
of ∆C2(R)Ch is most likely to occur. In other words, the most attractive
channel is the one that yields the maximum (positive) value of ∆C2(R)Ch.
Therefore, the MAC approach predicts that if, a priori, several condensation
channels could occur, then the one that actually occurs is the channel that
has the largest (positive) value of ∆C2. The MAC method was applied, for
example, in efforts to build reasonably UV-complete models with dynamical
electroweak symmetry breaking [20,21,24–26,79]. These models made use of
asymptotically free chiral gauge interactions that became strongly coupled,
naturally leading to the formation of certain condensates (of fermions subject
to the chiral gauge interaction) in a hierarchy of scales corresponding, via
inverse powers, to the observed generational hierarchy of Standard-Model
fermion mass scales.

For chiral gauge theories developing a fixed point αIR,2` in the two-loop
beta function, a measure of the likelihood that the coupling grows large
enough in the infrared to produce fermion condensation in a given channel
Ch is thus the ratio

ρ
IR,Ch

≡ αIR,2`
αcr,Ch

. (3.5)

If this ratio is significantly larger (smaller) than unity, one may infer that
condensation in the channel Ch is likely (unlikely). As with the use of the
MAC, this ρ test is only a rough estimate.
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3.3 Global Anomalies Matching Condition

As mentioned above, in the strongly coupled region, instead of spontaneous
chiral symmetry breaking with formation of bilinear fermion condensate, chi-
ral gauge theories may evolve to an alternative phase, where the gauge in-
teraction confines and produces massless gauge-singlet composite fermions.
In this case, both chiral gauge symmetry and global chiral symmetry are un-
broken. A necessary condition for the formation of these massless composite
fermions is that the fermion content should satisfy the ’t Hooft anomaly-
matching condition [8].

The ’t Hooft anomaly-matching condition states that anomaly of global
symmetry calculated in the UV limit where fermionic degrees of freedom
are elementary fermions should be equal to the global anomaly calculated
in the IR limit where fermionic degrees of freedom are massless composite
spin-1/2 fermions. The proof is as follows [8]: We add spectator gauge fields
that turn the global symmetry into a local gauge symmetry. The associated
coupling constants may all be arbitrarily small, so that the dynamics of the
strong color gauge interactions is negligibly affected. For a consistent gauge
interaction, we have to also add spectator fermions to cancel the anomaly of
this artificial gauge symmetry:

A(UV fermions) +A(spectator fermions) = 0 , (3.6)

where A(...) denote global anomaly of corresponding fermions. In the low
energy IR theory (much lower than the binding scale of the original gauge
interaction), there are massless composite fermions due to the strong interac-
tion. These composite states form new representations of the gauged-global
symmetry. The spectrum of spectator fermions is unchanged due to the s-
mallness of the artificial gauge interaction. Since the condition of anomaly
freedom should always be satisfied, we have

A(IR composite fermions) +A(spectator fermions) = 0 . (3.7)

Combining Eq.(3.6) and Eq.(3.7), we then have

A(UV fermions) = A(IR composite fermions) . (3.8)

This consistency condition can help to testify whether a strongly coupled
chiral gauge theory can form massless composite fermions without chiral
symmetry breaking.
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3.4 Degree-of-Freedom Inequality

A quantity that can give predictions for renormalization-group evolution in-
volves the relevant perturbative field degrees of freedom in the effective field
theory that is applicable at a given reference scale, µ. From the study of
second-order phase transitions and critical phenomena in statistical mechan-
ics and condensed matter physics, one is familiar with the Wilsonian thinning
of degrees of freedom as one changes the scale at which one measures phys-
ical quantities from short distances (UV) to large distances (IR). Given the
correspondence between the inverse distance and the reference momentum
scale µ, one may naturally expect a similar decrease (or non-increase) of dy-
namical degrees of freedom in a quantum field theory as µ decreases from
large values in the ultraviolet to small values in the infrared [80].

Given that a theory is asymptotically free, the gauge coupling approaches
zero in the deep ultraviolet as µ→∞, so that one can identify and enumerate
the perturbative degrees of freedom in the fields. Depending on the theory, it
may also be true that in the deep infrared, as µ→ 0, the residual (massless)
particles are weakly interacting, so that again one can describe them pertur-
batively and enumerate their degrees of freedom. Although one is describing
the UV to IR evolution of a zero-temperature quantum field theory, a natural
approach to the enumeration of the perturbative degrees of freedom in the
fields is provided by envisioning a finite-temperature field theory, where the
temperature T corresponds to the Euclidean scale, µ, and using the count
embodied in the free energy density, F (T ). This is given by

F (T ) = f(T )
π2

90
T 4 (3.9)

with

f = 2Nv +
7

4
Nf +

7

8
Nf,Maj +Ns , (3.10)

where Nv and Ns are the number of vector and (real) scalar fields, and Nf

and Nf,Maj are the number of chiral components of Dirac and Majorana
fermions in the theory, respectively [81]. Assuming that the relevant fields
become free in the respective UV and IR limits, we define

fUV = f(∞), fIR = f(0) . (3.11)

Since the theories that we consider are required to be asymptotically free, we
can always identify the Lagrangian fields in the deep UV and hence calculate
fUV .
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In accord with experience in statistical mechanics, Ref. [84] conjectured
the degree-of-freedom inequality

∆f ≡ fUV − fIR ≥ 0 (3.12)

for vectorial gauge theories, and Ref. [83] extended this conjecture to chiral
gauge theories. In [83] this conjecture was applied to analyze several asymp-
totically free chiral gauge theories. Subsequent studies have investigated
the possible types of IR behavior involving strong coupling and condensate
formation; Refs. [22, 82] are particularly relevant for our current work.

As noted above, since we restrict to asymptotically free theories, the
condition that the theory becomes free as µ→∞ is always satisfied. There
are three types of situations where the condition that the fields are also
weakly coupled in the IR is satisfied. In all of these we can calculate fIR.
In the first of these, the theory evolves to an exact, weakly coupled IR fixed
point, so that the field degrees of freedom in the massless fields are the same as
they were in the UV, up to small, calculable perturbative corrections, which
obey the inequality (3.12) [83, 84]. In the second type of situation, there is
global and/or gauge symmetry breaking at one or more scales, so that as µ
decreases below these scales toward the infrared, in the applicable low-energy
effective field theory, the remaining massless particles are Nambu-Goldstone
bosons (NGBs) resulting from the spontaneous chiral symmetry breaking.
Since the NGBs have only derivative interactions among themselves, which
vanish as

√
s/Λ → 0, where

√
s is the center-of-mass energy and Λ denotes

the scale of chiral symmetry breaking, it follows that these NGBs become
free in the infrared limit. A third type of possible situation is one in which
the chiral gauge interaction confines and produces massless gauge-singlet
composite fermions. The interactions between these gauge-singlet fermions
involve higher-dimension operators and hence are also weak in the infrared.
In some models, the second and third types of behavior can occur together
[22].

A direct test of the conjectured degree-of-freedom inequality (3.12) for
asymptotically free chiral gauge theories would probably require lattice sim-
ulations. However, because of fermion doubling on the lattice (in which a
single continuum fermion produces 2d fermion modes on a d-dimensional Eu-
clidean lattice, with half corresponding to one sign of γ5 and the other half
corresponding to the opposite sign of γ5), it has been challenging to simulate
chiral gauge theories via lattice methods. A different approach to testing the
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validity of the conjecture is to study its application to vectorial gauge the-
ories. These have the advantage that they can be simulated on the lattice,
and there are well-understood ways of dealing with fermion doubling so that
in the continuum limit one should be able to determine the actual number,
Nf , of active fermions. Ongoing lattice studies of the infrared behavior of
various vectorial gauge theories, such as a gauge theory with G = SU(2) and
Nf = 6 Dirac fermions in the fundamental representation [85], are making
progress in testing the conjectured degree-of-freedom inequality.

3.5 Low Energy Effective Field Theory

In the case of a strong gauge interaction that leads to formation of bilinear
fermion condensates with spontaneous symmetry breaking at energy scale
Λ1, the gauge bosons corresponding to the broken gauge symmetry, as well
as fermions involved in condensates, acquire dynamical masses of order Λ1.
At energy scales below Λ2, we integrate out these massive degrees of freedom
and construct an effective theory with the remaining massless fields that is
applicable as the reference energy scale µ decreases below Λ1. In general, in
the residual effective field theory, there can be several such stages of conden-
sate formation and symmetry breaking at different energy scale Λ2 > Λ3 > ....
So there is an associated sequence of effective field theories that describe the
physics at different intervals of µ.

3.5.1 Anomaly Freedom of a Low-Energy Effective The-
ory Arising from Dynamical Breaking of a Chiral
Gauge Theory

In general, a low-energy effective field theory that arises from an anomaly-free
chiral gauge theory via dynamical gauge symmetry breaking is also anomaly-
free. The proof is as follows [2]: Let us consider a chiral gauge theory with
a gauge group G and an anomaly-free set of chiral fermions transforming
according to some set of representations {Ri} ofG. Without loss of generality,
we take all of the fermions to be left-handed. Also without loss of generality,
we assume that this theory is irreducibly chiral, i.e., does not contain any
vectorlike subsector. This assumption does not entail any loss of generality
because the fermions in a vectorlike subsector give zero contribution to a
chiral anomaly. Because the theory is irreducibly chiral, the gauge symmetry
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precludes any fermion mass terms in the fundamental lagrangian. To begin
with, we assume thatG is a simple group and discuss later the straightforward
generalization of our argument to the case where G is a direct-product group.
Let us denote the contribution of a chiral fermion in the Ri representation
to the triangle anomaly in gauged currents as A(Ri). The property that the
initial theory is anomaly-free is the condition∑

i

nRi
A(Ri) = 0 , (3.13)

where nRi
denotes the number of copies of fermions in the representation

Ri. This anomaly cancellation condition (3.13) also implies that if one re-
stricts to a subgroup H ⊂ G, which means decomposing each representation
Ri into representations R′i of H, then the sum of contributions is also zero.
Now, assume that this theory is asymptotically free, so that as the Euclidean
reference scale µ decreases from the UV to the IR, the running gauge cou-
pling increases, and assume further that this gauge coupling becomes strong
enough at a scale Λ to produce bilinear fermion condensates that break the
original gauge symmetry G to a subgroup H ⊂ G. The fermions involved in
the condensate gain dynamical masses of order Λ, and the gauge bosons in
the coset G/H also gain masses of this order.

To construct the low-energy effective field theory that describes the physic-
s as the reference scale µ decreases below Λ, one integrates out these massive
states and enumerates the remaining H-nonsinglet massless fields. This enu-
meration involves decomposing each fermion representation Ri of G in terms
of representations R′i of H. The resultant anomaly cancellation condition in
the low-energy effective theory that is the descendant of the original theory
is ∑

i

nR′iA(R′i) = 0 , (3.14)

where A(R′i) refers to the contribution to the anomaly in the descendant
theory from the fermions in the R′i representation of the gauge group H.
Now the fermions in the original theory that were involved in the condensate,
and hence acquired dynamical masses and were integrated out, transform as
singlets under H, and therefore, even if they were included in Eq. (3.14),
they would make zero contribution to this sum. Combining this fact with
Eq. (3.13), we deduce that the remaining H-nonsinglet fermions must also
make zero net contribution in Eq. (3.14). This proves the theorem.
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We make some further remarks on this result. In general, an asymptot-
ically free chiral gauge theory that becomes strongly coupled and produces
fermion condensates that dynamically break the gauge symmetry may under-
go not just one, but several sequential stages of dynamical gauge symmetry
breaking. Clearly, the theorem above applies not just to the first stage, but
also to subsequent stages of symmetry breaking. As noted, it is straightfor-
ward to extend this theorem to the case where the gauge group of the theory
is a direct-product group instead of a simple group. An example of this is
given below in our analysis of the low-energy effective SU(5) ⊗ U(1) theory
resulting as a descendant from an initial (anomaly-free) SU(6) chiral gauge
with fermions in the S2 and Ā2 representations of SU(6).
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Chapter 4

Chiral Gauge Theories with
Fermions in Fundamental,
Symmetric Rank-2 and
Higher-Dimensional
Representations

In this and the later chapters, we proceed to discuss results on the UV to
IR evolution and nonperturbative behavior of (anomaly-free) chiral gauge
theories. These were published in collaboration with Prof. R. Shrock in the
papers [1]- [4].

In the present chapter we calculate the UV to IR evolution and analyze
possible types of infrared behavior for several asymptotically free chiral gauge
theories with gauge group SU(N) and massless chiral fermions transforming
according to a symmetric rank-2 tensor representation S andN+4 copies (fla-
vors) of a conjugate fundamental representation F̄ , together with a vectorlike
subsector with chiral fermions in higher-dimensional representation(s).

We achieve the goal of constructing chiral gauge theories where several
methods that one can use to investigate the ultraviolet to infrared evolution of
a chiral gauge theory give consistent results. These include (i) (perturbative)
calculation of the beta function and analysis of possible IR zeros of this beta
function; (ii) use of the most-attractive-channel (MAC) approach, which can
suggest in which channel(s) bilinear fermion condensates are most likely to
form [18] if the coupling gets sufficiently strong in the infrared; and (iii) a
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conjectured inequality involving the perturbative degrees of freedom in the
massless fields [83,84]. We will denote this as the conjectured DFI, where DFI
stands for degree of freedom inequality. In particular, in our constructions
of chiral gauge theories, the expected type(s) of UV to IR evolution obey
the conjectured degree-of-freedom inequality throughout the full range of
parameters specifying the fermion contents of these theories. Our analysis
extends the published results in [22].

4.1 Strategy for Construction of New Chiral

Gauge Theories

Our general method for constructing the chiral gauge theories presented here
is as follows. We take the gauge group to be G = SU(N) and include, as the
irreducibly chiral sector of the theory, fermions transforming as the S and
(N +4) copies of F̄ . We choose the vectorlike subsector to consist of p copies
of fermions that transform according to representation(s) R of G such that
the channel

R× R̄→ 1 (4.1)

is more attractive than other channels. (For some of our theories, R = R̄.)
In the theories that we consider, the next-most-attractive channel is

S × F̄ → F . (4.2)

The ∆C2 attractiveness measures for these channels are

∆C2 = 2C2(R) for R× R̄→ 1 (4.3)

and

∆C2 = C2(S) =
(N + 2)(N − 1)

N
for S × F̄ → F̄ , (4.4)

so the condition that the R × R̄ → 1 channel is more attractive than the
S × F̄ → F̄ channel is that

∆C2(R) = 2C2(R) >
(N + 2)(N − 1)

N
. (4.5)

In all the cases that we consider, this guarantees that the R× R̄→ 1 channel
is the most attractive channel in which condensation thus occurs first as
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the theory evolves from the UV to the IR. Consequently, if the fermion
content is such that the running coupling α(µ) becomes sufficiently large in
the infrared, then, because the MAC is (4.1), the fermion condensation at the
highest energy scale occurs among the fermions in the vectorlike subsector
of the model, via the channel R× R̄→ 1. The resultant low-energy effective
field theory applicable below this scale is thus comprised of the irreducible
chiral sector of the theory, equivalent to the p = 0 special case of the full
theory, with just the S fermion and the N + 4 copies of the F̄ fermion. The
various possible types of UV to IR evolution of this p = 0 theory obey the
conjectured degree-of-freedom inequality [22,82,83].

4.2 Theory with R = Adj

4.2.1 Particle Content

In this section we construct and study a chiral gauge theory with gauge
group SU(N) and fermion content consisting of chiral fermions transforming
according to

1. a symmetric rank-2 tensor representation, S, with corresponding field
ψabL = ψbaL ,

2. N + 4 copies (also called “flavors”) of chiral fermions in the conjugate
fundamental representation, F̄ , with fields χa,i,L, i = 1, ..., N + 4, and

3. p copies of chiral fermions in the adjoint representation, denoted Adj,
with fields ξab,j,L, j = 1, ..., p.

Here and below, a, b, c... are gauge indices and i, j are copy indices. We call
this the Adj theory by reference to the choice of the representation R =
Rsc for the fermions in the vectorlike subsector. This fermion content is
summarized in Table 4.1. As noted above, we restrict to N ≥ 3 because
SU(2) has only (pseudo)real representations and hence a gauge theory based
on the gauge group SU(2) is not chiral. This theory thus depends on the
two integer parameters, N ≥ 3 and p ≥ 0, with an upper limit on p given by
Eq. (4.10) below. We will sometimes use the Young tableaux and for S
and F̄ . The irreducibly chiral sector of this theory is comprised of the S and
the N + 4 copies of F̄ fermions, and the vectorlike subsector is comprised
of the Adj fermions. Because of this self-conjugate nature of Rsc, the Adj
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Table 4.1: Properties of fermions in the chiral gauge theories with vectorlike subsector
consisting of p copies of fermions in the self-conjugate representation R = Rsc. The entries
in the columns are: (i) fermion, (ii) representation of the SU(N) gauge group, (iii) number
of copies, and representations (charges for abelian factors) of the respective factor groups
in the global flavor symmetry group: (iv) SU(N + 4)F̄ , (v) SU(p)Rsc

, (vi) U(1)1, (vii)
U(1)2. The notation for the fermion ξ in the Rsc is generic; specifically, this is ξab,i,L
for the Adj model and ξa1,...,ak

i,L for the AT model (with N = 2k). See text for further
discussion.

fermion SU(N) no. copies SU(N + 4)F̄ SU(p)Rsc U(1)1 U(1)2

S : ψab
L 1 1 1 N + 4 2pTRsc

F̄ : χa,i,L N + 4 1 −(N + 2) 0
Rsc: ξL Rsc p 1 0 −(N + 2)

fermions may be considered to be Majorana. Thus, if one were to remove
the irreducibly chiral part of this theory and consider the part containing the
gauge fields and the Adj fermions alone, the dynamical particle content in
the Lagrangian would be analagous to the gluons and gluinos of an N = 1
supersymmetric SU(N) gauge theory.

We recall that since the contribution to the triangle anomaly from S
satisfies [86]

Anom(S) = (N + 4) Anom(F ) , (4.6)

and since
Anom(R) = −Anom(R̄) , (4.7)

it follows that the set of chiral fermions S plus (N + 4) copies of F̄ yields a
theory that is free of anomalies in gauged currents. Furthermore, from Eq.
(4.7), it follows that for any self-conjugate representation Rsc, Anom(Rsc) =
0. Hence, we are free to add fermions transforming according to a self-
conjugate representation to a chiral gauge theory that is free of anomalies in
gauged currents and it will retain this anomaly-free property. We use this
fact here with Rsc = Adj.
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4.2.2 Beta Function

The beta function for this Adj theory is given by Eq. (3.1) with the one-loop
coefficient

(b1)Adj =
1

3

[
(9− 2p)N − 6

]
(4.8)

and the two-loop coefficient

(b2)Adj =
1

6

[
(39− 32p)N2 − 90N + 3 + 36N−1

]
. (4.9)

(See Appendix A for general formulas for b1 and b2.) These coefficients
contain the maximal scheme-independent information about the dependence
of the gauge coupling on the reference scale, µ. This information will suffice
for our present purposes. Higher-loop effects for vectorial theories and effects
of scheme transformations on higher-loop terms in the beta function for gauge
theories have been studied in [87]- [99].

We denote the values of p for which (b1)Adj = 0 as pb1z,Adj (where the
subscript stands for b1 zero). This value is [100]

pb1z,Adj =
3(3N − 2)

2N
. (4.10)

Our requirement that the model should be asymptotically free means that
βα < 0 for small α. This is equivalent to the condition that b1 > 0 or, if b1

vanishes, then the further requirement that b2 > 0. Now (b1)Adj > 0 if and
only if p < pb1z,Adj, i.e.,

p <
3(3N − 2)

2N
. (4.11)

This means that the set of physical, integral values of p allowed by our
requirement of asymptotic freedom are 0 ≤ p ≤ 3 for N = 3, 4, 5, 6 and
0 ≤ p ≤ 4 for N ≥ 7. Note that if N = 6 and p = 4, then b1 = 0, so
one must examine the sign of b2 to determine if the theory is asymptotically
free or not, and for this case (b2)Adj is negative, hence excluding it from
consideration. Here and below, for a given theory and value of N , we will
denote the maximum allowed value of p as pmax.

As a consequence of the asymptotic freedom of the theory, the beta func-
tion always has a zero at α = 0, which is a UV fixed point (UVFP) of the
renormalization group. In general, the two-loop beta function, βα,2`, has an
IR zero if b2 has a sign opposite to that of b1, i.e., if b2 is negative. For p = 0,
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(b2)Adj > 0, so βα,2` has no IR zero. As p increases, (b2)Adj decreases and
eventually passes through zero to negative values, giving rise to an IR zero
of βα,2`,Adj. Let us denote the value of p where b2 vanishes as pb2z,Adj. This is

pb2z,Adj =
3(13N3 − 30N2 +N + 12)

32N3
. (4.12)

In Table 4.2 we list values of pb1z,Adj and pb2z,Adj for this theory. The value
pb2z,Adj is less than the upper bound on p, pb1z,Adj, i.e.,

pb2z,Adj < pb1z,Adj . (4.13)

This inequality is proved by analyzing the difference,

pb1z,Adj − pb2z,Adj =
3(35N3 − 2N2 −N − 12)

32N3
. (4.14)

This difference is positive for all physical N . Hence, for p in the interval [100]

(Ip)Adj : pb2z,Adj < p < pb1z,Adj , (4.15)

this theory is asymptotically free, and βα,2`,Adj has an IR zero. The actual
physical, integral values of p in the interval (Ip)Adj depend on the value of
N . There are several different sets of N and p values where this IR zero is
physical:

(Ip)Adj : 1 ≤ p ≤ 3 if 3 ≤ N ≤ 6,

1 ≤ p ≤ 4 if 7 ≤ N ≤ 12,

2 ≤ p ≤ 4 if N ≥ 13 . (4.16)

These different cases follow from two properties. First, pb1z,Adj (understood to
be generalized from positive integers to positive real numbers) is a monotoni-
cally increasing function of N for physical N and ascends through the value 4
as N increases through the value N = 6. Second, for N > (1+

√
1081 )/30 =

1.129 and hence for the range N ≥ 3 relevant here, pb2z,Adj is a monotonically
increasing function and increases through 1 at N = 12.7922 (the largest root
of 7N3− 90N2 + 3N + 36). Hence, if N ≥ 13, the lowest value of p ∈ (Ip)Adj
is p = 2, as indicated in (4.16).
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For values of N and p where βα,2`,Adj has a physical IR zero, it occurs at

α
IR,2`,Adj

≡ 4πa
IR,2`,Adj

= −4π
(b1)Adj
(b2)Adj

=
8πN [(9− 2p)N − 6]

(32p− 39)N3 + 90N2 − 3N − 36
. (4.17)

In using this result, it should be recalled that, in general, an IR zero of a
beta function at α

IR,2`
= −4πb1/b2 can be reliable if |b2| is not too small, i.e.,

when α
IR,2`

is not too large for the perturbative calculation to be applicable.
In Table 4.3 we list values of α

IR,2`,Adj
.

It is of interest to consider the limit [101]

N →∞ with ζ(µ) ≡ α(µ)N finite and p fixed. (4.18)

In this limit,

lim
N→∞

pb1z,Adj =
9

2
(4.19)

and

lim
N→∞

pb2z,Adj =
39

32
= 1.21875 , (4.20)

so that the interval (Ip)Adj becomes

lim
N→∞

(Ip)Adj :
39

32
< p <

9

2
, (4.21)

containing the physical, integral values p = 2, 3, 4. In the large-N limit
(4.18), the combination of α, or equivalently, a, and N that remains finite is

ζ ≡ lim
N→∞

αN . (4.22)

Correspondingly, the rescaled beta function that is finite has the form

βζ ≡
dζ

dt
. (4.23)

where, as in Eq. (2.3), t = lnµ. In this limit, for physical p ∈ (Ip)Adj, the
(rescaled, finite) βζ,2`, has an IR zero at

ζ
IR,2`,Adj =

8π(9− 2p)

32p− 39
. (4.24)
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Table 4.2: Values of pb1z,Adj and pb2z,Adj in the Adj theory as functions of N .

N pb2z,Adj pb1z,Adj
3 0.3333 3.5000
4 0.5391 3.7500
5 0.6690 3.9000
6 0.7578 4.0000
7 0.8222 4.0714
8 0.8708 4.1250
9 0.90895 4.1667
10 0.9396 4.2000
11 0.9647 4.2773
12 0.9857 4.2500
13 1.0035 4.2692
14 1.0187 4.2857
15 1.0320 4.3000
102 1.1906 4.4700
103 1.2159 4.4970
∞ 1.21875 4.5000

The approach to this limit of N → ∞ involves correction terms that are
powers in 1/N :

Nα
IR,2`,Adj

=
8π(9− 2p)

32p− 39
− 96π(p+ 48)

(32p− 39)2N
+O

(
1

N2

)
. (4.25)

One may compare the approach to the N → ∞ limit here with that in a
(vectorial) SU(N) gauge theory with Nf fermions in the fundamental rep-
resentation in the limit N → ∞, Nf → ∞ with the ratio Nf/N fixed and
finite (and α(µ)N a finite function of µ), denoted the LNN limit in [89]. In
that case [88,89] the leading correction term to the limit was suppressed like
1/N2 instead of 1/N , and the correction terms formed a series in powers of
1/N2 instead of powers in 1/N . Hence, the approach to the N → ∞ limit
here is not as rapid as in the LNN limit.
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Table 4.3: Values of α
IR,2`,Adj

and ρ
IR,Adj×Adj

in the Adj theory for an illustrative range
of values of N and, for each N , the values of p in the respective interval (Ip)Adj .

N p α
IR,2`,Adj

ρ
IR,Adj×Adj

3 1 1.96 5.63
3 2 0.471 1.35
3 3 0.0982 0.281
4 1 2.34 8.95
4 2 0.470 1.80
4 3 0.120 0.457
5 1 2.75 13.1
5 2 0.448 2.14
5 3 0.121 0.579
6 1 3.24 18.6
6 2 0.4215 2.415
6 3 0.117 0.669
7 1 3.88 25.9
7 2 0.395 2.64
7 3 0.110 0.738
7 4 0.00504 0.0337
8 1 4.75 36.3
8 2 0.370 2.82
8 3 0.104 0.793
8 4 0.00784 0.0599
13 2 0.275 3.42
13 3 0.0768 0.954
13 4 0.0109 0.135
14 2 0.261 3.49
14 3 0.0728 0.973
14 4 0.01075 0.144
15 2 0.249 3.56
15 3 0.0692 0.991
15 4 0.0106 0.152
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4.2.3 Analysis of UV to IR Flows

Because of the asymptotic freedom of the theory, i.e., the fact that the beta
function is negative for small α, it follows that, as the Euclidean reference
momentum scale µ decreases from the ultraviolet toward the infrared, α(µ)
increases. There are several possibilities for the behavior that can occur:

1. First, if the beta function has an IR zero at a sufficiently small value of
α = α

IR
, then one expects that the theory will evolve into the infrared

without any spontaneous chiral symmetry breaking. In this case, the
IR zero of βα is an exact IRFP of the renormalization group, so that
as µ→ 0, the theory exhibits scale invariance with nonzero anomalous
dimensions. In the IR limit µ → 0, one anticipates that the theory is
in a deconfined, massless non-Abelian Coulomb phase.

2. For smaller values of p, the IR zero of the beta function is larger,
and correspondingly, α(µ) becomes larger as µ decreases from the UV
to the IR. Then the strongly coupled gauge interaction can produce
fermion condensates that break global and possibly also local gauge
symmetries. This behavior also applies if p is sufficiently small that
the beta function has no IR zero, so that α(µ) keeps increasing with
decreasing µ until it exceeds the interval where the perturbative beta
function describes its evolution. In this general category of UV to IR
evolution, there can be a sequence of condensate formations at various
energy scales.

3. In the strongly coupled case (including both the subcases where the
beta function has an IR zero at sufficiently large coupling and where
the beta function has no IR zero), an alternate possibility is, if the
fermion content satisfies the ’t Hooft anomaly-matching conditions [8],
then the gauge interaction might confine and produce massless gauge-
singlet composite fermions.

The beta function describes the growth of α(µ) as the reference momen-
tum scale µ decreases from the UV to the IR. If the fermion content is
such that the beta function has no IR zero, then the interaction definitely
becomes strongly coupled in the infrared. If, on the other hand, the beta
function does have an IR zero, then one must investigate how large the value
of the coupling is at this zero. In conjunction with knowledge of the probable
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channel in which fermions may condense and the corresponding estimate of
the minimum critical coupling, αcr that triggers this condensation, one can
then draw a plausible inference as to whether the condensation takes place
or whether, in contrast, the theory evolves into the infrared without any
fermion condensation or associated spontaneous chiral symmetry breaking.

The only composite fermions that one can form are those of the p = 0
theory, and we find that these do not match the global anomalies of Gfl,Rsc

(given below in Eq. (4.61) for Rsc = Adj. This rules out the possibility that
the original theory can form massless composite fermions involving the full
set of massless fermions in the theory with p > 0. As we will discuss below,
however, if the UV to IR evolution leads to sufficiently strong coupling so that
there is condensation in the Rsc × Rsc → 1 channel, giving the Rsc fermions
dynamical masses, then in the low-energy effective field theory below the
condensation scale, with these fermions removed, the descendant theory is
equivalent to the original theory with p = 0. In this descendant theory (called
the SF̄ theory below), further evolution into the infrared might produce
massless gauge-singlet composite fermions.

To obtain information concerning the likely type of UV to IR evolution
among types 1 and 2 in the list above, as a function of p, we first identify
the most attractive channel, which is

Adj × Adj → 1 . (4.26)

This clearly preserves the SU(N) gauge symmetry, and has attractiveness
measure

∆C2 = 2N for Adj × Adj → 1 . (4.27)

In particular, this channel is more attractive than the S× F̄ → F channel, in
accordance with the inequality (4.5). Quantitatively, the difference in ∆C2

values for these two channels is

∆C2(Adj × Adj → 1)−∆C2(S × F̄ → F )

=
N2 −N + 2

N
, (4.28)

which is positive for all physical N . The condensates for the Adj ×Adj → 1
channel are

〈ξa T
b,i,LC ξ

b
a,j,L〉 , i, j = 1, ..., p . (4.29)
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From Eq. (4.27), we obtain the rough estimate of the minimal critical
coupling for condensation in the Adj × Adj → 1 channel:

αcr,Adj×Adj '
π

3N
. (4.30)

Thus, an approximate indication of the size of the IR fixed point relative
to the size that would lead to the formation of fermion condensates in the
channel Eq. (4.26) is the ratio

ρ
IR,Adj×Adj

≡
α

IR,2`,Adj

αcr,Adj×Adj
=

24N2[(9− 2p)N − 6]

(32p− 39)N3 + 90N2 − 3N − 36
. (4.31)

As p decreases, α
IR,2`

increases. Therefore, considering N and p as being ex-
tended from the non-negative integers to the non-negative real numbers, one
can calculate a rough estimate of the critical value of p, denoted pcr,Adj×Adj,
such that, as p decreases through this value, α

IR,2`
increases through the val-

ue αcr,Adj×Adj. This critical value of pcr,Adj×Adj is thus obtained by setting
ρIR,Adj×Adj = 1 and solving for p, yielding

pcr,Adj×Adj '
3(85N3 − 78N2 +N + 12)

80N3
. (4.32)

This critical value pcr,Adj is a monotonically increasing function of N for
physical N , increasing from 67/30 = 2.23 for N = 3 and, as N →∞,

lim
N→∞

pcr,Adj×Adj =
51

16
= 3.1875 , (4.33)

where the limit is approach from below as N increases.
We list values of the ratio ρ

IR,Adj×Adj
in Table 4.3 for several illustrative

values of N and p. For all of the values of N presented in this table, the
respective values of the ratio ρ

IR,Adj×Adj
for p = 4 are much smaller than 1,

so that one can conclude that for p = 4, the theory evolves from the UV
to a scale-invariant, non-Abelian Coulomb phase in the IR. As is evident
from Table 4.3, for a given N , as p decreases, α

IR,2`,Adj
increases. As this

IR coupling becomes of O(1), the uncertainties in the use of perturbation
theory increase. For most of p = 3 cases shown with various N , the ratio
ρ

IR,Adj×Adj
is sufficiently close to 1 that, taking account of these uncertainties,

one cannot draw a definite conclusion as to whether fermion condensate does
or does not take place. For the cases shown in Table 4.3 with p = 1 (where
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this is in (Ip)Adj) and p = 2, the ratio ρ
IR,Adj×Adj

is substantially larger than 1,
so that in these cases, one expects that the gauge interaction become strong
enough to produce fermion condensation in the channel (4.26).

In the large-N limit defined above,

lim
N→∞

ρ
IR,Adj×Adj

=
24(9− 2p)

32p− 39
. (4.34)

In particular,

lim
N→∞

ρ
IR,Adj×Adj

=
24

89
= 0.270 for p = 4 (4.35)

lim
N→∞

ρ
IR,Adj×Adj

=
72

57
= 1.26 for p = 3 (4.36)

lim
N→∞

ρ
IR,Adj×Adj

=
24

5
= 4.80 for p = 2 (4.37)

(where the floating-point results are given to the indicated accuracy). Hence,
in this large-N limit, since the limit of the ratio ρ

IR,Adj×Adj
for p = 4 is

sufficiently small compared to 1 that it is plausible that in the IR the theory
is in a deconfined Coulombic phase, while if p = 3, ρ

IR,Adj×Adj
is too close

to unity for one to be able to draw a definite conclusion. Finally, if p = 2,
then ρ

IR,Adj×Adj
is sufficiently large compared with 1 that one expects that

the theory can produce bilinear condensates in the most attractive channel,
as discussed above.

We continue with the analysis of the UV to IR evolution for the smaller
values of p that produce a strongly coupled gauge interaction. As the mo-
mentum scale µ decreases through a scale denoted ΛAdj, α(µ) exceeds αcr,Adj,
and, from our discussion above, we infer that the gauge interaction produces
the bilinear fermion condensates (4.29) in the MAC, Adj × Adj → 1. These
condensates preserve the SU(N) gauge symmetry and the U(1)1 global sym-
metry, while breaking the U(1)2 and SU(p) global symmetries (these global
symmetries are defined in Sect. 4.4). By the use of a vacuum alignmen-
t argument [102], one can plausibly infer that the condensates (4.29) have
i = j, with i = 1, ..., p and hence preserve an SO(p) global isospin symmetry
defined by the transformation

ξab,i,L →
p∑
j=1

Oijξab,j,L , O ∈ SO(p) . (4.38)
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Just as light quarks gain dynamical, constituent quark masses of order ΛQCD

due to the formation of 〈q̄q〉 condensates in quantum chromodynamics (QCD),
so also, the p(N2−1) components, ξab,i,L, of the Adj fermions involved in these
condensates pick up a common dynamical mass of order ΛAdj.

At scales µ < ΛAdj, the analysis proceeds by integrating out the massive
ξab,j,L fermions, constructing the low-energy effective field theory applicable
for these lower scales, and then exploring the further evolution of this descen-
dant theory into the infrared. Since the condensation (4.29) gives dynamical
masses to all of the Adj fermions ξab,j,L, j = 1, ..., p, the low-energy effective
theory below this condensation scale ΛAdj is just the p = 0 theory. Since the
evolution of this theory is the same as for our second type of chiral gauge
theory, we first study this second theory, and then discuss the further IR
evolution.

4.3 Theory with N = 2k and R = [N/2]N

4.3.1 Particle Content

In this section we construct and study a chiral gauge theory with gauge group
G = SU(N) with even N = 2k, and fermions transforming according to

1. a symmetric rank-2 tensor representation, S, with corresponding field
ψabL = ψbaL ,

2. N + 4 copies chiral fermions in the conjugate fundamental representa-
tion, , with fields χa,i,L, i = 1, ..., N + 4, and

3. p copies of chiral fermions in the totally antisymmetric k-fold tensor
representation [N/2]N = [k]2k, with fields ξa1...ak

j,L , j = 1, ..., p.

We again label this theory by the representation of the fermions in the vec-
torlike subsector, namely AT, for antisymmetric k-fold tensor. This fermion
content is summarized in Table 4.1.

The representation [k]N has the dimension (for general N)

dim([k]N) =

(
N

k

)
(4.39)

and satisfies the equivalence property

[N − k]N = [k]N . (4.40)
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Here we have used the standard notation for the binomial coefficient,
(
a
b

)
≡

a!/[b! (a − b)!]. An important property that follows from Eq. (4.40) that
that we will use here is the fact that for our case of interest, N = 2k, the
representation [k]2k is self-conjugate:

[k]2k = [k]2k . (4.41)

Combining the self-conjugate property of [N/2]N = [k]2k with the relation
(4.7), it follows that

Anom([k]2k) = 0 . (4.42)

Thus, this theory has the same irreducibly chiral sector as the theory dis-
cussed in the previous section, and a vectorlike subsector that consists of the
p copies of the fermions in the [N/2]N representation.

4.3.2 Beta Function

We calculate that the one- and two-loop terms in the beta function of this
theory are, in terms of k = N/2,

(b1)AT = 6k − 2− p (2k − 2)!

3[(k − 1)!]2
(4.43)

and

(b2)AT =
52k3 − 60k2 + k + 6

2k
− p k(43 + 6k) (2k − 2)!

12[(k − 1)!]2
. (4.44)

For small p, (b1)AT is positive, and as p increases, (b1)AT decreases and passes
through zero as p exceeds the value

pb1z,AT =
6(3k − 1)[(k − 1)!]2

(2k − 2)!
. (4.45)

The requirement that the theory should be asymptotically free is thus satis-
fied if

p <
6(3k − 1)[(k − 1)!]2

(2k − 2)!
. (4.46)

This upper bound decreases rapidly as a function of k = N/2, so that as k
increases, eventually the requirement of asymptotic freedom precludes any
nonzero value of p. Thus, the AT theory has no asymptotically free large-N
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limit with nonzero p, in contrast to the Adj theories constructed and studied
here.

The beta function of the AT theory has an IR zero if b2 is negative. For
small p, (b2)AT is positive, and it decreases through zero to negative values
as p (continued to the real numbers) increases through the value

pb2z,AT =
6(52k3 − 60k2 + k + 6) [(k − 1)!]2

k2(6k + 43) (2k − 2)!
. (4.47)

We observe that pb1z,AT > pb2z,AT . This is proved by considering the differ-
ence,

pb1z,AT − pb2z,AT =
6(18k4 + 71k3 + 17k2 − k − 6)[(k − 1)!]2

k2(43 + 6k)[(2k − 2)!]
. (4.48)

This difference is positive for all k values of relevance here (with k extended
to the positive reals, it is positive for k > 0.3724). By itself, this inequality
does not guarantee that there is an integral value of p that lies above pb2z,AT
and below pb1z,AT , but in fact we find that for each relevant case, there are
one or more such integral values. These then define the respective intervals
(Ip)AT ,

(Ip)AT : pb2z,AT < p < pb1z,AT (4.49)

for each k. For the (integral) values of p ∈ (Ip)AT , the beta function of the
SU(2k) AT theory has an IR zero. We list the values of pb1z, pb2z, pmax, and
(Ip)AT in Table 4.5). Note that for the cases G = SU(N) with k ≥ 2 under
consideration here, the requirement of asymptotic freedom allows nonzero
values of p only for k ≤ 5.

For a given N = 2k whith a nonvacuous interval (Ip)AT , the βα,2` has an
IR zero at

α
IR,2`,AT

= −4π(b1)AT
(b2)AT

(4.50)

where (b1)AT and (b2)AT were given in Eqs. (4.43) and (4.44) above. We list
the values of α

IR,2`,AT
in Table 4.4.

4.3.3 UV to IR Evolution

Here we analyze the UV to IR evolution of this AT chiral gauge theory. By
construction, the most attractive channel involves fermion condensation in
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Table 4.4: Values of α
IR,2`,AT

and ρ
IR,AT

in the AT theory for the relevant values of N
and, for each N , the values of p in the respective interval (Ip)AT .

N p α
IR,2`,AT

ρ
IR,AT

4 3 11.170 26.67
4 4 3.371 8.05
4 5 1.8345 4.38
4 6 1.178 2.81
4 7 0.814 1.94
4 8 0.583 1.39
4 9 0.422 1.01
4 10 0.305 0.728
4 11 0.215 0.514
4 12 0.144 0.345
4 13 0.0871 0.208
4 14 0.0398 0.095
6 2 4.021 20.16
6 3 0.974 4.88
6 4 0.460 2.29
6 5 0.242 1.21
6 6 0.125 0.625
6 7 0.0508 0.255
8 1 1.290 11.08
8 2 0.183 1.57
8 3 0.0241 0.207
10 1 0.0360 0.473
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the channel (4.1), with R = [N/2]N = [k]2k in this case, i.e.,

[N/2]N × [N/2]N → 1 . (4.51)

This preserves the SU(N) gauge symmetry and has the attractiveness mea-
sure

∆C2 = 2C2([N/2]N) =
k(2k + 1)

2
, (4.52)

where we have used the result for C2([k]N) given in Appendix A. The con-
densates are

〈εa1,...a2k
ξa1,...,ak T
i,L C ξ

ak+1,...,a2k

j,L 〉 , i, j = 1, ..., p . (4.53)

By a vacuum alignment argument, one may infer that these condensates
have i = j [102]. To show that the channel (4.51) is more attractive than the
next-most-attractive channel, S × F̄ → F , we examine the difference

∆C2([N/2]N × [N/2]N → 1)−∆C2(S × F̄ → F )

= 2C2([N/2]N)− C2(S) =
2k3 − 3k2 − 2k + 2

2k
. (4.54)

This difference is positive for all values of k ≥ 2 of interest here.
If the beta function has no IR zero, then as the scale µ decreases and

α(µ) increases, it will eventually become large enough to cause condensation,
which, according to the MAC criterion, will be in this channel (4.51). If
the beta function does have a zero, then the next step in the analysis is
to determine how the value of the coupling at this zero compares with αcr
for the most attractive channel, (4.51). Substituting (4.52) into the general
formula for Eq. (3.4), we calculate

αcr,AT =
4π

3k(2k + 1)
. (4.55)

As discussed above, an approximate measure of how strong the coupling gets
in the infrared, compared with the minimum critical value for condensation
in the MAC is then given by the ratio

ρ
IR,AT

≡
α

IR,2`,AT

αcr,AT
. (4.56)

We list values of ρ
IR,AT

for the relevant N and p in Table 4.4. In cases where
condensation occurs in this theory we denote the scale at which it occurs as
Λ[N/2]N .
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AT Theory with G = SU(4)

In this subsection and the following ones we discuss three illustrative cases
with various values of N = 2k and their corresponding intervals (Ip)AT . For
each value of N , if p is nonzero and p < pb2z, i.e., below the lower end of the
interval (Ip)AT , then the theory has no IR fixed point, even an approximate
one, so that the gauge coupling continues to grow in the infrared and will
cause condensation in the MAC. Hence, we restrict our consideration here to
p ∈ (Ip)AT . The reader is referred to Tables 4.5 and 4.4 for numerical values
of relevant quantities. As indicated in Table 4.5, for this SU(4) AT theory
the interval (Ip)AT is 3 ≤ p ≤ 14. For p in this interval, βα,2`,AT has an IR
zero at

N = 4 : α
IR,2`,AT

=
8π(15− p)
55p− 138

. (4.57)

The ratio ρ
IR,AT

is

N = 4 : ρ
IR,AT

=
60(15− p)
55p− 138

. (4.58)

As listed in Table 4.4, for the range of p from 3 to 7, this ratio takes on values
decreasing from 26.7 to 1.94, all well above unity. Thus, one may plausibly
expect that for these values of p, in the UV to IR evolution, as the reference
scale µ decreases sufficiently and the running coupling approaches α

IR,2`,AT
,

the gauge interaction will become strong enough to cause fermion condensa-
tion in the most attractive channel, [2]4 × [2]4 → 1. For p = 8, 9, 10, 11,
ρ

IR,AT
has the respective values 1.39, 1.01, 0.728, 0.514. Given the theo-

retical uncertainties in these estimates, the IR behavior might or might not
involve the formation of the condensates (4.53). For the largest values of p,
namely p = 12, 13, 14, ρ

IR,AT
has the respective values 0.345, 0.208, 0.095,

so for these cases, it is likely that the theory evolves from the UV to a scale-
invariant, deconfined, Coulombic IR phase. This inference is, of course, most
reliable for the largest allowed value of p, namely p = 14, which leads to the
smallest value of α

IR,2`,AT
and ρ

IR,AT
. As discussed above, in the cases where

there is condensate formation and chiral symmetry breaking, the IRFP is
only approximate, while in the cases where there is no such chiral symmetry
breaking the IRFP (calculated to all orders) is exact.
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Table 4.5: Values of pb1z,AT , pb2z,AT , pmax, and the intervals (Ip)AT as functions of N
in the AT model with gauge group SU(N) with N = 2k.

N pb2z,AT pb1z,AT pmax (Ip)AT
4 2.509 15 14 3 ≤ p ≤ 14
6 1.590 8 7 2 ≤ p ≤ 7
8 0.665 3.3 3 1 ≤ p ≤ 3
10 0.235 1.2 1 p = 1

AT Theory with G = SU(6)

In the SU(6) (i.e., k = 3) AT theory, (Ip)AT is the interval 2 ≤ p ≤ 7. For p
in this interval, βα,2` has an IR zero at

N = 6 : α
IR,2`,AT

=
16π(8− p)
3(61p− 97)

. (4.59)

The ratio ρ
IR,AT

is

N = 6 : ρ
IR,AT

=
84(8− p)
61p− 97

. (4.60)

As listed in Table 4.4, for 2 ≤ p ≤ 7, this has the respective values 20.16,
4.89, 2.29, 1.21, 0.625, 0.255. Thus, for p = 3 and p = 4, it is likely that
condensation occurs in the MAC, [3]6 × [3]6 → 1 channel; for p = 7, it is
likely that there is no condensation; and for the middle two values p = 5 and
p = 6, taking account of the intrinsic theoretical uncertainties, one cannot
give a very definite prediction from this analysis.

AT Theory with G = SU(10)

In the SU(10) (k = 5) AT theory, the interval (Ip)AT reduces to just a single
nonzero value, p = 1, and the resultant α

IR,2`,AT
= 0.036, yielding the ratio

ρ
IR,AT

= 0.473. It is thus likely that this theory evolves from the UV to the
IR to a non-Abelian Coulomb phase, although there are obvious uncertainties
in this inference due to the strong-coupling physics involved.
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4.4 Global Flavor Symmetry for Theories with

Self-Conjugate R

In analyzing the global flavor symmetry of these chiral gauge theories, it is
useful to consider a more general class of theories, in which the vectorlike
fermion subsector is comprised of fermions transforming under a general self-
conjugate representation, R = Rsc. The results will then be applied to the
two specific theories discussed above, namely those with G = SU(N), N ≥ 3,
and Rsc = Adj; and the AT theory with G = SU(N) with even N = 2k,
k ≥ 2, and Rsc = [N/2]N .

The classical global chiral flavor symmetry of a theory in this class of
theories is

Gfl,cl,Rsc = U(1)S ⊗ U(N + 4)F̄ ⊗ U(p)Rsc

= U(1)S ⊗ SU(N + 4)F̄ ⊗ U(1)F̄ ⊗ SU(p)Rsc ⊗ U(1)Rsc . (4.61)

The representations of the fermions in the two theories with R = Rsc under
this symmetry are given in Table 4.1. The corresponding global unitary
transformations are

ψabL → US ψ
ab
L , US ∈ U(1)S , (4.62)

χa,i,L →
N+4∑
j=1

(UF̄ )ij χa,j,L , UF̄ ∈ U(N + 4)F̄ , (4.63)

and

ξi,L →
p∑
j=1

(URsc)ij ξj,L , URsc ∈ U(p)Rsc (4.64)

where we have suppressed the SU(N) gauge indices in Eq. (4.64), which
applies to each theory with the corresponding ξ field, i.e., ξab,i,L in the Adj
theory and ξa1,...,ak

i,L in the AT theory.
Each of the three global U(1) symmetries is broken the instantons of the

SU(N) gauge theory [103]. One may define a three-dimensional vector of
anomaly factors,

~v =
(
NST (S), NF̄T (F̄ ), NRscT (Rsc)

)

43



=

(
N + 2

2
,
N + 4

2
, pTRsc

)
, (4.65)

where the basis is (S, F̄ , Rsc), and we have inserted the values NS = 1,
NF̄ = N + 4, and NRsc = p. One can construct two linear combinations
of the three original currents that are conserved in the presence of SU(N)
instantons. The fermions have charges under these global U(1) symmetries
given by the vectors

~Q(j) ≡
(
Q

(j)
S , Q

(j)

F̄
, Q

(j)
Rsc

)
, j = 1, 2 , (4.66)

where j = 1 for U(1)1 and j = 2 for U(1)2. The condition that the corre-
sponding currents are conserved, i.e., the U(1)j global symmetries are exact,
in the presence of instantons is that∑

f

NfT (Rf )Q
(j)
f = ~v · ~Q(j) = 0 for j = 1, 2 . (4.67)

As indicated, this condition is equivalent to the condition that the vectors of
charges under the U(1)1 and U(1)2 symmetries are orthogonal to the vector
~v. (Note that the condition (4.67) does not uniquely determine the vectors
~Q(j), j = 1, 2. It will be convenient to choose the first vector, ~Q(1), so that
Q

(1)
Rsc

= 0. We thus choose

~Q(1) =
(
N + 4, −(N + 2), 0

)
. (4.68)

For the vector of charges under U(1)2, we choose

~Q(2) =
(

2pTRsc , 0, −(N + 2)
)
. (4.69)

(Note that in contrast to Gram-Schmidt orthogonalization of the three vec-

tors ~v, ~Q(1), and ~Q(2), here it is not necessary that ~Q(1) · ~Q(2) = 0.)
The actual non-anomalous global chiral flavor symmetry group of the

class of chiral gauge theories with R = Rsc is then

Gfl,Rsc = SU(N + 4)F̄ ⊗ SU(p)Rsc ⊗ U(1)1 ⊗ U(1)2 .

(4.70)
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For the two respective theories with (i) Rsc = Adj and (ii) Rsc = [N/2]N ,
Eqs. (4.69) and (4.70) apply with (i) TRsc = T (Adj) = N and (ii) T[N/2]N

given by Eq. (A.11) in Appendix A. We summarize these properties in Table
4.1.

In general, one must also check to see if either of the chiral gauge theories
with Rsc = Adj or Rsc = [N/2]N satisfies the ’t Hooft anomaly-matching con-
ditions, which are necessary conditions for the possible formation of massless
gauge-singlet composite fermions. The possible gauge-singlet fermions can
be described by wavefunctions of the form

Bij = F̄a,i,L S
ab
L F̄b,j,L , 1 ≤ i, j ≤ N + 4 . (4.71)

Given the minus sign from Fermi statistics and the fact that Sab is a rank-2
symmetric tensor representation ( ) of SU(N), it follows that Bij = −Bji,
i.e., Bjk is a rank-2 antisymmetric tensor representation ( ) of the SU(N +
4)F̄ factor group in the global flavor symmetry group Gfl. There are thus
(N + 4)(N + 3)/2 components of Bij. The charges of Bij under the two
global abelian factor groups in Gfl,Rsc , U(1)k, k = 1, 2 are determined by the
relation

Q
(k)
B = Q

(j)
S + 2Q

(k)

F̄
, k = 1, 2 (4.72)

Hence,
Q

(1)
B = −N (4.73)

and
Q

(2)
B = 2p TRsc . (4.74)

We find that the global anomalies of a theory with these massless composite
fermions do not match those of the original Gfl group except in the degener-
ate case p = 0. This p = 0 case describes a descendant low-energy effective
field theory that occurs if there is condensation in the Rsc×Rsc → 1 channel,
and will be discussed below.

4.5 Analysis of Low-Energy Effective Theory

for µ < ΛRsc

In the cases where the values of N and p are such as to lead to the respective
bilinear fermion condensates (4.29) or (4.53) at the corresponding scales ΛAdj

or Λ[N/2]N , we analyze the further UV to IR evolution below these scales. We

45



denote these scales generically as ΛRsc . Because of this condensation, the p
fermions ξab,i,L involved in the condensate (4.29) in the Adj model and the
p fermions ξa1,...,al

i,L involved in the condensate (4.53) in the AT theory gain
dynamical masses of order ΛAdj and Λ[N/2]N , respectively.

For momentum scales µ slightly below the condensation scale ΛRsc , the
resultant global symmetry is

G′fl = SU(N + 4)F̄ ⊗ SO(p)⊗ U(1)1 . (4.75)

Here the SU(N + 4)F̄ ⊗ U(1)1 is a global chiral symmetry operating on the
massless S and F̄ fermions, leaving their covariant derivatives invariant, while
the SO(p) is a global isospin symmetry of the condensate in each of our two
theories with R = Rsc, or equivalently, the corresponding effective mass term.
These mass terms are

ΛAdj

p∑
i=1

ξa T
b,i,LC ξ

b
a,i,L + h.c. (4.76)

in the Adj theory and

Λ[N/2]N

p∑
i=1

〈εa1,...a2k
ξa1,...,ak T
i,L C ξ

ak+1,...,a2k

i,L 〉+ h.c. (4.77)

in the AT theory produced by the bilinear fermion condensations in these re-
spective theories. This SO(p) symmetry also leaves the covariant derivatives
of these ξ fields invariant.

The spontaneous symmetry breaking of the initial nonanomalous global
symmetry Gfl in Eq. (4.70) to the final global symmetry Eq. (4.75) produces

o(SU(p)) + 1− o(SO(p)) =
p(p+ 1)

2
. (4.78)

massless Nambu-Goldstone bosons, where o(H) denotes the order of a group
H.

As the reference scale µ decreases well below ΛRsc , we integrate these now-
massive ξ fermions out of the low-energy (LE) effective field theory (LEEFT)
applicable for µ� ΛRsc . Focusing on the infrared region µ� ΛRsc , with the
ξ fermions integrated out, both the theory with Rsc = Adj and the theory
with Rsc = [N/2]N reduce to the same low-energy descendant theory, with
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(massless) S fermion and N + 4 copies of F̄ fermions. We denote this as the
SF̄ theory. This theory has been well studied in the past [9,11,18,22,82,83].
We recall the results from these earlier studies that we will need for our
present analysis.

The value of fUV for the SF̄ model, which we denote as fUV,SF̄M (M
standing for model), is given by the p = 0 special case of Eq. (4.89), namely

fUV,SF̄M = 2(N2 − 1) +
7

4

[N(N + 1)

2
+ (N + 4)N

]
. (4.79)

The SF̄ theory is invariant under a nonanomalous global flavor symmetry
group

Gfl,SF̄M = SU(N + 4)F̄ ⊗ U(1)SF̄ . (4.80)

For this theory the three-dimensional vector (4.65) reduces to a two-dimensional
vector with the third entry deleted, and the vector of charges that is orthog-
onal to it and hence defines the charge assignments of the U(1)SF̄ is given by
the first two entries in Q(1), namely

~Q(1) = (N + 4,−(N + 2)) . (4.81)

The SF̄ theory is asymptotically free, so the gauge coupling continues
to grow as µ decreases. The beta function of this SF̄ theory has one-loop
and two-loop coefficients given by Eqs. (4.8) and (4.9) with p = 0. In the
relevant range N ≥ 3, b2 is positive. Since b1 and b2 thus have the same sign,
the beta function, calculated to the maximal scheme-independent order of
two loops, does not have any IR zero. Hence, as µ decreases from the UV to
the IR, the running coupling α(µ) increases, eventually exceeding the region
where the perturbatively calculated beta function is applicable.

There are two possible types of UV to IR evolution in the SF̄ theory.
First, the strongly coupled gauge interaction may produce bilinear fermion
condensates. The most attractive channel is S × F̄ → F , with condensates

〈
N∑
b=1

ψab TL Cχb,i,L〉 . (4.82)

Without loss of generality, one may take a = N and i = 1 for the first
condensate. This breaks the SU(N) gauge symmetry down to SU(N − 1), so
that the 2N − 1 gauge bosons in the coset SU(N)/SU(N − 1) gain masses
of order this scale of condensation, which we denote ΛN . The fermions ψNbL

47



and χb,1,L with b = 1, .., N involved in this condensate also gain dynamical
masses of order ΛN . In the low-energy theory applicable for scales µ < ΛN ,
these now massive fermions are integrated out.

The descendant theory is again asymptotically free, so the gauge coupling
inherited from the SU(N) theory continues to increase. There is then a
second condensation, again in the MAC, S × F̄ → F channel, breaking the
gauge symmetry from SU(N − 1) to SU(N − 2). Without loss of generality,
we may take the breaking direction to be a = N − 1 and the F̄ fermion
involved in the condensate to be labelled as χb,2,L, so that this condensate is

〈
N−1∑
b=1

ψN−1,b T
L Cχb,2,L〉 . (4.83)

We denote the scale at which this occurs as ΛN−1. The 2N − 3 gauge bosons
in the coset SU(N−1)/SU(N−2) gain masses of order ΛN−1 and the fermions
SN−1,b
L and χb,2,L with b = 1, ..., N − 1 involved in this condensate gain

dynamical masses of order ΛN−1. This sequential breaking via condensation
in the respective S × F̄ → F channels continues at the scales ΛN−2, etc.
until the gauge symmetry is completely broken. Thus, the sequence of gauge
symmetry breaking is

SU(N)→ SU(N − 1)→ · · · → SU(2)→ ∅ . (4.84)

The gauge bosons in the respective cosets SU(N)/SU(N − 1), SU(N −
1)/SU(N − 2), etc. gain masses of order ΛN , ΛN−1, etc, as do the com-
ponents of the fermions involved in the respective condensates.

Considering the SF̄ theory, for this type of UV to IR evolution [22,82,83],

fIR,SF̄M ;S×F̄ = 8N + 1 +
7

4

[N(N − 1)

2
+ 4N

]
, (4.85)

where the subscript SF̄M means the SF̄ model, and the subscript SF̄ refers
to the condensation channel. For the SF̄ model, with this type of UV to IR
evolution, one then has

(∆f)SF̄M ;S×F̄ = fUV,SF̄M − fIR,SF̄M ;S×F̄ =
15N2 − 25N − 12

4
. (4.86)

This is positive for all relevant values of N . (For N extended to the positive
reals, it is positive for N > (25 +

√
1345 )/30 = 2.056.)
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The low-energy effective SF̄ theory applicable below ΛRsc could also un-
dergo a different type of flow deeper into the infrared, namely one leading to
confinement with massless gauge-singlet composite fermions with wavefunc-
tions (4.71). In this case, for this SF̄ theory, considered in isolation,

fIR,SF̄M ;sym =
7

4

[(N + 4)(N + 3)

2

]
. (4.87)

Hence, for this type of UV to IR evolution,

(∆f)SF̄M ;sym =
15N2 + 7N − 50

4
. (4.88)

This is positive for all relevant values of N . (For N extended to the positive
reals, it is positive for N > (−7 +

√
3049 )/30 = 1.607.) Thus, for both of

these types of UV to IR evolution of the SF̄ theory, the conjectured degree-
of-freedom inequality (3.12) is obeyed.

4.6 Comparison with Degree-of-Freedom In-

equality

We now combine the results for the SF̄ theory with our calculations of UV
and IR degree-of-freedom counts for the different types of UV to IR evolution
in the Adj and AT chiral gauge theories and compare with the conjectured
degree-of-freedom inequality Eq. (3.12).

4.6.1 UV Count

Given that we have required our theories to be asymptotically free, they are
weakly coupled in the UV, so we can identify the perturbative degrees of
freedom and calculate fUV . From the general formula Eq. (3.10), we have

fUV,Rsc = 2(N2 − 1) +
7

4

[N(N + 1)

2
+ (N + 4)N

]
+

7

8
p dim(Rsc) , (4.89)

where the respective terms represent the contributions of the SU(N) gauge
fields, the S fermions, the N + 4 copies of F̄ fermions, and the Rsc fermions.
Explicitly, for the Adj theory,

fUV,Adj = 2(N2 − 1) +
7

4

[N(N + 1)

2
+ (N + 4)N

]
+

7

8
p (N2 − 1) (4.90)
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and for the AT theory, with N = 2k,

fUV,AT = 2(N2 − 1) +
7

4

[N(N + 1)

2
+ (N + 4)N

]
+

7

8
p

(
N

N/2

)
. (4.91)

where
(
a
b

)
is the binomial coefficient.

4.6.2 fIR Calculations

Next, we calculate fIR for the two types of chiral gauge theories discussed
above in the cases where the UV to IR evolution involves a high-scale con-
densation in the respective channels (4.26) or (4.51), followed by sequential
condensations in the S × F̄ → F channel. Taking account of the p(p+ 1)/2
NGBs from the higher-scale symmetry breaking at ΛRsc , we find, for either
of these two types of chiral gauge theories, for this type of infrared evolution
below ΛRsc ,

fIR,Adj;Adj×Adj,S×F̄ = fIR,AT ;[k]2k×[k]2k,S×F̄ ≡ fIR,Rsc;Rsc×Rsc,S×F̄

= 8N + 1 +
7

4

[N(N − 1)

2
+ 4N

]
+
p(p+ 1)

2
, (4.92)

where the subscript Rsc identifies the chiral fermion representation in the
vectorlike subsector, the next subscript Rsc ×Rsc is shorthand for the MAC
Rsc × Rsc → 1 in which the highest-scale condensation takes place, and the
last subscript, S× F̄ or sym are shorthand for the two types of IR flow in the
low-energy descendant theory, namely sequential S × F̄ → F condensation
formation and gauge and global symmetry breaking in the descendent theory,
or confinement with formation of massless composite fermions and retention
of exact chiral symmetry (sym) in the infrared. Thus, the subscripts here
and below placed after the semicolon in quantities such as fIR,Adj;Adj×Adj,S×F̄
refer to the sequence of steps in the UV to IR evolution.

For the alternate type of evolution involving high-scale condensation in
the respective channels (4.26) or (4.51), followed by confinement leading to
massless gauge-singlet composite fermions, we calculate, for either of our two
types of chiral gauge theory with R = Rsc,

fIR,Adj;Adj×Adj,sym = fIR,AT ;[k]2k×[k]2k,sym ≡ fIR,Rsc;Rsc×Rsc,sym

=
7

4

[(N + 4)(N + 3)

2

]
+
p(p+ 1)

2
. (4.93)

50



4.6.3 Comparison with DFI for Adj Theory

Using these inputs, we can now calculate ∆f for these chiral gauge theories
and compare with the conjectured degree-of-freedom inequality (3.12). For
both theories, if the UV to IR evolution is such as to lead to a deconfined
non-Abelian Coulomb phase, the perturbative degrees of freedom are the
same as in the UV, so the DFI is obeyed. (The perturbative corrections also
obey the DFI [83,84].)

We first discuss the possible cases for the theory with R = Adj. If N and
p are such that the gauge interaction produces the high-scale condensation
in the channel (4.29), followed by Eqs. (4.78) with (4.85), we calculate

(∆f)Adj;Adj×Adj,S×F̄ ≡ fUV,Adj − fIR,Adj;Adj×Adj,S×F̄

=
1

8

[
30N2 − 50N − 24 + 7pN2 − 11p− 4p2

]
. (4.94)

This is positive for p satisfying the upper bound

p <
1

8

[
7N2 − 11 +

√
49N4 + 326N2 − 800N − 263

]
. (4.95)

The upper bound on the right-hand side of Eq. (4.95) is larger than the
upper limit on p imposed by the requirement of asymptotic freedom, (4.11).
Hence, the conjectured degree-of-freedom inequality (3.12) is obeyed for all
N and allowed p with this type of UV to IR evolution.

For the case where the low-energy effective SF̄ theory confines without
any spontaneous chiral symmetry breaking, producing massless composite
fermions, we calculate

(∆f)Adj;Adj×Adj,sym ≡ fAdj,UV − fIR,Adj;Adj×Adj,sym

=
1

8

[
30N2 + 14N − 100 + 7pN2 − 11p− 4p2

]
. (4.96)

This is positive for p satisfying the upper bound

p <
1

8

[
7N2 − 11 +

√
49N4 + 326N2 + 224N − 1479

]
. (4.97)

The upper bound on the right-hand side of Eq. (4.97) is larger than the
upper limit on p imposed by the requirement of asymptotic freedom, (4.11).
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Hence, the conjectured degree-of-freedom inequality (3.12) is also obeyed for
all N and allowed p with this type of UV to IR evolution.

As illustrative numerical examples, we may consider the cases N = 3 and
N = 4. In these cases, the respective upper bounds on p from Eq. ((4.11)
are p ≤ 3, while the respective values of the right-hand side of (4.95) are
14.64 and 27.57 and the respective values of the right-hand side of (4.97)
are 16.26 and 29.01. Note that if p is close to the upper bound pb1z arising
from the requirement of asymptotic freedom, then b1 is small, so that α

IR,2`

is sufficiently small that the UV to IR evolution is to a non-Abelian Coulomb
phase, so that one knows that the DFI is satisfied without going through the
present analysis.

These expressions simplify in the limit N → ∞ (with p fixed) in Eq.
(4.18). We define rescaled degree-of-freedom measures that are finite in this
limit, of the form

f̄ ≡ lim
N→∞

f

N2
. (4.98)

(We use the same notation, f̄ for this N →∞ limit; the context will always
make clear which limit is meant.) We calculate

f̄UV,Adj =
37 + 7p

8
, (4.99)

f̄IR,Adj;Adj×Adj,S×F̄ = f̄IR,Adj;Adj×Adj,sym =
7

8
, (4.100)

and hence

(∆f̄)Adj;Adj×Adj,S×F̄ = (∆f̄)Adj;Adj×Adj,sym =
30 + 7p

8
. (4.101)

This obviously obeys the conjectured degree-of-freedom inequality (3.12).

4.6.4 Comparison with DFI for AT Theory

We next calculate ∆f for the AT chiral gauge theory with gauge group
G = SU(N) with even N = 2k and Rsc = [N/2]N = [k]2k. As noted above,
for values of N and p such that the UV to IR evolution is to a deconfined
non-Abelian Coulomb phase in the IR, the perturbative degrees of freedom
are the same as in the UV, and the conjectured degree-of-freedom inequality
is obeyed.
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If N and p are such that the gauge interaction produces high-scale con-
densation in the channel (4.26) followed at lower scales by condensations in
the successive S × F̄ → F channels in SU(N), SU(N − 1), etc., then, using
Eqs. (4.78) and (4.85), we compute

(∆f)AT ;[k]2k×[k]2k,S×F̄ ≡ fUV,AT − fIR,AT ;[k]2k×[k]2k,S×F̄

=
1

8

[
30N2 − 50N − 24 + 7p dR − 4p(p+ 1)

]
, (4.102)

where dR ≡
(
N
N/2

)
. This is positive for p satisfying the upper bound

p <
1

8

[
7dR − 4 +

√
480N2 − 800N − 368 + 49d2

R − 56dR

]
. (4.103)

The upper bound on the right-hand side of Eq. (4.103) is larger than the
upper limit on p imposed by the requirement of asymptotic freedom, (4.46).
Hence, the conjectured degree-of-freedom inequality Eq. (3.12) is also obeyed
for all N and allowed p with this type of UV to IR evolution in the AT model.

For the alternate type of UV to IR evolution in which the low-energy effec-
tive SF̄ theory confines without any spontaneous chiral symmetry breaking,
producing massless composite fermions, we calculate

(∆f)AT ;[k]2k×[k]2k,sym ≡ fAT,UV − fIR,AT ;[k]2k×[k]2k,sym

=
1

8

[
30N2 + 14N − 100 + 7p dR − 4p(p+ 1)

]
.

(4.104)

This is positive for p satisfying the upper bound

p <
1

8

[
7dR − 4 +

√
480N2 + 224N − 1584 + 49d2

R − 56dR

]
. (4.105)

The upper bound on the right-hand side of Eq. (4.105) is larger than the
upper limit on p imposed by the requirement of asymptotic freedom, (4.46).
Hence, the conjectured degree-of-freedom inequality Eq. (3.12) is also obeyed
for all N and allowed p with this type of UV to IR evolution in the AT model.

As numerical examples, for N = 4 and N = 6, the respective upper
bounds on p from Eq. (4.46) are p ≤ 14 and p ≤ 7, while the respective
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right-hand sides of (4.103) are 14.05 and 38.86 and the respective right-hand
sides of (4.105) are 16.22 and 40.56. As before, it should be noted that if
p is close to the upper bound from asymptotic freedom, b1 is small, so that
α

IR,2`
is sufficiently small that the UV to IR evolution is to a non-Abelian

Coulomb phase, so that one knows that the conjecture degree-of-freedom
inequality Eq.(3.12) is satisfied.
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Chapter 5

Chiral Gauge Theories with
Fermions in Symmetric and
Antisymmetric Rank-2
Representations

In this chapter, we study the ultraviolet to infrared evolution and nonpertur-
bative behavior of a simple set of asymptotically free chiral gauge theories
with an SU(N) gauge group and an anomaly-free set of nSk

copies of chi-
ral fermions transforming as the symmetric rank-k tensor representation, Sk,
and nĀ`

copies of fermions transforming according to the conjugate antisym-
metric rank-` tensor representation, Ā`, of this group with k, ` ≥ 2. We
analyze the theories with k = ` = 2 in detail and show that there are only a
finite number of these. Depending on the specific theory, the ultraviolet to
infrared evolution may lead to a non-Abelian Coulomb phase, or may involve
confinement with massless composite fermions, or fermion condensation with
dynamical gauge and global symmetry breaking. We show that SkĀk chiral
gauge theories with k ≥ 3 are not asymptotically free. We also analyze the-
ories with fermions in Sk and Ā` representations of SU(N) with k 6= ` and
k, ` ≥ 2. The result presented in this chapter is based on publication [2].
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5.1 SĀ Theories

5.1.1 Basic Construction

In this section we construct and analyze an interesting set of asymptotically
free chiral gauge theories with an SU(N) gauge group and chiral fermions
transforming according to the rank-2 symmetric and conjugate antisymmetric
tensor representations of this group. We denote these fermions generically
as S2, and Ā2 (suppressing possible flavor indices) and equivalently by the

corresponding Young tableaux, S2 = and Ā2 = . To keep the notation
as simple as possible, we omit the subscripts where no confusion will result,
setting

S2 ≡ S, Ā2 ≡ Ā . (5.1)

We denote the number of S and Ā fields as nS and nĀ. An SĀ theory is
irreducibly chiral, i.e., it does not contain any vectorial subset. The chiral
gauge symmetry forbids any fermion mass term in the Lagrangian. The
triangle anomaly A in gauged currents of our SĀ theory is

A = nSA(S) + nĀA(Ā)

= nSA(S)− nĀA(A) . (5.2)

Substituting A(S) = N + 4 and A(A) = N − 4 (see Appendix A), the
condition that this SĀ theory should be free of a triangle anomaly in gauged
currents is that

nS(N + 4)− nĀ(N − 4) = 0 . (5.3)

Thus, nS and nĀ take values in the ranges nS ≥ 1 and nĀ ≥ 1, subject to the
anomaly cancellation condition (5.3) and the requirement that the resultant
SĀ theory must be asymptotically free. A member of this set of chiral gauge
theories is thus defined as

SĀ : G = SU(N), fermions : nSS + nĀĀ , (5.4)

where it is understood implicitly that N , nS, and nĀ satisfy the condition
(5.3) and yield an asymptotically free theory. We denote such a theory, for
short, as (N ;nS, nĀ).

The anomaly cancellation condition (5.3) is a linear diophantine equation.
IfN = 4, i.e., G = SU(4), a nontrivial solution of this equation is not possible,
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because in this case the representation is self-conjugate, and hence has
zero anomaly, so there is no value of nĀ which can cancel the contribution to
the anomaly in gauged currents from the fermions in the representation.
Consequently, a nontrivial solution of the anomaly cancellation condition
(5.3) requires that N ≥ 5, and we restrict to this range. We define the ratio

nĀ
nS

=
N + 4

N − 4
≡ p . (5.5)

Since the right-hand side of Eq. (5.5) is greater than one, it follows that
nS < nĀ. Therefore, the theories of this type with minimal chiral fermion
content have nS = 1 and take the form

(N ;nS, nĀ) = (N ; 1, p) , (5.6)

with the understanding that nĀ must be a (positive) integer. We find that
there are precisely four solutions of Eq. (5.5) with nS = 1 that satisfy this
condition, namely (including the N characterizing the SU(N) gauge group)

(N ;nS, nĀ) = (5; 1, 9), (6; 1, 5), (8; 1, 3), (12; 1, 2) . (5.7)

In the context of anomaly cancellation alone, before imposing the con-
dition of asymptotic freedom, we observe a basic mathematical property. If
(N ;nS, nĀ) is a solution of Eq. (5.3), then a theory with ncp copies (ab-
breviated cp) of the fermion content also yields a solution of (5.3). That
is,

(N ;nS, nĀ) is anom. free =⇒

(N ;ncpnS, ncpnĀ) is anom. free for ncp ≥ 2. (5.8)

If one were not to require that the theory must be asymptotically free, then
ncp could be any positive integer, and hence the linear diophantine equation
(5.3) would have an infinite number of solutions. However, we do require
that our chiral gauge theories must be asymptotically free so that they are
perturbatively calculable in the deep ultraviolet.

Given this requirement, the next step is to ascertain, for a given value of
N , which values of ncp are allowed by asymptotic freedom. To do this, we
calculate the first two coefficients of the beta function. These coefficients are

b1 =
1

3

[
11N −

{
nS(N + 2) + nĀ(N − 2)

}]
(5.9)
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and

b2 =
1

3

[
34N2 − nS

{
5N + 3

(N + 2)(N − 1)

N

}
(N + 2)

−nĀ
{

5N + 3
(N − 2)(N + 1)

N

}
(N − 2)

]
. (5.10)

It will be useful to reexpress these coefficients in a convenient form for analysis
of the minimal set of fermions, viz., (nS, nĀ) = (1, p), given explicitly in (5.7)
and the sets involving ncp-fold replication (copies, or flavors) of minimal sets,

(nS, nĀ) = ncp(1, p) = (ncp, ncpp) . (5.11)

Thus, equivalently,

b1 =
1

3

[
11N − ncp

{
(N + 2) + p(N − 2)

} ]
=

1

3

[
11N − 2ncp

(N2 − 8

N − 4

) ]
(5.12)

and

b2 =
1

3

[
34N2 − ncp

{(
5N + 3

(N + 2)(N − 1)

N

)
(N + 2)

+p
(

5N + 3
(N − 2)(N + 1)

N

)
(N − 2)

} ]
=

1

3

[
34N2 − 8ncp

{2N4 − 19N2 + 12

N(N − 4)

} ]
, (5.13)

where it is understood that, since nS is taken to have its minimal value
of 1, the value of N is restricted so that p is a (positive) integer. The
requirement of asymptotic freedom, i.e., b1 > 0, implies that ncp is bounded
above according to

ncp <
11N(N − 4)

2(N2 − 8)
. (5.14)

As a rational number, this upper bound has the respective values (quoted
to the indicated floating-point accuracy) 1.62, 2.36, 3.14, and 3.88 forN = 5,
6, 8, 12. Therefore, on the integers, we have the upper bounds

ncp ≤


1 for N = 5
2 for N = 6
3 for N = 8, 12

. (5.15)
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Thus, the full set of (anomaly-free) asymptotically free SĀ chiral gauge the-
ories of this type, (N ;nS, nĀ) = (N ; 1, p) and (N ;ncp, ncpp) with integer p,
includes, in addition to the minimal set (5.7), also the additional theories
with an ncp-fold replication of the set (5.7), namely

(N ;nS, nĀ) = (6; 2, 10), (8; 2, 6), (8; 3, 9), (12; 2, 4), (12; 3, 6) . (5.16)

There are also (asymptotically free) solutions of the anomaly cancellation
condition (5.3) with nonminimal values nS > 1 that are not of the form of
simple replications of the minimal set (5.7), i.e., for which p is a (positive)
rational, but not integer, number. We find that there are seven such solutions,
namely

(N ;nS, nĀ) = (10; 3, 7), (16; 3, 5), (20; 2, 3), (20; 4, 6),

(28; 3, 4), (36; 4, 5), (44; 5, 6) . (5.17)

Thus, we find that there are sixteen SĀ anomaly-free asymptotically free
chiral gauge theories; these consist of the four minimal ones of the form
(N ; 1, p) in Eq. (5.7), the five theories of the form (N ;ncp, ncpp) in Eq.
(5.16), and the seven additional ones in Eq. (5.17) with rational, but non-
integral p. As noted in the introduction, a striking feature of this family
of SĀ chiral gauge theories is that the combined requirements of anomaly
cancellation and asymptotic freedom yields only a finite set of solutions, in
contrast to generic families of chiral gauge theories that have been studied in
the past, such as S+(N+4)F̄ and A+(N−4)F̄ , and extensions of these with
vectorlike subsectors, which allow, respectively, the infinite ranges N ≥ 3 and
N ≥ 5.

We label the fermion fields in a given SĀ theory as

Si : ψabi,L = ψbai,L , 1 ≤ i ≤ nS (5.18)

and
Āj : χab,j,L = −χba,j,L, 1 ≤ j ≤ nĀ , (5.19)

where a, b are SU(N) gauge indices and i, j are flavor indices.
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5.1.2 Global Flavor Symmetry

The classical global flavor (fl) symmetry group of the (N ;nS, nĀ) SĀ theory
is

Gfl,cl = U(ns)⊗U(nĀ) =

{
SU(nĀ)⊗ U(1)S ⊗ U(1)Ā if ns = 1

SU(nS)⊗ SU(nĀ)⊗ U(1)S ⊗ U(1)Ā if ns ≥ 2
.

The operation of the elements of these global groups on the fermion fields
is as follows. For fixed SU(N) group indices a, b, the theory is invariant
under the action of an element US ∈ U(nS) on the nS-dimensional vector
(ψab1,L, ψ

ab
2,L, ...ψ

ab
nS ,L

)

ψabi,L →
nS∑
j=1

(US)ijψ
ab
j,L (5.20)

and separately under the action of an element of an element UĀ ∈ U(nĀ) on
the nĀ-dimensional vector (χab,1,L, χab,2,L, ...χab,nĀ,L

)

χab,i,L →
nĀ∑
j=1

(UĀ)ijχab,j,L . (5.21)

The U(1)S and U(1)Ā global symmetries are both broken by SU(N) instan-
tons [6]. As before in our analysis of different chiral gauge theories [22], we
define a vector whose components are comprised of the instanton-generated
contributions to the breaking of these symmetries. In the basis (S, Ā), this
vector is

~v =
(
nST (S), nĀT (Ā)

)
= nnp

(
N + 2

2
, p

N − 2

2

)
=

nnp
2

(
N + 2,

(N + 4)(N − 2)

N − 4

)
. (5.22)

We can construct one linear combination of the two original currents that is
conserved in the presence of SU(N) instantons. We denote the corresponding
global U(1) flavor symmetry as U(1)′ and the fermion charges under this U(1)′

as
~Q′ =

(
Q′S, Q

′
Ā

)
. (5.23)

The U(1)′ current is conserved if and only if∑
f

nfT (Rf )Q
′
f = ~v · ~Q′ = 0 . (5.24)
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Clearly, this condition determines the vector ~Q′ only up to an overall multi-
plicative constant. A solution is

~Q′ =
(

(N − 2)(N + 4), −(N + 2)(N − 4)
)
. (5.25)

The actual global chiral flavor symmetry group (preserved in the presence of
instantons) is then

Gfl =

{
SU(nĀ)⊗ U(1)′ if nS = 1

SU(nS)⊗ SU(nĀ)⊗ U(1)′ if nS ≥ 2
. (5.26)

So far, our discussion of global flavor symmetries applies generally to all
of the SĀ chiral gauge theories. We next determine the most attractive
channel for fermion condensation, which differs for N = 5 and N ≥ 6, and
then proceed with analyses of specific SĀ theories.

5.1.3 Fermion Condensation Channels

For N 6= 5, the most attractive channel for the formation of a bilinear fermion
condensate in a (N ;nS, nĀ) SĀ chiral gauge theory is

S × Ā→ adj , (5.27)

where adj denotes the adjoint representation of SU(N). This has

∆C2 =
(N + 2)(N − 2)

N
for S × Ā→ adj . (5.28)

Substituting this expression for ∆C2 into Eq. (3.4) for the estimate of the
minimum critical coupling for condensation in this channel, we obtain

αcr '
2πN

3(N + 2)(N − 2)
for S × Ā→ adj . (5.29)

In general, there are several stages of fermion condensation, as will be evident
in the analyses of specific theories below. In the SĀ theory with G = SU(5),
the most attractive channel is Ā × Ā → F instead of (5.27) and will be
discussed in the section devoted to this theory.
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5.2 SĀ Theory with G = SU(5)

5.2.1 General

Our SU(5) SĀ theory has (nS, nĀ) = (1, 9). Since nS = 1 for this theory,
we use a simplified notation without the flavor index on the S field, namely

ψabi=1,L ≡ ψabL . We recall that the S = and Ā = representations of SU(5)
have dimensionalities 15 and 10, respectively, and we shall equivalently refer
to them in this section by these dimensionalities. From Eq. (5.26), this
theory has a (nonanomalous) global flavor symmetry

Gfl = SU(9)Ā ⊗ U(1)′ . (5.30)

We have not found SU(5)-gauge-singlet composite-fermion operators that
satisfy the ’t Hooft anomaly matching conditions for this theory. Indeed, the
minimal fermionic operator products, such as SabĀbcS

cd, εabcdeĀabĀcdĀef , are
not SU(5) gauge singlets.

We list the values of the first two coefficients of the beta function for
this theory in Table 5.1. This beta function has an IR zero which occurs,
at the two-loop level, at a value αIR,2` = 0.645. As will be discussed further
below, we find that this value is close to an estimate of the minimal critical
value, αcr for the formation of a bilinear fermion condensate in the most
attractive channel, with associated spontaneous chiral symmetry breaking.
Consequently, we shall analyze both possibilities (i.e., retaining or breaking
chiral symmetry) for the UV to IR evolution of this SU(5) SĀ theory.

The most attractive channel for condensation is

MAC for (5; 1, 9) : × → , i.e., Ā× Ā→ F , (5.31)

where F = is the fundamental representation. Equivalently, in terms of
dimensionalities, this is the channel 10× 10 → 5. Since C2(A2) = 18/5 and
C2(F ) = 12/5 for SU(5), the measure of attractiveness for this channel is

∆C2 =
24

5
for 10× 10→ 5 . (5.32)

(The next-most attractive channel is S × Ā → adj, with ∆C2 = 21/5.)
The rough Schwinger-Dyson estimate of the critical coupling for condensate
formation in the 10 × 10 → 5 channel is αcr ∼ 5π/36 = 0.44. To compare
αIR,2` with αcr, we use the ratio ρ defined in Eq. (3.5). We calculate ρ = 1.5
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Table 5.1: Properties of SU(N) SĀ chiral gauge theories with (i) minimal fermion
content nS = 1 and nĀ = p = (N +4)/(N −4) and (ii) ncp-fold replicated fermion content
ns = ncp and nĀ = ncpp. The quantities listed are (N ;nS , nĀ), p, ncp, b̄1, b̄2, and, for
negative b̄2, α

IR,2`
= −b̄1/b̄2, αcr for the relevant first condensation channel, and the ratio

ρ given by Eq. (3.5). The dash notation − means that the two-loop beta function has
no IR zero. The likely IR behavior is indicated in the last column, where SχSB indicates
spontaneously broken chiral symmetry, χS indicates a chirally symmetric behavior, and
ESR stands for “either symmetry realization”, χS or SχSB. See text for further discussion
of descendant theories.

(N ;nS, nĀ) p ncp b̄1 b̄2 α
IR,2`

αcr,ch ρ
IR

comment
(5;1,9) 9 1 0.5570 −0.8638 0.645 0.44 1.5 ESR
(6;1,5) 5 1 1.008 −0.1182 8.53 0.39 22 SχSB
(8;1,3) 3 1 1.592 0.9056 − 0.28 − SχSB
(12;1,2) 2 1 2.600 3.519 − 0.18 − SχSB
(6;2,10) 5 2 0.2653 −2.820 0.0941 0.39 0.24 χS
(8;2,6) 3 2 0.8488 −2.782 0.3051 0.28 1.1 ESR
(12;2,4) 2 2 1.698 −3.297 0.5149 0.18 2.9 SχSB
(8;3,9) 3 3 0.1061 −6.470 0.0164 0.28 0.059 χS
(12;3,6) 2 3 0.7958 −10.113 0.07869 0.18 0.44 ESR

for the channel (5.31). This value of ρ is close enough to unity that we cannot
make a definite conclusion concerning the presence or absence of spontaneous
chiral symmetry breaking. There are thus two possibilities for the first step
in the UV to IR evolution of this SU(5) SĀ theory, and we investigate both
of these.

5.2.2 Evolution of SU(5) SĀ Theory to a Non-Abelian
Coulomb Phase in the IR

First, the SU(5) (5;1,9) SĀ theory might evolve downward in µ without any
spontaneous chiral symmetry breaking, yielding a (deconfined) non-Abelian
Coulomb phase (NACP) in the infrared. We denote this possibility as

(5; 1, 9) : UV→ IR NACP . (5.33)

In this case, the global flavor symmetry in the IR is the same as in the UV,
namely (5.30).
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5.2.3 Dynamical Breaking of SU(5) to SU(4) Gauge
Symmetry

Second, the gauge coupling of the (5;1,9) SU(5) SĀ theory might become
sufficiently strong to lead to nonperturbative behavior. Since we have not
found gauge-singlet operator products that satisfy ’t Hooft anomaly matching
conditions in this SU(5) theory, we infer that this nonperturbative behavior
would lead to the formation of a bilinear fermion condensate, breaking the
SU(5) gauge symmetry. We denote this possibility as

(5; 1, 9) : UV→ IR : SχSB =⇒ SU(4) . (5.34)

We proceed to analyze this possibility. Thus, we assume that as the refer-
ence Euclidean momentum scale µ decreases below a value that we denote
Λ5, the gauge coupling becomes large enough to form a bilinear conden-
sate in the most attractive channel, Ā × Ā → F , Eq. (5.31), dynamically
breaking the SU(5) gauge symmetry to SU(4) (and also breaking the global
flavor symmetry (5.30) ). The associated fermion condensate is of the form
〈εabdefχTbd,i,LCχef,j,L〉, where C is the charge-conjugation Dirac matrix. With
no loss of generality, we may choose the uncontracted index a to be a = 5.
By a vacuum alignment argument similar to that used in [1], we infer that
the actual condensates are of the form

〈ε5bdefχTbd,j,LCχef,j,L〉 ∝
[
〈χT12,j,LCχ34,j,L〉−〈χT13,j,LCχ24,j,L〉+〈χT14,j,LCχ23,j,L〉

]
(5.35)

for 1 ≤ j ≤ 9. Since the gauge interaction is independent of the flavor
index, it follows that these condensates have a common value independent of
the flavor index, j. The fermions involved in these condensates thus gain a
common dynamical mass of order Λ5 and are integrated out of the low-energy
effective field theory applicable at energy scales µ < Λ5. When SU(N) breaks
to SU(N − 1) there are 2N − 1 gauge bosons in the coset SU(N)/SU(N − 1),
corresponding to the broken generators. Here, with N = 5, there are nine
gauge bosons in the coset SU(5)/SU(4), and these also gain masses of order
Λ5.

5.2.4 Analysis of SU(4) Descendant Theory

Since the low-energy effective field theory resulting as a descendant from
the breaking of the SU(5) SĀ gauge symmetry is invariant under an SU(4)
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gauge symmetry, in order to analyze it, we decompose the remaining massless
fermions into SU(4) representations. For this purpose, we make use of the
following general results for an SU(N) group:

SU(N) = [ + + 1 ] SU(N−1) , (5.36)

where 1 denotes a singlet, and, for N ≥ 4, and

SU(N) = [ + ] SU(N−1) . (5.37)

Here, in terms of dimensionalities, these decompositions read

15SU(5) = 10SU(4) + 4SU(4) + 1 (5.38)

and
10SU(5) = 6SU(4) + 4̄SU(4) . (5.39)

Note that 6SU(4) is self-conjugate, i.e., 6SU(4) ≈ 6̄SU(4). The massless SU(4)-
nonsinglet fermions in the SU(4) theory thus consist of ψabL with 1 ≤ a, b ≤ 4,
ψa5
L with 1 ≤ a ≤ 4, and χa5,j,L with 1 ≤ a ≤ 4 and 1 ≤ j ≤ 9. In terms of

Young tableaux, these are + +9 under SU(4), or in equivalent notation,
the theory is

SU(4), fermions : S + F + 9F̄ = S + 8F̄ + 1{F + F̄} . (5.40)

Thus the SU(4)-nonsinglet fermion content of the theory is precisely the N =
4, p = 1 special case of the Sp model presented in [11] and further analyzed
in [12, 22, 82], so we can apply the results from these previous studies here.
This SU(4) theory also contains the massless SU(4)-singlet chiral fermion ψ55

L

inherited from the SU(5) theory, but this does not affect the SU(4) dynamics.
We recall that the Sp model is defined by the gauge group and chiral fermion
content

Sp : G = SU(N), fermions : S + (N + 4)F̄ + p{F + F̄} (5.41)

where the first part, S+(N +4)F̄ is irreducibly chiral and the second part is
a vectorlike subsector consisting of p copies of {F + F̄}. As dictated by our
theorem proved above, this SU(4) descendant theory is anomaly-free. This
is evident from the count

A( SU(4)) + A( SU(4))− 9A( SU(4))
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= 8 + 1− 9 = 0 . (5.42)

The first two coefficients of the beta function of this SU(4) low-energy
effective field theory have the same sign (explicitly, b̄1 = 0.7427 and b̄2 =
0.1831), so this beta function has no IR zero at the maximal scheme-independent,
two-loop order. Thus, as the Euclidean momentum scale µ decreases below
Λ5, the SU(4) gauge coupling inherited from the original SU(5) theory con-
tinues to increase until it exceeds the region where it can be described by the
perturbative beta function. There are then several possibilities for the next
stage of RG evolution to lower scales. We discuss these next.

Confinement in SU(4) Theory with Massless Composite Fermions

The first of these possibilities for the SU(4) theory is present because of the
fact that (for general values of N and p where there is confinement) the Sp
model satisfies the ’t Hooft anomaly-matching conditions [11,22,82]. Owing
to this, as the gauge coupling continues to increase in the infrared, the gauge
interaction could confine the (massless) SU(4)-nonsinglet fermions, produc-
ing massless spin 1/2 composite fermions as well as massive SU(4)-singlet
hadrons (mesons, glueballs, and mass eigenstates that are linear combina-
tions of mesons and glueballs). The massless fermion spectrum would also
contain the SU(4)-singlet chiral fermion ψ55

L from the original SU(5) SĀ the-
ory.

Formation of Fermion Condensates Breaking SU(4) Gauge Sym-
metry

The second of these possibilities for the UV to IR evolution of the SU(4)
low-energy effective field theory resulting from the breaking of the SU(5) SĀ
theory is further fermion condensation in the most attractive channel in this
SU(4) theory. The MAC is the channel × → , i.e.,

S × F̄ → F . (5.43)

The next-most attractive channel is F × F̄ → 1, with

∆C2 = 2C2(F ) =
N2 − 1

N
. (5.44)
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The fact that the S×F̄ → F channel is the MAC is evident from the property
that it has a larger ∆C2 value than the F × F̄ → 1 channel:

(N + 2)(N − 1)

N
− N2 − 1

N
=
N − 1

N
> 0 . (5.45)

For generality, we discuss the physics of the S × F̄ → F channel for general
N , although our specific application will be to N = 4. The attractiveness
measure for this channel is

∆C2 = C2(S) =
(N + 2)(N − 1)

N
for S × F̄ → F . (5.46)

Substituting this into Eq. (3.4) for the estimate of the minimum critical
coupling for condensation in this channel, we obtain

αcr '
2πN

3(N + 2)(N − 1)
for S × F̄ → F . (5.47)

For present case of N = 4, this yields the estimate ∆C2 = 4.5. We de-
note the Euclidean scale µ at which the running coupling α(µ) exceeds the
critical value for condensation in this MAC as Λ4. The condensation (5.43)
breaks SU(4) to SU(3). The associated condensate has the general form
〈
∑4

b=1 ψ
ab T
L Cχ5b,j,L〉. Without loss of generality, we can denote the break-

ing axis as a = 4 and label the copy (flavor) index of the F̄ fermion χ5b,j,L

involved in this condensate as j = 9, so that the condensate is

〈
4∑
b=1

ψ4b T
L Cχb5,9,L〉 . (5.48)

The fermions ψb4L and χb5,9,L with 1 ≤ b ≤ 4 involved in this condensate thus
get common dynamical masses of order Λ4. The seven gauge bosons in the
coset SU(4)/SU(3) also get masses of order Λ4. These fermions and bosons
are integrated out of the low-energy effective field theory that is operative
for scales µ < Λ4.

This low-energy effective field theory is invariant under an (anomaly-free)
SU(3) gauge symmetry and contains the massless SU(3)-nonsinglet chiral
fermions ψabL with 1 ≤ a, b ≤ 3, transforming as S = of SU(3), ψa5

L , with
1 ≤ a ≤ 3, transforming as F = of SU(3), and the χa5,j,L with 1 ≤ a ≤ 3
and 1 ≤ j ≤ 8; that is,

G = SU(3), fermions : S + F + 8 F̄ = S + 7F̄ + 1{F + F̄} (5.49)
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The SU(3)-nonsinglet fermion content of this theory is the N = 3, p = 1
special case of the Sp model (5.41). This SU(3) theory also contains a number
of massless SU(3)-singlet chiral fermions. In addition to the ψ55

L SU(4)-singlet
fermion remaining from the SU(5) → SU(4) breaking at the higher scale
Λ5, there are also nine massless SU(3)-singlet fermions remaining from the
SU(4)→ SU(3) breaking at Λ4, namely ψ45

L and the χ45,j,L with 1 ≤ j ≤ 8.
As discussed in [11, 22, 82], the further evolution into the infrared of this

SU(3) Sp model might lead to confinement with resultant massless composite
fermions or to further condensation in the most attractive channel, which is
S × F̄ → F , breaking SU(3) to SU(2) and then breaking SU(2) completely.
In the latter case, the full sequence of gauge symmetry breaking of (5;1,9)
theory would be as follows: Ā× Ā→ F , breaking SU(5) to SU(4), followed
in the resultant SU(4) descendant theory by the condensation S × F̄ → F ,
breaking SU(3) to SU(2), followed again by condensation in the respective
S × F̄ → F channel, breaking SU(2) completely.

5.3 SĀ models with N ≥ 6

5.3.1 General Analysis

We next proceed to analyze the SĀ models (N ;nS, nĀ) with N ≥ 6. In
contrast to the SU(5) SĀ theory (5; 1, 9), if N ≥ 6, the most attractive
channel for bilinear fermion condensation is S × Ā → adj, as given in Eq.
(5.27): This condensation produces, as the first stage of dynamical gauge
symmetry breaking, the pattern

SU(N)→ SU(N − 1)⊗ U(1) . (5.50)

The values of ∆C2 and αcr for this channel were given in Eqs. (5.28) and
(5.29). The resultant estimates for αcr for condensation in this channel in
specific (N ;nS, nĀ) models with N ≥ 6 are listed in Tables 5.1 and 5.2. In
these tables we also list the (reduced) beta function coefficients b̄1 and b̄2,
the resultant IR zero in the two-loop beta function, if it exists, and the ratio
ρ = αIR,2`/αcr from Eq. (3.5). In cases where the beta function has no IR
zero, the coupling increases with decreasing reference scale µ until it exceeds
the perturbatively calculable regime. For a generic SĀ (N ;nS, nĀ) theory,
we do not find solutions for ’t Hooft anomaly matching, although, as will
be discussed later, in certain cases, resultant low-energy effective descendant
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Table 5.2: Properties of SU(N) SĀ chiral gauge theories with other (N ;nS , nĀ) than
those in Table 5.1. The quantities listed are (N ;nS , nĀ), b̄1, b̄2, and, for negative b̄2,
α

IR,2`
= −b̄1/b̄2, αcr for the relevant first condensation channel, and the ratio ρ given by

Eq. (3.5). The dash notation − means that the two-loop beta function has no IR zero.
The likely IR behavior is indicated in the last column, where SχSB indicates spontaneously
broken chiral symmetry, χS indicates a chirally symmetric behavior, and ESR stands for
“either symmetry realization”, χS or SχSB. See text for further discussion of descendant
theories.

(N ;nS, nĀ) b̄1 b̄2 α
IR,2`

αcr,ch ρ
IR

comment
(10;3,7) 0.4775 −8.116 0.0588 0.22 0.27 χS
(16;3,5) 1.379 −14.931 0.0924 0.13 0.69 ESR
(20;2,3) 3.236 −4.265 0.759 0.11 7.2 SχSB
(20;4,6) 0.6366 −37.238 0.0171 0.11 0.16 χS
(28;3,4) 3.024 −35.286 0.0857 0.075 1.1 SχSB
(36;4,5) 1.963 −102.512 0.0191 0.058 0.33 χS
(44;5,6) 0.05305 −218.913 0.242e-3 0.048 0.0051 χS

field theories with different fermion content (e.g., the SU(4) Sp model be-
low), do satisfy these matching conditions. Thus, as regards the initial UV
to IR evolution of the (N ;nS, nĀ) theory, if the gauge coupling becomes suffi-
ciently strong, one expects fermion condensation. The resulting expectations
for whether or not fermion condensation and associated spontaneous chiral
symmetry breaking occur are listed for the sixteen SĀ theories in Tables 5.1
and 5.2.

Flow to Chirally Symmetric Non-Abelian Coulomb Phase in IR

Referring to these Tables 5.1 and 5.2, in the six cases where the value of ρ
is substantially less than unity, we infer that the theory is likely to evolve
smoothly from the UV to a (deconfined) chirally symmetric non-Abelian
Coulomb phase in the IR. Explicitly, we infer that this IR behavior occurs
for the (6;2,10), (8;3,9), (10;3,7), (20;4,6), (36;4,5), and (44;5,6) SĀ
theories.
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Flow to IR with Spontaneous Chiral Symmetry Breaking

We next discuss the situation in which, as the reference scale µ decreases from
the UV to the IR, the coupling becomes large enough so that nonperturbative
behavior occurs. As noted, in the absence of sets of fermionic operator prod-
ucts that yield solutions to ’t Hooft anomaly matching conditions, one infers
that this nonperturbative behavior entails fermion condensation and asso-
ciated spontaneous breaking of the SU(N) gauge symmetry (although after
some stage(s) of such symmetry breaking, a low-energy descendant theory
may satisfy these matching conditions). For technical simplicity, we restrict
our discussion to the minimal theories (N ; 1, p); corresponding analyses can
be given for the other (N ;nS, nĀ) models. As is evident from Table 5.1,
all three of of the (N ; 1, p) theories with N ≥ 6, namely (6;1,5), (8;1,3),
and (12;1,2) have the property that the gauge coupling becomes sufficient-
ly strong to produce further bilinear fermion condensation. As before, we
denote the scale where this occurs as ΛN . A vacuum alignment argument
implies that the symmetry breaking is such as to leave the largest residu-
al symmetry. This implies that the condensate breaks the original SU(N)
gauge symmetry to SU(N − 1) ⊗ U(1). Without loss of generality, we take
the breaking direction in SU(N) to be a = N . To show how this occurs, we

recall the decompositions of SU(N) and SU(N) under SU(N − 1) given,

respectively, in Eqs. (5.36) and (5.37) above. Using these decompositions,
we have

SU(N)× SU(N) =
(

SU(N−1) + SU(N−1) +1
)
×
(

SU(N−1) + SU(N−1)

)
.

(5.51)
Among the various products, we see that SU(N−1)× SU(N−1) yields a singlet
of SU(N − 1) and hence is favored by the vacuum alignment argument. The
associated condensate thus has the form (with no sum on a)

〈T aa 〉 =

{
κ for 1 ≤ a ≤ N − 1

−κ(N − 1) for a = N
(5.52)

where κ is a constant. Thus, in terms of the fermion fields, the 〈T aa 〉 conden-
sate is of the form 〈T aa 〉 = 〈ψad TL Cχda,nĀ,L

〉 (with no sum on a or d). The
fermions involved in this condensate gain dynamical masses of order ΛN . The
2N gauge bosons in the coset SU(N)/[SU(N −1)⊗U(1)] also gain masses of
order ΛN . In the low-energy effective field theory that is applicable at scales
µ < ΛN , one thus integrates out these fields with masses ∼ ΛN .
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The massless nonsinglet chiral fermion content of the resultant low-energy
effective field theory with SU(N−1)⊗U(1) gauge invariance thus consists of

the SU(N−1), p copies of the SU(N−1), and p − 1 copies of the SU(N−1),

with corresponding U(1) charges. We summarize this SU(N − 1)-nonsinglet
content as

SU(N − 1) : fermions : S + p Ā+ (p− 1)F̄ (5.53)

where S, Ā, and F̄ refer to the SU(N − 1) gauge symmetry. This SU(N − 1)
effective theory also contains the massless SU(N − 1)-singlet fermion ψNNL .
As guaranteed by the theorem proved above, this descendant theory is free
of anomalies in gauged currents. This is evident for the SU(N − 1)3 triangle
anomaly, for example, since this is given (with M ≡ N − 1) by:

SU(N − 1)3 A = A(S) + pA(Ā) + (p− 1)A(F̄ )

= (M + 4)− p(M − 4)− (p− 1) = 0 ,

(5.54)

where the last line follows upon substitution of p from Eq. (5.5). Similar
cancellations hold for the SU(N − 1)2 U(1) and U(1)3 anomalies.

5.3.2 SU(6) Theory with nS = 1, nĀ = 5

The renormalization-group evolution of a (N ;nS, nĀ) theory into the infrared
depends on the specific theory. For definiteness, we shall focus on the (6;1,5)
theory for our further discussion. We list the values of the first two coefficients
of the beta function for this theory in Table 5.1. As before, since nS = 1
for this theory, we use a simplified notation without the flavor index on the
S field, namely ψabi=1,L ≡ ψabL . Our discussion for general N ≥ 6 applies, in
particular, to this theory.

Initial Condensation and Breaking of SU(6) to SU(5)⊗ U(1)

Since the ratio ρ is substantially larger than unity (see Table 5.1) and since we
have not found composite fermion operators that satisfy the ’t Hooft anomaly
matching conditions, we infer that as the reference scale µ decreases from the
UV to the IR, the gauge interaction produces a bilinear fermion condensate
in the S×Ā→ adj channel. Using the notation introduced above, this occurs
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at a scale denoted Λ6. By convention, we take the breaking direction as a = 6
and the copy (flavor) label of the Ā2 fermion involved to be j = p = 5. In
the notation of Eq. (5.52), the condensate can then be written as

〈T aa 〉 = 〈ψa6 T
L χ6a,5,L〉 (5.55)

where 1 ≤ a ≤ 5, and there is no sum on a. The fermions involved in this
condensate gain dynamical masses of order Λ6.

Analysis of Descendant SU(5)⊗ U(1) Theory

We next consider the descendant SU(5)⊗U(1) theory that emerges from the
self-breaking of the SU(6) theory at Λ6. The relevant decomposition of the
SU(6) S and Ā representations under SU(5)⊗U(1), are indicated as follows,
in terms of Young tableaux and SU(5) dimensionalities, with U(1) charges
given as subscripts (normalized according to the conventions of [104]):

SU(6) = [ + + 1 ] SU(5)

= 152 + 5−4 + 1−10 (5.56)

and

SU(6) = [ + ] SU(5)

= 10−2 + 54 . (5.57)

We will again use the shorthand notation S ≡ S2, Ā ≡ Ā2, and F̄ for the ,

and ¯, where these now refer to SU(5). We will indicate the U(1) charge
of the S field as ηS and so forth for the other fermion fields. The massless
SU(5)-nonsinglet fermion content in this effective theory is thus

SU(5) : fermions : S + 5 Ā + 4 F̄ . (5.58)

Explicitly, these fermions (with dimensions of the SU(5) representations in-
dicated in parentheses) are

S(15) : ψabL with 1 ≤ a, b ≤ 5,

5 Ā(10) : χab,j,L with 1 ≤ a, b ≤ 5 and 1 ≤ j ≤ 5,
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4 F̄ (5) : χ6b,j,L with 1 ≤ b ≤ 5 and 1 ≤ j ≤ 4 . (5.59)

This theory also contains the massless SU(5)-singlet fermion ψ66
L from the

original SU(6) theory. From Eq. (5.56), it follows that this fermion has U(1)
charge η1 = −10.

As an illustration of our theorem, it is instructive to see explicitly the
cancellation of contributions to the anomalies in various gauge currents in this
SU(5) ⊗ U(1) descendant gauge theory. There are three triangle anomalies
that are relevant, namely the SU(5)3, SU(5)2 U(1), and U(1)3 anomalies. We
have

SU(5)3 A = A(S) + 5A(Ā) + 4A(F̄ )

= 9 + 5(−1) + 4(−1) = 0 (5.60)

and

SU(5)2 U(1) A = T (S)ηS + 5T (Ā)ηĀ + 4T (F̄ )ηF̄

=
7

2
2 + 5

3

2
(−2) + 4

1

2
(4) = 0 . (5.61)

For the U(1)3 anomaly cancellation, we must also include the contribution
of the SU(5)-singlet fermion ψ66

L since it carries a nonzero U(1) charge:

U(1)3 A = dim(S)η3
S + 5 dim(Ā)η3

Ā

+ 4 dim(F̄ )η3
F̄ + η3

1

= 15(23) + 5(10)(−2)3 + 4(5)(43) + (−10)3 = 0 . (5.62)

We also observe that the mixed gauge-gravitational anomaly vanishes:

(grav)2 U(1) A = dim(S)ηS + 5 dim(Ā)ηĀ

+ 4 dim(F̄ )ηF̄ + η1

= 15(2) + 5(10)(−2) + 4(5)(4) + (−10) = 0 . (5.63)

The first two (reduced) coefficients of the SU(5) beta function are b̄1 =
0.76925 and b̄2 = −0.22882, so that this two-loop SU(5) beta function has
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an IR zero at αIR,2` = −b̄1/b̄2 = 3.36. The U(1) beta function is not asymp-
totically free, so that as the reference scale µ decreases, the running U(1)
gauge coupling inherited from the original SU(6) theory decreases. As re-
gards the SU(5) dynamics, the most attractive channel for fermion conden-
sation is S× F̄ → F , with ∆C2 = 28/5. (The next-most attractive channel is
Ā×Ā→ F , with ∆C2 = 24/5.) Fermion condensation in this most attractive
channel causes the gauge symmetry breaking

SU(5)⊗ U(1)→ SU(4) . (5.64)

The fact that the fermion condensate breaks the U(1) gauge symmetry is
evident, since ηS + ηF̄ = 6 6= 0. The estimated minimum critical cou-
pling for condensation in this MAC to occur is αcr ' 0.38. Since the ratio
ρ = αIR,2`/αcr = 9.0, and since we have not found SU(5) ⊗ U(1)-invariant
fermionic operator products that satisfy ’t Hooft anomaly matching, we an-
ticipate that fermion condensation occurs in this most attractive channel.
We denote the scale at which this occurs as Λ5. The SF̄ condensate is of the
form 〈

∑5
b=1 ψ

ab T
L Cχb6,j,L〉. By convention, we denote the breaking direction

as a = 5 and choose the copy index on the χb6,j,L field to be j = 4, so that
the condensate is

〈
5∑
b=1

ψ5b T
L Cχb6,4,L〉 . (5.65)

The fermions ψ5b
L and χb6,4,L with 1 ≤ b ≤ 5 that are involved in this con-

densate gain dynamical masses of order Λ5. The ten gauge bosons in the
coset [SU(5) ⊗ U(1)]/SU(4) also gain masses of order Λ5. These fields are
integrated out in the construction of the SU(4)-invariant low-energy effective
field theory applicable at scales µ < Λ5.

Analysis of Descendant SU(4) Theory

The massless SU(4)-nonsinglet chiral fermion content of this effective low-

energy theory consists of , 5 copies of , and eight copies of ¯, i.e.

SU(4) : fermions : S + 5 Ā+ 8 F̄ . (5.66)

Explicitly, these fermions (with dimensions of the SU(5) representations in-
dicated in parentheses) are

S(10) : ψabL with 1 ≤ a, b ≤ 4
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5 Ā(6) : χab,j,L with 1 ≤ a, b ≤ 4 and 1 ≤ j ≤ 5

5 F̄ (4) : χ5b,j,L with 1 ≤ b ≤ 4 and 1 ≤ j ≤ 5

3 F̄ (4) : χ6b,j,L with 1 ≤ b ≤ 4 and 1 ≤ j ≤ 3 . (5.67)

This theory also contains the massless SU(4)-singlet fermions ψ66
L and χ65,j,L

with 1 ≤ j ≤ 3.
In accordance with our theorem, we show explicitly that this SU(4) de-

scendant theory is anomaly-free:

SU(4)3 A = A(S) + 5A(Ā) + 8A(F̄ ) = 8 + 0 + 8(−1) = 0 . (5.68)

where we have used the fact that the = Ā representation of SU(4) is self-
conjugate.

The first two (reduced) coefficients of the beta function of this SU(4)
descendant theory are b̄1 = 0.5305 and b̄2 = 0.1224, with the same sign, so at
the maximal scheme-independent, two-loop level, the beta function has no
IR zero. Hence, as the reference scale decreases below Λ5, the SU(4) gauge
coupling inherited from the SU(5) theory continues to increase, eventually
exceeding the range where it is perturbatively calculable. The most attractive
channel for the formation of a bilinear fermion condensate is

Ā× Ā→ 1 , (5.69)

with ∆C2 = 2C2(A) = 5. Clearly, this fermion condensation preserves the
SU(4) gauge symmetry. The estimated minimal critical coupling for conden-
sation in this channel is αcr = 2π/15 = 0.42. The associated condensates are
of the form 〈εabdeχTab,j,LCχde,k,L〉, where the copy indices take on values in the
interval 1 ≤ j, k ≤ 5. Applying a vacuum alignment argument, we may take
j = k, so that these condensates are

〈εabdeχTab,j,LCχde,j,L〉 for 1 ≤ j ≤ 5 (5.70)

(where there is no sum on j). These condensates are equal and hence preserve
an O(5) isospin symmetry. We denote the scale at which this condensation
takes place as ΛĀĀ. Owing to this condensation, all of the χab,j,L fields gain
masses of order ΛĀĀ.
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This leaves a descendant (anomaly-free) chiral gauge theory with massless
SU(4)-nonsinglet fermion content S + 8F̄ , given by Eq. (5.67) with the Ā
fields removed. This theory has been studied before [11,22,23,82], and we can
combine the known results with the new ingredients here for our analysis.
The first two (reduced) coefficients in the beta function are b̄1 = 0.7958
and b̄2 = 0.2913, with the same sign, so that this beta function has no IR
zero. Hence, as the scale µ decreases below ΛĀĀ, the SU(4) gauge coupling
continues to increase from its value at ΛĀĀ.

Since it is known that this S + 8F̄ theory satisfies the ’t Hooft anomaly
matching conditions [11, 22, 82], one possibility is that it confines without
any spontaneous chiral symmetry breaking, producing massless composite
fermions and massive hadrons. An alternate type of IR behavior is fermion
condensation in the most attractive channel, which is S × F̄ → F , breaking
SU(4) to SU(3), followed by further fermion in the respective MAC S× F̄ →
F channels in the descendant SU(3) and SU(2) theories, finally breaking the
gauge symmetry completely.

Discussion

It is of interest to contrast our present SU(N) SĀ theories with N ≥ 6, and
hence a most attractive channel of the form S × Ā→ adj, with the theories
analyzed in Ref. [27]. One of the purposes of Ref. [27] was to investigate how
a fermion condensate transforming as the adjoint representation of a simple
SU(N) gauge theory would dynamically break the gauge symmetry, and to
contrast this with the types of gauge symmetry breaking patterns that one
obtains if one uses a fundamental Higgs field transforming according to the
adjoint representation of the SU(N) group. The type of theory considered
in [27] had a direct-product gauge group of the form

GUV = G⊗Gb , (5.71)

where G is a chiral gauge symmetry and Gb is a vectorial gauge symmetry.
As constructed, the Gb gauge interaction becomes strong in the infrared and
leads to a condensate involving a fermion field transforming as a nonsinglet
under both G and Gb, and specifically as the adjoint representation of G,
thereby breaking G to a subgroup, H. At the stage where this breaking
occurs, the G gauge interaction is still weak. With G = SU(N) regarded as
a hypothetical grand unification group, Ref. [27] addressed the question of
what the pattern of induced dynamical breaking of a grand unified theory
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would be and how it would differ from the pattern obtained with a nonzero
vacuum expectation value of a fundamental Higgs field in the adjoint repre-
sentation. This exploration of possible dynamical symmetry breaking of a
grand unified theory is reminiscent of, although different from, the old idea
of dynamical breaking of electroweak gauge symmetry by means of a vecto-
rial, strongly coupled, confining gauge theory which would produce bilinear
fermion condensates involving fermion(s) that transform under both the elec-
troweak gauge group and the strongly coupled gauge group [15, 105]. In the
latter case, the breaking of the electroweak gauge symmetry GEW is caused
by a bilinear fermion condensate transforming as the fundamental, rather
than adjoint, representation of weak SU(2)L with weak hypercharge Y = 1.

The difference with respect to our present work is that here we study a
chiral gauge theory with a single gauge group rather than a direct product,
and the chiral gauge interaction may produce condensates that self-break the
strongly coupled chiral gauge symmetry instead of having a weakly coupled
chiral gauge symmetry broken by a condensate of fermions that are nonsin-
glets under both G and Gb. The common feature shared by the dynamical
gauge symmetry breaking in studied in [27] and the SĀ theories with N ≥ 6
here is that the bilinear fermion condensate transforms as an adjoint of the
SU(N) gauge symmetry and breaks it at the highest stage according to the
pattern (5.50). To see how this differs with the situation with a Higgs field Φ
in the adjoint representation, we recall the Higgs potential (with a Φ→ −Φ
symmetry imposed for technical simplicity),

V =
µ2

2
Tr(Φ2) +

λ1

4
[Tr(Φ2)]2 +

λ2

4
Tr(Φ4) , (5.72)

where µ2, λ1, and λ2 are real for hermiticity. One chooses µ2 < 0 to produce
the symmetry breaking. Assuming N ≥ 4, for the comparison here, it follows
that the two quartic terms in (5.72) are independent, and the requirement
that V be bounded below implies that λ1 > 0. This boundedness condition
allows λ2 to take on a restricted range of negative values depending on λ1

and N , namely [27]

−
(

N(N − 1)

N2 − 3N + 3

)
λ1 < λ2 < 0 . (5.73)

With λ2 in this interval, V is minimized with a Higgs VEV such that the
SU(N) gauge symmetry is broken according to (5.50). However, if λ2 >
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0, then V is minimized for a Higgs VEV that yields a different symmetry
breaking: if N is even, then the breaking pattern is

SU(N)→ SU(N/2)⊗ SU(N/2)⊗ U(1) , (5.74)

while if N is odd, then the breaking is

SU(N)→ SU((N + 1)/2)⊗ SU((N − 1)/2)⊗ U(1) . (5.75)

This comparison elucidates the difference between the breaking of a gauge
symmetry by the VEV of a fundamental Higgs field and the dynamical sym-
metry breaking by a fermion condensate produced by a strongly coupled
gauge interaction.

5.4 Investigation of SkĀk Chiral Gauge The-

ories with k ≥ 3

It is natural to ask whether the type of asymptotically free (anomaly-free)
chiral gauge theories that we have constructed and studied here with chiral
fermions transforming according to the rank-2 symmetric and conjugate anti-
symmetric representations of SU(N) can be extended to corresponding chiral
gauge theories with chiral fermions in the rank-k symmetric and rank-` con-
jugate antisymmetric representations of SU(N) with k, ` ≥ 3. We show here
that this cannot be done for the diagonal case k = ` because such theories
are not asymptotically free. Thus, our SĀ theories are the unique realization
of asymptotically free Sk Ā` chiral gauge theories with diagonal k = ` ≥ 2.

Let us then consider a chiral gauge theory with chiral fermions trans-
forming according to the rank-k symmetric and conjugate antisymmetric
representations of SU(N), denoted as the Sk and Āk. We denote the number
of these fermions as nSk

and nĀk
, respectively, and the theory itself as

(N ; k;nSk
, nĀk

) . (5.76)

The correspondence of this notation with the shorthand notation in the pre-
vious part of the text, which studied the k = 2 case, is

(N ; 2;nS2 , nĀ2
) ≡ (N ;nS, nĀ) . (5.77)
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The condition that the theory must be free of any triangle anomaly in gauged
currents is

nSk
A(Sk) + nĀk

A(Āk) = nSk
A(Sk)− nĀk

A(Ak) = 0 , (5.78)

where A(Sk) and A(Ak) are given in Eqs. (A.21) and (A.22) of Appendix A.
A solution of this equation has the ratio of copies of fermions in the Sk and
Āk representations given by

nĀk

nSk

=
A(Sk)

A(Ak)
≡ pk =

(N + 2k)(N + k)!(N − k − 1)!

(N − 2k)(N + 2)!(N − 3)!
. (5.79)

In the case k = 2 discussed in detail above, pk = p given in Eq. (5.5). For
k ≥ 3, pk can also be expressed as

pk =
(N + 2k)

[∏k
j=3(N + j)

]
(N − 2k)

[∏k
j=3(N − j)

] for k ≥ 3 . (5.80)

For example,

p3 =
(N + 6)(N + 3)

(N − 6)(N − 3)
(5.81)

and

p4 =
(N + 8)(N + 3)(N + 4)

(N − 8)(N − 3)(N − 4)
. (5.82)

For a physical solution, this ratio (5.79) must be positive, which requires
that

N ≥ 2k + 1 , (5.83)

and we restrict N to this range. From Eq. (5.79) it follows that if k ≥ 2, then
nĀk

> nSk
. Therefore the theories of this type with minimal chiral fermion

content have the form

(N ; k;nS, nĀ) = (N ; k; 1, pk) , (5.84)

with the understanding that pk must be a (positive) integer. If k = 3, there
are only two solutions of Eq. (5.79) with nS = 1 that satisfy this condition
that pk be an integer, namely

(N ; 3; 1, p3) = {(9; 3; 1, 10) , (12; 3; 1, 5)} . (5.85)
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The number of solutions decreases as k increases. Thus, if k = 4, then there
is only one such theory, viz.,

(N ; 4; 1, p4) = {(10; 4; 1, 39)} , (5.86)

and similarly, if k = 5, there is only one solution,

(N ; 5; 1, p5) = {(11; 5; 1, 210)} , (5.87)

while we have not found solutions with integer pk for k ≥ 6. Theories with
ncp copies of this minimal fermion content also satisfy the anomaly cancel-
lation condition (5.78), e.g., if k = 3, then the theories (9; 3;ncp, 10ncp) and
(12; 3;ncp, 5ncp) for ncp ≥ 2 also satisfy the anomaly cancellation condition.

To test whether any of these solutions yield theories that are asymptot-
ically free, we begin by calculating the first coefficient of the beta function
for cases with minimal fermion content, with ncp = 1, which is

b1 =
1

3

[
11N − 2(TSk

+ pkTĀk
)
]
. (5.88)

If k = 3, this is

k = 3 → b1 =
1

3

[
11N − (N + 3)(N2 − 12)

N − 6

]
=
−N3 + 8N2 − 54N + 36

3(N − 6)
. (5.89)

Evaluating this for the two solutions (5.85), we obtain b̄1 = −4.695 for
(N ; k; 1, p3) = (9; 3; 1, 10) and b̄1 = −5.252 for (N ; k; 1, p3) = (12; 3; 1, 5).
These are both negative, so neither of these theories is asymptotically free.

In a similar manner, we find that the anomaly-free SkĀk theories with
higher k are also not asymptotically free. Substituting the value k = 4 into
Eq. (5.88) yields

k = 4 → b1 =
1

3

[
11N − (N + 3)(N + 4)2(N − 4)

3(N − 8)

]
=
−N4 − 7N3 + 37N2 − 152N + 192

9(N − 8)
. (5.90)

Evaluating this for the solution (N ; 4; 1, p4) = (10; 4; 1, 39), we obtain b̄1 =
−64.67. Finally, for k = 5,

k = 5 → b1 =
1

3

[
11N − (N + 3)(N + 4)(N + 5)(N2 − 20)

12(N − 10)

]
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=
−N5 − 12N4 − 27N3 + 312N2 − 380N + 1200

36(N − 10)
.(5.91)

Evaluating this for the solution (N ; 5; 1, p5) = (11; 5; 1, 210), we get b̄1 =
−746.94. For each of these theories, letting ncp be larger than 1 makes b1 more
negative, so the respective theories with ncp ≥ 2 are also not asymptotically
free.

Thus, we find that there are no anomaly-free chiral gauge theories with
fermions in the k-fold symmetric and conjugate antisymmetric representa-
tions of SU(N) for k ≥ 3.

5.5 Investigation of SkĀ` Chiral Gauge Theo-

ries with k 6= ` and k, ` ≥ 2

One can also consider generalizations of our SĀ = S2Ā2 chiral gauge theories
to theories with chiral fermions transforming as the rank-k symmetric repre-
sentation and the conjugate rank-` antisymmetric representation of SU(N),
where k 6= ` and k, ` ≥ 2. We consider theories of this type here. We denote
the number of fermions transforming as the rank-k symmetric representa-
tion of SU(N) as nSk

and the number of fermions transforming as the rank-`
conjugate antisymmetric representation as nĀ`

, respectively, and the theory
itself as

(N ; k; `;nSk
, nĀ`

) . (5.92)

Here the condition that there theory should have no anomaly in gauged
currents reads

nSk
A(Sk) + nĀ`

A(Ā`) = nSk
A(Sk)− nĀ`

A(A`) = 0 . (5.93)

This anomaly cancellation condition is satisfied if and only if

nĀ`

nSk

=
A(Sk)

A(A`)
≡ pĀ`/Sk

=
(N + k)!(N + 2k)(N − `− 1)!(`− 1)!

(N − 3)!(N − 2`)(N + 2)!(k − 1)!
. (5.94)

Although k 6= ` here, we note that if one took k = ` as in the previous part of
this chapter, then the correspondence in notation with Eqs. (5.5) and (5.79)
is pĀk/Sk

≡ pk and pĀ2/S2
≡ p2 ≡ p. For the ratio (5.94) to be a physical,

positive number, it is necessary that

N ≥ 2`+ 1 , (5.95)
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and we shall restrict N to this range. As explicit examples, we discuss the
S3Ā2 and S2Ā3 theories.

5.6 S3Ā2 Theory

Here, in accordance with (5.95), we restrict N to the range N ≥ 5. For this
theory, the ratio nĀ2

/nS3 is

nĀ2

nS3

≡ pĀ2/S3
=

(N + 3)(N + 6)

2(N − 4)
. (5.96)

Unlike pk for the case of diagonal SkĀk theories, this ratio pĀ2/S3
is not a

monotonic function of N . It decreases from the value 44 at N = 5 to a
formal minimum at the real value N = 4 +

√
70 = 12.367, where it is equal

to (17+2
√

70)/2 = 16.667, and then increases without bound as N increases
further. Since pĀ2/S3

is always larger than unity, it is natural to consider
models of this type with nS3 equal to its smallest value, namely nS3 = 1.
We have found many of these, but none of them is asymptotically free. As
allowed by the non-monotonicity of pĀ2/S3

, there are two values of N that
yield a minimal value of pĀ2/S3

, namely N = 11 and N = 14, both of which
give pĀ2/S3

= 17. To minimize the fermion content with this value of pĀ2/S3
,

we choose nS3 = 1 and nĀ2
= 17. For N = 11, we have A(S3) = 119 and

A(Ā2) = −7, while for N = 14, we have A(S3) = 170 and A(Ā2) = −10.
To test whether any of these solutions of the anomaly cancellation condition
yields an asymptoticall free theory, we calculate the one-loop coefficient of
the beta function. In general for this type of theory,

b1 =
1

3

[
11N − 2nS3{TS3 + pĀ2/S3

TĀ2
}
]
. (5.97)

With the minimal choice nS3 = 1, this is

b1 =
1

3

[
11N− (N + 3)(N2 +N − 10)

N − 4

]
=
−N3 + 7N2 − 37N + 30

3(N − 4)
. (5.98)

For the case with N = 11, b̄1 = −3.263, while for N = 14, b̄1 = −4.934.
These are both negative, i.e., these theories are not asymptotically free. So-
lutions of the anomaly conditions with larger values of nS3 and nĀ2

yield
values of b1 that are even more negative. Thus, we do not find any anomaly-
free, asymptotically free theories of this S3Ā2 type.
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5.7 S2Ā3 Theories

5.7.1 General Analysis

Here we consider an SU(N) theory with nS2 chiral fermions in the S2 repre-
sentation and nĀ3

chiral fermions in the Ā3 representation. In accord with
(5.95), we restrict N to the range N ≥ 7. For this theory, the ratio nĀ3

/nS2

is
nĀ3

nS2

≡ pĀ3/S2
=

2(N + 4)

(N − 3)(N − 6)
. (5.99)

This ratio decreases monotonically as a function of N from the value value
11/2 at N = 7 and approaches zero as N →∞. The ratio (5.99) takes on an
integer value for only one value of N , namely N = 10, where it is equal to 1.
This reflects the equality AS2 = 14 = AA3 for SU(10). A theory with N = 10
and ncp ≥ 2 copies of the S2 and Ā3 representations is also anomaly-free.

For N = 10 and nS2 = nĀ3
= 1, we calculate the reduced one-loop

coefficient in the beta function to be b̄1 = 1.8569, so this theory satisfies
the requirement of being asymptotically free. We compute the reduced two-
loop coefficient to be b̄2 = 0.086545, so at the maximal scheme-independent
level, i.e., the two-loop level, this theory has no IR zero in the beta function.
Hence, as the reference scale µ decreases from the UV to the IR, the SU(10)
gauge coupling continues to increase.

The condition of the cancellation of anomalies in gauged currents is also
satisfied in a theory in which the chiral fermion content is replicated ncp times.
However, we find that only one of these nonminimal theories is asymptotically
free, namely the one with ncp = 2. For this theory with N = 10 and nS2 =
nĀ3

= ncp = 2, we calculate b̄1 = 0.795775 and b̄2 = −7.00383. Thus, the
two-loop beta function of this second theory has an IR zero at αIR,2` = 0.1136.

5.7.2 SU(10) Theory with nS2
= nĀ3

= 1

Initial Breaking of SU(10) to SU(6)

We will focus here on the simplest SU(10) theory of this type, with ncp =
1 and thus nS2 = nĀ3

= 1. This theory has a classical global symmetry
Gfl,cl = U(1)S2 ⊗ U(1)Ā3

. Both of these U(1) symmetries are broken by
SU(10) instantons, but one can construct a linear combination U(1)′ that is
invariant in the presence of these instantons. Since (in a notation analogous
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to Eq. (5.22)) ~v = (TS2 , TĀ3
) = (6, 14), U(1)′ has the charge assignments

(QS2 , QĀ3
) ∝ (7,−3) . (5.100)

We have not found a set of gauge-singlet composite fermion operators sat-
isfying the ’t Hooft anomaly matching conditions for this U(1)′ symmetry.
Therefore, we infer that as the SU(10) gauge coupling increases sufficiently,
fermion condensation will occur. We find that the most attractive channel is

MAC : Ā3 × Ā3 → A4 (5.101)

with
∆C2 = 9.90 for Ā3 × Ā3 → A4 . (5.102)

We denote the S2 and Ā3 fermion fields as ψabL and χabcd,L. The condensate
for the channel Ā3 × Ā3 → A4 is of the form

〈ε7 8 9 10 {a1...a6}χTa1a2a3,L
Cχa4a5a6,L〉 , (5.103)

where, by convention, we take the four uncontracted indices to be 7, 8, 9, and
10, and the summed indices to be a1, ..., a6 ∈ {1, ..., 6}. We denote the scale at
which this condensate forms as Λ10. This condensate breaks the SU(10) gauge
symmetry to SU(6) and also breaks the global U(1)′ symmetry. The 64 gauge
bosons in the coset SU(10)/SU(6) also gain masses of this order. In order
to construct the low-energy effective SU(6) gauge theory that is operative
at reference scales µ < Λ10, we first enumerate the chiral fermions that are
involved in the condensate (5.103) and that consequently gain dynamical
masses of order Λ10 and are integrated out to form this low-energy effective
theory. The representation Ā3 has dimension

(
10
3

)
= 120 in SU(10). One can

choose the three antisymmetrized group indices a1, a2, a3 ∈ {1, ..., 6} in the
first fermion in (5.103) in any of

(
6
3

)
= 20 ways, and the remaining group

indices a4, a5, a6 in any of
(

3
3

)
= 1 ways, so of the initial 120 components

in the Ā3 fermion, the 20 components with gauge indices in the set {1, ..., 6}
gain masses and are integrated out of the SU(6) theory.

We next must determine how the remaining massless fermions transform
under SU(6). For this purpose, let us use group indices a, b, .. ∈ {1, ..., 6}
to refer to indices of the residual SU(6) gauge symmetry and α, β, .. ∈
{7, 8, 9, 10} to refer to the indices along the broken directions of SU(10).
The remaining 100 massless components of the Ā3 fermion can be classified
and enumerated as follows. First, there are the

(
4
3

)
= 4 components χαβγ,L
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for which α, β, γ ∈ {7, 8, 9, 10}, which are singlets under SU(6). Sec-
ond, there are the 6 ×

(
4
2

)
= 36 components χaαβ,L with 1 ≤ a ≤ 6 and

7 ≤ α, β ≤ 10, which form six F̄ s of SU(6). Third, there are
(

6
2

)
× 4 = 60

components χabα,L with 1 ≤ a, b ≤ 6 and 7 ≤ α ≤ 10, which comprise four
copies of Ā2 in SU(6). For the symmetric rank-2 tensor representation, we
have

(S2)SU(10) = (S2)SU(6) + 4FSU(6) + 10 (1)SU(6) , (5.104)

where (1)SU(6) is the singlet. Recall that dim(Sk) = (1/k!)
∏k−1

j=0(N + j).
Thus, the 55-dimensional (S2)SU(10) representation of SU(10) decomposes in-
to the sum of the the (S2)SU(6) representation of SU(6) with its 21 component
fields ψabL with 1 ≤ a, b ≤ 6, plus four copies of the fundamental represen-
tation of SU(6) with fields ψaαL , 1 ≤ a ≤ 6 and 7 ≤ α ≤ 10, and ten
SU(6)-singlet fields ψαβL with 7 ≤ α, β ≤ 10. We summarize the massless
SU(6)-nonsinglet chiral fermion content of the low-energy SU(6) theory:

SU(6) : fermions : S2 + 4Ā2 + 4F + 6 F̄ . (5.105)

The explicit fermion fields (with dimensionalities in parentheses) are

S2(21) : ψabL with 1 ≤ a, b ≤ 6

4 Ā2(15) : χabα,L with 1 ≤ a, b ≤ 6 and 7 ≤ α ≤ 10

4 F (6) : ψaα,L with 1 ≤ a ≤ 6 and 7 ≤ α ≤ 10

6 F̄ (6) : χaαβ,L with 1 ≤ a ≤ 6 and 7 ≤ α, β ≤ 10 . (5.106)

As guaranteed by our theorem above, this low-energy effective SU(6) theory
is anomaly-free; the contributions to the anomaly are

A = A(S2)− 4A(A2) + 4A(F ) + 6A(F̄ )

= 10− (4× 2) + 4− 6 = 0 . (5.107)

Breaking of SU(6) to SU(5)

We calculate the reduced one-loop and two-loop coefficients of the beta func-
tion of this SU(6) theory (5.105) to be b̄1 = 0.84883 and b̄2 = −0.56465,
so the two-loop beta function has an IR zero at αIR,2` = 1.503. The most
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attractive channel for fermion condensation is S2×F̄ → F , with ∆C2 = 20/3
and the resultant estimate αcr ' 0.31. (The next-most attractive channel is
F × F̄ → 1 with ∆C2 = 35/6.) The ratio ρ = αIR,2`/αcr = 4.8, which is
considerably larger than unity. We will explore evolution toward the infrared
that involves further fermion condensation, breaking the SU(6) gauge sym-
metry to SU(5). We denote the scale at which such condensation occurs as
Λ′6 (where the prime is included to avoid confusion with the scale Λ6 intro-
duced in our discussion above of the SU(6) S2Ā2 theory). By convention, we
label the breaking direction as a = 6 and the α, β indices of the F̄ fermion
as α = 9, β = 10. The associated S2F̄ fermion condensate is then

〈
6∑
b=1

ψ6b T
L Cχbαβ,L〉 with (α, β) = (9, 10) . (5.108)

The fermions involved in this condensate gain dynamical masses of order Λ6,
as do the 11 gauge bosons in the coset SU(6)/SU(5).

Breaking of SU(5) to SU(4)

To analyze the subsequent evolution into the infrared, we enumerate the
massless SU(5)-nonsinglet chiral fermion content of the resultant low-energy
effective SU(5) theory. By the same methods as before, we find that this
content is

SU(5) : fermions : S2 + 4Ā2 + 4F + 9F̄ . (5.109)

The explicit fermion fields (with dimensionalities in parentheses) are list-
ed below. For this purpose, we relabel the group indices such that a, b ∈
{1, ..., 5} are SU(5) indices and α, β ∈ {6, ..., 10}. We have

S2(15) : ψabL with 1 ≤ a b ≤ 5

4 Ā2(10) : χabα,L with 1 ≤ a, b ≤ 5 and 7 ≤ α ≤ 10

4 F (5) : ψaαL with 1 ≤ a ≤ 5 and 7 ≤ α ≤ 10

9 F̄ (5) : χaαβ,L with 1 ≤ a ≤ 5

and 6 ≤ α, β ≤ 10 except (α, β) = (9, 10) . (5.110)
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We calculate the reduced one-loop and two-loop coefficients of the beta
function of this SU(5) theory to be b̄1 = 0.61009 and b̄2 = −0.61384, so the
two-loop beta function has an IR zero at αIR,2` = 0.994. The most attractive
channel for fermion condensation is Ā2 × Ā2 → F , with ∆C2 = 24/5 and
the resultant estimate αcr ' 0.44. The resultant ratio ρ = αIR,2`/αcr = 2.3,
suggesting that this condensation could plausibly occur. With condensation
in the Ā2 × Ā2 → F channel, and with the breaking direction taken to be
a = 5, the condensates are

〈εabcd5χTabα,LCχcdβ,L〉 ∝
[
〈χT12α,LCχ34β,L〉

− 〈χT13α,LCχ24β,L〉+ 〈χT14α,LCχ23β,L〉
]
, (5.111)

where 6 ≤ α, β ≤ 10 as specified above. We denote the scale at which these
condensates form as Λ′5. The fermions involved in these condensates, as well
as the nine gauge bosons in the coset SU(5)/SU(4), gain masses of order Λ′5.

IR Evolution of the Descendant SU(4) Theory

We determine the massless SU(4)-nonsinglet chiral fermion content of the
resultant SU(4) descendant theory to be

SU(4) : fermions : S2 + 5F + 13F̄

= S2 + 8F̄ + 5 {F + F̄} . (5.112)

We see that this is precisely the N = 4, p = 5 special case of the Sp model
of Eq. (5.41) studied in [11, 22, 82]. For this theory we calculate the beta
function coefficients b̄1 = 0.5303 and b̄2 = −0.2496, so the two-loop beta
function has an IR zero at αIR,2` = 2.125. The fermion content of this
theory satisfies the ’t Hooft anomaly matching conditions [11,22,82], so one
possibility is that as the gauge interaction becomes strong, the theory confines
and produces massless composite SU(4)-singlet spin 1/2 fermions. Another
possibility is that the gauge interaction produces fermion condensation. The
most attractive channel is S2 × F̄ → F with ∆C2 = 9/2, so the rough
estimate of αcr is αcr ' 0.42. The resultant ratio ρ = 5.1 is well above
unity, which renders it likely that either the gauge interaction confines and
produces the above-mentioned massless composite fermions or it produces
fermion condensation in this S2 × F̄ → F channel. These possibilities and
the further evolution into the IR were discussed in detail in [22].
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Chapter 6

Chiral Gauge Theories with
Fermions in Fundamental and
Antisymmetric Rank-2
Representations

In this chapter, we study asymptotically free chiral gauge theories with an
SU(N) gauge group and chiral fermions transforming according to the anti-
symmetric rank-k tensor representation, Ak ≡ [k]N , and the requisite num-
ber, nF̄ , of copies of fermions in the conjugate fundamental representation,
F̄ ≡ [1]N , to render the theories anomaly-free. We denote these as Ak F̄
theories. We take N ≥ 2k + 1 so that nF̄ ≥ 1. The A2 F̄ theories form an
infinite family with N ≥ 5, but we show that the A3 F̄ and A4 F̄ theories
are only asymptotically free for N in the respective ranges 7 ≤ N ≤ 17
and 9 ≤ N ≤ 11, and that there are no asymptotically free Ak F̄ theories
with k ≥ 5. We investigate the types of ultraviolet to infrared evolution for
these Ak F̄ theories and find that, depending on k and N , they may lead
to a non-Abelian Coulomb phase, or may involve confinement with massless
gauge-singlet composite fermions, bilinear fermion condensation with dynam-
ical gauge and global symmetry breaking, or formation of multifermion con-
densates that preserve the gauge symmetry. We also show that there are
no asymptotically free, anomaly-free SU(N) Sk F̄ chiral gauge theories with
k ≥ 3, where Sk denotes the rank-k symmetric representation. The original
result is published in [3].
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6.1 Ak F̄ Theories and Constraints from Anoma-

ly Cancellation and Asymptotic Freedom

The chiral gauge theories that we study here have an SU(N) gauge group
and chiral fermions transforming according to a rank-k antisymmetric tensor
representation Ak ≡ [k]N of this group, and the requisite number of chiral
fermions in the conjugate fundamental representation, F̄ ≡ [1]N , to render
the theories free of any anomaly in gauged currents [107]. Here we determine
the constraints on these theories from anomaly cancellation and asymptotic
freedom. These theories are irreducibly chiral, i.e., they do not contain any
vectorlike subsector. Consequently, the chiral gauge symmetry forbids any
fermion mass terms in the underlying lagrangian. We denote the number of
copies (flavors) of F̄ fermions as nF̄ . The contribution to the triangle anomaly
in gauged currents of a chiral fermion in the Ak representation is [106] (see
Appendix A )

A([k]N) =
(N − 3)! (N − 2k)

(N − k − 1)! (k − 1)!
. (6.1)

The total anomaly in the theory is

A = A([k]N) + nF̄A([1]N) = A([k]N)− nF̄A([1]N) , (6.2)

so A = 0, i.e., the theory is free of anomalies in gauged currents, if and only
if

nF̄ = A([k]N) . (6.3)

If N is even and k = N/2, the [k]N = [k]2k representation is self-conjugate,
with zero anomaly, so Eq. (6.3) yields nF̄ = 0 and a nonchiral theory. In
order to get a chiral theory, with positive nF̄ , it is necessary and sufficient
that

N ≥ Nmin = 2k + 1 , (6.4)

so, for a given k, we will restrict N to this range. For N in this range, the
anomaly A([k]N) is an integer greater than unity. A member of this set of
chiral gauge theories is thus determined by its values of k and N and has the
form

G = SU(N), fermions : Ak + nF̄ F̄ , (6.5)

i.e., [k]N + nF̄ [1]N , where N is bounded below by (6.4). The Ak F̄ theories
with k = 3 and k = 4 have respective upper bounds on N imposed by the
requirement of asymptotic freedom.
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To determine the upper bounds on N for these values of k, we calculate
the one-loop coefficient in the beta function, b1. To indicate explicitly the
dependence of the b` coefficients with ` = 1, 2 on k, we shall write them as
b

(k)
` . For a general SU(N) Ak F̄ theory, we have

b
(k)
1 =

1

3

[
11N − 2

{
T (Ak) + nF̄ T (F̄ )

}]
=

1

3

[
11N − 1

(k − 1)!

{[ k∏
j=2

(N − j)
]

+
(N − 3)!(N − 2k)

(N − k − 1)!

}]
. (6.6)

In Eq. (6.6), both T (Ak) and nF̄ = A(Ak) are polynomials of degree

max(1, k− 1) in N and hence, b
(k)
1 is a polynomial of degree max(1, k− 1) in

N . Specifically, we find
b

(2)
1 = 3N + 2 , (6.7)

b
(3)
1 =

1

3
(−N2 + 18N − 12) , (6.8)

and

b
(4)
1 =

1

9
(−N3 + 12N2 − 14N + 60) . (6.9)

The A2 F̄ theories are thus asymptotically free without any upper bound
on N . For the A3 F̄ theories, the asymptotic-freedom requirement that b

(3)
1

must be positive yields the upper bound N ≤ 17. (If one were to generalize

N from positive integer values to real values, b
(3)
1 is positive for N in the

range 9−
√

69 < N < 9 +
√

69, i.e., 0.6934 < N < 17.3066 to the indicated
floating-point accuracy.) In the A4 F̄ theories, b

(4)
1 is positive only for the

integer values N = 9, 10, 11. (With N generalized to a positive real number,

b
(4)
1 > 0 for N < 11.2291.) Denoting Nmax as the maximal value of N , for a

given k, for which an SU(N) AkF̄ theory is asymptotically free, we summarize
these results as

Nmax =


∞ for k = 2
17 for k = 3
11 for k = 4

. (6.10)

Combining these results, we explicitly exhibit the asymptotically free,
anomaly-free chiral gauge theories of this type with 2 ≤ k ≤ 4 together with
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the respective allowed ranges of N , Nmin ≤ N ≤ Nmax:

k = 2 =⇒ N ≥ 5 , (6.11)

k = 3 =⇒ 7 ≤ N ≤ 17 , (6.12)

k = 4 =⇒ 9 ≤ N ≤ 11 . (6.13)

The SU(N) A2 F̄ theories have been studied in several works [9,11,18,22,
82,83,108], has fermion content given by

k = 2 : fermions : A2 + (N − 4) F̄ , (6.14)

The SU(N) Ak F̄ theories with k = 3 and k = 4 are, to our knowledge, new
here. These have the fermion contents

k = 3 : fermions : A3 +
(N − 3)(N − 6)

2
F̄ (6.15)

and

k = 4 : fermions : A4 +
(N − 3)(N − 4)(N − 8)

6
F̄ . (6.16)

For the Ak F̄ theories with k = 2, 3, 4, we denote the fermion field in
the Ak = [k]N representation as ψabL , ψabdL , and ψabdeL , respectively, where
a, b, d, e are SU(N) gauge indices (the symbol c is reserved to mean charge
conjugation) with N is in the respective intervals (6.14)-(6.16), and we denote
the F̄ fermions as χa,i,L, where i is a copy (flavor) index taking values in the
respective ranges 1 ≤ i ≤ nF̄ = A([k]N).

We next show that there are no asymptotically free Ak F̄ theories with
k ≥ 5. Consider first the k = 5 theory, for which

b
(5)
1 =

1

36
(−N4 + 18N3 − 119N2 + 474N − 360) . (6.17)

With N generalized to a real variable, b
(5)
1 is positive only for N in the range

0.9585 < N < 10.7379. But for an Ak F̄ theory, N is bounded below by
2k + 1, which has the value 11 here, so for this k = 5 theory there is no
value of N that simultaneously satisfies both the lower bound (6.4) and the
requirement of asymptotic freedom. We reach the same conclusion in the
k = 6 case, for which

b
(6)
1 =

1

180
(−N5 + 25N4 − 245N3 + 1175N2 − 2094N + 2520) . (6.18)
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With N extended from physical values to real numbers, b
(6)
1 is positive if

N < 11.098, but N is required to satisfy N ≥ 13, which again means that
for k = 6 there is no value of N that satisfies the lower bound (6.4) and the
requirement of asymptotic freedom. Similarly, we find that for the k = 7 case,
b

(7)
1 is only positive for the range 1.094 < N < 11.742, while N must be in

the range N ≥ 15 by (6.4), and so forth for higher k. The underlying reason
for the non-existence of asymptotically free Ak F̄ chiral gauge theories with
these higher values of k is that, as noted above, both T ([k]N) and A([k]N) are
polynomials of degree max(1, k−1) in N , and they both contribute negatively

to b
(k)
1 for the relevant range N ≥ 2k + 1. Their negative contributions

eventually outweigh the positive contribution of the (11/3)N term from the
gauge fields.

In passing, we remark that there are two possible ways that one could
expand the fermion content of the Ak F̄ models considered here for certain
k and N values, as restricted by the constraint of asyamptotic freedom,
namely (i) to have ncp replications of the chiral fermion content and (ii) to
add vectorlike subsectors. For example, in category (i), the following k = 3
theories are asymptotically free: ncp = 2 and 7 ≤ N ≤ 11; ncp = 3 and
7 ≤ N ≤ 9; ncp = 4 and N = 7, 8; and ncp = 5 and N = 7. We have
studied different chiral gauge theories with this sort of ncp replication of a
minimal irreducible chiral fermion content in [2]. We shall not pursue these
expansions here but instead focus on studying the minimal Ak F̄ theories.

6.2 Beta Function Analysis of Ak F̄ Theories

In this section we give a general analysis of the beta function applicable to
all of the (anomaly-free) asymptotically free Ak F̄ theories, with N in the
respective ranges N ≥ 5 for k = 2 and the finite intervals 7 ≤ N ≤ 17
for k = 3 and 9 ≤ N ≤ 11 for k = 4 as given in (6.14)-(6.16). In Sect.
6.1 we gave the one-loop coefficient for the Ak F̄ theories, which we used to
determine the upper bound on N for a given k. Here we proceed to give the
two-loop coefficient, b

(k)
2 , and use it to analyze the UV to IR evolution. We

have (again with Ak ≡ [k]N , and F ≡ [1]N)

b
(k)
2 =

1

3

[
34N2 − 2

{(
5C2(G) + 3C2(Ak)

)
T (Ak)
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+ nF̄

(
5C2(G) + 3C2(F̄ )

)
T (F̄ )

} ]
, (6.19)

where the various group invariants are listed in appendix A. For the three
relevant cases, k = 2, 3, 4, the explicit expressions are

b
(2)
2 =

13N3 + 30N2 +N − 12

2N
, (6.20)

b
(3)
2 =

−16N4 + 183N3 − 204N2 − 27N + 108

6N
, (6.21)

and

b
(4)
2 = (36N)−1

[
− 35N5 + 429N4 − 1321N3 + 2235N2

+ 588N − 1440
]
. (6.22)

In Table 6.1 we list values of the reduced coefficients b̄1 and b̄2 for an
illustrative set of the A2 F̄ theories and for all of the (asymptotically free)
A3 F̄ and A4 F̄ theories. In the cases where b̄2 < 0 so that the two-loop beta
function has a physical IR zero, we have also listed the value of αIR,2`. The
value of the resultant ratio ρc for condensation in the most attractive channel
for bilinear fermion condensation (discussed further below) gives an estimate
of whether the theories are weakly or strongly coupled in the infrared. This is
indicated by the abbreviations WC, MC, and SC (weak coupling, moderate
coupling, and strong coupling) in Table 6.1.

6.3 Global Symmetry of Ak F̄ Theories

Because the Ak F̄ theories are irreducibly chiral, so that the chiral gauge sym-
metry requires the fermions to be massless, each such theory has a classical
global flavor symmetry

G
(k)
fl,cl = U(nF̄ )F̄ ⊗ U(1)Ak

, (6.23)

where nF̄ = A([k]N) as given in Eq. (6.3). Equivalently,

G
(k)
fl,cl =

{
U(1)F̄ ⊗ U(1)Ak

if nF̄ = 1
SU(nF̄ )F̄ ⊗ U(1)F̄ ⊗ U(1)Ak

if nF̄ ≥ 2
. (6.24)
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Table 6.1: Some properties of SU(N) Ak F̄ chiral gauge theories. The quantities listed
are k, N , nF̄ , b̄1, b̄2, and, for negative b̄2, α

IR,2`
= −b̄1/b̄2, αcr for the most attractive

bilinear fermion condensation channel in the SU(N) theory, and the ratio ρc. The dash
notation − means that the two-loop beta function has no IR zero. The likely IR behavior
is indicated in the last column, with the abbreviations SC, MC, WC for the type coupling
in the IR (SC = strong, MC = moderate, WC = weak coupling). In the WC case, the UV
to IR evolution is to a non-Abelian Coulomb phase (NACP). The various possibilities for
the evolution involving strong and moderately strong coupling are discussed in the text.
For k = 2, we include illustrative results covering the interval 5 ≤ N ≤ 10; for k = 3, 4
we list results for all (asymptotically free) Ak F̄ theories.

k N nF̄ b̄1 b̄2 α
IR,2`

αcr ρc IR coupling
2 5 1 1.3528 1.4996 − 0.44 − SC
2 6 2 1.59155 2.0486 − 0.45 − SC
2 7 3 1.8303 2.6796 − 0.37 − SC
2 8 4 2.0690 3.3927 − 0.31 − SC
2 9 5 2.3077 4.1879 − 0.27 − SC
2 10 6 2.5465 5.0654 − 0.24 − SC
3 7 2 1.7242 2.1525 − 0.20 − SC
3 8 5 1.8038 1.9784 − 0.21 − SC
3 9 9 1.8303 1.3805 − 0.21 − SC
3 10 14 1.8038 0.2573 − 0.21 − SC
3 11 20 1.7242 −1.4926 1.155 0.21 5.4 SC
3 12 27 1.59155 −3.9705 0.4008 0.21 1.9 MC
3 13 35 1.4059 −7.2779 0.1932 0.19 0.99 MC
3 14 44 1.1671 −11.5161 0.1013 0.18 0.57 MC
3 15 54 0.8753 −16.7864 0.05215 0.16 0.32 WC, NACP
3 16 65 0.5305 −23.1901 0.02288 0.15 0.15 WC, NACP
3 17 77 0.1326 −30.8287 0.00430 0.14 0.03 WC, NACP
4 9 5 1.5650 −0.5896 2.6542 0.12 22.5 SC
4 10 14 1.0610 −5.3310 0.1990 0.12 1.7 MC
4 11 28 0.2387 −13.410 0.0178 0.12 0.15 WC, NACP
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For nF̄ ≥ 2, the multiplet (χa,1,L, ..., χa,nF̄ ,L
) may be taken to transform

as the conjugate fundamental, , representation of the global flavor group,
SU(nF̄ ). The U(1)F̄ and U(1)Ak

symmetries in (6.24) are both broken by
SU(N) instantons [6]. As in [22], we define a vector whose components are
comprised of the instanton-generated contributions to the breaking of these
symmetries. In the basis (Ak, F̄ ), this vector is

~v(k) =
(
T ([k]N), nF̄T (F̄ )

)
= λN,k(N − 2, N − 2k) , (6.25)

where

λN,k =
(N − 3)!

2(k − 1)!(N − k − 1)!
. (6.26)

We can construct one linear combination of the two original currents that is
conserved in the presence of SU(N) instantons. We denote the corresponding
global U(1) flavor symmetry as U(1)′ and the fermion charges under this U(1)′

as
~Q(k)′ =

(
Q′Ak

, Q′F̄

)
. (6.27)

The U(1)′ current is conserved if and only if∑
f

nfT (Rf )Q
(k)′
f = ~v · ~Q(k)′ = 0 . (6.28)

This condition only determines the vector ~Q(k)′ up to an overall multiplicative
constant. A solution is

~Q(k)′ =
(
N − 2k, −(N − 2)

)
. (6.29)

The actual global chiral flavor symmetry group (preserved in the presence of
instantons) is then

G
(k)
fl =

{
U(1)′ if nF̄ = 1

SU(nF̄ )⊗ U(1)′ if nF̄ ≥ 2
. (6.30)

For the three k values relevant here, this is

G
(2)
fl =

{
U(1)′ if N = 5

SU(N − 4)F̄ ⊗ U(1)′ if N ≥ 6
, (6.31)

with U(1)′ charges
~Q(2)′ =

(
N − 4, −(N − 2)

)
, (6.32)

95



G
(3)
fl = SU

((N − 3)(N − 6)

2

)
F̄
⊗ U(1)′ (6.33)

with U(1)′ charges
~Q(3)′ =

(
N − 6, −(N − 2)

)
, (6.34)

and

G
(4)
fl = SU

((N − 3)(N − 4)(N − 8)

6

)
F̄
⊗ U(1)′ (6.35)

with U(1)′ charges
~Q(4)′ =

(
N − 8, −(N − 2)

)
. (6.36)

6.4 Most Attractive Channel for Bilinear Fermion

Condensation in Ak F̄ Theories

6.4.1 General Analysis

The ultraviolet to infrared evolution of a particular SU(N) Ak F̄ theory is
determined by the values of N and k. In the cases where it can lead to the
formation of a bilinear fermion condensate, one should then determine the
most attractive channel in which this condensate can form. We present this
analysis here. Since the Ak F̄ theories that we consider here are irreducibly
chiral, a bilinear condensate breaks the gauge symmetry. In Sect. 6.8 below,
we will discuss the possible formation of multifermion condensates involving
more than just two fermions, which can preserve the chiral gauge symmetry.

For the theories that we are discussing here, there are two relevant bilinear
fermion condensation channels. First, there is a channel with a condensate
that involves the contraction of 2k gauge indices of the antisymmetric tensor
density εa1,...,aN with the bilinear fermion product Ak×Ak, which transforms
like ĀN−2k. This channel can thus be written as

Ak × Ak → ĀN−2k . (6.37)

This channel has attractiveness measure

∆C2 =
k2(N + 1)

N
for Ak × Ak → ĀN−2k . (6.38)
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For a given k, this ∆C2 is a monotonically decreasing function of N , decreas-
ing gradually from its value at N = 2k + 1,

∆C2 =
2k2(k + 1)

2k + 1
=

(N − 1)2(N + 1)

4N
at N = 2k + 1

for Ak × Ak → ĀN−2k = Ā1 = F̄ (6.39)

and approaching the limit k2 for N � k.
Second, there is the channel

Ak × F̄ → Ak−1 , (6.40)

with

∆C2 =
(N + 1)(N − k)

N
for Ak × F̄ → Ak−1 . (6.41)

For a given k, this ∆C2 is a monotonically increasing function ofN , increasing
from the value

∆C2 =
2(k + 1)2

2k + 1
=

(N + 1)2

2N
at N = 2k + 1

for Ak × F̄ → Ak−1 , (6.42)

and approaching a linear growth with N for N � k. In Table 6.2 we list the
value of ∆C2 in Eq. (6.38) for the Ak × Ak → ĀN−2k channel and the value
of ∆C2 in Eq. (6.41) for the Ak × F̄ → Ak−1 channel for an illustrative set
of A2 F̄ theories and for the full set of (asymptotically free) A3 F̄ and A4 F̄
theories.

The most attractive channel for bilinear fermion condensation is the one
among these two channels with the larger value of ∆C2 (assuming that these
two values are unequal; we discuss the cases where they are equal below).
For a given value of k, we thus determine the MAC as a function of N in its
allowed range Nmin ≤ N ≤ Nmax by examining the difference,

∆C2(Ak×Ak → ĀN−2k)−∆C2(Ak× F̄ → Ak−1) =
(N + 1

N

)[
k(k+1)−N

]
.

(6.43)
For N = Nmin = 2k + 1, ∆C2 is larger for the first channel, Ak × Ak →
ĀN−2k = Ā1 = F̄ , than for the second channel, Ak × F̄ → Ak−1. This is
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evident analytically from the fact that with N = 2k+1, the difference (6.43)
is

2(k + 1)(k2 − k − 1)

2k + 1
=

(N + 1)(N2 − 4N − 1)

4N
, (6.44)

which is positive for the relevant range k ≥ 2 considered here. Since ∆C2 for
the first channel decreases monotonically as a function of N , while the ∆C2

for the second channel increases monotonically as a function of N , it follows
that at some value of N , which we denote Ne (where e stands for “equal”),
these values are equal, and for N > Ne, the ∆C2 for the second channel is
larger than that for the first channel. Setting the two ∆C2 values equal and
solving for N = Ne, we find

Ne = k(k + 1) . (6.45)

Evaluating Eq. (6.45) for the three relevant values of k, we have

Ne =


6 for k=2
12 for k=3
20 for k=4

. (6.46)

The first two of these values are within the respective allowed ranges for N ,
while the value for k = 4 is larger than the upper bound Nmax = 11 for
k = 4.

Consequently, with Nmin = 2k + 1 and Nmax as given in Eqs. (6.4) and
(6.10), we find that, for a given k,

If 2k + 1 ≤ N < k(k + 1) then

MAC = Ak × Ak → ĀN−2k ,

If k(k + 1) < N ≤ Nmax then

MAC = Ak × F̄ → Ak−1 , (6.47)

with the proviso that the second possibility only applies if k(k + 1) < Nmax,
and hence only for k = 2 and k = 3. Thus, in particular, if N = Nmin =
2k + 1, then the MAC is the special case of (6.37):

If N = 2k + 1 then MAC = Ak × Ak → F̄ . (6.48)
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In addition to breaking the original SU(N) gauge symmetry, these conden-
sates also break both the non-Abelian factor group SU(nF̄ ) (which is present
if nF̄ ≥ 2) and the U(1)′ factor group in the global flavor symmetry (6.30). In
particular, the breaking of the U(1)′ symmetry is evident from the fact that
the respective condensates in these channels have the nonzero U(1)′ charges

Q′(k) = 2Q′Ak
= 2(N − 2k) for Ak × Ak → ĀN−2k (6.49)

and
Q′(k) = Q′Ak

+Q′F̄ = 2(1− k) for Ak × F̄ → Ak−1 . (6.50)

The marginal case N = Ne = k(k + 1) requires further analysis, since
the ∆C2 values for the Ak × Ak → ĀN−2k and Ak × F̄ → Ak−1 channels are
equal, so the procedure of picking the channel with the largest ∆C2 cannot
determine which is more likely to occur. To deal with this marginal case,
we use a vacuum alignment argument, which, as applied to possible bilinear
fermion condensation channels, favors the one whose condensate respects the
larger residual gauge symmetry. To apply the vacuum alignment argument,
we must thus determine the residual gauge symmetry group respected by the
condensates that occur in these two channels. The resultant bilinear fermion
condensate transforms like an n-fold antisymmetric tensor representation of
SU(N), where n = N − 2k for the Ak × Ak → ĀN−2k channel and n =
k − 1 for the Ak × F̄ → Ak−1 channel. (The fact that in the first case
the condensate transforms like ĀN−2k rather than AN−2k does not affect
how this breaks SU(N).) From the point of view of the group theory, the
problem of determining the residual gauge symmetry is effectively the same as
the problem of determining the residual gauge symmetry that results when
one has a Higgs field transforming according to the antisymmetric rank-n
representation of SU(N). An analysis of this, within the context of Higgs-
induced symmetry breaking, was given in [109], and the results depend, in
that context, on the parameters in the Higgs potential, which one has the
freedom to choose, subject to the overall constraint that the energy must
be bounded below. As emphasized in Ref. [27], the situation is different
in dynamical gauge symmetry breaking; in principle, given an initial gauge
group and set of fermions, there is a unique answer for how the symmetry
breaks; this breaking does not depend on any parameters in a Higgs potential.
Despite this basic difference between dynamical and Higgs-induced gauge
symmetry breaking, we can make use of the general group-theoretic analysis
performed for the Higgs case. The result is that there are, a priori, three
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possibilities for the gauge symmetries respected by a condensate or Higgs
vacuum expectation value transforming as the rank-n antisymmetric tensor
representation of SU(N), [n]N . Denoting the integral part of a real number
r as [r] and setting

κ ≡ [N/n] , (6.51)

these are [109]

SU(N − n)⊗ SU(n) with 2 ≤ n < [N/2] , (6.52)

[SU(n)]κ with 3 ≤ n ≤ [N/2] if N − [N/n]n = 0 or 1 , (6.53)

and the symplectic group

Sp(2κ) if n = 2 . (6.54)

We analyze the respective cases k = 2, 3, 4 next.

6.4.2 Case k = 2

From the special case for k = 2 of our general result (6.47) above, we infer
that the A2 × A2 → Ā1 = F̄ channel is the most attractive channel for
bilinear fermion condensation in the A2 F̄ theories for the lowest value of N ,
namely N = 5, while the A2 × F̄ → F channel is the MAC for the infinite
interval N ≥ 7. For the marginal case k = 2, N = 6, the A2 × A2 →
ĀN−2k = Ā2 and A2× F̄ → F channels have the same value of ∆C2, namely
∆C2 = 14/3 = 4.667 (see Table 6.2), so the ∆C2 attractiveness criterion
cannot be used to decide which is more likely to occur. Now the condensate
in the A2 × F̄ → F channel leaves invariant an SU(5) subgroup of SU(6),
with order 24. To analyze the possible invariance groups of a condensate
in the A2 × A2 → Ā2 channel, we apply our discussion above with N = 6,
n = 2, and hence κ = [6/2] = 3, so the a priori possible invariance groups
of the condensate are SU(4)⊗ SU(2) with order 18 and Sp(6) with order 21.
Neither of these groups has an order as large as that of SU(5), so the vacuum
alignment argument predicts that, if a bilinear fermion condensate forms,
then this condensate will form in the A2× F̄ → F channel. Summarizing our
results for k = 2 and all N , we thus find that if bilinear fermion condensation
occurs, then

k = 2 =⇒ MAC =

{
A2 × A2 → Ā1 for N = 5
A2 × F̄ → F for N ≥ 6

. (6.55)
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As noted above, since this class of (asymptotically free) A2 F̄ chiral gauge
theories satisfies the ’t Hooft global anomaly matching conditions, there is
also the possibility of confinement, yielding massless composite fermions.
There is also the possibility of multifermion condensate formation, which we
will discuss below. Since the early works such as [8, 9, 11, 18], for a class
of asymptotically free chiral gauge theories such as the A2 F̄ class discussed
here, for which the UV to IR evolution leads to strong coupling and hence
could lead to confinement with massless composite fermions or to fermion
condensation, there has not, to our knowledge, been a rigorous argument
presented that actually determines the type of UV to IR evolution in an
asymptotically free chiral gauge theory.

6.4.3 Case k = 3

From the special case for k = 3 of our general result (6.47) above, we infer
that the A3×A3 → ĀN−2k = ĀN−6 channel is the most attractive channel for
bilinear fermion condensation not only for the minimal value of N , namely
N = 7, but also for the interval of N values up to N = 11. We discuss
the marginal case of N = 12 last. Again substituting k = 3 into (6.47),
it follows formally that the MAC for 12 ≤ N ≤ 17 is the A3 × F̄ → A2

channel. However, for N = 13, 14, the respective values of the IR zero in
the beta function are sufficiently close to the rough estimate of the minimal
critical value of α for condensate formation in the A3× F̄ → A2 channel (see
Tables 6.1 and 6.2) that it is possible that the system could evolve from the
UV to a deconfined, non-Abelian Coulomb phase in the IR with no fermion
condensate formation or associated spontaneous chiral symmetry breaking.

The k = 3, N = 12 case is again marginal; the A3 × A3 → Ā6 and
A3 × F̄ → A2 channels have the same value of ∆C2, namely ∆C2 = 39/4 =
9.750. Hence, we use a vacuum alignment argument to decide on which of
these channels is more likely to occur. For the A3 × A3 → ĀN−6 = Ā6

channel, we apply our discussion above with N = 12, n = 6, and hence
κ = [12/6] = 2, so the invariance group of the Ā2 condensate is [SU(6)]2,
with order 70. For the A3 × F̄ → A2 channel, we have N = 12, n = 2 and
hence κ = [12/2] = 6, so the a priori possible invariance groups of the A2

condensate are SU(10)⊗SU(2) with order 102 and Sp(12) with order 78. The
vacuum alignment argument thus favors condensation in the A3 × F̄ → Ā2
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channel for this N = 12 case. Summarizing these results, we have

k = 3 =⇒ MAC =

{
A3 × A3 → ĀN−6 for 7 ≤ N ≤ 11
A3 × F̄ → A2 for 12 ≤ N ≤ 17

.(6.56)

However, as mentioned above, for N = 13, 14 (and also for N = 12), the re-
spective values of ρc are sufficiently close to unity that, in view of the intrinsic
theoretical uncertainties in the analysis of the strong-coupling physics, it is
possible that the UV to IR evolution could lead either to the formation of a
fermion condensate or to a non-Abelian Coulomb phase without spontaneous
chiral symmetry breaking.

If N is in the higher interval 15 ≤ N ≤ 17, then ρc is sufficiently small
that we definitely expect the evolution to lead to a chirally symmetric non-
Abelian Coulomb phase in the IR. Hence, in these cases, the MAC is not
directly relevant to the dynamics of the theory.

6.4.4 Case k = 4

Finally, we discuss the theories with k = 4, for which the interval of values
of N is 9 ≤ N ≤ 11. Since the value of Ne, namely Ne = 20, is larger
than Nmax, the most attractive channel for bilinear fermion condensation in
all of these theories is A4 × A4 → ĀN−8, i.e., A4 × A4 → F̄ for N = 9,
A4×A4 → Ā2 for N = 10, and A4×A4 → Ā3 for N = 11. In the SU(9) A4 F̄
theory, the IR zero in the two-loop beta function is much larger than αcr for
this channel, so it is likely that the SU(9) gauge interaction would produce
a condensate in this channel, thereby breaking SU(9) to SU(8). For N = 10,
αIR,2`/αcr = 1.7, which is sufficiently close to unity that, taking account of
the uncertainties in the strong-coupling estimates, the UV to IR evolution
might produce a condensate in the respective most attractive bilinear fermion
channel or might lead to a non-Abelian Coulomb phase. For N = 11, the
IR zero in the two-loop beta function is small compared with the estimated
αcr for the A4 × A4 → Ā3 condensation channel, so we definitely expect the
system to evolve from the UV to a non-Abelian Coulomb phase in the IR.
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Table 6.2: ∆C2 values for the SU(N) Ak F̄ chiral gauge theories and most attractive
channels for bilinear fermion condensation. The quantities listed are k, N , and the re-
spective ∆C2 values for the Ak × Ak → ĀN−2k and Ak × F̄ → Ak−1 channels. In the
last column, we list the most attractive channel for bilinear fermion condensation in the
strongly coupled and moderately strongly coupled (SC,MC) cases. If the UV to IR evo-
lution remains weakly coupled (WC), it flows to a non-Abelian Coulomb phase (NACP).
For k = 2, we include illustrative results including the interval 5 ≤ N ≤ 10; for k = 3, 4
we list results for all (asymptotically free) Ak F̄ theories. See text for further discussion
of the k = 2, N = 6 and k = 3, N = 12 cases where the ∆C2 values are equal. The
A2 F̄ theories could confine, yielding massless composite fermions. Possible multifermion
condensates are also discussed in the text.

k N ∆C2(Ak ×Ak → ĀN−2k) ∆C2(Ak × F̄ → Ak−1) MAC for (S,M)C
2 5 4.800 3.600 A2 ×A2 → F̄
2 6 4.667 4.667 A2 × F̄ → F
2 7 4.571 5.714 A2 × F̄ → F
2 8 4.500 6.750 A2 × F̄ → F
2 9 4.444 7.778 A2 × F̄ → F
2 10 4.400 8.800 A2 × F̄ → F
3 7 10.29 4.571 A3 ×A3 → F̄
3 8 10.125 5.625 A3 ×A3 → Ā2

3 9 10.000 6.667 A3 ×A3 → Ā3

3 10 9.900 7.700 A3 ×A3 → Ā4

3 11 9.818 8.727 A3 ×A3 → Ā5

3 12 9.750 9.750 A3 × F̄ → A2 or NACP
3 13 9.692 10.769 A3 × F̄ → A2 or NACP
3 14 9.643 11.786 A3 × F̄ → A2 or NACP
3 15 9.600 12.800 NACP
3 16 9.5625 13.8125 NACP
3 17 9.529 14.824 NACP
4 9 17.78 5.556 A4 ×A4 → F̄
4 10 17.60 6.600 A4 ×A4 → Ā2 or NACP
4 11 17.45 7.636 NACP

103



6.5 A2 F̄ Theories

6.5.1 General

In this section we analyze the UV to IR evolution of some A2 F̄ theories in
detail. Recall that the explicit fermion fields are A2 : ψabL and F̄ : χa,i,L,
where a, b are the SU(N) gauge indices and i = 1, .., N − 4 is a copy (flavor)
index. The one-loop and two-loop coefficients were given in Eqs. (6.7) and

(6.20). We find that for all N ≥ Nmin = 5, the coefficient b
(2)
2 is positive,

so the two-loop beta function of the A2 F̄ theory has no IR zero. Hence,
as the Euclidean reference scale µ decreases from the UV to the IR, the
gauge coupling increases until it eventually exceeds the region where it is
perturbatively calculable. This IR behavior is thus marked as SC, for strong
coupling, in Table 6.1.

The global flavor symmetry group for this theory is given in Eq. (6.31)
with the U(1)′ charge assignments in (6.32). This theory satisfies the ’t Hooft
global anomaly matching conditions [8,83], so, as it becomes strongly coupled
in the infrared, it could confine and produce massless gauge-singlet composite
spin-1/2 fermions as well as massive gauge-singlet mesons and also primarily
gluonic states. If this happens, then it is a complete description of the UV
to IR evolution. The three-fermion operator for the composite gauge-singlet
fermion can be written as

fij ∝ [χTa,i,LCψ
ab
L ]χb,j,L + (i↔ j) . (6.57)

From Eq. (6.32), the U(1)′ charge of this composite fermion is

Qfij = QĀ + 2QF̄ = −N . (6.58)

If N ≥ 6, fij transforms as the conjugate symmetric rank-2 tensor represen-
tation, , of the SU(N − 4)F̄ factor group in the global flavor symmetry

group G
(2)
fl = SU(N − 4)F̄ ⊗ U(1)′ of the theory.

Another possibility is that the SU(N) gauge interaction could produce
bilinear fermion condensates, thereby breaking both gauge and global sym-
metries. The most attractive channel for this fermion condensation was de-
termined, as a function of N , in Eq. (6.55). It can also be possible to form
multifermion condensates involving more than two fermion fields, which p-
reserve the chiral gauge symmetry. We will discuss this latter possibility in
Sect. 6.8. Here we proceed to analyze bilinear fermion condensate formation
for various specific theories.
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6.5.2 SU(5) A2 F̄ Theory

The simplest chiral gauge theory in the A2 F̄ family of theories has the gauge
group SU(5), with fermion content given by the N = 5 special case of Eq.
(6.14), namely A2 + F̄ = [2]5 + [1]5. Like the other A2 F̄ theories considered
here that become strongly coupled in the infrared, this one could confine
and produce a massless composite fermion. Alternatively, it could produce
fermion condensates. The most attractive channel for bilinear fermion con-
densation in this theory is A2 × A2 → Ā1. If the dynamics is such that this
condensate does, indeed, form, then we denote the mass scale at which it
is produced as Λ5. This condensate breaks the SU(5) gauge symmetry to
SU(4). Without loss of generality, we take the gauge index corresponding to
the breaking direction to be a = 5. The condensate then has the form

〈εabde5ψab TL CψdeL 〉 ∝
[
〈ψ12 T

L Cψ34
L 〉 − 〈ψ13 T

L Cψ24
L 〉+ 〈ψ14 T

L Cψ23
L 〉
]
. (6.59)

The fermions involved in this condensate gain dynamical masses of order
Λ5, as do the nine gauge bosons in the coset SU(5)/SU(4). In addition to
breaking the SU(5) gauge symmetry, the condensate has the nonzero value of
the U(1)′ charge Q′(2) = −2 given by the k = 2 special case of Eq. (6.50) and
hence breaks the global U(1)′ symmetry. Since this symmetry is not gauged,
this breaking yields one Nambu-Goldstone boson (NGB).

To construct the low-energy effective field theory with SU(4) chiral gauge
invariance that describes the physics as the scale µ decreases below Λ5, we
decompose the fermion representations of SU(5) with respect to the unbroken
SU(4) subgroup. It will be useful to give this decomposition more generally
for SU(N) relative to an SU(N − 1) subgroup in our usual notation and also
in terms of the corresponding Young tableaux:

[2]N = {[2]N−1 + [1]N−1} , i.e.,

SU(N) = [ + ] SU(N−1) . (6.60)

The [2]4 field is comprised of ψabL fermions with 1 ≤ a, b ≤ 4 that gained dy-
namical masses of order Λ5 and were integrated out of the low-energy theory.
The other massless SU(4)-nonsinglet fermions are the [1]4 = F fermion ψ5b

L

with 1 ≤ b ≤ 4 and the [1]4 = F̄ fermion χa,1,L with 1 ≤ a ≤ 4. Hence, the
massless SU(4)-nonsinglet fermion content of this theory consists of F + F̄ ,
so this theory is vectorial. This SU(4) theory also contains the SU(4)-singlet
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fermion χ5,1,L. The one-loop and two-loop coefficients of the SU(4) beta func-
tion have the same sign, so again, this function has no IR zero, and therefore
the SU(4) gauge coupling inherited from the SU(5) UV theory continues to
increase as the reference scale µ decreases. Rewriting the left-handed F̄ as
a right-handed F , one sees that this is a vectorial SU(4) gauge theory with
massless Nf = 1 Dirac fermion in the fundamental representation. It there-
fore has a classical global chiral flavor symmetry group U(1)F ⊗ U(1)F̄ , or
equivalently, U(1)V ⊗ U(1)A in standard notation. The U(1)A is broken by
SU(4) instantons, so the nonanomalous global flavor symmetry is U(1)V . At
a scale Λ4

<∼ Λ5, one expects that the SU(4) gauge interaction produces a bi-
linear fermion condensate in the most attractive channel, which is F×F̄ → 1,
thus preserving the SU(4) gauge symmetry. The condensate is

〈
4∑
b=1

ψ5b T
L Cχb,1,L〉 . (6.61)

This condensate respects the U(1)V global symmetry, and hence does not
produce any Nambu-Goldstone bosons. Thus, this SU(4) theory confines
and produces gauge-singlet hadrons (with the baryons being bosonic). In
the infrared limit, the only remaining massless particles are the SU(4)-singlet
fermion χa,1,L and the one Nambu-Goldstone boson resulting from the break-
ing of the U(1)′ global flavor symmetry by the condensate (6.59).

6.5.3 SU(6) A2 F̄ Theory

We next consider an SU(6) A2 F̄ theory. The fermion content of this theory
is the N = 6 special case of (6.14), namely A2 + 2F̄ = [2]6 + 2[1]6. The
A2 fermion is denoted ψabL = −ψbaL , and the two copies of the F̄ fermion
are denoted χa,i,L, where 1 ≤ a, b ≤ 6 are gauge indices and i = 1, 2
is the copy index. We consider possible bilinear fermion condensates for
this theory. As discussed above, although the bilinear fermion condensation
channels A2 × A2 → Ā2 and A2 × F̄ → F have the same ∆C2, a vacuum
alignment argument favors the A2×F̄ → F channel because it leaves a larger
residual gauge symmetry, namely SU(5). Assuming that a condensate in this
channel does form, we denote the scale at which it is produced as Λ6. Again,
by convention we take the breaking direction as a = 6 and the copy index as
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i = 2 on the F̄ fermion in the condensate, which can thus be written as

〈
5∑
b=1

ψ6b T
L Cχb,2,L〉 . (6.62)

This condensate also breaks the SU(2)F̄ ⊗U(1)′ global flavor symmetry. The
ψ6b
L and χb,2,L fermions with 1 ≤ b ≤ 5 involved in the condensate (6.62)

get dynamical masses of order Λ6, as do the 11 gauge bosons in the coset
SU(6)/SU(5). These are integrated out of the low-energy effective SU(5)-
invariant theory that describes the physics as the scale µ decreases below
Λ6.

From the N = 6 special case of the general decomposition (6.60) in con-
junction with the form of the condensate (6.62), it follows that the massless
SU(5)-nonsinglet fermion content of the descendant SU(5) theory is A2 + F̄ ,
together with the (massless) SU(5)-singlet fermions χ6,1,L and χ6,2,L. Thus,
the SU(5)-nonsinglet fermion content of this theory is the same as that of
the SU(5) theory discussed above, and our analysis there applies here. Since
this SU(5) theory satisfies the ’t Hooft global anomaly matching condition-
s, when it becomes strongly coupled, it could confine and produce massless
SU(5)-singlet composite fermions, as well as massive mesons and primarily
gluonic states, or it could self-break via fermion condensate formation. We
also discuss below a possible SU(5)-preserving four-fermion condensate that
might form.

6.5.4 SU(N) A2 F̄ Theories with N ≥ 7

For N ≥ 7, the most attractive channel for bilinear fermion condensation is
A2 × F̄ → F , with ∆C2 given by the k = 2 special case of (6.41),

∆C2 = C2([2]N) =
(N − 2)(N + 1)

N
for A2 × F̄ → F . (6.63)

The UV to IR evolution of these theories is similar to that of the SU(6) theory.
At each stage, owing to the fact that the SU(N) theory and the various
descendant theories satisfy ’t Hooft global anomaly matching conditions,
as the coupling gets strong in the IR, the gauge interaction may confine
and produce massless composite fermions or may produce various fermion
condensates. The most attractive channel for bilinear fermion condensation
at a given stage is A2 × F̄ → F , breaking the theory down to the next
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descendant low-energy theory. If the theory follows the first type of UV to IR
flow, namely confinement with massless composite fermions, this extends all
the way to the IR limit, while if the theory follows the second type of flow with
condensate formation, then there is, in general, a resultant sequence of low-
energy effective theories that describe the physics of the massless dynamical
degrees of freedom at lower scales. If all of the stages involve gauge (and
global) symmetry breaking by fermion condensates, then the gauge symmetry
breaking is of the form

SU(N) → SU(N − 1)→ ...→ SU(4) . (6.64)

Here, the last theory, namely the SU(4) theory, is vectorial, while all of the
higher-lying theories are chiral gauge theories.

6.6 A3 F̄ Theories

The fermion content of the A3 F̄ theories was displayed in Eq. (6.15). The
one-loop and two-loop coefficients in the beta function were given in Eqs.
(6.8) and (6.21), with numerical results for b̄1 and b̄2 displayed in Table 6.1.
As is evident in Table 6.1, for 7 ≤ N ≤ 10, the coefficient b̄2 is positive, so
the two-loop beta function has no IR zero, and hence, as the reference scale
µ decreases from large values in the UV toward the IR, the gauge coupling
increases until it exceeds the region where it is perturbatively calculable.
These theories are thus strongly coupled in the infrared (marked as SC in
Table 6.1).

The next step in the analysis of the UV to IR flow in these theories is to
determine if one or more of them might satisfy the ’t Hooft global anoma-
ly matching conditions. If this were to be the case, then, as in the A2 F̄
theories, one would have a two-fold possibility for the strongly coupled IR
physics, namely confinement with gauge-singlet composite fermions but no
spontaneous chiral symmetry breaking or formation of bilinear fermion con-
densates with associated breaking of gauge and global symmetries. For this
purpose, we have examined possible SU(N) gauge-singlet fermionic opera-
tor products to determine if any of them could satisfy these global anomaly
matching conditions. The global flavor symmetry group was given in Eq.
(6.33) with (6.34). We have not found any such fermionic operator products.
As an illustration of our analysis, let us consider the case N = 7, which
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contains a [3]7 fermion ψabdL and two fermions, χa,i,L with i = 1, 2 comprising

two copies of the [1]7 representation. For this case,

G
(3)
fl,N=7 = SU(2)F̄ ⊗ U(1)′ , (6.65)

with ~Q′ = (1,−5). A fermionic operator product that is an SU(7) singlet is
of the form

fi,R = εabdefgh[ψ
abd T
L CψefgL ](χc)hi,R , (6.66)

where the c superscript denotes the charge conjugate fermion field. How-
ever, this vanishes identically. This can be seen as follows: an interchange
(transposition) of ψabdL and ψefgL entails a minus sign from the switching of an
odd number of indices in the antisymmetric SU(7) tensor density, a second
minus sign from Fermi statistics, and a third minus sign from the fact that
CT = −C for the Dirac charge conjugation matrix, so the operator is equal
to minus itself and hence is zero.

Therefore, when theory becomes strongly coupled in the infrared, we will
focus on the type of UV to IR evolution that leads to fermion condensates,
and we consider bilinear fermion condensates here. The most attractive
channel for these condensates, as a function of N , was given in Eq. (6.56).

As an explicit example of the A3 F̄ class of chiral gauge theories, let us
consider the SU(7) theory, which has chiral fermion content given by the
N = 7 special case of Eq. (6.15), namely

A3 + 2F̄ = [3]7 + 2[1]7 . (6.67)

The most attractive channel for this theory is A3×A3 → F̄ , which breaks the
gauge symmetry SU(7) to SU(6) and also breaks the global flavor symmetry
group SU(2)F̄ ⊗ U(1)′. We denote the scale at which this condensate forms
as Λ7. Without loss of generality, we label the gauge index for the broken
direction to be a = 7. The condensate then has the form

〈εabdefg7ψabd TL CψefgL 〉 . (6.68)

Of the
(

7
3

)
= 35 components of the A3 fermion, denoted generically as ψabdL ,

the
(

7
3

)
−
(

6
2

)
= 20 components with 1 ≤ a, b, d ≤ 6 that are involved

in this condensate gain dynamical masses of order Λ7, as do the 13 gauge
bosons in the coset SU(7)/SU(6). These are integrated out of the low-energy
effective theory SU(6) chiral gauge theory that describes the physics as the
scale decreases below Λ7.
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The massless SU(6)-nonsinglet fermion content of this SU(6) theory thus
consists of A2 + 2F̄ = [2]6 + 2[1]6, comprised by the

(
6
2

)
= 15 components

ψab7L and the χa,i,L with 1 ≤ a, b ≤ 6 and i = 1, 2. A theorem proved in [2]
states that a low-energy effective theory that arises by dynamical symmetry
breaking from an (asymptotically free) anomaly-free chiral gauge theory is
also anomaly-free. One sees that the present example is in accord with this
general theorem. Indeed, the nonsinglet fermions in this SU(6) descendant
theory are precisely those of the SU(6) A2 F̄ theory discussed above, and
that analysis applies here for the further UV to IR evolution of the theory.
In addition to the SU(6)-nonsinglet fermions, this descendant theory also
contains the SU(6)-singlet fermions χ7,i,L with i = 1, 2.

6.7 A4 F̄ Theories

The fermion content of the A4 F̄ theories was given in Eq. (6.16). The
reduced one-loop and two-loop coefficients in the beta function were listed in
Eqs. (6.9) and (6.22), with numerical results displayed in Table 6.1. We find
that for each of the three relevant values of N , namely N = 9, 10, 11, the
coefficient b̄2 is negative, so the two-loop beta function has an IR zero. As
we noted above, for N = 11, this IR zero is at very weak coupling relative
to the minimal critical value for bilinear fermion condensation, so we can
reliably conclude that the theory evolves from the UV to a (deconfined) non-
Abelian Coulomb phase in the infrared. In the N = 9 and N = 10 theories,
the respective IR zeros in the two-loop beta function occur at strong and
moderate coupling, so a full analysis is necessary.

We have examined whether there are SU(N) gauge-singlet composite
fermion operators that could satisfy the ’t Hooft global anomaly matching
conditions, but we have not found any. The global flavor symmetry group
was given in Eq. (6.35) with (6.36). As an illustration of our analysis, let us
consider the SU(9) A4 F̄ theory, which contains a [3]9 fermion ψabdL and the
fermions, χa,i,L with 1 ≤ i ≤ 5 comprising five copies of the [1]9 representa-
tion of SU(9). The global flavor symmetry group is

G
(4)
fl,N=9 = SU(5)F̄ ⊗ U(1)′ , (6.69)

The χa,i,L fermions transform as of the SU(5)F̄ flavor group, and the vector

of U(1)′ charges is ~Q′ = (Q′A4
, Q′

F̄
) = (1,−7). A fermionic operator product
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that is an SU(9) gauge singlet is

f iR = εabdefghrs[ψ
abde T
L CψfghrL ](χc)s,iR . (6.70)

This transforms as a representation of the global SU(5)F̄ symmetry with
U(1)′ charge 2Q′A4

−Q′
F̄

= 9. Since this is a right-handed composite fermion,
we actually calculate with the charge conjugate (f c)i,L, which is a left-handed
fermion that transforms as a representation of the global SU(5) with U(1)′

charge −9. We find that this composite fermion does not satisfy the global
anomaly matching conditions. For example, consider the SU(5)3 anomaly.
The fundamental fields make the following contributions: the A4 fermion
yields zero, while the F̄ fermions yield NA( ) = 9 × (−1) = −9. However,
the f cL fermion yields A( ) = −1, which does not match. Since we have not
found composite fermion operators that satisfy the ’t Hooft global anomaly
matching conditions, we consider fermion condensation in the cases where
the beta function has an IR zero at moderate (for N = 10) and strong (for
N = 9) coupling in the infrared.

As an explicit example, we analyze the SU(9) A4 F̄ theory. The fermion
content of this theory is given by the N = 9 special case of Eq. (6.16),
namely

A4 + 5F̄ = [4]9 + 5[1]9 . (6.71)

The most attractive channel for bilinear fermion condensation is the N = 9
special case of (6.48), namely A4 ×A4 → F̄ . Assuming that this condensate
forms, it breaks the gauge symmetry SU(9) to SU(8) and also breaks the
global flavor symmetry group SU(5)F̄ ⊗U(1)′. We denote the scale at which
this condensate forms as Λ9. Without loss of generality, we label the gauge
index for the broken direction to be a = 9. The condensate then has the
form

〈εabdefghr9ψabde TL CψfghrL 〉 . (6.72)

Of the
(

9
4

)
= 126 components of ψabdeL , the

(
9
4

)
−
(

8
3

)
= 70 components with

1 ≤ a, b, d, e ≤ 8 that are involved in this condensate gain dynamical masses
of order Λ9, as do the 17 gauge bosons in the coset SU(9)/SU(8). These are
integrated out of the low-energy effective theory SU(8) chiral gauge theory
that describes the physics as the scale decreases below Λ9.

The massless SU(8)-nonsinglet fermion content of this SU(8) theory thus
consists of A3+5F̄ = [3]8+5[1]8, comprised by the

(
8
3

)
= 56 components ψabd9

L

and the χa,i,L with 1 ≤ a, b, d ≤ 8 and 1 ≤ i ≤ 5. Again, the theorem proved
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in [2] guarantees that this SU(8) descendant theory is anomaly-free. Indeed,
the nonsinglet fermions in this SU(8) descendant theory are precisely those
of the SU(8) A3 F̄ theory discussed above, and that analysis applies here
for the further UV to IR evolution of the theory. In addition to the SU(8)-
nonsinglet fermions, this descendant theory also contains the SU(6)-singlet
fermions χ9,i,L with 1 ≤ i ≤ 5.

6.8 Multifermion Condensates and Implica-

tions for the Preservation of Chiral Gauge

Symmetry

Our discussion above of fermion condensate formation focused on bilinear
fermion condensates and resultant dynamical chiral gauge symmetry break-
ing. However, it is, in principle, possible for a strongly interacting vectorial
or chiral gauge theory to produce fermion condensates involving product(s)
of more than just two fermion fields [110, 111]. Much less attention as been
devoted in the literature to such multifermion condensates than to bilin-
ear fermion condensates. This is somewhat analogous to the situation with
bound states of (anti)quarks in hadronic physics. For many years the main
focus of research was on color-singlet bound states with the minimum number
of (anti)quarks, namely qqq, for baryons and qq̄ for mesons. (Subsequently,
glueballs and mixing between qq̄ mesons and glue to form mass eigenstates
were also studied.) However, there is increasing experimental evidence that
the hadron spectrum also contains bound states with additional quarks, such
as qq̄qq̄ and qq̄QQ̄, where Q means a heavy quark, c or b, including charged
mesons, and possibly qqqqq̄ and qqqQQ̄ [112]. In the case of possible conden-
sates involving four or more fermions, we are not aware of a reliable method
that can be used to assess the relative likelihood that these would form. The
problem of assessing this likelihood is fraught with even more theoretical un-
certainty than the uncertainty inherent in the use of the rough MAC criterion
to measure the attractiveness of bilinear fermion condensation channels.

Clearly, Lorentz invariance implies that the number of fermion fields in
such multifermion condensates must be even. As usual, we denote the charge
conjugate of a generic fermion field χ as χc ≡ Cχ̄T , where C is the Dirac
charge conjugation matrix satisfying C = −CT and χ̄ ≡ χ†γ0; recall also
that for a left-handed fermion χL, the charge conjugate is (χL)c = (χc)R.
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As an example, consider the SU(5) A2 F̄ theory, with the fields ψabL and
χa,1,L or equivalently, ψcab,R and (χc)a,1R . When the gauge interaction becomes
strong, it could produce several different four-fermion condensates that pre-
serve the SU(5) gauge symmetry. One such condensate that involves all of
the fermions is

〈εabdef [ψab TL CψdeL ][ψfs TL Cχs,1,L]〉 , (6.73)

where a, b, d, e, f, s are SU(5) gauge indices. This condensate has U(1)′ charge
3Q′A2

+ Q′
F̄

. Using the results from the N = 5 special case of Eq. (6.32),
namely, Q′A2

= 1, Q′
F̄

= −3, we find that this condensate (6.73) has zero
U(1)′ charge, so it also preserves the global U(1)′ symmetry of the SU(5)
theory.

In a similar manner, consider the SU(6) A2 F̄ theory, with the fermions
ψabL and χa,j,L with j = 1, 2. As the SU(6) gauge interaction becomes strong
in the infrared, it might produce the following four-fermion condensate that
is invariant under the SU(6) gauge symmetry:

〈εabdesu[ψab TL CψdeL ][(χc)s,1 T
R C(χc)u,2R ]〉 − (1 ↔ 2)

= 〈εabdesu[ψab TL CψdeL ]εij[(χ
c)s,i TR C(χc)u,jR ]〉 . (6.74)

Note that because of the contraction of the operator product [(χc)s,1 T
R C(χc)u,2R ]

with the SU(6) εabdesu tensor, the first term in Eq. (6.74) is automatically
antisymmetrized in the flavor indices j = 1, 2; we have made this explicit by
subtracting the term with these indices interchanged. As shown by the sec-
ond line of Eq. (6.74), this condensate thus preserves the SU(2)F̄ factor group
in the global flavor symmetry Gfl for this theory, namely SU(2)F̄ ⊗U(1)′. In
the (A2, F̄ ) basis, the U(1)′ charges are (2,−4), as given by the N = 6 special
case of Eq. (6.32). Hence, the U(1)′ charge of the condensate (6.74) is −4,
so it breaks the U(1)′ part of Gfl, yielding one Nambu-Goldstone boson.

One can give corresponding discussions of gauge-invariant multifermion
condensates for other SU(N) Ak F̄ theories that become strongly coupled in
the infrared. In general, these theories could also produce other types of
four-fermion condensates such as

〈[ψab TL Cχb,i,L][(ψc)Tad,RC(χc)d,jR ]〉 , (6.75)

〈[ψ̄ab,LγµψabL ][ψ̄de,Lγ
µψdeL ]〉 , (6.76)

〈[ψ̄ab,LγµψabL ][(χ̄L)d,iγµχd,j,L]〉 , (6.77)
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and
〈[(χ̄L)a,iγµχa,j,L][(χ̄L)b,kγµχb,`,L]〉 , (6.78)

where 1 ≤ i, j, k, ` ≤ nF̄ . There are also multifermion condensates with
eight and more fermions that one could consider. Such multifermion conden-
sates merit further study.

6.9 Non-Existence of Asymptotically Free Sk F̄

Theories with k ≥ 3

It is natural to carry out an investigation of (anomaly-free) chiral gauge
theories with gauge group SU(N) and chiral fermions transforming according
to the rank-k symmetric tensor representation with k ≥ 3 and a requisite
number of chiral fermions in the F̄ representation so as to render the theories
free of an anomaly in gauged currents. We denote such a theory as an SU(N)
Sk F̄ theory. This investigation would be the analogue of the study that we
have performed in this chapter for Ak F̄ theories with k ≥ 3 and would
generalize the studies that have been carried out in the past on the S2 F̄
theory [1, 11, 22, 82, 83]. As with the Ak F̄ theories, we require that the
theory must be asymptotically free so that it is perturbatively calculable in
at least one regime, namely the deep UV, where the gauge coupling is small.

However, we shall show here that there are no asymptotically free (anomaly-
free) Sk F̄ chiral gauge theories with k ≥ 3. As before we denote the number
of copies of F̄ fermions as nF̄ . The contribution to the triangle anomaly in
gauged currents of a chiral fermion in the Sk representation is (see Appendix
A )

A(Sk) =
(N + k)! (N + 2k)

(N + 2)! (k − 1)!
. (6.79)

The total anomaly in the theory is A = A(Sk) − nF̄A(F ), so the condition
of anomaly cancellation is that

nF̄ = A(Sk) . (6.80)

The first few values are of nF̄ are

nF̄ =


N + 4 ifk=2

(1/2)(N + 3)(N + 6) if k = 3
(1/6)(N + 3)(N + 4)(N + 8) if k = 4

(6.81)
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and so forth for higher k.
To investigate the restrictions due to the requirement of asymptotic free-

dom, we calculate the one-loop coefficient of the beta function. We find

b1,SkF̄ =
1

3

[
11N − 2

{
T (Sk) +A(Sk)T (F̄ )

}]
=

1

3

[
11N − 1

(k − 1)!

{[ k∏
j=2

(N + j)
]

+
(N + k)!(N + 2k)

(N + 2)!

}]
.

(6.82)

We exhibit the explicit expressions for b(k) for the first few k ≥ 2:

b1,S2F̄ = 3N + 2 , (6.83)

b1,S3F̄ =
1

3
(−N2 + 4N − 12) , (6.84)

b1,S4F̄ = −1

9
(N3 + 12N2 + 14N + 60) , (6.85)

b1,S5F̄ = − 1

36
(N4 + 18N3 + 119N2 + 210N + 360) , (6.86)

and

b1,S6F̄ = − 1

180

(
N5 + 25N4 + 245N3 + 1175N2 + 2094N + 2520

)
. (6.87)

The coefficient b1,S2F̄ is positive for all relevant N , and this property was
used in past studies of the S2 F̄ theory. However, the coefficient b1,S3F̄ is
negative for relevant N ≥ 3. (Recall that an SU(2) theory has only real
representations and hence is not chiral.) With N generalized from positive
integers to real numbers, b1,S3F̄ is negative for all N , reaching its maximum
value of −8/3 for N = 2. We find that the b1,SkF̄ coefficients with k ≥ 4 are
negative-definite for all positive N (either real or integer). This is evident
from the illustrative explicit expressions that we have given for 4 ≤ k ≤ 6.
This completes our proof that there are no asymptotically free, (anomaly-
free) Sk F̄ chiral gauge theories with k ≥ 3.
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Chapter 7

Dynamical Symmetry Breaking
in Chiral Gauge Theories with
Direct-Product Gauge Groups

In this chapter, we summarize the analysis in [4], in which we studied pat-
terns of dynamical gauge symmetry breaking in strongly coupled chiral gauge
theories with direct-product gauge groups of the form

G =

NG⊗
j=1

Gj . (7.1)

From comparative studies of a number of different theories of this type,
we infer some common features, including the property that the symmetry-
breaking behavior depends sensitively on the relative sizes of the gauge cou-
plings of the different factor groups in the direct product.

7.1 Classification of Groups and Methods of

Analysis

In order to explore the nonperturbative behavior of direct-product chiral
gauge theories, it is useful to have a general classification of these theories
and general methods for analyzing them. We discuss these in this section.
As stated above, we consider direct-product chiral gauge theories with gauge
groups of the form (7.1) with fermion content {f} chosen such that the theory
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is free of any anomalies in gauged currents and free of any global SU(2)
Witten anomalies, and also such that all non-Abelian gauge interactions are
asymptotically free. The reason for the latter property is that this ensures
that at sufficient high Euclidean scale µ in the UV, one has perturbative
control over the theory. Unless otherwise noted, we will, with no loss of
generality, write all fermions as left-handed chiral components.

To establish our classification system, we first introduce some notation.
We generically denote a group that has only real or pseudoreal representa-
tions as Gr and a group that has complex representations as Gc. A group
Gr cannot, by self, be the gauge group of a chiral gauge theory, although
it can appear as a factor group in a chiral gauge theory. A group Gr has
zero anomaly, while, in general, a group Gc has nonzero anomalies AR for its
representations (see Eq. (A.20)), which we will indicate by the symbol Gca.
If a group Gc has no anomaly, i.e., AR = 0 for all R, then it is commonly
termed “safe” (s) [106,114], and we denote it as Gcs. Of course, a group Gr

is automatically safe. Thus, the generic class Gs includes Gr and Gcs.
We may then classify a chiral gauge theory with the direct-product gauge

group (7.1) by an NG-dimensional vector indicating the nature of the factor
groups involved in the direct product. If NG = 1, there are two possibilities:
(i) (ca), e.g., SU(N) with N ≥ 3, and (ii) (cs), e.g., SO(4k + 2) for k ≥ 2
or the exceptional group E6 [104,106,114,115]. For NG = 2, the possibilities
are

NG = 2 : (ca, r), (cs, r), (ca, ca), (ca, cs), (cs, cs) , (7.2)

where we do not distinguish the order of factor groups, so (cs, ca) and (ca, cs)
are the same type, etc.

Let us consider a factor group Gi in (7.1) which is of the form Gca, and
set the gauge couplings of the other factor groups to zero. If the resultant
Gca theory is vectorial (v), then we denote this as Gcav. This is the case, for
example, with the color SU(3) factor group in the Standard Model. Thus,
a further classification of direct-product chiral gauge theories can be carried
out in which, for for each factor group of the form Gca, one distinguishes
whether or not it is of the form Gcav. The Standard Model gauge group is of
the type (cav, r, ca) in this classification. We summarize the classification of
some chiral gauge theories considered in this chapter in Table 7.1.

Our requirement that each non-Abelian factor group in the direct product
(7.1) is asymptotically free enables us to describe the theory perturbatively
in the deep ultraviolet. We discuss the evolution from the UV to the IR next.
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Table 7.1: Classification of some direct-product chiral gauge theories. See text for further
discussion.

type NG G
(ca, r), (cav, r) 2 SU(N)⊗ SU(2) with N ≥ 3

(cav, cav) 2 SU(N)⊗ SU(M) with N,M ≥ 3
(r, ca) 2 SU(2)⊗ U(1)

(ca, ca), (cav, ca) 2 SU(N)⊗ U(1) with N ≥ 3
(cav, r, ca) 3 SU(Nc)⊗ SU(2)L ⊗ U(1)Y
(cav, r, r) 3 SU(N)⊗ SU(2)L ⊗ SU(2)R

(cav, r, r, cav) 4 SU(Nc)⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L
(cs, r) 2 SO(4k + 2)⊗ SU(2) with k ≥ 2

(cs, cav) 2 SO(4k + 2)⊗ SU(N) with N ≥ 3
(cs, cs) 2 SO(4k + 2)⊗ SO(4k′ + 2) with k, k′ ≥ 2

To each factor group Gi, i = 1, ..., NG, there corresponds a running gauge
coupling gi(µ), and we define αi(µ) = gi(µ)2/(4π) and ai(µ) ≡ gi(µ)2/(16π2).
The argument µ will often be suppressed in the notation. The UV to IR
evolution of the gauge coupling is determined by the beta function, βgi =
dgi/dt, or equivalently, βGi

= dαi/dt = [g/(2π)]βgi , where dt = d lnµ. This
has the series expansion

βGi
= −8πa2

i

[
bGi,1` +

NG∑
j=1

bGi,2`;ijaj +

NG∑
j,k=1

bGi,3`;ijkajak + ...

]
, (7.3)

where an overall minus sign is extracted and the ... indicate higher-loop terms.
Here, bGi,1` is the one-loop (denoted (1`)) coefficient, multiplying a2

i , bGi,2`;ij is
the two-loop coefficient, multiplying a2

i aj, and so forth for higher-loop loops.
The property of asymptotic freedom for the non-Abelian gauge interactions
means that βGi

< 0 for small αi, i = 1, ..., NNA. The set (7.3) constitutes a
set of NG coupled nonlinear first-order ordinary differential equations for the
quantities αi, i = 1, ..., NG. To leading order, i.e., to one-loop order, the set
of differential equations decouple from each, and one has the simple solution
for each i ∈ {1, ..., NG}:

αi(µ1)−1 = αi(µ2)−1 − bGi,1`

2π
ln
(µ2

µ1

)
, (7.4)
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where we take µ1 < µ2.
In the following discussion, we assume that the fundamental Lagrangian

has no fermion mass terms, so that all fermion masses are generated dy-
namically by chiral symmetry breaking. For a pair of gauge interactions
corresponding to the factor groups Gi and Gj in Eq. (7.1), the respective be-
ta functions βGi

and βGj
in the deep UV are fixed once we choose the fermion

content of a given theory. The values of the corresponding αi(µ1) and αj(µ1)
at lower Euclidean scales are determined by (i) the initial values of αi(µ2) and
αj(µ2) in the UV; (ii) the values of βGi

and βGj
; and (iii) the occurrence of

bilinear fermion condensate formation at some scale(s) as the theory evolves
from the deep UV toward the IR, which produce dynamical masses for the
fermions involved in these condensates. Since we do not assume that the
direct-product group (7.1) is contained in a simple group in the deep UV, we
are free to consider various different orderings of the sizes of the couplings
αi(µ2) in the UV. Furthermore, because of the condensation process(es) (i-
ii), the fermions involved in these condensates, together with gauge bosons
corresponding to broken generators of gauge symmetries, acquire dynami-
cal masses and are integrated out of the low-energy effective field theories
that are applicable as the Euclidean reference scale decreaes below each con-
densation scale. The reduction in massless particle content in (iii) produces
changes in the beta functions of the gauge interactions involved. Because of
this, even if βGi

> βGj
with all fermions initially present in the deep UV, it

can happen that at a lower scale this inequality is reversed. The variation of
gauge couplings in the deep UV embodied in the input (i) above was carried
out in the earlier work [20] where both of the cases of relative sizes of αETC
and αHC were considered, and in [113], where both of the cases of relative
sizes of couplings for SU(3)c and SU(2)L were considered. Henceforth, for
notational simplicity, we set bGi,1` ≡ bGi,1. Here, as in the earlier works
involving gauge theories with multiple gauge couplings [20, 25, 113], we will
focus on the nonperturbative phenomenon of fermion condensate formation
and the associated pattern of gauge symmetry breaking. The one-loop result
(7.4) will be sufficient for our purposes here since we focus on this nonper-
turbative fermion condensate formation. These condensates also generically
break global chiral symmetries, and we will give some examples of this.

In general, a fermion condensate may involve different fermion fields or
the same fermion field. If the fields are the same, we may write the bilinear
fermion operator product abstractly as follows. Assume that the gauge group
G in Eq. (7.1) contains t ≤ NG non-Abelian factors Gk and that the relevant
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fermion field f transforms as the representation R ≡ (R1, ...,Rt) under the
direct product of these non-Abelian factor groups. Then the bilinear fermion
product of a given fermion field is

fTR,i,LCfR,j,L , (7.5)

where C is the Dirac conjugation matrix, gauge group indices are suppressed
in the noation, and i, j are copy (flavor) indices. From the property CT = −C
together with the anticommutativity of fermion fields, it follows that the
bilinear fermion operator product (7.5) is symmetric under interchange of
the order of fermion fields and therefore is symmetric in the overall product[ t∏

k=1

(Rk ×Rk)
]
Sij , (7.6)

where Sij abstractly denotes the symmetry property under interchange of
flavors, with Sij = (ij) and Sij = [ij] for symmetric and antisymmetric
flavor structure, respectively. For example, for the case t = Ng = 2 and
flavor indices i, j, the symmetry property (7.6) means that fTi,LCfj,L is of the
form (s, s, s), (s, a, a), (a, s, a), or (a, a, s), where s and a indicate symmetric
and antisymmetric and the three entries refer to the representations R1 of
G1, R2 of G2, and Sij. Thus, as an illustration, in the last case, (a, a, s),
the product (7.5) would transform as antisymmetric representations in the
Clebsch-Gordan products of Rj ×Rj for j = 1, 2 and would be symmetric in
flavor indices, with Sij = (ij), and so forth for other cases.

The main perturbative information that we will use is the one-loop co-
efficients of the beta functions for the non-Abelian gauge interactions. We
require that these interactions must be asymptotically free so that we have
perturbative control over them in the deep UV. If αi(µ) becomes strong, i.e.,
O(1) in the IR, one can no longer use perturbative methods reliably, but one
can make use of several approximate methods to explore possible nonper-
turbative properties of the theory. First, one may investigate whether the
fermions in the theory satisfy the ’t Hooft anomaly-matching conditions. For
this purpose, one determines the global flavor symmetry group of the theory
is invariant and then checks whether candidate operators for gauge-singlet
composite spin-1/2 fermions match the anomalies in the global flavor sym-
metries. If this necessary condition is satisfied, then it is possible that in
the infrared the strong chiral gauge interaction could confine and produce
massless composite spin-1/2 fermions.
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A different possibility in a strongly coupled chiral gauge theory is that
the gauge interaction can produce bilinear fermion condensates. This will
be the main focus of our analysis here. In an irreducibly chiral theory these
condensates break one or more gauge symmetries, as well as global flavor
symmetries. A commonly used method for suggesting which type of conden-
sate is most likely to form in this case is the most-attractive-channel (MAC)
method [18]. For possible condensation of chiral fermions in the represen-
tations RGi,1 and RGi,2 of the factor group Gi in (7.1) in various channels
of the form RGi,1 × RGi,2 → RGi,cond., the MAC approach predicts that the
condensation will occur in the channel with the largest (positive) value of
the quantity ∆C2 ≡ C2(RGi,1) + C2(RGi,2) − C2(RGi,cond.). This is only a
rough measure, based on one-gluon exchange. The form of the condensate
determines the resultant symmetry and form of vacuum alignment [102].

7.2 Methods for Constructing Chiral Gauge

Theories

In this section we mention some useful methods for constructing anomaly-free
direct-product chiral gauge theories.

7.2.1 Reduction Method

Let us say that we have a chiral gauge theory with the NG-fold direct product
gauge group (7.1) and a given fermion content that satisfies the constraints
that the theory must be free of any anomaly in gauged currents, any possible
global SU(2) anomaly, and, if G includes abelian factor groups, also any
mixed gravitational-gauge anomaly. One can then construct a set of chiral
gauge theories by a process of reduction, setting one or more of the gauge
couplings {g1, ..., gNG

} equal to zero. (ii) by turning off the SU(2)L gauge
coupling, one gets an SU(Nc) ⊗ U(1)Y gauge theory of type (cav, ca); and
(iii) by turning off the U(1)Y coupling, one gets an SU(Nc)⊗ SU(2)L gauge
theory of type (cav, r). Given that the original theory has the requisite
property that all non-Abelian gauge interactions are asymptotically free, the
theory derived by turning off some gauge coupling(s) also has this property.
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7.2.2 Extension Method to Construct G = G̃⊗Gs The-
ories

Here we present a method for constructing a direct-product chiral gauge
theory with an (NG + 1)-fold direct-product gauge group, starting from a
given chiral gauge theory with an NG-fold direct-product gauge group G̃ by
adjoining a safe group Gs to G̃ to produce

G = G̃⊗Gs (7.7)

and extending the fermion representations of G̃ to those of G = G̃⊗Gs. Here
Gs may be Gr or Gcs. The procedure is as follows:

1. Start with an anomaly-free chiral gauge theory with the NG-fold gauge
group G̃ =

⊗NG

i=1 Gi and a set of fermion representations {RG̃}, where
each of these is

RG̃ = (RG1 , ...,RGNG
) . (7.8)

2. Choose the safe group Gs, of type Gr or Gcs, i.e., either a group with
real representations, such as SU(2), or a safe group with complex rep-
resentations, such as SO(4k + 2) with k ≥ 2 or the exceptional group
E6.

3. Extend each fermion representation RG̃ of G̃ to a representation RG of
G using a single representation RGs of Gs to form RG = (RG̃,RGs). As
far as the G̃ group is concerned, this simply amounts to a replication
of its original (anomaly-free) fermion content by dim(RGs) copies, so
the resulting extended fermion content is also anomaly-free.

4. Apply the constraint that if the safe group is Gs = SU(2), then the
resultant theory must be free of a global SU(2) Witten anomaly as-
sociated with the homotopy group π4(SU(2)) = Z2 [116, 117]. With
RGs = , the necessary and sufficient condition to satisfy this con-
straint is that the total number of SU(2) doublets is even [116,118].

5. Apply the constraints that each of the gauge interactions corresponding
to non-Abelian factor groups in G̃ must remain asymptotically free in
the larger group G, and the Gs gauge interaction must also be asymp-
totically free.
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This method can be used to construct many types of direct-product chiral
gauge groups. Among the NG = 2 cases, for example, these types include all
of the ones listed in Eq. (7.2).

7.3 Gcav ⊗ SU(2) Theories

In this section we construct and study a class of NG = 2 direct-product chiral
gauge theories with a gauge group

G1 ⊗G2 = Gcav ⊗ SU(2) . (7.9)

This class is the special case (cav, r) of the class Gca⊗Gr discussed in Section
7.1 in which Gca = Gcav, i.e., Gca is a group with complex representations
and AR 6= 0 and the fermion content is such that if the SU(2) gauge interac-
tion is turned off, then the Gcav gauge interaction is vectorial. This property
guarantees that there is no cubic triangle anomaly in gauged currents in the
Gcav sector. Furthermore, as already indicated above, since SU(2) has (pseu-
do)real representations, it has no anomaly. The only anomaly constraint is
then the requirement that the SU(2) group must be free of a global anomaly.
We consider theories of this type with chiral fermion content (written here
as left-handed)

{fns,ns} =
∑
R

pR (R, ) , (7.10)

{fns,s} = 2
∑
R

pR̄ (R̄, 1) , (7.11)

and optionally,
{fs,ns} = p1 (1, ) , (7.12)

where the subscripts ns and s are abbreviations for “nonsinglet” and “sin-
glet”; R denotes a (nonsinglet) representation of the group G1; and the first
and second entries in subscripts and in the parentheses refer to the repre-
sentations of Gcav and SU(2)L, respectively, with being the fundamental
representation in standard Young tableaux notation.

If the fermion sector includes only a single R, then we set pR ≡ p for
brevity. We shall use interchangeably a notation with Young tableaux and
dimensionalities to identify the representation: (R, ) ↔ (dim(R), 2). In
general, we will allow for several types of (nonsinglet) representations R, but
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will focus on minimal theories with only one R. The subscript indices i, j are
copy (“flavor”) indices, and the total number of copies of the fns,ns fermions
transforming as the R representation of G1 is denoted pR. We shall mainly
focus on irreducibly chiral theories, i.e., those for which the chiral gauge
theory forbids any bare mass terms, but we shall also discuss some chiral
gauge theories with vectorlike subsectors. The global symmetries depend on
p and p1; we will discuss them for specific models below.

The number of SU(2) chiral fermion doublets in this theory, which we
shall denote Nd, is

Nd = p1 +
∑
R

pR dim(R) . (7.13)

The condition that the SU(2) gauge sector must be free of a global anomaly
is that

Nd is even . (7.14)

Because Nd is necessarily even, one could take half of the left-handed SU(2)-
doublet fermions, rewrite them as right-handed charge-conjugates, and there-
by put the SU(2) gauge interaction into vectorial form.

As noted, we shall also impose two further requirements on the theory,
namely that the G1 and the SU(2) gauge interactions must both be asymp-
totically free. From the general results in [75], we find that the one-loop
coefficient of the beta function of the G1 gauge interaction is

b1,G1 =
1

3

[
11C2(G1)− 8

∑
R

pR T (R)
]
, (7.15)

so the requirement that the G1 gauge interaction should be asymptotically
free implies that ∑

R

pR T (R) <
11C2(G1)

8
. (7.16)

Here and below, if p1 = 0 and the theory contains fermions in one (nonsinglet)
representationR of G1, then only nonzero values of pR ≡ p are relevant, since
if p = 0, then the theory is a pure (direct-product) gauge theory and hence
is not a chiral gauge theory.

The one-loop coefficient of the beta function of the SU(2) gauge interac-
tion is

b1,SU(2)L =
1

3
(22−Nd)
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=
1

3

[
22−

(
p1 +

∑
R

pR dim(R)
)]

, (7.17)

so the requirement that the SU(2) gauge interaction should be asymptotically
free implies that

p1 +
∑
R

pR dim(R) < 22 . (7.18)

7.4 SU(N)⊗ SU(2) Theories

In this section we construct and study several models with a direct-product
gauge group of the form (7.9) with the first gauge group being SU(N), i.e.,
with

G = G1 ⊗G2 = SU(N)⊗ SU(2) (7.19)

and various chiral fermion contents, which we denote as Models A, B, and
C. All three of these models are of type (cav, r), as indicated in Table 7.1.

7.4.1 Model A

The first model that we consider, denoted Model A, is a minimal one in three
respects: (i) it contains no G1-singlet fermions, i.e., p1 = 0; (ii) the fermions
transform according to only one representation R of G1 and its conjugate;
and (iii) this representation R is the simplest nontrivial one, namely the
fundamental, R = . The chiral fermions are

ψa,αi,L , i = 1, ..., p : p ( , ) = p (N, 2), (7.20)

and
χa,j,L, j = 1, ..., 2p : 2p ( , 1) = 2p (N̄ , 1) . (7.21)

Here, a and α are SU(N) and SU(2) gauge indices and i, j are copy (“flavor”)
indices. For N ≥ 3, the chiral gauge symmetry forbids any bare mass terms
for the fermions. In contrast, if N = 2, then gauge-invariant bare mass terms
such as

εabχTa,i,LCχb,j,L , i 6= j, 1 ≤ i, j ≤ 2p (7.22)

and
εabεαβψ

a,α T
i,L Cψb,βj,L , 1 ≤ i, j ≤ p (7.23)
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can occur. Closely related to this, if N = 2, then the SU(N) and SU(2)
gauge interactions can both be written in vectorial form, so the theory is not
a chiral gauge theory. Therefore, henceforth we shall assume that N ≥ 3 for
this class of theories. In the notation introduced above, the fermion content
of this Model A can be categorized as being of the form

{fns,ns, fns,s} . (7.24)

The fermion terms in the Lagrangian for this model are

L =

p∑
i=1

ψ̄a,α,i,LiD/ψ
a,α
i,L +

2p∑
j=1

χ̄aj,LiD/χa,j,L , (7.25)

(where we have indicated the sums over flavor explicitly).
For this Model A, the condition that the SU(2) gauge sector should be

free of a global anomaly is

Nd = pN is even, (7.26)

and we require that this condition must be satisfied.
From the general result (7.15), we have, for the one-loop coefficient of the

SU(N) beta function,

b1,SU(N) =
1

3
(11N − 4p) . (7.27)

Therefore, the requirement that the SU(N) gauge interaction should be
asymptotically free, expressed by the inequality (7.16), reads

p <
11N

4
. (7.28)

From the general result (7.17), we find, for the one-loop coefficient of the
SU(2) beta function,

b1,SU(2)L =
1

3
(22− pN) . (7.29)

Hence, the requirement that the SU(2) gauge interaction should be asymp-
totically free, given by the inequality (7.18), is

pN < 22 . (7.30)
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Table 7.2: Values of N and p in the Model A SU(N) ⊗ SU(2)L chiral gauge theory
allowed by the inequalities (7.28) and (7.30) arising from the constraint of asymptotic
freedom for the SU(N) and SU(2) gauge interactions, respectively, and the requirement
that the theory must not have any global SU(2) anomaly, Eq. (7.26). The notation
12 ≤ Neven ≤ 20 denotes the even values of N in this range. The notation 13 ≤ Nodd ≤ 21
denotes the odd values of N in this range. For N ≥ 22, the inequality (7.30) has only the
trivial solution p = 0 for which the theory is a pure gauge theory with no fermions and
hence is not a chiral gauge theory.

N allowed values of p
3 p = 2, 4, 6
4 1 ≤ p ≤ 5
5 p = 2, 4
6 1 ≤ p ≤ 3
7 p = 2
8 p = 1, 2
9 p = 2
10 p = 1, 2
11 no sol. with p 6= 0

12 ≤ Neven ≤ 20 p = 1
13 ≤ Nodd ≤ 21 no sol. with p 6= 0

N ≥ 22 no sol. with p 6= 0
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The allowed values of N and p are thus the integers N ≥ 3 and p ≥ 1 in this
allowed region that satisfy the conditions (7.28), (7.30), and (7.26). We list
these in Table 7.2. Several comments are in order concerning these allowed
values of N and p. First, as N increases through the value N = 22, the
maximum value of p allowed by the inequality (7.30) decreases below 1, so
that for N > 22, this inequality (7.30) has only the trivial (integral) solution
p = 0 for which the theory is a pure gauge theory with no fermions and hence
not of interest here. Second, for odd N , one sees that the condition (7.26) for
the theory to be free from a global SU(2) anomaly restricts p to even values.

We next analyze the UV to IR evolution and gauge symmetry breaking
in this model. If the SU(N) gauge interaction is sufficiently strong and if
it dominates over the SU(2) gauge interaction, then this SU(N) interaction
forms bilinear fermion condensates that break the SU(2) gauge symmetry.
We denote the scale at which this occurs as Λ. As regards the SU(N) gauge
interaction, the most attractive channel for fermion condensation is

SU(N) : × → 1, (7.31)

in terms of Young tableaux, or equivalently, N × N̄ → 1, in terms of the
dimensionalities of the SU(N) representations, with associated condensates

〈
N∑
a=1

ψa,α T
i,L Cχa,j,L〉 , (7.32)

where i ∈ {1, ...p} and j ∈ {1, ..., 2p}. (Here and below, when a condensate
is given, it is understood that the hermitian conjugate condensate is also
present.) This channel has

∆C2 = 2C2( ) =
N2 − 1

N
. (7.33)

Each of the condensates in Eq. (7.32) breaks the SU(2) gauge symmetry
completely (and is invariant under the SU(N) gauge symmetry, as is clear
from (7.31)). The fermions involved in these condensates, and the SU(2)
gauge bosons, gain dynamical masses of order Λ.

If, on the other hand, the SU(2) interaction is sufficiently strong and if it
dominates over the SU(N) interaction, then this SU(2) interaction produces
bilinear fermion condensates in the most attractive SU(2) channel 2×2→ 1,
with associated condensates of the form

〈εαβψa,α T
i,L Cψb,βj,L〉 . (7.34)
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We denote the scale where this occurs as Λ′. The attractiveness measure
for condensate formation in this channel is ∆C2 = 2C2( ) = 3/2. From
the general symmetry property (7.6), it follows that if, as in Eq. (7.34),
one contracts the SU(2) gauge indices α and β antisymmetrically via the
SU(2) εαβ tensor, then the combination of SU(N) and generational indices
is antisymmetric. That is, in the operator product (7.34), either the SU(N)
gauge indices are antisymmetric and the generational indices are symmetric,
so the condensate is proportional to

〈εαβ(ψa,α T
i,L Cψb,βj,L − ψ

b,α T
i,L Cψa,βj,L

+ ψa,α T
j,L Cψb,βi,L − ψ

b,α T
j,L Cψa,βi,L )〉 (7.35)

or the SU(N) gauge indices are symmetric and the generational indices are
antisymmetric, so the condensate is proportional to

〈εαβ(ψa,α T
i,L Cψb,βj,L + ψb,α T

i,L Cψa,βj,L

− ψa,α T
j,L Cψb,βi,L − ψ

b,α T
j,L Cψa,βi,L )〉 . (7.36)

The SU(N) gauge interaction, although assumed to be weaker than the SU(2)
gauge interaction, is not assumed to be negligible, and it prefers the conden-
sation channel that is the MAC as regards SU(N). Now

∆C2 =
N + 1

N
for × → (7.37)

whereas

∆C2 = −N − 1

N
for × → , (7.38)

so the × → channel is the MAC, and indeed, the × → channel
is repulsive. Therefore, we conclude that in this case where SU(2) is more
strongly coupled than SU(N), the expected condensation channel is, in an
obvious notation,

( , 2)× ( , 2)→ ( , 1) (7.39)

with associated condensate (7.35). This condensate, which is of the form
〈T [ab]〉, where T [ab] is a rank-2 antisymmetric tensor of SU(N), breaks SU(N)
as follows :

〈T [ab]〉 : SU(N)→ H =

{
SU(2) if N = 3

SU(N − 2)⊗ SU(2) if N ≥ 4
. (7.40)
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The fermions involved in the condensate and the gauge bosons in the coset
SU(N)/H gain dynamical masses of order Λ′ and are integrated out of the
low-energy effective field theory that is operative as the reference scale µ
decreases below Λ′. The fermion condensates that form in both the strong-
SU(N) and strong-SU(2) situations also break global flavor symmetries. S-
ince we have already analyzed this sort of global flavor symmetry breaking
in our previous works [1, 22], we will not pursue this here, instead focusing
on the gauge symmetry breaking.

7.4.2 Model B

This model, denoted Model B, has the same gauge group as Model A, but
has an enlarged chiral fermion sector which also contains p1 ≡ p′ copies of
the SU(N)-singlet, SU(2)-doublet fermion

ηαj,L , j = 1, ..., p′ : p′(1, 2) . (7.41)

Thus, the fermion content of Model B can be categorized as being of the
form

{fns,ns, fns,s, fs,ns} (7.42)

in the notation of Eq. (7.24). Depending on the value of p′, these additional
fermions may have gauge-invariant bare mass terms of the form

εαβη
α T
i,L Cηβj,L , (7.43)

where i 6= j and 1 ≤ i, j ≤ p′. Using the general symmetry property (7.6) and
taking account of the antisymmetric contraction of the SU(2) gauge indices
α and β with the εαβ tensor, it follows that the fermion operator in (7.43)
is automatically antisymmetrized in the flavor indices i and j, so if p′ = 1,
then it vanishes identically. If p′ ≥ 2, then the {fs,ns} fermions constitute a
vectorlike subsector in the full chiral gauge theory.

The sector of SU(N)-nonsinglet fields in Model B is the same as in Model
A, so the SU(N) gauge interaction is again vectorial and hence is free from
any gauge anomaly, as is the SU(2) gauge interaction. The condition that
the SU(2) part of the theory should be free of any global anomaly is that the
number of SU(2) doublets, denoted Nd, is even, i.e.,

Nd = pN + p′ is even, (7.44)
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and we require that this condition be satisfied.
The one-loop coefficient of the SU(N) beta function, b1,SU(N), is given

by (7.27), as in Model A, so p is subject to the same upper bound from the
requirement that the SU(N) interaction must be asymptotically free, namely
(7.28).

The one-loop coefficient of the SU(2) beta function is

b1,SU(2)L =
1

3
[22− (pN + p′)] , (7.45)

so the requirement that the SU(2) gauge interaction should be asymptotically
free implies that

pN + p′ < 22 . (7.46)

The allowed values of N , p, and p′ for Model B are thus the integers N ≥ 3,
p ≥ 1, and p′ ≥ 1 satisfying the conditions (7.28), (7.46)), and (7.44). There
are too many values to list in a table analogous to Table 7.2, but we mention
that for N = 3, the allowed values of (p, p′) are (1, 2k + 1) with 0 ≤ k ≤ 8;
(2, 2k) with 1 ≤ k ≤ 7; (3, 2k + 1) with 0 ≤ k ≤ 5; (4, 2k) with 1 ≤ k ≤ 4;
(5, 2k + 1) with 0 ≤ k ≤ 2; and the single pair (6, 2). As in Model A, as
N increases, the allowed set of values of p and p′ is progressively reduced,
and for sufficiently large N , there are no nontrivial solutions to the three
conditions. For example, for N = 16, there are only two allowed sets of
(p, p′), namely (1,2) and (1,4); for N = 17, there are again two sets, namely
(1,1) and (1,3), while for N = 18, there is only one, (1,2), and for N = 19,
there is only one, (1,1). For N ≥ 20, there are no allowed (nonzero) values
of p and p′ in this model.

Since Model B is the same as Model A as regards the SU(N)-nonsinglet
fermion content, it follows that if the SU(N) gauge interaction is sufficiently
strong and dominates over the SU(2) interaction, then the resultant bilinear
fermion condensate formation is the same as in Model A.

However, if the opposite is the case, i.e., if the SU(2) gauge interaction
is strong enough and dominates over the SU(N) interaction, then, depend-
ing on the value of p′, two additional type of fermion condensates may be
produced. These all have the same SU(2) attractiveness measure, as given
before, namely, ∆C2 = 3/2 and hence, if SU(N) interactions are negligible,
they are expected to form at essentially the same Euclidean scale, which we
again denote as Λ. Thus, in addition to the condensate(s) (7.35), the SU(2)
gauge interaction can lead to condensation in the channel

(1, 2)× (1, 2)→ (1, 1) (7.47)
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with the associated condensate(s)

〈εαβηα T
i,L Cηβj,L〉 , (7.48)

where 1 ≤ i, j ≤ p′. From (7.6), it follows that the bilinear fermion operator
product in (7.48) is antisymmetric in the copy indices i and j and hence
vanishes identically if p′ = 1. As is evident from (7.47), this condensate (7.48)
preserves the full SU(N) ⊗ SU(2)L gauge symmetry. The fermions involved
in these condensates gain dynamical masses of order the condensation scale,
denoted Λ, and are integrated out in the low-energy effective field theory
that is operative as the reference scale µ decreases below Λ.

The second possible additional condensation channel is

(N, 2)× (1, 2)→ (N, 1) (7.49)

with the associated condensate(s)

〈εαβψa,α T
i,L Cηβj,L〉 , (7.50)

where 1 ≤ i ≤ p and 1 ≤ j ≤ p′. Consider the condensates (7.50) with a
given i, say i = 1. This set of condensates (7.50) breaks SU(N) to SU(N−p′)
if 1 ≤ p′ ≤ N − 2 and and breaks SU(N) completely if p′ ≥ N − 1. To show
this, note that without loss of generality we may pick a = N and j = 1
for one of these condensates. This condensate, 〈εαβψN,α T

1,L Cηβ1,L〉, breaks

SU(N) to the subgroup SU(N − 1). The fermions ψN,α1,L and ηβ1,L involved
in this condensate gain dynamical masses of order the scale at which this
condensate forms. Next, consider the condensate of the form (7.50), where
now only the SU(N−1) gauge indices a ∈ {1, ..., N−1} are dynamical. Again,
by convention, we may pick the SU(N − 1) gauge index in this condensate
to be N − 1 and the copy index on the ηβj,L fermion to be j = 2. This

breaks SU(N−1) to SU(N−2) and the fermions ψN−1,α
1,L and ηβ2,L involved in

this condensate gain dynamical masses of order the condensation scale. This
process continues until SU(N) is broken to SU(N − p′) if N − p′ ≥ 2 or until
SU(N) is completely broken if N − p′ ≤ 1. A vacuum alignment argument
suggest that it is plausible that this pattern of breaking would also hold for
other values i = 2, ..., p. As noted above, since the SU(2) attractiveness
measure of all of these condensates, ∆C2 = 3/2 is the same, one expects that
they form at essentially the same scale.
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7.5 SO(4k + 2)⊗ SU(2) Theories

It is also of interest to study chiral gauge theories with direct-product groups
group that involve a safe SO(N) group. We recall that if N is odd or if N
is even and N = 4k, k ≥ 1, then SO(N) has only real representations, while
if N = 4k + 2 with k ≥ 2, then the theory has complex representations but
is safe (i.e., has no anomaly for any representation) [106, 114]. With this
motivation, we consider chiral gauge theories with the gauge group

G = SO(4k + 2)⊗ SU(2) with k ≥ 2 . (7.51)

These are of the form (cs, cs) in the general classification given in Section
7.1. Since N is even, it is also convenient to introduce an integer r = N/2:

N = 4k + 2 = 2r , k ≥ 2 , (7.52)

so r = 2k + 1. As before, we write all fermions as left-handed. We start by
considering the general fermion content∑

R, R′

[
nR (R, 1) + p (R′, )

]
, (7.53)

where R and R′ are representations of SO(4k+ 2). We include only complex
R and R′ since the use of a real R or R′ would lead to a vectorlike subsector,
so the model would not be irreducibly chiral.

Using the relevant group invariants, we calculate the one-loop term in the
beta function for the SO(N) gauge coupling with N given by (7.52) to be

bSO(4k+2),1 =
2

3

[
11(r − 1)−

∑
f

(
nRTR + 2pR′TR′

)]
. (7.54)

We calculate the one-loop term in the SU(2) beta function to be

bSU(2),1 =
1

3

[
22− 2

∑
R′

pR′dim(R′)
]
. (7.55)

Because the first terms in square brackets in Eq. (7.54) and (7.55) are,
respectively, linear in r and a constant, while the relevant TR, TR′ , and
dim(R′) grow exponentially rapidly with r, the asymptotic freedom of the
SO(2r) and SU(2) gauge interactions places strong restrictions on the fermion
content and the value of N . For our purposes, it will be sufficient to consider
the simplest models of this type, with (complex) R = R′. We will consider
three specific models, which we label Models A, B, and C.
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7.5.1 Model A

We first briefly consider the case where the fermion sector has the form
{fns,s}, i.e, all of the fermions are singlets under SU(2). In this case, the
gauge group effectively reduces to SO(N), with N given by (7.52). We choose
the minimal complex representation for the fermions, namely the spinor rep-
resentation, denoted S, of dimension dim(S) = 2r−1 = 22k (see Appendix A)
and include n copies of these, so the fermion content is

ωi,L, i = 1., , , n : n (S, 1) , (7.56)

where the first and second entries in the parentheses here and below are the
representations of SO(N) and SU(2), respectively. The general formula for
the one-loop term in the beta function for the SO(N) gauge coupling, Eq.
(7.54) for this Model A reduces to

bSO(2r),1 =
2

3

[
11(r − 1)− 2r−4n

]
. (7.57)

The requirement that the SO(N) gauge interaction should be asymptotically
free implies that

n <
11(r − 1)

2r−4
. (7.58)

This has only a finite number of solutions for n that are nontrivial, i.e., have
n ≥ 1, and, indeed, also a finite number of solutions for r.

G1 = SO(10) (i.e., k = 2, r = 5) ⇒ n ≤ 21 (7.59)

G1 = SO(14) (i.e., k = 3, r = 7) ⇒ n ≤ 8 (7.60)

G1 = SO(18) (i.e., k = 4, r = 9) ⇒ n ≤ 2 (7.61)

For k ≥ 5, i.e., r ≥ 11, the upper bound on n is less than unity, precluding
any fermions.

We assume some initial value of the SO(2r) gauge coupling in the deep
UV and then evolve the theory downward in Euclidean scale µ. Recall that
the direct product of two spinor representations of SO(N) with N given by
(7.52) is [104]

S × S = 22k × 22k =
k−1∑
`=0

A2`+1 +R2k+1;2 , (7.62)
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where At denotes the rank-t antisymmetric tensor representation and R2k+1

is a certain self-dual representation. The symmetry of the At with respect
to the interchange of the two spinor representations in the direct product
is given by (−1)u(r,t), where u(r, t) = (r − t)(r − t − 1)/2 [104]. Thus, for
example, one has, for the lowest relevant value of k, namely k = 2, i.e.,
G1 = SO(10),

SO(10) : S × S = 24 × 24 = A1 + A3 +R5;2

= 10s + 120a + 126s , (7.63)

where the subscripts s and a denote the symmetric and antisymmetric prop-
erty of these representations under interchange of the spinors in the direct
product. In general, for SO(2k + 2), from the form of u(r, t), it follows that
A1 is symmetric (resp. antisymmetric) under interchange of the spinors in
the direct product for even k (resp. odd k), while A3 is antisymmetric (resp.
symmetric) under interchange of these spinors for even k (resp. odd k).

Assuming that the SO(N) coupling becomes strong enough to produce a
bilinear fermion condensate, the MAC is

SO(N) MAC : S × S → , (7.64)

with attractiveness measure

∆C2 = 2C2(S)− C2( ) =
(N − 1)(N − 4)

8

=
(2r − 1)(r − 2)

4
=

(4k + 1)(2k − 1)

4
. (7.65)

Since r ≥ 5, i.e., k ≥ 2, this is always positive. The associated condensate is
〈ωTi,LCωj,L〉, where 1 ≤ i, j ≤ n. From the general result (7.6), it follows that
the bilinear fermion operator ωTi,LCωj,L in this condensate is (i) symmetric
under interchange of spinors in the S ×S direct product in (7.64) and hence
symmetric in the flavor indices i, j if k is even; (ii) antisymmetric under
interchange of spinors and hence antisymmetric in the flavor indices i, j if k
is odd. Therefore, explicitly,

k even ⇒ 〈ωTi,LCωj,L + ωTj,LCωi,L〉 , 1 ≤ i, j ≤ n (7.66)

and
k odd ⇒ 〈ωTi,LCωj,L − ωTj,LCωi,L〉 , 1 ≤ i, j ≤ n . (7.67)
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In both cases, if this condensate forms, then, since it transforms as the fun-
damental (vector) representation of the gauge group SO(4k + 2), it breaks
this symmetry to SO(4k + 1), which is vectorial and does not break further.

However, if n = 1 and k is odd, e.g., for SO(14) (i.e., k = 3), then this
condensate in the MAC channel vanishes identically. In this case, we consider
the next channel in Eq. (7.62), namely

S × S → A3 (7.68)

with attractiveness measure

∆C2 = 2C2(S)− C2(A3) =
(N − 4)(N − 9)

8

=
(r − 2)(2r − 9)

4
=

(2k − 1)(4k − 7)

4
. (7.69)

For the relevant value of k, namely k = 3, this is ∆C2 = 25/4.

7.5.2 Model B

Here we consider a model with the gauge group (7.51) with (7.52) and fermion
content of the form {fns,ns}, namely

ψαi,L, i = 1, ..., p : p (S, ) . (7.70)

We denote this as Model B. Since there are an even number of SU(2) doublets,
this theory has no global SU(2)L anomaly.

The general formulas for the one-loop coefficients in the SO(N) beta
function (with N given by (7.52)) and in the SU(2) beta function displayed
in Eqs. (7.54) and (7.55) reduce, for this Model B, to

bSO(2r),1 =
2

3
[11(r − 1)− 2r−3p] (7.71)

and

b1,SU(2)L =
2

3
(11− 2r−2p) . (7.72)

Hence, the respective conditions that the SO(2r) and SU(2) gauge interac-
tions should be asymptotically free are

p <
11(r − 1)

2r−3
(7.73)
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and

p <
11

2r−2
. (7.74)

Since we take k ≥ 2, i.e., r ≥ 5, for our theories, the only possible nontrivial
value for p allowed by the constraint (7.74) is p = 1 and, furthermore, this is
only possible for the lowest value of k, namely k = 2, and thus G1 = SO(10).
No SO(4k + 2) theories of this Model B type with nonzero fermion content
are allowed by the asymptotic freedom constraint if k ≥ 3.

We note that there is consequently no (continuous) nonanomalous global
flavor symmetry of the Lagrangian for this theory. Since there is only one
copy of the (S, ) fermion ψαi,L, we shall henceforth drop the flavor index and
write this field simply as ψαL.

If the SO(10) gauge interaction is sufficiently strong and dominates over
the SU(2) gauge interaction, then it produces a condensate in the SO(10)
MAC, (7.64), thereby breaking the SO(10) gauge symmetry to SO(9), which
is vectorial and does not break further. The condensate is 〈ψα T

L CψβL〉. As
noted above in Section 7.5.1, for SO(4k + 2), the = A1 that occurs in
the Clebsch-Gordan decomposition of the direct product S × S in (7.64)
is symmetric (resp. antisymmetric) under interchange of these spinors if
k is even (resp. odd). Since k = 2 is even here, it follows that this
representation is symmetric under interchange of the spinors in the direct
product. From the property (7.6), it then follows that the SU(2) gauge indices
must also be symmetric, i.e., the SU(2) channel is 2×2→ 3s, so the operator
product transforms as the adjoint (equivalently, the rank-2 symmetric tensor)
representation of SU(2) and hence can be written as proportional to

〈ψα T
L CψβL + ψβ T

L CψαL〉 . (7.75)

Hence, including both factor groups, in this case of a strong and dominant
SO(10) gauge interaction with even k (viz., k = 2), the condensation is in
the channel

k even ⇒ (S, )× (S, )→ ( s, adjs) = ((4k + 2)s, 3s) . (7.76)

In addition to breaking SO(10) to SO(9), this condensate SU(2) to a subgroup
U(1) ⊂ SU(2).

The 2× 2→ 3s channel is actually a repulsive channel for the SU(2) in-
teraction, with ∆C2 = −1/2. If the SU(2) gauge interaction is weak enough,
this does not matter, but if it is moderately strong, although weaker than
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the SO(10) gauge interaction, it might prevent the condensate from forming.
However, we assume that the SO(10) coupling is sufficiently strong at a given
scale µ so that this condensate does form.

Having analyzed the situation in which the SO(10) gauge coupling is
strong and dominates over the SU(2) gauge coupling, we next analyze the
opposite situation in which the SU(2) gauge coupling becomes sufficiently
strong and dominates over the SO(10) coupling. The condensate then forms
in the MAC for SU(2), which is 2 × 2 → 1a, involving an antisymmetric
contraction of SU(2) indices with the εαβ tensor.

〈εαβψα T
L CψβL〉 . (7.77)

The general result (7.6) then implies that the relevant representation in the
Clebsch-Gordan decomposition of the direct product S×S is antisymmetric,
and we therefore denote it as Ra. As discussed above, given that k is even
here, the representation that would normally be favored as the MAC in
the direct product of two spinors, (7.62), namely the representation, is
symmetric rather than antisymmetric, and hence Ra cannot be . Instead,
the lowest-dimension representation in the expansion (7.62) that is odd under
interchange of the spinors is A3 with dimension

(
4k+2

3

)
, so the condensation

channel is
(S, )× (S, )→ ((A3)a, 1a) . (7.78)

The measure of attractiveness of this channel is given by the ∆C2 in Eq.
(7.69) and is always positive for k ≥ 2. Explicitly, for our SO(10) Mod-
el B theory, the A3 representation has dimension 120. When expressed
as a sum of product representations of various SO(10) subgroups, the 120-
dimensional representation has no singlets under either of the maximal (i.e.,
rank-5) subgroups SU(5) ⊗ U(1) and SU(4) ⊗ SU(2) ⊗ SU(2), or the rank-
4 subgroup SO(9), but does contain a singlet under the rank-4 subgroup
SO(7)⊗ SU(2) [104]. It therefore breaks SO(10) to SO(7)⊗ SU(2).

7.5.3 Model C

Here we analyze a model, denoted Model C, that has a fermion sector which
is a combination of the fermion sectors of Model A in Section 7.5.1 and Model
B in Section 7.5.2, and thus is of the form {fns,s, fns,ns}. These fermions
consist of n copies of the (S, 1) fermion ωi,L, i = 1, ..., n, as in Eq. (7.56) and
a single copy of the (S, ) fermion, ψα1,L, as in Eq. (7.70).
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The one-loop coefficient in the beta function of the SU(2) gauge inter-
action in this Model C is the same as (7.72) for Model B, and hence the
requirement that the SU(2) gauge interaction must be asymptotically free
restricts p ≤ 1. The case p = 0 reduces to Model A, which we have already
discussed. Therefore, as indicated, we take p = 1 here. This, in turn, restricts
k to be equal to 2, i.e., G1 = SO(10).

The one-loop coefficient in the SO(10) beta function for this Model C is

b1,SO(10) =
2

3
(20− n) , (7.79)

so the asymptotic freedom of the SO(10) gauge interaction implies that n <
20.

If the SO(10) gauge interaction is sufficiently strong and dominates over
the SU(2) interaction, then the resultant condensates include those analyzed
for Models A and B above, together with a new type of condensate. This
new condensate occurs in the channel

(S, 1)× (S, )→ ( , ) (7.80)

with corresponding condensate

〈ωTi,LCψαL〉 , i ∈ {1, ..., n} . (7.81)

This condensate breaks SO(10) to SO(9), which is vectorial and does not
break further.

If, on the other hand, the SU(2) gauge interaction is sufficiently strong
and dominates over the SO(10) interaction, then the condensate formation
and symmetry-breaking is the same as for Model B, discussed in Section
7.5.2.

7.6 SO(4k + 2)⊗ SU(M) Theory

Here we consider a chiral gauge theory with the gauge group

SO(N)⊗ SU(M) ,with N = 4k + 2 = 2r and M ≥ 3 . (7.82)

We will show that the constraint of asymptotic freedom of both gauge inter-
actions limits k to the single value k = 2, but in order to show this, we must
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first keep k ≥ 2 general. The fermion content is the sum over representations
R of

dim(RSU(M)) (RSO(4k+2), 1) + (R̄SO(4k+2), R̄SU(M))

+ dim(RSO(4k+2)) (1,RSU(M)) . (7.83)

In the classification of Section 7.1), this theory is of the (cs, cav) type. We
take M ≥ 3 since the theory with M = 2 has a vectorlike subsector comprised
of the (1, 2) fermions and is therefore not irreducibly chiral. Note that even
if M = 2, this theory does not coincide with any of Models A, B, or C in
Section 7.5 because those models also avoided (1, ) = (1, 2) fermions that
would have constituted a vectorlike subsector. However, if one were to take
M = 2, then the SO(4k + 2)-nonsinglet fermion sector would coincide with
that of Model B in Section 7.5. We will show below that M is limited to a
finite set of values by the constraint of asymptotic freedom. For our present
purposes, it will suffice to consider the simplest realization of this theory,
with a single representation R of SO(4k + 2), namely the smallest complex
one, the spinor, and the smallest nonsinglet representation of SU(2), namely
the fundamental. The resultant fermion content is thus

p (S, ) , 2r−1p (1, ) . (7.84)

The one-loop coefficient of the SO(4k+2) beta function (with 4k+2 = 2r)
is

bSO(4k+2) =
2

3

[
11(r − 1)− 2r−4pM

]
. (7.85)

The requirement that the SO(4k + 2) gauge interaction must be asymptoti-
cally free then yields the upper bound

p <
11(r − 1)

2r−4M
. (7.86)

Although we restrict M ≥ 3, we note that if one were to take M = 2, then
this would be the same as the upper bound (7.73) on p for Model B in Section
7.5). The fact that we take M ≥ 3 here makes this a more stringent upper
bound than (7.73).

We denote the fermion fields for this theory as

ψαi,L , i = 1, ..., p : p (S, ) (7.87)
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and
ηα,j,L , j = 1, ..., 2r−1p : 2r−1p (1, ) , (7.88)

where α is an SU(M) gauge index and i, j are flavor indices.
The one-loop coefficient of the SU(M) beta function is

bSU(M) =
1

3
(11M − 2rp) . (7.89)

The requirement that the SU(M) gauge interaction must be asymptotically
free then yields the upper bound

p <
11M

2r
. (7.90)

For the relevant range M ≥ 3, these two asymptotic freedom constraints
can only be satisfied for r equal to its minimal value, r = 5, i.e., k = 2
and G1 = SO(10); furthermore, given that k = 2, there are only a finite
set of pairs (M, p) that satisfy the constraints. For the two integer intervals
3 ≤ M ≤ 5 and 11 ≤ M ≤ 21, only the value p = 1 is allowed, while for
6 ≤ M ≤ 10, p may take on the values 1 or 2. If M ≥ 22, there are no
allowed solutions for p. Our general construction is thus reduced to the finite
family of chiral gauge theories with the gauge groups SO(10)⊗ SU(M) with
3 ≤M ≤ 21 and the aforementioned possible values of p as a function of M .

If the SO(10) gauge coupling becomes sufficiently large and dominates
over the SU(M) gauge coupling, then the former can produce condensation in
the SO(10) MAC, namely (7.64). Since the is symmetric under interchange
of the spinors in (7.64) for even k and hence, in particular, for k = 2, i.e.,
SO(10), it follows from our general result (7.6) that the combination of the
SU(M) and flavor product Sij must be symmetric. For the values of M ,
namely 3 ≤ M ≤ 5 and 11 ≤ M ≤ 21 that allow only p = 1, it follows
that the flavor product must be symmetric, as Sij = S11 and hence that the
channel is, in terms of the full representations,

(S, )× (S, )→ ( s, ) (7.91)

with the condensate
〈ψα T

1,L Cψ
β
1,L〉 . (7.92)

The SO(10) ∆C2 measure of attractiveness for this channel is given by the
N = 10 special case of Eq. (7.65), namely 27/4. However, the SU(M) ∆C2
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value is negative, as is evident from Eq. (7.38), setting M = N , so this is
a repulsive channel as regards the SU(M) interaction. This breaks SO(10)
to SO(9), which is vectorial, and does not break further. Using a vacuum
alignment argument, one may infer that α = β so that the condensate (7.92)
breaks SU(M) to SU(M − 1).

For the interval 6 ≤M ≤ 10 where the theory allows p = 2, the dynamics
could instead produce a condensate in the channel

(S, )× (S, )→ ( s, ) , (7.93)

where the flavor product Sij is antisymmetric, so that the condensate is

〈ψα T
1,L Cψ

β
2,L − ψ

α T
2,L Cψ

β
1,L〉 . (7.94)

In addition to being attractive as regards the SO(10) interaction, the channel
(7.93) is also attractive with respect to the SU(M) interaction, with ∆C2

given by Eq. (7.37) with N = M . Hence, for M in the interval 6 ≤M ≤ 10
where p = 2 is allowed, we infer that the preferred condensation channel in
the case where SO(10) is strong is (7.93). This breaks SO(10) to SO(9) and
SU(M) to SU(M − 2)⊗ SU(2).

7.7 SO(4k + 2)⊗ SO(4k′ + 2) Theory

Here we explore a chiral gauge group of the (cs, cs) type, in our classification
from Section (7.1). For this purpose, we choose the gauge group

SO(4k + 2)⊗ SO(4k′ + 2) , where k, k′ ≥ 2 (7.95)

and fermion content consisting of p copies of the bi-spinor representation,
(S,S). We set N = 4k + 2 = 2r and N ′ = 4k′ + 2 = 2r′. Although this
family of theories ostensibly depends on the three parameters k, k′, and p,
we will show that there is only one allowed choice for these three parameters.

The one-loop coefficients in the SO(4k+2) and SO(4k′+2) beta functions
are

bSO(4k+2),1 =
2

3

[
11(r − 1)− 2r+r

′−5p
]

(7.96)

and

bSO(4k′+2),1 =
2

3

[
11(r′ − 1)− 2r+r

′−5p
]
. (7.97)
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The requirements that the SO(4k + 2) and SO(4k′ + 2) gauge interactions
must be asymptotically free yield the upper bounds

p <
11(r − 1)

2r+r′−5
(7.98)

and

p <
11(r′ − 1)

2r+r′−5
. (7.99)

These can only be satisfied by the single set of values r = r′ = 5 and p = 1,
i.e., for the group SO(10) ⊗ SO(10) with p = 1 copy of the (S,S) fermion.
The structure of this theory is thus symmetric under interchange of the two
factor groups. If we break this symmetry by setting one αi to be large
and the other small in Eq. (7.4), then we can obtain situations in which
one SO(10) coupling dominates over the other. However, because of the
structural symmetry, in contrast to the generic behavior that we have found
for the other direct-product chiral gauge theories that we have investigated,
here the pattern of symmetry breaking is the same regardless of which SO(10)
gauge coupling is large and dominant.

If the first SO(10) gauge coupling gets large enough and dominates over
the second SO(10) gauge coupling, or vice versa, this can produce fermion
condensation in the channel

(S,S)× (S,S)→ ( s, s), i.e.,

(16, 16)× (16, 16)→ (10s, 10s) , (7.100)

where we have used the fact that k and k′ are even to infer the symme-
try properties of ( , ) in the Clebsch-Gordan decomposition of the direc-
t product of the spinors. This condensation breaks the gauge symmetry
SO(10) ⊗ SO(10) to SO(9) ⊗ SO(9), which is vectorial and does not break
further.

7.8 SU(N)⊗ SU(M) Theory

7.8.1 General Formulation

In this section we analyze a chiral gauge theory with a gauge group

G = SU(N)⊗ SU(M) (7.101)
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and fermion content consisting of a sum over RSU(N) and RSU(M) of

dim(RSU(M)) (RSU(N), 1) + (R̄SU(N), R̄SU(M))

+ dim(RSU(N)) (1,RSU(M)) , (7.102)

where RSU(N) and RSU(M) denote representations of SU(N) and SU(M),
respectively. This theory is of type (cav, cav) in the classification of Section
7.1. A special case of this theory with RSU(N) and RSU(M) both equal to the
fundamental representation was studied before in [83, 108], but in both of
these previous works, it was studied as an example of a preon theory that
might confine without spontaneous symmetry breaking and hence produce
massless composite fermions. Here we consider it in a different way, as a
theory that can self-break with bilinear fermion condensate formation, and
we study the generalized theory with fermion representations higher than the
fundamental.

The numbers M ≥ 2 and N ≥ 2, subject to the asymptotic freedom con-
straint (7.109) below. This is an irreducibly chiral gauge theory, so the chiral
gauge invariance precludes any mass terms in the fundamental Lagrangian
of the theory. One easily checks that this theory is free of any anomalies in
gauged currents. It is also free of any global anomalies in the case where
N or M is equal to 2. To see this, consider, for example, the case where
N = 2 and the fermions that are nonsinglets under this group transform as
doublets. From Eq. (7.102) one sees that the number of SU(2) doublets is
2dim(RSU(M)) and hence is even.

We calculate the one-loop coefficients in the SU(N) and SU(M) beta
functions to be

b1,SU(N) =
1

3

[
11N − 4 dim(RSU(M))T (RSU(N))

]
(7.103)

and

b1,SU(M) =
1

3

[
11M − 4 dim(RSU(N))T (RSU(M))

]
. (7.104)

Hence, the requirements that the SU(N) and SU(M) gauge interactions
should be asymptotically free imply, respectively, that

dim(RSU(M))T (RSU(N)) <
11N

4
(7.105)

and

dim(RSU(N))T (RSU(M)) <
11M

4
. (7.106)
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7.8.2 Model with Fermions (F, F )

Here we consider the version of the general theory of type (7.101) containing
fermions withRSU(N) = andRSU(M) = (an equivalent notation is F = ).
Then

b1,SU(N) =
1

3
(11N − 2M) (7.107)

and

b1,SU(M) =
1

3
(11M − 2N) , (7.108)

so the inequalities (7.105) and (7.106) read M < 11N/2 and N < 11M/2,
and the range of N and M allowed by these two constraints is given by

2

11
<
M

N
<

11

2
. (7.109)

We denote the fermion fields as

ωai,L , i = 1, ...,M : M (N, 1) , (7.110)

ζa,α,L : (N̄ , M̄) , (7.111)

and
ηαj,L , j = 1, ..., N : N (1,M) , (7.112)

where a and α denote, respectively, SU(N) and SU(M) gauge indices and
i ∈ {1, ...,M} and and j ∈ {1, ..., N} are copy (flavor) indices.

As noted, one possibility is confinement without any spontaneous chiral
symmetry breaking, leading to massless composite spin 1/2 fermions that
are singlets under SU(N) ⊗ SU(M). We investigate here the alternative
possibility of condensate formation and associated chiral symmetry breaking.
If the SU(N) gauge interaction is sufficiently strong and dominates over the
SU(M) interaction, then this SU(N) interaction can produce condensation
in the most attractive channel N × N̄ → 1. For the full theory, this is the
channel

(N, 1)× (N̄ , M̄)→ (1, M̄) , (7.113)

with attractiveness measure given by ∆C2 = 2C2(N) = (N2 − 1)/N . The
associated condensates are of the form

〈ωa T
i,L Cζa,α,L〉 , i = 1, ...,M (7.114)
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(where the sum over a here and below is from a = 1 to a = N). Consider the
condensate (7.114) with i = 1. Since this transforms as a M̄ representation
of SU(M), it breaks this symmetry to SU(M − 1). By convention, we may
use the initial SU(M) invariance to pick α = M in this condensate, so that
it is

〈ωa T
1,L Cζa,M,L〉 . (7.115)

We denote the scale where this condensate forms as Λ. The fermions ωa1,L
and ζa,M,L with 1 ≤ a ≤ N involved in this condensate thus gain dynamical
masses of order Λ, as do the 2M−1 gauge bosons in the coset SU(M)/SU(M−
1). In the resultant SU(N)⊗SU(M −1) chiral gauge theory, we consider the
condensate (7.114) with i = 2 and α ∈ {1, ...,M − 1}. Again, by convention,
we may use the residual SU(M − 1) gauge invariance to pick α = M − 1 in
this condensate, so that it is

〈ωa T
2,L Cζa,M−1,L〉 . (7.116)

This preserves SU(N) and transforms like the conjugate fundamental repre-
sentation of SU(M − 1), thereby breaking SU(M − 1) to SU(M − 2). This
fermion condensation process continues with the formation of the conden-
sates

〈ωa T
i,L Cζa,M−i+1,L〉 , i ≤M , (7.117)

breaking SU(M) completely. The last-enumerated condensate is 〈ωa T
M,LCζa,1,L〉.

Since all of the condensates of the form (7.114) have the same attractiveness
measure, ∆C2, they are expected to form at approximately the same scale,
Λ. All of the chiral fermions ωai,L and ζa,α with 1 ≤ i ≤ M , 1 ≤ a ≤ N , and
1 ≤ α ≤ M are involved in these condensates and gain dynamical masses of
order Λ, as do the full set of M2 − 1 SU(M) gauge bosons. This leaves a
theory with an SU(N) gauge invariance containing the N2− 1 SU(N) gauge
bosons and a set of MN massless SU(N)-singlet fermions, namely the ηαj,L
with 1 ≤ α ≤ M and 1 ≤ j ≤ N . The SU(N) pure gluonic theory then
forms a spectrum of SU(N)-singlet glueballs.

Clearly, if the SU(M) gauge interaction is sufficiently strong and domi-
nates over the SU(N) gauge interaction, then the above discussion applies
with the replacements M ↔ N and ωai,L → ηαj,L. In this case, the SU(M)
interaction breaks the SU(N) gauge symmetry completely, leaving the MN
massless SU(M)-singlet fermions ωai,L with 1 ≤ a ≤ N and 1 ≤ i ≤ M .
The SU(M) pure gluonic theory then forms a spectrum of SU(M)-singlet
glueballs.
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The version of the general theory with gauge group (7.101) and fermion
representations RSU(N) = and RSU(M) = exhibits the same properties as
those that we have analyzed, with obvious changes, so we do not discuss it
separately.

7.8.3 Model with (F,A2)

We next analyze a model with the gauge group (7.101) and fermion repre-
sentations RSU(N) = and RSU(M) = . Since = for SU(M) = SU(3),
we restrict M ≥ 4. For this model the general equations (7.103) and (7.104)
read

b1,SU(N) =
1

3
[11N −M(M − 1)] (7.118)

and

b1,SU(M) =
1

3
[11M − 2N(M − 2)] . (7.119)

The general inequalities (7.105) and (7.106) guaranteeing the asymptotic
freedom of the SU(N) and SU(M) gauge interactions read, respectively,

N >
M(M − 1)

11
(7.120)

and

N <
11M

2(M − 2)
. (7.121)

The lower bound on N from (7.120) is N > 2 for M = 4 and increases as
M increases. The upper bound on N from (7.121) is N < 11 for M = 4 and
decreases as M increases. The curves for the upper and lower bounds on N
as a function of M cross each other at

M =
3 + 9

√
3

2
= 9.294 (7.122)

where

N =
123 + 18

√
3

22
= 7.008 , (7.123)

The allowed values of M and N thus lie within the enclosed region between
the upper and lower curves. This region has finite area and hence there are
only finitely many allowed values of M and N . This is in contrast to the joint
asymptotic freedom constraint for the model with (F, F ) fermions, (7.109),
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which is an infinite wedge-shaped region in the M , N plane. As is evident,
for a given M ≥ 4, the range of allowed values of N decreases with increasing
M . For M = 4, N may take on values in the range 2 ≤ N ≤ 10, while for
M = 8, the allowed values of N are N = 6, 7, and for M = 9, there is only
one allowed value of N , namely N = 7. If M ≥ 10, there are no values of N
that satisfy the inequalities (7.120) and (7.121).
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Chapter 8

Radiative Decays of
Heavy-Quark Hadrons

In the paper [5], we extend our previous work with Ke and Li in Ref. [69] on
the study of the radiative decays

hc(1P )→ ηc(1S) + γ , (8.1)

and
hb(1P )→ ηb(1S) + γ . (8.2)

We also carry out the reduction of the light-front amplitude to the non-
relativistic limit, explicitly computing the leading and next-to-leading order
relativistic corrections. This shows the consistency of the light-front approach
with the non-relativistic formula for this electric dipole transition. Further-
more, we investigate the theoretical uncertainties in the predicted widths as
functions of the inputs for the heavy quark mass and wavefunction struc-
ture parameters. As in Ref. [69], we compare our numerical results for these
widths with experimental data and with other theoretical predictions from
calculations based on non-relativistic models and their extensions to include
relativistic effects, extending [69] with further study of the theoretical uncer-
tainties in our calculations. Specifically, we compare our numerical results
with results from [36,38,47–50,52,53] as well as latest experimental data [54].
This chapter will be a summary of results in the published paper [5].
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8.1 Light-front formalism for the decays 1+− →
0−+ + γ

8.1.1 Notation

We first define some notation, retaining the conventions of [63, 65]. In light-
front coordinates, the four-momentum p is

pµ = (p−, p+,p⊥) , (8.3)

where p± = p0 ± p3 and p⊥ = (p1, p2). Hence, the Lorentz scalar product
p2 = pµp

µ is

p2 = (p0)2 − |p|2 = (p0)2 − (p3)2 − |p⊥|2 = p+p− − |p⊥|2 . (8.4)

Consider a decay of a QQ̄ meson consisting of two constituent particles
(quark and antiquark). The momentum of the parent meson is denoted as
P ′ = p′1 + p2, where p′1 and p2 are the momenta of the constituent quark
and antiquark, with mass m′1 and m2, respectively. The momentum of the
daughter QQ̄ meson is written as P ′′ = p′′1 +p2, where p′′1 is the momentum of
the constituent quark, with mass m′′1. Here we have m′1 = m2 = m′′ = mQ.
The four-momentum of the parent meson with mass M ′ can be expressed as
P ′ = (P ′−, P ′+,P′⊥), where P ′2 = P ′+P ′− − |P′⊥|2 = M ′2. Similarly, for the
daughter meson with mass M ′′, one has P ′′2 = M ′′2, as shown in Fig. 8.1
below. (Vector signs on transverse momentum components are henceforth
taken to be implicit.)

The momenta of the constituent quark and antiquark (p′1, p′′1 and p2) can
be described by internal variables (x2, p

′
⊥) thus:

p′+1 = x1P
′+, p+

2 = x2P
′+

p′1⊥ = x1P
′
⊥ + p′⊥, p2⊥ = x2P

′
⊥ − p′⊥ , x1 + x2 = 1 . (8.5)

Explicitly,

x1 =
e1 − p′z
e′1 + e2

, x2 =
p′z + e2

e′1 + e2

, (8.6)

where e′1, e′′1 and e2 are the energy of the quark (anti-quark) with momenta
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p′1, p′′1 and p2:

e′1 =
√
m′21 + p′2⊥ + p′2z

e′′1 =
√
m′′21 + p′′2⊥ + p′′2z

e2 =
√
m2

2 + p′2⊥ + p′2z . (8.7)

With the external momentum of the photon given as q = P ′−P ′′, p′′⊥ can be
expressed as

p′′⊥ = p′⊥ − x2q⊥. (8.8)

Here p′z and p′′z can also be expressed as functions of internal variables (x2, p
′
⊥),

and explicit expressions can be found in C.

8.1.2 Form factors

Define external momentum variables to be P = P ′ + P ′′, q = P ′ − P ′′,
where q is the four-momentum of the photon that is emitted in the radiative
transition. The general amplitude of the radiative decay (1.15) of the axial
vector 1+− 1P1 meson, denoted as A, to the pseudoscalar 0−+ 1S0 meson,
denoted as P , can be written as [65]:

iA (A(P ′)→ P (P ′′)γ(q)) = ε∗µ(q)ε′ν(P
′)iÃµν , (8.9)

where
iÃµν = f1(q2)gµν + P µ

[
f+(q2)P ν + f−(q2)qν

]
. (8.10)

In the above expression, we have used the condition ε∗µ(q)qµ = 0 to eliminate
terms that are proportional to qµ. This expression can be simplified further
by using the transversality property of axial vector polarization vector:

ε′ν(P
′)(P + q)ν = 0 . (8.11)

Then the general amplitude can be written as

iÃµν → iAµν = f1(q2)gµν + f2(q2)P µqν , (8.12)

where f2(q2) is linear combination of f+(q2) and f−(q2):

f2(q2) = −f+(q2) + f−(q2) . (8.13)
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Figure 8.1: Feynman diagrams for radiative transition 1+− → 0−+ + γ in the
light-front approach.

Notice that in Eq.(8.12), f1(q2) and f2(q2) are not independent. Because of
electromagnetic gauge invariance, they are related by the following equation:

qµAµν = 0 → f1(q2) + f2(q2)(P · q) = 0 . (8.14)

So the amplitude can be parameterized by f1(q2), which is

iAµν = f1(q2)

[
gµν − 1

(P · q)
P µqν

]
. (8.15)

After an explicit calculation, we have∑
polarization

|A|2 = 2|f1(q2)|2 . (8.16)

Taking the physical value q2 → 0 in the form factor f1(q2) and averaging
initial state polarizations, the radiative transition width of 1+− → 0−+ + γ
is given by

Γ =
1

3
· |q|

8πM ′2

∑
polar.

|A|2 =
|q|

12πM ′2 · |f1(0)|2 , (8.17)

where the energy of the emitted photon is related to the masses of mesons
as |q| = (M ′2 −M ′′2)/(2M ′).
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8.1.3 Calculation of radiative decay amplitude

In the covariant light-front quark model, the vertex function of the axial
vector meson A (1+−,1P1) is given by

−iH ′A
[

1

W ′
A

(p′1 − p2)µ
]
γ5 , (8.18)

and the vertex function of the pseudoscalar meson P (0−+,1S0) is given by

H ′′Pγ
5 , (8.19)

where H ′A and H ′′P are functions of p′1 and p2, and W ′
A can be reduced to a

constant, which we will discuss later in this subsection.
In the light-front framework that we use [63, 65], at leading order there

are two diagrams that contribute to the A → P + γ transition amplitude.
These give the corresponding contributions to this amplitude

iAµν(A→ P + γ) = iAµν(a) + iAµν(b) , (8.20)

where iAµν(a) and iAµν(b) correspond to the left and right diagram in
Fig.(8.1), respectively. The contribution to the amplitude from the right
diagram can be obtained by taking the charge conjugation of left diagram
(see also [70]). So we discuss the left-hand diagram, where the corresponding
transition amplitude is given by

iAµν(a) = i
eNe′1

Nc

(2π)4

∫
d4p′1

H ′AH
′′
P

N ′1N
′′
1N2

Sµνa , (8.21)

where

Sµνa = Tr[γ5(p/′′1 + m′′1)γµ(p/′1 + m′1)γ5(−p/2 + m2)]
1

W′
A

(2p′1 −
P + q

2
)ν

=
4

W ′
A

(2p′1 −
P + q

2
)ν [p′′µ1 (p′1 · p2) + p′µ1 (p′′1 · p2)

− pµ2(p′1 · p′′1) +m′1m2p
′′µ
1 +m′′1m2p

′µ
1 +m′1m

′′
1p
µ
2 ]

=
1

W ′
A

(2p′1 −
P + q

2
)ν{2p′µ1 [M ′2 +M ′′2 − q2 − 2N2

− (m′1 −m2)2 − (m′′1 −m2)2 + (m′1 −m′′1)2]

+ qµ[q2 − 2M ′2 +N ′1 −N ′′1 + 2N2 + 2(m′1 −m2)2

− (m′1 −m′′1)2] + P µ[q2 −N ′1 −N ′′1 − (m′1 −m′′1)2]} , (8.22)
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N ′1 = p′21 −m′21 + iε, N ′′1 = p′′21 −m′′21 + iε,

N2 = p2
2 −m2

2 + iε. (8.23)

Here Ne′1(e2) represents the electric charge of quark with four momentum p′1
(p2). Here we have Ne′1(e2) = eQ. In Eq.(8.22), we have already applied the
following relations:

p′′1 = p′1 − q
p2 = (P + q)/2− p′1

2p′1 · p2 = M ′2 −N ′1 −m′21 −N2 −m2
2

2p′′1 · p2 = M ′′2 −N ′′1 −m′′21 −N2 −m2
2

2p′1 · p′′1 = −q2 +N ′1 +m′21 +N ′′1 +m′′21 . (8.24)

Then we integrate over p′−1 by closing the contour in the upper complex p′−1
plane, which amounts to the following replacement [63,65]:∫

d4p′1
H ′AH

′′
P

N ′1N
′′
1N2

Sµνa ε∗µε
′
ν → −iπ

∫
dx2d

2p′⊥
h′Ah

′′
P

x2N̂ ′1N̂
′′
1

Ŝµνa ε̂∗µε̂
′
ν , (8.25)

where

N ′1 → N̂ ′1 = x1(M ′2 −M ′2
0 )

N ′′1 → N̂ ′′1 = x1(M ′′2 −M ′′2
0 )

H ′A → h′A = (M ′2 −M ′2
0 )

√
x1x2

Nc

1√
2M̃ ′

0

ϕp(p
′
⊥, x2)

H ′′P → h′′P = (M ′′2 −M ′′2
0 )

√
x1x2

Nc

1√
2M̃ ′′

0

ϕ(p′′⊥, x2)

W ′
A → w′A = 2 . (8.26)

In the above expressions, ϕp(p
′
⊥, x2) is the light-front momentum space wave-

function for initial P-wave meson (1P1), and ϕ(p′′⊥, x2) is the wavefunction
for the final S-wave meson, 1S0. Some details concerning the wavefunctions
are given in B. The explicit forms of M ′

0, M ′′
0 , M̃ ′

0 and M̃ ′′
0 are listed in C.

The definitions of ε̂∗, ε̂′ and ε̂′′∗ρ are given in [63,65].
After the integration over p′−1 , we have the following replacement for p′1µ
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and N̂2 in Ŝµνa in the integral [63,65]:

p̂′1µ → PµA
(1)
1 + qµA

(1)
2 ,

p̂′1µp̂
′
1ν → gµνA

(2)
1 + PµPνA

(2)
2 ,

+ (Pµqν + qµPν)A
(2)
3 + qµqνA

(2)
4 ,

p̂′1µN̂2 → qµ[A
(1)
2 Z2 +

q · P
q2

A
(2)
1 ] ,

p̂′1µp̂
′
1νN̂2 → gµνA

(2)
1 Z2 + qµqν [A

(2)
4 Z2 + 2

q · P
q2

A
(1)
2 A

(2)
1 ], (8.27)

where the explicit expressions for A
(i)
j (i, j = 1 ∼ 4) and Z2 are listed in C.

Combining Eq.(8.25), Eq.(8.26) and Eq.(8.27), we get Sµνa → Ŝµνa , where
the explicit form can be found in Ref. [69] . Finally, we obtain iAµν(a) as a
function of the external four-momenta P and q with the following parame-
terization:

iAµν(a) = fa1 (q2)

[
gµν − 1

(P · q)
P µqν

]
, (8.28)

where the form factor fa1 (q2) is given by

fa1 (q2) =
eeQNc

16π3

∫
dx2d

2p′⊥

x2N̂ ′1N̂
′′
1

h′Ah
′′
P

4

w′A
{A(2)

1 [M ′2 +M ′′2

− q2 − (m′1 −m2)2 − (m′′1 −m2)2 + (m′1 −m′′1)2]− 2A
(2)
1 Z2}

=
eeQNc

16π3

∫
dx2d

2p′⊥

x2N̂ ′1N̂
′′
1

h′Ah
′′
P

4

w′A
(−p′2⊥ −

(p′⊥ · q⊥)2

q2
){[M ′2 +M ′′2

− q2 − (m′1 −m2)2 − (m′′1 −m2)2

+ (m′1 −m′′1)2]− 2N̂ ′1 − 2m′21 + 2m2
2

− 2(1− 2x1)M ′2 − 2(q2 + q · P )
p′⊥ · q⊥
q2
}

=
eeQ
16π3

∫
dx2d

2p′⊥
x1M ′

0M
′′
0

ϕp(p
′
⊥, x2)ϕ(p′′⊥, x2)

[
−p′2⊥ −

(p′⊥ · q⊥)2

q2

]
× [(2x1 − 1)M ′2 +M ′′2 + 2x1M

′2
0 − q2 − 2(q2 + q · P )

p′⊥ · q⊥
q2

].

(8.29)
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Similarly, for the right diagram in Fig.(8.1), we have the corresponding am-
plitude:

iAµν(b) = f b1(q2)

[
gµν − 1

(P · q)
P µqν

]
. (8.30)

This can be obtained from the result of the left-hand diagram with the re-
placements m′1 ↔ m′2, m′′1 ↔ m′′2, m2 ↔ m1, Ne′1

↔ Ne2 . The total form
factor f1(q2) is the sum of contribution from two diagrams:

f1(q2) = fa1 (q2) + f b1(q2) . (8.31)

Taking the physical value q2 → 0 in the form factor, we can obtain |f1(0)|2
and compute the decay width using Eq.(8.17). The numerical calculation of
the decay width will be discussed in Section 8.3.

8.1.4 Comments on effects of zero modes

As discussed in Refs. [63] and [65], there are two classes of form factors for
the amplitude discussed in this section. One class of form factors like f(q2)
is associated with zero modes and another class of form factors is free of
zero-mode contributions. In this analysis, the form factor that contributes
to the radiative transition 1+− → 0−+ +γ, namely f1(q2), belongs to the first
class and contains zero-mode contributions. In this case, the substitution
in Eq. (8.27) is not exact and contains residual spurious terms that are
proportional to a lightlike four-vector ω = (2, 0, 0). These terms are not
Lorentz-covariant. As discussed in Refs. [63,65], the zero-mode contribution
cancels away the residual spurious ω terms. Furthermore, form factors like
f(q2) receive additional residual contributions, which can be expressed in

terms of the B
(m)
(n) and C

(m)
(n) functions defined in Appendix B of Ref. [65].

However, this problem has already been carefully analyzed in Ref. [65]. In
fact, by comparing our expression for f1(q2) in Eq.(8.29) with the expression
for f(q2) in Eq. (B4) of Ref. [65], we find that the integrand of f1(q2) is
proportional to the 1/w′′V term of the integrand of f(q2) in Ref. [65]. Thus,
we follow the same analysis in Ref. [65] of f(q2) to address the possible zero-

mode problem of f1(q2). The B
(m)
(n) and C

(m)
(n) functions do not appear in

the expression for f1(q2), so we can still use the substitution in Eq. (8.27)

because, first, we utilize the relation C
(1)
1 → 0 in the integrand, and second,

the amplitude associated with f1(q2) in Aµν is contracted with the transverse
polarization vector of the photon. Explicitly, our numerical calculation shows
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that all of the functions B
(m)
(n) are numerically negligibly small, and hence we

can neglect all of the residual contributions to the form factors in the present
analysis.

8.2 Reduction to non-relativistic limit in ap-

plication to quarkonium systems

In this chapter, we use the light-front formula discussed in Section 8.1 to
study the radiative decay (1.15). For this decay, the non-relativistic elec-
tromagnetic dipole transition formulas are widely adopted [36]. Thus it is
interesting to investigate the consistency between the LFQM and the non-
relativistic dipole transition formulas in the non-relativistic limit. In this sec-
tion we analyze the reduction of the light-front formula for the decay width
in the non-relativistic limit. This limit is relevant here because (v/c)2 is sub-
stantially smaller than unity for a heavy-quark QQ̄ state. For a Coulombic
potential, αs ∼ v/c, and current data give αs = 0.21 at a scale of mb = 4.5
GeV, yielding (v/c)2 ∼ 0.04 for the Υ system. There are several aspects of
the non-relativistic limit for the decay of a heavy quarkonium system:

1. Masses of bound states.

The masses of initial (M ′) and final state (M ′′) are close to the sum
their constituents, and the deviation is O(m−2

Q ) corrections:

M ′2

4m2
Q

= 1 +O(m−2
Q ) ,

M ′′2

4m2
Q

= 1 +O(m−2
Q ) . (8.32)

Here and below, by O(m−2
Q ) we mean O(|p|2/m2

Q), where p is a generic
three-momentum in the parent meson rest frame.

2. No-recoil limit.

In non-relativistic quantum mechanics, the final state after the E1 ra-
diative transition is assumed to carry approximately the same three-
momentum as the initial state [119]. So the matrix element of this E1
transition is

〈r〉 ∝ 〈f(p′′)|r|i(p′)〉, p′′ = p′ . (8.33)

In our analysis, we will adopt this no-recoil approximation.
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3. Normalization of wavefunction.

In non-relativistic quantum mechanics, the momentum-space wavefunc-
tion is given by

〈p|n, lm〉 = Rnl(p)Ylm(θ, φ) , (8.34)

with the normalization of the radial wavefunction∫ ∞
0

dp p2R∗nl(p)Rnl(p) = 1 , (8.35)

where p = |p|, and the normalization of the angular wavefunction∫
dΩY ∗lm(θ, φ)Yl′m′(θ, φ) = δll′δmm′ . (8.36)

In this chapter we use harmonic oscillator wavefunctions for the quarko-
nium 1P and 1S states. The general formula for harmonic oscillator wave-
functions in momentum space that satisfy the usual quantum mechanics nor-
malization in Eq.(8.35) is given by [49,120]

Rnl(p) =
1

β
3
2

√
2n

Γ(n+ l + 1
2
)
(
p

β
)lL

l+ 1
2

n−1(
p2

β2
) exp(− p2

2β2
) , (8.37)

where L
l+ 1

2
n−1(p2/β2) is an associated Laguerre polynomial. Here, β is a pa-

rameter with dimensions of momentum that enters in the light-front wave-
function (B.7) (and should not be confused with the dimensionless ratio v/c
that serves as a measure of the non-relativistic property of a heavy-quark
QQ̄ bound state.) Specifically, for 1S and 1P states, we have

R1S(p) =
2

β
3
2π

1
4

exp(− p2

2β2
) , (8.38)

and

R1P(p) =

√
2

3

2

β
3
2π

1
4

exp(− p2

2β2
)
p

β
. (8.39)

Notice that the normalization of these wavefunctions is different from the
normalization of the light-front wavefunctions discussed in B. For example,

ψ(p) =
1√
4π
R1S(p) . (8.40)
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In non-relativistic quantum mechanics, the width of an E1 decay of the
initial quarkonium state 1P1 to the final quarkonium state 1S0 + γ is given
by [36]:

Γ(1P1 → 1S0 + γ) =
4

9
αe2

QE
3
γ |I3(1P→ 1S)|2 , (8.41)

where Eγ = |q| is the energy of the emitted photon, and I3(1P→ 1S) is the
overlap integral in position space, which represents the matrix element of the
electric dipole operator:

I3(1P→ 1S) =

∫ ∞
0

dr r3R1P(r)R∗1S(r) . (8.42)

Similarly, we can define I5(1P → 1S), which appears in the relativistic cor-
rection to the electric dipole transition width [36]:

I5(1P→ 1S) =

∫ ∞
0

dr r5R1P(r)R∗1S(r) . (8.43)

For later use, we also list the analogous integrals in momentum space:

Ip3 (1P→ 1S) =

∫ ∞
0

dp p3R1P(p)R∗1S(p) , (8.44)

Ip5 (1P→ 1S) =

∫ ∞
0

dp p5R1P(p)R∗1S(p) . (8.45)

We are now ready to reduce the light-front decay width in Eq.(8.17) when
applied to quarkonium systems to the standard non-relativistic formula in
Eq. (8.41). Using the explicit form in Eq.(8.29) and taking the limit q2 → 0,
the form factor in Eq.(8.31), we can write:

f1(q2) =
2eeQ
16π3

∫
dx2d

2p′⊥
x1M ′

0M
′′
0

ϕp(p
′
⊥, x2)ϕ(p′′⊥, x2)

[
−p′2⊥ −

(p′⊥ · q⊥)2

q2

]
× [(2x1 − 1)M ′2 +M ′′2 + 2x1M

′2
0 − 2(q · P )

p′⊥ · q⊥
q2

]

= −eeQ
∫

dx2d
2p′⊥

x1M ′
0M

′′
0

√
dp′z
dx2

√
dp′z
dx2

√
e′′1M

′
0

e′1M
′′
0

ψp(p
′
⊥, p

′
z)ψ(p′′⊥, p

′′
z)p
′2
⊥

× [(2x1 − 1)M ′2 +M ′′2 + 2x1M
′2
0 − 2(q · P )

p′⊥ · q⊥
q2

] , (8.46)
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where we use the explicit form of light-front momentum space wavefunction
in B. This expression can be further simplified in the no-recoil limit, which
is a valid approximation in the study of an electric dipole transition in the

non-relativistic limit [119]. In this limit, we have
√

e′′1M
′
0

e′1M
′′
0
→ 1, M ′′

0 →M ′
0 and

ψ(p′′2⊥ , p
′′2
z ) → ψ(p′2⊥, p

′2
z ). The corrections due to recoil effect are suppressed

by powers of (1/mQ):

√
e′′1M

′
0

e′1M
′′
0

=

√√√√√ 2
√

p′′2 +m2
Q√

p′2 +m2
Q +

√
p′′2 +m2

Q

= 1− 1

8

(p′2 − p′′2)2

m4
Q

+O(m−6
Q ) ,

(8.47)

M ′′
0 = M ′

0 +
1

2

(p′′2 − p′2)

mQ

+O(m−3
Q ) . (8.48)

The last term in Eq.(8.46), −(q ·P )
p′⊥·q⊥
q2 , requires a more careful treatment.

It seems that linear p′⊥ terms will not make contributions after integrating
over p′⊥, but the Taylor expansion of the functions of p′′⊥ in the integrands
will generate a term that is proportional to (p′⊥ · q⊥), and this can combine

with −(q ·P )
p′⊥·q⊥
q2 term to produce a q2 independent term, which is non-zero

in the physical q2 → 0 and no-recoil limit. Firstly we should expand p′′⊥ in
powers of inverse of mQ:

p′′⊥ = p′⊥ − x2q⊥ = p′⊥ − q⊥

1

2
+

p′z

2
√
m2
Q + p′2⊥ + p′2z


= p′⊥ −

1

2
q⊥ −

1

2

p′z
mQ

q⊥ +O(m−2
Q ) . (8.49)

We find in the physical limit q2 → 0, the dominant contribution to the
(p′⊥ · q⊥) term comes from the expansion of ψ(p′′⊥, p

′′
z). Since ψ(p′′⊥, p

′′
z) is the

wavefunction of the 1S state, it is a function of p′′2. Hence, we can write
ψ(p′′⊥, p

′′
z) = ψ(p′′2⊥ , p

′′2
z ) and expand it as follows:

ψ(p′′2⊥ , p
′′2
z ) ≈ ψ(p′2⊥, p

′2
z )− p′⊥ · q⊥[

dψ

dp′2⊥
] +O(m−2

Q )

= ψ(p′2⊥, p
′2
z ) + p′⊥ · q⊥

1

2β2
ψ(p′2⊥, p

′2
z ) +O(m−2

Q ) , (8.50)
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where we use the explicit form of ψ(p′′⊥, p
′′
z) ∝ exp[−p′′2/(2β2)] to calculate

its derivative. Plugging the expansion of ψ(p′′⊥, p
′′
z) into the integrands, we

find the contribution of the −(q · P )
p′⊥·q⊥
q2 terms is∫

...ψ(p′′⊥, p
′′
z)[−(q · P )

p′⊥ · q⊥
q2

]|q2→0 = −(q · P )

∫
...[

dψ

dp′2⊥
][

(p′⊥ · q⊥)2

q2
⊥

]

=
1

2β2
(q · P )

∫
...ψ(p′⊥, p

′
z)

1

2
p′2⊥ .(8.51)

After this calculation, in the physical q2 = 0 and no-recoil limit, the form
factor f1(q2 → 0) is given by

f1(0) ≈ −eeQ
∫
dp′zd

2p′⊥
x1M ′2

0

ψp(p
′
⊥, p

′
z)ψ(p′⊥, p

′
z)p
′2
⊥ · [(2x1 − 1)M ′2 +M ′′2

+ 2x1M
′2
0 + 2(q · P )

1

4β2
p′2⊥]

= −eeQ
∫
dp′zd

2p′⊥ψp(p
′
⊥, p

′
z)ψ(p′⊥, p

′
z)p
′2
⊥ ·

[
2 +

2M ′2

4(m2
Q + p′2⊥ + p′2z )

+
M ′′2 −M ′2

2(m2
Q + p′2⊥ + p′2z )− 2p′z

√
m2
Q + p′2⊥ + p′2z

+
2|q|M ′

(m2
Q + p′2⊥ + p′2z )− p′z

√
m2
Q + p′2⊥ + p′2z

1

4β2
p′2⊥

 , (8.52)

where we use the kinematic relation (q ·P ) = 2|q|M ′. In the non-relativistic
limit, it is more convenient to use notation of wavefunctions in non-relativistic
quantum mechanics. Using Eq. (8.40), f1(q2 → 0) can be rewritten as

f1(q2 → 0) ≈ − 1

4π
·
√

2

β
· eeQ

∫
d3p′R1S(p′)R1S(p′)p′2⊥

×

[
2 +

2M ′2

4(m2
Q + p′2)

+
M ′′2 −M ′2

2(m2
Q + p′2)− 2p′z

√
m2
Q + p′2

+
2|q|M ′

(m2
Q + p′2)− p′z

√
m2
Q + p′2

1

4β2
p′2⊥

 . (8.53)
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8.2.1 Leading-order non-relativistic approximation

In the leading-order non-relativistic approximation, we neglect the O(m−2
Q )

contributions in Eq.(8.53), so f1(q2 → 0) is given by

f1(q2 → 0) ≈ −4π ·
√

2

β
· eeQ

∫
d3p′R1S(p′)R1S(p′)p′2⊥

×

[
2 +

2M ′2

4m2
Q

+
M ′′2 −M ′2

2m2
Q

+
2|q|M ′

m2
Q

1

4β2
p′2⊥ +O(m−4

Q )

]

= − 1

4π
·
√

2

β
· eeQ

∫
d3p′R1S(p′)R1S(p′)p′2⊥ · 4 +O(m−2

Q ) .

(8.54)

This integral can be simplified by using symmetric property of functions
in the integrands. For function F (p2) that have spherical symmetry, the
following relation is satisfied:∫

d3pF (p2)pipj =
1

3
δij

∫
d3pF (p2)p2 . (8.55)

So Eq.(8.54) can be written as

f1(0) = − 4

4π
·
√

2

β
· eeQ

∫
d3p′R1S(p′)R1S(p′)p′2⊥

= −2

3
· 4

4π
·
√

2

β
· eeQ

∫
d3p′R1S(p′)R1S(p′)p′2

= −2

3
· 4 ·
√

2

β
· eeQ

∫ ∞
0

dp′ p′4R1S(p′)R1S(p′) ,

(8.56)

where p′ denotes the radial coordinate in the three dimensional momentum
space (and should not be confused with a four-momentum). Using the defi-
nition of wavefunction in Eq.(8.39),

R1P(p′) =
1

β

√
2

3
R1S(p′)p′ , (8.57)
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we find that this integral is proportional to Ip3 (1P→ 1S):

f1(0) = −2

3
· 4 ·
√

2

β
· eeQ

∫ ∞
0

dp′ p′4R1S(p′)R1S(p′)

= −
√

3

2
· 2

3
· 4 ·
√

2 · eeQ
∫ ∞

0

dp′ p′3R1P(p′)R1S(p′)

= −
√

3

2
· 2

3
· 4 ·
√

2 · eeQ · Ip3 (1P→ 1S) . (8.58)

Now Ip3 (1P → 1S) is proportional to I3(1P → 1S), which is evident in non-
relativistic quantum mechanics, where we have the operator relation:

p

m
= i[H, r] , (8.59)

so that
|〈f | p

m
|i〉| = |〈f [H, r]|i〉| = (Ei − Ef )|〈f |r|i〉| . (8.60)

In the non-relativistic limit, the mass can be interpreted as the reduced mass
of the Q̄Q two-body system m = µ′ = mQ/2, and in non-relativistic quantum
mechanics the photon energy is the difference of energy levels between initial
and final state, Ei − Ef ≈ |q|, so we have

Ip3 (1P→ 1S) = |q|µ′ · I3(1P→ 1S) . (8.61)

Then f1(0) can be expressed as

f1(0) = −
√

3

2
· 2

3
· 4 ·
√

2 · eeQ · I3(1P→ 1S) · |q|µ′ .

(8.62)

Plugging this expression of f1(0) into the formula for the decay width in
Eq.(8.17), we get radiative decay width of A(1P1) → P (1S0) + γ in the
leading order non-relativistic and no-recoil approximation:

ΓNR =
|q|3µ′2

12πM ′2
3

2
· 4

9
· 16 · 2 · e2e2

Q|I3(1P→ 1S)|2

=

[
16µ′2

M ′2

]
· 4

9
· αe2

Q|q|3 · |I3(1P→ 1S)|2

=
4

9
· αe2

Q|q|3 · |I3(1P→ 1S)|2 · (1 +O(m−2
Q ))

≈ 4

9
· αe2

Q|q|3 · |I3(1P→ 1S)|2 , (8.63)
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where we have made use of the approximate relations of masses:

µ′ =
mQ

2
,M ′ ' 2mQ , →

[
16µ′2

M ′2

]
' 1 . (8.64)

Eq.(8.63) matches the non-relativistic electric dipole transition formula for
transition 1P1 → 1S0 in Eq.(8.41), which proves the validity of light-front
framework in the non-relativistic limit in the application to heavy quarkoni-
um systems.

8.2.2 Next-to-leading order correction

We next include the O(m−2
Q ) contributions in Eq.(8.53) with the no-recoil

approximation. In this case, f1(q2 → 0) is given by

f1(0) ≈ − 1

4π
·
√

2

β
· eeQ

∫
d3p′R1S(p′)R1S(p′)p′2⊥

×

[
2 +

2M ′2

4m2
Q

(1− p′2

m2
Q

) +
M ′′2 −M ′2

2m2
Q

+
2|q|M ′

m2
Q

1

4β2
p′2⊥

]

= − 1

4π
·
√

2

β
· eeQ

∫
d3p′R1S(p′)R1S(p′)p′2⊥

× 4

[
1− 1

2

p′2

m2
Q

+
|q|
mQ

1

4β2
p′2⊥ +R1P,1S +O(m−4

Q )

]

= − 1

4π
·
√

2

β
· eeQ

∫
d3p′R1S(p′)R1S(p′)

× 4

[
2

3
· (1 +R1P,1S)p′2 − 1

3

p′4

m2
Q

+
2

15

|q|
mQ

1

β2
p′4 +O(m−4

Q )

]
= −

√
3 · eeQ · 4 ·

2

3
· Ip3 (1P→ 1S)

×

[
1 +R1P,1S −

(
1

2

1

m2
Q

− 1

5

|q|
mQ

1

β2

)
Ip5 (1P→ 1S)

Ip3 (1P→ 1S)
+O(m−4

Q )

]
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= −
√

3 · eeQ · 4 ·
2

3
· |q|µ′ · I3(1P→ 1S)

×

[
1 +R1P,1S − |q|2

(
1

2

µ′2

m2
Q

− 1

5

µ′

mQ

)
I5(1P→ 1S)

I3(1P→ 1S)
+O(m−4

Q )

]
,

(8.65)

where we have made use of the symmetry property of integral for the
function F (p2) that has spherical symmetry:∫

d3pF (p2)pipjpkpl =
1

15
(δijδkl + δikδjl + δilδjk)

∫
d3pF (p2)p4 , (8.66)

and R1P,1S is given by

R1P,1S =
M ′′2 −M ′2

8m2
Q

+
M ′2 − 4m2

Q

8m2
Q

∼ O(m−2
Q ) . (8.67)

Combining Eq.(8.65) and Eq.(8.17), we obtain the next-to-leading order
(O(m−2

Q )) formula for the radiative decay width for the heavy quarkonium
systems (1P1 → 1S0) in the non-relativistic and no-recoil approximation:

ΓNLO = ΓNR[1 +R1P,1S − |q|2
(

1

2

µ′2

m2
Q

− 1

5

µ′

mQ

)
I5(1P→ 1S)

I3(1P→ 1S)
+O(m−4

Q )]2 .

(8.68)

8.3 Analysis of radiative transitions of hc(1P )

and hb(1P )

In this section we apply the radiative transition formulas for the decay
1+−(1P1) → 0−+(1S0) + γ in the framework of the light-front quark model,
which we reviewed in Section 8.1, to study the radiative decay of the cc̄ state
hc1(1P ) via the channel hc(1P ) → ηc(1S) + γ and the bb̄ state hb(1P ) via
the channel hb(1P ) → ηb(1S) + γ. We present the results of our numerical
calculations of decay widths. Our results extend those which we previous-
ly presented with Ke and Li in [69]. For the charmonium hc(1P ) radiative
decay, we compare our result with experimental data on the width, as list-
ed in the Particle Data Group Review of Particle Properties (RPP) [54].
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Table 8.1: Decay width (in units of keV) of hc(1P )→ ηc(1S)+γ in the light-front quark

model, denoted LFQM, as compared with experimental data from [54], denoted exp.(PDG)

and predictions from other theoretical models, including non-relativistic potential model

(NR) [36, 38, 52](denoted M1 [36] and M4 [52]), relativistic quark model (R) [47](M2),

the Godfrey-Isgur potential model (GI) [52](M3), screened potential models with zeroth-

order wavefunctions (SNR0) and first-order relativistically corrected wavefunctions (SNR1)

[53](M5). For experimental data, we use the PDG value of the total width Γhc(1P ) =

700± 280 (stat.)± 220 (syst.) keV and BR(hc(1P )→ ηc(1S) + γ) = 51± 6 % [54].

Decay mode LFQM exp.(PDG) M1 M2 M3 M4 M5
hc(1P )→ ηc(1S) + γ 398± 99 357± 280 482 560 498 650 764

352 323

Table 8.2: Decay width (in units of keV) of hb(1P )→ ηb(1S)+γ in the light-front quark

model, denoted LFQM, as compared with predictions from other theoretical models, in-

cluding non-relativistic potential model (NR) [36](denoted M1), relativistic quark model

(R) [47](M2), the Godfrey-Isgur potential model (GI) [49](M3), screened potential models

with zeroth-order wavefunctions (SNR0) and first-order relativistically corrected wavefunc-

tions (SNR1) [48](M4) and the nonrelativistic constituent quark model (CQM) [50](M5).

Decay mode LFQM M1 M2 M3 M4 M5
hb(1P )→ ηb(1S) + γ 37.5± 7.5 27.8 52.6 55.8 35.7 43.7

36.3
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Charmonium decay width 
Γ (hc (1 P) -> ηc (1 S) + γ) (keV)
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Figure 8.2: Decay width for hc(1P ) → ηc(1S) + γ (keV) as a function of
βhc(1P )(ηc)(1S) in LFQM, with mc = 1.5 GeV.
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Charmonium decay width
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Figure 8.3: Decay width for hc(1P )→ ηc(1S) + γ (keV) as a function of mc

in the LFQM, with βhc(1P )(ηc(1S)) = 0.63 GeV.

We also list the theoretical calculations from other models, including non-
relativistic potential model (NR) [36,38,52], relativistic quark model (R) [47],
the Godfrey-Isgur potential model (GI) [52], screened potential models with
zeroth-order wavefunctions (SNR0) and first-order relativistically corrected
wavefunctions (SNR1) [53].

Although the PDG lists the width for the decay hc(1P )→ ηc(1S) + γ, it
does not list the width for the hb(1P )→ ηb(1S)+γ decay, only the branching
ratio. Since our calculation yields the width itself, and a calculation of the
branching ratio requires division by the total width, we therefore compare
our results on the widths for these decays with predictions from other mod-
els, including the non-relativistic potential model (NR) [36], the relativistic
quark model (R) [47], the Godfrey-Isgur potential model (GI) [49], screened
potential models with zeroth-order wave functions (SNR0) and first-order
relativistically corrected wave functions(SNR1) [48], as well as the nonrela-
tivistic constituent quark model (CQM) [50].

First, we study the radiative decay hc(1P ) → ηc(1S) + γ in the LFQM,
which depends on the corresponding harmonic oscillator wavefunction (βhc(ηc))
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Bottomonium decay width 
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Figure 8.4: Decay width for hb(1P ) → ηb(1S) + γ (keV) as a function of
βhb(1P )(ηb(1S)) in the LFQM, with mb = 4.8 GeV.

and the effective charm quark mass, mc. For the central values of mc and
the wavefunction parameters β, we use the central values of these parameters
suggested by previous study of LFQM [70]:

mc = 1.5± 0.1 GeV . (8.69)

βhc(ηc) = 0.63± 0.1 GeV . (8.70)

While Ref. [69] allowed a 10 % variation in input parameters, we investigate
a somewhat larger variation, as indicated in Eqs. (8.69) and (8.70). We
present our numerical results in Table 8.1, with the uncertainties arising
from the uncertainties in the β parameters and the value of mc. We also plot
the predicted width as a function of the input values for the charm quark
mass mc and wavefunction structure parameter βhc(ηc) in Fig. 8.2 and Fig.
8.3. From these results, we find that the main theoretical uncertainties come
from variation of βhc(ηc). With the same central value for βhc(ηc) as was used
in [69], we obtain a somewhat smaller central value for the width, namely
398 keV as contrasted with 685 keV in [69]. As is evident from our Table 8.1,
our current result for this width agrees well with experimental data within
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Bottomonium decay width
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Figure 8.5: Decay width for hb(1P )→ ηb(1S) + γ (keV) as a function of mb

in the LFQM, with βhb(1P )(ηb(1S)) = 1.0 GeV.

the range of experimental and theoretical uncertainties. The experimental
data have substantial uncertainties, and our result is relatively close to the
central experimental value, compared to other non-relativistic models. The
reason that our current calculation of the width Γ(hc(1P ) → ηc(1S) + γ)
yields a smaller result than that obtained in Ref. [43] may be due to the
fact that the numerical integration that is necessary in the calculation of the
amplitude involves significant cancellations between different terms, and our
current numerical integration routine uses higher precision than was used in
parts of the previous calculation in Ref. [43].

Next we study radiative decay of hb(1P ) → ηb(1S) + γ in LFQM. For
the central value of the effective bottom/beauty quark mass mb, we use the
value suggested by the previous LFQM study [69] (see also [70]). For the
wavefunction parameter βhb(1P )(ηb(1S)), we estimate this to be in the range
β ∼ 0.9− 1.3 GeV, which is suggested in [49], where β is fitted by equating
the rms radius of the harmonic oscillator wavefunction for the specified states
with the rms radius of the wavefunctions calculated using the relativized
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quark model. Our values for these input parameters are:

mb = 4.8± 0.1 GeV . (8.71)

βhb(1P )(ηb(1S)) = 1.0± 0.1 GeV . (8.72)

We list the numerical results in the LFQM in Table 8.2. For comparison,
we also list other theoretical calculations from various types of models, in-
cluding the non-relativistic potential model (NR) [36], the relativistic quark
model (R) [47], the Godfrey-Isgur potential model (GI) [49], screened po-
tential models with zeroth-order wavefunctions (SNR0) and first-order rela-
tivistically corrected wavefunctions(SNR1) [48] and the non-relativistic con-
stituent quark model (CQM) [50]. As can be seen from Table 8.2, with
the given range of uncertainties, our value agrees with predictions from the
non-relativistic potential model (NR) [36], the Godfrey-Isgur potential model
(GI) [49] and screened potential models with relativistically corrected wave-
functions (SNR1) [48]. To show the theoretical uncertainties arising from
uncertainties in the βhb(1P )(ηb(1S)) parameter and the value of mb, we also plot
the decay width for hb(1P ) → ηb(1S) + γ as a function of these parameters
in Fig. 8.4 and Fig. 8.5. We find that the width is not very sensitive to the
variation of mb and the main uncertainties arise from the uncertainty in the
wavefunction parameter βhb(1P )(ηb(1S)).

These results show that the light-front quark model with phenomenolog-
ical meson wavefunctions (specifically, harmonic oscillator wavefunctions) is
suitable for the calculation of quarkonium 1P1 → 1S0 + γ radiative decay
widths, since this model gives reasonable predictions for these widths, as
compared with experimental data and other theoretical models.
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Appendix A

Beta Function Coefficients and
Relevant Group Invariants

For reference, we list the one-loop and two-loop coefficients [75,76] in the beta
function (3.1) for a non-Abelian chiral gauge theory with gauge group G and
a set of chiral fermions comprised of Ni fermions transforming according to
the representations {Ri}.

b1 =
1

3

[
11C2(G)− 2

∑
Ri

NiT (Ri)
]

(A.1)

and

b2 =
1

3

[
34C2(G)2 − 2

∑
Ri

Ni{5C2(G) + 3C2(Ri)}T (Ri)
]
. (A.2)

For a representation R, the Casimir invariants C2(R) and T (R) are defined
as

dim(R)∑
i,j=1

DR(Ta)ijDR(Tb)ji = T (R)δab (A.3)

and
o(G)∑
a=1

dim(R)∑
j=1

DR(Ta)ijDR(Ta)jk = C2(R)δik , (A.4)

where Ta are the generators of G, and DR is the matrix representation of R.
These satisfy

T (R) o(G) = C2(R) dim(R) , (A.5)
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where o(G) = N2 − 1 for SU(N) and dim(R) is the dimension of the repre-
sentation R.

We list below the group invariants that we use for the relevant case G =
SU(N). We have C2(G) = C2(Adj) = T (Adj) = N , and, as in the text, we
use the symbols F for and S for . The symmetric and antisymmetric
rank-k representations of SU(N) are denoted Sk and Ak ≡ [k]N . In terms of
Young tableaux, S1 = A1 = , S2 = , A2 = , etc. (In the text, where no
confusion would result, we denote S2 ≡ S and A2 ≡ A.) We have

C2(F ) =
N2 − 1

2N
, T (F ) =

1

2
, (A.6)

C2(S) =
(N + 2)(N − 1)

N
, T (S) =

N + 2

2
, (A.7)

C2([k]N) =
k(N + 1)(N − k)

2N
, (A.8)

and

T ([k]N) =
1

2

(
N − 2

k − 1

)
. (A.9)

Hence, for our case N = 2k,

C2([k]2k) =
k(2k + 1)

4
(A.10)

and

T ([k]2k) =
(2k − 2)!

2[(k − 1)!]2
. (A.11)

For the adjoint representation, C2(adj) ≡ C2(G) = T (Adj) = N . For the
rank-k symmetric and antisymmetric representations Sk and Ak,

T (Sk) =

∏k
j=2(N + j)

2(k − 1)!
(A.12)

T (Ak) =
1

2

(
N − 2

k − 1

)
=

∏k
j=2(N − j)
2(k − 1)!

(A.13)

C2(Sk) =
k(N + k)(N − 1)

2N
(A.14)

182



and

C2(Ak) =
k(N − k)(N + 1)

2N
. (A.15)

Hence, in particular, with T2 standing for the rank-2 tensor representation
S2 (+ sign) or A2 (− sign) here and below, one has

T (T2) =
N ± 2

2
(A.16)

C2(T2) =
(N ± 2)(N ∓ 1)

N
(A.17)

T (T3) =
(N ± 2)(N ± 3)

4
(A.18)

and

C(T3) =
3(N ± 3)(N ∓ 1)

2N
. (A.19)

The anomaly produced by chiral fermions transforming according to the
representation R of a group G is defined as

TrR(Ta, {Tb, Tc}) = A(R)dabc (A.20)

where the dabc are the totally symmetric structure constants of the corre-
sponding Lie algebra. Groups for which = A(R) = 0 include those with real
or pseudoreal representations, SO(4k + 2) for k ≥ 2, and E6 [104, 106, 114].
For convenience, we may define A( ) = 1 for SU(N). For Sk and Ak [106],

A(Sk) =
(N + k)!(N + 2k)

(N + 2)!(k − 1)!
(A.21)

and, for 1 ≤ k ≤ N − 1,

A(Ak) =
(N − 3)!(N − 2k)

(N − k − 1)!(k − 1)!
. (A.22)

(Note that [N ]N is the singlet, so A([N ]N) = 0.) Hence, in particular,

A(T2) = N ± 4 (A.23)

A(T3) =
(N ± 3)(N ± 6)

2
. (A.24)
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A([2]N) = N − 4 , (A.25)

A([3]N) =
(N − 3)(N − 6)

2
, (A.26)

A([4]N) =
(N − 3)(N − 4)(N − 8)

3!
. (A.27)

From Eq. (A.22), there follows the recursion relation

A([k]N) +A([k + 1]N) = A([k + 1]N+1) for 1 ≤ k ≤ N − 1 . (A.28)

The rank of SO(N) is the integral part of N/2. We denote At the rank-
t antisymmetric tensor representation, with dimension

(
N
t

)
, where

(
a
b

)
=

a!/[b!(a − b)!]. Note that for SO(N), the adjoint representation is the same
as A2 and the vector, fundamental, and A1 representations are the same.
With an appropriate normalization convention for the generators of SO(N)
(which does not affect the physics), one has [104,115]

T (adj) = C2(adj) = N − 2 , (A.29)

T ( ) = 1 , (A.30)

and

C2( ) =
N − 1

2
. (A.31)

For SO(N) with N = 2r and S the spinor representation,

dim(S) = 2r−1 , (A.32)

T (S) = 2r−4 , (A.33)

C2(S) =
r(2r − 1)

8
. (A.34)

Denoting the antisymmetric rank-t tensor representation of SO(2r) as At,
one has

C2(At) =
t(2r − t)

2
. (A.35)

A gauge theory in d = 4 dimensions with gauge group G contains instan-
tons if πd−1(G) = π3(G) is nontrivial. One has [117]

π3(SU(N)) = Z (A.36)
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and
π3(SO(N)) = Z if N ≥ 5 . (A.37)

The global anomaly in an SU(2)L gauge theory is due to

π4(SU(2)) = Z2 , (A.38)

Further,
π4(SU(N)) = ∅ if N ≥ 3 (A.39)

and
π4(SO(N)) = ∅ if N ≥ 6 . (A.40)
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Appendix B

The wavefunctions

The normalization of the S-wave meson wavefunction in the light-front frame-
work is

1

2(2π)3

∫
dx2dp

2
⊥ |ϕ(x2, p⊥)|2 = 1. (B.1)

Here ϕ(x2, p⊥) is related to the wavefunction in normal coordinates ψ(p) by

ϕ(x2, p⊥) = 4π
3
2

√
dpz
dx2

ψ(p) ,
dpz
dx2

=
e′1e2

x1x2M ′
0

. (B.2)

The normalization of ψ(p) is given by∫
dp3 |ψ(p)|2 = 4π

∫
p2dp |ψ(p)|2 = 1 . (B.3)

The normalization for the P-wave meson wavefunction in the light-front
framework is [65]

1

2(2π)3

∫
dx2dp

2
⊥ |ϕp(x2, p⊥)|2pipj = δij , (B.4)

where pi = (px, py, pz). In terms of the P-wave wavefunction in normal
coordinates,

ϕp(x2, p⊥) = 4π
3
2

√
dpz
dx2

ψp(p) ,
dpz
dx2

=
e′1e2

x1x2M ′
0

. (B.5)

we have the following normalization condition:

1

3
· 4π

∫ ∞
0

|ψp(p)|2p4dp = 1 . (B.6)
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For the gaussian type 1P and 1S wavefunctions, we have the relation

ψp(p) =

√
2

β2
ψ(p) . (B.7)

The explicit form of 1-S harmonic oscillator wavefunction in the light-front
approach is given by [65]

ψ(p) =

(
1

β2π

) 3
4

exp

(
−1

2

p2

β2

)
. (B.8)
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Appendix C

Some expressions in the
light-front formalism

In the covariant light-front formalism we have

M ′2
0 = (e′1 + e2)2 =

p′2⊥ +m′21
x1

+
p′2⊥ +m2

2

x2

M ′′2
0 = (e′′1 + e2)2 =

p′′2⊥ +m′′21

x1

+
p′′2⊥ +m2

2

x2

M̃ ′
0 =

√
M ′2

0 − (m′1 −m2)2

M̃ ′′
0 =

√
M ′′2

0 − (m′′1 −m2)2

p′z =
x2M

′
0

2
− m2

2 + p′2⊥
2x2M ′

0

p′′z =
x2M

′′
0

2
− m2

2 + p′′2⊥
2x2M ′′

0

. (C.1)

188



The explicit expressions for A
(i)
j (i, j = 1 ∼ 4) and Z2 are

A
(1)
1 =

x1

2
, A

(1)
2 = A

(1)
1 −

p′⊥ · q⊥
q2

,

A
(2)
1 = −p′2⊥ −

(p′⊥ · q⊥)2

q2
, A

(2)
2 = (A

(1)
1 )2,

A
(2)
3 = A

(1)
1 A

(1)
2 , A

(2)
4 = (A

(1)
2 )2 − 1

q2
A

(2)
1 ,

A
(3)
1 = A

(1)
1 A

(2)
1 , A

(3)
2 = A

(1)
2 A

(2)
1 ,

A
(3)
3 = A

(1)
1 A

(2)
2 , A

(3)
4 = A

(1)
2 A

(2)
2 . (C.2)

Z2 = N̂ ′1 +m′21 −m2
2 + (1− 2x1)M ′2 + (q2 + q · P )

p′⊥ · q⊥
q2

. (C.3)
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