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Abstract of the Dissertation

Recent Progress in Understanding the Role of Monopoles in QCD

by

Adith Ramamurti

Doctor of Philosophy

in

Physics

Stony Brook University

2018

Chromo-magnetic monopoles are suggested to play an important role in quantum chro-
modynamics (QCD) near the deconfinement temperature. Previous studies have shown that
monopoles can explain particular properties of quark gluon plasma and certain phenom-
ena observed in heavy-ion collisions. In this dissertation, we discuss recent studies of QCD
monopoles, with emphasis on explaining results from lattice QCD studies and heavy-ion
experiments.

We begin by first tackling the question of whether monopoles exist in QCD. For theo-
ries with extended supersymmetry, the semiclassical partition functions of instanton-dyons
were shown to be identical to the partition function for monopoles. We now show how the
instanton-based partition function for a pure gauge theory can be Poisson-transformed into
a partition function interpreted as that of moving and rotating monopoles. We then focus on
reproducing the properties of quantum monopole ensembles through numerical simulations of
path integrals. By matching observables of the simulated ensemble with those of monopoles
found in lattice simulations, we define an effective quantum model of these objects.

The first application of the quantum model is in isolating the contribution of monopoles to
the QCD equation of state. We find that the monopoles are responsible for a large proportion
of the energy density of QCD near the deconfinement temperature. Next, by including the
monopole contribution in the Baier-Dokshitzer-Mueller-Peigne-Schiff (BDMPS) jet energy
loss model, we are able to reproduce the trends found in experimental observables for 2.76
TeV Pb-Pb collisions and 200 GeV Au-Au collisions, and make predictions for lower-energy
collisions. Lastly, we use the ensembles from the path-integral simulations to investigate
chiral symmetry breaking. Using fermionic zero modes of the Georgi-Glashow form, we
study the spectrum of the Dirac operator and find that, in this model, a chiral condensate
appears precisely at the critical temperature.
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Chapter 1

Introduction

1.1 Topical Review

In this section, we will review the main phenomena found in systems that have spurred the
interest in studying chromo-magnetic monopoles, and briefly overview previous research that
this dissertation has built upon.

1.1.1 QCD and Heavy-Ion Collisions

The quantum field theory that describes the fundamental interactions between the con-
stituents of nucleons – the quarks and the gluons – is quantum chromodynamics (QCD)
[1]. QCD is a non-abelian gauge theory and possesses two important properties: asymptotic
freedom [2–4] and color confinement [5–7].

The former, asymptotic freedom, tells us that at large momentum scales or small dis-
tances, the coupling of the theory becomes weak. High-momentum processes, which probe
the small-distance limit of QCD, can therefore be described by a perturbative expansion
in the coupling constant of the theory αs. On the other hand, at small momenta or large
distances, the strength of the strong interaction grows and non-perturbative phenomena ap-
pear, such as color confinement. Color confinement dictates that quarks and gluons (at our
normal day-to-day energy scales) are found in color neutral configurations – baryons and
mesons. The coupling constant for QCD as a function of the momentum scale is shown in
Fig. 1.1.

The Lagrangian density of QCD is

L = −1

4
F µν
a F a

µν +
∑
f

ψ̄
(f)
i (i /D

ij
+m(f)δij)ψ

(f)
j , (1.1)

where /D = γ0D,
F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
µ ,

Dij
µ = ∂µδ

ij − ig(ta)ijAaµ ,
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Figure 1.1: The strong coupling constant αs as a function of the momentum scale. From
Ref. [8].

and fabc are the structure constants and τa the generators, respectively, of the SU(Nc) group
for Nc colors. The coupling g is related to the strong coupling constant αs by

αs =
g2

4π
. (1.2)

While the equations of motion of QCD are easily derived from its Lagrangian, finding
solutions to these equations in regimes where perturbation theory breaks down, and subse-
quently deducing the physical consequences of these solutions remains an unsolved problem.
One successful approach of studying strongly-interacting, nonperturbative QCD is known as
lattice QCD, in which space-time is discretized [5]. With the progress of numerical methods
and computational power, lattice QCD is able to reproduce and even predict some properties
of the QCD, notably the observed hadron spectrum and the QCD equation of state. Another
method of approaching non-perturbative physics is through use of semi-classical methods.

Phenomenology of a heavy-ion collision

To create matter where the degrees of freedom are quarks and gluons, known as a quark-gluon
plasma (QGP) [9, 10], one has to reach energies and densities that overcome the binding
forces of the nucleus [11–13]. In nature, such a state of matter is believed to have occurred
in the moments following the Big Bang, and possibly in the core of neutron stars [14]. In
the laboratory, however, the only way of creating such extreme conditions is through use
of relativistic particle colliders [15]. In these machines, beams of nuclei possessing ultra-
relativistic energies are collided, creating a droplet of deconfined nuclear matter, which then
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thermalizes and undergoes a confinement process into a cloud of hadrons in a matter of
femtoseconds. The debris of the collision are then processed by complex algorithms to
reconstruct the evolution of the matter following the collision, from which we can probe
the properties of that early-stage, hot droplet of matter, as well as try to understand its
transition into the final-state particles that are observed in the detectors [16].

The standard theoretical model of a heavy-ion collision is broken into three stages: the
initial state following the collision, bulk evolution of the dense matter, and hadronization.
Understanding of the initial state, in its simplest form, comes from studying the geometry of
the collision. In the rest frame of the nuclei, one can view each as a sphere with homogenous
density. In the laboratory frame, due to Lorentz contraction, the nuclei, which are traveling
at nearly the speed of light, are effectively projected onto a two-dimensional plane; the
matter density now is variable, approaching zero at the edges.

When these two “pancakes” collide, the geometry of the collision can be described by
the impact parameter ~b, which connects the centers of the two nuclei. For a central collision,
~b = 0, all (or most) constituents of the nuclei are considered participants in the collision,

whereas in non-central collisions, ~b 6= 0, some constituents pass by without interaction,
known as spectators. A schematic of this type of collision is shown in Fig. 1.2. Only for
the case ~b = 0 is the collision azimuthally symmetric; in all other cases, the distribution of
particles can be described by harmonics in the azimuthal angle, φ.

In this dissertation, we will be focusing on gold-gold (Au-Au) and lead-lead (Pb-Pb)
collisions. Gold and lead nuclei are spherically symmetric, and therefore we do not need
to consider their incoming orientation, as we would if we were looking at uranium-uranium
collisions, for example. In experimental data, collisions are not classified directly by their
impact parameter, but rather by their centrality, given as a percentile [18]. The centrality
percentile c is defined from integrating the impact parameter distribution, dσ

db
,

c =
1

σAA

∫ b

0

dσ

db′
db′ . (1.3)

For a model 2.76 TeV Pb-Pb collision, the relation between impact parameter and centrality
percentile is shown in Fig. 1.3(a), while Fig. 1.3(b) shows the relation between centrality
percentile and number of participants in the collision. In this dissertation, where relevant,
we will focus primarily on 20-30% centrality collisions.

Nuclei, however, are not simply geometrically-defined, smooth objects. In fact, a nucleus
consists mostly of empty space, as nuclear density is roughly 0.16 fm−3. In addition, there
is a non-zero probability that a nucleon passes through the other colliding nucleus without
interaction. As a result, to have a better description of the initial state, one must include
fluctuations on top of this smooth geometry that take these effects into account. Two models
that do this and we will now discuss are the Glauber model and the Impact-Parameter
GLASMA (IP-GLASMA) model.

The Glauber model is based on the principle that at the point of collision, the nucleons
within the nuclei are a distributed set of points with probability dependent on the energy
density. One defines two sets of parameters, εn, the amplitudes, and Φn, the phases of the
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Figure 1.2: A schematic of a heavy-ion collision. (a) A “side” view of the collision, where
nuclei are contracted along the beam direction. (b) A non-central collision has an elliptical
overlap zone, with participant and spectator nucleons. From Ref. [17].
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Figure 1.3: (a) The relation between impact parameter and centrality percentile, and (b)
the relation between centrality percentile and number of participants in the collision. From
Ref. [18].
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initial state deformation, such that

εne
inΦn = −

∫
drdφrn+1einφe(r, φ)∫

drdφrn+1e(r, φ)
, (1.4)

where e(r, φ) is the energy density distribution. Colliding nucleons are treated as spheres, and
interact with each other if the separating transverse distance is less than D =

√
σNN/π ∼ 1.5

fm, where σNN is the nucleon-nucleon cross section obtained from proton-proton collisions.
See Ref. [19] for a thorough review of the Glauber model in nuclear collisions.

While this distribution of the initial state reproduces experimental observations well,
we know that nucleons are not in fact point-like spherical particles. Nucleons have com-
plex internal structure, made up of quarks and gluons. The GLASMA model [20–22] takes
this complexity into account, describing the initial state as being comprised of randomly-
distributed gluonic fields with size dependent on the saturation scale parameter, Qs. The
IP-GLASMA model [23] uses a location-dependent saturation scale, which is related to the
gluon density Ng by

dNg

d2~x
= Q2

s(~x) . (1.5)

One may then sample the distribution on the lattice and produce an initial-state gluon
configuration. Figure 1.4 shows the initial state of a heavy ion collision defined from both
the Glauber model and the IP-GLASMA model. One can see that the IP-GLASMA model
resolves a much finer structure of the nuclei.

Following the creation of the initial state, the matter undergoes bulk evolution. During
early runs at the Relativistic Heavy Ion Collider (RHIC), it was found that there are sig-
nificant momentum anisotropies in the final particle spectrum, characterized by harmonic
coefficients vn. These results, particularly the strong elliptic flow v2 [24], suggested that
there was collective behavior taking place during the evolution of the matter. Early phe-
nomenological models based on hydrodynamics were remarkably successful in describing soft
(low p⊥) observables, and suggested that that the hydrodynamic “phase” lasted from ∼ .5
fm to ∼ 10 fm, dependent on the energy of the collision and size of the system.

Hydrodynamics is an effective, macroscopic theory derived from the conservation of en-
ergy and momentum,

DµT
µν = 0 , (1.6)

where T µν is the stress-energy tensor and Dµ is the covariant derivative (in flat space, this
is simply ∂µ). Hydrodynamics utilizes the assumption that there are only four independent
fields: the energy density, e, and the flow velocity, uµ with time-like constraint uµuµ = −1,
which satisfy

T µνuν = −euµ . (1.7)

The stress energy tensor is then expanded in gradients of these fields,

T µν(e, uµ) = T µν(0)(e, u
µ) + T µν(1)(∂e, ∂u

µ) + ... (1.8)

At zeroth order, known as ideal hydrodynamics, the stress-energy tensor is

T µν(0)(e, u
µ) = euµuν + p(gµν + uµuν) . (1.9)
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Figure 1.4: Initial conditions for a heavy-ion collision from the (a) Glauber model and (b)
IP-GLASMA model. From Ref. [23].
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For notational purposes, and to conform to literature, we will define ∆µν ≡ gµν + uµuν . The
ideal equations of motion are

uµDµe = −(e+ p)Dµu
µ , (1.10)

uµDµu
µ = −∆ ν

µDνp

e+ p
. (1.11)

It was soon realized, though these ideal equations of motion could reproduce some exper-
imental data, that it was necessary to include higher-order (viscous) terms in the hydrody-
namic gradient expansion [25–27]. The first order correction, giving the classic Navier-Stokes
equations of motion, is described by

T µν(1)(∂e, ∂u
µ) = Π∆µν + πµν , (1.12)

where Π is a scalar, and πµν is a symmetric, traceless tensor satisfying πµνuµ = 0. The
resulting equations of motion and other intricacies are out of the scope of this work, but we
must mention that the equations contain coefficients η, the shear viscosity, and ζ, the bulk
viscosity. These transport coefficients are the subject of much work in recent years, both
experimental and theoretical. The Navier-Stokes equations of motion are acausal [28], and
therefore it is necessary to include higher-order terms [29, 30]. It is out of the scope of this
dissertation to discuss this progress, see e.g. Ref. [17].

For hydrodynamics to accurately describe the dense QCD matter, we must have a good
handle on the equation of state of QCD, particularly the relation between the pressure p
and the energy density e. Simulations of QCD and QCD-like theories on the lattice have
made considerable headway over the past decade. Recent equation of state calculations from
Ref. [31], which we make comparisons to and use in our hydrodynamic simulations, are
shown in Fig. 1.5. While these studies are limited by the sign problem to near-zero baryon
chemical potential µB, the results are applicable to high-energy heavy-ion collisions, where
the number of baryons is negligible in comparison to the total particle number.

Fig. 1.6 shows the evolution of a 2.76 TeV Pb-Pb collision, modeled with IP-GLASMA
initial conditions coupled to (2+1)D viscous hydrodynamics.

After hydrodynamic evolution, the medium undergoes a freeze-out process, in which
deconfined quarks and gluons transition into confined states, the hadronic degrees of freedom.
This is described theoretically by production of particles with a distribution given by the
Cooper-Frye formula at a given freeze-out surface Σ of constant temperature Tf , usually
chosen to be close to the critical deconfinement temperature Tc,

E
d3Ns

d3p
=

νs
(2π)3

∫
Σ

fs(x
µ, pµ)pνdΣν , (1.13)

where s denotes the particle species, ν a normalization constant, and fs is the species’
distribution function [32]. Kinetic evolution of hadrons then takes place until a kinetic
freeze-out, when particles fly freely to the detectors.
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Figure 1.5: Equation of state of QCD found in (2+1) flavor lattice simulations. Figure
adapted from Ref. [31]. The blue line is the trace anomaly, red is the pressure density, and
the green is the (scaled by 1/4) energy density, all presented as unitless quantities.
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Figure 1.6: Temperature profile of a 20-30% centrality 2.76 TeV Pb-Pb collision, shown at
various times of the hydrodynamic evolution. This evolution was done using IP-GLASMA
initial conditions and (2+1)D hydrodynamics with bulk viscosity.

Jet quenching: Experimentally, theoretically, and the RAA ⊕ v2 problem

To conclude this section on heavy-ion collisions, we will touch on one particular set of experi-
mental observations from heavy-ion collisions that have motivated our studies. Recent exper-
iments that have taken place at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory and the Large Hadron Collider (LHC) at CERN have measured the
distributions of high-energy particles, known as jets.

Jet energy loss is one of the classic signatures of QGP, proposed by Bjorken [33]. Per-
turbatively produced high-transverse-momentum partons subsequently traverse the QGP
medium created in the heavy-ion collisions. These fast-moving partons interact with the
medium and suffer collisional and radiative energy loss, leading to the phenomenon of “jet
quenching.”

There are three observables that will be studied in this dissertation. The first is the
nuclear modification factor, denoted RAA(p⊥), describes the difference between the spectrum
of hard partons that traverse a medium (particles produced in an ion-ion collision) and
those that do not (particles produced in a proton-proton collision). Explicitly, the nuclear
modification factor is

RAA(p⊥, φ) =
dNAA/dp⊥

〈Ncoll|Ncoll〉 dNpp/dp⊥
, (1.14)

which is the ratio of particle spectrum from a heavy-ion collision (dNAA/dp⊥) to a proton-
proton collision (dNpp/dp⊥), scaled by the number of nucleon collisions.
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Its very strong deviation from one, to about 0.3 or so, was among the most dramatic
RHIC discoveries. At the LHC, which produces about twice larger entropy and particle
number than RHIC, the nuclear modification was expected to be further enhanced; this,
however, has not happened.

Another important property of the in-medium jet energy loss is the azimuthal anisotropy,
v2(p⊥), the second Fourier component of the expansion of RAA(p⊥, φ) in azimuthal angle φ,

dN

dp⊥dφ
=

1

2π

dN

dp⊥

(
1 + 2

∑
n

vn cos(n(φ−Ψn))

)
. (1.15)

Since the fireball produced in non-central collisions has an elliptical shape in the transverse
plane – the lengths of medium in the direction of the impact parameter ~b and the orthogonal
direction are different –, v2 of jets characterizes the path-length dependence of the energy
loss [34].

The last observable we consider is the dijet asymmetry, Aj. While in pp collisions, parton
scattering leads to (back-to-back) dijets which are well-balanced in their transverse momenta,
in the presence of matter this balance is lost, due to differences in the path length and matter
fluctuations. Therefore, we can define a quantity to describe the imbalance,

Aj =
|E1 − E2|
E1 + E2

. (1.16)

The history of and subsequently-produced list of literature on jet quenching is lengthy,
and we do not attempt to summarize it; for recent discussion of these difficulties in modeling
jet quenching and summaries of progress, see e.g., Refs. [35–39].

BDMPS jet quenching framework

In this dissertation, we will describe jets traversing the medium with the Baier-Dokshitzer-
Mueller-Peigne-Schiff (BDMPS) formalism [40–44]. For the purposes of this work, we do
not study other jet-quenching models, such as the Gyulassy-Levai-Vitev (GLV) [45–48] and
Arnold-Moore-Yaffe (AMY) [49, 50] models, which include effects beyond gluon radiation
and are built upon other theoretical underpinnings – hard-thermal loops (HTL) for AMY, for
example. We now briefly review the results, and give expressions for the transport coefficients
relevant to the studies we carry out.

The probability for a fast moving quark to have the transverse momentum q⊥ at position
z, f(q2

⊥, z) is given by,

λ(z)
∂f(q2

⊥, z)

∂z

= −f(q2
⊥, z) +

∫
1

σ

dσ

d2~q′⊥
(~q′⊥, z)f((~q⊥ − ~q′⊥)2, z)d2~q′⊥ , (1.17)

where λ(z) is the mean free path of the jet particle and σ is the cross section. Taking the
Fourier transforms of f ,

f̃(b2, z) =

∫
d2~q⊥e

−i~b·~q⊥f(q2
⊥, z) (1.18)
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and of the potential V = 1
σ

dσ
d2~q⊥

,

Ṽ (b2, z) =

∫
d2~q⊥e

−i~b·~q⊥ 1

σ

dσ

d2~q⊥
(~q⊥, z) , (1.19)

we can diagonalize the master evolution equation by taking the Fourier transform of the
RHS of Eq. 1.17, ∫

d2~q′⊥

∫
d2b′ei(~q

′
⊥−~q⊥)·~b′ f̃(b2, z)

∫
d2bṼ (b2, z)e−i

~b·~q′⊥ , (1.20)

to get

λ(z)
∂f̃(b2, z)

∂z
= [1− Ṽ (b2, z)]f̃(b2, z) . (1.21)

Taking as a model for the potential,

V (q2
⊥) =

1

σ

dσ

d2~q⊥
(~q⊥) =

µ2

π(q2
⊥ + µ2(z))2

, (1.22)

we find that, at small b, the evolution equation for the jet has the form,

∂f̃(b2, z)

∂z
= −b

2

4
q̂(z)f̃(b2, z) , (1.23)

The parameter q̂(z) ≡ µ2(z)/λ(z) is the main property of the matter – a kind of kinetic
coefficient – that determines all features of the jet quenching. To get the explicit form for
this, we take the Fourier transform of the potential,

Ṽ (b2, z) =

∫
d2~q⊥e

−i~b·~q⊥
(
µ2(z)

π

)
1

(q2
⊥ + µ2(z))2

= 2µ2(z)

(
1

9
b3

1F2

(
2;

5

2
,
5

2
;
b2µ(z)2

4

)
(1.24)

+
π(I0(bµ(z))− µ(z)bI1(bµ(z)))

4µ3(z)

)
.

Expanding around b = 0,

Ṽ (b2, z) =
π

2µ(z)
− 1

8
πµ(z)b2 +O

(
b3
)
, (1.25)

Then,

[1− Ṽ (b2, z)]

λ(z)
f̃(b2, z)

≈
1
8

(
πb2µ(z)− 4π

µ(z)
+ 8
)

λ(z)
f̃(b2, z)

= −b
2

4

(
−πb2µ(z) + 4π

µ(z)
− 8

2b2λ(z)

)
f̃(b2, z) (1.26)

= −b
2

4
q̂(z)f̃(b2, z) , (1.27)
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where the transport coefficient q̂,

q̂(z) ≡ 1

λ(z)

[
4

b2
(1− Ṽ (b2, z))

]
=
〈∆p2

⊥(z)|∆p2
⊥(z)〉

λ(z)
. (1.28)

is defined to be the average squared transverse momentum acquired per unit length. This
expression is not convergent at b → 0 – see the expression in parentheses in Eq. (1.26) –,
but in logarithmic approximation,

q̂(z) ≈ 1

λ(z)

∫ 1/b2

0

d2~q⊥~q
2
⊥V (~q2

⊥, z)

= ρ(z)

∫ 1/b2

0

d2~q⊥~q
2
⊥

dσ

d~q2
⊥

(~q2
⊥, z) , (1.29)

where ρ(z) is the density of scatterers. This shows that this formalism is equivalent to
the transport cross section method of finding the transverse kick; e.g. for a non-relativistic
particle traveling in the z direction through the field of a single scatterer, we have that,

∆p⊥ =

∫ ∞
−∞

b dz

(b2 + z2)3/2
=

2

b
→ ∆p2

⊥ =
4

b2
. (1.30)

The generic form of dσ/dq2
⊥ in QCD is

dσ

dq2
⊥

=
C

(q2
⊥ + µ2)2

, (1.31)

The BDMPS-like energy loss of a parton as it traverses the medium is given by

− dE/dz ∝ q̂z . (1.32)

The RAA ⊕ v2 “problem”

Most early models predicted v2 to be approximately twice smaller than what was observed,
even when the overall quenching rate was widely varied, and it was speculated that those
models were missing some qualitative phenomenon [52]. Possible solutions include coupling
the quenching of jets to the flow [38].

The solution which we consider in this dissertation is based on work by Liao and Shuryak
[51], who suggested that the experimental v2 can be replicated if the magnitude of jet quench-
ing has a strong dependence on the matter temperature, with a near-Tc enhancement. Their
general argument is purely geometric. If all jet quenching occurred at a particular shell of
entropy (i.e. the RAA was reproduced), the anisotropy of the final particle spectrum would
be bounded by the shape of the shell. Breaking the medium created in a heavy-ion collision
into its constituent entropy shells, one finds the distribution on the left of Fig. 1.7. One can
see that the largest v2 comes from the near-Tc region of the fireball, while the QGP portion
produces a smaller effect. On the right of Fig. 1.7, the resulting v2 from three different shells
is compared to experimental data; a near-Tc shell gives approximately the correct order of
magnitude of v2.
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Figure 1.7: (left) Entropy shells of a the medium created in a heavy-ion collision along with
their corresponding jet v2, and (right) comparison to RHIC data. From Ref. [51].

1.1.2 Magnetic Monopoles in Field Theory

Following the observation by Liao and Shuryak, one’s first instinct would be to look for
some objects that are prominent near the deconfinement transition. This naturally leads
to non-perturbative objects, such as magnetic monopoles. We will, in this section, review
the development of the theory of magnetic monopoles in field theory. Before beginning
this section, we would be remiss not to direct the reader to the book by Ya. M. Shnir [53],
wherein there is a trove of knowledge on the theoretical developments, historical and modern,
of magnetic monopoles.

Monopoles in electrodynamics

The possible existence of magnetic monopoles in electrodynamics fascinated leading physi-
cists – J.J. Thompson, H. Poincaré, and especially P.A.M. Dirac – for more than a century.
Dirac [54], in 1931, introduced into Maxwell’s theory of electrodynamics a point particle

with magnetic charge. In order to do so and maintain consistency with ∇ · ~B = 0, one must
introduce to the vector potential a singular line, known as a Dirac string, which supplies
magnetic flux from “outside” (i.e. infinity). The Dirac potential has the form,

A(r) =
g

r

~r × ~n
r − (~r · ~n)

, (1.33)

which sources a magnetic field

B = g
~r

r3
. (1.34)

The ideas of Dirac enjoyed extensive investigation, but no magnetic monopole in electrody-
namics was ever found.
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One important idea derived from this solution was that of the Dirac condition. The Dirac
string, which carries magnetic flux, acts as the solenoid in the Aharonov-Bohm effect [55].
A particle which completes a path around the string obtains a phase,

φ = e

∮
C

A · ds = e

∫
B · dS . (1.35)

Substituting in the potential, one finds that the phase,

φ = 4πeg . (1.36)

For the Dirac string to remain invisible, the total phase must be a multiple of 2π, which
therefore leads to the quantization condition,

eg =
n

2
. (1.37)

Monopoles as a soliton solution to field theories

Before continuing the discussion of magnetic monopoles outside of the theory of electrody-
namics, we must touch on the idea of a topological soliton. With the advent of non-Abelian
gauge theories as candidates for a unification of the strong, weak, and electromagnetic inter-
actions, the first step – before attempting to solve the full quantum theory – was to find and
understand solutions to the classical equations of motion. Of particular interest were the
solutions that are stable, non-dissipative, and of finite-energy, which are known as solitons.

A soliton, which can be found from the Euler-Lagrange equations derived from the La-
grangian of the theory, is stable if it minimizes the action, δS ≥ 0. These stable solitons
can be classified by the mechanism by which they “obtain” their stability: topological or
non-topological. In this dissertation, we will focus on topological solitons; these maintain
their stability through the fact that they possess a mapping from the internal field space
to the real d-dimensional space of the theory, characterized by an integer, known as the
topological charge. As a result, there is effectively an infinite potential barrier caused by the
topology of the fields; these solitons with finite topological charge cannot simply diffuse into
a vacuum with zero topological charge.

These solutions, derived from the classical equations of motion, cannot be found using
standard perturbation theory, and are therefore fully-fledged non-perturbative objects. Upon
the classical solutions of the equations of motion, one may introduce quantum fluctuations,
from which we obtain a new class of quantum, non-perturbative solutions to a theory.

Of particular note to this dissertation, classical solitons with magnetic charge have been
found, by ’t Hooft [56] and Polyakov [57], in the 1970s. The Lagrangian considered, the
Georgi-Glashow model, is

L = −1

4
F µν
a Faµν +

1

2
(Dµφ)a(D

µφ)a −
1

4
λ(φaφa − v2) (1.38)

where
F µν
a = ∂µAνa − ∂νAµa + gεabcA

µ
bA

ν
c ,

15



and
(Dµφ)a = ∂µφa + gεabcA

µ
bφc .

This Lagrangian has a scalar field, φ, which exists in the adjoint color representation.
This scalar field is “Higgsed,” with its vacuum expectation value (VEV) given by v.

The SU(2) ’t Hooft-Polyakov monopole solution has the form

A0
a = 0 ,

Aia = εaij r̂j
A(r)

g
, (1.39)

φa = r̂a
φ(r)

g
.

With this ansatz, the equations of motion from the pure-gauge Lagrangian are

0 =
2

r2

d

dr

(
r2 dA

dr

)
− 2

r

dA

dr
+

2

r2

d

dr
(rA)

− 6

r2
A− 6g

r
A2 − 2g2A3 − φ

(
2g

r
+ 2g2A

)
, (1.40)

0 =
1

r2

d

dr

(
r2 dφ

dr

)
− 2

r2
φ− 4g

r
Aφ

− 2g2A2φ− 2U ′(|φ|2)φ ,

and boundary conditions, (
r2 dA

dr
+ 2rA

) ∣∣∣∣∣
r=0

= 0 , (1.41)

(
r2 dφ

dr

) ∣∣∣∣∣
r=0

= 0 .

This set of equations and boundary conditions, combined with single-valuedness of the
fields at the origin give

A(0) = φ(0) = 0 ,

A(r)
∣∣∣
r→∞

= −1

r
, (1.42)

φ(r)
∣∣∣
r→∞

= v .

One may guess a solution that satisfies both the ansatz and the boundary conditions.
An example of an asymptotic solution is the well-known “hedgehog” configuration,

φa
∣∣∣
r→∞

= v
ra

r
, (1.43)
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from which the “needles” of the field are radial in color space. The magnetic current for the
field configuration is given by

kµ = εµνρσεabc∂νφ
a∂ρφ

b∂σφ
c

(
1

2v2g

)
. (1.44)

Evaluating the magnetic charge for the asymptotic solution gives

gm =

∫
d3xk0 =

4π

g
. (1.45)

This solution looks like a Dirac monopole at large distances. To put this in a nicer form,
one similar to the Dirac condition, we can write this in terms of the square of charges,

g2
m =

(4π)2

g2
→ g2

m

4π

g2

4π
= 1 , (1.46)

from which we can define the fine structure constants, αe ≡ g2/4π and αm ≡ g2
m/4π, with

αeαm = 1.
The full solutions to the equations of motion for A(r) and φ(r) are well behaved at the

origin, so in practice we must use those in lieu of only considering asymptotics. We can write
these full solutions in terms of two spherically-symmetric functions, H and K. In terms of
these functions, our gauge fields are,

A0
a = 0 ,

Aia = εaij
rj
gr2

(1−K(ξ)) , (1.47)

φa =
ra
gr2

H(ξ) ,

where ξ = gvr. This leads to the identification with our earlier notation,

A(r) =
1−K(gvr)

r
, (1.48)

φ(r) =
H(gvr)

r
.

The only analytic solution to the equations of motion is in the case where λ = 0; this
solution is known as the Bogomolnyi-Prasad-Sommerfeld (BPS) monopole [58, 59]. In this
case,

H(ξ) = ξ coth(ξ)− 1 ,

K(ξ) =
ξ

sinh(ξ)
. (1.49)

All other solutions are only obtained numerically. Figure 1.8 shows the BPS solution (λ = 0)
and the numerical solution for λ = 0.1, 1.

The extension of the SU(2) ’t Hooft-Polyakov monopole solution to SU(3) – with the
same Georgi-Glashow-like Lagrangian – is discussed by A. Sinha [60]. In this case, there
are two diagonal generators, which lead to two types of monopoles. We will only study the
SU(2) case in this dissertation, and make qualitative arguments on extending to a larger
color group.
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Figure 1.8: Solutions for the ’t Hooft-Polyakov monopole for various values of the parameter
λ. From Ref. [53].

The magnetic scenario of QCD

These solutions motivated the dual superconductor model of the confinement, proposed by
Nambu [61], ’t Hooft [62], and Mandelstam [6]. In this scenario, one considers the dual to
the standard Landau-Ginzburg model for a superconductor, and monopoles play the role of
Cooper pairs. Their Bose-Einstein condensation (BEC) at T < Tc expels electric field from
the vacuum into confining flux tubes. We will give a more rigorous definition of BEC, in a
form relevant to this dissertation, in the section on path integrals. For a thorough review of
this model, see Ref. [63].

A justification of this scenario has been obtained by the lattice gauge theory community.
Importantly, researchers were able to identify the gauge field monopoles and even follow their
correlations and motion [64, 65]. The density of monopoles found in SU(2) and SU(3) gauge
theories is shown in Fig. 1.9. In the SU(3) case, as one would assume from studying monopole
solutions to the SU(3) Georgi-Glashow model [60], there are two types of monopoles. We
see that, in both cases, the (unitless) monopole density peaks at Tc, oppositely to the quarks
and gluons; the latter is due to the Polyakov line going to zero as T → Tc, as argued in Ref.
[66].

Radial correlations are shown in Fig. 1.10. We define the pair correlation g(r) to satisfy

n(r) = 4πρ

∫ r

0

g(r′)r′2dr′ , (1.50)

where n(r) is the number of particles found between 0 and r, and ρ = N/V is the overall
density of particles in the volume; g(r) is, by definition, normalized to distribution of an
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Figure 1.9: Monopole density found in pure-gauge SU(2) [64] and SU(3) [65] lattice simula-
tions.

ideal gas. General arguments based on the renormalization group flow tell us that, moving
from hard (UV) to soft (IR) momenta, one should see growth of electric coupling and, due
to the Dirac condition (gmge = 2πn, for some integer n assumed to be 1), the decrease of
the magnetic. We see this through the decrease in the deviation from 1 for the monopole-
anti-monopole as T → Tc from above. In addition, we note that the shape of the radial
distributions indicate that the monopoles form a two-component Coulomb gas.

In a regime where both couplings are comparable one should expect a comparable density
of electric and magnetic quasiparticles. It has been argued that such regime occurs above the
phase transition, at T = (1 − 2)Tc. This magnetic scenario was further used for explaining
unusual properties of QGP by Liao and Shuryak [67–69]. In this scenario, the uncondensed
magnetic monopoles play a dominant role near the QCD critical temperature, Tc, where
their density peaks. Scattering between electric and magnetic quasiparticles dominate the
transport cross section [70].

The phase diagram of such a scenario is shown in Fig. 1.11. The blue-shaded region is
the region of confinement, called m-dominated because the color-electric field is expelled into
flux tubes. Classical molecular-dynamics simulations of a Coulomb electromagnetic plasma
were carried out to reproduce the correlations seen on the lattice; the results are shown in
Fig. 1.12. We see that the coupling of the plasma (Fig. 1.12(b)) runs exactly as expected
by the Dirac condition.

1.1.3 Path-Integrals and Many-Body Simulations

In order to study the proposed properties of magnetic monopoles stated in the previous
section, one must be able to study, quantum mechanically, ensembles of monopoles. We
do this, as is done in lattice gauge theory simulations, by studying the path-integral of the
system.
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Figure 1.10: Monopole (antimonopole) radial correlations found in pure-gauge SU(2) [64]
and SU(3) [65] lattice simulations.

Figure 1.11: The phase-diagram of the magnetic scenario of QCD. From Ref. [67].
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(b)

Figure 1.12: (a) Lattice correlations reproduced using classical molecular dynamics of an
electric-magnetic plasma. (b) The electric and magnetic couplings needed to reproduce
lattice correlations using classical molecular dynamics. Figures from Ref. [69].
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Path-integral formulation of quantum mechanics

The path-integral formulation of quantum mechanics was developed by Feynman [71], who
also extended this formalism to describe statistical mechanics, using periodic path integrals
in Euclidean time. For many years this formalism has been used for perturbation theory, the
derivation of Feynman diagrams at zero- and finite-temperature, and analytic semiclassical
methods.

In quantum mechanics, the density matrix is related to the path integral by

ρ(xi, xf , t) =

∫
Dx(t) exp

{
i

~
S[x]

}
, (1.51)

where S[x] is the functional action of the particular path x. For the purposes of this disser-
tation, we will use natural units, where ~ is set to unity. This path through time corresponds
to the usual quantum mechanical evolution operator, exp{iĤt}, where Ĥ is the Hamiltonian
of the system.

To find the density matrix in finite temperature statistical mechanics, we transform to
Euclidean time, τ = it, with periodicity β = T−1, setting the Boltzmann constant kB to
unity. Then, the thermal density matrix is given by

ρ(xi, xj, β) =

∫
Dx(t) exp {−SE[x]} , (1.52)

where SE is the Euclidean action. The density matrix can also be decomposed in terms of
its energy eigenstates

ρ(xi, xj, β) =
∑
n

ψ∗n(xi)ψn(xj) exp {−Enβ} (1.53)

= 〈ψn|ρ̂|ψn|ψn|ρ̂|ψn〉 ,

where ρ̂ = exp{−βĤ}.
If we consider periodic paths, such that xi = xj, we define the partition function,

Z =
∑
n

e−βEn = Tr
[
e−βĤ

]
= Tr[ρ̂] , (1.54)

from which the expectation value of the operator O is

〈O|O〉 =
Tr[Oρ̂]

Tr[ρ̂]
=

Tr[Oρ̂]

Z
. (1.55)

For a many body system of N particles, we generalize the density matrix as ρ(Ri, Rj, β),
where Ri = {x1, ..., xN} and Rj = {x′1, ..., x′N}.

Approximating the density matrix

The density matrix has the property of squaring,

ρ(xi, xj, β) =

∫
dxnρ(xi, xn, β/2)ρ(xn, xj, β/2) , (1.56)

22



which then allows the decomposition of the density matrix,

ρ(x0, xM , β) =

∫
dx1...dxM−1 (1.57)

× ρ(x0, x1, τ)...ρ(xM−1, xM , τ) ,

where τ = β/M .
In general, the Hamiltonian operator of a system is the sum of the kinetic and potential

energy operators, Ĥ = T̂ + Û , and therefore we have that

e−τĤ = e−τ(T̂+V̂ ) = e−τT̂ e−τV̂ e−
τ2

2
[T̂ ,V̂ ] . (1.58)

If τ is small, then we have the primitive approximation,

e−τ(T̂+V̂ ) ≈ e−τT̂ e−τV̂ . (1.59)

The Trotter formula tells us that this approximation becomes exact in the limit τ → 0.
Using the fact that β = Mτ , we have that

e−β(T̂+V̂ ) = lim
M→∞

[
e−τT̂ e−τV̂

]M
, (1.60)

such that the kinetic and potential actions can be separated and treated individually. Pro-
vided M , the number of time steps per period of the Matsubara circle, is large enough, we
can use this approximation in our numerical simulation to good accuracy. Therefore, in the
primitive approximation, the density matrix is given by

ρ(Ri, Ri+1, τ) =
〈
Ri|e−τT̂ e−τV̂ |Ri+1

∣∣∣Ri|e−τT̂ e−τV̂ |Ri+1

〉
(1.61)

=
〈
Ri|e−τT̂ |Ri+1

∣∣∣Ri|e−τT̂ |Ri+1

〉
e−τV .

This quantity describes the degrees of freedom between time slice i and i + 1. The kinetic
matrix element for N particles can be computed using the eigenfunction expansion of the
kinetic operator,〈

Ri|e−τT̂ |Ri+1

∣∣∣Ri|e−τT̂ |Ri+1

〉
=

1

(4πλτ)3N/2
exp

{{
−(Ri −Ri+1)2

4λτ

}}
, (1.62)

where λ = (2m)−1.
In the case of N identical bosons, we must also account for permutations of the particles,

ρ(Ri, Rj, β) =
1

N !

∑
P

〈
Ri|e−βĤ |PRj

∣∣∣Ri|e−βĤ |PRj

〉
, (1.63)

where P is the permutation operator. The partition function in the primitive approximation
is then
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Z =
1

N !(4πλτ)3N/2

×
M−1∏
i=1

N∏
n=1

∑
P

∫
dxi,n (1.64)

× exp

{{
−(xi,n − xP,i+1,n)2

4λτ
− τV (xi,n)

}}
.

From the partition function, one can calculate thermodynamic quantities. An example
is the energy,

〈E〉 = − 1

Z

∂Z

∂β
. (1.65)

In the primitive approximation,

〈E〉 =
3N

2τ
− 1

4λM

M−1∑
i=1

N∑
n=1

((
xi,n − xi+1,n

τ

)2

+ 4λV (xi,n)

)
. (1.66)

Path-integral Monte Carlo

Numerical evaluation of path integrals became feasible in late 1970s. Particularly, after
pioneering work by Creutz on confinement in lattice gauge theory [72], Creutz and Freedman
numerically computed path integrals for quantum-mechanical motion in quartic potential
[73]. Some further examples of simulations with a few particles, such as two electrons in the
the He atom and the four nucleons in a 4He nucleus, are found in Ref. [74]. Starting in the
early 1980s, supercomputers allowed numerical simulations of quantum many-body systems,
such as liquid 4He.

The basis for the path-integral Monte Carlo (PIMC) algorithm, as well as all the afore-
mentioned simulations, is Metropolis Monte Carlo (MMC) [75]. In MMC, the state of a
system is sampled by proposing a random change of state and accepting or rejecting this
change based on a probability distribution that is a function of the state. In the case of
PIMC, the probability distribution is given in terms of the Euclidean action associated with
the state

π(R) = e−SE(R) . (1.67)

If we propose to move to a new state R′, we can compute the acceptance probability of the
move

A(R→ R′) = min

[
1,
π(R′)T (R′ → R)

π(R)T (R′ → R)

]
, (1.68)

where T (x→ x′) is the transition probability from state x to state x′.
Each particle is represented by a Markov chain, with a bead, i.e. physical location, in

each of the M time-slices in Matsubara time; the kinetic action is in the “links” between
the beads of the same particle, and the potential action is between the beads in the same
time-slice. One then samples changes in locations of these beads, accepting moves using
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Figure 1.13: (a) The original path, (b) end points chosen on time slices τ = 6 and 8, along
with the free-particle gaussian distribution for τ = 7, and (c) the new path (dashed, red).

the above probabilities based on the action, and records configurations from which one can
calculate the partition function and other related thermodynamical quantities.

In the simulations described in this dissertation, we utilize free-particle and bisection-
method sampling [76]. The sampling distribution for a bead on a path, without inter-particle
interaction, is given by

T ∗(R) ∝ ρ(R1, R)ρ(R,R2) , (1.69)

where we are sampling at point R, with the beads fixed in the previous and next time-slices.
Evaluating this quantity, we have that

T ∗ ∝ exp

[
R−

(
R1+R2

2

)
2λτ

]
, (1.70)

which is a Gaussian distribution centered at Rm = (R1 + R2)/2, with width
√
σ =
√
λτ . In

the absence of any potential interaction, samples taken from this distribution would have an
acceptance rate of 100%. Thus, only the potential action would cause rejections, effectively
“cutting holes” in this sampling distribution. A schematic of free-particle sampling is seen
in Fig. 1.13.

In order to have a more computationally-feasible algorithm, it is necessary to perform
multi-slice moves. The method used, known as the bisection method, starts from taking
two time slices a certain distance apart in Matsubara time and interpolating, via a bisection
bridge, the intermediate steps, using the free-particle sampling. A schematic of bisection-
method sampling is seen in Fig. 1.14. In conventional PIMC, for bosons, the necessary
permutations are sampled by swapping the endpoints of these bisection moves for two (or
more) particles and reconstructing the intermediate time-slices for the new endpoints; this
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Figure 1.14: (a) The original path, (b) end points chosen on time slices τ = 3 and 11, and
(c), (d), (e) the construction of the new path (dashed, red).

is shown in Fig. 1.15. Further details on the PIMC method, including details on the update
moves of the paths, can be found in the all-encompassing review by Ceperley [76] and in the
thesis of Graves [77].

These permutation swaps, however, are very computationally intensive and significantly
limit the size of the system that can be studied. An additional improvement to the path-
integral Monte Carlo method was proposed by Boninsegni, et al. [78], called the worm
algorithm.

The algorithm works by elevating the system to the grand canonical ensemble, introducing
a single open world-line, known as a worm. The system of closed world lines, in the diagonal
configuration, is treated just as in conventional PIMC. The dynamics of off-diagonal worm
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Figure 1.15: The original paths of two particles (blue) and the constructed new paths (red,
dashed) after permutation.
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is governed by the Matsubara Green function.
In each Monte Carlo step, in addition to the traditional bisection moves, world-lines can

be opened and closed, and a worm can be introduced, advanced, receded, swapped, and
removed. These moves are detailed in Ref. [78], and provide a natural way of introducing
permutations to the system in a much less computationally-intensive fashion. Measurements
are only made, identically in method to conventional PIMC, when the final result of a Monte
Carlo step is a diagonal configuration (all world-lines closed). The introduction of this
method has allowed one to study systems with hundreds of particles, an order of magnitude
greater than the traditional PIMC pioneered by Ceperley.

The potential action for particle n in time-slice i, V (xi,n), consists of external and inter-
particle parts,

V (xi,n) = Vext(xi,n) +
∑
m 6=n

Vint(xi,n − xi,m) . (1.71)

In computing the potential action for the studies in this dissertation, we use the primitive
approximation described above and compute the pair-potential for each pair of particle in
the simulation. Computing this quantity in position space for periodic boundary conditions
is feasible and accurate for short-range potentials, such as that for 4He.

Numerical simulations of Coulomb systems are notoriously difficult to carry out, due to
the long range nature of the forces. The electrostatic potential for a Coulomb interaction is

ΦCoulomb(xi,n) =
∑
l

∑
m

qm
|xi,n − xi,m + l| , (1.72)

where qm and xi,m are the charge and location of the mth particle in the ith time-slice,
respectively, and l is the vector that corresponds to the periodic image of each particle in
space; the m = n case is excluded only for l = 0. Coulomb interactions, however, such
as those of magnetic monopoles, are long-range, and therefore need, in the case of periodic
boundary conditions, many images to be accurate. These sums therefore converge slowly
and are not good for computational purposes.

Instead of summing solely in position space, we break up the sum into two rapidly
converging pieces, one in position space and the other in reciprocal space, via a technique
called Ewald summation [79, 80]. Written in this form, and making the conventional choice
of the complementary error function for the real sum, the Coulomb potential is

ΦCoulomb(xi,n) =
∑
l

∑
m

qmerfc(αcut|xi,n − xi,m + l|)
|xi − xj + l|

+
4π

V

∑
k 6=0

∑
j

qm exp
{[

−k2

4αcut

]}
k2 exp{[ik(xi,n − xi,m)]} (1.73)

+
2αcut√
π
qn ,

where k is the wave vector in reciprocal space and V is the volume of the box. The parameter
αcut is known as the splitting parameter; it determines the cutoffs for the position and
reciprocal space sums.
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Bose-Einstein Condensation

One of Feynman’s early applications of the path integral formalism was to the Bose-Einstein
condensation phenomenon, which he connected to the appearance of Bose-clusters of par-
ticles; as the temperature drops from above Tc to below, the suppression of these clusters
disappears. He qualitatively explained why an interacting quantum system may have a lower
Bose-Einstein condensation critical temperature than in the case of free particles, famously
applying this method to study liquid 4He at near-zero temperatures, [81, 82].

A Bose-Einstein condensate occurs because bosons are allowed to possess the same quan-
tum numbers; a BEC is a thermodynamic phase transition driven purely by statistics. In
a BEC, a certain subset of particles in the system condense into a zero-momentum state;
these particles are not separated in position space, but rather in Fourier space [83, 84].

We start by considering the density matrix for one particle (where r is used in place of
~r, p is used in place of ~p, and ~ = 1 for simplicity) [77],

ρ1(r − r′) = 〈a†(r)a(r′)〉 , (1.74)

where the a† and a are creation and annihilation operators, respectively. These operators
satisfy bosonic commutation relations,

[a†(r), a†(r′)] = 0, [a(r), a†(r′)] = δ(r − r′) . (1.75)

For a many-body quantum system, the one-body density matrix is

ρ1(r − r′) = N

∫
dr2...drNΨ†(r, r2, ..., rN)Ψ(r′, r2, ..., rN) . (1.76)

This density matrix tells us about the correlation between the two many-body quantum
states, Ψ, at r, r2, ..., rN and r′, r2, ..., rN . Due to being Hermitian, the density matrix can
be expressed in terms of a sum of single-particle wave functions ψ,

ρ1(r − r′) =
∑
n

Nnψ
∗
n(r)ψn(r′) , (1.77)

with the condition that the sum of occupation numbers gives the total number of particles
in the system,

∑
Nn = N . Inserting plane wave states, one gets

ρ1(r − r′) =
N0

V
+

1

V

∑
p 6=0

Npe
ip(r−r′) . (1.78)

To find the number of bosons in a condensate, one must find the occupancy of the state with
n = 0. Expressing the one-body density matrix in momentum space,

n(p) = 〈Ψ†(p)Ψ(p)〉 =
1

(2π)3

∫
drdr′eip(r−r

′)〈Ψ†(r)Ψ(r)〉 . (1.79)

These last two expressions give a physical intuition for BEC. Eq. (1.78) tells us that a
BEC presents itself as long-range order. When r−r′ becomes large, the non-zero momentum
terms go to zero, and the zero-momentum term is all that is left as a contribution to the
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Figure 1.16: A path configuration of 2D liquid 4He atoms in a periodic box. Black dots
indicate the τ = 0 time-slice, and are used for orientation. The dotted line denotes the
periodic box. From Ref. [76].

Figure 1.17: Fraction of particles in permutation cycles in a 3D simulation of 64 4He atoms.
From Ref. [76].
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density matrix. The momentum distribution occupancy Eq. (1.79) tends to zero at large
separation distance, except for the zero-momentum state.

As a result, one of the signatures of a BEC are long-range correlations and de-localization
of a particle path (the density matrix is not zero for r − r′ � 1). Due to the fact that
bosons are indistinguishable, their paths may permute, as stated above, which leads to long,
winding permuted paths when T ≤ Tc. Fig. 1.16 shows a path configuration taken from
a simulation of 2D liquid 4He in a periodic box. One can see that the paths of many of
the helium atoms have permuted, which is the sign of a Bose-Einstein condensate. Fig.
1.17 shows the fraction of particles in permutation cycles, taken from a 3D simulation of 64
4He atoms. As the temperature is decreased and passes the critical temperature, larger and
larger permutation cycles appear.

1.2 Outline of Dissertation

Chapter 2 attempts to answer the question of whether monopoles exist in QCD as they do
in field theories such as the Georgi-Glashow model and those with extended supersymmetry.
We focus on studying the semiclassical partition functions of objects known as instanton-
dyons, which, in theories with scalars, are explicitly “Poisson dual” to the partition function
of monopoles. We perform this transformation on the partition function of instanton-dyons
in a pure gauge theory and interpret the resulting partition function as that of rotating
monopoles.

In Chapter 3, we discuss the derivation of an effective model for quantum monopoles in
SU(2) gauge theories from path-integral simulations. We perform path-integral simulations
of Coulomb gases to identify the Bose-Einstein Condensation (BEC) critical temperature and
radial correlation functions. Comparing the resulting ensembles with those found in pure-
gauge lattice simulations, we are able to select parameters for a two-component Coulomb gas
that accurately reflects the properties of monopoles found on the lattice. From the ensembles
with appropriate parameters, we extract information about the monopole contribution to the
QCD equation of state at and above the critical deconfinement temperature.

Next, in Chapter 4, we study the impact of monopoles on jet quenching observables, with
focus on the nuclear modification factor RAA, azimuthal anisotropy v2, and dijet asymmetry
Aj. We add a term corresponding to the monopoles to the Baier-Dokshitzer-Mueller-Peigne-
Schiff (BDMPS) jet energy loss model and calculate the experimental observables for high-
energy partons traversing the medium created in heavy-ion collisions at the LHC and RHIC.

Finally, in Chapter 5, we investigate whether monopoles can play a role in chiral symme-
try breaking in QCD. We study properties of fermionic zero modes in the Georgi-Glashow
model with fermions, and calculate the eigenvalue spectra of the Dirac operator for various
temperatures above Tc using the monopole ensembles found earlier. From the eigenvalue
spectra, we can find the magnitude of the chiral condensate, a signature of chiral symmetry
breaking.
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Chapter 2

Are There Monopoles in QCD?

This chapter is based on:

• A. Ramamurti, E. Shuryak, and I. Zahed (2018). Are there monopoles in the quark-
gluon plasma? Phys. Rev. D97(11), 114028. doi:10.1103/PhysRevD.97.114028
arXiv:1802.10509.

We begin this dissertation with an argument for why we are studying monopoles in the
context of QCD. The semiclassical description of the vacuum of gauge theories is based on
the instanton solution [85]. At finite temperatures, however, the instanton solution has been
shown to dissolve into instanton constituents, known as instanton-dyons [86–88]. For a review
of these concepts, we direct the reader to Ref. [89]. Studies of the ensembles of instanton-
dyons have explained the deconfinement and chiral symmetry restoration transitions both
numerically [90, 91] and using a mean-field analysis [92, 93]. For a short review of these
recent results, see Ref. [94].

The construction of the instanton-dyons in QCD starts from the ’t Hooft-Polyakov
monopole, but since there is no scalar field, the fourth component of the gauge field A4

acts as the scalar adjoint “Higgs” field. These objects are pseudo-particles and not particles,
existing only in the Euclidean formulation of the theory for which A4 is real. Therefore, while
instanton-dyons do lead to successful semiclassical applications, their use in phenomenolog-
ical applications is severely limited. Another obstacle to the development of the theory if
instanton-dyons is that their physical meaning remains rather obscure. We argue, in this
chapter, that the explicitly-derived instanton-dyon gauge field configurations are nothing
else but quantum paths of moving and rotating monopoles.

The first setting in which this idea was fleshed out was in the case of gauge theories with
extended supersymmetry. In this setting, one can derive reliably both partition functions
– in terms of monopoles and instanton-dyons – and show them to be equal [95–97]. The
partition functions were, however, not summed up to an analytic answer, but shown instead
to be related by the Poisson duality.

We begin first with a much simpler toy model of a rotator – a particle on a circle – at finite
temperature, which we will treat as a pedagogical section that overviews the methodology
we use later on. We will obtain two expressions for its partition function, one based on
its excited states and one based on “winding paths” in Euclidean time. In this model, one
can derive the analytic solution for both and see explicitly that they yield the same result.
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Following this, we turn to theories with extended supersymmetry and review previous work
in this area. We show how the Poisson duality works in this case – almost identically to the
rotator model.

Finally, we turn to pure gauge theories at finite temperature, using the simplest version
with two colors. We will derive the winding gauge configurations, periodic on the Matsubara
circle, and the corresponding semi-classical partition function, that of the instanton-dyons.
We then Poisson-transform it into another form, which we argue is counting occupations of
the excited states of moving/rotating monopoles.

2.1 Quantum Rotator at Finite Temperature

A quantum rotator is a particle moving on a circle. Its location is defined by the angle
α ∈ [0, 2π] and its action is defined by kinetic and topological parts

S =

∮
dt

Λ

2
α̇2 + Stop(ω) , (2.1)

where α̇ = dα/dt, and Λ = mR2 is the corresponding moment of inertia for rotation.
The topological part Stop ∼

∫
dtα̇(t) does not lead to any “force” – there is no contri-

bution to the classical equation of motion – but it provides an extra phase factor in the
quantum partition function. The phenomenon was introduced by Aharonov and Bohm [55].
We remind the reader that this phase is an external parameter which can be induced by a
solenoid in extra dimensions, provided the rotating particle is charged and the time derivative
is generalized to the long gauge-invariant derivative including the A4 field.

The quantum mechanical spectrum of states is obtained via quantization of the angular
momentum l and the partition function at temperature T is

Z1 =
∞∑

l=−∞

exp

(
− l2

2ΛT
+ ilω

)
, (2.2)

where, for convenience, we normalized the Aharonov-Bohm contribution to a phase ω, to
conform with literature [98]. Since the angular momentum l is integer-valued, each term in
Z1 is a periodic function of this phase, with a natural 2π period. Note also that positive and
negative l cancel the imaginary part, so Z1 is real. Finally, this sum is best convergent at
small temperature T , where only a few states close to the ground state with l = 0 dominate.

In the dual approach, finite temperature is introduced via the Euclidean Matsubara time
defined on another circle τ ∈ [0, β ≡ 1/T ]. The path integral that leads to the partition
function needs to be done over the periodic paths, x(0) = x(β), so one may say that the
Euclidean theory is a particle on a double torus.

Classes of paths which make a different number n of rotations around the original circle
can be defined as “straight” classical periodic paths

xn(τ) = 2πn
τ

β
, (2.3)
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plus small fluctuations around them. Carrying out a Gaussian integral over them leads to
the following partition function,

Z2 =
∞∑

n=−∞

√
2πΛT exp

(
− TΛ

2
(2πn− ω)2

)
. (2.4)

The key point here is that these quantum numbers, l used for Z1 and n for Z2, are very
different in nature. In Z1, each term of the sum is periodic in ω, while in Z2, this property
is recovered only after summation over n. The temperature T in Z2 is in the numerator of
the exponent, so this sum converges best at high temperature, unlike the sum in Z1. Indeed,
at high T the Matsubara circle becomes small and the path integral is dominated by paths
with small number of windings.

Despite such differences, both expressions are in fact the same! In this toy model, it is
not difficult to do the sums numerically and plot the results. Furthermore, one can also
derive the analytic expressions, expressible in terms of the elliptic theta function of the third
kind,

Z1 = Z2 = θ3

(
− ω

2
, exp

(
− 1

2ΛT

))
, (2.5)

which is plotted in Fig. 2.1 for few values of the temperature T .
Mathematically, the identity of the two sums can be traced to the fact that our path

integral is defined on two circles, or, equivalently, a 2d torus, and the circles can be inter-
changed. In string theory, such relations are known as T-duality [99]. In practice, these are
the low-temperature and the high-temperature approximations, often used without noticing
the exact summation and duality.

Even if one is not able to identify the sums as the same elliptic function, the equality
can be seen from the observation that the sum Z1 is the discrete Fourier transform of the
Gaussian, which is known to be the “periodic Gaussian” appearing in Z2. One can further
recognize that the identity of the two sums is just a particular case of a more general relation
known in mathematics as the Poisson summation formula, valid not only for a Gaussian but
for arbitrary functions. For reference, we mention here one particular version [100],

∞∑
n=−∞

f(ω + nP ) =
∞∑

l=−∞

1

P
f̃

(
l

P

)
ei2πlω/P , (2.6)

where f(x) is some function, f̃ is its Fourier transform, and P is the period of both sums as
a function of the “phase” ω.

2.2 Semiclassical Theory and Monopoles

2.2.1 Theories with Extended Supersymmetry

All of the following discussion concerns a Euclidean theory defined on R3 × S1. In this
section, unlike in the following one, all of the fields, including the fermions, have periodic
boundary conditions on S1, and therefore supersymmetry is not broken.
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Figure 2.1: The partition function Z of the rotator as a function of the external Aharonov-
Bohm phase ω (two periods are shown to emphasize its periodicity). The (blue) solid, (red)
dashed and (green) dash-dotted curves are for ΛT = 0.3, 0.5, 1.

We study the weak coupling g � 1 scenario, which makes the instantons and their
constituents – as well as the monopoles with actions/masses O(1/g2) – heavy enough to
trust the dilute gas approximation. This lets us focus on a single object and avoid finite-
density (many-body) complications. In the N = 4 theory, the charge does not run and the
coupling g is simply an input parameter. In the N = 2 theory, however, the coupling does
run, and one needs to select the circumference of the circle β to be small enough such that
the corresponding frequencies ∼ 2π/β are large enough to ensure weak coupling.

Compactification of one coordinate to the circle is needed to introduce “holonomies,”
gauge invariant integrals over the circle

∮
dxµA

µ,
∮

dxµC
µ of the electric and magnetic po-

tentials, respectively. Their values can have non-zero expectation values, which can be
viewed as external parameters given by Aharonov-Bohm fluxes through the circle induced
by a solenoid in extra dimensions. These holonomies will play important role in what follows.
Dorey et al. [98] call these external parameters ω and σ, respectively.

The theories with extended supersymmetry N = 2, 4 have one and six adjoint scalar
fields, respectively. These two theories also have, respectively, 2 and 4 fermions, so that
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there is balance between bosonic and fermionic degrees of freedom.
In order to make the discussion simpler, one assumes the minimal non-Abelian color group

SU(Nc) with the number of colors Nc = 2. This group has only one diagonal generator τ 3,
breaking the color group SU(2)→ U(1). For simplicity, all vacuum expectation values (VEV)
of the scalars, as well as both holonomies are assumed to be in the diagonal direction, so the
scalar VEVs and ω and σ are single-valued parameters without indices. In the general group
SU(Nc), the number of diagonal directions is the Abelian subgroup, and thus the number of
parameters is Nc − 1.

Considering the theories on the Coulomb branches, with nonzero VEVs of the scalars
φA, A = 1 . . . 6, one can naturally use the original BPS version of the ’t Hooft-Polyakov
monopole, with a mass

M =

(
4π

g2

)
φ . (2.7)

We will only discuss the N = 4 case, following Dorey and collaborators [98]. Six scalars
and two holonomies can be combined to vacua parameterized by 8 scalars, extended by
supersymmetry to 8 chiral supermultiplets. These 8 fermions have zero modes, describing
their binding to monopoles.

The SU(2) monopole has four collective coordinates, three of which are related with
translational symmetry and location in space, while the fourth is rotation around the τ 3

color direction,
Ω̂ = exp(iατ̂ 3/2) . (2.8)

Note that such a rotation leaves unchanged the VEVs of the Higgses and holonomies, as
well as the long-distance Abelian A3

µ ∼ 1/r tails of the monopole solution. Nevertheless,
these rotations are meaningful because they do rotate the monopole core – made up of
non-Abelian A1

µ, A
2
µ fields – nontrivially. It is this rotation in the angle α that makes the

monopole problem similar to a quantum rotator. As was explained by Julia and Zee [101], the
corresponding integer angular momentum is nothing but the electric charge of the rotating
monopole, denoted by q.

One can derive the partition function at certain temperature, which (anticipating the
next sections) we will call T ≡ 1/β,

Zmono =
∞∑
k=1

∞∑
q=−∞

(
β

g2

)8
k11/2

β3/2M5/2

× exp

(
ikσ − iqω − βkM − βφ2q2

2kM

)
,

(2.9)

where k is the magnetic charge of the monopole. The derivation can be found in Ref.
[98]; we only comment that the temperature in the exponent only appears twice, in the
denominators of the mass and the rotation terms, as expected. The two other terms in the
exponent, exp(ikσ − iqω), are the only places where holonomies appear, as the phases picked
up by magnetic and electric charges over the circle.

Now we derive an alternative 4d version of the theory, in which we will look at gauge
field configurations in all coordinates including the compactified “time coordinate” τ . These
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objects are versions of instantons, split by a nonzero holonomy into instanton constituents.
Since these gauge field configurations need to be periodic on the circle, and this condition
can be satisfied by paths adding arbitrary number n of rotations, their actions are

Sn =

(
4π

g2

)(
β2|φ|2 + |ω − 2πn|2

) 1
2

, (2.10)

including the contribution from the scalar VEV φ, the electric holonomy ω, and the winding
number of the path n. In the absence of the holonomies, the first term would be M/T as
one would expect.

The partition function then takes the form [98]

Zinst =
∞∑
k=1

∞∑
n=−∞

(
β

g2

)9
k6

(βM)3

× exp

(
ikσ − βkM − kM

2φ2β
(ω − 2πn)2

)
,

(2.11)

where M = (4πφ/g2), the BPS monopole mass without holonomies; thus the second term in
the exponent is interpreted as just the Boltzmann factor. The “temperature” appears in the
unusual place in the last term (like for the rotator toy model). The actions of the instantons
are large at high-T (small circumference β); the semiclassical instanton theory works best
at high-T .

The Poisson duality relation between these two partition functions, Eqs. (2.9) and (2.11),
was originally pointed out by Dorey and collaborators [98]. In this chapter, it was explained
earlier for the simpler toy model of a quantum rotator. Its mathematical origins were pre-
sumably clarified enough by our toy model, and it is perhaps enough to remind the reader
that the two circles (or the double torus) at play are the angle α ∈ [0, 2π] related with the
rotation of the monopole in ordinary/color space and the compactified coordinate τ ∈ [0, β].

2.2.2 Pure Gauge Theories

Now consider theories without adjoint scalars, which do not have an obvious ’t Hooft-
Polyakov monopole solution. One example of such a theory discussed in Ref. [98] is the
N = 1∗ theory obtained from the N = 4 theory by giving a mass to the three chiral multi-
plets, which, in the IR, eliminates 3 out of 4 fermions and all 6 scalars. We will not discuss
this particular case, but proceed directly to pure gauge theory, starting from the instantons.

At zero temperature, the Euclidean spaceR4 is symmetric in all four coordinates, and thus
the corresponding saddle points of the integral over fields – the instantons – are 4d spherically
symmetric. At finite temperatures, Euclidean time is defined on the circle τ ∈ [0, β]. The
corresponding solitons – the calorons – are deformed periodic instantons.

In order to keep the weak coupling and the small density approximation valid, we need
to consider sufficiently high T . What this means practically will be discussed at the end of
the chapter. For simplicity, for now we will also ignore the issue of a dynamically generated
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potential and mean value of the electric holonomy on the time circle, and continue to consider
it to be an external parameter; we are therefore considering a “deformed” gauge theory.

The presence of the holonomy is known to split the calorons into Nc constituents [86–
88] known as instanton-dyons (or instanton-monopoles). The holonomy eigenvalues µi, i =
1 . . . Nc enter the gluon and instanton-dyon masses via their differences νi = µi+1 − µi. We
will consider only the simplest case of the number of colors Nc = 2, in which case there is
a single holonomy parameter. The caloron is composed of two types of the self-dual dyons,
known as the time-independent M dyon and the time-twisted L dyon [102].

Following the discussion above, we need to consider a larger set of saddle-point config-
urations with all possible periodic paths. To be explicit, let us derive the corresponding
semiclassical configurations. One starts with the static BPS monopole, with the A4 com-
ponent of the gauge field now as the adjoint scalar. In the simplest “hedgehog” gauge, the
gauge fields are

Aa4 = nav

(
coth(vr)− 1

vr

)
,

Aai = εaij
nj
r

(
1− vr

sinh(vr)

)
, (2.12)

where na = xa/r is the spatial unit vector and v is the VEV of A4 at large distances r →∞.
The twisted solution is obtained in two steps. The first is the substitution

v → n(2π/β)− v , (2.13)

and the second is the gauge transformation with the gauge matrix

Ω̂ = exp

(
− i

β
nπτσ̂3

)
, (2.14)

where we recall that τ = x4 ∈ [0, β] is the Matsubara time. The derivative term in the gauge
transformation adds a constant to A4 which cancels out the unwanted n(2π/β) term, leaving
v, the same as for the original static monopole. After “gauge combing” of v into the same
direction, this configuration – we will call Ln – can be combined with any other one. The
solutions are all self-dual, but the magnetic and (the Euclidean) electric charges are negative
for positive n, opposite to the original BPS monopole M for which both are positive. The
neutral combination M + L1 is the finite-T instanton. Their non-linear exact superposition
was derived in Refs. [86, 87].

The action corresponding to this solution is

Sn = (4π/g2)|2πn/β − v| . (2.15)

The contribution to the partition function requires the calculation of the pre-exponent, due
to quantum fluctuations around the Ln solution, which has not been calculated explicitly as
of yet.

In the particular case of the L = L1 dyon, the contribution to the partition function can
be obtained from the explicit calculation of the moduli for the caloron (finite temperature
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instanton, the M+L system) in Ref. [102]. For the color SU(2) group, taking the limit of
large separation between the dyons, the L-dyon contribution has the form

dZL ∼ d3xL

(
8π2

g2

)2

e
−
(

8π2

g2

)
ν̄(

2πν̄
)8ν̄/3

, (2.16)

with ν̄ = 1 − ν and ν = vT/2π. Here the exponent corresponds to the classical action, the
power 2 of the first semiclassical factor stems from zero modes Nzero modes/2, and the last
factor is from the large distance limit of the volume of moduli space according to Ref. [102].
See also Appendix C of Ref. [90].

Unlike in the theories with extended supersymmetry, in QCD-like theories there are no
(partial) cancellations in the determinant of the nonzero modes between bosons and fermions,
and the normalization constant require tedious calculation of the nonzero mode part which
was not yet done. The renormalizability however requires that it appends the bare charge in
the action to the correct running coupling at the relevant scale is reproduced. This means
that one expects the exponent to read

dZLn ∼ d3xL exp

[
− |2πTn− v|

(
8π2

g2
0

+
22

3
log

(
p0

|2πTn− v|

))]
, (2.17)

where the coupling g0 is the defined at the normalization scale p0. Similarly, the power of
the action in numerator must be appended by the two-loop corrections to the two-loop beta
function, and so on.

For our subsequent discussion, we will ignore the running and only keep the first term,
taking the mean coupling to be just a constant at a characteristic p0 = 2πT 〈ν̄〉, say

S0 ≡ SL + SM =
8π2

g2
0

= 10 . (2.18)

Simulations of instanton-dyon ensembles [90] were done for S0 ranging from 5 to 13, and
thus defining a rather large range of dyon densities. Higher-twist instantons Ln for n > 1
or n < 0 are all strongly suppressed and in practice can be ignored; the instanton-dyon
ensemble calculations performed in Ref. [90] only included the n = 0 time independent dyon
M and the first twisted dyons L1 because, in this range of temperatures, the holonomy phase
ω changes from a small value to π at the confining phase transition, where ω and 2π−ω are
comparable.

In the present calculation, we will keep all of them, preserving exact periodicity, and
write the semiclassical partition function as

Zinst =
∑
n

e
−
(

4π

g20

)
|2πn−ω|

(2.19)

It is periodic in the holonomy, but note that, unlike in Eq. (2.11), it has a modulus rather
than a square of the corresponding expression in the exponent. This is due to the fact that
the sizes of Ln and their masses are all defined by the same combination |2πn − ω|T and
therefore the moment of inertia Λ ∼ 1/|2πnβ − v|.
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According to the general Poisson relation, Eq. (2.6), the Fourier transform of the corre-
sponding function appearing in the sum in Eq. (2.19) reads

F
(
e−A|x|

)
≡

∫ ∞
−∞

dx ei2πνx−A|x|

=
2A

A2 + (2πν)2
, (2.20)

and therefore the dual partition function, which we propose is that of the monopole, is

Zmono ∼
∞∑

q=−∞

eiqω−S(q) , (2.21)

where

S(q) = log

((
4π2

g2
0

)2

+ q2

)
≈ 2log

(
4π2

g2
0

)
+ q2

(
g2

0

4π

)2

+ . . . , (2.22)

where the approximation is for q � 4π2/g2
0.

The action of a monopole, although still formally large in weak coupling, is only a loga-
rithm of the semiclassical parameter; these monopoles are therefore lighter than instanton-
dyons. While the specific value of the monopole action

Smono = 2 log

(
4π2

g2

)
≈ 2 log(4) ≈ 2.8

can still be considered larger than 1, one may ask whether it can be even parametrically
modified by the powers of logs in the instanton partition function. In summary, it is not yet
clear whether those monopoles are or are not truly semiclassical.

The very presence of an object that admits rotational states implies that the monopole
core is not spherically symmetric. The Poisson-rewritten partition function has demonstrated
that the rotating monopoles are not the rigid rotators, because their action, Eq. (2.22),
depends on the angular momentum q and is quadratic only for small values of q. The slow
(logarithmic) increase of the action with q implies that the dyons are in fact shrinking with
increased rotation. In the moment of inertia, this shrinkage is more important than the
growth in the mass, as the size appears quadratically. As strange as it sounds, it reflects on
the corresponding behavior of the instanton-dyons Ln with the increasing n.

2.2.3 Monopoles in QCD

Let us first recall the setting and conclusions of the preceding section. The coupling is
presumed to be small, so the action at the relevant scale is large 4π/g2 � 1 and the semi-
classical calculation is well controlled. This implies that the corresponding temperature is
“high enough.” The holonomies ω, σ, treated as external Aharonov-Bohm phases imposed
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on the system, create a certain “Higgsing” of the gluons, with only the diagonal ones re-
maining massless. Calorons are split into the instanton-dyons, and the semiclassical partition
function, appended by all Ln contributions, can be calculated.

What we would actually like to study is QCD with quarks, at temperatures around
the deconfinement transition T ∼ Tc. Indeed, heavy-ion collisions create matter with T
between roughly 2Tc ≈ 300 MeV and 0.5Tc. Most finite-T lattice studies are devoted to this
temperature range as well. In this regime the action of the L1 instanton-dyon is numerically

SL1 =
4π2

g2
∼ 4

with Ln having larger actions respectively. So, the semiclassical suppression exp(−SL1) ≈ e−4

seems to be robust enough to keep only L1 and M dyons. But, including the pre-exponents,
one finds that the ensemble is not really dilute, and in order to perform the integration
over the collective variables, one needs to solve a nontrivial many-body problem of a dense
instanton-dyon plasma. The instanton-dyon ensemble of M,L1 dyons does shift the potential
for the electric holonomy dynamically to its “confining” value, for T < Tc. Semiclassical
ensembles of instanton-dyons also explain chiral symmetry breaking, and their changes with
flavor-dependent quark periodicity phases. Further development of the semiclassical theory
is, therefore, well justified.

2.3 Summary

The main point of this work is that any semiclassical partition function, once derived, can be
Poisson-rewritten into an identical “Hamiltonian” form, with the sum over certain excited
states. We have shown how one can do so for pure gauge theory, without scalars, using
relatively schematic form of the semiclassical partition function, for which we calculated its
Poisson dual. We proposed that the resulting partition function can be interpreted as being
generated by moving and rotating monopoles.

Although such rotations are well known in principle as Julia-Zee dyons with real elec-
tric charge (unlike that of the instanton-dyons, which only exist in the Euclidean world)
and studied in theories with extended supersymmetries, to our knowledge the existence of
multiple rotational states of monopoles has not yet been explored in monopole-based phe-
nomenology. In particular, one may wonder how the existence of multiple rotational states
affects their Bose-condensation at T < Tc, the basic mechanism behind the deconfinement
transition. The electric charges of the rotating monopoles should, therefore, also contribute
to the jet quenching parameter q̂ and the viscosity, which was not included before.

We note that perhaps a useful “middle ground” connecting the two regimes – the idealized
semiclassical dilute gas and the real-life finite-T QCD – would be lattice studies of the gauge
theory with an induced holonomy at high T . To our knowledge, this has not been done in
detail.

The first steps in this direction were semiclassical studies by introduction of certain
masses, by Dorey et al. using N = 4 → N = 1 [98] and by Unsal et al. for N = 2
deformed toward pure gauge theory [96]. The conjectured continuity of both the confined
and deconfined phases, from dilute to dense regimes, was never studied nor confirmed.
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Lattice measurements of the holonomy potential for the SU(2) and SU(3) gauge theories
with fixed external holonomy have been performed in Ref. [103]. The perturbative renor-
malized potential was derived and compared to these data in Ref. [104]. Such a subtraction
opens the door to studies of the monopole contribution, which have not been attempted as of
yet. Other lattice studies, of the “deformed QCD” with an extra holonomy-dependent term
in the action, were carried out in Ref. [105]. Finally, the introduction of light quarks would
allow study of fermionic zero modes of both semiclassical instanton-dyons and monopoles,
giving another way to test their mutual correspondence.
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Chapter 3

Simulating Ensembles of Monopoles

This chapter is based on:

• A. Ramamurti and E. Shuryak (2017). Effective Model of QCD Magnetic Monopoles
From Numerical Study of One- and Two-Component Coulomb Quantum Bose Gases.
Phys. Rev. D95(7), 076019. doi:10.1103/PhysRevD.95.076019 arXiv:1702.07723.

We now focus on the properties of a quantum ensemble of monopoles. The purpose of
this work is to elevate the classical dual Coulomb plasma picture [69] to an effective quantum
many-body theory of monopole ensembles. The need for a quantum model is clear: without
one, it would not be possible to study the Bose-Einstein condensation transition that is
essential to the dual superconductor model of confinement.

Lattice simulation of gauge theories include magnetic monopoles as certain solitons made
of glue. These simulations are based on first principles, namely the QCD Lagrangian. How-
ever, they also include many more degrees of freedom – such as quark and gluon quasiparticles
at T > Tc – and are therefore very expensive. Our aim is to create an effective model of the
monopoles and quantify their contributions to various observables. In doing so, we realize
that one can only separate the monopoles from other degrees of freedom to a certain degree.

To simulate these quantum Coulomb Bose systems, we will use Path-Integral Monte
Carlo (PIMC). This method has been widely used since the 1980s; for a quick review, see
Sec. 1.1.3, and for thorough reviews, see Refs. [76, 77].

We will first investigate how the Coulomb interaction between the magnetic quasipar-
ticles affects the critical temperature Tc of their BEC phase transition, through numerical
simulations of one- and two-component (plus and minus charged) Bose gases at different
coupling strengths. We will map the results of our simulations for the two-component Bose
gas to those found on the lattice in order to find the parameters for our model that yield
the same effective behavior of the magnetic monopoles, and make estimates of the monopole
contribution to QCD thermodynamics.

3.1 Finding the Critical Temperature for BEC

Here, we will briefly describe three methods of finding the critical condensation temperature
to be used below. These are more feasible than the brute force approach, based on a calcu-
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lation of the free energy of the ensemble with subsequent determination of specific heat and
its peak.

The first is the method outlined by Pollock and Ceperley [106], and Pollock and Runge
[107], based on supercurrent and its finite-size scaling. The second method, developed by
Cristoforetti and Shuryak [108], uses the permutation-cycle statistics of the system to find
Tc. This method has not been used in analysis of PIMC simulations, so this work also seeks
to test the accuracy of this method. It has been used in Refs. [64, 65] for lattice monopoles,
confirming that deconfinement Tc is indeed the BEC transition of the monopoles. Finally,
we will attempt to use a machine learning algorithm to classify which path configurations
are condensed, and use the classifications to determine Tc.

3.1.1 Method 1: Finite-Size Scaling

Following the discussion in Refs. [106, 107], we can identify the winding number of the
system with the superfluid fraction, and then using finite-size scaling, determine Tc. In
experimental settings, the normal and superfluid components of a system are determined
from boundary behavior. If we introduce a velocity v to the boundaries of our system, we
have a new density matrix

ρv = exp{βHv} , (3.1)

with

Hv =
∑
j

(pj −mv)2

2m
+ V . (3.2)

The normal component of the fluid is the portion that responds to this boundary motion,
so we can write for the total momentum,

ρN
ρ
Nmv = 〈P|P〉v . (3.3)

We have for the free energy of this system,

exp{−βFv} = Tr{ρv} , (3.4)

so we can write
ρN
ρ
Nmv = −∂Fv

∂v
+Nmv , (3.5)

or, equivalently,
ρs
ρ

=
∂(Fv/N)

∂(1
2
mv2)

→ ∆Fv
N

=
1

2
mv2ρs

ρ
+ ... (3.6)

In the path integral formalism, the density matrix with a velocity obeys the Bloch equa-
tion with moving walls, with periodic boundary conditions such that it is identical with a
translation by a lattice vector. We can define a transformed density matrix, ρ′, by

ρv(R,R
′; β) = exp

{
i
m

~
v ·
∑
j

(rj − r′j)

}
ρ′(R,R′; β) . (3.7)
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This new density matrix obeys the Bloch equation in the case of stationary walls, but
obtains a factor of exp

{
im~ v · L

}
in periodic translations. Keeping track of the number

of times the periodic boundary conditions are applied can be done with the definition of
a winding number, which counts the number of times a particle winds around the spatial
directions of periodic box before returning to its “original” location.

The free energy change induced from a velocity v can be written as

exp {β∆Fv} = exp
{
i
m

~
v ·WL

}
, (3.8)

β∆Fv =
m2v2

2~2

〈W 2|W 2〉L2

3
+ ... (3.9)

We can thus identify, with use of Eq. (3.6),

ρs
ρ

=
m

~
〈W 2|W 2〉L2

3βN
. (3.10)

From assumptions of finite-size scaling, we have that, near Tc,

ρs
ρ

(T, L) = L−1Q(L−1/νt) , (3.11)

with t = (T −Tc)/Tc. As a result, the functions Lρs/ρ(T, L), for different values of L, should
all cross at Tc, barring some minor corrections, expanded upon in Ref. [107].

3.1.2 Method 2: Permutation Cycles

Following the example of Ref. [64], the partition function of a non-interacting ideal gas of
bosons can be broken up into a product of contributions of k-cycles – where, for example,
the permutation (1, 2, 3)→ (2, 3, 1) is considered a 3-cycle – as

Z =
1

N !

∑
P

∏
k

znkk , (3.12)

where nk is the number of k-cycles present in the system. Feynman’s idea was that the
sum over Bose-cluster size k of the density of k-cycles should diverge at Tc, which in turn
implies that some critical action S∗ required to permute two particles should be reached. He
justified this idea for an ideal gas, and in Ref. [108], it was extended to interacting systems
such as liquid 4He.

Expanding these contributions,

zk(T ) =

∫
dy1..dyk

〈
y2, y3, ..., yk, y1|e−βĤ |y1, y2, ..., yk

∣∣∣y2, y3, ..., yk, y1|e−βĤ |y1, y2, ..., yk

〉
=

∫
dy1

〈
y1|e−kβĤ |y1

∣∣∣y1|e−kβĤ |y1

〉
≡ z1(T/k) . (3.13)

The partition function for a non-relativistic free particle in a box is well known, so we can
get the full contribution

zk(T ) =
V

λ3
Bk

3/2
, (3.14)
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where λB is the thermal de Broglie wavelength and V is the volume of the box. Then the
partition function is

Z =
1

N !

∑
P

∑
k

(
V

λ3
Bk

3/2

)nk
. (3.15)

This quantity is not easily computed for fixed particle number, but this problem is avoided
if we go to the Grand Canonical ensemble, for which the partition function is

Z =
∏
k

(
V eµk/T

λ3
Bk

5/2

)
. (3.16)

From this partition function, we can extract the density of k-cycles

ρk(T ) ≡ 〈nk|nk〉
V

=
eµk/T

λ3
Bk

5/2
. (3.17)

The total particle density is

N

V
=
∑
k

kρk(T ) =
∑
k

eµk/T

λ3
Bk

5/2
, (3.18)

which has an upper limit of µ = 0. This approach is fully valid for any non-interacting gas
above Tc (i.e. with k-cycles on the microscopic scale). Therefore, by measuring numerically
the densities ρk at various temperatures of a given system, we can fit a curve of the function
above to find a temperature at which the quantity µ/T vanishes; this value will be the critical
temperature, Tc, for Bose-Einstein condensation (BEC).

In this work, as was studied in Refs. [64, 65], we are not dealing with a non-interacting
gas of particles, for which the approach above is exact. Nevertheless, we expect the densities
of cycles to decrease exponentially with k

ρk(T ) = e−µ̂kf(k) , (3.19)

where µ̂ = −µ/T and f(k) is some decreasing function of k of the form f(k) ∼ 1/kα. To find
the critical temperature, we look for the temperature the k-cycles are no longer suppressed
exponentially in k, i.e. µ̂→ 0.

3.1.3 Method 3: Machine Learning

With recent advances in computational power, machine learning algorithms are a fantastic
way to make predictions of outcomes given a set of inputs. These methods “train” the com-
puter on datasets with known outcomes, allowing the computer to tweak its classification
scheme such that a majority of input data points yield the correct output. After a classifi-
cation scheme is created, one can feed “new” data to the algorithm and obtain its predicted
classification.
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3.2 Applications of PIMC

The numerical simulations were carried out using a PIMC code written in C++, and the
analysis of the output data was done in Python and Mathematica. The algorithm for the
PIMC code was the traditional algorithm, with structures and Monte Carlo moves as outlined
in Ref. [76]. We implemented the worm algorithm, [78], which was used for simulations of
He4 and small values of the Coulomb coupling, but for large values of coupling, we ran
into problems with the acceptances of either the removal or insertion of particles into the
system, so we were forced to revert to the traditional algorithm. Internal energy – kinetic
and potential – was found using the primitive and virial estimators, both summarized in
Ref. [76], and worked out in detail in Ref. [77].

For the each simulation case – particle number, temperature, and coupling – we ran three
trials collecting 10000 Monte Carlo configurations post-equilibration, the data from which
was then binned and analyzed by a Python script. Error on the raw data was computed
using the Jackknife sampling method [109]. The fits for the data and errors on the fits were
computed using Mathematica’s NonlinearModelFit.

3.2.1 Liquid He4

The first task was to reproduce well-quantified results using the permutation-cycle critical
temperature analysis, in order to ensure the validity and applicability of this method. To
do so, we simulated a box of 128 4He particles interacting via the empirical Aziz potential
[110], and compared our results to the experimental results as well as previous computational
results [76]. The experimental result for the BEC critical temperature was found to be 2.17
K, while the calculations with the binary Aziz potential, shown in in Fig. 3.1, predict a
critical temperature of 2.19 K.

In order to compute the critical temperature using the permutation-cycle method, we first
determine the temperature dependence of the probability of finding a particle in a k-cycle
Pk(T ). From these probabilities, we compute the permutation-cycle densities, ρk(T ),

ρk(T ) =
NPk(T )

kV
, (3.20)

where N is the number of particles in the system, V is the volume.
The permutation-cycle densities for various temperatures are shown in Fig. 3.2. We can

then fit these densities via Eq. (3.19) to extract the suppression factor, µ̂. A few of these
fitted curves are shown in Fig. 3.2(a). At T = 2 K – below Tc – the exponential suppression
is not present, and thus observe permutation cycles with k > 30. This is a sign that at
this temperature in an infinite system, there will be a cluster of infinitely many particles;
the Bose condensate is present. In Fig. 3.2(b), one can see explicitly how the exponential
suppression appears at T > 2.2 K, visually portrayed by the gap between the 2.2 K and 2.3
K lines. Above Tc, the suppression factor grows larger with temperature.

Finally, after fitting all of the temperatures and finding µ̂(T ), we fit the µ̂ data with the
functional form,

µ̂(T ) = A(T − Tc)
ν , (3.21)
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Figure 3.1: The empirical two-body potential for liquid 4He, using parameters from Ref.
[110].
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Figure 3.2: The permutation cycle densities ρk at various temperatures for a system of 128
4He particles. Fig. (a) shows a wider range of temperatures. The lines are rough fits to
guide the eye. (b) focuses on temperatures near the critical value (neglecting error bars for
clarity). Note the gap between the 2.2K and 2.3K points.
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Figure 3.3: The exponential suppression of k-cycles as a function of temperature for the
4He system. The vanishing of the effective chemical potential µ̂ indicates the BEC critical
temperature Tc.
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from which we find Tc. The results of our simulations are seen in Fig. 3.3. Using the
permutation-cycle method, we find a critical temperature of 2.21±0.04 K. This result is
within 2% of reproducing the experimental critical temperature of the 4He system and within
1% of the critical temperature determined for the Aziz potential used in other numerical
calculations. We conclude that this method can indeed be used in path-integral Monte
Carlo to accurately find the critical temperature of interacting Bose systems.

3.2.2 One- and Two-Component Coulomb Gases

According to Einstein, the BEC of an ideal Bose gas happens at the critical temperature,

Tc =

(
2π~2

mkB

)(
n

ζ
(

3
2

)) 2
3

. (3.22)

where n is the density and m is the particle mass.
Extension of this relation to interacting Bose gases has an interesting history. There

was much debate in the literature – using Hartree-Fock, loop diagram, and renormalization
group calculations, for example – about even the sign of corrections to Tc; see Ref. [111] for
discussion and references.

Numerically, the dependence of BEC critical temperature on the strength of a hard
sphere potential was studied by Grüter, et al. [111]. It was found that at low densities the
critical temperature is increased by a repulsive interaction, while at high densities the critical
temperature is decreased, eventually recovering the well known 4He result. Their results are
shown in Fig. 3.4. This behavior at low densities can be explained with the calculation by
Holzmann, et al. [112].

As a first step in making an effective model for a quantum two-component Coulomb
Bose gas, we seek to find the dependence of Tc on the Coulomb interaction strength; i.e., by
varying α in

Vint(rij) = α
qiqj
rij

. (3.23)

In our numerical study, the magnitude of charges, q; the masses, m; ~; Boltzmann’s constant,
kb; and the density, n, are all scaled to 1. This leaves as variables only the temperature, T ,
entering via the period of the Euclidean time τ ∈ [0, 1/T ], the magnitude of the Coulomb
coupling, α, and the signs of the charges. In these units, the critical temperature for the
ideal Bose gas is

T0 = 2π

(
1

ζ
(

3
2

)) 2
3

= 3.3125 . (3.24)

and this value will be indicated by a horizontal dashed line in the plots to follow.
The Coulomb simulations were carried out for 8, 16, 32, and 64 particles, for both the

one- and two-component cases. For each simulation, there were 32 imaginary time-slices.
For the one-component simulations, we tested temperatures (in our units) from 1.6 to 5.1, in
intervals of 0.1, while for the two-component cases, we looked at temperatures in the range
of 0.4 to 5.1 in intervals of 0.1, and the range of 6 through 9 in intervals of 1.
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Figure 3.4: The critical temperature of a system of hard spheres as a function of their density.
From Ref. [111].

For the one-component Coulomb Bose gas, with compensating distributed charge com-
monly known as jellium, we seek to investigate the dependence of Tc on the strength of the
Coulomb coupling parameter, and compare, qualitatively, it to the relation in the hard-sphere
case.

The results of our simulations are shown in Fig. 3.5. The first thing to note is that
the two methods used produce results consistent within the statistical errors. Note further
that we find the same behavior at small values of the coupling as in the case of low-density
hard spheres [111]; the critical temperature for the BEC phase transition grows. Yet if the
coupling becomes large enough, Tc rapidly drops below the critical temperature for an ideal
Bose gas. Eventually, as the particles are “too repulsive,” the BEC phenomenon becomes
impossible since it becomes essentially “too costly” in terms of the action to permute them.

Let us also note that, while the permutation-cycle method agrees well with the older
finite-size scaling method, the requirements for the system size to yield comparable results
are different. The finite-size scaling method can give decent results even using two systems,
of only 8 and 16 particles, while the permutation cycle method required many runs of at
least 32 particles. Therefore, at least in the case of long-range forces, which take a large
amount of CPU time to compute, the finite-size scaling method may be more practical. If
one, however, is looking at other quantities that require larger system sizes to begin with
– such as the superfluid fraction itself (and not just how it scales with system size) – the
permutation cycles method is an easy way of determining Tc with data already gathered
from those larger system simulations.
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Figure 3.5: The critical temperature for the BEC phase transition as a function of the
coupling, α. The red circles are the results of the finite-size scaling superfluid fraction
calculation for systems of 8, 16, and 32 particles; and the blue triangles are the results of the
permutation-cycle calculation for a system with 32 particles. The black dashed line denotes
the Einstein ideal Bose gas critical temperature, T0.
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Figure 3.6: The results of the permutation-cycle calculation for a system with 32 particles at
α = 1 along with a fitted curve. The vanishing of the effective chemical potential µ̂ indicates
the critical temperature Tc.
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Figure 3.7: The results of the finite-size scaling of the superfluid fraction calculation for 8
(red circles), 16 (blue triangles), and 32 (green squares) particles at α = 5. The point where
the data sets intersect is the critical temperature Tc.
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α Permutation Superfluid Machine Learning
0 3.313 3.313 –
1 3.358 3.312 3.33
2 3.379 3.342 3.383
5 3.472 3.520 3.493
10 3.552 3.632 3.597
20 3.446 3.481 3.489
50 3.313 3.313 3.312

Table 3.1: Machine learning model results for the critical temperature compared to the per-
mutation cycles and superfluid fraction methods, for various couplings α of a one-component
Coulomb Base gas. Errors are visible in Fig. 3.5, and are .005 for the machine learning model
results.

Examples of the analysis methods are shown in Figs. 3.6 and 3.7. In Fig. 3.6, we see the
µ̂ data for the 32 particle system at α = 1, which were obtained by fitting the permutation
cycles as explained above. The µ̂ data is then fitted to find Tc, which is where the solid fitted
curve intersects the x-axis. In Fig. 3.7, we see the superfluid fraction data for three system
sizes at α = 5. The data is linearly fit around the intersection point, as described above.

For the machine learning algorithm, we will train the computer on a dataset from the free,
ideal Bose gas, giving it the data on permutations and winding from path configurations.
The model chosen was the Support Vector Machine (SVM) classifier [113], which effectively
projects an n-dimensional dataset into an n + m-dimensional space, and finds a best-fit
hyperplane that divides the data based on its final classification; in our case, the classification
will be whether the path configuration is for a system above or below Tc.

We use a simulation of 32 free bosons, which is not computationally taxing, and for which
we know the exact critical temperature (T = 3.3125 from the Einstein formula for ρ = 1
and m = 1). The preprocessing of the data uses the principle of Jackknife sampling [109],
and takes sets of 200 path configurations, averages them, and outputs the permutation and
winding statistics for each ensemble of configurations. These are the data used to train the
models.

The input data given to the algorithm is shown in Fig. 3.8; this is distribution of below Tc
(blue) and above Tc (red) ensemble averaged data projected onto the space of permutations
cycles. For example, in the second plot in the first row, the ensembles are plotted as a
function of percentage of particles in 2-cycles vs percentage of particles in 3-cycles (denoted
(2,3) on the plot), with the color of the point dictating whether that particular ensemble was
above or below Tc. We can see that some pairs of permutation probabilities display a sharp
separation in critical temperature. The resulting SVM classifier model was cross validated
to mean average error (MAE) of ∼ .005.

We only used the algorithm for the one-component gas, for which the results as shown
in Table. 3.1. We find that the algorithm falls within error of the other two methods for
finding Tc.

Following the one-component Coulomb Bose gas, we carried out the PIMC simulations
and analysis for a neutral system of particles with two different charges, +1 and −1, with
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Figure 3.8: Visualization of the input data for a free Bose gas for the machine learning
model. Each point represents an average of 200 configurations, the color indicates whether
the configurations are from a system above (red) or below (blue) Tc, and quantities on
the axes are the percentage of particles in a k-cycle. The plots on the diagonals are the
distributions of configurations of the systems for each k-cycle, from 2 through 6. The off-
diagonal plots show the distributions of k-cycles vs. k′-cycles.
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Figure 3.9: The critical temperature for the BEC phase transition for the two-component
Bose gas as a function of the coupling, α. (a) The red circles and the blue triangles are
the results of the finite-size scaling superfluid fraction calculation and the permutation-cycle
calculation, respectively, for systems without core repulsion.. The purple diamonds and
green squares are the results of the finite-size scaling superfluid fraction calculation and
the permutation cycle calculation, respectively, for systems with core repulsion. The black
dashed lines denote the Einstein ideal Bose gas critical temperature for a particle of mass
m = 1, T0, and for a particle of mass m = 2, T0/2. (b) A zoom-in of the results in (a) for
systems with core repulsion.
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and without repulsive core; the results are shown in Fig. 3.9.
At very small couplings with and without core repulsion, the behavior of the critical

temperature is very similar to that of the one-component case; the particles are only slightly
interacting and therefore have a critical temperature very close to that of an ideal gas. When
the coupling increases, however, the point-like (without core) two-component gas has a split
in critical temperature, which acts like the one-component case for some particles, and drops
much more quickly than that of the one-component case for others to approximately T0/2,
which is the ideal gas condensation temperature for particles with mass m = 2, i.e., a neutral
molecule comprised of particles with two opposite charges.

The finite-size (with core) two-component gas, seen more clearly in Fig. 3.9(b), does not
form these molecules and thus has the behavior of the one-component gas. It is important
to note that even with a second component added, the finite-size particles have the same
critical temperature behavior as a one-component gas: a 5-10% deviation upward before
dropping at very strong couplings.

At extremely high couplings, the critical temperature drops for both cases. We do not
have the accuracy in our data to confidently state whether the molecular phase has the same
rising Tc at lower couplings that is seen in the one-component case.

The data seen in Fig. 3.9 for the case of point-like particles is from both the permutation
cycle method and the finite-size scaling method for small couplings, but only finite-size scaling
method for larger couplings, as there was too much statistical noise in the permutation
statistics to obtain a good fit for a critical temperature. This may be remedied by a larger
sample size or a larger system size, as the particles at higher coupling tend to become “stuck”
if they enter the molecule phase. We do not have this problem when the particles are given
a repulsive core.

One of the key observables we can use when comparing our results to the lattice monopole
results is the spatial correlations of particles. In our simulations, we keep track of the
Euclidean-time paths of individual particles, allowing us to observe their distributions in
relative distance r as a function of coupling strength and temperature. We define the pair
correlation, g(r), to satisfy

n(r) = 4πρ

∫ r

0

g(r′)r′2dr′ , (3.25)

where n(r) is the number of particles found between 0 and r, and ρ = N/V is the overall
density of particles in the volume; g(r) is, by definition, normalized to distribution of an
ideal gas. In this work, for cases in which we have two components, we denote the same
charge correlation with g++(r) and the opposite charge correlation with g+−(r).

Fig. 3.10 shows a sampling the radial correlations of the one-component Bose gas at
different temperatures at couplings α = 1, 5, 10, 20, 50, and 100.

We find that at weak couplings, α < 2, the correlation functions flattened out as the
temperature increased; this is caused by the fact that the thermal energy is greater than the
potential repulsion in these cases. The slight increase in the correlation function near r = 0
is caused mostly by statistical fluctuations, but also in part by the fact that we are observing
a jellium system with a neutralizing smeared background charge. At couplings α ≥ 10, the
variations of temperature – in the range we probed (0.5 Tc to 1.8 Tc) are not reflected in
the correlation functions. As the coupling is increased the correlation functions show signs
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of structure, particularly at α ≥ 20.
Fig. 3.11 shows the radial correlations of the for the two-component gas with no core at

different temperatures at couplings α = 0.5, 1, 2, and 5. Without any core repulsions, at
couplings α ≥ 5, the particles form small bound states; the particles essentially make point-
like dipoles, especially at T > Tc. This is seen from the same-charge correlator being equal to
the opposite-charge correlator at distances r ≥ 0.1. An interesting feature seen in Fig. 3.11
is that both the anti-charge and same-charge correlations increase – both in overall range as
well as in magnitude at short range – as T approaches Tc from below and then subsequently
fall as temperature is increased further. The maximum short-range correlations occur slightly
under Tc for small couplings α ∼ 1, and move further above Tc for larger couplings.

Figs. 3.12 and 3.13 show the radial correlations of the for the two-component gas with
a repulsive core at different temperatures at couplings α = 0.5, 1, 5, and 10. At low tem-
peratures, T < Tc/3, the probability for there to be two oppositely charged particles in a
bound state is large even at small couplings α < 1; at larger couplings, we find bound states
at higher temperatures. At α ∼ O(10) and larger, at low temperatures, we see the same
screening phenomenon we saw when there was no repulsive core; the molecule acts as a
neutral dipole, which causes the same-charge correlator (Fig. 3.13, bottom right panel) to
be greater than unity.

Fig. 3.14 shows the internal energy per particle of the two component gas with a core,
in units of the temperature, across various temperatures and couplings. Let us remind the
reader that in the 2-body Coulomb problem, the virial theorem tells us that mean potential
energy is −1/2 times the mean kinetic energy, so the total energy is positive. Many-body
strong coupling problems, on the other hand, can create crystal-like correlations between
many particles, producing larger potential energy, and thus negative total energy.

The temperature dependence of the energy is similar for all couplings, and, at fixed
temperature, the energy scales roughly linear with temperature. At high temperatures, the
kinetic energy begins to scale at 3/2T , as predicted by classical statistical mechanics. One
can see that, at high coupling, the energy falls rapidly as temperature is decreased to near
zero, which reflects the increasing binding of the oppositely charged particles.

3.3 Parameters for SU(2) Monopole Ensembles

Classical studies of the magnetic scenario in QGP proposed that the magnetic component
of the plasma acts as a liquid with Coulomb-like fields [67, 114], and contemporary studies
on the lattice, e.g Refs. [115, 64], furthered the study of monopoles in QCD-like theories.
These studies on the lattice [115] found that the monopole density at T > Tc can be well
approximated by

ρm(T ) ∼ T 3

log T 2
. (3.26)

Unlike the “electric” particles, quarks and gluons, the density of monopoles is not vanishing
at Tc due to confinement, but instead has a peak there. It also follows from the correlation
function analysis that the magnetic coupling becomes stronger as temperature increases
[114].
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Figure 3.10: Spatial correlations of the one-component Bose gas, at different temperatures
and coupling strengths.
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Figure 3.11: Spatial correlations of the two-component Coulomb Bose gas (without core),
at different temperatures and coupling strengths. Note that most plots have two correlation
functions for each temperature, one “attractive”, for opposite sign charges g+−(r) (solid
lines) and one “repulsive”, the same sign charges g++(r) (dashed lines). Note that at strong
coupling, α ∼ 5, these two correlators overlap significantly.
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Figure 3.12: Spatial correlations of the two-component Bose gas with core repulsion for
particles of opposite charge, at different temperatures and coupling strengths.
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Figure 3.13: Spatial correlations of the two-component Bose gas with core repulsion for
particles of the same charges, at different temperatures and coupling strengths.
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Figure 3.14: Internal energy per particle of the two-component Coulomb Bose gas with a
repulsive core, for various couplings and temperatures. Error bars are smaller than the points
themselves.
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Based on these findings, we would like to make an effective model of quantum monopoles
that reproduces the behavior of those on the lattice, without the many degrees of freedom
of a full QCD-like theory.

Before we dig out into details of the matching procedure, let us outline its general mean-
ing. The simulated Coulomb Bose gas model has several parameters, such as the density n,
the temperature T , the Coulomb coupling α, and the particle mass m. The monopole ensem-
ble corresponding to the finite temperature QCD has only one input variable, T , and thus
only simulations on a particular parametric line n(T ), α(T ),m(T ) in the general parameter
space are directly relevant for our physics application.

Now that we have quantified the behavior and thermodynamics of an isolated two-
component Coulomb Bose system, our first goal is to find the parameters for our model
that are necessary to effectively model magnetic monopoles in QCD-like theories at various
temperatures above the critical temperature. To fit our findings to physical results, we first
compare our correlation functions with those of Ref. [115], found on the lattice. We note
that this lattice calculation was done in pure-gauge SU(2), which yields one U(1) monopole
species.

The lattice correlations and the matching correlation functions from our simulations are
seen in Fig. 3.15. We match these two sets of correlation functions by scaling our inter-
particle distance to that given by the monopole density in Ref. [115], and then by finding the
simulation coupling strength that produces the same magnitude and long-range correlation
behavior seen on the lattice.

First and foremost, we see that a two-component Coulomb Bose system reproduces the
same types of correlations seen on the lattice, as was found in Ref. [114], giving further
credence that our model can effectively describe the behavior of magnetic monopoles in
QCD-like theories. The mapping of our results to those on the lattice is given by

α(T ) ≈ 3.4 ρ1/3
m (T ) , (3.27)

where α(T ) the coupling used in our simulation, ρm(T ) the monopole density (in fm−3)
found in Ref. [115], and T in units of the critical temperature. One unit of length in our

simulations is equivalent to ρ
−1/3
m (T ), the interparticle spacing (in fm) found on the lattice.

This result was checked in and holds throughout the range 1.1-4Tc; it may be applicable at
higher temperatures as well. The constant 3.4 is comes from the factor of (Tc)

3, which sets
the scale of the density in dimensionless units.

If this relation holds to Tc, we can map the physical value of the critical temperature
to our units: 296 MeV (Tc in the SU(2) lattice simulation [115]) is the critical temperature
of the two-component gas with coupling α ≈ 4.2 – approximately 3.45 in our units. We
found that a two-component Coulomb Bose gas with α ≈ 4.2 has a 5-10% higher critical
temperature than the free gas; the critical temperature of a free gas of monopoles would
then roughly correspond to 280 MeV. Extrapolating the monopole density from Ref. [115]
to Tc, setting Tc to 280 MeV, and solving for mass in Einstein’s equation, we find that

280 MeV =

(
2π

m

)(
(240 MeV)3

ζ
(

3
2

) ) 2
3

→ m ≈ 680 MeV , (3.28)
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Figure 3.15: Spatial correlations from our simulations (red circles) matched via scaling to
lattice correlations (blue triangles) from Ref. [115] at various temperatures.
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Figure 3.16: The energy per particle along the physical line defined by the parameters which
match simulation correlation functions to the lattice, shown alongside previously shown two-
component Coulomb simulations (Fig. 3.14) at fixed couplings. The dashed line is to guide
the eye.

which is approximately the estimate of the monopole mass from Ref. [64], though it is larger
than that from Ref. [108].

3.4 Thermodynamics of QCD Monopoles

After the parameters of our model were matched to those in the pure-gauge SU(2) lattice
simulations, we can directly evaluate the contribution of the monopoles to the thermody-
namics of that theory.

The thermodynamics on the physical line, i.e. the trajectory in parameter space as
defined above, are shown in Figs. 3.16 and 3.17. In Fig. 3.16, we see the energy per particle
along the physical line. At Tc, the internal energy of a monopole goes to approximately zero,
and then grows as temperature rises. This growth is less than 3/2T because the coupling is
increased with T , causing monopoles at large T to have a larger negative potential energy.
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defined by the parameters which match simulation correlation functions to the lattice. The
lower line is the internal energy density (kinetic + potential) and the upper line includes the
mass contribution.
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This lower energy is, however, compensated by the ∼ T 3/(log T )2 growth of the density of
monopoles.

In Fig. 3.17, on the lower solid line, we see that the internal energy density of the
monopoles ε/T 4 is maximal at approximately 1.3-1.4Tc. The contribution from the monopoles
is relatively small, O(0.2).

In light of the fact that this contribution is close to zero, in addition to the internal energy
(kinetic and potential), we must also take into account the mass of the particles, which has
been extracted from the lattice in Ref. [64]. In Fig. 3.17, the upper dashed line shows the
total energy density of the monopoles. The contribution from the monopoles, including the
mass, is O(1.5).

QCD thermodynamical quantities are among the most basic properties of hadronic mat-
ter, and have been the focus of numerous lattice simulations for the last three decades. Due
to growth of computational power and algorithm development, the results of these calcula-
tions have become rather accurate, and, over the last few years, have approached QCD with
physical quark masses. We now know the pressure (free energy), energy, and entropy density
as a function of the temperature: p(T ), ε(T ), and s(T ), respectively.

At first glance, decomposing those functions into parts associated with certain quasi-
particles – gluons, quarks, and perhaps monopoles – looks to be an impossible task, since
all of them interact strongly. However, more recent studies have provided valuable insight,
indicating that this task can perhaps be carried out.

The first step toward understanding of the role of monopoles in QCD is to move from the
SU(2) to the SU(3) color group. This is far from trivial, since the latter has two diagonal
color generators, and thus two “massless electrodynamics” surviving the breaking of the
color group. Therefore, there are two distinct species of the monopoles. Including the anti-
monopoles, one would need to study a four-component Coulomb Bose gas. This system can
be studied in the same way as for the one and two-component gases above, but was not done
for this work. Note that two species of monopoles are not independent, as there should be
attractive Coulomb forces between the monopoles of each U(1) electrodynamics, as well as
repulsive forces between monopoles and anti-monopoles of different U(1) electrodynamics.

A comprehensive study of the condensation and density of lattice monopoles for the
SU(3) color group has been done by Bonati and D’Elia [65]. As shown in Fig. 3 of that
work, both monopole species happen to have nearly identical densities. Moreover, Fig. 2
and the corresponding text from Ref. [65] indicate that, for each of them, the density ρ(T )
is very close to that of the SU(2) monopoles; these densities effectively identical when taking
into account the difference in Tc for the different SU(2) and SU(3) simulations. However,
they have a slightly different fit from the SU(2) data at high T > 2Tc, namely

ρm(T ) =
3.66T 3

log(T/(0.163Tc))
3 . (3.29)

This power of the logarithm matches predictions from the 1970s for finite-T QCD: the
magnetic scale cubed (g2T )3.

The next step toward QCD would be to include quarks. The corresponding lattice sim-
ulations are unfortunately very expensive, especially for quarks as light as those in the real
world. Only relatively recently have such lattice ensembles became available, and the anal-
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ysis of their monopole content has not yet been done. Lacking simulation input, we will
provide some speculation on “theoretical expectations.”

Let us start from the high-T end, simply counting states. Gluons have two polarizations
and N2

c − 1 colors, giving 16 bosonic states. Quarks contribute 2 · 2 · NcNf · (7/8) (for
Nc = Nf = 3, 36 · (7/8) = 31.5) times the thermal energy of one bosonic state. Monopoles
are charged spin-zero scalars, of 2(Nc−1) types (the number of diagonal generators multiplied
by 2 to take into account the two charges), or 4 species for Nc = 3. At high T they only
exist at the so-called magnetic scale, and thus their density is additionally suppressed by a
power of log(T ), as discussed above. As a result, at high T , the monopole contribution is
quite small as compared to that of quarks and gluons.

This is not the end of the story, however, because the light quarks can be bound to the
monopoles. The corresponding Dirac equation has no coupling, and the fermionic 3d zero
modes are of topological nature, thus they should be present at any T . While these bound
states are scalars – the spin 1/2 and the color spin 1/2 add up to the grand spin 0 – the
quark zero mode can be either occupied or empty, interpreted as 2 separate states, a doublet
of the baryon number B = ±1/2 [116]. So, in the theory with a single light quark, Nf = 1,
the number of magnetic states doubles.

In a theory with Nf = 2, one can get the B = 1 triplet of states. Its flavor-asymmetric
wave function can be, for example, viewed as the isospin-0 ud diquark, the antidiquark, and
also the η isoscalar meson added to a monopole. The number of magnetically charged states
is, in this case, 2 · 2 · 3 = 12. While this is still smaller than the number of quark and gluon
degrees of freedom, it is not a negligible contribution.

A qualitative observation made by Liao and Shuryak [117] was that, with the number
of monopole-quark species growing with Nf , it becomes more and more difficult to pro-
duce Bose-Einstein condensation, since the objects become distinguishable. This tendency
can only be counterbalanced by a corresponding increase of the monopole density. And
indeed, lattice simulations for QCD-like theories with an increasing Nf have found that de-
confinement transition corresponds to stronger coupling g2(Tc), smaller monopole mass and
therefore higher monopole density.

All dimensional quantities are defined following standard lattice convention for units: the
vacuum string tension for all theories is declared to be the same in MeV. With such units,
the critical temperature for SU(2) and SU(3) is different, ∼ 300 MeV for SU(2) and ∼ 260
MeV for SU(3), but the densities of each of the SU(2) and SU(3) monopoles are about the
same [65]. If Tc is lower, the overall density of monopoles grows, so the density of each
separate species of monopole becomes large enough to form a Bose-Einstein condensate.
Recall that, as was found in Ref. [65], we observed that the inclusion of an additional
interacting component to a Bose Coulomb system did not alter the critical temperature
behavior, provided the density of each component was not altered.

The spectroscopy of quark-monopole states in QCD at zero temperature would be very
hard to study, because the hybrid (meson-glueball) states would be heavy and wide, mixing
with many other mesonic states. But at T ≈ Tc, where the monopoles are relatively light,
these states can perhaps be identified. Theoretically, it is also hard to predict their masses;
while the Dirac equation for quark fields are indeed written exactly without any coupling
present, the Yang-Mills equations for the monopole gauge field itself has only been solved in
the classical approximation, in which it is assumed that the monopole action is much larger
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than the (one-loop) quark correction to it. As discussed above, this is no longer so near Tc.
Going back to the thermodynamics of QCD, a historically important argument has been

related with the mean value of the Polyakov line, 〈P (T )|P (T )〉. According to lattice data,
〈P (T )|P (T )〉 approaches 1 at high T very slowly: it reaches 0.8 at T ≈ 350 MeV according
to Fig. 3 of Ref. [118], or T ≈ 500 MeV according to Fig. 1 of Ref. [119]. This quite far
from Tc ≈ 155 MeV.

While literally it should be applied to the static quarks, one can conjecture that the
thermodynamical contributions of light quarks should also be proportional to it,

nq(T ) ∼ 〈P (T )|P (T )〉 . (3.30)

This led to the development of the Polyakov-Nambu-Jona-Lasinio (PNJL) model [120, 121]
and similar models. Direct lattice studies, e.g. Ref. [122], were able to identify the density
of strange quarks, ns(T ), using a certain combination of susceptibilities vanishing for mesons
and baryons, but not for quarks. Their results confirm this conjecture rather well. One may
further argue that the density of (color non-diagonal) gluons should then be proportional to
the square of the Polyakov line, 〈P (T )|P (T )〉2. If so, ng(T ) must be even more suppressed
near Tc than nq(T ).

At the same time, the energy and entropy densities, ε/T 4 and s/T 3, respectively, rise
to their approximate scale-invariant value much more rapidly, by T − Tc ∼ 50 MeV or so,
unlike 200-300 MeV for 〈P (T )|P (T )〉. See, for example, Fig. 6 of Ref. [31]. The inevitable
conclusion from these arguments is that there must be some extra contribution, in addition
to the quarks and gluons, in this interval of temperature.

It was suggested, e.g. in Ref. [123], that there should be bound states of quarks – mesons
and baryons – at T > Tc. The presence of those are indeed well documented now on the
lattice, e.g. in Ref. [122] for strange quarks and later for charmed ones.

We now turn to the following question: what is the contribution of the monopoles to the
global thermodynamics? Since the monopoles are identified on the lattice individually, with
their Euclidean-time paths and correlation functions determined from simulation, it should
be possible to calculate their energy. Lamentably, this has not been done yet.

A comparison of the energy density contribution of monopoles to the overall energy
density found on the lattice is seen in Fig. 3.18. The SU(2) comparison is direct from our
study, as this is the same system from which we found our parameter fits. For SU(3) on the
other hand, we have estimated the monopole contribution to the energy density by simply
multiplying the contribution by 2, as discussed above. This, of course, does not take into
account the energy coming from the interaction between the two species, which will have
to be studied further in the future. Finally, for QCD, from standard counting of degrees
of freedom, one finds that quarks have about twice more of those than gluons, so the QGP
energy density in QCD is about 3 times larger than in the pure gauge SU(3). The number
of quark-monopole states, as we argued above, for two light flavors also increase the number
of species by the factor of 3.

The monopole mass, as found in Ref. [64], contributes significantly more to the overall
thermodynamics than the internal energy of the monopoles (c.f. Fig. 3.17). In Fig. 3.18, we
see the total energy density contribution from the monopoles to the system. When the mass
is included, the monopoles contribution constitutes the entire energy density of the system
between 1-1.3Tc.
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Figure 3.18: The energy density of the monopoles compared to lattice data for pure-gauge
SU(2) and SU(3). The estimates for the monopole contribution to SU(3) and QCD are from
a scaling argument (see text). Lattice SU(2) results are from Refs. [124, 125], SU(3) from
Ref. [126], and QCD from Ref. [31].
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3.5 Summary

In this chapter, we have studied the effects of Coulombic interaction on the Bose-Einstein con-
densation. We numerically calculated the critical temperature Tc, of one- and two-component
Coulomb systems, by two different methods, as a function of the interaction strength. Quali-
tatively, the dependence is the similar to what has been previously observed for hard spheres:
Tc moderately grows at weak coupling but strongly decreases at strong coupling.

We also studied the spatial correlations in these systems at various temperatures and
coupling strengths. We then mapped the results of the two-component case to the results of
lattice simulations of color magnetic monopoles in pure-gauge SU(2), and find a very good
agreement. This comparison allowed us to fix the “physical line” in the parameter space
of our effective model in SU(2) gauge theory, at and above Tc. As a result of simulations,
we believe that a two-component Coulomb quantum Bose gas model accurately replicates
monopole behavior seen on the lattice.

We have also determined the monopole contribution to the overall thermodynamics (en-
ergy density) of the thermal matter, at and above Tc in pure-gauge SU(2), and made esti-
mates for SU(3) and QCD theories. We concluded that the monopoles possibly dominate
the thermodynamics just above Tc in the case of SU(2) and SU(3). We speculate that the
same is true in QCD with light quarks, although the questions related with properties of
monopole-quark composites have not yet been addressed.

Now having an effective quantum model for magnetic sector of the gauge theories, one
may think of its applications beyond quantities calculable in Euclidean-time framework, in
particular, to the transport properties of hot hadronic matter. The impact of monopoles on
QGP viscosity η have been studied in Ref. [70], but only considering the transport cross
section of binary collisions, not a full many-body theory. The role of jet-monopole scattering
in another transport parameter – q̂ – has been studied phenomenologically in Refs. [37, 39],
which suggested that monopoles are the main degree of freedom contributing to η and q̂ near
and above Tc. We will study monopole effects in jet quenching further in the next chapter.
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Chapter 4

Jet Quenching in Heavy-Ion Collisions

This chapter is based on:

• A. Ramamurti and E. Shuryak (2018). Role of QCD monopoles in jet quenching.
Phys. Rev. D97(1), 016010. doi:10.1103/PhysRevD.97.016010 arXiv:1708.04254.

Another unusually-behaving kinetic parameter of quark-gluon plasma is the mean squared
momentum transfer per unit length for high energy partons, denoted q̂. As mentioned in
the introductory section on jet quenching, experimental observations suggest this transport
coefficient needs to be enhanced as compared to näıve perturbative scattering on quarks and
gluons.

The purpose of this chapter is to attempt to complement multiple phenomenological
models, including scattering on quarks and gluons, as well as on monopoles [39, 37], by a
direct calculation of radiative energy loss [127] from the same lowest-order cross section. We
use the Baier-Dokshitzer-Mueller-Peigne-Schiff (BDMPS) framework [41, 43], which ascribes
the energy loss to gluon radiation caused by transverse “kicks” from the “scatterers” in the
medium.

We will study the changes in RAA and v2 caused by monopoles, including the realistic
temperature-dependent monopole densities and monopole correlations. In addition, we will
study the effects due to changes in the initial conditions of the medium and the background
medium evolution. From our simulations, we will also calculate the dijet asymmetry, Aj.
Finally, we will make jet quenching predictions for lower energy collisions to be probed in
the upcoming Beam Energy Scan program at RHIC.

4.1 Parameters for Jet Quenching Model with Monopoles

From the BDMPS model of jet quenching (see Sec. 1.1.1), we have the definition of the
coefficient q̂ in terms of the density of scatterers and the transport cross section,

q̂(z) ≈ ρ(z)

∫ 1/b2

0

d2~q⊥~q
2
⊥

dσ

d~q2
⊥

(~q2
⊥, z) . (4.1)

The generic form of dσ/dq2
⊥ in QCD is

dσ

dq2
⊥

=
C

(q2
⊥ + µ2)2

, (4.2)
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For quarks CF = 4/3 and for gluons CA = 3, so, as it is well known [127, 41], we have that

dσqq
dq2
⊥

=
(4/3)2πα2

s(q
2
⊥)

(q2
⊥ + µ2

E)2
, (4.3)

dσqg
dq2
⊥

=
4πα2

s(q
2
⊥)

(q2
⊥ + µ2

E)2
, (4.4)

and
dσgg
dq2
⊥

=
9πα2

s(q
2)

(q2 + µ2
E)2

. (4.5)

Our task at this point is to add scattering on monopoles. Since, for a parton moving
ultra-relativistically, the kick from electric and magnetic fields are similar, one expect the
same form of the cross section dσ/dq2, albeit with different factors in the numerator and
denominator

dσqm
dq2
⊥

=
(4/3)πF 2(q2

⊥)

(q2
⊥ + µ2

M)2
, (4.6)

dσgm
dq2
⊥

=
3πF 2(q2

⊥)

(q2
⊥ + µ2

M)2
, (4.7)

with F (q2
⊥) the monopole form factor. For point-like monopoles, we have that F (q⊥) = 1;

for finite-size, we can use the standard treatment of Rutherford scattering in the Born
approximation, from which we know that the form factor F (q⊥) = exp{−q2

⊥a
2/6} where a is

the radius of the scatterer. We only consider long-range Abelian part of the monopole field,
and do not take into account a more complicated non-Abelian fields in the monopole core.

There are no factors of αs in the monopole cross sections, due to the Dirac condition,
which makes their magnitude larger relative to the electric-scatterer cross sections. Another
aspect of the parton-monopole cross sections is that the screening mass in denominator, µM ,
is the magnetic screening mass, which, according to lattice measurements, is in QGP about
twice smaller than the electric mass, µE [128].

Let us, as an exercise, integrate the relevant expressions,∫ 1/b2

0

dq2q2 1

(q2 + µ2)2
= − 1

b2µ2 + 1
+ log

(
1

b2
+ µ2

)
− 2 log(µ) , (4.8)

∫ 1/b2

0

dq2q2 exp{−q2a2/3}
(q2 + µ2)2

= (4.9)

1

3

−ea2µ23

(
a2µ2 + 3

)(
Ei

(
−1

3
a2µ2

)
− Ei

(
−1

3
a2

(
µ2 +

1

b2

)))
+

3µ2e−
a2

3b2

1
b2

+ µ2
− 3

 ,

(4.10)

∫ ∞
0

dq2q2 exp{−q2a2/3}
(q2 + µ2)2

= −1

3
e
a2µ2

3

(
a2µ2 + 3

)
Ei

(
−1

3
a2µ2

)
− 1 . (4.11)
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The important thing to note is that the 1/b2 cutoff has varying effect on the q̂ of the
monopoles depending on the size of the monopole: for a larger monopole, the energy of the
jet does not affect q̂m as much as q̂q,g, which diverge logarithmically with the energy. The
lack of logarithmic divergence means that larger monopoles have far less relative effect on
high energy quark and gluon jets. Point-like monopoles, on the other hand, behave just as
quark and gluon scatterers across all jet energies.

Including α2
s(q

2) mitigates the logarithmic divergence for the quarks and gluons at high
q2, which increases the role of monopoles when scattering high energy jets. In this work, we
will only study point-like monopoles, similar to the treatment of Ref. [37].

While there remains a spread of values of the electric and magnetic screening masses in
lattice literature, the general ballpark of those seems to have stabilized over the years. We
will follow Ref. [128], who carried out large scale simulations with dynamical quarks with
realistic masses. Their results for the magnetic screening mass is µM/T = 4.48, and for the
electric screening mass µE/T = 7.31.

Note that these values, coming from modern lattice works, are significantly larger than
the ones used before, and particularly in Ref. [37]. These values lead to a much smaller q̂,
especially for electric quasiparticle scatterers. This will certainly result in a smaller impact
of quarks and gluons in comparison to models that use pQCD – or even older lattice – values
for the electric screening mass, as there is a factor of µ4

E in the denominator of the transport
cross section.

The BDMPS-like energy loss of a parton as it traverses the medium is given by,

− dE/dz ∝ q̂z . (4.12)

Then, for our system, we have,

−dE = zdz
αsNc

12
q̂(z, E)

= zdz
αsNcπCp

12

(
ρq(z)

∫ q2max

0

dq2 (4/3)α2
s(q

2)

(q2 + µ2
E(z))2

+ρg(z)

∫ q2max

0

dq2 3α2
s(q

2)

(q2 + µ2
E(z))2

(4.13)

+ρm(z)Ccorr

∫ q2max

0

dq2 1

(q2 + µ2
M(z))2

)
,

where z is the coordinate parameterizing the line in the transverse plane along which the
parton travels, Cp is the color factor of the jet parton, and Ccorr is a correction factor due to
monopole correlations, to be determined.

The parametrization of the equation of state (pressure) was given in Ref. [31] as,

p/T 4 =

(
0.3419
T 4 + 3.92

T 2 − 8.7704
T

+ 19π2

36

2
(
−0.0475

T 4 + 0.8425
T 2 − 1.26

T
+ 1
))

× (tanh(3.8706(T − 0.9761)) + 1) , (4.14)
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Figure 4.1: Electric and magnetic quasiparticle densities used. The (blue) solid line shows
the magnetic monopole density as directly observed on the lattice. The (red) long dashed
line is the monopole density extracted from the thermodynamics (pressure), along with the
densities of quarks (purple, short dashed) and gluons (green, dot dashed).
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and the equation of state for the energy density from Ref. [31] was fitted in Mathematica to
be

ε/T 4 =

(
20.89 + 23.55

T 4 − 57.62
T 3 + 59.79

T 2 − 40.37
T

2
(

0.30
T 4 + 2.17

T 3 − 3.56
T 2 + 0.57

T
+ 1
) )

× (tanh(1.17(T − 1.25)) + 1) . (4.15)

The density of magnetic monopoles is taken from Ref. [65]; the density of each type of
monopole (of which there are two in SU(3)) is given by

ρm
T 3

=
3.66

log((1/0.163)T/Tc)
3 . (4.16)

Ref. [129] suggests that the monopole density falls off quickly below the critical temperature.
The densities of electric particles are found using the Fermi-Dirac distribution and equa-

tion of state (we choose to use the pressure, but one can, in principle, use the entropy
instead), following Ref. [37]. The parametrization of the Polyakov loop is

L(T ) =

(
1

2
tanh(7.69(0.155T − 0.0726)) +

1

2

)10

, (4.17)

and Using the ansatz that ρE(T ) ∝ cqL(T ) + cgL
2(T ), we have that the densities of quarks

and gluons, respectively, are given by,

ρq/T
3 =

1.71E−4 ((T (9.87T − 16.6) + 7.43)T 2 + 0.648)

T 2((T − 1.26)T + 0.843)− 0.0475

× (tanh(3.87(T − 0.976)) + 1) (4.18)

× (tanh(7.69(T − 0.0726)) + 1)10 ,

ρg/T
3 =

(8.48E−8) ((T (9.87T − 16.6) + 7.43)T 2 + 0.648)

T 2((T − 1.26)T + 0.843)− 0.0475

× (tanh(3.87(T − 0.976)) + 1) (4.19)

× (tanh(7.69(T − 0.0726)) + 1)20 .

For definiteness, in Fig. 4.1 we show the densities of gluons, quarks, and monopoles
to be used in the calculations below. One should keep in mind that the plotted density is
normalized to T 3. Such a normalization is appropriate at high T , dominated by quarks and
gluons, but not necessarily at small T .

In this work, we will use two versions of the monopole density, both obtained from lattice
data, but in different ways. The spread of the results is expected to represent the uncertainty
existing at the moment. The (blue) solid curve, with a peak at Tc, in Fig. 4.1 shows the
“directly observed” monopole density, from Eq. 4.16, which was measured on the lattice
[65].

The (red) dashed curve for the density of monopoles, which peaks at about T ≈ 1.5Tc

rather than at Tc, was derived thermodynamically. It is the monopole density needed to

78



1.0 1.5 2.0 2.5 3.0 3.5 4.0

T/Tc

0.4

0.5

0.6

0.7

0.8

0.9

1.0

〈p
2 ⊥
〉 co

rr
./
〈p

2 ⊥
〉 un

co
rr
.

Figure 4.2: Ratio of correlated to uncorrelated average momentum transfer square per mean
free path as a function of the temperature.

reproduce the correct pressure (entropy, energy) of QCD as measured on the lattice [31]; in
the window of temperatures from 1− 2Tc, the energy density, pressure, and entropy density
produced by electric quasiparticle degrees of freedom is insufficient. As we will show below,
a monopole density with a peak around Tc seems to be crucial for reproduction of the jet
quenching data.

Since the magnetic and electric couplings are comparable, the ensemble of magnetic
monopoles constitute a strongly coupled plasma in the region of temperatures above Tc. In
such plasmas, there exist strong correlations between positive and negative charges, which
cancel out their fields in some parts of space, reducing their impact on jet quenching.

As expected by the renormalization group flow and Dirac condition, it was directly shown
on the lattice (c.f. Refs. [115, 65]) that monopoles become more correlated as temperature
is increased [69]. We have evaluated corrections to the monopole contribution to jet quench-
ing using configurations from our previous path-integral Monte Carlo simulations from the
previous chapter.

In order to determine the magnitude of this effect, we calculate the net force along a
line going through an uncorrelated configuration (random distribution of monopoles and
antimonopoles), and then through a random sample of the configurations of the effective
model for monopoles.

The correlations in the plasma are not extremely strong (there is no crystal like structure,
etc.) but are indeed present – the maximal deviation from 1 of the radial distribution function
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Figure 4.3: Temperature profile of 20-30% centrality (a) 2.76 TeV Pb-Pb and (b) 200 GeV
Au-Au collisions calculated using the energy density profile at τ = 0.2 fm/c from Ref. [130]
and equation of state from Ref. [31].

is 0.2 at 1.1Tc and 0.4 at 3.8Tc; see Refs. [115, 65] for detailed plots of the radial distribution
functions.

Fig. 4.2 shows the ratio of the average momentum transfer squared per unit length for
the correlated and uncorrelated cases. From Tc to 4Tc, the ratio is approximately 0.85,
meaning that the correlations reduce the q̂ by 15%. Intuitively, the reduction of transferred
momentum was expected, since the force on a jet from + and − charges will increasingly
cancel the more correlated they are.

4.2 Background Matter Evolution

Before we embark on the evaluation of the jet quenching parameters, we need to define
the fireball temperature, energy density, and entropy density profiles. For this study, we will
focus on one specific bin, 20-30%, of centrality, both for LHC and RHIC collisions. Assuming
very rapid equilibration, the relation between these profiles are given by equilibrium equation
of state (EoS), which has been well studied on the lattice.

For definiteness, we use parameterization of the energy density from the lattice data
of Ref. [31], given in Eq. 4.15. The initial energy density distribution corresponding to
standard Glauber-type analysis, as in Ref. [130]. The (smooth) temperature profiles of the
fireballs at τ = 0.2 fm/c are shown in Fig. 4.3 for both RHIC and LHC energies. One can see
that the absolute size and the ellipticity of the near-Tc peripheral regions (blue-purple) are
in fact slightly different. We also calculated all quantities with IP-Glasma initial conditions,
which include fluctuating color fields.

As a first step, we start with simple Bjorken (1+1)D expansion, with the temperature de-
creasing with time as T (τ, x, y) = T (τ0, x, y)(τ/τ0)−1/3. In a Bjorken-expanding background,
the temperature in all regions decrease with time in the same way, and the matter does not

80



expand in the transverse direction.
We then apply a more realistic (2+1)D hydrodynamic evolution, with both smooth and

fluctuating initial conditions. An example of a realistic medium evolution we will use is
shown in Fig. 1.6. One can see that, as time progresses, the (purple) near-Tc region rather
quickly takes over the whole fireball, but that the overall size of the fireball region at and
above Tc remains approximately the same, unlike what would happen in the (1+1)D Bjorken
expansion scenario. Another observation, most clear from last two subplots, is that eventu-
ally the system splits into two “nut shells,” making the azimuthal asymmetry stronger.

As we will see, the hydrodynamic background has an important influence on the results
of our jet quenching calculations. As such, it is important that we also reproduce the soft
physics of these heavy-ion collisions. The IP-Glasma with hydrodynamics given by MUSIC
are studied in Refs. [131, 132], and in general give good agreement with hadronic observables.

For our hydrodynamics with optical Glauber initial conditions [133], the simulated and
experimental hadronic observables are shown in Tables 4.1, 4.2, and 4.3, for 62.4 GeV Au-Au,
200 GeV Au-Au, and 2.76 TeV Pb-Pb collisions, respectively, for hydrodynamics with bulk
viscosity; Table 4.4 shows the calculation for hydrodynamics without bulk viscosity [133]. In
general, we have good agreement with data. The v2 of our calculations is smaller than that
of experiment, which is a well-known result of using optical Glauber initial conditions.

Table 4.1: Comparison of calculated and experimental hadronic observables in 62.4 GeV
Au-Au collisions, for hydrodynamics with bulk viscosity. Data from Ref. [134].

hydro. calc. data
Npion 97.75 98.9±6.9
〈pT |pT 〉pion 0.412 0.403±0.013

v2(pT = 0.2− 1.0) 0.054 0.0613
v2(pT = 1.0− 2.0) 0.163 0.132

Table 4.2: Comparison of calculated and experimental hadronic observables in 200 GeV Au-
Au collisions, for hydrodynamics with bulk viscosity. Experimental data is the same as used
in Refs. [131, 132].

hydro. calc. data
Npion 133.4 135±10
〈pT |pT 〉pion 0.422 0.411±0.021

v2 0.059 0.0642

4.3 Jet Quenching at RHIC and LHC energies

The probability distributions of quark and gluon jets in their transverse momenta and the
location of production were generated by Monte Carlo algorithm in a standard perturbative
way, based on Refs. [135, 136]. The essential point is that the probability of jet production
at a particular location is proportional to the product of two nuclear thickness functions,
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Table 4.3: Comparison of calculated and experimental hadronic observables in 2.76 TeV
Pb-Pb collisions, for hydrodynamics with bulk viscosity. Experimental data is the same as
used in Refs. [131, 132].

hydro. calc. data
Npion 309.1 307±20
〈pT |pT 〉pion 0.508 0.512±0.017

v2 0.0746 0.0831±0.0034

Table 4.4: Comparison of calculated and experimental hadronic observables in 2.76 TeV
Pb-Pb collisions, for hydrodynamics without bulk viscosity. Experimental data is the same
as used in Refs. [131, 132].

hydro. calc. data
Npion 299.079 307±20
〈pT |pT 〉pion 0.616 0.512±0.017

v2 0.075 0.0831±0.0034

and that the jet energy spectrum is given by a power law. The produced jets traverse the
medium, from the origination point, with an isotropic distribution.

To calculate hadronic observables from jets, we must apply fragmentation functions to
the outgoing quarks and gluons. In this work, we will use the fragmentation functions from
Ref. [137] for light quark and gluon jets, going into unidentified charged hadrons and also
to neutral pions.

Energy loss

The results for ∆E/E of the jet (prior to fragmentation), RAA, and v2 of fragmented jets
are seen in Figs. 4.4, 4.5, and 4.6, respectively. The collider data are from Refs. [138, 139]
for LHC 2.76 Pb-Pb TeV RAA and Refs. [140, 141] for RHIC 200 GeV Au-Au RAA; Refs.
[142, 143] for the LHC 2.76 TeV Pb-Pb v2 and Ref. [144] for RHIC 200 GeV Au-Au v2.

All of the plots are laid out as follows: the first column, comprising subplots (a) and (b),
is for LHC 2.76 TeV Pb-Pb collisions, and the second column – subplots (c) and (d) – is for
RHIC 200 GeV Au-Au. The first row is for the monopole density measured on the lattice,
and the second row is for monopole density derived from the equation of state.

All curves shown are for correlated monopoles; the effects of correlations on the results
will follow shortly. The calculations shown are for IP-Glasma initial conditions and (2+1)D
hydrodynamics with bulk viscosity, ζ 6= 0 (red, solid curves); optical Glauber initial condi-
tions and (2+1)D hydrodynamics with bulk viscosity, ζ 6= 0 (blue, dash-dot curves); optical
Glauber initial conditions and (2+1)D hydrodynamics without bulk viscosity, ζ = 0 (green,
dash-dot-dot curves); and optical Glauber initial conditions and (1+1)D Bjorken expansion
(purple, dashed curves).

As shown in Fig. 4.4, the Bjorken-evolving background (purple, dashed curve) causes far
less energy loss than the scenarios with realistic hydrodynamic backgrounds. This is due to
the fact that this is a one-dimensional expansion, and the matter does not expand in the
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Figure 4.4: Ratio of energy loss to initial parton jet energy in 2.76 Pb-Pb collisions (a),(b),
and 200 GeV Au-Au collisions (c),(d). The first row (a),(c) is the results for monopole
density from the lattice, while the second row (b),(d) is results for monopole density from
the equation of state. The (red) solid curve is for IP-Glasma initial conditions and (2+1)D
hydrodynamics with bulk viscosity (ζ 6= 0), the (blue) dash-dot curve is for Glauber initial
conditions and (2+1)D hydrodynamics with bulk viscosity (ζ 6= 0), the (green) dash-dot-dot
curve is for Glauber initial conditions and (2+1)D hydrodynamics without bulk viscosity
(ζ = 0), and the (purple) dashed curve is for the smooth Glauber initial condition with
(1+1)D Bjorken evolution.
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Figure 4.5: Nuclear modification factor of charged hadrons in 2.76 Pb-Pb collisions (a),(b),
and neutral pions in 200 GeV Au-Au collisions (c),(d). The first row (a),(c) is the results for
monopole density from the lattice, while the second row (b),(d) is results for monopole density
from the equation of state. The (red) solid curve is for IP-Glasma initial conditions and
(2+1)D hydrodynamics with bulk viscosity (ζ 6= 0), the (blue) dash-dot curve is for Glauber
initial conditions and (2+1)D hydrodynamics with bulk viscosity (ζ 6= 0), the (green) dash-
dot-dot curve is for Glauber initial conditions and (2+1)D hydrodynamics without bulk
viscosity (ζ = 0), and the (purple) dashed curve is for the smooth Glauber initial condition
with (1+1)D Bjorken evolution. Collider data from Refs. [138, 139] for LHC and Refs.
[140, 141] for RHIC.

transverse plane; the ellipse of above-Tc medium shrinks inwards to the center of the fireball
with time. This is unlike the (2+1)D hydrodynamic case (c.f. Fig. ??), where the size of the
above-Tc medium remains approximately constant with time, and all of the medium cools
to approximately Tc by τ ∼ 6 fm/c.

Therefore, in the Bjorken-evolving case, the parton jet “sees” far less medium during
its traversal of the fireball, causing less energy loss. On the other hand, the Glauber and
IP-Glasma initial condition models lead to a larger energy loss. This loss is very similar with
all initial conditions, provided that the hydrodynamic evolution is realistic.

Nuclear modification factor

Since RAA is another measure of medium-induced energy loss, the results are very similar
to that of ∆E/E. Shown in Fig. 4.5, the Glauber and IP-Glasma initial conditions coupled
to realistic hydrodynamic models all agree with each other, while the Bjorken evolution gives
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Figure 4.6: Azimuthal anisotropy of charged hadrons in 2.76 Pb-Pb collisions (a),(b), and
neutral pions in 200 GeV Au-Au collisions (c),(d). The first row (a),(c) is the results for
monopole density from the lattice, while the second row (b),(d) is results for monopole den-
sity from the equation of state. The (red) solid curve is for IP-Glasma initial conditions and
(2+1)D hydrodynamics with bulk viscosity (ζ 6= 0), the (blue) dash-dot curve is for Glauber
initial conditions and (2+1)D hydrodynamics with bulk viscosity (ζ 6= 0), the (green) dash-
dot-dot curve is for Glauber initial conditions and (2+1)D hydrodynamics without bulk
viscosity (ζ = 0), and the (purple) dashed curve is for the smooth Glauber initial condition
with (1+1)D Bjorken evolution. The (black) dotted curve is for for IP-Glasma initial condi-
tions and (2+1)D hydrodynamics with bulk viscosity (ζ 6= 0) with no monopoles. Collider
data from Refs. [142, 143] for the LHC and Ref. [144] for RHIC.

a much larger result that is incompatible with the experimental data. The LHC 2.76 TeV
Pb-Pb RAA data is better fit by the monopole density measured on the lattice (upper left
panel), compared to that given by the equation of state (lower left panel). On the other
hand, the RHIC 200 GeV Au-Au RAA is fit quite well by both monopole densities when
using realistic hydrodynamic backgrounds.

Azimuthal anisotropy

The azimuthal anisotropy, is shown in Fig. 4.6. Without monopoles – the black dotted
line on the left panels – the v2 is roughly .015, much smaller than the experimental data.
The v2 results for both monopole densities roughly agree with LHC 2.76 TeV Pb-Pb v2

data when using hydrodynamic backgrounds, including Bjorken evolution. The v2 for RHIC
200 GeV Au-Au data is not in complete agreement for the (2+1)D hydrodynamic models
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(Glauber and IP-Glasma initial conditions); the slope is less steep in the model than in the
data, although the order of magnitude is correct. On the other hand, the model disagrees
strongly with Bjorken expansion.

Effect of fluctuations

In all the preceding discussion, we see that, with minor variation, the ∆E/E, RAA, and v2

obtained with Glauber and IP-Glasma initial conditions and realistic hydrodynamics (blue
dash-dot, green dash-dot-dot, and red solid curves) all agree with each other. This leads
us to believe that initial-state fluctuations play only a small role in these quantities and
that event-by-event analysis is not necessary, which is opposite to what is claimed in Ref.
[38]; the inclusion of monopoles in our jet quenching framework allows for the simultaneous
description of v2 and RAA even when using smooth initial conditions.

This most likely occurs because our model is most sensitive to near-Tc medium, which is
on the periphery at early times; at later times, when the whole fireball is near-Tc, most of the
initial state fluctuations are more-or-less damped out. If a model for jet energy loss focuses
on early times or is sensitive more to medium at higher temperatures, then the fluctuations
would play a much larger role.

In addition, whether or not the hydrodynamic evolution has bulk viscosity does not make
a large difference; the variation between the Glauber initial condition with and without bulk
viscosity can be explained by the difficulty in tweaking parameters producing the correct
hadron yield without bulk viscosity, giving a different background for the jet to traverse.

This discrepancy in RAA between the two forms of monopole density – the EoS density
not working for 2.76 TeV collisions and both the lattice and EoS densities working for 200
GeV collisions – can be explained by the difference in high-temperature behavior. While both
have relatively similar peaks near Tc, the pressure scheme density goes to zero by T/Tc = 4,
and is less than the lattice scheme by T/Tc = 2.5; see Fig. 4.1.

On the other hand, the lattice measured density does not go to zero at high temperature,
but rather falls off as ρ/T 3 ∼ log(T/Tc)

−3. As a result, at higher energy collisions (where the
temperature is higher at initial time), the variant with directly observed lattice monopoles
gives a different monopole contribution than the thermodynamical fit, while in the lower
energy collisions, the contributions end up being similar.

At very low energies, where the initial temperature is just around Tc, the sensitivity of
the jet quenching parameters to the monopole density is the highest. This means, that if
the future PHENIX experiment at RHIC will be able to study jet quenching in the low
energy range, we will get better understanding of the location of the monopole density peak.
Understanding of this quantity is key in determining the effects of monopoles on parton jets.

Dijet asymmetry

In our simulations, we also generated back-to-back partons of the same initial energy, and
evaluated the energy lost by each of them. The difference is known as the dijet asymmetry,
and is characterized by,

Aj =
|E1 − E2|
E1 + E2

. (4.20)

86



0.0 0.2 0.4 0.6 0.8

0

1

2

3

(a)

IP-Glasma+(2+1)D hydro., ζ 6= 0

Glauber+(2+1)D hydro., ζ 6= 0

Glauber+(2+1)D hydro., ζ = 0

Glauber+(1+1)D hydro.

0.0 0.2 0.4 0.6 0.8

(c)

0.0 0.2 0.4 0.6 0.8

0

1

2

3

(b)

ATLAS 20-40%

0.0 0.2 0.4 0.6 0.8

(d)

Aj

d
N
/d
A
j

Figure 4.7: Dijet asymmetry of parton jets in 2.76 Pb-Pb collisions (a),(b), and 200 GeV
Au-Au collisions (c),(d). The first row (a),(c) is the results for monopole density from the
lattice, while the second row (b),(d) is results for monopole density from the equation of
state. The (red) solid curve is for IP-Glasma initial conditions and (2+1)D hydrodynamics
with bulk viscosity (ζ 6= 0), the (blue) dash-dot curve is for Glauber initial conditions and
(2+1)D hydrodynamics with bulk viscosity (ζ 6= 0), the (green) dash-dot-dot curve is for
Glauber initial conditions and (2+1)D hydrodynamics without bulk viscosity (ζ = 0), and
the (purple) dashed curve is for the smooth Glauber initial condition with (1+1)D Bjorken
evolution. Collider data from Ref. [145].
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Figure 4.8: Dijet asymmetry of parton jets with no p⊥ cut (red, solid curve), p⊥ > 16 GeV
(blue, dashed curve), and p⊥ > 24 GeV (green, dot-dashed curve) in 2.76 Pb-Pb collisions
for the IP-Glasma initial conditions with (2+1)D hydrodynamics with bulk viscosity and
monopole density given by the lattice. Collider data from Ref. [145].

This quantity is plotted in Fig. 4.7. The data for LHC 2.76 TeV Pb-Pb are from Ref. [145].
We first note that the Glauber and IP-Glasma initial conditions with realistic hydro-

dynamics (blue dash-dot, green dash-dot-dot, and red solid curves) all roughly follow the
experimental data. There is more distinction between the different initial conditions in this
quantity, and the best agreement seems to be with the IP-Glasma initial condition and,
as before with RAA, with the monopole density as measured on the lattice. In the case
of the dijet asymmetry, we find that initial-state fluctuations play a role in explaining the
distribution of energy loss asymmetry between back-to-back parton jets.

Fig. 4.7 also shows a distinctive bump at Aj ≈ 0.8 for LHC energies and Aj ≈ 0.6 for
RHIC energies. This bump is due to the fact that we have included jets with low initial energy
in our calculations. An asymmetry of Aj = 1 would indicate that one jet was completely
quenched by the medium. The bump comes from the fact that, for low energy back-to-back
jets, there is a significant likelihood that the relative difference in final energies is larger,
leading to a larger Aj. Since low energy jets are much more probabilistic than high energy
jets, these events accumulate.

Therefore, the location of this bump and its size are dependent on the low-energy limit of
the produced jets in simulations and any imposed cuts on final jet energies in both simulations
and experiment. We also note that the IP-Glasma initial conditions give less pronounced of
a bump than other initial conditions.
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Figure 4.9: Dijet asymmetry of parton jets originating in the center of the fireball in 2.76
Pb-Pb collisions with the monopole density from the lattice. The (red) solid curve is for
IP-Glasma initial conditions and (2+1)D hydrodynamics with bulk viscosity (ζ 6= 0), the
(blue) dash-dot curve is for Glauber initial conditions and (2+1)D hydrodynamics with
bulk viscosity (ζ 6= 0), the (green) dash-dot-dot curve is for Glauber initial conditions and
(2+1)D hydrodynamics without bulk viscosity (ζ = 0), and the (purple) dashed curve is for
the smooth Glauber initial condition with (1+1)D Bjorken evolution. Collider data from
Ref. [145].

This bump can, in principle, be (re)moved by a final parton energy p⊥ cut, as is done
in experimental analyses. Fig. 4.8 shows an example of this for the results of the IP-
Glasma+(2+1)D hydrodynamic simulations of 2.76 TeV Pb-Pb collisions and monopole
density given by the lattice, for cuts p⊥ > 16 GeV (blue dashed curve) and a p⊥ > 24
GeV (green dash-dot curve). The bump at large Aj disappears and the general shape of the
curves are altered; this happens for all curves and at LHC and RHIC energies.

It is clear that the dijet asymmetry is very sensitive to the range of energies selected for
the back-to-back jets. In particular, the p⊥ > 16 GeV cut shown in Fig. 4.8 (blue dashed
curve) makes the calculation with the most realistic background, the IP-Glasma fluctuating
initial conditions, roughly follow the experimental data.

We conclude that our model, with realistic initial conditions, can qualitatively produce
the correct behavior of the dijet asymmetry. The response of our data to the adjustment
the p⊥ cuts shows the sensitivity of the observable to various parameters introduced in both
theoretical and experimental analysis, and therefore requires much more study.

Shown in Fig. 4.9 is the result for the dijet asymmetry Aj selecting only jets that start in
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Figure 4.10: Nuclear modification factor of neutral pions for 62.4 GeV Au-Au collisions. The
(blue) solid curve is the result for monopole density from the lattice, and the (red) dashed
curve is the result for monopole density from thermodynamics.

the center of the fireball, for 2.76 TeV Pb-Pb collisions and the monopole density found on
the lattice. The data is definitively not reproduced by any of the curves, which shows that
the asymmetry, in this model, comes from the path-length difference between the trigger
and secondary jets, rather than from the fluctuations in the matter or in the fragmentation
processes.

We do not take into account relativistic effects of the fluid flow velocity on the jet. This
was studied in Appendix A of Ref. [39]; the authors concluded that, for RAA and v2, this
correction was negligible. This is expected since our model only takes into account the
instantaneous impact parameter between the jet parton and the scatterer; the cross sections
depend on momentum transfer t but not on the energy s.

Predictions for the Beam Energy Scan

With the sPHENIX detector, RHIC will be able to detect jets in lower energy collisions. As
stated earlier, monopole effects are strongest near Tc, and if we are able to study jet quenching
in this lower energy range where most of the matter has a temperature of approximately Tc,
we will get a better understanding of monopole features, such as the location and shape of
the density peak.

In preparation for these experiments, we seek to make predictions – with our jet quenching
framework and Glauber initial conditions for a 62.4 GeV Au-Au collision – for how jet ob-
servables will be altered when probing lower energy collisions. For the most realistic results,
we would need a better understanding of the initial conditions and hydrodynamic expansion
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Figure 4.11: Azimuthal anisotropy of neutral pions for 62.4 GeV Au-Au collisions. The
(blue) solid curve is the result for monopole density from the lattice, and the (red) dashed
curve is the result for monopole density from thermodynamics.
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Figure 4.12: Dijet asymmetry of parton jets for 62.4 GeV Au-Au collisions. The (blue) solid
curve is the result for monopole density from the lattice, and the (red) dashed curve is the
result for monopole density from thermodynamics.
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of the lower-energy fireball, and a better understanding of the initial energy spectrum of the
produced parton jets.

Nevertheless, we can carry out the simulations to get relatively good predictions, the
results of which are seen in Figs. 4.10 and 4.11 for RAA and v2, respectively. The results of
jet quenching with monopoles at 62.4 GeV is very similar to that at 200 GeV; the RAA is
slightly smaller and the v2 is approximately the same.

The deviation between the equation of state and directly-observed lattice monopole den-
sities in the RAA is present in the 62.4 GeV Au-Au collision, as it was in the higher energy
collisions – particularly the 2.76 TeV Pb-Pb collision, where one of the densities did not
agree with the data. On the other hand, the v2 is not as sensitive to the monopole density
scheme used, which was also the case for the higher energy collisions. The 62.4 GeV (and
lower energy) runs at RHIC will help constrain the features of monopole density at temper-
atures near Tc, while the 2.76 TeV (and higher energy) collisions at the LHC are helpful in
exploring the higher energy limit of the monopole density.

Without monopoles (not shown in the figures), RAA is unity and v2 is approximately zero
across all jet energies. This is due to the fact that at the temperatures produced in 62.4 GeV
collisions – the initial matter is slightly above Tc –, the quark and gluon densities are small.
If the number of quark and gluon degrees of freedom are proportional to the Polyakov loop,
then, without monopoles, one would expect very little nuclear modification of the parton
jets in 62.4 GeV (and lower energy) collisions.

However, the temperatures produced in these collisions are in the range where monopoles
dominate. So, when including monopole contributions, we see a significant nuclear modi-
fication, comparable in magnitude to higher energy collisions. Therefore, if the data from
the BES program show that there is significant medium-induced modification of parton jets,
this will indicate that the near-Tc scatterings on matter are strong. This data will also help
constrain the shape of the monopole density curve and its peak, which, as we have shown,
has a significant influence on the results of our model.

Fig. 4.12 shows a predicted dijet asymmetry (with no cut) for the 62.4 GeV Au-Au
collisions. As shown above, the Glauber initial conditions do not reproduce the LHC di-
jet asymmetry data well, while the fluctuating initial conditions have a decent agreement.
Therefore, to accurately predict the 62.4 GeV Au-Au dijet asymmetry, we would need a
more realistic, fluctuating hydrodynamic background with a p⊥ cut to reflect the experi-
mental cuts. Nevertheless, from comparison of Fig. 4.12 with the results for the Glauber
initial conditions at higher energies, we predict that the asymmetry peak in 62.4 GeV Au-Au
collisions will not be as wide as it is in 200 GeV and 2.76 TeV collisions.

Effects of monopole correlations

The preceding results were all computed using a monopole correlation factor of 0.85 to
account for the change in q̂ due to correlations of monopoles. In Figs. 4.13 and 4.14, we
show the effects of this correlation factor on RAA and v2, respectively, for 2.76 TeV and 200
GeV collisions. We define,

∆(Obs.) = (Obs.)corr. − (Obs.)uncorr. , (4.21)

where (Obs.) is an observable.
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Figure 4.13: The effect of monopole correlations on the nuclear modification factor of charged
hadrons in 2.76 Pb-Pb collisions (a),(b), and neutral pions in 200 GeV Au-Au collisions
(c),(d). The first row (a),(c) is the results for monopole density from the lattice, while the
second row (b),(d) is results for monopole density from the equation of state. The (red) solid
curve is for IP-Glasma initial conditions and (2+1)D hydrodynamics with bulk viscosity (ζ 6=
0), the (blue) dash-dot curve is for Glauber initial conditions and (2+1)D hydrodynamics
with bulk viscosity (ζ 6= 0), the (green) dash-dot-dot curve is for Glauber initial conditions
and (2+1)D hydrodynamics without bulk viscosity (ζ = 0), and the (purple) dashed curve
is for the smooth Glauber initial condition with (1+1)D Bjorken evolution.

We see that, in general, correlations of monopoles cause the RAA to increase and the v2 to
decrease. Also, we see that, for all realistic initial conditions and hydrodynamic evolutions,
the monopole correlations have approximately the same effect, and that the magnitude of
the effect is on the order of 10%.

4.4 Summary

We have described various aspects of jet quenching phenomena using the BDMPS formalism,
including not only scattering on electric quasiparticles, quarks and gluons, but scattering on
monopoles as well. Unlike previous works by others, we include densities of all quasiparticles
from certain common fit to lattice thermodynamics, so there are no free parameters in the
theory.

The calculated observables include the nuclear modification factor RAA, the azimuthal
asymmetry v2, and dijet asymmetry Aj; this is done both for RHIC and LHC energies. The
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Figure 4.14: The effect of monopole correlations on the azimuthal anisotropy of charged
hadrons in 2.76 Pb-Pb collisions (a),(b), and neutral pions in 200 GeV Au-Au collisions
(c),(d). The first row (a),(c) is the results for monopole density from the lattice, while the
second row (b),(d) is results for monopole density from the equation of state. The (red) solid
curve is for IP-Glasma initial conditions and (2+1)D hydrodynamics with bulk viscosity (ζ 6=
0), the (blue) dash-dot curve is for Glauber initial conditions and (2+1)D hydrodynamics
with bulk viscosity (ζ 6= 0), the (green) dash-dot-dot curve is for Glauber initial conditions
and (2+1)D hydrodynamics without bulk viscosity (ζ = 0), and the (purple) dashed curve
is for the smooth Glauber initial condition with (1+1)D Bjorken evolution.

main conclusion of the work is that the current model provides rather reasonable description
of all of them. We find that, while realistic hydrodynamics is necessary for good agreement
with the observables seen in experiment, account for event-by-event fluctuations is not nec-
essary for reproducing RAA and v2 data; fluctuations, however, seem to play a role in Aj. In
all cases, the contribution of the monopoles is crucial for the success of the model.

In our model, monopoles give the dominant contributions to these observables at lower
RHIC energies, e.g. 62.4 GeV, where quarks and gluons provide almost no quenching.
Experimental observation of RAA, v2, and Aj at lower energies that deviate from the pp
results would bolster the proposition of the magnetic scenario above Tc.

Still, the model in its current form has certain limitations, which need to be addressed
in further studies. The model itself is that of independent scattering on “scatterers,” which
is of course an approximation. While we tried to remedy this partly by including monopole
correlation corrections, clearly the system is a strongly coupled plasma, and more work is
needed to include scattering effects more accurately.

We realize that the model we are using is missing some physical processes, as it only
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has radiative effects to lowest order, and neglects elastic and quasi-elastic scattering which
believed to be necessary for quenching of jets with heavy c, b quarks. Note that the recoil
energy by scatterers is neglected; this, however, is only true if scatterers are heavy. In fact,
the efficiency of such processes depend on quasiparticle masses, and that in the near-Tc
region the monopoles are believed to be the lightest ones, thus contributing more to the
elastic energy loss. We hope to return to this issue in subsequent work.
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Chapter 5

Chiral Symmetry Breaking

This chapter if based on:

• A. Ramamurti and E. Shuryak (2018). Chiral symmetry breaking and monopoles in
gauge theories. Phys. Rev. D, under peer review. arXiv:1801.06922.

While the central role of monopoles in the confinement-deconfinement transition was
recognized long ago, their relation to another important non-perturbative aspect of QCD-
like theories, chiral symmetry breaking, has attracted much less attention. It has been found
on the lattice that, by decomposing the gauge fields into Abelian-monopole, Abelian-plain,
and non-Abelian components, the removal of the monopoles does indeed lead to removal of
the quark condensate [146, 147].

In this chapter, we address how chiral symmetry breaking and the generation of the non-
zero quark condensate at T < Tc can be explained in terms of this monopole model. The
mechanism is based on the formation of bound states between quarks and monopoles. Like
in condensed matter systems, in which “doping” of a material by atoms with an extra state
leads to new set of states and alters its conductivity, the presence of monopoles radically
affects the Dirac eigenvalue spectrum.

One obvious difficulty of the problem is the fact that a detailed understanding of the
“lattice monopoles” is lacking; they are treated as effective objects whose parameters and
behavior we can observe on the lattice and parameterize, but their microscopic structure
has yet to be understood. In particular, the ’t Hooft-Polyakov monopole solution includes
a chiral-symmetry-breaking scalar field, while we know that, in massless QCD-like theories,
chiral symmetry is locally unbroken. We assume that the zero modes in question are chiral
themselves, like they are in the instanton-dyon theory, and that chiral symmetry breaking
can only be achieved by a spontaneous breaking of the symmetry.

The other difficulty of the problem is the important distinction between fermionic zero
modes of (i) monopoles and (ii) instanton-dyons. The latter include the so called L-type or
twisted dyons, which possess 4-dimensional zero modes for antisymmetric fermions. There-
fore, their collectivization naturally leads to chiral symmetry breaking, studied recently in
Ref. [91], in a natural mechanism originally proposed for the instantons; for a review, see
Ref. [148]. As follows from Banks-Casher relation [149], the quark condensate is proportional
to density of Dirac eigenstates at zero eigenvalue.
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The monopoles also have fermionic zero modes [116], which are 3-dimensional. They are,
therefore, simply a bound state of a fermion and a monopole. In theories with extended
supersymmetries, such objects do exist, fulfilling an important general requirement that
monopoles need to come in particular super-multiplets, with fermionic spin 1/2 for N = 2,
or spins 1/2 and 1 for N = 4. The anti-periodic boundary conditions for fermions in
Matsubara time implies certain time dependence of the quark fields, and (as we will discuss
in detail below) the lowest 4-dimensional Dirac eigenvalues produced by quarks bound to
monopoles are the values λ = ±πT , not at zero.

This, however, is only true for a single monopole. In a monopole ensemble with non-zero
density, the monopole-quark bound states are collectivized and Dirac eigenvalue spectrum
is modified. The question is whether this effect can lead to a nonzero ρ(λ = 0) ∝ 〈q̄q〉,
and if so, whether it happens at the temperature at which chiral symmetry breaking is
observed. As we will show below, we find affirmative answers to both these questions. The
phenomenological monopole model parameters are such that a non-zero quark condensate is
generated by monopoles at T ≈ Tc.

As a final introductory comment, we note that our approach is to take as inputs the
empirical monopole density n(T ) and ensemble of paths from our previous study. Using
them, we calculate the corresponding Dirac eigenvalue spectrum. The back-reaction of the
fermions on monopole density and their motion is neglected. In this respect, our calculation
is ideological similar to quenched lattice calculations, which also ignore quark back-reaction
on the gauge fields.

5.1 Georgi-Glashow Model with Fermions

In this section, we will overview the calculation of the fermion-monopole zero modes in the
Georgi-Glashow model (see Sec. 1.1.2 for a review of monopoles in the Georgi-Glashow
model). First, we will remind the reader of the result found by Jackiw and Rebbi [116]
for the fermionic zero modes, and then go on to compute the matrix element between two
monopoles in the basis of zero modes.

5.1.1 Fermionic Zero Modes of Monopoles

We will begin by summarizing known results from Refs. [116, 150].The Lagrangian of the
Georgi-Glashow model (without fermions) is

L = −1

4
F µν
a Faµν +

1

2
(Dµφ)a(D

µφ)a −
1

4
λ(φaφa − v2) (5.1)

where
F µν
a = ∂µAνa − ∂νAµa + gεabcA

µ
bA

ν
c ,

and
(Dµφ)a = ∂µφa + gεabcA

µ
bφc .

The fermionic part considered by Jackiw and Rebbi is

LF = iψ̄nγ
µ(Dµψ)n −Ggψ̄nτanmψmφa , (5.2)
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with G a constant, τa = σa/2, and

(Dµψ)n = ∂µψn − igτanmAµaψm .

The Dirac equation for the fermion field is written in the form[
− i~α · ~∂δnm +

1

2
A(r)σanm(~α× ~̂r)a

+
Gφ(r)

2
σanmr̂aβ

]
ψm = Eψn , (5.3)

where n,m = 1, 2 are the isospin indices, σa are the Pauli matrices, and

αi =

(
0 σi
σi 0

)
, β = −i

(
0 1

−1 0

)
. (5.4)

For clarity, let us take a brief aside to discuss the basis of gamma matrices we use. The
representation of the Dirac matrices used by Jackiw and Rebbi correspond to the definition

γ4 = β , γ4~γ = −i~α , (5.5)

with the representation of the gamma matrices

γ4 = −i
(

0 1

−1 0

)
, γi =

(
−σi 0

0 σi

)
, γ5 = i

(
0 1

1 0

)
. (5.6)

Note that this form is different both from the standard Dirac representation

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi
−σi 0

)
, γ5 =

(
0 1

1 0

)
, (5.7)

and the Weyl one, in which

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi
−σi 0

)
, γ5 =

(
−1 0
0 1

)
. (5.8)

The standard definition of fermion chirality (left and right polarizations) is related to
projectors (1 ± γ5)/2, and so only the last Weyl representation, in which γ5 is diagonal, is
really chiral. The zero modes of pure gauge solitons, such as instantons and instanton-dyons,
are chiral in this standard sense.

The 2-component zero modes found by Jackiw and Rebbi are often called “chiral” in
literature, but they are not chiral in the standard sense, as seen already from the fact that
in their representation γ5 is not diagonal. Furthermore, as seen directly from the Lagrangian
of the Georgi-Glashow model, fermions interact with a scalar field, and this vertex mixes the
left and right polarizations, explicitly breaking chiral symmetry.

In pure gauge theory with massless fermions (which we discuss), the SU(Nf ) chiral sym-
metry is exact. So, when the lattice monopoles – whatever their microscopic structure may
be – have fermionic bound states, those should belong to the representation of the standard
chiral symmetry, rather than the one with the quotation marks. So, while we use the ’t
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Hooft-Polyakov monopole and its Jackiw-Rebbi zero modes as an example, we do not expect
it correctly reproduce their chiral properties. We assume that the zero modes of monopoles
in gauge theories without scalars (such as QCD) are truly chiral in the usual sense.

In this representation of the Dirac matrices, the αi, β are non-diagonal, and the only
diagonal term is the energy. For a zero mode E = 0, the problem is “chiral,” in the sense
that the 4-spinor ψ splits into separate upper and lower components,

ψ =

(
ψ+

ψ−

)
,

where ψ±lm has four components, with l corresponding to spin indices and m corresponding
to isospin (The SU(2) color is called isospin in Georgi-Glashow model.) These upper and
lower components can be further written as two scalar and vector fields,

ψ±lm = (g±δlm + ~g± · ~σln)σ2
nm .

Carrying out the partial wave analysis (see Appendix of Ref. [116]) and finding the zero
energy solution gives

~g±(r) = 0,

g−(r) = c− × exp

(∫ r

0

dr′
[
A(r′) +

1

2
Gφ(r′)

])
,

g+(r) = c+ × exp

(∫ r

0

dr′
[
A(r′)− 1

2
Gφ(r′)

])
,

The g− solution is un-normalizable, so it is set to zero (c− = 0). This gives the spinors

ψ−lm = 0 ,

ψ+
lm =N exp

(∫ r

0

dr′
[
A(r′)− 1

2
Gφ(r′)

])
(5.9)

× (s+
l s
−
m − s−l s+

m) ,

where s± are the eigenvectors of σ3, and N is a normalization.
The extension of the SU(2) ’t Hooft-Polyakov monopole solution to SU(3) – with the

same Georgi-Glashow-like Lagrangian – is discussed by A. Sinha [60]. In QCD, the A0 field
plays the role of the scalar (Higgs) field in the Georgi-Glashow model. For the purposes of
this work, and for simplicity, we will study only the SU(2) case.

5.1.2 Quark Hopping Matrix

Recognizing fermionic binding to monopoles, we now proceed to description of their dynamics
in the presence of ensembles of monopoles. The basis of the description is assumed to be
the set of zero modes described in the previous section. The Dirac operator is written as a
matrix in this basis, so that i − j element is related to “hopping” between them. Such an
approach originated from the “instanton liquid” model [148].
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The matrix elements of the “hopping matrix”

T =

(
0 iTij
iTji 0

)
(5.10)

where the Tijs are defined as the matrix element,

Tij ≡ 〈i| − i /D |j〉 , (5.11)

between the zero modes located on monopoles i and antimonopoles j. In the SU(2) case we
are considering, this is equivalent to

Tij = 〈ψi|x〉 〈x| − i /D |y〉 〈y|ψj〉

=

∫
d3xψ†kn(x− xi)(−i /D)ψlm(x− xj)

=

∫
d3xψ†kn(x− xi)

[
− i(~α · ~∂ + ~α · ~∂ − ~α · ~∂)δnm

+
1

2
(A(x− xi) + A(x− xj))σanm(~α× ~̂r)a

+
G(φ(x− xi) + φ(x− xj))

2
σanmr̂aβ

]
ψlm(x− xj)

=

∫ ∑
m

d3xψ†km(x− xi)[−i~α · ~∂]klψlm(x− xj) (5.12)

where ψs are zero modes with origin at xi,j, the locations of the two monopoles, n,m are the
isospin/color indices, and we have used the fact that applying the Dirac operator to these
wavefunctions gives zero.

The operator between the wavefunctions is

i~α · ~∂ = i


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

∂x + i


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 ∂y

+ i


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 ∂z . (5.13)

In the case where the original wavefunction only has an upper component, the resulting
vector after applying this operator has only the lower component. Therefore, the matrix
elements of the “hopping matrix” Tij are zero unless the fermionic zero modes have opposite
chirality. So, a left-handed fermion zero mode has non-zero overlap with a right-handed
zero mode, and vice versa. To get the opposite chirality, we need to change the sign of the
couplings. In the case of an SU(2) antimonopole, only the lower spinor survives, with the
same wavefunction (the spin of the fermion flips). We will call these zero modes ξ.
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This allows us to split the previous equation into two equations,

Tij =

∫
d3xξ†(x− xi)[−i~σ · ~∂]ψ(x− xj) ,

Tji =

∫
d3xψ†(x− xi)[−i~σ · ~∂]ξ(x− xj) , (5.14)

where we use the appropriate one depending on whether i(j) is a location of a monopole(antimonopole).
For the matrix element between a right-handed monopole zero mode and a left-handed

anti-monopole zero mode,

Tij =

∫
d3~x

∑
m

ξ†km(~x− ~xi)[−i~σ · ~∂]klψlm(~x− ~xj) ,

where m is the traced-over isospin/color index, and k, l are the spin indices (which are all
convoluted). The operator is,

[−i~σ · ~∂] =

(
−i∂z −i∂x − ∂y

−i∂x + ∂y i∂z

)
. (5.15)

For simplicity, we will treat each isospin/color case separately, so the only indices left are
spin indices. We will denote the spatial-only part of the wavefunction (without spinors) with
tildes.

m = 1:

We will write ξk1 as ξ̃ak and ψl1 as ψ̃al. The wavefunction has spinors

ai ≡ s+
i s
−
1 − s−i s+

1 =

(
0
−1

)
,

a†i ≡ s+
1 s
−
i − s−1 s+

i =
(
1 0

)
,

and so
ξ̃a†k[−i~σ · ~∂]klalψ̃ = ξ̃(i∂x + ∂y)ψ̃ . (5.16)

m = 2:

The wavefunction has spinors

bi ≡ s+
i s
−
2 − s−i s+

2 =

(
1
0

)
,

b†i ≡ s+
2 s
−
i − s−2 s+

i =
(
0 −1

)
,

and so
ξ̃bk[−i~σ · ~∂]klblψ̃ = ξ̃(i∂x − ∂y)ψ̃ . (5.17)
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Combining the two cases, ∑
m

ξ†km[−i~σ · ~∂]klψlm = 2iξ̃∂xψ̃ , (5.18)

which then yields that,

Tij = 2i

∫
d3~xξ̃(~x− ~xi)∂xψ̃(~x− ~xj) . (5.19)

For the matrix element between a left-handed anti-monopole zero mode and a right-handed
monopole zero mode, we get, similarly,

Tji = 2i

∫
d3~xψ̃(~x− ~xi)∂xξ̃(~x− ~xj) .

The full solutions to the equations of motion for A(r) and φ(r) are well behaved at the
origin, so we must use those in lieu of only considering asymptotics. The only analytic
solution to the equations of motion is in the case where λ = 0; this solution is known as the
Bogomolnyi-Prasad-Sommerfeld (BPS) monopole [58, 59]. In this case,

H(ζ) = ζ coth(ζ)− 1 ,

K(ζ) =
ζ

sinh(ζ)
, (5.20)

where ζ = gvr. In terms of these functions, our gauge fields are,

A0
a = 0 ,

Aia = εaij
rj
gr2

(1−K(ζ)) , (5.21)

φa =
ra
gr2

H(ζ) .

This leads to the identification with our earlier notation,

A(r) =
1−K(gvr)

r
, (5.22)

φ(r) =
H(gvr)

r
.

For the monopole zero mode we get that, up to normalization,

ψ̃ =
1

2
(gvr)

G
2

+1 coth
(gvr

2

)
sinh−

G
2 (gvr) . (5.23)

Then,

∂xψ̃ = −
( x

4r2

)
(gvr)

G
2

+1 coth

(
1

2
gvr

)
sinh−

G
2
−1 (gvr)

× (−(G+ 2) sinh (gvr) + gGvr cosh (gvr) + 2gvr) , (5.24)
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Figure 5.1: Evaluation of Im(Tij(r0)) for r0 in the xy plane for G = g = v = 1.

and similarly for the anti-monopole zero mode wave function. Putting these solutions into
the hopping matrix element equation for monopole-to-antimonopole, we get

Tij(r0) =2i

∫
d3~xξ̃(|r − r0|)∂xψ̃(r)

=2iN2

∫
d3~x

(
− x

8r2

)
(gv)G+2r

G+2
2 |r − r0|

G+2
2

× coth

(
1

2
gvr

)
sinh−

G
2
−1 (gvr)

× coth

(
1

2
gv|r − r0|

)
sinh−

G
2 (gv|r − r0|)

× (−(G+ 2) sinh (gvr) + gGvr cosh (gvr) + 2gvr) . (5.25)

The combination gvr is dimensionless, as is x/r, so the integrand has dimension [energy]
(1/r). The parameter v, in the BPS limit, is determined by the mass of the monopole, and
g is taken to be the same as in the strong coupling constant.

As an instructive exercise, taking G, g, v = 1, we can evaluate this integral. The result is
seen in Fig. 5.1. The first thing to note is that the result of integral is symmetric around the
x-axis, and therefore only dependent on the combination (y2

0 + z2
0). So, for example, taking

r0 = (x0, 2, 3) yields the same result as r0 = (x0,
√

13, 0), r0 = (x0, 3, 2), etc. In addition, the
function is odd under reflection from x→ −x. Therefore, we can evaluate the integral with
z0 = 0, y0 ≥ 0, and x0 ≥ 0, without loss of generality.
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Figure 5.2: Evaluation of Im(Tij(r0)) for r0 in the xy plane for different temperatures.

5.2 Dirac Eigenvalue Distributions

We will use the monopole configurations found in our previous path-integral study of monopole
Bose-Einstein condensation, and study the effects of density and temperature on the eigen-
value spectrum of the Dirac operator for BPS monopoles.

To constrain the values of g and v, we can use the mass of the monopole. In the BPS
limit, the mass is given by

M =
4πv

g
. (5.26)

The mass of the monopole was studied in Ref. [64] through lattice simulations of SU(2)
pure-gauge theory, which shows a mass of around 2Tc at T = Tc, and then rapidly grows
as temperature increases. The density of monopoles in SU(2) gauge theories was studied in
Ref. [115], and was parameterized by

ρ

T 3
c

(
T

Tc

)
=

0.557(T/Tc)
3

log(2.69(T/Tc))
2 . (5.27)

We will evaluate the evolution matrix U , defined as time-ordered integral of the hopping
matrix in the previous section over the Matsubara periodic time τ ∈ [0, β]. This matrix will
then be diagonalized to find the eigenvalues for the fermion states. Because each eigenstate
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Figure 5.3: Eigenvalue distribution for T/Tc = 1 (red), 1.1 (blue), and 1.2 (green). Note the
logarithmic scale.

is still fermionic, each is required to fulfill the fermionic boundary conditions, namely that
the state must return to minus itself after one rotation around the Matsubara circle. This
defines quantization of the Dirac eigenvalues by,

λi + ωi,n =

(
n+

1

2

)
2π

β
, (5.28)

where λis are the eigenvalues of the hopping matrix T.
For monopoles that move in Euclidean time, we must integrate over the Matsubara circle

to find the fermion frequencies,

U =

∮
β

dτeiHτ = −1 . (5.29)

This can be approximated by

−1 ≈ eiHm∆τ . . . eiH2∆τeiH1∆τ

≈ (1 + iHm∆τ − . . .) . . . (1 + iH1∆τ − . . .)

for m time slices. We diagonalize the resulting matrix on the right-hand side and solve to
find the quantity λ+ ω.

For simplicity, we will work in units of Tc (i.e. Tc = 1) when doing this calculation (for
mass and temperature, for example), and units of length will be defined by the density of
monopoles r ∼ ρ−1/3 in units of 1/Tc.
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Before we begin, to estimate what the effects of temperature will be on our results, we
can evaluate the integral in Eq. (5.25) with different values of the parameters, corresponding
to the range of temperatures we will simulate. We will take G = g =

√
4π/3 – as would be

the case in QCD – and v from the monopole mass, taken from Ref. [64]. The results for
T/Tc = 1, 1.05, 1.1, and 1.2 are seen in Fig. 5.2 (a), (b), (c), and (d), respectively.

Compared to the g = G = v = 1 case, the range of the zero-mode hopping is significantly
smaller – ∼10 units of length in x0 to a peak for the former case and 2.5 for T = Tc –
and decreases rapidly with temperature. In addition, the peaks of the function reduce in
magnitude and very quickly become much sharper as temperature is increased. Therefore,
the contribution to the Tij matrix at temperatures above Tc will only come from “local”
hopping (i.e. only when there is a monopole-antimonopole molecular bound state), while at
Tc, the ensemble contributes and there can be a chain of hopping.

To make this explicit, we construct the hopping matrix, as described above, for SU(2)
monopole configurations at T/Tc = 1, 1.05, 1.1, 1.2 and 1.5, and calculate the eigenvalue
spectra of the Dirac operator at each of those temperatures. For each of the temperatures,
we take 400 path configurations of 32 time slices, each with 32 particles in a box with periodic
boundary conditions – the box is repeated to the extent necessary to study the whole range
of x0, y0, z0. At each time slice, the hopping matrix is calculated; the matrices are then
path-exponentiated to get the hopping matrix for the ensemble configuration.

The spectral density of eigenvalues is given by

ρ(λ) =
1

V

∑
i

δ(λ− λi) . (5.30)

The eigenvalues of the configurations – before imposing the fermion boundary conditions –
are seen in Fig. 5.3. We can then compute the eigenvalues of the Dirac operator with

ωi,n =

(
n+

1

2

)
2π

β
− λi . (5.31)

Considering only the n = ±1 case, so that ωi = ±πT − λi, we get the distributions shown
in Fig. 5.4 (a), (b), (c), and (d) for T/Tc = 1, 1.05, 1.1, and 1.2, respectively.

The Banks-Casher relation [149] makes the connection between the density of eigenvalues
at ω = 0 and the magnitude of the chiral condensate. In studying the monopole contribution
to the chiral condensate, it is important to note that we can only approach the critical
temperature Tc from above, as we do not have any lattice data on monopole density, mass,
or correlations below Tc. As a result, we will primarily focus on the gap in eigenvalue
spectrum around ω = 0 as a proxy for the chiral transition.

The first, and most important, thing to notice is that when T = Tc, the eigenvalue
distribution has a finite density at ω = 0 (see Fig. 5.4a), which indicates the nonzero value
of the chiral condensate; there is no gap in the spectrum present at T = Tc. (A small dip
seen around zero is a consequence of finite size of the system, well known and studied on the
lattice and in topological models. It should be essentially ignored in extrapolation to zero.)

Furthermore, one can see the onset of non-zero density at zero eigenvalue by looking at
the smallest eigenvalue in each configuration. Fig. 5.5 shows the mean smallest eigenvalue
as a function of temperature. We fit the data with the function

〈ωmin〉 = A(T − Tc)
ν , (5.32)
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Figure 5.4: Distributions of Dirac eigenvalues for T/Tc = (a) 1 , (b) 1.05 , (c) 1.1, and (d)
1.2, respectively.
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where 〈. . .〉 indicates an average over configurations. The fit parameters were found to be
A = 6.29 and ν = .60. We note that this exponent ν is compatible with the critical exponent
found from the diverging correlation length at the deconfinement temperature, which for the
3d Ising model is ν ≈ .63, and is also consistent with the monopole BEC transition found
in Ref. [64]. This agreement was in fact not expected, because of quenched nature of the
calculation, but has been observed nevertheless.

5.3 Summary

In qualitative terms, the mechanism of chiral symmetry breaking based on monopoles is as
follows. A single monopole (or anti-monopole) generates additional quark and antiquark
bound states. At high temperatures, the monopoles have large mass and the probability
of hopping is therefore low. The 4d Dirac operator eigenvalues are well localized near the
fermionic Matsubara frequencies 2πT (n + 1/2). Using the condensed matter analogy, one
may say that a matter is an insulator.

However, as T decreases toward Tc, the amplitudes of quark “hopping” from one monopole
to an antimonopole (and vice versa) grow. Eventually, at some critical density, quarks
become “collectivized” and are able to travel very far from their original locations. The
physics of the mechanism is similar to insulator-metal transition in condensed matter under
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pressure.
Technically, the central point is the distinction between the evolution operator and quan-

tization of the fermionic states on one hand, and the Dirac operator and its eigenvalues.
Quantitatively, we found that not only the mechanism works in principle, but that a

noticeable quark condensate does appear at T ≈ Tc, practically simultaneously with the de-
confinement phase transition, seen by the BEC of monopoles. This observation is consistent
with what what has been observed in quenched lattice calculations.

Finally, let us comment on the dependence of chiral symmetry breaking on the fermion
periodicity phase. We have not studied it in this work, but note that for periodic quarks, the
Matsubara frequencies shift to bosonic set 2πTn, including n = 0. Therefore the monopoles
would produce a non-zero quark condensate at any density. This comment implies that the
chiral transition is in general some function of the periodicity phase, and its coincidence with
deconfinement only happens for the anti-periodic quarks we studied.
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Chapter 6

Conclusions

In this dissertation, we have presented novel results that have furthered our understanding of
the role that chromo-magnetic monopoles play in QCD. Monopoles have been suggested to
have a major influence on phenomena ranging from purely non-perturbative, such as chiral
symmetry breaking and confinement, to real-time, such as jet quenching.

In Chapter 2, we looked at the question of whether we can analytically understand
monopoles in pure gauge theories. In supersymmetric theories, there exist analytic descrip-
tions of both instanton-dyons as well as monopoles, and it was shown that the partition
for the former was equivalent to that of the latter through a Poisson transformation. In
our work, working up from a simple toy model of a rotator, we considered the partition
function of instanton-dyons in pure gauge theory, which can be viewed as periodic winding
paths in Euclidean time, and transformed it to its dual form. We argued that this dual form
represents the partition function of moving and rotating monopoles.

In Chapter 3, we constructed an effective quantum model for the monopoles found in
SU(2) lattice gauge theory simulations, based on a two-component Coulomb Bose gas. We
implemented the path-integral Monte Carlo algorithm, and used this to simulate liquid
4He, one-component, and two-component Coulomb gases. In doing so, we were able to
test new methods for finding the critical temperature, based on studying the permutation
cycle statistics, and found that they both gave good agreement with the classic technique of
studying the superfluid fraction. After matching radial correlation functions to those found
on the lattice, we were able to find a parameter set for our model that accurately reproduced
the properties of lattice monopoles. Using these parameters, we were able to extract the
monopoles’ contribution to the QCD equation of state, and found that monopoles contribute
nearly all of the energy density in the range 1− 1.3Tc.

Next, in Chapter 4, we investigated the influence of monopoles on jet quenching. Using
the BDMPS model of jet quenching, we studied the effect of monopoles on the energy loss
of jets traversing a heavy-ion collision. We found that, when using realistic hydrodynamic
backgrounds, we were able to reproduce the experimental trends for the nuclear modification
factor, azimuthal anisotropy, and dijet asymmetry observables for 2.76 TeV Pb-Pb and 200
GeV Au-Au collisions. Furthermore, we were able to make predictions for lower energy
collisions to occur at RHIC in the future.

Finally, in Chapter 5, we studied the phenomena of chiral symmetry breaking, focused on
whether the formation of a chiral condensate could be explained using fermionic zero modes
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of monopoles. Using the configurations of monopoles from our effective model, we were able
to study the zero modes of fermions and their “hopping” from monopole to anti-monopole.
This hopping creates a spread in the Dirac eigenvalue spectrum from the standard Matsubara
frequencies. We found that, at the critical temperature, the density of zero-eigenvalue is
finite, indicating the existence of a chiral condensate.

Moving forward, lattice QCD studies (with light quarks) – similar to those done for
pure-gauge theories in which monopoles and their paths were identified – are necessary to
more accurately assess their contributions to properties of QCD and to fully understand
phenomena that require fermions. Further investigations of real-time processes that are
influenced by monopoles could yield an experimental observable that indicates their presence,
and inclusion of monopoles in other more-developed jet quenching models could allow study
of further jet observables and substructure. There is, of course, much more work to be done
to understand monopoles in QCD, and hopefully, we are only scratching the surface.
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