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Abstract of the Dissertation

Nonperturbative Studies in QCD

by

Yizhuang Liu

Doctor of Philosophy

in

Physics

Stony Brook University

2018

QCD in the non-perturbative regime is theoretically still very challeng-
ing. This thesis consists of four di↵erent studies using newly developed
non-perturbative techniques. In the first study, we develop a many-body
analysis of the QCD vacuum as a semi-classical ensemble of instanton- and
anti-instanton-dyons with light quarks. We show that at low temperature,
the ensemble confines and breaks spontaneously chiral symmetry. The rate
at which both symmetries are restored at high temperature depend on the
nature of the quark representation and boundary conditions. In the second
study, we analyze the dual e↵ect of a rotation and a magnetic field on light
quarks both in the free and interacting regimes in various space-dimensions.
We show that for QCD in the spontaneously broken phase, the dual e↵ect can
induce pion condensation that can take place at current collider energies and
potentially in neutron stars. In the third study, we detail a new holographic
construction for addressing both heavy and light quarks in AdS/QCD with
manifest chiral and heavy quark symmetry. We use to study heavy-light
mesons and baryons and predicts a number of new hadronic exotics, some
of which have currently been detected by the LHCb collaboration. In the
fourth study, we combine the universal aspects of Random matrix theory
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with hydrodynamics to investigate aspects of the QCD Polyakov-line at fi-
nite temperature in and out-of-equilibrium as a way to estimate typical re-
laxation times, and at finite chemical potential to derive universal spectral
edge laws. Some of our observations can be explored using current lattice
QCD simulations.
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with overall charge neutrality, for N = 1000 as a function of r and in units
of eB.
Figure 27. Under the action of an external magnetic field B the ⇡± undergo
opposite rotations in the Lowest Landau Level (LLL) which is degenerate.
The action of a parallel rotation (~⌦ · ~B > 0) lifts the degeneracy in the LLL.
The energy of the ⇡+ shifts down and splits away from the energy of the ⇡�

that shifts up. The action of an anti-parallel rotation (~⌦ · ~B < 0) exchanges
the role of ⇡+ and ⇡�.
Figure 28. The mean number of condensed pions N⇡+ = N⇡� in the range
0.04m⇡  ⌦  0.06m⇡, for µf = 0.86m⇡ and 0.5m⇡  T  1.5m⇡.
Figure 29. Nf � 1 = 2 antipodal 8L light branes, and one 8H heavy brane
shown in the ⌧U plane, with a bulk SU(2) instanton embedded in 8L and a
massive HL-string connecting them.
Figure 30. Tc/

p
�1 versus Nc in (368) (upper curve) compared to the nu-

merical fit to the lattice results (lower curve) from [100].
Figure 31. Tc/

p
�1 versus Nc in (386). The dots are the lattice results

from [101].
Figure 32. Eigenvalue distribution for the chiral Dirac matrices D for
µ/µc = 0.9 and ⌧ = 1.
Figure 33. Eigenvalue distribution for the deformed Wishart W matrices
for µ/µc = 0.9 and ⌧ = 1.
Figure 34. Saddle point surface r0(x0, y0) viewed along 0 < x0 < 2 for
µ2 = 1

4 and ⌧ = 1. The lateral axis is y0, the height is r0 and the depth is x0.
Figure 35. Saddle point surface r0(x0, y0) viewed along �2 < x0 < 0 for
µ2 = 1

4 and ⌧ = 1. The lateral axis is y0, the height is r0 and the depth is
x0. The pinch at r0(x0, y0) ⌘ 0(�1, 0) is the chiral point in the deformed
Wishart spectrum.
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1 Introduction and Organization

This thesis consists of several studies in non-perturbative QCD, most of which
have appeared in several published works summarized earlier. The common
theme of these studies evolve around the complexity of addressing QCD in the
infrared using various non-perturbative theoretical tools that can be viewed
as complementary to the numerical studies using primarily the lattice. The
thesis will consists mainly of four studies, each of which will be detailed in
separate chapters below. This introduction will help streamline the chapters
by giving a brief overall perspective of their content and the key achievements.

Part I: Instanton-dyon liquid model

Instantons are self-dual or anti self-dual solutions to the Yang-Mills equa-
tions in R4. At zero temperature, they are classified by their topological
charge and can be systematically analyzed using the ADHM-construction.
Physically, they are tunneling solutions between local-minima with di↵erent
Chern-number, and when coupled to fermions, they distinguish chirality by
the index theorem.

At finite temprature on S1
⇥R3 with periodic boundary condition along

S1, we have more self-dual and anti self-dual solutions. The simplest set of
such solutions are instanton-dyons. The basic building block is essentially
the SU(2) BPS monopole whereA4 plays they role of the Higgs field. For an
SU(Nc) theory at finite temperature � = 1

T
with a Polyakov line

P = Pei
R �
0 A4dx4 |~x!1 = diag(eiµ1 , ...eiµN )

there are Nc independent instanton-dyons, of which Nc�1 are time indepen-
dent, and one that is time dependent. For SU(2), the time independent one
is referred to as an M dyon, and the time dependent one as an L dyon. Their
charges (q, e,m) are given by (⌫, 1, 1), (1 � ⌫,�1,�1) for the M,L dyons,
and (�⌫, 1,�1) and (⌫ � 1,�1, 1) for their anti-dyon partners M̄, L̄. Here
P = cos⇡⌫. When ⌫ = 1

2 we have P = 0 with restored center-symmetry,
which is an important feature of the confining vacuum.

While mathematically the instanton-dyons and their topological coun-
terparts are relatively simple to construct, their many-body contribution
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to thermal Yang-Mills theory is involved and is the main subject of our
study. At asymptotically high temperature T , QCD-like theories are in a
weakly coupled state known as the Quark-Gluon Plasma (QGP). In it soli-
tons – instantons and their constituents, monopoles etc – have large action
S = O(1/↵s) � 1. Their semi-classical treatment is parametrically reliable,
but their density is exponentially suppressed by e�S. As a result their e↵ects
are small.

However, as the temperature decreases the semi-classical action S de-
creases. Since the soliton density grows as a power of 1/T their contribution
to the QCD partition increases. At a critical density fixed by Tc, confine-
ment sets in, and the near-zero expectation value of the Polyakov line hP i ⇡ 0
switches o↵ the quark component of the QGP, as well as the (non-diagonal)
gluons. Below the critical temperature Tc, the solitons dominate the field
ensemble.

The major questions at the transition point are: (i) are these objects still
made of strong enough fields, allowing for a semi-classical analysis; (ii) are
their interactions weak enough to preserve their individual identity; (iii) are
the semi-classical interactions in the thermal ensemble amenable to known
methods of many-body theory. As we will argue below, the two first questions
will be answered in the a�rmative, and the third one also, provided that the
ensemble is dense enough.

The instanton liquid model developed in the 19800s is an example of such
a semi-classical treatment. In vacuum at T = 0, the action per typical SU(3)
instanton was found to be large with S ⇠ 12, and the inter-instanton and
anti-instanton interactions tractable. The non-perturbative vacuum topolog-
ical fluctuations are related to the explicit violation of the axial U(1), and
the formation of fermionic zero modes. The collectivization of the fermionic
zero modes leads to the spontaneous breaking of flavor chiral symmetry [1]
(and references therein). More recently, instanton-induced e↵ects were found
to be important for hadronic spin physics [2].

However, around the critical temperature T ⇠ Tc, instantons should know
about the non-vanishing of the Polyakov line expectation value, also referred
to as a non-trivial holonomy. Instantons with non-trivial holonomies were
found in [3]. The key discovery was that large holonomies split instantons
into Nc constituents, the self-dual instanton-dyons. Since these objects have
nonzero Euclidean electric and magnetic charges and source Abelian (di-
agonal) massless gluons, the corresponding ensemble is an “instanton dyon
plasma”
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We note that the electric dyon field is real in Euclidean space-time but
imaginary in Minkowski space. The instanton-dyons are also referred to as
instanton-monopoles or instanton-quarks. However, the notion of a non-zero
holonomy and all the instanton-related contructions do not exist outside
of the Euclidean finite-T formulation. On the lattice, both the electric and
magnetic charges of the instanton-dyons are observable by standard Gaussian
surface integrals.

Diakonov and Petrov [83] emphasized that, unlike the (topologically pro-
tected) instantons, the dyons interact directly with the holonomy field. They
further suggested that since such dyon (anti-dyon) fields become significant
at low temperature, they may be at the origin of a vanishing of the mean
Polyakov line, or confinement. This mechanism is similar to the Berezinsky-
Kosterlitz-Thouless-like transition of instantons into fractional “instanton
quarks” suggested earlier by Zhitnitsky and others [6], inspired by the frac-
tionalization of the topological charge in 2-dimensional CPN models [7], al-
though it is substantially di↵erent in details. It is also di↵erent from the ran-
dom dyon-anti-dyon ensemble suggested earlier by Simonov and others [8].
It is not yet clear how this Euclidean mechanism relates to the the quantum
condensation of magnetic monopoles suggested initially by t0 Hooft [9] and
Mandelstam [10], and subsequently supported in the supersymmetric model
discussed by Seiberg and Witten [11]. In many ways, it is similar to the
3-dimensional monopole plasma discussed by Polyakov [12].

Unsal and Ya↵e [13] , using a double-trace deformation of Yang-Mills at
large N on S1

⇥ R3, argued that it prevents the spontaneous breaking of
center symmetry. A similar trace deformation was used in the context of
two-dimensional (confining) QED with unequal charges on S1

⇥ R [14] to
analyze the nature of center symmetry and its spontaneous breaking. This
construction was extended to QCD with adjoint fermions by Unsal [15], and
by Unsal and others [44] to a class of deformed supersymmetric theories
with soft supersymmetry breaking. While the setting includes a compact-
ification on a small circle, with weak coupling and an exponentially small
density of dyons, the minimum at the confining holonomy value is induced
by the repulsive interaction in the dyon-anti-dyon pairs (called bions by the
authors). The supersymmetry is needed to calculate the contribution of the
dyon-anti-dyon pairs , and, even more importantly, for the cancellation of the
perturbative Gross-Pisarski-Ya↵e-Weiss (GPYW) holonomy potential [16].

Before we get into the details of the various approximations to our anal-
ysis, let us try to provide some qualitative answers to the three generic ques-
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tions formulated above: (i) At T ⇠ Tc, we will consider the action per dyon
(anti-dyon) to be still large or S ⇠ 4 whatever Nc; (ii) The dyon interactions
will be of the order of �Sint ⇠ 1 ⌧ S. The quantum (one-loop) interactions
are several times smaller and naively can be considered small. However they
are quite non-trivial and the repulsion they provide would be our key find-
ing. (iii) In general, the dyon plasma is strongly coupled and it is hard to
treat it analytically. However we will argue below that in some window of
temperatures (below Tc) one can still use the Debye-Huckel plasma theory,
and more generally the hypernetted chain re-summation developed for dense
Coulomb liquids.

A major contribution to the understanding of the one-loop dyon interac-
tion has been made by Diakonov and others [83, 5]. They have found that
at T > Tc their interaction with the surrounding QGP leads to a linear (con-
fining) potential between the dyons, proportional to the perturbative Debye
mass. Since in this work we will only consider the opposite case T < Tc,
this will not be included in what follows. Key to the one-loop e↵ect is the
explicit quantum weight of the KvBLL instantons in terms of the collective
coordinates of the constitutive dyons at all separations. The self-dual sector
is characterized by a moduli space with a hyper-Kahler metric. Its volume
element is given by the determinant of Coulomb-like matrix. We will refer
to it as Diakonov determinant.

In his first attempts to treat the dyonic plasma, Diakonov kept only the
one loop determinant, the volume of the moduli space, ignoring the QGP
screening e↵ects and – as we will discuss in detail – the even larger classical
dyon-anti-dyon interaction. Furthermore, he assumed that the attractive
and repulsive terms induced by the determinant cancel out on average. We
disagree on this conclusion as we detail below. Indeed, Bruckmann and others
in [20] tried to generate configurations of randomly placed dyons using the
determinantal measure, and observed that for the physically relevant dyonic
densities, the determinantal measure develops negative eigenvalues. This
makes no sense if the measure is to account for the volume of the dyonic
moduli space. We will show that this issue may become resolved in a strongly
correlated ensemble.

It is well known that the separate treatment of self dual and anti-selfdual
sectors is only justified in the context of supersymmetry where self-duality
is dual to holomorphy. In QCD-like theories, the interaction between self
dual and anti-selfdual sectors is strong and not factorizable. It is described
semi-classically by a “streamline” with a classical inter-particle potential of
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order 1/↵s, which is larger than the 1-loop quantum induced potential of
order ↵0

s
. Furthermore, configurations with too strongly overlapping objects

with small action, are not subject to the semiclassical treatment. To account
for that one usually relies on the use of a “repulsive core” as in the instanton
liquid model for instance.

As we will discuss in detail, the classical dyon-antidyon interaction [21]
is about an order of magnitude stronger than the one-loop Coulomb e↵ects.
It generically leads to the dyon plasma in the strongly coupled regime, with
e�VDD̄ � 1. We will however focus on the very dense regime of such plasma,
in which screening is strong enough that statistical mechanics of the ensemble
can be treated by a variant of the Debye-Huckel mean field plasma theory.
In such case the screening length is short enough to fence the system from
strong coupling correlations and molecular-type instabilities induced by the
streamline. The more dilute systems such as those appearing at T > Tc,
will not be discussed in this work, as they need more powerful many-body
methods, such as e.g. strongly coupled Coulomb plasmas many-body physics
re-summations [22, 23] (and references therein). As we will show, in this case
the free energy has a minimum at the “confining” holonomy value v = ⇡T

The organizagion of part I is as follows:

In this first section, we will be (i) introducing the strong correlations be-
tween dyons and anti-dyons as described by the streamline [21]; (ii) showing
that the determinantal interactions induced by the moduli space for dyons
or anti-dyons are mostly repulsive causing the moduli volume to vanish for
randomly distributed dyons; (iii) showing that suitably organized dyons to
account for screening correlations yield finite moduli volumes; (iv) deriving an
explicit 3 dimensional e↵ective action that account exactly for the screening
of dyons and anti-dyons on the moduli space with strong inter-dyon-anti-
dyon streamline interactions; We then stay in the confining vaccum, leave
the question about the potential determination of ⌫ to the next section in
more detail , and (v) deriving the Debye-Huckel corrections induced by the
dyons and anti-dyons to the leading Pressure for the dyonic plasma and using
it to asses the critical temperature for the SU(2) plasma; (vi) providing the
explicit results for the gluon topological susceptibility and compressibility
near the critical temperature in the center symmetric phase; (vii) deriving
the scalar and charged structure factors of the dyonic plasma showing ex-
plicit screening of both electric and magnetic charges at large distances with
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explicit predictions for the electric and magnetic masses; (viii) showing that
the strongly coupled dyonic plasma supports both electric and magnetic con-
finement.

In the second section, we continue our investigation of the instanton-
dyon model in the dense regime . Using the same lineraized expansion for
the constraint equation which is valid in the dense regime, we obtain an
e↵ective description for the ensemble in terms of uncontraint instanton-dyons
interact via the new e↵ective interaction which is atractive in the magnetic
channel. For this ensmble, we show that by summing over all tree diagrams
it generates an e↵etic potential for the holonomy ⌫ which prefer the center-
symetric vacuum as one increase the one-dyon fugacity. And all one-loop
results in the frist section remains unchanged. We also show how multi-
chain and rings can be further re-summed beyond the leading clusters and
explicit them with some applications. We extend our arguments to a finite
vacuum angle ✓. We also discuss a larger class of resummation pertinent for
dense systems referred to as a hypernetted chain re-summation (HCN). We
further suggest that a melted crystal of instanton-dyons and anti-instanton
dyons may provide a semi-classical description of a Yang-Mills ensemble at
very low temperature.

Part II: Chiral vortical and magnetic e↵ects
in QCD-like theories

The combined e↵ects of rotations and magnetic fields on Dirac fermions
are realized in a wide range of physical settings ranging from macroscopic
spinning neutron stars and black holes [75], all the way to microscopic anoma-
lous transport in Weyl metals [76]. In any dimensions, strong magnetic fields
reorganize the fermionic spectra into Landau levels, each with a huge pla-
nar degeneracy that is lifted when a paralell rotation is applied. The past
decade has seen a large interest in the chiral and vortical e↵ects and their
relationship with anomalies [77] (and references therein).

Perhaps, a less well known e↵ect stems from the dual combination of a
rotation and magnetic field on free or interacting Dirac fermions. Recently, it
was noted that this dual combination could lead to novel e↵ects for composite
fermions at half filling in 1+2 dimensions under the assumption that they
are Dirac fermions [111], and more explicitly for free and interacting Dirac
fermions in 1+3 dimensions [54, 55, 56]. Indeed, when a rotation is applied
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along a magnetic field, the charge density was observed to increase in the
absence of a chemical potential. A possible relationship of this phenomenon
to the Chern-Simons term in odd dimensions, and the chiral anomaly in even
dimensions was suggested.

Current heavy ion collisions at collider energies in non-central collisions
involve large angular momenta in the range 103 � 105 ~ [68, 69]. Recently,
STAR reported a large vorticity with ⌦ ⇠ (9 ± 1) 1021 s�1

⇠ 0.05m⇡, by
measuring the global polarization of ⇤ and ⇤̄ in o↵ central AuAu collisions
in the Beam Energy Scan program [70]. During the prompt part of the col-
lision, large magnetic fields B ⇠ m2

⇡
are expected [73].We will show that the

combined e↵ects of magnetism plus a rotation can induce a pion superfluid
phase in o↵-central heavy ion collision. This superfluid phase maybe at the
origin of the large multi-pion correlations reported by ALICE [?], as also
suggested by a recent non-equilibrium study [74].

The organization of part II is as follows:

In the first section we analyze fermionic systems in the presence of B and
⌦ in a more explicit way in both 1+2 and 1+3 dimensions. The case of
1+2 dimensions is of interest to planar materials in the context of solid state
physics, while the case of 1+3 dimensions is of more general interest with
relation to QCD. Recently, there have been few studies along these lines
using e↵ective models of the NJL type in 1+3 dimensions, where the phe-
nomenon of charge density enhancement was also confirmed with new obser-
vations [55, 56]. Also, recent analyses using pion e↵ective descriptions have
suggested the possibility of Bose condensation in strong magnetic fields [57]
and dense matter with magnetism or rotations [58]. In the secound section
we show how the combination of a magnetic field and rotation will yields a
charged scalar condensation. We make an estimate of the amount of pion
condensation in current heavy ion collisions at collider energies.

Part III: Heavy-Light hadrons using Holography

In QCD the light quark sector (u, d, s) is dominated by the spontaneous
breaking of chiral symmetry. The heavy quark sector (c, b, t) is characterized
by heavy-quark symmetry [175]. The combination of both symmetries is at
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the origin of the chiral doubling in heavy-light mesons [176, 177] as measured
by both the BaBar collaboration [178] and the CLEOII collaboration [179].

Recently the Belle collaboration [132] and the BESIII collaboration [133]
have reported many multiquark exotics uncommensurate with quarkonia, e.g.
the neutral X(3872) and the charged Zc(3900)± and Zb(10610)±. These ex-
otics have been also confirmed by the DO collaboration at Fermilab [134], and
the LHCb collaboration at CERN [135]. LHCb has reported new pentaquark
states P+

c
(4380) and P+

c
(4450) through the decays ⇤0

b
! J pK�, J p⇡� [136].

More recently, five narrow and neutral excited ⌦0
c
baryon states that decay

primarily to ⇥+
c
K� were also reported by the same collaboration [137]. These

flurry of experimental results support new phenomena involving heavy-light
multiquark states, a priori outside the canonical classification of the quark
model.

Some of the tetra-states exotics maybe understood as molecular bound
states mediated by one-pion exchange much like deuterons or deusons [138,
139, 140, 141, 142, 143, 144, 145]. Non-molecular heavy exotics were also
discussed using constituent quark models [147], heavy solitonic baryons [148,
149], instantons [150] and QCD sum rules [151]. The penta-states exotics
reported in [136] have been foreseen in [152] and since addressed by many
using both molecular and diquark constructions [153], as well as a bound anti-
charm to a Skyrmion [154]. String based pictures using string junctions [155]
have also been suggested for the description of exotics, including a recent
proposal in the context of the holographic inspired string hadron model [156].

The holographic construction o↵ers a framework for addressing both chi-
ral symmetry and confinement in the double limit of large Nc and large
t0Hooft coupling � = g2Nc. A concrete model was proposed by Sakai and
Sugimoto [157] using a D4-D8 brane construction. The induced gravity on
the probe Nf D8 branes due to the large stack of Nc D4 branes, causes the
probe branes to fuse in the holographic direction, providing a geometrical
mechanism for the spontaneous breaking of chiral symmetry. The DBI action
on the probe branes yields a low-energy e↵ective action for the light pseu-
doscalars with full global chiral symmetry, where the vectors and axial-vector
light mesons are dynamical gauge particles of a hidden chiral symmetry [158].
In the model, light baryons are identified with small size instantons by wrap-
ping D4 around S4, and are dual to Skyrmions on the boundary [162, 163].
Remarkably, this identification provides a geometrical description of the bary-
onic core that is so elusive in most Skyrme models [164]. A first principle
description of the baryonic core is paramount to the understanding of heavy
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hadrons and their exotics since the heavy quarks bind over their small Comp-
ton wavelength. In this construction, the heavy baryons will be sought in
the form of a bulk instanton in the worldvolume of D8 bound to heavy-light
vector mesons, primarily the heavy-light (0�, 1�) multiplet. This approach
will extend the bound state approach developed in the context of the Skyrme
model [154, 166] to holography. We note that alternative holographic mod-
els for the description of heavy hadrons have been developed in [159, 160]
without the dual strictures of chiral and heavy quark symmetrty.

The organization of part III is as follows:

In the first part we propose a holographic description of heavy baryons and
their exotics that involve light and heavy degrees of freedom through a vari-
ant of the D4-D8 model that includes a heavy flavor [165] with both chiral
and heavy-quark symmetry. The model uses 2 light and 1 heavy branes where
the heavy-light mesons are identified with the string low energy modes, and
approximated by bi-fundamental and local vector fields in the vicinity of the
light probe branes. Their masses follow from the vev of the moduli span by
the dilaton fields in the DBI action. The model allows for the description
of the radial spectra of the (0±, 1±) heavy-light multiplets, their pertinent
vector and axial correlations, and leads reasonable estimates for the one-pion
axial couplings and radiative decays in the heavy-light sector. In the first
section of this chapter, we setup our model and study the heavy-light baryons
and exotic in Nf = 2 theory. We then move to Nf = 3 in the second section,
with the prediction of many hadronic exotices to be explored at the current
electron machines BELLE and BESIII, and the proton collider LHCb.

Part IV: Random matrix models for QCD

Random matrix models provide simple and universal description for many
physical systems. Chiral random matrix models have been successfully ap-
plied to the study of Dirac spectra in the microscopic (ergodic) limit and
some aspects of the chiral phase transition in the macroscopic (di↵usive)
regime. Our studies will be on these successes by extending these equilib-
rium type analyses of spectra to non-equilibrium set ups by formulating a
hydrodynamical description for both the eigenvalues of the Polyakov line and
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the Dirac operator.
In the first study of this chapter, we develop a hydrodynamical descrip-

tion of the gauge invariant eigenvalues of the Polyakov line for an SU(Nc)
Yang-Mills theory at large but finite Nc. Lattice simulations of Yang-Mills
theory in even and odd dimensions show that the confined phase is center
symmetric [20, 81]. At high temperature Yang-Mills theory is in a deconfined
phase with broken center symmetry. The transition from a center symmet-
ric to a center broken phase is non-perturbative and is the topic of intense
numerical and e↵ective model calculations [82] (and references therein). Of
particular interest are the semi-classical descriptions and matrix models.

In the semi-classical approximations, the confinement-deconfinement tran-
sition is understood as the breaking of instantons into a dense plasma of
dyons in the confined phase and their re-assembly into instanton molecules
in the deconfined phase [83, 111]. A mechanism similar to the Berezinsky-
Kosterlitz-Thouless transition in lower dimensions [85], and to the transition
from insulators to superconductors in topological materials [86]. In matrix
models, the Yang-Mills theory is simplified to the eigenvalues of the Polyakov
line and an e↵ective potential is used with parameters fitted to the bulk pres-
sure to study such a transition [87, 88], in the spirit of the strong coupling
transition in the Gross-Witten model [89].

Matrix models for the Polyakov line share much in common with unitary
matrix models in the general context of random matrix theory [120]. The
canonical example is Dyson circular unitary ensemble and its analysis in
terms of orthogonal polynomials or a one-component Coulomb plasma. The
Dyson circular unitary ensemble relates to the Calogero-Sutherland model
which is an e↵ective model for quantum Luttinger liquids. A useful analysis
of this model uses the collective quantization method developed in [91] with
its hydrodynamical interpretation [92, 93].

Then ,in the second section of this part, we move to the Chiral random
matrix theory for QCD at finite chemical potential. As we know, QCD
breaks spontaneously chiral symmetry with a wealth of evidence in hadronic
processes at low energies [103]. First principle lattice simulations strongly
support that [20]. The spontaneous breaking is characterized by a large
accumulation of eigenvalues of the Dirac operator near zero-virtuality [105].
The zero virtuality regime is ergodic, and its neighborhood is di↵usive [106].

The ergodic regime of the QCD Dirac spectrum is amenable to a chi-
ral random matrix model [107]. In short, the model simplifies the Dirac
spectrum to its zero-mode-zone (ZMZ). The Dirac matrix is composed of
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hopping between N -zero modes and N -anti-zero modes because of chirality,
which are Gaussian sampled by the maximum entropy principle. The model
was initially suggested as a null dynamical limit of the random instanton
model [108].

QCD at finite chemical potential µ is subtle on the lattice due to the
sign problem [109]. A number of e↵ective models have been proposed to
describe the e↵ects of matter in QCD with light quarks [103]. Chiral random
matrix models o↵er a simple construct that retains some essentials of chiral
symmetry both in vacuum and matter. For instance, in the chiral 1-matrix
model finite µ is captured by a constant deformation of Gaussian matrix
ensembles [110, 111]. In the chiral 2-matrix model the deformation with µ
is also random [112, 113]. Chiral matrix models in matter were discussed
by many [114, 115]. Recently both a universal shock analysis [116] and a
hydrodynamical description of the Dirac spectra were suggested [117] both
at zero and finite chemical potential.

The matrix models were shown to exhibit the same microscopic univer-
sality for small eigenvalues in the ergodic regime with vanishingly small µ2

in the large volume limit [115]. The chief observation is that in the weakly
non-hermitean limit, the matrix models can be deformed in a way that pre-
serves the global aspects of the coset manifold under the general strictures of
spontaneously broken chiral symmetry and power counting in the so-called
epsilon-regime [118].

At finite µ the distribution of Dirac eigenvalues in the complex plane
maps onto a 2-dimensional Coulomb gas whose e↵ective action is mostly
controlled by Coulomb’s law, the conformal and gravitational anomalies in
2-dimensions [117]. These constraints on the Dirac spectrum are beyond
the range of chiral symmetry. The eigenvalues form Coulomb droplets that
stretch and break at finite µ. The accumulation of the complex eigenvalues
at the edge of the droplet may signal a new form of universality unknown
to chiral symmetry. The purpose of our study is to explore this possibility
using the concept of characteristic determinants for a unitary random matrix
model at finite µ.

With this in mind, we start by developing a stochastic evolution for a
Wishart characteristic determinant associated to the standard chiral random
matrix model for QCD Dirac spectra at finite chemical potential µ, much
along the lines suggested in [116] for the Ginibre ensemble. At finite µ the
eigenvalues of the Dirac operator spread in the complex plane. Their accu-
mulation in droplets break spontaneously holomorphic symmetry [110, 111].
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The characteristic determinant acts as an order parameter for this break-
ing being zero within the droplet and finite outside. The evolution involves
the eigenvalues as complex masses and their conjugates and is di↵usion-like
asymptotically. The universal behavior of the characteristic determinant at
the edge of the Ginibre droplet observed in [116] will be exploited here to
derive a universal edge behavior for the Dirac spectra at finite chemical po-
tential.

Finally, we note that the study of deformed and non-hermitean Wishart
matrices is interesting on its own as it is of interest to many other areas
such as telecommunications and finances, where issues of signal to noise in
the presence of attenuation or losses are relevant in designing more e�cient
routers or financial instruments [119].

The organization of part IV is as follows:

In the first part using the e↵ective matrix-model based hydrodynamical de-
scription developed as mentioned before, we derive the following new results:
1/ a hydrostatic solution for the eigenvalue density that interpolates between
a confining (uniform) and de-confining (localized) phase; 2/ explicit critical
temperatures for the Yang-Mills transitions in 1 + 2 and 1 + 3 dimensions;
3/ a hydrodynamical instanton for the density distribution that captures
the stochastic relaxation of the eigenvalues of the Polyakov line; 4/ an esti-
mate of the fugacity or probability to form a Z(Nc) bubble using a piece-wise
sound-wave.

In the second part, we work out: 1/ The derivation of a closed evolution
equation for the characteristic determinant for a non-hermitean deformation
of Wishart matrices in relation to a 1-matrix model for the phase quenched
QCD with Nf = 4 flavors at finite µ; 2/ An explicit derivation of the envelope
of the complex eigenvalues for the deformed Wishart matrices; 3/ An explicit
microscopic scaling law for the distribution of the deformed Wishart eigen-
values at the edge as traced by the envelope; 4/ An explicit scaling law on
the real edge of the complex eigenvalue distribution that scales with the chi-
ral condensate at finite µ, allowing its extraction from current and quenched
Dirac spectra; 5/ An explicit microscopic scaling law for the characteristic
determinant at the chiral point that scales with infinitesimal µ.
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Part I: Confining instanton-dyon ensembles

2 The Confining instanton-dyon model

This section is an edited version of my publication :
Confifning dyon-antidyon Coulomb liquid model. I.
Yizhuang Liu (Stony Brook U.), Edward Shuryak, Ismail Zahed (SUNY,
Stony Brook). Mar 10, 2015. 19 pp. Phys.Rev. D92 (2015) no.8, 085006

2.1 Introduction

This section is organized as follows: In section 2 we review the key elements of
the dyon and anti-dyon measure derived in [83, 5] using the KvBLL instanton.
The dyon-anti-dyon measure is then composed of the product of two measures
with streamline interactions between the dyons and anti-dyons. We briefly
detail the exact re-writing of the 3-dimensional grand-partition function in
terms of a 3-dimensional e↵ective theory in the SU(2) case. We also show that
the ground state of this e↵ective theory is center symmetric. In sections 3-6
we show that in the linearized screening approximation the dyon-anti-dyon
liquid still screens both electric and magnetic charges, generates a linearly
rising potential between heavy charges and confines the large spatial Wilson
loops. The t0 Hooft loop in the dyon-anti-dyon ensemble is shown to be 1
modulo O(↵s) self-energy corrections which are perimeter-like in section 7.
Our conclusions are in section 8.

2.2 Interacting Dyon-Anti-Dyon Ensemble

2.2.1 The setting

The first step is the introduction of the nonzero expectation value of the
4-th component of the gauge field, which is gauge invariant since at finite
temperature it enters the holonomy integral over the time period, known
also as the Polyakov line. Working in a gauge in which hA4i belongs to
the diagonal and traceless sub-algebra of Nc � 1 elements, one observes the
standard Higgsing via the adjoint field. All gluons except the diagonal ones
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become massive. We will work with the simplest case of two color gauge
theory Nc = 2, in which there is only one diagonal matrix and the VEV of
the gauge field (holonomy) is normalized as follows

⌦
A3

4

↵
= v

⌧ 3

2
= 2⇡T⌫

⌧ 3

2
(1)

where ⌧ 3/2 is the only diagonal color generator of SU(2). At high T it is
trivial with ⌫ ! 0, and at low T < Tc it takes the confining value ⌫ =
1/2. With this definition, the only dimensional quantity in the classical
approximation is the temperature T , while the quantum e↵ects add to the
running coupling and its ⇤ parameter. Since we are working near and below
Tc, we will follow the lattice practice and we use the latter as our main unit.

In the semi-classical approximation, the Yang-Mills partition function
is assumed to be dominated by an interacting ensemble of dyons (anti-
dyons) [83, 5]. For large separations or a very dilute ensemble, the semi-
classical interactions are mostly Coulombic, and are encoded in the collec-
tive or moduli space of the ensemble. For multi-dyons a plausible moduli
space was argued starting from the KvBLL caloron [3] that has a number of
pertinent symmetries, among which permutation symmetry, overall charge
neutrality, and clustering to KvBLL at high temperature. Since the underly-
ing calorons are self-dual, the induced metric on the moduli space was shown
to be hyper-Kahler.

The SU(2) KvBLL instanton (anti-instanton) is composed of a pair of
dyons labeled by L,M (anti-dyons by L,M) in the notations of [83]. Specif-
ically M carries (+,+) and L carries (�,�) for (electric-magnetic) charges,
with fractional topological charges vm = ⌫ and vl = 1� ⌫ respectively. Their
corresponding actions are SL = 2⇡vm/↵s and SM = 2⇡vl/↵s.

The statistical measure for a correlated ensemble of dyons and anti-dyons
is

dµ
DD

[K] ⌘ e�VDD(x�y) (2)

⇥

NY

m=1

KmY

i=1

f d3xmi

Km!
det(Gmi[x])

⇥

NY

n=1

KnY

j=1

f d3ynj
Kn!

det(Gnj[y])
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The streamline interactions induced by the potential VDD̄ correlate the two
otherwise statistically independent dyon and anti-dyon sectors. (Note that
by the potential we mean the extra action and not the energy, thus no extra
1/T ). Asymptotically,

V
DD

(x� y) !
X

mn,ij

CD/2

↵s T

QmiQnj

|xmi � ynj|
(3)

is a Coulomb-like classical interaction between dyons and anti-dyons. Here
xmi and ynj are the 3-dimensional coordinate of the i-dyon of m-kind and
j-anti-dyon of n-kind. At shorter separations the streamline stops at certain
distance aDD̄, we will refer to it as a “core size”. While the interaction is more
complex than just electric Coulomb, it is proportional to the electric charges
Q,Q. In general those are the (Cartan) roots of SU(Nc) supplemented by
the a�ne root. They satisfy

QmiQnj
⌘ � (2�mn � �m,n+1 � �m,n�1) (4)

The dimensionality of G[x] is (K1 + ...+KN)2 and similarly for G[y]. Their
explicit form can be found in [83, 5]. In the SU(2) case there is only one
electric charge.

The semiclassical 3-density of all dyon species nD ⌘ nL + nM + nL̄ + nM̄

is

nD =
dN

d3x
=

CT 3 e�
⇡
↵s

↵2
s

(5)

where C is a constant to be determined below (see (55)). (5) can be re-
written using the asymptotic freedom formula for SU(2) pure gauge theory
with 2⇡/↵s(T ) = (22/3) ln (T/⇤) in terms of the scale parameter ⇤. The
dimensionless density

nD

T 3
⇠

✓
⇤

T

◆11/3

(6)

is small at high T but increases as T decreases. With the exception of
section 2.3.7, where we will estimate the critical deconfinement temperature
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by including perturbative O(↵0
s
)) e↵ects in the dimensionless pressure, we

will always assume the temperature to be small enough, so that the dyons
e↵ect are the dominant ones. The dyon fugacity f is

f ⇡
nD

8⇡
(7)

to order O(n3/2
D

) in the dyon density (see below). The absolute value of the
parameter ⇤ appearing in the semiclassical formulae can be related to stan-
dard parameters like ⇤

MS
, but this has no practical value since the accuracy

with which they are known is too low to give an accurate value of the dyonic
density. In practice it is obtained from the fit to the lattice instanton data
performed in [107] in the range 0.5 < T/Tc < 3. The caloron action – the
sum of SL and SM – is then writen as

SL+M(T ) ⌘
2⇡

↵s(T )
⌘

22

3
ln

✓
T

0.36Tc

◆
(8)

We will use this fit as a basis for our running coupling. In particular, the
action of the SU(2) caloron at Tc SL+M(Tc) ⇡ 7.47 translates to the value
of the coupling ↵s(Tc) = 0.84. Since in this section we only work in the
confining regime of the holonomy with all dyon actions identical, the action
per dyon is about 3.75.

The repulsive linear interaction between unlike dyons (anti-dyons) found
in [5] acts as a linearly confining force in the center asymmetric phase, fa-
voring the molecular or KvBLL configuration at T > Tc. This interaction
stems from QGP thermal quanta scattering on the dyons. However, we will
be interested in this section in the center symmetric phase at T > Tc, in
which there is no QGP, we do not include this interaction.

Since the classical VDD̄ ⇠ 1/↵s it dominates the quantum determinants,
which include Coulomb interaction of order ↵0

s
. On this point we di↵er

from the argument presented in [83] regarding the re-organization of (3) in
an extended quantum determinant. At large relative separations between
all particles the measure (3) is exact. It is also exact when each bunch of
dyons or anti-dyons coalesce into a KvBLL instanton or anti-instanton at all
separations.

The above notwithstanding, the grand-partition function associated with
the measure (3)
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Z
DD

[T ] ⌘
X

[K]

Z
dµ

DD
[K] (9)

describes a highly correlated ensemble of dyon-anti-dyons which is no longer
integrable in the presence of the streamline. The case V

DD
= 0 amounts to

Z
DD

! ZDZD
where each factor can be exactly re-written in terms of a 3-

dimensional e↵ective theory. We now analyze (9) for the SU(2) case following
and correcting the arguments in [83].

Z
DD

[T ] ⌘

X

[K]

KLY

iL=1

KMY

iM=1

KL̄Y

iL̄=1

KM̄Y

iM̄=1

⇥

Z
fd3xLiL

KL!

fd3xMiM

KM !

fd3yL̄iL̄
KL̄!

fd3yM̄iM̄

KM̄ !

⇥det(G[x]) det(G[y]) e�VDD(x�y) (10)

with G[x] a (KL+KM)2 matrix and G[y] a (KL̄+KM̄)2 matrix whose explicit
form are given in [83, 5].

2.2.2 Classical dyon-antidyon interactions

The explicit form of the Coulomb asymptotic in (103) for the SU(2) case is

V
DD

(x� y) ! �
CD

↵s T

⇥

✓
1

|xM � y
M
|
+

1

|xL � y
L
|
�

1

|xM � y
L
|
�

1

|xL � y
M
|

◆

(11)

The strength of the Coulomb interaction in (11) is CD/↵s and is of order 1/↵s.
It follows from the asymptotics of the streamline configuration. In Fig. 1 we
show the attractive potential for the SU(2) streamline configuration in the
MM̄ channel [21]. The solid curve is a numerical fit to the data given by

VDD̄(r) ⌘ sDD̄ V (r) = sDD̄

Av

g2
(r · v � B)2

(r · v)3 + C
(12)
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with sMM̄ = �1 in units of the critical temperature Tc and g set to 1 and
A = 30.9, B = 0.9072, C = 15.795. The dashed line corresponds to the
Coulomb asymptotics

VMM̄(r) ⇡ �
CD

↵sr
(13)

with CD = A/4⇡ = 2.46. We recall that in the uncombed DD̄ potential,
the asymptotic Coulomb interaction corresponds to CD = 2. The attraction
in the streamline is stronger asymptotically owing to the relative combing
between the dyons. Fig. 1 shows that the DD̄ core is about aDD̄ ⇡ 1/T .
The second observation is that one should not use the Coulomb asymptotic
(the lower dashed curve) but the actual potential which correctly takes care
of the dyons, as extended charged objects rather than point charges.

Below the core value of aDD̄, the streamline configuration annihilates into
perturbative gluons making the parametrization (12) arbitrary. Throughout,
we will parametrize the core by a constant, replacing (12) by

VDD̄(r) ⌘ sDD̄ (V (r)✓(r � aDD̄) + V (aDD̄)✓(aDD̄ � r))

(14)

with sMM̄ = sLL̄ = �1 (attractive) and sLM̄ = sLM̄ = +1 (repulsive).
The ensemble (103) can be viewed as a 4-component dense and strongly

coupled liquid. The quantity in the exponent, known as the classical plasma
parameter

�DD̄ = V (aDD̄) ⇡
CD/↵saDD̄

3Tc

⇡ 1 (15)

is not small. Its exponent e�DD̄ can be even large. This implies that the
“dyonic plasma” we want to study belongs to a class of strongly coupled
plasmas, with non-negligible correlations between the particles. So a priori,
this problem should be studied by methods more powerful than the usual
mean field approximations, such as the Debye-Huckel theory. However, we
will show below that when the dyonic densities are su�ciently large (and that
implies the overall T of the ensemble to be su�ciently low), the screening
mass gets large enough to put the e↵ective – screened – interaction inside
the domain in which the analytic Debye-Huckel theory becomes justified.
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Furthermore, as we will detail below, the treatment of the repulsive core
is in fact a rather sensitive issue. We chose the “most smooth” version of the
potential, shown by the solid curve in Fig. 1. Its Fourier transform provides a
smooth form factor in momentum space. We note that the actual streamline
was only found for distances r > aDD̄ ⇡ 1.2 (about 4/v in the dyon units).
The upper (blue) dashed curve is an example of an arbitrary parameterization
discussed in [21], extending it to smaller values of r. If one uses it, or even cut
o↵ the small r < aDD̄ region completely – the approach known as hard core
or excluded volume – the Fourier transform of the potential develops large
oscillations. In this case the instability of the Debye-Huckel theory becomes
stronger and its applicability domain shrinks.

The use of (12) in the repulsive channels ML̄ and LM̄ approximates a
smaller repulsion than Coulomb at shorter distances. A numerical investi-
gation of these channels would be welcome. Note that both the measure
in (103) and the asymptotic (11) do not include the quantum corrections
around the streamline configuration. Both of which should add more repul-
sion to the interaction between D and D̄. A leading quantum correction to
the asymptotic (11) follows by analogy from the Coulomb corrections emerg-
ing from the DD and D̄D̄ determinantal interactions. In our case they are
repulsive and amount to the shift

CD ! CD �
2↵s

⇡
+O(↵2

s
) (16)

in the Coulomb constant. The relevance of this correction will be briefly
discussed below.

2.2.3 Qualitative e↵ect of the one-loop moduli space

The volume element of the moduli space of self-dual SU(2) dyons is given
by

p
gHK ⌘ detG with gHK its associated Hyper-Kahler metric [83]. As

we already mentioned in the introduction, the one-loop determinant in the
measure (3) must be positive definite for all configurations. Furthermore,
the positivity of all eigenvalues is required, since they have the meaning of
the volume element in the corresponding subspace. As noted in [20], this is
not the case for ensembles with randomly placed dyons. These ensembles get
denser and the positivity condition is only fulfilled for a very small fraction
of the configurations.
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Figure 1: (Color online) Black solid line is the SU(2) DD̄ (dimensionless)
potential versus the distance r (in units of 1/T ). Upper (blue) dashed line
is the parameterization proposed in Ref.[21], the lower (red) (dashed) line is
the Coulomb asymptotics.

In fact one of the main issues of the dyonic ensembles is the non-trivial
character of the one-loop interaction induced by the Diakonov determinant.
Before we show how this carries to our case through various fermionization
and bosonization and diagrammatic re-summations, it is instructive to pro-
vide a qualitative understanding of the issues using simple explicit examples.

Although it is well known, for completeness let us start with the simplest
case of two dyons in the SU(2) theory with symmetric holonomy ⌫ = ⌫̄ = 1/2.
Omitting the overall factors, Diakonov 2⇥ 2 matrix G reads

G2⇥2[x] ⇠

0

@
1± 1

vx12
⌥

1
vx12

⌥
1

vx12
1± 1

vx12

1

A (17)

with x12 ⌘ |~x(1) � ~x(2)| the distance between the dyons in units of 1/v =
1/⇡T . The upper signs are for di↵erent (ML) dyons, and the lower for similar
(MM, LL) pairs. The metric-induced potential is thus V (x12) ⌘ �lndetG =
�ln (1± 2/(vx12)) ⇡ ⌥2/(vx12) is Coulomb-like at large distances. (At short
distances the induced potential is proportional to ln(1/r) and not 1/r. There
is no divergence in the partition function.)

Let us now consider an ensemble of several (N = 8) dyons with NM =
NL = 4 and set them randomly in a cube of size a. We then evaluate all
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inter-dyon distances and calculate detG[x] (which is now an 8⇥8 matrix) as
a function of the Coulomb parameter ✏ = 1/(⇡aT ). For each sampling, the
determinant is a polynomial of ✏ of degree N . The results of 10 random sam-
plings are displayed in Fig.2 by the dashed lines. For small ✏ the determinant
deviates from 1 in a non-uniform way. Some configurations are Coulomb at-
tractive with detG > 1, while some others are repulsive with detG < 1 for
small ✏. To first order, they average to zero for a large number of charges
as there are equal number of positive and negative ones. At next order, the
attraction is to win thanks to the general theorem of second order pertur-
bation theory. However, we observe that already for ✏ = 1/(⇡aT ) ⇠ 0.2 the
repulsive trend is dominant and detG < 0 for some samplings. This means
that the moduli space of these configurations vanishes at the corresponding
density. This sets an upper limit on the density of random ensembles of
dyons

n < nmax = 8 (0.2 ⇡T )3 ⇠ 1.98T 3 (18)

The lesson: Diakonov determinantal interaction for randomly placed dyons
is strongly repulsive, reducing dramatically the moduli space all the way to
zero size for small ✏. It amounts to a strong e↵ective core of order ↵0

s
.

However this is not the end of the story. Let us look at the opposite case of
a well ordered arrangement of dyons in the unit box. For that we pre-arrange
the 8 dyons of the previous ensemble in a salt-like or fcc configuration on the
unit cube, and assess the corresponding detG. The result is shown in Fig. 2
by the solid line. While the qualitative trend is the same – attraction at
some interval of densities, changing to repulsion and then reaching zero at
some density – the value of the maximal density to be reached is changed by
a large factor of about 53 = 125. Here is lesson number 2: the moduli space
can be made much larger for the same inter-particle Coulomb strength ✏, if
the correlations between charges are correctly taken into account.

The overall lesson we get from those examples is the following: Diakonov’s
original suggestion that attraction and repulsion would always cancel out is
incorrect. Our analysis shows that ultimately the repulsion always wins
and at some density the volume of the moduli space always goes to zero.
However, correctly implemented correlations between charges to maximize
screening locally, can increase this critical density by about two orders of
magnitude.
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Figure 2: (Color online) detG as a function of ✏ = 1/(⇡aT ). The dashed
lines are for 8 dyons randomly placed in a cube of size a ⌘ 1. The solid line
is for correlated dyons in a salt-like or fcc configuration also in a unit cube.

2.2.4 Fermionization and Bosonization

Following [83] each determinant in (103) can be fermionized using 4 pairs of
ghost fields �†

L,M
,�L,M for the dyons and 4 pairs of ghost fields �†

L̄,M̄
,�L̄,M̄

for the anti-dyons. The ensuing Coulomb factors from the determinants are
then bosonized using 4 boson fields vL,M , wL,M for the dyons and similarly
for the anti-dyons. The result is a doubling of the 3-dimensional free actions
obtained in [83]

S1F [�, v, w] = �
T

4⇡

Z
d3x

�
|r�L|

2 + |r�M |
2 +rvL ·rwL +rvM ·rwM

�
+�

|r�L̄|
2 + |r�M̄ |

2 +rvL̄ ·rwL̄ +rvM̄ ·rwM̄

�
(19)

For the interaction part VDD̄, we note that the pair Coulomb interaction
in (11) between the dyons and anti-dyons can also be bosonized using the
standard trick [12] in terms of � and b fields. Here � and b are the un-Higgsed
long range U(1) parts of the original magnetic field Fij and electric potential
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A4 (modulo the holonomy) respectively. As a result each dyon species acquire
additional fugacity factors such that

M : e�b�i� L : eb+i� M̄ : e�b+i� L̄ : eb�i� (20)

These assignments are consistent with those suggested in [44, 45] using dif-
ferent arguments. As a result there is an additional contribution to the free
part (19)

S2F [�, b] = T

Z
d3x d3y (21)

⇥
�
b(x)V �1(x� y)b(y) + �(x)V �1(x� y)�(y)

�

with V (r) defined in (12). The interaction part is now

SI [v, w, b, �,�] = �

Z
d3x

e�b+i�f
�
4⇡vm + |�M � �L|

2 + vM � vL
�
ewM�wL +

e+b�i�f
�
4⇡vl + |�L � �M |

2 + vL � vM
�
ewL�wM +

e�b�i�f
�
4⇡vm̄ + |�M̄ � �L̄|

2 + vM̄ � vL̄
�
ewM̄�wL̄ +

e+b+i�f
�
4⇡vl̄ + |�L̄ � �M̄ |

2 + vL̄ � vM̄
�
ewL̄�wM̄ (22)

In terms of (19-22) the dyon-anti-dyon partition function (9) can be exactly
re-written as an interacting e↵ective field theory in 3-dimensions,

Z
DD

[T ] ⌘

Z
D[�]D[v]D[w]D[�]D[b] e�S1F�S2F�SI (23)

In the absence of the screening fields �, b (23) reduces to the 3-dimensional
e↵ective field theory discussed in [83] which was found to be integrable. In
the presence of �, b the integrability is lost as the dyon-anti-dyon screening
upsets the hyper-Kahler nature of the moduli space. We will investigate
them by linearizing the screening e↵ects in the symmetric state.

Since the e↵ective action in (23) is linear in the vM,L,M̄,L̄, the latters are
auxiliary fields that integrate into delta-function constraints. However and
for convenience, it is best to shift away the b, � fields from (22) through
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wM � b+ i� ! wM

wM̄ � b� i� ! wM̄ (24)

which carries unit Jacobian and no anomalies, and recover them in the per-
tinent arguments of the delta function constraints as

�
T

4⇡
r

2wM + fewM�wL � fewL�wM =
T

4⇡
r

2(b� i�)

�
T

4⇡
r

2wL + fewL�wM � fewM�wL = 0 (25)

and similarly for the anti-dyons. In [83] it was observed that the classical
solutions to (25) can be used to integrate the w0s in (23) to one loop. The
resulting bosonic determinant was shown to cancel against the fermionic
determinant after also integrating over the �0s in (23). This holds for our
case as well. However, the presence of �, b makes the additional parts of (23)
still very involved in 3 dimensions.

After inserting the constraints in the 3-dimensional e↵ective action in
(23), the ground state corresponds to constant fields because of translational
invariance. Thus, the potential per unit 3-volume V3 following from(22) after
the shifts (24) is

�V/V3 = 4⇡f
�
vme

wM�wL + vle
wL�wM

�

+4⇡f
�
vm̄e

wM̄�wL̄ + vl̄e
wL̄�wM̄

�

(26)

To determine the ground state, we solve the constraint equation (25) with
constant w’s. It is easy to see that ewL�wM = ew̄L�w̄M = 0. Put them back
into the potential, we see denpendence on ⌫ get cancled!This lead to the
conclusion that a potential for the holonomy can not be generated without
going to details of the interaction. In the next section of this part, we will
provide a carefull analyse of this issue and show that a potential V (⌫) for
⌫ can be generated by going beyond constant solution for the constraint
equation .This potential will favor the center-symmetric ground state for
large dyon fugacity f. In the remaining part of this section, we will stay in
the canter-symmetric phase and probe its properties.
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2.3 Linearized Screening Approximation in Center Sym-
metric State

For the center symmetric ground state of the 3-dimensional e↵ective theory,
we may assess the correction to the potential V to one-loop in the b, � fields.
This is achieved by linearizing the constraints (25) around the ground state
solutions. Specifically

✓
�

T

4⇡
r

2 + 2f

◆
wM � 2fwL ⇡

T

4⇡
r

2(b� i�)
✓
�

T

4⇡
r

2 + 2f

◆
wL � 2fwM ⇡ 0 (27)

and similarly for the anti-dyons. The one-loop correction to V follows by in-
serting (27) in (23). The ensuing quadratic contributions before integrations
are

S1L = V � 4⇡f

Z
d3p

(2⇡)3
( T

4⇡p
2)2

( T

4⇡p
2 + 4f)2

�
b(p)2 � �(p)2

�

(28)

The coe�cient of the b field appears tachyonic but is momentum dependent
and vanishes at zero momentum.

2.3.1 Pressure

Carrying the Gaussian integration in b, � in (28) yields to one-loop

lnZ1L/V3 = �V �
1

2

Z
d3p

(2⇡)3
ln

����1�
V 2(p)

16

p8M4

(p2 +M2)4

����
(29)

with V (p) the Fourier transform of (12)

V (p) =
4⇡

p2

Z 1

0

dr sin r VDD̄(r/p) (30)
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and the screening mass M =
p

2nD/T with |Q2
| = 2 for SU(2). In Fig. 3 we

show the form factor (30) in dots line in units of Tc. A simple parametrization
is shown in solid line of the form

V (p) ⇡ 4↵
e�p aDD̄

p2
cos(p aDD̄) (31)

with ↵ = ⇡CD/↵s and a core aDD̄ ⇡ 1/Tc. Inserting (31) into (29) and
setting p̃ = p/M yield

lnZ1L/V3 = �V �
M3

2

Z
d3p̃

(2⇡)3
ln

����1� ↵̃2(p̃)
p̃4

(p̃2 + 1)4

����
(32)

with

↵̃(p̃) ⌘ ↵ e�MaDD̄ p̃ cos (MaDD̄p̃) (33)

The dominant contribution to the integral in (29) comes from the region
p̃ ⇡ 1 for which (33) can be approximated by ↵̃(1) ⌘ ↵̃. As a result (29) can
be done approximately by fixing ↵̃ and we have the classical contribution to
the pressure

Pcl

T
⌘ lnZ1L/V3 ⇡ nD + (↵̃)

M3

12⇡
(34)

with

(↵̃) =
2 + 5

2 ↵̃ + 1
2 ↵̃

2

q
1 + ↵̃

4

+
2� 5

2 ↵̃ + 1
2 ↵̃

2

q
1� ↵̃

4

� 4 (35)

(35) is seen to vanish for ↵̃ = 0 or in the absence of DD̄ interactions. Near
Tc the screening mass is M ⇡ �E/Tc (see below), thus

↵̃ ⌘ (⇡CD/↵s) e
�MaDD̄ cos (MaDD̄) ⇡ �0.52 (36)
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Figure 3: (Color online) The dots show the form factor, the ratio V (p) ·
(p2/4⇡) of the Fourier transform of (12) to that of a pure Coulomb law
versus p/T . The thin line is its parameterization. See text.

For |↵̃| < 4 the 1-loop contribution to the pressure from the charged DD̄
dyons is real with no dimer or molecular instability. The large core produced
by the form factor (33) is considerably screened by the large dyon density as
captured by the large dielectric constant 1/(�0.52) ⇡ 5.26 in (34).

The correction in (34) to the free contribution is a Debye-Huckel correc-
tion [22] (and references therein). A simple but physical way to understand
it is to note that a screened Coulomb charge carries a lower constant energy

e�M |x|

4⇡|x|
⇡

1

4⇡|x|
�

M

4⇡
+ ... (37)

The Debye-Huckel as a mean-field estimate for the pressure follows

PDH

T
⇡

nDM

4⇡T
=

M3

8⇡
!

M3

12⇡
(38)

where nD = M2T/2 is the density of charged particles (see below). The
standard Debye-Huckel limiting result for a multi-component ionic plasma
in 3 spatial dimensions is shown on the right-most side of (38).

The correction in (34) is considerably reduced by the large screening
through the e↵ective dielectric constant played by 1/(↵̃) ⇡ 32/(15↵̃2) for
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↵̃ ⌧ 1. In particular 1/(�0.52) ⇡ 5.26 � 1 as noted earlier. It can be
recast in the form

Pcl

T 4
= ñD +

(↵̃)

3⇡
p
2
ñ

3
2
D

(39)

with ñD = nD/T 3. Using MaDD̄ ⇡ �E/T 2
c
⇡ 1/(0.71)2 for SU(2) we have

ñD ⇡ 1, so that Pcl/T 4
⇡ (1 + 0.01)). The screening corrections are small of

the order of 1% thanks to the large dyonic densities.
The limitations of the Debye-Huckel approximation are readily seen from

(29). In Fig. 4a we plot the argument of the logarithm in the last term of (29).
The di↵erent curves from top to bottom follow from MaDD̄ = 1.5, 1, 0.7, 0.56
respectively. The smaller the Debye mass M the stronger the dip. For
MaDD̄ < 0.56, the argument of the logarithm becomes negative resulting into
an i⇡ contribution to the pressure and thus an instability. This is a clear
indication of a well known phenomenon: the Debye-Huckel approximation
is in general inapplicable for strongly coupled plasmas, and the interaction
mediated by the streamline is strong. Only a large enough density of dyons,
producing su�ciently strong screening, allows for the use of the Debye-Huckel
theory. In Fig. 4b we show how the total integrated contribution to the free
energy changes as a function of the dimensionless Debye mass MaDD̄

(MaDD̄)
3

Z 1

0

dp p2ln

����1�
V 2(pM)

16

p8

(p2 + 1)4

���� (40)

The main lesson is that beyond the critical value of the screening, this con-
tribution becomes rapidly very small. This is consistent with the analytical
estimate above. This justifies the use of the Debye-Huckel mean-field analysis
in general, and the use of the semi-classical expansion in particular.

2.3.2 Beyond the Debye-Huckel theory

The unravelling of the Debye-Huckel approximation may be due to correc-
tions to an interacting Coulomb system, such as 1/ core corrections; 2/ dimer,
tetramer and so on many-body interactions. The large core corrections were
already identified and discussed above and yield a substantial reduction in
the Debye-Huckel contribution near the critical value of MaDD̄ ⇠ 0.56.
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Figure 4: (Color online) (a) The argument of the logarithm in the last term
of (29) versus the dimensionless momentum p, for di↵erent values of the
dimensionless Debye mass MaDD̄ = 1.5, 1, 0.7, 0.56, top to bottom. As the
screening mass decreases to its critical value, the lower (green) curve touches
zero. The smaller values of M leads to a negative argument of the logarithm,
thus an instability. (b) A semi-logarithmic plot of the integral entering in
(29) as defined in (40) as a function of MaDD̄. The decrease is steady from
its maximum at the critical value of the screening mass or MaDD̄ = 0.56.
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Bound state corrections in the form of electrically charged LL̄ or MM̄
dimers, or electrically neutral LL̄MM̄ tetramers commonly referred to as
instanton-anti-instanton molecules, can bind through the streamline inter-
action (11-12). The combinations LM̄ and ML̄ are repulsive. The binding
energy in a dimer is ✏DD̄ ⇡ (CD/3)/(↵saDD̄) = T . The dimer enhancement
is expected to be of order e✏DD̄/T

⇡ e(CD/3)/↵s ⇡ 2.72 for T ⇡ Tc using
the reduced e↵ective Coulomb coupling. As we noted earlier, this enhance-
ment becomes substantially larger at high temperature as ↵s decreases with
the onset of dimerization set at about ↵s,crit = ⇡(CD/3)/4 ⇡ 0.67. At this
coupling which occurs above Tc, the Coulomb dimer enhancement factor is
eCD/3↵s,crit ⇡ 3.57.

In sum, the dyons and anti-dyons form a Coulomb liquid with strong
short range correlations induced by both the finite cores and bindings. The
liquid supports center symmetry and confines. The deconfinement transition
is characterized by clustering into charged dimers and possibly uncharged
and topologically neutral tetramers, forming mixtures with the restoration
of center symmetry. Coulomb mixtures present rich phase diagrams [25].

2.3.3 Dyonic densities

(29) can be readily used to assess the dyon densities KM and KL (and simi-
larly for KM̄ and KL̄) in the center symmetric vacuum with screening dyons-
anti-dyons. For that we need to change f !

p
fMfL and take derivatives of

(29) with respect to lnfM,L separately and then setting them equal by bulk
charge neutrality. The result per species is

K =
1

4
nD + (↵̃)

M3

32⇡
(41)

for all dyon and anti-dyon species.
Each dyon (anti-dyon) is characterized by an SU(2) core of size ⇢ ⇡

1/(2⇡T ⌫) ⇡ 0.33 fm in the center symmetric phase with ⌫ = 1/2 at T =
1/fm. The Debye length �D = 1/M ⇡

p
T/2nD ⇡ 0.70 fm is about twice the

core size. The classical Coulomb ratio for the DD, D̄D̄ pairs with a core of
2⇢ is about

�DD,D̄D̄ ⌘
1

2⇡(2⇢)T
⇡
⌫

2
=

1

4
(42)
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is small. Recall from (15) that �DD̄ ⇡ 1. The Coulomb DD, D̄D̄ interactions
are quantum and of order ↵0

s
with strength 1/⇡ as can be seen by expanding

the exponential form of the determinantal interaction in (17). The dyon-anti-
dyon ensemble is close to a strongly coupled 4-component Coulomb liquid.
Since the measure for the unlike dyons is exact, it is valid even in the dense
configuration. It is only asymptotically exact for like dyons. For the dyons
and anti-dyons the streamline is numerically exact at all separations outside
its core. However its corresponding quantum determinant was not calculated.
Only a qualitative correction was argued in (24).

2.3.4 Gluon condensates and susceptibilities

The topological charge fluctuates locally in this dyon-anti-dyon model. The
topological susceptibility at 1-loop follows from (29) through the substitution
f ! fcos(✓/2) both in V and also M ! M

p
cos(✓/2). At finite vacuum

angle ✓ and in leading order we have

D
FF̃
E

✓

⌘ �
T

V3

@lnZ1L

@✓
=

sin(✓/2)

✓
1

2
nDT + (↵̃)

M3T

16⇡

p
cos(✓/2)

◆

(43)

Thus the topologicl susceptibility

�T ⌘
V3

T

D
(FF̃ )2

E

0
⇡

✓
1

2

◆2

(nDT ) (44)

in leading order. Since the dyons carry half the topological charge (44)

shows that the topological fluctuations are Poissonian to order O(n3/2
D

). The
behavior of �T/T 4 versus T/Tc is shown in Fig. 5 with nD defined in (55)
below.

The gluon condensate to 1-loop in the screening approximation follows
from
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Figure 5: Topological susceptibility in units of T versus T/Tc
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✓
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(↵̃)M3

8⇡

◆
(45)

which is non-Poissonian because of the scale anomaly. The compressibility
of the ground state is

�� ⌘
V3

T

*✓
F 2

16⇡2

◆2
+

c

(46)

⇡
T

16⇡2

 
2

✓
nD +

M3

8⇡

◆
+

✓
2

↵s

� ⇡

◆2✓
nD +

3M3

16⇡

◆!

for the connected correlator.
We can use (34) and (45) to extract the electric hE2

i0 and magnetic hB2
i0

condensates in the dyonic ensemble. For that we note that the energy per
volume in Euclidean space follows from (34) through

1

8⇡

⌦
B2

� E2
↵
0
= T 2 @

@T

Pcl

T
(47)

The results are
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Figure 6: The electric hE2
i (solid-black), magnetic hB2

i (dashed-blue) and
(Euclidean) energy density hB2

� E2
i (dot-dashed-brown) in units of T ver-

sus T/Tc. See text.
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✓
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s

↵2
s
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✓
1

↵s

�
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2

◆◆✓
nD +

M3

8⇡

◆

hE2
i0

4⇡T
=

✓
�3� (1�
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s
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s
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✓
1

↵s

�
⇡

2

◆◆✓
nD +

M3

8⇡

◆

(48)

with ↵0
s
= @↵s/@ lnT . In Fig. 6 we show the behavior of the chromo-

electric condensate hE2
i (solid-black), the chromo-magnetic condensate hB2

i

(dashed-blue) and the (Euclidean) energy density hB2
� E2

i (dot-dashed-
brown) in units of T versus T/Tc in the center symmetric phase. We used the
dyon density fixed in (55) below. The chromo-magnetic condensate is about
constant in the range of 0.6 < T/Tc < 1 while the chromo-electric conden-
sate decreases monotoneously. The condensates are about equal and opposite
near Tc a point supported by the lattice extracted condensates in [24].

2.3.5 Electric and magnetic screening masses

The center symmetric phase of the dyon-anti-dyon liquid screens the long-
range U(1) gauge fields left un-Higgsed by the holonomy A4(1)/2⇡T =
⌫T 3/2. The electric and magnetic correlations in these Abelian U(1) charges
can be obtained by introducing the U(1) Abelian sources ⌘m,e for the mag-
netic and electric charge densities
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⇢m,e(x) =
X

i

Qm,e,i �
3(x� xi) (49)

with |Qm,e| = 1, and shifting the U(1) fields � ! � + ⌘m and b ! b + ⌘e
in the 3-dimensionsl e↵ective action. To 1-loop the generating functional for
the charge density correlators is

Z1L[⌘m, ⌘e] =

Z
D[�]D[b] e�S2F [�,b]�S1L[�+⌘m,b+⌘e] (50)

which is Gaussian in the sources and therefore readily integrated out. Thus

lnZ1L[⌘m, ⌘e] = �

Z
d3p

(2⇡)3

X

i=e,m

⌘i(p)Gi(p)⌘i(�p) (51)

with the electric and magnetic density correlators following by variation,

Gm,e(p) ⌘
1

V3

⌦
|⇢m,e(p)|

2↵
⇡

1

4

TM2p4

(p2 +M2)2 ± ↵̃M2p2

(52)

The upper sign is for magnetic and the lower sign for electric. In x-space, (52)
can be inverted by Fourier transforms. The result for the electric correlator
in spatial coordinates is

�
TM4

16⇡|x|
e�

p
1� ↵̃

4 M |x|

[cos

 p
↵̃

2
M |x|

!
(↵̃� 2)

+sin

 p
↵̃

2
M |x|

!
1� 2↵̃ + ↵̃

2

2q
↵̃ (1� ↵̃

4 )
] (53)

The magnetic correlator follows by analytical continuation through the sub-
stitution ↵̃ ! �↵̃ in (53). The electric screening masses MM,E follow from
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the large distance asymptotics. Using our estimate of ↵̃ ⇡ �0.52 < 0 from
the Debye-Huckel analysis above, we have

ME

M
⇡

 r
1 +

|↵̃|

4
�

p
|↵̃|

2

!
⇡ 0.70

MM

M
⇡

 r
1�

|↵̃|

4

!
⇡ 0.93 (54)

with M2 = 2nD/T . Also the arguments below show that M = �E/T . Com-
bining these two results allow us to fix C in (5) above. Indeed, at Tc the
SU(2) lattice results give Tc/

p
�E ⇡ 0.71. So (5) now reads

nD

T 3
⇡ 2

↵2
s
(Tc)

↵2
s
(T )

e
⇡

↵s(Tc)
� ⇡

↵s(T ) (55)

which gives ME ⇡ 1.4Tc and MM ⇡ 1.8Tc, both of which are remarkably
close to the reported SU(2) lattice results in the vicinity of the critical tem-
perature [26]. In Fig. 7 we display the results (54) for ME,M/T in the range
(0.5 � 1)Tc versus T/Tc. The points at T > Tc are shown for comparison.
We note that the electric mass drops down at Tc. In the region we study
MM > ME, while above Tc, in a more familiar QGP region, MM < ME. This
switching of the magnitude of the two screening masses is better documented
in lattice works with the SU(3) gauge group. It has a simple explanation in
our case. Since at T > Tc the dyon density drops it follows that M decreases
as well. As a result, the form factor in Fig. 3 is probed at smaller momentum
p ⇡ M (larger distances) making ↵̃(p ⇡ M) in (33) switch from negative
(T < TC) to positive (T > TC). From (52) it follows that the expressions for
ME,M in (54) are now switched with MM lighter than ME. A simple estimate
of the critical temperature at the crossing follows from the vanishing of (36)
or MaDD̄ = ⇡/2. This translates to a critical dyon density nC

D
⇡ ⇡2T 3

c
/8

which is consistent with our estimate of Tc below (see (70)).
Finally, we note that the value of ↵s(Tc) ⇡ 0.84 extracted from the cooled

caloron data in [107] is also consistent with the reported value from bulk ther-
modynamics in [27]. In the dyon-anti-dyon Coulomb liquid the correlators
are modified at intermediate distances as we now detail in terms of the static
structure factors.
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.jpg

Figure 7: (Color online) The electric ME/T (dashed line) and magnetic
MM/T (solid line) screening masses in (54) versus T/Tc. The points are
SU(2) lattice data from [26] shown for comparison, (blue) circles are ME/T ,
(red) squares are MM/T .

2.3.6 Static structure factors

The charged structure factor between pair of magnetic or electric charges is
(52) which can be re-written as

GM,E(p) ⌘

*
1

Nm,e

�����

Nm,eX

j=1

Qm,e,je
ik·xj

�����

2+
(56)

Thus

GM,E(p) =
Gm,e(p)

nD/2
⌘

p̃4

(p̃2 + 1)2 ± ↵̃p̃2
(57)

with p̃ = p/M . We note that the pre-factor in (57) involves two static
electric or magnetic exchanges with an identical screening mass M . The
charged structure factors vanish as GM,E(p) ⇡ p̃4. For large momenta or
p̃ � 1 both structure factors asymptote one from below as shown in Fig. 8.
The magnetic hole is slightly smaller than the electric one around the same
pairs. The absence of oscillations in the structure factor, is a consequence of
our linearized approximation.

To characterize further the 4-component plasma of dyons and anti-dyons
we define the scalar static pair correlation function
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Figure 8: (Color online) The electric and magnetic structure factors (52) as
a function of p/M .

GS(x) =

*
1

N

NX

i 6=j

�3(x+ xi � xj)

+
(58)

normalized to the total number of particles N . (58) defines the probability
to find two particles a distance |x| apart. Its Fourier transform

GS(p) =

*
1

N

�����

NX

j=1

eip·xj

�����

2+
(59)

is the scalar structure factor.
(59) can be evaluated by switching f ! f + �f(xi) in (103) and then lin-

earizing the resulting e↵ective action around the mean-density. Specifically,
we can re-write the linearized constraint (27) formally as

(wM � wL) =
1

�0 + 4�f

✓
Tr2

4⇡

◆
(b� i�) (60)

with �0 = �Tr2/4⇡ + 4f and use perturbation theory to expand the de-
nominator in (60) to order O(�f 3). The result can be formally written as

(wM � wL)(p) =

Z
d3k

(2⇡)3
G(p, k)(b� i�)(k) (61)

Inserting (61) into the potential (26) yields a quadratic action in b and �.
Integrating over the latters yields the 1-loop determinant or the e↵ective
action for � ⌘ �f/f . Specifically
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det(1 + S[�]) = eTrln(1+S[�])
⇡ eTrS[�] (62)

with the quadratic e↵ective action for the scalar fluctuations as

TrS[�] = �

Z
d3p

(2⇡)3
�(p)G�1(p)�(�p) (63)

with to order O(↵̃3)

G�1(p) ⇡ nD + 4 ↵̃2M8

Z
d3k

(2⇡)3

[
k4

(k2 +M2)4
1

((k + p)2 +M2)2

+
2k2

(k2 +M2)3
1

((k + p)2 +M2)2
] (64)

The nD contribution in (64) follows from the expansion of the leading con-
tribution V using arguments similar to those used for the derivation of the
dyonic densities above.

The scalar structure factor follows from (64) through the normalization

GS(p) ⌘
nD

V3

⌦
|�(p)|2

↵
= nD G(p) (65)

We note that the small momentum fluctuations in �f couple to the sound-like
modes. Specifically,

GS(p) ⇡
p2

c2
s
p2

(66)

is dominated by a massless pole at zero momentum with

c2
s
⇡ 1 + 8 ↵̃2

✓
M

T

◆Z
d3k

(2⇡)3


k4
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2k2
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�

(67)
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Alternatively from the pressure (34) we expect

c2
s
⌘

@Pcl

T@nD

⇡ 1 +
(↵̃)

4⇡

✓
M

T

◆
(68)

with (↵̃) ⇡ 15 ↵̃2/32 in leading order and in total agreement with (67). Also,
at large momentum (65) asymptotes GS(1) = 1. The slight super-luminal
character of (67) reflects on the fact that dyons are in essence Euclidean
configurations with no physical particle realization.

2.3.7 Estimate of the critical Tc

The total thermodynamical pressure of the dyon-anti-dyon liquid consists of
the classical and non-perturbative contribution (39) plus the perturbative
holonomy potential known as Gross-Pisarski-Ya↵e-Weiss (GPYW) poten-
tial [16], plus the purely perturbative black-body contribution (ignoring the
higher order O(↵s) quantum corrections). Specifically (Nc = 2)
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�
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c
� 1
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(69)

The Debye-Huckel contribution is of order N3
c
, while the leading classical

contribution is of order N2
c
. So screening and large Nc are not commutative.

For the SU(2) case of interest, the transition temperature Tc from the dis-
ordered phase (⌫ = 1/2) to the ordered phase (⌫ = 0) occurs when the first
three contributions in (69) cancel out. Thus

ñD +
(↵̃)

3⇡
p
2
ñ

3
2
D
⇡
⇡2

12
(70)

For (�0.52) ⇡ 0.19, the critical density is nC

D
⇡ ⇡2T 3

c
/12 ⇡ 0.88. Since the

SU(2) electric string tension is �E = TM =
p
2nDT (see below), it follows

that Tc/
p
� = 6

1
4/
p
⇡ ⇡ 0.88 which is somehow larger than the SU(2) lattice

result Tc/
p
�E = 0.71 [101].
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2.4 Polyakov lines

To probe the confining nature of the dyon-anti-dyon liquid in the 3-dimensional
e↵ective theory we will compute explicitly the expectation of a heavy quark
through the traced Polyakov line and the corelator of a heavy quark-anti-
quark pair through the correlator of the traced Polyakov line and its con-
jugate at fixed spatial separation. The insertion of these charges in the
dyon-anti-dyon liquid modifies the ground state through solitonic solutions
around these sources.

In this section we present a new derivation of the pertinent solitonic
equations for the SU(2) case that makes explicit use of the presence of the
long range U(1) b and � fields. In the linearized screening approximation, we
show that the solitonic equations for the heavy source probes are in agreement
with those established in [83] using di↵erent arguments.

2.4.1 hLi

In the SU(2) case the Polyakov line consists of inserting a heavy quark whose
free energy consists of its Coulomb interactions with all the Coulomb charged
dyons and anti-dyons. Specifically, the traced Polyakov line before averaging
is

L(x1) = (71)

e
2⇡iµM+ i
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1

|x1�xLi|
+ 1

|x1�xL̄i|
� 1

|x1�xMi|
� 1

|x1�xM̄i|

◆

with µL � µM = vm. When averaging using the ensemble (3) it is clear that
each of the contributors to the string of factors in (71) will match its analogue
from the measure and re-exponentiate. For instance the first contribution in
(71) re-exponentiates through the substitution

e�b±i�
! e�b±i�e

i
2T |x1�x| (72)

The extra Coulomb factors can be re-defined away by shifting

b ! b+
i

2T |x1 � x|
(73)
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thereby changing the constraint equation (25) to

�
T

4⇡
r

2wM + f(ewM�wL � ewL�wM )

=
T

4⇡
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2(b� i�) +
i

2
�3(x� x1)

�
T

4⇡
r

2wL + f(ewL�wM � ewM�wL) = 0 (74)

and similarly for the second contribution in (71) with L $ M . The e↵ect
of the first contribution in the Polyakov line (71) is to add a source term
to the constraint equation for wM . It is in agreement with [83] after setting
b = � = 0. (74) is a Poisson-Boltzmann type equation. It is also referred
to as an elliptic and periodic Toda lattice [83, 29]. The solution is a local
Debye-like cloud around the inserted heavy quark

(wM � wL)(x) ⇡
2⇡i

T

Z
d3p

(2⇡)3
eip·(x�x1)

p2 +M2
(75)

This causes almost no change in the vacuum holonomies vm,l. Thus, after
the shift

hL(x1)i ⇡ ei2⇡µM + ei2⇡µL = 0 (76)

2.4.2
⌦
LL†↵

The preceding analysis can also be applied to the correlator of two heavy
quarks through LL† which consists now of 4 contributions before averaging

L(x1)L
†(x2) =

X

m,n=M,L

e2⇡i(µm�µn)e
i

2T (Fm(x1)�Fn(x2))

(77)

with the pertinent Coulomb free energies Fm(x1,2) following from (71). When
averaged over the measure (3), each of the factors in (77) can be matched
with its analogue in the measure. The preceding observations show that the
Coulomb factors in the probing correlator can be paired with
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e�b±i�
! e�b±i�e

i
2T |x�x1|

� i
2T |x�x2| (78)

A rerun of the preceding arguments shows that the constraint equations
acquire now two source contributions, one for each of the heavy quark inserted

�
T

4⇡
r

2wM + f(ewM�wL � ewL�wM )

=
T

4⇡
r

2(b� i�) +
i

2
[�3(x� x1)� �3(x� x2)]

�
T

4⇡
r

2wL + f(ewL�wM � ewM�wL) = 0 (79)

Since r
21/|x � x2| = �4⇡�3(x � x2), we can symmetrize (79) by shifting

�3(x� x2) from the first to the second equation through

wM,L ! wM,L +
i/T

2|x� x2|
(80)

with unit Jacobian. The symmetrized (79-80) equations are in agreement
with those established in [83] for the SU(2) case after setting b = � = 0. In
this case the solution is peaked around the heavy quark sources

(wM � wL)(x) ⇡
2⇡i

T

Z
d3p

(2⇡)3
eip·(x�x1) � eip·(x�x2)

p2 +M2
(81)

Inserting this back in the expectation value of the correlator (77) yields
asymptotically

⌦
L(x1)L

†(x2)
↵
⇡ e�M |x1�x2| (82)

in the 3-dimensional e↵ective theory in agreement with the result in [83]. In
4-dimensions (82) translates to confinement of the electric charges with the
electric string tension �E = MT . The additional Coulomb screening in (3)
does not a↵ect the asymptotics of the linearly rising heavy quark potential to
leading order. The dyon-anti-dyon Coulomb liquid still electrically confines
in the center symmetric phase.
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2.5 Single-Winding Wilson loop

To study the large spatial Wilson loops we use the same observations made
above in the presence of the U(1) fields � and b. As an observable the traced
spatial Wilson loop of area S supported by the spatial contour @S = C reads

TrW (C) = ei
R
S B+·dS + ei

R
S B�·dS (83)

and sources the static magnetic field

B±µ = ±

X

i

Qi

(x� xi)µ
|x� xi|

3
(84)

When averaged using (3), the spatial Wilson loop (83) modifies the additional
U(1) fugacity factors in the dyon sector. Their contribution follows again by
shifting b⌥ i� ! b⌥ i(� � ⌘±) in the constraint equations with

⌘±(x) = ±

Z

S

dSy ·
x� y

2|x� y|
(85)

As a result, (25) in the presence of (83) are now modified to read

�
T

4⇡
r

2wM + f(ewM�wL � ewL�wM ) =
iT

4⇡
r

2⌘+(x)

�
T

4⇡
r

2wL + f(ewL�wM � ewM�wM ) = 0 (86)

for the first contribution and similarly for the second contribution in (83)
with ⌘+ ! ⌘�. After choosing the spatial Wilson loop to lay in the x-y
plane through r

2⌘± = ±4⇡�0(z), the results (86) are in agreement with
those derived in [83] for the SU(2) case but without the long range U(1) �
and b fields in the leading order approximation. Thus hTrW (C)i ⇡ e��M S is
saturated by the pinned soliton, with the magnetic string tension �M = �E =
MT . This result is expected from the equality of the electric and magnetic
masses in (54).

A simple understanding of this result is as follows: while a heavy quark
sources an electric field, a large spatial Wilson loop sources a magnetic field
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by Ampere0s law which is classically composed of all the magnetic poles
fluxing S as is explicit in (84). The typical contribution to (83) for a planar
surface in the xy-plane is then

D
ei

R
S B·dS

E
⇡ e�

S
2

R
ShBz(x,y)Bz(0,0)idS (87)

by keeping only the first cumulant in the average and using translational
invariance for large S. In this limit, S acts as a uniformly charged magnetic
sheet made of magnetic dyons classically, so that

hBz(x, y)Bz(0, 0)i ⇡

*✓
QM

S

◆2
+

⇡
hQMi

S2
(88)

where the variance in the magnetic charge is assumed Poissonian. The mag-
netic charge density per unit 4-volume is (TM)2/2. The typical magnetic
charge per unit area is then about its square root or hQMi /S ⇡ TM . Thus

D
ei

R
S B·dS

E
⇡ e�

1
2MT S (89)

which is the expected behavior up to a factor of order one in the string
tension.

2.6 Double-Winding Wilson Loop

Recently it was pointed out in [31] that a co-planar and double winding
Wilson loop in the SU(2) pure gauge theory version of the model discussed
by Diakonov and Petrov [83] shows an exponentl fall-o↵ with the sum of the
areas. In contrast lattice SU(2) simulations appear to show an exponential
fall o↵ with the di↵erence of the areas. The main observation in [31] is that
the solitonic configuration contributing to the single-winding spatial Wilson
loop as for instance from our linearized version with b = � = 0 in (86), factors
out in the the double-winding and co-planar Wilson loop.

For two identical loops with C1 = C2 = C, we have the formal SU(2)
identities [32] (and references therein)

(TrW (C))2 = TrS (W (C)) + TrA (W (C))

Tr
�
W (C)2

�
= TrS (W (C))� TrA (W (C)) (90)
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The simple trace Tr is carried over the fundamental representation of N-ality
k = 1 as in (83), and TrS,A are carried over the symmetric and anti-symmetric
of N-ality k = 2 (modulo 2) representations of SU(2) respectively. The
identities (91) are commensurate with the Young-Tableau decomposition. In
the dyonic plasma considered here, the k-string tensions �k in the linearized
plasma approximation are identical to those derived in [83] with �k/�1 =
sin k⇡/2 for SU(2) with �1 = �E. For k = 2 we have �2 = 0 and the second
identity in (91) implies for large loops

⌦
Tr
�
W (C)2

�↵
= hTrS (W (C))i � 1 (91)

We have set all self-energies to zero for simplicity as they depend on the
subtraction procedure. (91) is consistent with the doubly traced Wilson loop
as dominated by the k = 2 modulo 2 colorless di-quark-like (qq) or baryon-
like configuration in SU(2). In the dyonic plasma, the double Wilson loop
with C1 = C2 is a bound colorless state with zero-size that is strongly corre-
lated within the dyons cores and therefore is consistent with the arguments
presented in [31].

For largely separated loops C1,2 of arbitrary sizes but still lying in the
spatial directions, clearly

hTr(W (C1)W (C2))i ⇡ e��E(A1+A2) (92)

for (A1 + A2) < A12 where A1,2 are the planar areas supported by C1,2

separately, and A12 is the minimal area with boundaries C1 and C2. The
main issue is what happens for the same doubly wound SU(2) spatial Wil-
son loops when A12 < (A1 + A2) ? Here we note that LL̄ and MM̄ dimers
carrying (�2, 0) and (+2, 0) (electric,magnetic) charge assignments could
cluster around the probe qq (baryon) and q̄q̄ (anti-baryon) configurations
respectively, to form neutral molecular bound states with masses that scale
with A12 instead of (A1 + A2). They are commensurate with the massive
o↵-diagonal and charged gluons Higgsed by the holonomy and dropped in
the dyon liquid analysis. These configurations were not retained in [83].

2.7 t0 Hooft Loops

In an important study of the nature of confinement in gauge theories, t0

Hooft [33] has introduced the concept of a disorder operator or t0 Hooft loop
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to quantify confinement in the Hilbert space of gauge configurations. The t0

Hooft loop is a canonical operator much like the Wilson loop. In a Lorentz
invariant confining vacuum, t0 Hooft has argued that the temporal Wilson
loop and the t0 Hooft loop cannot exhibit an area law simultaneously. The
temporal Wilson loop obeys an area law, while the t0 Hooft loop obeys a
perimeter law.

Physically, the Wilson loop corresponds to a color charge in the funda-
mental representation running around a closed loop and measuring the the
chromo-magnetic flux across the loop. The t0 Hooft loop corresponds to a
dual charge in the center of the gauge group running around a closed loop
and measuring the chromo-electric flux across the loop. The t0 Hooft loop is
the dual of the Wilson loop.

In the temperature range 0.5Tc < T < Tc confinement is still at work and
we expect the temporal Wilson and t0 Hooft loops to exhibit behaviors similar
to those in the vacuum state. In section 2.5 we have explicitly checked that
the closed spatial Wilson loop obeys an area law. The temporal Wilson loop
is not amenable to our dimensionally reduced and Euclideanized e↵ective
field theory.

The t0 Hooft loop V (C) enforces a gauge transformation ⌦C which is
singular on a closed curve C. If a curve C 0 winds nCC0 times around C then

V †(C)W (C 0)V (C) = ei
2⇡
Nc

nCC0W (C 0) (93)

V (C) amounts to a multi-valued gauge transformation on the loop C,

⌦C(✓ = 2⇡) = ei
2⇡
Nc

nCC0⌦C(✓ = 0) (94)

with ✓ an a�ne parameter along C. A simple choice is

⌦C(x) = ei
2⇡
Nc

Q'C(x) (95)

where 'C(x) is a multi-valued scalar potential for the magnetic field ~BC gen-
erated by a loop of current ~jC running along C, and Q = (1, 1, ...,�Nc+1) a
Cartan generator of SU(Nc). An alternative construction using a discontinu-
ous solid angle was discussed in [37, 38]. The e↵ects of (95) on an Abelianized
Wilson loop is
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⌦†
C

⇣
ei

R
C0 ds·A

⌘
⌦C = ei

R
C0 ds·(A� 2⇡

Nc
QBC) (96)

with ~BC = �~r'C . Note that since 'C is multivalued we have ~r ⇥ ~BC =
4⇡~jC . If we normalize the loop current ~jC such that

Z

C0
ds · BC = 4⇡

Z

A(C0)

dS · jC = �nCC0 (97)

then (96) reduces to

⌦†
C

⇣
ei

R
C0 ds·A

⌘
⌦C = ei

2⇡
Nc

nCC0ei
R
C0 ds·A (98)

In the space of gauge configurations, the gauge transformation ⌦C is inforced
through

V (C) = ei
2⇡
gNc

R
d
3
xTr(EiDi(Q'C)) (99)

For SU(2) we have

V (C) = ei
2⇡
g

R
d
3
x ~E3· ~BC

! e�
2⇡
g

R
d
3
x ~E3· ~BC (100)

where the latter substitution E ! iE follows in Euclidean space. With this
in mind, the expectation value of the t0 Hooft loop in the dyonic ensemble
involves a string of sources to be inserted in (103). In leading order

V (C) !
N+N̄Y

i=1

e
2⇡
g

R
d
3
xBC ·r QEi

|x�xi|

=
N+N̄Y

i=1

e�
2⇡
g

R
d
3
xr·BC

QEi
|x�xi| = 1 (101)

Thus hV (C)i = 1 modulo O(↵s) Coulomb-like self-energy corrections which
are perimeter-like in general.
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Finally, the Polyakov line as a Wilson loop around the periodic tempo-
ral direction has a dual Polyakov loop with a dual magnetic charge in the
center. In the confined phase, the temporal component of the gauge field
A4 asymptotes fixed electric-type holonomies, while its dual Ã4 asymptotes
zero dual magnetic-type holomies thanks to parity. A rerun of the arguments
in 2.4.1 shows that while hL(x)i = 0 in (76) as expected in an Euclidean and
confining thermal state, its dual does not vanish, i.e.

D
L̃(x) ⌘ Tr

⇣
ei

4⇡
gNc

R �
0 QÃ

Q
4 (x)d⌧

⌘E
= 1 (102)

again modulo O(↵s) Coulomb corrections. This behavior is consistent with
the one reported on the lattice for Nc = 2, 3 [34].

2.8 Conclusions

The central theme in this section is non-perturbative gauge theory for tem-
peratures in the range (0.5� 1)Tc modeled by a dense plasma of instanton-
dyons. The new element in our discussion is the introduction of the leading
classical O(1/↵s) interactions between the dyons and anti-dyons as recently
obtained in [21] using the classical “streamline” set of configurations for
MM̄,LL̄ pairs. We have assumed that the ML̄,LM̄ channels are repulsive
and opposite in sign to the streamline interaction. While carrying this work,
this assumption has now been confirmed numerically [35]. Another important
element of our analysis is the one-loop measure of the dyon and anti-dyon
moduli space, in the form proposed by Diakonov and Petrov [83]. It leads to
a small moduli space volume and thus repulsive interaction at higher density,
which however can be made much less repulsive by introducing correlaltions
between the charges.

On general grounds, an ensemble of instanton-dyons is a strongly coupled
plasma, with significant correlations between the particles. Therefore, the
statistical mechanics of a generic instanton-dyon ensemble is very nontrivial
and remains unsolved. However – and this is the main argument of the section
– when the plasma is dense enough for temperatures below Tc, it generates
a large screening mass M which screens the interaction. A standard weak
coupling plasma theory, in a form similar to the Debye-Huckel theory is then
applicable . The dimensionless 3-density of each dyon species nD/4 in the
regime considered is in the range of nD/4 ⇡ T 3/4, in agreement with the
qualitative arguments in [107].
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Using it, we get a number of results concerning the details of the non-
perturbative gauge fields, in the temperature range (0.5�1)Tc. First , in the
presence of strong screening the minimum of the free energy is still at the
confining (center symmetric) value of ⌫ = 1/2, with a vanishing Polyakov
line hLi ⇡ cos(2⇡⌫) = 0 . Second, a re-summation of the the linearized
screening e↵ects yields Debye-Huckel type corrections to the pressure and
dyonic densities. We have also analyzed the topological susceptibility, the
gluonic compressibility, and the electric and magnetic gluonic condensates in
this linearized approximation.

We have calculated also the electric and magnetic screening masses, gen-
erated by the dyon ensemble. We have found that the latter are larger than
the former in the confined phase. This is qualitatively consistent with the
existing lattice data, which however are much better measured for the SU(3)
gauge theory rather than the SU(2) one we have studied here. Finally, we
have calculated the structure factors in the electric and magnetic sector in the
linearized screening approximation as well. For an estimate of the transition
temperature from ⌫ = 1/2 (confinement) to ⌫ = 0 (deconfinement) we have
switched the perturbative (GPYW) holonomy potential [16] in section 2.3.7.
For SU(2) the transition is observed to take place at Tc/

p
�E ⇡ 0.88.

In the dyonic plasma the large spatial Wilson loops exhibit area law, while
the spatial t0 Hooft loops are found to be 1 modulo O(↵s) Coulomb-like self-
energy corrections. These dual behaviors were argued in [33] for confining
gauge theories at zero temperature. We found them to hold in the confining
dyon-ensemble in the regime 0.5 < T < Tc.

Needless to say, that all these predictions can and should be confronted
with the lattice data in the corresponding temperature range.

Finally, let us speculate about the dyon ensemble beyond the validity
domain of the Debye-Huckel approximation. First of all, strongly coupled
Coulomb plasmas are tractable by certain analytic and/or numerical (molec-
ular dynamics) methods, see Refs [22, 23] for similar development. Another
option is to use brut force numerical simulations of the dyon ensemble [36].
Qualitatively, su�ciently strongly coupled plasmas develop either (i) corre-
lations between particles, resembling either a liquid with crystal-like correla-
tions (“molten salt”), or (ii) particular neutral clusters, the simplest of which
can be the LM instantons themselves or LML̄M̄ “instanton molecules”. Re-
cent (unquenched) lattice simulations indicate that the instantons and anti-
instantons recombine into topologically neutral molecules across the transi-
tion temperature [39, 40]. At much higher temperature, the perturbative
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gluons dwarf all classical gauge configurations forcing the holonomy to zero.
One obvious extension of this work should be into the large number of

colors Nc. Strong correlations can appear, since �DD̄ ⇡ 1/↵s ⇡ Nc �

1. Similar mechanism, leading to crystallization appears to take place in
dense holographic matter where the baryons as instantons in the holographic
direction split into a pair of dyons and re-arrange in salt crystals [41].

3 The dense regime

This section is an edited version of my publication :
Dense Instanton-Dyon Liquid Model: Diagrammatics Yizhuang Liu, Ed-
ward Shuryak, Ismail Zahed (SUNY, Stony Brook). Feb 1, 2018. 12 pp.
arXiv:1802.00540, submitted to Phys. Rev. D.

3.1 Introduction

In this section, we continue our study of the instanton-dyon liquid model
without quarks, at low temperature in the center symmetric phase, through
various many-body re-summations of the Coulomb interactions in the dense
limit. We will show that the re-summations provide a specific interpola-
tion between bion-like correlations in the dilute phase and mostly screened
interactions in the dense phase.

In section II we briefly review the salient aspects of the instanton-dyon
liquid model. We perform a non-linear Debye-Huckel re-summation of the
coulomb interactions stemming from the moduli space, and combine them
with a cluster expansion of the coulomb interactions originating from the
streamlines. We show that the expansion is rapidly converging and the phase
center symmetric already in the second cluster approximation. In section III
we also show how multi-chain and rings can be further re-summed beyond
the leading clusters and explicit them with some applications. In section
IV, we extend our arguments to a finite vacuum angle ✓. In section V, we
discuss a larger class of resummation pertinent for dense systems referred to
as a hypernetted chain re-summation (HCN). In section VI, we suggest that
a melted crystal of instanton-dyons and anti-instanton dyons may provide a
semi-classical description of a Yang-Mills ensemble at very low temperature.
Our conclusions are in section VII. In the Appendix we outline the elements
for a future molecular dynamics simulation.
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3.2 Thermal Yang-Mills

Here we fowllow the rules of previous section. A semi-classical ensemble
of instanton-antiinstanton-dyons can be regarded as a statistical ensemble
of semi-classical charges interacting mostly through their moduli space for
like instanton- or aniti-instanton-dyons, and through streamlines for unlike
instanton-anti-instanton-dyons. The grand partition function for such an
ensemble is of the form (zero vacuum angle)

Z[T, f ] ⌘

X

[K]

KLY

iL=1

KMY

iM=1

KL̄Y

iL̄=1

KM̄Y

iM̄=1

⇥

Z
fd3xLiL

KL!

fd3xMiM

KM !

fd3yL̄iL̄
KL̄!

fd3yM̄iM̄

KM̄ !

⇥e�V (x�y)+ln det(G[x]G[y]) (103)

The stream-line interactions V are large and of order 1/↵s. They are attrac-
tive between like DD and repulsive between unlike DD [46]. Their relevant
form for our considerations will be detailed below. In contrast, the mod-
uli induced interactions captured in the (KL + KM)2 matrix G[x], and in
the (KL̄ + KM̄)2 matrix G[y] are of order ↵0

s
. While the explicit form of

these matrices can be found in [83, 5], it is su�cient to note here that these
induced interactions are attractive between unlike instanton-dyons, and re-
pulsive between like instanton-dyons. The bare fugacity f will be regarded
as an external parameter in what follows. Note that in the absence of V ,
Z ! ZDZD

where each factor can be exactly re-written in terms of a 3-
dimensional e↵ective theory.

3.2.1 E↵ective action

The streamline interaction part V can be bosonized using the complex fields
b± i� through standard tricks. Here b, � refers to the Abelian magnetic and
electric potentials stemming from the instanton-dyon charges. Also, each
moduli determinant in (103) can be fermionized using ghost fields, and the
ensuing Coulomb factors bosonized using complex w,w fields also through
standard tricks as detailed in [83, 5]. The net result of these repeated
fermionization-bosonization procedures is an exact 3-dimensional e↵ective
action (p-space)
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�SB[b, �, w, w̄] =

Z
d3p


1

4
(b� i�)V �1(p)(b+ i�)

+ 4⇡
�
⌫few + ⌫fe�w

�

+4⇡
�
⌫few̄ + ⌫fe�w̄

� �

(104)

subject to the constraint from the moduli (x-space)

�
T

4⇡
r

2(w) + 4⇡f sinh(w) =
T

4⇡
r

2(b� i�)

�
T

4⇡
r

2(w̄) + 4⇡f sinh(w̄) =
T

4⇡
r

2(b+ i�) (105)

(353-286) allow to re-write exactly the partition function (103) in terms of
a 3-dimensional e↵ective theory. In [43] we have analyzed this partition
function using the Debye-Huckel (one-loop) approximation. Here we will
seek a more systematic organization of the dense phase described by (353-
286), that is more appropriate for the description of the confined phase at
low temperature.

3.2.2 Cluster expansion

Our starting point is the linearization of (286) around w = 0 which amounts
to the solution

w(p) =
p2

p2 +M2
(b� i�)(p) (106)

with the squared screening mass M2 = 16⇡f
T

. Inserting (162) into (353), we
can carry the cluster expansion for the 4⇡f terms by integrating over the
b, � fields as the measure is Gaussian in the partition function defined now in
terms of the 3-dimensional e↵ective action (353). The result at second order
is
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lnZ

V3
= 8⇡f

+(4⇡f)2(⌫2 + ⌫2)

Z
d3r (e�V1(r) � 1)

+(4⇡f)2(2⌫⌫)

Z
d3r (e�V2(r) � 1) (107)

with

V1(p) = �V2(p) = �
p4 V (p)

(p2 +M2)2
(108)

While the instanton-antiinstanton-dyon interaction is accessible numerically,
for simplicity we will use here only its Coulomb asymptotic form V (p) ⇡ 4⇡CD

↵sp
2

with CD = 2, so that

V1(r) = �V2(r) ⇡
MCD

2↵s

✓
�

2

Mr
+ 1

◆
e�Mr (109)

The large r-interaction between the pairs with magnetic charge 0 (M̄M and
L̄L) turns repulsive at large r, while that between the pairs with magnetic
charge 2 (M̄L and L̄M) turns attractive. Remarkably, the sign of the in-
duced interaction between the pairs in (232) is flipped in comparison to the
unscreened or bare interaction between the pairs, a sign of over-screening.

The chief e↵ect of the moduli constraint (286-162) is to induce a non-
linear Debye-Huckel screening e↵ects between the charged instanton- and
anti-instanton-dyons through the Mayer functions e�V1,2 � 1. This is a re-
arrangement of the many-body dynamics that does not assume diluteness.
In contrast, the cluster expansion in (354) is limited to the second cumulant
and subsume diluteness in the ensemble of D, D̄ but with non-linear Debye-
Huckel e↵ective interactions. This shortcoming will be addressed later.

For small r, we need to set a core for the attractive pair with magnetic
charge 2. We choose the core to be a = 1

T
. As a result (354) plus the

perturbative contribution reads
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zb(m, ⌫) =
lnZ

V3T 3
�

4⇡2

3
⌫2⌫2

=
m2

2
+ F (m, ⌫)�

4⇡2

3
⌫2⌫2 (110)

with m = M

T
and V (x) = (�2/x+ 1)e�x and

F (m, ⌫) =
⇡m

4
(⌫2 + ⌫2)

Z

1

x2(e�
mCD
2↵s

V (x)
� 1)

+
⇡m

2
⌫⌫

Z

c1

x2(e
mCD
2↵s

V (x)
� 1) (111)

For CD ⇡ 2 and ↵s = 1, the transition from a center symmetric (confining)
to a center asymmetric (deconfining) phase occurs for mc ⇡ 2.1, 2.3 for the
two choices of the cuto↵ parameter c1 = 1, 0. The choice c1 = 0 corresponds
to the formal argument presented in [44]. In terms of the density of charged
particles n = 8⇡f , the transition occurs for n ⇡ 2T 3. For large density, the
screening length scales like

p
T/

p
n, while the average separation scales like

1/n
1
3 . Our expansion is therefore justified. In Fig. 9 we show the behavior

of the Polyakov line versus m for the cuto↵ choice c1 = 1.

3.3 Open and closed chains

To go beyond the second cumulant approximation in (286) with bare fugac-
ities, we will discuss in this section a systematic way for re-summing all tree
diagrams between the charged particles, and also all ring diagrams with an
arbitrary number of trees at the charged verticies. One of the chief e↵ect
of the resummation of all the trees is a re-definition of the fugacities of the
charged particles as we will show below.

3.3.1 Diagrammatics

A systematic book-keeping procedure for the re-summation of all the trees
and the rings with re-defined fugacities follows from a semi-classical treat-
ment of the Coulomb-like field theory

L = �
1

2
�T

V
�1�+ f1(e

i�1 + ei�3) + f2(e
i�2 + ei�4) (112)
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Figure 9: Polyakov line P=| cos(⇡⌫)| versus m.

55



with f1 = 4⇡f⌫, f2 = 4⇡f ⌫̄, and the e↵ective fields in 3-dimensions � =
(�1,�2,�3,�4)T ,

V =

✓
0 V
V 0

◆
V =

✓
F1 F2

F2 F1

◆
(113)

and the Mayer functions �F1,2 = e��V1,2�1. The 4⇥4 block-structure follows
from the fact that the statistcal ensemble consists of 4-species of charged
particles D = L,M (•) and D̄ = L̄, M̄ (�). The block o↵-diagonal character
of V follows from the fact that the Mayer functions �F1,2 resum the non-
linear Debye-screening induced by the moduli between like-instanton-dyons,
and are left acting only between unlikeDD̄ instanton-antiinstanton-dyons. It
can be checked that (168) reproduces all Coulomb diagrams with the correct
symmetry and weight factors as Feynman graphs when the vertices are linked
by single lines only as illustrated in Figs. 10,11.

A re-summation of all trees and rings with arbitrary trees at the vertices
amounts to a one-loop expansion around the saddle point approximation to
(168) which is given by

�T

c
= iV(p = 0)(f1e

i�1c , f2e
i�2c , f1e

i�3c , ei�4c) (114)

Because of symmetry, the solution satisfies �1 = �3, �2 = �4. If we define
↵1 = i�1c,↵2 = i�2c and use the symmetry, then (171) reads

↵1 = c1f1e
↵1 + c2f2e

↵2

↵2 = c1f2e
↵2 + c2f1e

↵1 (115)

Here

c1,2 =

Z
d3x(e��V1,2 � 1) (116)

are the integrated Mayer functions. The saddle point contribution which
resums all connected trees yield the pressure

⌦tree =
lnZtree

V3
= f1e

↵1(2� ↵1) + f2e
↵2(2� ↵2) (117)
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Figure 10: Typical open chain contributions to ⌦tree (a), and closed chain
or ring contributions to ⌦ring (b). • refers to D = L,M and � refers to
D̄ = L̄, M̄ .
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with ↵1,2 solutions to the non-linear classical equations (361). The resummed
rings with arbitrary trees, follow by expanding (171) around the classical
solution (361) to one-loop. The result is

⌦ring = �
1

2

Z
d3p

(2⇡)3
(ln(1 + A)� A) (118)

with in p-space

A = �(f̃ 2
1 + f̃ 2

2 )F
2
1 + 2f̃1f̃2F

2
2 + f̃ 2

1 f̃
2
2 (F

2
1 � F 2

2 )
2 (119)

In the special case with F ⌘ F1 ⇡ �F2, the one-loop result simplifies

A = �(f̃1 + f̃2)
2F 2 (120)

where f̃1,2 = f1,2e↵1,2 are the tree-modified fugacites.

3.3.2 Approximations

The preceding expansion around the small fugacities follows by seeking the
classical solution to (361) in powers f1,2 or ↵1 ⇡ c1f1+c2f2, ↵2 ⇡ c1f2+c2f1.
The tree contributions to the pressure in (174) to quadratic order are

⌦tree ⇡ 2(f1 + f2) + c1(f
2
1 + f 2

2 ) + 2c2f1f2 (121)

in agreement with (354). For large fugacities f1,2 and for c1 = �c2 = �c < 0,
the solution to (175) satisfies ↵1 = �↵2 = ↵ with ⌫e↵ = ⌫̄e�↵ =

p
⌫̄⌫. As a

result, the leading contribution in (354) is now changed to

8⇡f ! 8⇡f̃ ⌘ 8⇡f
p
4⌫̄⌫ (122)

The resummation of all the trees for large bare fugacities amount to dressing
the bare fugacities through f ! f̃ in a cluster expansion for the rings with no
trees attached as illustrated in Fig. 10b. Some of the diagrams not included
in the dressed fugacity expansion with ring-diagrams are illustrated in Fig. 11
which are of the 2-loop types. The first appear in the 5th cumulant, and the

58



Figure 11: Examples of 2-loop contributions not included in the fugacity
redefined 1-loop or ring re-summation.

second in the 6th cumulant. So this re-organization resums a large class
of diagrams, yet exact up to the 5th cumulant. Remarkably, in the center
symmetric phase with ⌫ = ⌫̄ = 1

2 , (122) amounts to the fugacity of non-
interacting instanton- and anti-instanton-dyons, as all Coulomb interactions
from the (linearized) moduli and the streamlines average out.

In general, the solution to (361) for intermediate fugacities is not eman-
able analytically. One way to go beyond the second cumulant approximation
(179) at low density is to insert the leading solutions ↵1 ⇡ c1f1 + c2f2,
↵2 ⇡ c1f2 + c2f1 in (174) without expanding the exponent,
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⌦tree ⇡ 4⇡f

✓
1

2
+ b

◆
(2Kb+ 2)e�2Kb + (b ! �b)

(123)

where we have set ⌫ = 1
2 + b, K = 4⇡fc, and noted that c1 = �c2 = �c <

0. (381) resums all tree contributions with charge vertices that include an
arbitrary number of 2-body links. (179) follows by expanding the exponents
to first order in f . We note that (381) has always a maximum at b = 0 or
⌫ = 1

2 for positive c which is center symmetric (confining). This conclusion
remains unchanged when the ring contributions are added. Indeed, we note
that the ring contribution (175) is an increasing function of the combination
f̃1 + f̃2 or more specifically

f̃1 + f̃2 ⇡ 8⇡f

✓
1

2
+ b

◆
e�2Kb + 8⇡f

✓
1

2
� b

◆
e�2Kb

(124)

with

2K = 8⇡fc =
2⇡

m

Z
dxx2(e

mCD
2↵s

V (x)
� 1) (125)

using the previous notations. For 2K > 4 or cf > 1
2⇡ , this combination

has a maximum away from 0 and competes against the classical contribution
towards the center-symmetric solution. For m < 10 we have 2K < 4. The
ring contribution preserves center symmetry.

The center symmetric phase can be probed more acuratly by setting ⌫ =
1
2 � b. The semiclassical equation (181) reads

↵ = �K

✓
1

2
+ b

◆
e↵ +K

✓
1

2
� b

◆
e�↵ (126)

At b = 0 we have ↵ = 0. We now can solve (183) by expanding exactly
around b = 0. Since ↵ is an odd function of b, we seek a solution to (183)
using ↵ = x1b+ x2b3 + ..., with x1 satisfying
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x1 = �2K �Kx1 (127)

Since the leading contribution to the pressure is given by

lnZ

V3
⇡ 4⇡f⌫e↵

⇣
1�

↵

2

⌘
+ 4⇡f ⌫̄e�↵

⇣
1 +

↵

2

⌘
+ c.c

(128)

its expanded form to order O(b4) reads

lnZ

V3
⇡ 8⇡f � 8⇡f

2K

K + 1
b2 +O(b4)

! 8⇡f

 
1 +K

p
4⌫⌫̄

1 +K

!
(129)

where the last relation follows after restoring the full ⌫ dependence. (129)
shows that only the open chains with no tree-like-star insertions contribute
to the leading b2 and therefore

p
⌫⌫̄ in the pressure. Note that (129) is

independent of the integrated Mayer function c in K = 4⇡fc in the center
symmetric phase and/or large fugacities, in agreement with (122).

3.4 Finite vacuum angle ✓

At finite vacuum angle ✓, the bare fugacities for �1,2 are now complex and

given by f1 = 4⇡f⌫e
i✓
2 and f2 = 4⇡f ⌫̄e

i✓
2 , while the bare fugacities for �3,4

are their conjugate f †
1,2. For c1 = c2 = �c < 0, we first note that the solution

to the analogue of the classical equations (361) at finite ✓ satisfies ↵3,4 = ↵†
1,2,

and ↵1 = �↵2 = ↵, with ↵ complex and satisfying

↵ = �Ke�i
✓
2⌫e↵

†
+Ke�i

✓
2⌫e�↵

†
(130)

The solution for small or large fugacities can be obtained analytically. We
now discuss them sequentially.
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3.4.1 Large K

For large fugacities or large K, the solution to (130) in leading order gives
e↵ =

p
⌫/⌫ independently of K. In this limit, the summation of all the

tree diagrams amount to a dressed fugacity with a leading (dimensionless)
pressure

lnZ

V3T 3
!

m2

2

p
4⌫⌫̄ cos (✓/2)�

4⇡2

3
⌫2⌫2 (131)

with m2 = 2n
T 3 and including the perturbative contribution. (131) resums all

the tree cumulant contributions at finite ✓ and is to be compared to (358-
167) with only the second cumulant retained. (131) implies a transition from
the center symmetric (confined) phase to the center asymmetric (deconfined)
phase at a critical temperature

Tc(✓)

Tc(0)
=

✓
cos

✓
✓ + 2k⇡

Nc

◆◆ 1
3

(132)

with T 3
c
(0) = 12n

⇡2 for Nc = 2. Although our derivation was for Nc = 2, our
arguments for the re-summation of the trees extend to any Nc. Also, (131-
132) were derived for |✓| < ⇡ in a 2⇡-branch with k = 0. The general result
is multi-branch and 2⇡-periodic following the substitution ✓ ! ✓+2k⇡. Nu-
merical lattice simulations have established that the transition temperature
Tc(✓) decreases with ✓ as (k = 0 branch)

Tc(✓)

Tc(0)
= 1�R✓✓

2 +O(✓2) (133)

with R✓ = 0.0175(7) for Nc = 3 [48], in good agreement with R✓ = 1/6N2
c
=

0.0185 from (132). Our result (132) is predictive of the Nc dependence of
R✓ and of the higher ✓ coe�cients, with a cusp at Tc(⇡)/Tc(0) = 1/23 at the
CP symmetric point. This point is actually a tri-critical point where the CP
breaking first order transition line at ✓ = ⇡ meets the first order transtion
cusp from (132). Although (132) suggests that the CP transition line reduces
to a point for Nc = 2, this conclusion requires further amendments as it
occurs at 0 temperature where the liquid is very dense requiring additional
re-summations, some of which will be detailed below.
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3.4.2 Intermediate K

The onset of the center symmetric phase depends on the details of the ar-
rangement of the parameters K, ✓, as (131) was only established for large K
or high density. The center symmetric phase can be probed more accuratly
for di↵erent densities or K by again setting ⌫ = 1

2 � b in (130), and solving
exactly around b = 0. The result for the pressure to order O(b4) is

lnZ

V3
= 8⇡f cos

✓

2
� 8⇡f 2K

K cos ✓

2 � 1

K2 � 1
b2 +O(b4)

(134)

which is seen to reduce to (129) at ✓ = 0. At finite vacuum angle ✓, the
expanded result (385) develops a singularity at K = 4⇡fc = 1, the origin of
which requires a more careful analysis.

In general, we have ↵1 = �↵2 and ↵3 = �↵4. At finite ✓, all ↵1,2,3,4 are
complex and satisfy the coupled equations

↵1 = �Ke�i
✓
2⌫e↵3 +Ke�i

✓
2⌫e�↵3

↵3 = �Ke+i
✓
2⌫e↵1 +Ke+i

✓
2⌫e�↵1 (135)

At small ✓, these equations can be analyzed numerically by analytically con-
tinuing ✓ ! �i✓, so that

↵1 = �Ke�
✓
2

✓
1

2
+ b

◆
e↵3 +Ke�

✓
2

✓
1

2
� b

◆
e�↵3

↵3 = �Ke+
✓
2

✓
1

2
+ b

◆
e↵1 +Ke+

✓
2

✓
1

2
� b

◆
e�↵1

(136)

with ↵1,2,3,4 now all real. If we define

f(b,K, ✓, x) = �Ke�
✓
2

✓
1

2
+ b

◆
ex +Ke�

✓
2

✓
1

2
� b

◆
e�x

(137)
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Figure 12: x(b) as a function of b for K = 1, ✓ = 0.1 (upper) and K = 1.01,
✓ = 0.1 (lower).

Then ↵3 = x satisfies the transcendental equation

f(b,K,�✓, f(b,K, ✓, x))� x = 0 (138)

A numerical analysis of (138) reveals a solution with a 3-branch structure
in the parameter space. In the region b ⌧ 1 around the center symmetric
state, it turns out that for K su�ciently close to 1 but less than 1 there exists
a critical bc(K, ✓). For b < bc(K, ✓), the expansion leading to (385) is valid.
However for b > bc(K, ✓), the branch which leads to (385) no longer exists,
and the solution to (138) jumps to a third branch! For K � 1 and small b
only the third branch exists and will lead to the expansion (385) for K > 1.
For K = 1, the solution is more tricky. In Fig. 12 we show the solution x(b)
at ✓ = 0.1 and K = 1. In terms of the pressure, it is interesting to see if a
”window” appears for K = 1. For imaginary ✓, we can see a ”window” for
(1/ cosh(✓/2)) < K < 1 numerically. Indeed, for ✓ = 0.01 and K = 0.99999
we show in Fig. 13 the pressure lnZ

V3
versus b, with no maximum at b = 0. In

contrast, for K outside the window, we always have b = 0 as the maximum,
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Figure 13: Pressure lnZ

V3
versus b for ✓ = 0.01 and K = 0.99999.
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which corresponds to the center symmetric phase. The window disappears
for ✓ = 0. Its occurence at finite ✓ signals the incompleteness of the tree
re-summation for K in the range (1/ cos(✓/2)) < K < 1 after analytical
continuation.

3.5 Hypernetted chains (HNC)

The static properties of a strongly coupled fluid are usually expressed in terms
few-body reduced distribution functions of which the two-body distribution
g(~r1,~r2) or radial distribution g(r12) is the standard example. The radial
distribution function describes how the fluid density varies as a function of
distance from a reference particle, providing a link between the microscopic
content of the fluid and its macroscopic structure. g(r12) can be obtained
either from simulations using molecular dynamics (see below) or by solving
the Ornstein-Zernicke (OZ) equation [47] subject to an additional closure
relation. In this section we discuss such a closure in the form of the well-
known hypernetted chain re-summation adapted to our dense dyon liquid.
For that, we will provide a diagrammatic derivation based on our e↵ective
field theory (168).

3.5.1 Diagrammatic derivation

In the dense instanton-dyon liquid, the radial distribution following from the
many-body analysis of (168) is a 4 ⇥ 4 matrix with instanton-dyon entries
gij(r12). It is related to the irreducible density 2-point correlation function
through

hij(r) = gij(r)� 1 ⌘ e��Vij(r)+�
ij(r)

� 1 (139)

where the use of the barometric form in (139) defines �ij(r), and the 4 ⇥ 4
matrix V is given in (360). �ij obeys a set of formal matrix equations

�ij = �ij

a
+ �ij

b

�ij

a
= cil ⇢l clj + cil ⇢l clm ⇢m cmj + ....

cij = hij
� �ij

a
(140)

where ⇢ij = ⇢i�ij is a diagonal matrix with species density ⇢i. We now provide
a diagrammatic derivation of (140) using the e↵ective formulation (168).
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The total pair correlation function hij follows from summing all irre-
ducible graphs with two external vertices fixed between ~0 and ~r. Between
these two vertices we can hang an arbitrary number of independent 2-point
functions as illustrated in Fig. 14a. The minimal insertion that cannot be de-
composed into such a hanging structure is denoted by ��V +� with � = 1

T
.

The diagrams contributing to � can be separated in type-a and type-b. Type-
a have at least one cutting point, i.e. a vertex that one can cut to split the
diagram into two disconnected pieces as illustrated in Fig. 14b, while type-b
have none as illustrated in Fig. 14c. For type-a, we can further count by
enumerating the number of cutting points and define a summation over all
possible 2-point diagrams that can be put between two nearest cutting points
as c(r), which defines the direct correlation function. It is readily seen that
c = h� �a. With these definitions in mind, simple diagrammatic arguments
yield (140). The hypernetted chain approximation (HNC) amounts to setting
�b = 0. In this case, (140) can be cast in the more standard form

hij = cij + cik⇢k ? hkj

cij = ��V ij + hij
� ln(1 + hij) (141)

where ? means convolution in x-space. The first of these equations is known
as the Ornstein-Zernicke (OZ) equation, while the second equation as the
HNC closure condition. The interaction energy per 3-volume and therefore
the pressure can be re-constructed using the pair correlation function, for
instance

E

V3
=

✓
2N

V3

◆
1

2

X

i,j

Z
d3r �V ij(r)hij(r) (142)

3.5.2 Linear and non-linear DH approximations

The linear Debye-Huckel (DH) approximation follows by performing one it-
eration in the OZ equation with the initial condition h = 0 or c ⇡ ��V , to
obtain formally in p-space

hDH =
��V

1 + �⇢V
(143)
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For the instanton-dyon ensemble we have ⇢ = ⇢1 = ⇢2 = M2T/8 and V1 =

�V2 = �V (p) = �
8⇡p2

(p2+M2)2 in V , so that

hDH =
�V

1� (2�⇢V )2

✓
2�⇢V 1
1 2�⇢V

◆
⌦ (1� �1)

(144)

Here �1 is a Pauli matrix. (144) defines two independent pair correlation
functions in p-space

hMM = hLL = �hML =
2⇢ (8⇡�)2p4

(p2 +M2)4 � (16⇡�⇢)2p4

hMM̄ = hLL̄ = �hML̄ =
(8⇡�) p2(p2 +M2)2

(p2 +M2)4 � (16⇡�⇢)2p4

(145)

For ⇢ = M2T/8 the denominator

(p2 +M2)4 � 4⇡2p4M4 (146)

is negative for p > Mp
2⇡�1

⇡
M

2 . The spatial cuto↵ a = 1
T

used earlier,
translates to a p-cuto↵ of T . Since M ⇡ 2T , the negative range is physically
not relevant. These observations are similar to the ones encountered in the
DH analysis of the electric and magnetic correlation functions in [43] (first
reference).

The HNC equations (141) allow to go beyond the DH approximation in
the dense ensemble, but requires a numerical calculation. Here, we only
mention that a simple non-linear correction to the DH result follows from
(141) by retaining the leading correction to the direct correlation function,
namely cij ⇡ ��V ij + 1

2(h
ij)2, and use it to iterate the OZ equation after the

substitution h ! hDH . The net e↵ect is a non-linear correction to the DH
result (143) in p-space

hDH2 =
��V + 1

2h
2
DH

1 + ⇢(�V �
1
2h

2
DH

)
(147)
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Figure 14: (a) Typical diagrammatic contribution to the pair correlation
function h(r) where each hanging ring is ��V + �; (b) Typical contribution
to �a; (c) Typical contribution to �b.
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3.5.3 Instanton-dyon crystal

At even higher fugacity or density, the instanton- and anti-instanton dyons
are expected to crystalize. A typical bcc cubic crystal arrangement with low
energy is illustrated in Fig. 16. Recall that the re-summed MM̄ interactions
and LL̄ interactions are repulsive, while the LM and L̄M interactions are
attractive. In the bcc crystal structure, we note that the nearest neighbor
LM vertices are close to an instanton configuration, while their alternate
nearest neighbors L̄M vertices are close to a magnetically charge 2 bion. We
will refer to this as crystal duality. We note that holographic dyonic-crystals
composed only of L,M in salt-like or popcorn-like crystal configurations were
suggested in [49] for a holographic description of dense matter.

The instanton- and anti-instanton-dyons considered throughout are the
lightest of a Kaluza-Klein tower with higher winding numbers which carry
larger actions (more massive). We expect them to crystallize following a
similar pattern, albeit with higher windings. We expect this tower of 3-
dimensional crystal arrangements along the extra winding direction to be
dual to a 4-dimensional crystal arrangement of monopoles and anti-monopoles
(or instantons and anti-instantons by crystal duality), using the Poisson dual-
ity suggested in [44]. Remarkably, the resulting 4-dimensional and semiclassi-
cal description at very low temperature, can be either described as instanton-
like (topologically charged) or monopole-like (magnetically charged) as the
two descriptions are tied by crystal duality.

The crystal is an idealized description of the strongly coupled and dense
phase as both the low temperature and the quantum fluctuations cause it to
melt. The melted form of Fig. 16 resembles an ionic liquid with 4 species
of ions with strong local order. This semi-classical description of the Yang-
Mills state at very low temperature appears to reconcile the instanton liquid
model without confinement, with the t0Hooft-Mandelstam proposal with con-
finement. In the former, the low temperature thermal state is composed of a
liquid of instanton and anti-instantons, while in the latter it is a superfluid
of monopoles and anti-monopoles with bions as precursors [44]. The dual
descriptions allow for a center symmetric thermal state with both strong and
local topological and magnetic correlations.
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Figure 15: Crystal energy for the bcc arrangement EL/M versus Ma as given
in (153) with ↵s = 1.

3.5.4 Crystal energy

To assess the crystal contribution to the pressure at high density, we first
evaluate the interaction energy for the crystal structure in Fig. 16. Consider
the L instanton-dyon sitting in the center of the M cell. The interaction
summation within the L-lattice reads

2EL =
X

n1,n2,n3 6=0

(1� (�1)n1+n2+n3)V (~rn1,n2,n3) (148)

The mutual interaction between the L- and M-lattice is

�2EML =
X

n1,n2,n3

(1� (�1)n1+n2+n3)

⇥V

✓
1

2
~r111 + ~rn1,n2,n3

◆
(149)

In momentum space, these sums can be cast using the dual lattice ~bn = 2⇡
a
~n,

using the identity

X

an

eip·an =
X

n

�(p� bn) (150)
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The results are

2EL =
X

n

⇣
V (bn)� V

⇣
bn +

⇡

a
(1, 1, 1)

⌘⌘

�2EML =
X

n

(�1)n
⇣
V (bn)� V

⇣
bn +

⇡

a
(1, 1, 1)

⌘⌘

(151)

where we made use of

eibn·
r111
2 = (�1)n1+n2+n3 = (�1)n (152)

Both the x-space sums (148-149) and the p-space sums (151) can only be
carried numerically. However, we note that the x-sum is converging expo-
nentially and can be approximated by the leading contribution involving only
the nearest neighbors,

EL ⌘ MEL(ã) ⇡ M

 
6V (ã)� 4V

 p
3ã

2

!!
(153)

with V (x) = 1
↵s
(� 2

x
+ 1)e�x from (232) with CD = 2. Here we have set

ã = Ma, with M2 = 2n
T

and n = 8⇡f . Note that the total energy of the
crystal is extensive

E(N,M) ⇡ 2NMEL

 
ã ⌘ Ma =

✓
M3V3

2N

◆ 1
3

!
(154)

In Fig. 15 we show the behavior of (153) for ↵s = 1. The bcc configuration is
bound for ã = Ma ⇡ 5, but the binding energy is very small EL/M ⇡ �0.004.

3.5.5 Disordered crystal pressure

The pressure for a disordered crystal follows from the corresponding partition
function
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Figure 16: 3-dimensional bcc crystal composed of the instanton- and
antinstanton-dyons with the lowest winding, for 2 colors.
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⌦bcc(ã) =
X

N

(V32⇡f̃)4N

(N !)4
e�

2NM
T EL(ã) (155)

where we used the quantum and dressed fugacity 2⇡f̃ = 2⇡f
p
4⌫⌫̄ from

(122). In the large N-limit, the pressure P = ln⌦bcc/V3 can be cast in the
form

P(ã)

T 3
⇡ �

m4

ã3
EL(ã) +

2m3

ã3

✓
1 + ln

✓
ã3
p
⌫⌫̄

2m

◆◆
(156)

with m = M/T (the ratio of the screening mass to the temperature). The
first contribution in (156) is the crystal energy, and the second contribution
is the entropy of the competing trees at large density as discussed in IVA.
For large m (very low temperature) the pressure is dominated by the crystal
contribution, while for small m (intermediate temperature) the pressure is
dominated by the entropy of the trees. In Fig. 17 we show the behavior of
the pressure P(ã) versus ã for m = 20 for the center symmetric case with
⌫ = 1

2 upper-solid-curve, while the crystal contribution is shown as the lower-
solid-curve, and the tree contribution as the dashed-curve. The pressure is
maximum at

Pmax

T 3
=

m2

2

p
4⌫⌫̄e�

m
2 (EL(ã?)�ã

3
?E

0
L(ã?))

⇥

✓
1�

mã3
?

2
E 0

L
(ã?

◆
(157)

with ã? solution to the transcendental equation

ã3
?

p
⌫⌫̄

2m
= e

m
2 (EL(ã?)�ã

3
?E

0
L(ã?)) (158)

If we were to assume EL fixed at the crystal minimum and constant as in
Fig. 15, i.e ELmin ⇡ �0.004, then (157) simplifies

Pmax

T 3
!

m2

2

p
4⌫⌫̄ e�

m
2 ELmin (159)
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Figure 17: Pressure (156) versus ã for m = 20 and ⌫ = 1
2 upper-solid-curve.

The separate contributions from the crystal (first term in (156)) is shown as
the lower-solid-curve, and the entropy of the re-summed trees (second term
in (156)) is shown as the dashed-curve.

which is seen to interpolate between the re-summed tree contribution (131)
at small m (intermediate temperature) and the crystal at large m (very low
temperature). Due to the small binding energy of the crystal shown in Fig 15,
the crystal contribution takes over only when m

2 is large or very high density
(very low temperature). This is confirmed numerically. Note that in both
(156) and (159) the ratio m

2 plays the role of the Coulomb factor. It is rather
large with m

2 = 500 for the onset of the crystal.

3.6 Conclusions

We have provided a many-body analysis of the instanton-dyon liquid model
in the center symmetric phase. The starting point of the analysis was a
linearization of the moduli interactions beween like instanton-dyons DD
and anti-instanton-dyons (D̄D̄), followed by a cluster expansion. This re-
organization of the many-body physics was shown to be captured exactly by
a 3-dimensional e↵ective theory between charged particles. A semi-classical
treatment of this e↵ective theory amounts to re-summing the tree contribu-
tions in the form of e↵ective fugacities, while the 1-loop correction amounts
to re-summing all ring or chain diagrams with e↵ective fugacities. The tree
or chain contributions are found to yield a center symmetric phase even at
finite vacuum angle. They are dominant in the range 1 

m

2  10.
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At very low temperature or large fugacities, an even larger class of di-
agrams need to be re-summed. In this vein we have carried the HNC re-
summation as is commonly used for dense and charged liquids, and used it
to estimate the pair correlation function around the DH approximation in the
dense instanton-dyon liquid. The very low temperature phase is argued to be
a melted bcc crystal with strong local topological and magnetic correlations.
A simple description of the thermodynamics of an ensemble composed of
trees and bcc crystals show that the tree-like contributions are dominant for
most temperatures, with the exception of the very low temperature regime
where the crystal arrangement is more favorable owing to its very small bind-
ing. To better understand the range of validity of the present diagrammatic
results, it will be important to carry a full molecular dynamics calculation
for comparison. This point will be addressed in the future.
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Part II: Chiral vortical and magnetic e↵ects
in QCD-like theories.

4 Rotating Fermionic system in 1+2 dimen-
sion

This section is an edited version of my publication :
Rotating Dirac fermions in a magnetic field in 1+2,3 dimensions
Yizhuang Liu, Ismail Zahed (SUNY, Stony Brook).Oct 8, 2017. 16 pp.
arXiv:1710.02895, submitted to Phys. Rev. D.

4.1 Introduction

This section consists of a number of new results: 1/ a full analysis of the
combined e↵ects of a rotation and magnetic field on free and interacting
Dirac fermions in 1+2 dimensions, both at weak and strong coupling; 2/ a
correspondence with anomalies in arbitrary dimensions; 3/ a deformation of
the current densities by centrifugation in the presence of a magnetic field;
4/ a depletion of the QCD chiral condensate in leading order in the pion
interaction; 5/ a charge pion condensation induced by centrifugation in a
magnetic field.

The outline of this section is as follows: In subsection II we detail the
Landau level problem for free Dirac fermions in 1+2 dimensions in the pres-
ence of an arbitrary rotation described using a local metric. In subsection
III we explore the e↵ects of the interaction on the free results through a
4-Fermi interaction both in the weak and strong coupling regime. In sub-
section IV and V we extend our chief observations to 1+3 dimensions to the
free and interacting fermionic cases with particular interest to the shift in
the chiral condensate in QCD. In subsection VI, we discuss the possibility for
the formation of a pion BEC phase in o↵-central heavy ion collisions. Our
conclusions are in subsection VII. We record in the Appendices useful details
regarding some of the calculations.
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4.2 Dirac fermions in 1+2

In this subsection we will outline how to implement a global rotation through
a pertinent metric. We will then use it to derive explicit results for massless
Dirac fermions with a global U(2) symmetry in the presence of a parallel
magnetic field in 1+2 dimensions. The basic mechanism of the shift caused
by the rotation on the LLL will be clearly elucidated, and both the scalar
and vector densities evaluated.

4.2.1 Metric for a rotating frame

To address the e↵ects of a finite rotation ⌦ in 1+2 dimensions we define the
rotating metric

ds2 = (1� ⌦2⇢2)dt2 + 2y⌦dxdt� 2x⌦dydt (160)

The frame fields or veilbeins are defined as gµ⌫ = eµ
a
e⌫
a
⌘ab with signature

p
�g = 1, in terms of which the co-moving frame is ✓a = ea

µ
dxµ and ea = eµ

a
@µ

are explicitly given by

(✓0, ✓1, ✓2) = (dt, dx� y⌦dt, dy + x⌦dt)

(e0, e1, e2) = (@t + y⌦@x � x⌦@y, @1, @2) (161)

with the spin connections

!1
0 = !0

1 = +⌦(dy � ⌦xdt)

!2
0 = !0

2 = �⌦(dx+ ⌦ydt) (162)

In a fixed area of size S = ⇡R2, the time-like nature of the metric (353) and
therefore causality are maintained for ⌦R  1. The importance of a finite
size for rotating fermions was emphasized in [56]. This will be understood
throughout.

4.2.2 Rotation plus magnetic field

The Lagrangian that describes free rotating Dirac fermions in a fixed mag-
netic field in 1 + 2 dimensions, reads
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L =  ̄(i�µ(Dµ + �µ)�M) 

=  ̄(i�0(@t � ⌦(x@y � y@x + iSz)) + i�iDi �M) 

(163)

with the long derivative D = @ � ieA, and the following choice of gamma
matrices, �a as �0 = diag(�3,��3),�1 = diag(i�1,�i�1),�2 = diag(i�2,�i�2),
to accomodate for both particles and anti-particles.

A thorough analysis of (354) for an external vector potential in a rota-
tionally non-symmetric gauge was given in [62]. Here we insist on preserving
rotational symmetry by choosing Aµ = (0, By/2,�Bx/2, 0). As a result,
the LL spectrum is characterized explicitly by both energy and angular mo-
mentum conservation which are described in terms of the anti-commutative
harmonic oscillator a, b operators

a =
i

p
2eB

(Dx + iDy) = �
i

p
2eB

✓
2@̄ +

eBz

2

◆

b =
1

p
2eB

✓
2@ +

eBz̄

2

◆
(164)

Throughout, we will assume eB > 0 unless specified otherwise. The rotating
Landau levels are labelled by m,n as

E± + ⌦(m� n+
1

2
) = ±

p
M2 + 2eBn = ±Ẽ (165)

for particles and anti-particles. The corresponding normalized scalar wave
functions for the n-th Landau level with good angular momentum lz = xpy�
ypz = b†b� a†a with eigenvalue m� n, are

fnm =
(a†)n(b†)m
p
n!m!

f00 (166)

with the lowest Landau level (LLL) f00 / e�
1
4 eB(x2+y

2). Note that for n=0,
we have only one positive energy state with spin up, and one negative energy
state with spin down, each with degeneracy N = eBS/2⇡. For ⌦ = 0 and
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n > 0 all Landau level (LL) have degeneracy 2N = eBS/⇡. The degeneracy
is lifted by centrifugation for ⌦ 6= 0.

In terms of (358) the quantized Dirac fields follow in the form

 (t, ~x) =
X

nmi

(ui

nm
(~x)e�iE

+
t ai

nm
+ vi

nm
(~x)e�iE

�
t bi†

nm
)

(167)

where ai
nm

annihilates a particle with positive energy E+ and spin i = ±
1
2 ,

and bi†
nm

creates a hole with negative energy E� and spin i = ⌥
1
2 . Their

corresponding wavefunctions are

u0m = (f0m, 0, 0, 0)

v0m = (0, 0, f0m, 0)

u+
nm

=

s
Ẽ +M

2Ẽ

 
fnm,

i
p
2eB

Ẽ +M
fn�1,m, 0, 0

!

u�
nm

=

s
Ẽ �M

2Ẽ

 
0, 0, fnm,�

i
p
2eB

Ẽ �M
fn�1,m

!

v+
nm

=

s
Ẽ �M

2Ẽ

 
fnm,�

i
p
2eB

Ẽ �M
fn�1,m, 0, 0

!

v�
nm

=

s
Ẽ +M

2Ẽ

 
0, 0, fnm,

i
p
2eB

Ẽ +M
fn�1,m

!
(168)

4.2.3 Scalar density

For M = 0, (354) exhibits a U(2) symmetry as the set (1, �5,�i�3, �1+2 =
�i�0�1�2) leaves (354) unchanged. This symmetry rotates particles to anti-
particles. The mass upsets this symmetry, and is only U(1)⇥U(1) symmetric
under the action of (1, �1+2). In [62] it was noted, that for ⌦ = 0, (354)
breaks spontaneously U(2) ! U(1)⇥ U(1) with a finite condensate

⌦
 ̄ 
↵
=

�N/S without fermionic interactions. This is readily understood from the
illustration in Fig. 18a, where only the LLL for particle states with spin up
and mass +M , and antiparticle states with spin down and mass �M are
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Figure 18: The particle (+M) and anti-particle (�M) LLL for ⌦ = 0 are
shown in (a) each with degeneracy N . For ⌦ 6= 0 the degeneracy is lifted.
In (b) we illustrate how the centrifugation lifts the degeneracy on the states
with angular momentum N by shifting them down by ±M �⌦(N + 1

2). The
rotating vacuum now includes the particle LLL which needs to be filled.

shown. Each level is N degenerate. The vacuum state consists of filling the
anti-particle states only. Clearly, for finite M the U(2) symmetry is explicitly
broken. However, as M ! 0 the explicit breaking is removed, but the anti-
particle states remain still occupied eventhough they have the same zero
energy as the particle states. The state breaks spontaneously the balance
between particles and anti-particles or U(2) ! U(1) ⇥ U(1). We now show
that this free scalar condensate disappears for any finite rotation ⌦.

For a heuristic arguments for the role of a finite rotation ⌦ along the
magnetic field, we show in Fig. 18b its e↵ect on the LLL with maximum
orbital angular momentum N . Both the particle and anti-particle states
are shifted down and below the zero energy mark even for M = 0. This
means that in the rotating vacuum, the particle LLL needs to be filled. Since
typically the unordered scalar condensate operator is  ̄ ⇠ (a†a+b†b�1)ūu,
it follows for Fig. 18b that  ̄ ⇠ (1 + 0� 1)ūu = 0.

Formally, the scalar condensate carried by the rotating LLL can be ex-
plicitly constructed using the fermionic field operator (167). At finite tem-
perature 1/� and ⌦, it is readily found in the form
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⌦
 ̄ 
↵
(r) =

eB

2⇡

X e�
eBr2

2

m!

✓
eBr2

2

◆m

⇥(nF (��⌦(m+ 1/2)) + nF (�⌦(m+ 1/2))� 1) = 0

(169)

which is identically zero even for zero temperature � = 1. So any finite
rotation, however infinitesimal will cause the scalar density to vanish for free
rotating fermions at finite B in 1 + 2 dimensions.

4.2.4 Vector density

The local density of Dirac fermions in the rotating frame in 1+2 dimensions
is readily found using (167) in the current density

⌦
j0(x)

↵
=
⌦
:  ̄�0 :

↵
=
X

n=0

j0
n
(x) (170)

The normal ordering is carried with respect to the true vacuum at finite ⌦.
Each LL in (360) including the LLL contribute through a tower of rotational
states�n < m < N�n for both particles and anti-particles. This finite range
in the angular momentum is further detailed in Appendix I. Specifically, and
for finite temperature 1/�, the contributions of the LL and the LLL are
respectively

j0
n>0(x) =

X

m

|fnm|
2 + |fn�1,m|

2

⇥(nF (E
+
nm

)� nF (E
�
nm

))

j0
n=0(x) =

eB

2⇡

X

m

e�
eBr2

2

m!

✓
eBr2

2

◆m

⇥
sinh(�⌦(m+ 1

2)/2)

cosh(�⌦(m+ 1
2)/2)

(171)

with the definition
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E±
nm

= En ⌥

✓
m� n+

1

2

◆
⌦

=
p

eBn⌥

✓
m� n+

1

2

◆
⌦ (172)

We first note that the particle density is inhomogeneous in the plane and
peaks at the edge of the disc S = ⇡R2 under the e↵ects of centrifugation. For
small �⌦ ⌧ 1, i.e. small rotations or high temperature, the inhomogeneous
particle density carried by the LLL is

j00 |⌦(r) = �⌦
eB

4⇡

X

m

e�
eBr2

2

m!

✓
eBr2

2

◆m✓
m+

1

2

◆

=
�⌦eB

4⇡

1 + eBr2

2
(173)

Under the combined e↵ect of the rotation and the magnetic field the particle
density undergoes a centrifuge e↵ect with a maximum at the edge of the
rotational plane. This e↵ect will persist even in the presence of interactions
as we will discuss below (see Fig. 23).

The total number of particles follow from (360-361) by integration over
S = ⇡R2. The results for the LL and LLL are respectively

nn = 2
X

m

(nF (E
+
nm

)� nF (E
�
nm

))

n0 =
X

m

sinh(�⌦(m+ 1
2)/2)

cosh(�⌦(m+ 1
2)/2)

(174)

For small �⌦, which is similar to small ⌦ or large temperature, the results
in (174) simplify

nn|⌦ = 4�⌦
X

m

✓
m� n+

1

2

◆
e�En

(1 + e�En)2

= 4�⌦

✓
N2 + 2N

2
� n

◆
e�En

(1 + e�En)2

n0|⌦ =
1

2
�⌦
X

m

✓
m+

1

2

◆
=
�⌦(N2 + 2N)

4
(175)
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We note that in 1+2 dimensions, the LLL generates a net density at �⌦ ⌧ 1.
For strictly zero temperature (174) gives the exact result

n0|�=1 = sgn(⌦)N (176)

which can be understood from Fig. 18b for M ! 0. Since the normal ordered
density operator :  † :⇠ (a†a � b†b)u†u ⇠ (1 � 0)u†u which precisely gives
N . Note that for a rotation opposite to the magnetic field, the LLL shift
up and above the zero energy mark. Therefore, we have instead :  † :⇠
(a†a�b†b)u†u ⇠ (0�1)u†u which precisely gives �N , as expected from (176).

These observations are not restricted to only finite temperature. In-
deed, at zero temperature but finite chemical potential, the rotation induces
changes in the population of the LLL. This can seen through the substitu-
tion [56, 59]

�⌦

✓
m+

1

2

◆
! �

✓
µ+ ⌦

✓
m+

1

2

◆◆
(177)

in (174), with the result

n0(µ) = N, µ � �
⌦

2

n0(µ) ⇡ N + 1 +
2µ

⌦
, �

✓
N +

1

2

◆
⌦  µ  �

⌦

2

n0(µ) = �N, µ  �

✓
N +

1

2

◆
(178)

4.3 Interacting fermions in 1 + 2

Consider now fermions in 1 + 2 dimensions interacting via 4-Fermi interac-
tions, as a way to model QCD1+2 in strong and rotating magnetic fields. The
advantage of this reduction is that it will allow for closed form results with
physical lessons for QCD1+3 dimensions, which even when modeled with 4-
Fermi interactions is only tractable numerically. Following [63, 62], we now
consider Nc copies of the preceding Dirac fermions, interacting via local 4-
Fermi U(2) symmetric interactions
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Lint =
G

2
(| ̄ |2 + | ̄i�5 |2 + | ̄�3 |2) (179)

Standard bosonization gives

Lint ! � ̄(� + �3⌧ + i�5⇡) �
1

2G
(�2 + ⇡2 + ⌧ 2)

(180)

with the scalar fields

�
1

G
(�, ⌧, ⇡) =

�
 ̄ ,  ̄�3 , i ̄�5 

�
(181)

For large Nc, (381) can be analyzed in the leading 1/Nc approximation using
the loop expansion for the e↵ective action. Explicit U(2) symmetry makes
the e↵ective ation only a function of �2 + ⌧ 2 + ⇡2, so it is su�cient to search
for saddle points with ⌧ = ⇡ = 0, as others follow by symmetry.

The e↵ective potential stemming from (381) can be organized in three
parts

V = V0 + VT =
�2

2G
+ V⇤ + VT (182)

The zero temperature (vacuum) contribution from the fermion loop is

V⇤ = �
Nc

4⇡
3
2

Z 1

1
⇤2

ds

s
3
2

e�s�
2
eB coth(eBs) (183)

which is cut o↵ in the UV by 1/⇤2, while the thermal contribution is

VT = �
NcT

S

X

j=1,�1

NX

n=0

N�nX

l=�n

ln(1 + e��(En�j⌦(l+ 1
2 )))

(184)

with En =
p
�2 + 2eBn and N/S = eB/2⇡. A complementary but numeri-

cally useful approximation to (184) is given in Appendix II using the proper
time formalism.
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4.3.1 Weak coupling regime

At zero temperature and in the absence of B,⌦, the e↵ective potential (383)
for the interacting Dirac fermions in 1 + 2 dimensions simplifies

V !
�2

2G
�

Nc

4⇡
3
2

Z 1

1
⇤2

ds

s
5
2

e�s�
2

(185)

If we set g = G⇤
⇡
, then (185) exhibits a minimum at � = ⇤/gr with 1/gr =

1/g� 1/gc, only for su�ciently strong coupling g > gc =
p
⇡. The minimum

breaks spontaneously U(2) ! U(1) ⇥ U(1) with a finite
⌦
 ̄ 
↵
= �Nc�/G.

The putative chargeless Goldstone mode signals a BKT phase at any finite
Nc.

At zero temperature and zero rotation ⌦ = 0 but with B 6= 0, the e↵ective
potential (383) can be made more explicit by rescaling and expanding in 1/⇤.
For small � and large ⇤ the dominant contributions are

V⇤ = +
Nc⇤3

4⇡
3
2

Z 1

1
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3
2
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✓
1

⇤

◆
(186)

The first contribution is independent of �, so we will ignore it. Therefore,
the vacuum contribution to the e↵ective potential combines the first term in
(383) and the second and third contributions in (186)

V0

Nc

⇡
⇤�2

2⇡gr
�

eB

2⇡
� +

�3

3⇡
(187)

In the weak coupling regime

0 

✓
1

gr
⌘

1

g
�

1
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◆�1


⇤

eB
(188)
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Figure 19: E↵ective potential V as a function of � in units of
p
eB at T =

0: ⌦ = 0.0001
p
eB (top); ⌦ = 0.00049

p
eB (middle); ⌦ = 0.0005

p
eB

(bottom).

we can ignore the cubic contribution in (187). A minimum of (187) always
exists for arbitrarily weak coupling, with a mass gap � = ⇡grN/S⇤ and a
finite chiral condensate

⌦
 ̄ 
↵
= �NcN/S(1�g/gc) ⇡ �NcN/S. The latter is

in agreement with the result for free Dirac fermions. This is the phenomenon
of magnetic catalysis [62].

4.3.2 Vacuum with ⌦ 6= 0

At zero temperature, the e↵ective potential for rotating Dirac particles in a
strong magnetic field is given by the first two contributions in (383) plus the
contribution from the rotating anti-particles in the LL,

V
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= +
⇤�2

2⇡gr
�
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◆
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◆

(189)
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Figure 20: E↵ective mass as a function of
p
eB and ⌦ in units of ⇤. The mass

gap disappears for ⌦ � ⌦c as given by (194) through a first order transition.

For small rotation the summation can be approximated by a continuous
integration with the result

V

Nc

⇡
⇤�2

2⇡gr
�

eB

2⇡
� �

1

2⌦S
✓(E⌦ � �)(E⌦ � �)2 (190)

with E⌦ = (N + 1
2)⌦. For � > E⌦, the e↵ective potential is independent of

⌦, and develops a minimum for

�2 = +
⇡gr
⇤

eB

2⇡
V2

Nc

= �
⇡gr
2⇤

✓
eB

2⇡

◆2

(191)

In contrast, for � < E⌦, (190) depends on ⌦ through

V
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⇡

✓
⇤
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�

eB

4⇡N⌦

◆
�2 +
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(192)

and prefers always
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�1 = 0
V1
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= �
E⌦

2

eB

2⇡
(193)

For E⌦ < ⇡gr

⇤
eB

2⇡ the 2-minimum (193) is dominant. The rotating vacuum
develops a scalar condensate

⌦
 ̄ 
↵
6= 0 with finite �2 but zero fermion density⌦

 ̄�0 
↵
= 0. In the opposite, with E⌦ > ⇡gr

⇤
eB

2⇡ , the 1-minimum (193) takes
over. The rotating vacuum prefers a gapless solution with �1 = 0 and zero
scalar condensate

⌦
 ̄ 
↵
= 0, but a finite fermion density

⌦
 ̄�0 

↵
6= 0. In

large N , the critical value for which this occurs is

⌦c =
gr

2N + 1

eB

⇤
(194)

This is the phenomenon of rotational inhibition of the magnetic catalysis
noted in 1 + 3 dimensions in [56]. At finite but large N and without the use
of the continuum approximation and keeping the �3 term, the results remain
quantitatively almost the same, with one exception that the local minimum
�1 = 0 can overtake the finite local minimum �2 slightlly before the ⌦c. For
⇤ = 10

p
eB and N = 100, (194) yields ⌦c=0.000497

p
eB. We note that

in the free case with ⇤ ! 1, (194) yields ⌦c ! 0 in agreement with the
observation in (380). Any finite rotation destroys the free scalar condensate.

In Fig. 19 we show the behavior of the e↵ective potential for finite but
small ⌦ with the two local minima (191) and (193). We have used ⇤/

p
eB =

10, N = 100 and gr = 1. A transition sets in numerically ⌦c = 0.000488
p
eB

in agreement with (194). In Fig. 20 we display the e↵ective mass as as
function of

p
eB and ⌦ in units of ⇤, for gr = 1 (weak coupling regime) and

T = 0. While the mass gap is seen to increase slightly faster than linearly
with

p
eB at ⌦ = 0, the e↵ects of the rotation is to cause it to disappear at

the critical value (194) through a first order transition at weak coupling.

4.3.3 Thermal state with ⌦ 6= 0

First we note that the existence of a mass gap for any finite temperature
does not contradict the Mermin-Wagner-Coleman (MWC) theorem, since
the thermal state is in a BKT phase rather than a spontaneously broken or
Goldstone phase. Having said that, at finite temperature and weak coupling,
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Figure 21: Finite temperature e↵ective potential V as a function of � in
units of

p
eB: � = 100/

p
eB and ⌦ = 0.0003

p
eB (top); � = 43/

p
eB and

⌦ = 0.0001
p
eB (bottom).

we note that since �2 ⌧
p
eB, the temperatures of interest for the vanishing

of the mass gap, are in the low range with T ⌧
p
eB. Therefore, only the

j = ±1 LLL contribute in (184). For T ⇡ Tc ⇡ �2, the potential flattens out
and the centrifugation near � = 0 becomes visible leading to a small value
for the critical ⌦c.

In Fig. 21 we show the behaviour of the e↵ective potential for ⇤/
p
eB =

10, N = 100 and gr = 1 (weak coupling) for � = 80/
p
eB and � = 43/

p
eB.

For � � 80/
p
eB the transition occurs at ⌦c ⇡ 0.0005

p
eB, and for � =

43/
p
eB, the transition is around ⌦c = 0.0001

p
eB. The critical temperature

is numerically in the range �c ⇡ (40�43)/
p
eB. The behavior of the e↵ective

mass is shown in in Fig. 22 for the same value of gr = (weak coupling) and
⇤ = 10

p
eB, as a function of � and ⌦ for the ranges 50 < � < 80 and

0.0003  ⌦  0.0006 in units of
p
eB.

In Fig. 23 we show the analogue of the profile density (173) in units of
p
eB, in the weak coupling regime with gr = 1 and for 1/� ⌧ ⌦ as a function

of x = eBr2/2. The first figure from the top is for ⌦ = 0.00005
p
eB for

1/� = 0. It is roughly constant and drops sharply at the edge of the causality
disc fixed by ⌦R = 1. However, for ⌦ ⌧ 1/� ⌧

p
eB a linear behavior sets

in the middle of the disc, to drop only sharply at the edge. The second
and third figures from the top are for � = 100/

p
eB and ⌦ = 0.0001

p
eB

and ⌦ = 0.0005
p
eB respectively. The fourth figure is for � = 40/

p
eB

at ⌦ = 0.0001
p
eB. As we indicated in section IID for the free case, this

centrifugation e↵ect holds for the interacting case as well and carries to higher
dimensions as we show below. We will suggest a possible physical application
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Figure 22: E↵ective mass as a function of � and ⌦ in units of
p
eB at T 6= 0.

in 1+3 dimensions. Finally, the occurence of surface or edge modes was noted
recently in [60]. We show in Appendix IX that they do not alter our current
discussion for large N .

4.3.4 Dense state with ⌦ 6= 0

For completeness, we now explore the e↵ects of a finite chemical potential
µ on the mass gap for  ̄ pairing. Just as a caution, we note that a more
complete treatment would require the inclusion of the competing   channel
as well. However, we note that in leading order in 1/Nc the   channel
is 1/Nc suppressed in comparison to the  ̄ channel and can be ignored.
With this in mind, the e↵ect of a finite chemical potential follows from (385)
through the substitution ⌦(l + 1

2) ! µ + ⌦(l + 1
2), which we now briefly

address.
In Fig. 24 we show the behavior of the e↵ective potential V for � =

80/
p
eB and µ = 0.007/

p
eB as a function of � in units of

p
eB. The top

figure is for ⌦ = 0 and the bottom figure is for ⌦ = 0.0003
p
eB. The increase

in the rotation causes the loss of the gapped solution. In particular, for gr = 1
(weak coupling), � = 80/

p
eB and ⌦ = 0, the critical value is µc = 0.02

p
eB,

while for ⌦ = 0.0003
p
eB, the critical value is µc = 0.007

p
eB.

Finally and for completeness, we discuss in Appendix III the dense state
with negative µ. Since the model under consideration can be viewed as
an e↵ective description of planar condensed matter systems [63], a negative
chemical potential is experimentally accessible.
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Figure 23: The current density in the weak coupling regime with gr = 1, as
a function of x= eBr

2

2 in unit of eB

2⇡ at T = 0 and ⌦ = 0.0005 (in unit of
p
eB)

(first); � = 100, ⌦ = 0.0001 (second); � = 100, ⌦ = 0.0005 (third); � = 40,
⌦ = 0.0001 (fourth)

4.3.5 Strong coupling regime

In the opposite regime of strong coupling with g > gc, a mass gap also forms.
In the regime where the ratio ⇤p

eB
is large and g > gc or gr < 0, the minimum

of the e↵ective potential is now controlled by the first and third contributions
in (187) namely

V0

Nc

⇡ �
⇤�2

2⇡|gr|
+
�3

3⇡
(195)

with a mass gap �̄ = ⇤/|gr|. For
p
eB/⇤ < 1, the leading contribution shifts

the mass and the scalar condensate quadratically,

⌦
 ̄ 
↵
B⌦

 ̄ 
↵
0

� 1 ⇡
(eB)2

12(⇤/gr)4
(196)

92



Figure 24: Finite temperature e↵ective potential V(�) at � = 80/
p
eB and

µ = 0.007/
p
eB as a function of � in units of

p
eB: ⌦ = 0 (top) and

⌦ = 0.0003
p
eB (bottom)

Figure 25: Mass gap �/⇤ in the strong coupling regime with gr = �4, as a
function of ⌦/(10�4⇤) for ⇤/

p
eB = 5 (top) and ⇤/

p
eB = 3 (bottom).

We note that the ratio of the mass gap to the LL gap �̄/
p
eB can be very

large. Therefore, the critical ⌦c for which the mass gap can be depleted is
much larger in strong coupling than in weak coupling. For fixed ⌦ , the
mass �̄ decreases as the ratio ⇤/

p
eB decreases. For instance, for gr = �4

and ⇤/
p
eB = 5, ⌦c ⇡ 0.008⇤, but for ⇤/(

p
eB|gr|) = 3, ⌦c ⇡ 0.009⇤.

In Fig. 28 we show the behavior of the mass gap for strong coupling with
gr = �4 versus � in units of ⇤ as a function of ⌦ expressed in units of ⇤/104.
The top figure is for ⇤/

p
eB = 5 and the bottom figure is for ⇤/

p
eB = 3.
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4.4 Free Dirac fermions in 1+3

The extension of the previous analysis to 1+3 dimensions for free Dirac
fermions is straightforward. In Appendix IV we detail the rotating wavefunc-
tions in the presence of a magnetic field, for the free case. The interacting
case is more challenging for say the case of QCD which is strongly coupled
and gapped in the vacuum. Below, we will focus on the combined e↵ects of
a rotation and magnetic field on the QCD chiral condensate in the sponta-
neously broken phase using mesoscopic arguments, and leading order chiral
perturbation.

4.4.1 Free left currents

We now extend the analysis for the left or L-currents to show the generic
nature of the observations made in 1 + 2 dimensions above. From Appendix
IV, the L-wavefunctions in 1 + 3 dimensions take the simplifying form

uL(n = 0) = vl(n = 0) =

s
Ẽ � p

2Ẽ
(f0,m, 0)

uL(n,m) =
1q

2Ẽ(Ẽ + p)
(
p

2eBnfnm, (Ẽ + p)fn�1,m)

vL(n,m) =
1q

2Ẽ(Ẽ + p)
(
p

2eBnfnm,�(Ẽ + p)fn�1,m)

(197)

The left particle density at the origin is
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2⇡

eB
nL(0) =

+

Z 0

�1

dp

2⇡
(nF (�p� µ00)� nF (�p+ µ00))

+
X

n=1

Z 1

�1

dp

4⇡
(nF (En � µ00) + nF (En � µ10))

�

X

n=1

Z 1

�1

dp

4⇡
(nF (En + µ00) + nF (En + µ10))

(198)

while the current density at the origin is

j3
L
(0) =

eB

2⇡

 
J3
L,0 +

X

n=1

J3
L,n

!
(199)

with

J3
L,0 = �

Z 0

�1

dp

2⇡
(nF (�p� µ00)� nF (�p+ µ00))

= �
⌦

4⇡
�

µL

2⇡

J3
L,n

= �

X

n=1

Z 1

�1

dp

4⇡
(nF (En � µ00)� nF (En � µ10))

+
X

n=1

Z 1

�1

dp

4⇡
(nF (En + µ00)� nF (En + µ10))

(200)

with µ00 = ⌦
2 + µL and µ10 = �

⌦
2 + µL. For small B and zero µL, the

summation in (199) gives

X eB

2⇡
f(
p

p2 + 2gBn) !

Z
kdk

2⇡
f(
p
p2 + k2) (201)

This reproduces the known result at B = 0 [75]
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�
T⌦

12⇡2
�

(⌦ + 2µL)3 + (⌦ � 2µL)3

96⇡2
(202)

While the current density at the origin reproduces the expected result, the
distribution of the current density in the radial direction is not homogeneous.
Indeed, the centrifugation causes it to peak at the edge as in 1+2 dimensions.
This is readily seen from the contribution of the LLL which can be worked
out explicitly with the result

J3
Ln=0 = �

eB

4⇡2

X

m=0

e�
eBr2

2

✓
eBr2

2

◆m (m+ 1/2)⌦ + µL

m!

(203)

The sum can be performed exactly with the result

J3
Ln=0(r) =

eB

4⇡2

✓
µL + ⌦

✓
1

2
+ ⇡Nr2

◆◆
(204)

The centrifugal e↵ect causes the current density to peak at the edge of the
rotational plane in 1 + 3 dimensions.

A possible application of this phenomenon maybe in current heavy ion
collisions at collider energies such as RHIC and LHC. Indeed, for semi-central
collisions both the rotational (orbital) and electric magnetic fields are sizable
with ⌦ ⇠ eB ⇠ m⇡ which may induce partonic densities of the type (204)
that are largely deforned in the transverse plane. While the rotation and
magnetic fields tend to separate the partonic charges in concert along the
rotational axis, the centrifugation causes this separation to peak in the or-
thogonal direction where the observed particle flow is more important. If
true, this e↵ect should be seen as an enhancement of v4 in the charged par-
ticle flow.

4.4.2 Number of free left particles

As we noted in 1 + 2 dimensions, the number of free left particles increases
in 1 + 3 dimensions due to the sinking of the particle LLL in the Dirac sea.
More explicitly, we have
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nL =

Z
dxdy

⌦
:  ̄L�

0 L :
↵

=
X

m

Z 0

�1

dp

2⇡
(nF (�p� µm)� nF (�p+ µm))

+
X

n=1,m

Z 1

�1

dp

2⇡
(nF (En � µnm)� nF (En + µnm))

(205)

Here µnm = (m � n + 1
2)⌦ + µL and En =

p
p2 + 2eBn. The flowing left

current along the rotational-magnetic axis is

j3
L
=

Z
dxdy

⌦
 ̄L�

3 L

↵

= �

X

m

Z 0

�1

dp

2⇡
(nF (�p� µm)� nF (�p+ µm))

= �
1

2⇡

NX

m=0

✓
m+

1

2

◆
⌦ + µL

= �
⌦

2⇡

✓
N +

N2

2

◆
�

µLN

2⇡
(206)

The first contribution in (206) was noted in [54, 56]. (205-206) generalize to
arbitrary 1 + d dimensions. In particular, for µL = 0

nL0 =
2

d�3
2 Vd�2

(2⇡)d�2
sgn(⌦)|⌦|

d�2
NX

m=1

✓
m+

1

2

◆d�2

(207)

with the volume Vd�2 = ⇡
d
2�1/�(d2).

4.4.3 Relation to anomalies

These observations can be used to generalize (208) to arbitrary 1 + d = 2n
dimensions. Consider the case with non-vanishing and non-parallel magnetic
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fields B2k,2k+1 6= 0 with 1  k  n� 3. The general anomaly induced chiral
magnetic e↵ect for the left current is [61]

J2n�1
LµL

= �
µL

2⇡

⇣ e

2⇡

⌘n�1

B12B34....B2n�4,2n�3 (208)

We now observe from (204) that the role of the rotation is to tag to µL in
2n = 4 dimensions as

eB

2⇡

✓
µL + ⌦

✓
1

2
+ ⇡Nr2

◆◆
⌘ µL

eB

2⇡
+ ⌦ J(r)

(209)

The anomalous result (208) relates to the rotationally induced current by a
similar subsitution in 2n dimensions, namely

J2n�1
L⌦ (r) = �

1

2⇡

⇣ e

2⇡

⌘n�2

B12B34....B2n�6,2n�5(⌦, J(r))

(210)

where J(r) refers to the current spin density in the radial direction within
the 2n� 4, 2n� 3 plane

J2n�4,2n�3(r) =
eB2n�4,2n�3

2⇡

✓
1

2
+B2n�4,2n�3

r2

2

◆
(211)

The rotational contribution to the current density (210) in 2n dimensions is
related to the chiral magnetic e↵ect (208) in 2n� 2 dimensions.

4.4.4 Charge neutral volume

Most of the analyses for the fermions presented above hold for the absolute
ground state with overall charge conservation not enforced (open volume V ).
If we require total charge neutrality of the system (closed volume V ) then
we expect an induced charge chemical potential µin such that (~⌦ · ~B > 0)
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NX

n,m=0

Z
dp

2⇡
nF

✓
En � µin � ⌦

✓
1

2
+m� n

◆◆
=

NX

n,m=0

Z
dp

2⇡
nF

✓
En + µin + ⌦

✓
1

2
+m� n

◆◆
(212)

where the number of ⇡+ (first contribution) balances the number of ⇡� (sec-
ond contribution). For large eB or small temperature T , only the n = 0 term
survives as before. In this case, the solution for µin follows by inspection

µin = �
⌦

2
�

N⌦

2
(213)

The ground state consists of negative charge filling the LLL with m = 0
to m = N

2 , and positive charge filling the LLL with m = N

2 to N . The
corresponding charge density for masless fermions is

⌦
J0
L,n=0(x)

↵
=

eB

4⇡2

[N2 ]X

m=0

e�
eBr2

2

✓
eBr2

2

◆m (m�
N

2 )⌦

m!

+
eB

4⇡2

NX

m=[N2 ]+1

e�
eBr2

2

✓
eBr2

2

◆m (m�
N

2 )⌦

m!
(214)

The first line is the contribution from all negative charge contributions, and
the second line from all positive charge contributions. After integration, the
total negative charge density is

⌧Z
d2xJ0

L,n=0(x)

�

negative

=
1

2⇡

[N2 ]X

m=0

✓
m�

N

2

◆
⌦ (215)

and similarly for the positive charge density. In Fig. 26 we display the charge
density in the LLL in a closed volume V = SL with total charge neutrality
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Figure 26: The charge distribution (214) in the LLL in a closed volume V
with overall charge neutrality, for N = 1000 as a function of r and in units
of eB.

as given by (214). We expect the same distribution of charge around a fluid
vortex when overall charge neutrality is enforced, which is to be contrasted
with a vortex with only positive (negative) charge accumulation when the
charge neutrality constrain is not enforced [54].

4.5 Conclusions

We analyzed the combined e↵ects of a rotation and a magnetic field on free
and interacting Dirac fermions in 1+2 dimensions. Our results show that
the rotation causes massless positive states in the LLL to sink into the Dirac
sea, followed by an increase in the density of particles. The scalar density of
particles does not change in the free case, but is modified in the interacting
case. These results strenghten our earlier observation that an increase in the
density of composite fermions in the quantum Hall e↵ect at half filling under
rotation would signal their Dirac nature [111]. They may also be of relevance
to planar condense matter systems when subject to a parallel rotation plus
a magnetic field.

We showed that the mechanism behind the sinking of the LLL for free
Dirac fermions, holds in any dimension, leading to a finite increase in the
density of particles that is related to anomalies. For QCD in the sponta-
neously broken phase with Dirac fermions, this mechanism manifests itself
in a novel way through the condensation of charged pions. We used this
observation to derive the shift in the chiral condensate in leading order in
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the pion interaction.
On a more speculative way in QCD, the charged separation caused by the

dual combination of a rotation parallel to a magnetic field, may impact on
the flow of charged particles in semi-central collisions of heavy ions at present
collider energies, provided that the magnetic field is still strong in the freeze-
out region. While both the rotation and the magnetic field separate charges
along the rotational axis as known through the standard chiral vortical and
magnetic e↵ect, the combined e↵ect causes them to centrifuge. The resulting
charge separation is quadrupolar as opposed to polar with some consequences
for the charged particle flow. Also, the possibility of an induced and coherent
charge accumulation by rotation in a magnetic field, whether in the form of
partons or pions, may a↵ect the fluctuations in the charge and pion number,
the transport coe�cients such as the viscous coe�cients, and potentially
the electromagnetic emissivities in the prompt and intermediate part of the
collision, especially their distribution and flow in the low mass region. These
issues are worth further investigations.

5 Pion condensation induced by ⌦ and B

This section in an edited version of my publication :
Pion Condensation by Rotation in a Magnetic field
Yizhuang Liu, Ismail Zahed (SUNY, Stony Brook). Nov 20, 2017. 5 pp.
Phys.Rev.Lett. 120 (2018) no.3, 032001

5.1 Introduction

In this section, we continue our study of the combined e↵ect of B and ⌦ in
the previous section by moving to bosonic system. We will show that new
ground state will formed under the combined e↵ect of a strong magnetic field
and rotation . In section II we show how this combination yields a charged
pion condensation. In section III, we make an estimate of the amount of
pion condensation in current heavy ion collisions at collider energies. Our
conclusions are in section V.
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Figure 27: Under the action of an external magnetic field B the ⇡± undergo
opposite rotations in the Lowest Landau Level (LLL) which is degenerate.
The action of a parallel rotation (~⌦ · ~B > 0) lifts the degeneracy in the LLL.
The energy of the ⇡+ shifts down and splits away from the energy of the ⇡�

that shifts up. The action of an anti-parallel rotation (~⌦ · ~B < 0) exchanges
the role of ⇡+ and ⇡�.

5.2 Pion condensation

In the presence of a fixed magnetic field in the +z direction B = Bẑ, the
charged ⇡± pion spectrum is characterized by highly degenerate Landau Lev-
els (LL)

Enp =
�
|eB|(2n+ 1) + p2 +m2

⇡

� 1
2 (216)

with p the pion momentum along the 3-direction, each with a degeneracy
N = |eB|S/2⇡ with S = ⇡R2 the area of the plane transverse to B. We will
assume that the magnetic length lM = 1/

p
|eB| ⌧ R for the LL to fit within

S. In the circular gauge the degeneracies of the LL are identified with the
eigenstates of the z-component of the angular momentum in position space.
They are labeled by l which enters the azimuthal wave-function as eil' with
the restriction �n  l  N � n where n labels the LL. For the Lowest
Landau Level (LLL) with n = 0, l has a fixed sign since 0  l  N . After
quantization, the angular momentum for positive charged particles is l and
for negative charged particles is �l. This means that in the LLL, the ⇡+
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spins along the magnetic field, while the ⇡� spins opposite to the magnetic
field as illustrated in Fig. 27.

When a rotation ⌦ along the magnetic field is applied, it causes the
spectrum to shift linearly. Throughout we will consider the parallel case
with ~⌦ · ~B > 0 unless specified otherwise. With this in mind, and in the
rotating frame

Enp ! Enp � ⌦Lz ⌘ Enp � j⌦l (217)

with j = +1 for positively charged pions (particles) and j = �1 for negatively
charged pions (anti-particles). As a result, the degeneracy of each LL is lifted.
In particular, the ⇡+ in the LLL splits down and the ⇡� in the LLL splits
up as also illustrated in Fig. 27. Since the chargeless pions ⇡0 are una↵ected
by the magnetic field, their rotational shift averages out. Also we note that
causality requires v = ⌦R  1 [56] which together with the magnetic length
constraint (see above) translates to lM ⌧ R < 1/⌦.

The mechanism of ⇡± splitting by a rotation parallel to a magnetic field
in the LLL can cause ⇡+ pion condensation. Indeed, in the shifted spectrum
(217), the combination µl = ⌦l plays the role of a chemical potential for ⇡+

and �µl = �⌦l for ⇡�, in much the same way as noted for fermionic particles
and anti-particles in the LLL [75, 56, 59, 30]. Therefore, when µN = N⌦
apparently exceeds the ⇡+ e↵ective mass in the LLL, m0 =

p
eB +m2

⇡
, but

is still below the ⇡+ e↵ective mass in the first LL with n = 1, the LLL ⇡+

may Bose condense, provided that charge conservation is enforced.
For a fixed and isolated volume V = SL with no charge allowed to flow in

or out, strict charge conservation in the co-moving frame is achieved by in-
troducing a charge chemical potential µ, in addition to the induced chemical
potential j⌦l by rotation. (For an open volume discussion see [30] and ref-
erences therein). For the LLL, charge conservation requires that the number
of ⇡± in V are equal at any temperature

NX

l=0

Z
dp

2⇡

1

e
1
T (E0p�l⌦�µ)

� 1
=

NX

l=0

Z
dp

2⇡

1

e
1
T (E0p+l⌦+µ)

� 1
(218)
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This equation is solved by inspection with µ = �
N⌦
2 . Therefore, the orbital

assignments l = N �m and l = m for ⇡+ and ⇡� in the LLL will have the
same ocupation number

n⇡+(l = N �m) = n⇡�(l = m)

=

Z
dp

2⇡

1

e
1
T (E0p�N⌦/2+l⌦)

� 1
(219)

with 0  m  N . For N⌦ > 2m0 simultaneous condensation occurs for
m = 0, i.e. ⇡+ with l = N and ⇡� with l = 0. For (N � 2)⌦ > 2m0 the
condensation involves both m = 0, 1. As we increase ⌦ such that ⌦ = 2m0,
all m 

N

2 will condense, i.e. ⇡+ with N

2  l  N and ⇡� with 0  l  N

2 ,
and so on.

Now consider the rotating ground state with T = 0 and N⌦ > 2m0 but
(N � 2)⌦ < 2m0, so that only the l = N state for ⇡+ and l = 0 state for
⇡� condense. The energy per unit length in the Bose-Einstein condensate
(BEC) state is

E⇡⌦ = �n (N⌦ � 2m0) + dNn
2 (220)

with the Coulomb factor

dN ⇡
e2

2

Z
R

lM

2⇡rdr

✓
1

2⇡r

◆2

=
e2

4⇡
ln

R

a
⇡

e2

8⇡
lnN (221)

dN characterizes the electric field energy stored between two charged rings
with radius lM ⇠ 1/

p
eB and charge �e (⇡�), and radius R � lM and charge

+e (⇡+). The Coulomb self-energy is subleading and omitted. In the ground
state, the BEC density n is fixed by minimizing the energy density E⇡⌦ in
(220), with the result

n = ✓(N⌦ � 2m0)
N⌦ � 2m0

2dN
(222)

The rotating ⇡+ condensate induces a uniform magnetic field bz that
enhances the applied initial field B, and back-reacts on the formation of the
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charged condensates to order ↵ = e2/4⇡. Indeed, the rotating BEC of ⇡+ at
r = R generates an azimutal current

J✓[n] =
enN

m0r
|f0N |

2
⇡

e2Bn

4⇡m0
�(r �R) (223)

where f0N is the LLL with angular momentum l = N . The corresponding
induced magnetic field

bz[n] =
e2Bn

4⇡m0
(224)

modifies the applied magnetic field to order ↵ = e2/4⇡ through B ! B +
bz[n]. The back-reacted LL problem amounts to the following substitutions
for m0 and N

m2
0[n] = m2

⇡
+ eB

✓
1 +

e2n

4⇡m0

◆

N [n] = N

✓
1 +

e2n

4⇡m0

◆
(225)

The back-reacted density for the ⇡± condensates follows by minimizing the
energy per unit length

E [⌦,n] =

�n(N [n]⌦ � 2m0[n]) + n2e2
✓

eBN

16⇡m2
0[n]

+
lnN [n]

8⇡

◆

(226)

This is the analogue of (220) with dN = e
2 lnN(n)

8⇡ , including the additional
magnetic energy from the back reaction

⇡R2 b
2
z

2
=

n2e4B2R2

32⇡m2
0[n]

=
e3BNn2

16⇡m2
0[n]

(227)

The true ground state follows by minimizing (226) with respect to n. Both
m0[n] and N [n] are observed to be weakly dependent on the n-contributions
from the back-reaction. We now explore the physical implication of (226) in
heavy ion collisions.
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5.3 Pion BEC in heavy-ion collisions

Current heavy ion collisions at collider energies are characterized by large
angular momenta l ⇠ 103 � 105 ~ [70] and large magnetic fields B ⇠ m2

⇡
[73]

in o↵ central collisions. Assuming that at chemical freeze-out, R ⇠ 10 fm
with still eB ⇠ m2

⇡
, this would translates to a LL degeneracy N = eBR2/2 ⇠

(m⇡ ⇥ 10 fm)2 ⇠ 100/4 and a rotational chemical potential µN = N⌦ ⇠

1.25m⇡. From the hadro-chemistry analysis, the pion chemical potentials
at freeze-out are typically µf ⇠ 0.5m⇡ at RHIC, and µf ⇠ 0.86m⇡ at the
LHC [74]. With the rotation at finite B, they would translate to µ⇡ =
µN + 2µf ⇠ 1.96m⇡ and 2.98m⇡ respectively. Since the threshold of the
LLL for the combined ⇡± pion energy is 2

p
2m⇡, charge pion condensation

is possible. Using (226) at finite T, µf , the number of ⇡± pions in the BEC
are

N⇡± =

P1
n=0 n e�

1
T (LE[⌦,

n
L ]�2nµf )

P1
n=0 e

� 1
T (LE[⌦,

n
L ]�2nµf )

(228)

For L ⇠ 10 fm, eB ⇠ m2
⇡
and N ⇡ 25, we show in Fig. 28 the average

number of condensed ⇡± for temperatures in the range 0.5m⇡  T  1.5m⇡

and rotations in the range 0.04m⇡  ⌦  0.06m⇡ for the most favorable
case with µf = 0.86m⇡ at the LHC. It is interesting to note that the ALICE
collaboration has recently reported a large coherent emission from multi-pion
correlation studies in Pb-Pb collisions [78].

Figure 28: The mean number of condensed pions N⇡+ = N⇡� in the range
0.04m⇡  ⌦  0.06m⇡, for µf = 0.86m⇡ and 0.5m⇡  T  1.5m⇡.
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5.4 Conclusions

The combined e↵ects of a rotation parallell to a magnetic field yields to pion
condensation both in the vacuum and at finite temperature. The ⇡+ con-
dense at the edge, wile the ⇡� at the center in equal amount when charge
conservation is strictly enforced in a closed volume. Since parallell rotations
and magnetic fields can be generated in current heavy ion collisions at collider
energies, charged pion condensation could be generated if the combined ef-
fects survive with considerable strength in the freeze-out phase. Such e↵ects
are likely to a↵ect both the flow of charge particles and their number fluc-
tuations. This separation of charged bosons by centrifugation in a magnetic
field may also be probed in atomic physics (trapped and cooled atoms), in
condensed matter physics (quantum Hall e↵ect) and possibly compact stars
(magnestars).

Finally, we note that this pion superfluid phase maybe substantial in
neutron stars. Indeed, for a star of size R ⇡ 10 km with a moderate magnetic
field B ⇡ 10�6m2

⇡
, and a typical period T = 1ms, the degeneracy N =

eBR2/2 ⇡ 1031 is very large. For a rotational velocity ⌦ = 2⇡/T ⇡ 10�22 m⇡,
the induced pion chemical potential in a neutron star is large with µN =
N⌦ ⇡ 107m⇡ in comparison to the LL gap of 2m0 ⇡ 2m⇡. So such a phase
is likely to form in a neutron star, and clearly in a magnestar where the
magnetic field is even larger, e.g. B ⇡ 10�3m2

⇡
.

.
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Part III: Heavy-light hadrons using holography

6 Heavy-light Baryons from AdS/QCD

This section is an edited version of my previous publication :
Heavy Baryons and their Exotics from Instantons in Holographic QCD
Yizhuang Liu, Ismail Zahed (SUNY, Stony Brook). Apr 11, 2017. 11 pp.
Phys.Rev. D95 (2017) no.11, 116012

6.1 Introduction

The organization of this section is as follows: In subsection 2 we briefly
outline the geometrical set up for the derivation of the heavy-light e↵ective
action through the pertinent bulk DBI and CS actions. In subsection 3,
we detail the heavy-meson interactions to the flavor instanton in bulk. In
subsection 4, we show how a vector meson with spin 1 binding to the bulk
instanton transmutes to a spin 1

2 . In subsection 5, we identify the moduli
of the bound zero-mode and quantize it by collectivizing some of the soft
modes. The mass spectra for baryons with single- and double-heavy quarks
are explicitly derived. Some of our exotics are comparable to those recently
reported by several collaborations, while others are new. Our conclusions are
in subsection 6. In the Appendix we briefly review the quantization of the
light meson moduli without the heavy mesons.

6.2 Holographic e↵ective action

6.2.1 D-brane set up

The D4-D8 construction proposed by Sakai and Sugimoto [157] for the de-
scription of the light hadrons is standard and will not be repeated here.
Instead, we follow [165] and consider the variant with Nf � 1 light D8-D̄8
(L) and one heavy (H) probe branes in the cigar-shaped geometry that spon-
taneously breaks chiral symmetry. For simplicity, the light probe branes are
always assumed in the anti-podal configuration. A schematic description of
the set up for Nf = 3 is shown in Fig. 29. We assume that the L-brane world
volume consists of R4

⇥ S1
⇥ S4 with [0� 9]-dimensions. The light 8-branes

are embedded in the [0 � 3 + 5 � 9]-dimensions and set at the antipodes of

108



S1 which lies in the 4-dimension. The warped [5� 9]-space is characterized
by a finite size R and a horizon at UKK .

Figure 29: Nf � 1 = 2 antipodal 8L light branes, and one 8H heavy brane
shown in the ⌧U plane, with a bulk SU(2) instanton embedded in 8L and a
massive HL-string connecting them.

6.2.2 DBI and CS actions

The lowest open string modes streched between the H- and L-branes are
attached to a wrapped S4 in D4 shown as an instanton in Fig. 29. Near
the L brane world volume, these string modes consist of tranverse modes
�M and longitudinal modes  , both fundamental with respect to the flavor
group SU(Nf � 1). At non-zero brane separation, these fields acquire a vev
that makes the vector field massive [161]. Strictly speaking these fields are
bi-local, but near the L-branes we will approximate them by local vector
fields that are described by the standard DBI action in the background of a
warped instanton field. In this respect, our construction is distinct from the
approaches developed in [159].

With this in mind and to leading order in the 1/� expansion, the e↵ective
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action on the probe L-branes consists of the non-Abelian DBI (D-brane Born-
Infeld) and CS (Chern-Simons) action. After integrating over the S4, the
leading contribution to the DBI action is

SDBI ⇡ �

Z
d4xdz Tr (f(z)Fµ⌫F

µ⌫ + g(z)FµzF
⌫z) (229)

Our conventions are (�1, 1, 1, 1) with A†
M

= �AM . The warping factors are

f(z) =
R3

4Uz

, g(z) =
9

8

U3
z

UKK

(230)

with U3
z
= U3

KK
+UKKz2,  = T̃ (2⇡↵0) = a�Nc and a = 1/(216⇡3) [157]. All

dimensions are understood in units where the Kaluza-Klein mass MKK ⌘ 1
unless specified otherwise. The e↵ective fields in the field strengths are (M,N
run over (µ, z))

FMN = 
FMN � �[M�†

N ] @[M�N ] + A[M�N ]

�@[M�†
N ] � �†

[MAN ] ��†
[M�N ]

!
(231)

The CS contribution to the e↵ective action is (form notation used)

SCS =
Nc

24⇡2

Z

R4+1

Tr

✓
AF2

�
1

2
A3F+

1

10
A5

◆
(232)

where the normalization to Nc is fixed by integrating the F4 RR flux over
the S4. The matrix valued 1-form gauge field is

A =

✓
A �

��† 0

◆
(233)

For Nf coincidental branes, the � multiplet is massless. However, their
brane world-volume supports an adjoint and traceless scalar  in addition to
the adjoint gauge field AM both of which are hermitean and Nf ⇥Nf valued,
which we have omitted from the DBI action in so far for simplicity. They are
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characterized by a quartic potential with finite extrema and a vev v for the
diagonal of  [161]. As a result the � multiplet acquires a Higgs-like mass
of the type

1

2
m2

H
Tr
⇣

�†
M

�M

⌘
⇠

1

2
v2Tr

⇣
�†

M
�M

⌘
(234)

The vev is related to the separation between the light and heavy branes [161],
which we take it to be the mass following from the length of the streched HL
string, and which we identify as the mass of the heavy-light (0�, 1�) multi-
plet for either charm (D,D⇤) or bottom (B,B⇤). In the heavy quark limit,
the radial spectra, axial and vector correlations, and the one-pion radiative
decays of the (0�, 1�) multiplet are fairly reproduced by this model [165].

6.3 Heavy-Light-Instanton interactions

In the original two-flavor D4-D8 set up by Sakai and Sugimoto [157] light
baryons are first identified with a flavor instanton in bulk [162] and its moduli
quantized to yield the nucleon and Delta [163]. This construction holds in
our case in the light sector of (353) verbatum and we refer the interested
reader to [162, 163] for the details of the analysis. The key observations is
that the instanton size is small at strong coupling ⇢ ⇠ 1/

p
�, as a result

of balancing the large and leading attraction due to gravity in bulk (large
warpings) and the subleading U(1) Coulomb-like repulsion induced by the
Chern-Simons term.

In the geometrical set up described in Fig. 29, the small size instanton
translates to a flat space 4-dimensional instanton [162]

Acl

M
= ��̄MN

xN

x2 + ⇢2
,

Acl

0 =
�i

8⇡2ax2

✓
1�

⇢4

(x2 + ⇢2)2

◆
(235)

after using the rescalings

x0 ! x0, xM ! xM/
p

�,
p

�⇢! ⇢

(A0,�0) ! (A0,�0),

(AM ,�M) !
p

�(AM ,�M) (236)

111



in (353). From here and throughout the rest of the section, M,N run only
over 1, 2, 3, z. To order �0 the rescaled contributions describing the interac-
tions between the light gauge fields AM and the heavy fields �M to quadratic
order split in the form

S = aNc�S0 + aNcS1 + SCS (237)

with each contribution given by

S0 = �(DM�†
N
�DN�†

M
)(DM�N �DN�M)

+2�†
M
FMN�N

S1 = +2(D0�
†
M

�DM�†
0)(D0�M �DM�0)

�2�†
0F

0M�M � 2�†
M
FM0�0

�2m2
H

�†
M

�M + S̃1

SCS = �
iNc

24⇡2
(d�†Ad� + d�†dA� + �†dAd�)

�
iNc

16⇡2
(d�†A2� + �†A2d� + �†(AdA+ dAA)�)

�
5iNc

48⇡2
�†A3� + SC(�

4, A) (238)

and

S̃1 = +
1

3
z2(Di�j �Dj�i)

†(Di�j �Dj�i)

�2z2(Di�z �Dz�i)
†(Di�z �Dz�i)

�
2

3
z2�†

i
Fij�j + 2z2(�†

z
Fzi�i + c.c.) (239)

6.4 Bound State as a Zero-Mode

We now show that in the double limit of large � followed by large mQ, a
heavy meson in bulk always binds to the flavor instanton in the form of
a 4-dimensional (123z) flavor zero-mode that e↵ectively is a spinor. This
holographic zero-mode translates equally to either a bound heavy flavor or
anti-heavy flavor in our space-time (0123). This is remarkable to hologra-
phy, as the heavy bound states in the Skyrme-type involve particles but
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with di�culties anti-particles [166, 167]. Indeed, in the Skyrme model, the
Wess-Zumino-Witten term which is time-odd, carries opposite signs for heavy
particles and anti-particles that are magnified by Nc in comparison to the
heavy-mesonic action. As a result the particle state is attractive, while the
anti-particle state is repulsive.

6.4.1 Field equations

We now consider the bound state solution of the heavy meson field �M in
the (rescaled) instanton background 294). We note that the field equation
for �M is independent of �0 and reads

DMDM�N + 2FNM�M �DNDM�M = 0 (240)

while the contraint field equation (Gauss law) for �0 depends on �M through
the Chern-Simons term

DM(D0�M �DM�0)

�F 0M�M �
✏MNPQ

64⇡2a
KMNPQ = 0 (241)

with KMNPQ defined as

KMNPQ = +@MAN@P�Q + AMAN@P�Q

+@MANAP�Q +
5

6
AMANAP�Q (242)

In the heavy quark limit it is best to redefine �M = �Me�imHx0 for parti-
cles. The anti-particle case follows through mQ ! �mH with pertinent sign
changes. As a result, the preceding field equations remain unchanged for �M

with the substitution D0�M ! (D0 ⌥ imH)�M understood for particles (�)
or anti-particles (+) respectively.

6.4.2 Double limit

In the double limit of � ! 1 followed by mH ! 1, the leading contribu-
tions are of order �m0

H
from the light e↵ective action in (353), and of order
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�0mH from the heavy-light interaction term S1 in (298). This double limit is
justified if we note that in leading order, the mass of the heavy meson follows
from the straight pending string shown in Fig 29, with a value [165]

mH

�MKK

=
2

9⇡
(MKKuH)

2
3 (243)

where uH is the holographic height of the heavy brane. The double limit
requires the ratio in (243) to be parametrically small.

With the above in mind, we have

S1,m

aNc

= 4imH�
†
m
D0�m � 2imH(�

†
0DM�M � c.c.) (244)

and from the Chern-Simons term in (298) we have

mHNc

16⇡2
✏MNPQ�

†
M
FNP�Q =

mHNc

8⇡2
�†
M
FMN�N (245)

The constraint equation (301) simplifies considerably to order mQ,

DM�M = 0 (246)

implying that �M is covariantly transverse in leading order in the double
limit.

6.4.3 Vector to spinor zero-mode

The instanton solution AM in (294) carries a field strength

FMN =
2 �̄MN⇢2

(x2 + ⇢2)2
(247)

We now observe that the heavy field equation (300) in combination with the
constraint equation (246) are equivalent to the vector zero-mode equation
in the fundamental representation. To show that, we recall that the field
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strength (296) is self-dual, and S0 in (298) can be written in the compact
form

S0 = �f †
MN

fMN + 2�†
M
FMN�N

= �f †
MN

fMN + 2✏MNPQ�
†
M
DMDQ�N

= �f †
MN

fMN + f †
MN

? fMN

= �
1

2
(fMN � ?fMN)

†(fMN � ?fMN) (248)

after using the Hodge dual ? notation, and defining

fMN = @[M�N ] + A[M�N ] (249)

Therefore, the second order field equation (300) can be replaced by the anti-
self-dual condition (first order) and the transversality condition (246) (first
order),

fMN � ?fMN = 0

DM�M = 0 (250)

which are equivalent to

�MDM = D = 0 with  = �̄M�M (251)

The spinor zero-mode  is unique, and its explicit matrix form reads

 a

↵�
= ✏↵a��

⇢

(x2 + ⇢2)
3
2

(252)

which gives the vector zero-mode in the form

�a

M
= ��(�M)�↵✏↵a

⇢

(x2 + ⇢2)
3
2

(253)

or in equivalent column form
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�M = �̄M�
⇢

(x2 + ⇢2)
3
2

⌘ �̄Mf(x)� (254)

Here �↵ is a constant two-component spinor. It can be checked explicitly that
(254) is a solution to the first order equations (306). The interplay between
(308) and (253) is remarkable as it shows that in holography a heavy vector
meson binds to an instanton in bulk in the form of a vector zero mode that
is equally described as a spinor. This duality illustrates the transmutation
from a spin 1 to a spin 1

2 in the instanton field.

6.5 Quantization

Part of the classical moduli of the bound instanton-zero-mode breaks rota-
tional and translational symmetry, which will be quantized by slowly rotating
or translating the bound state. In addition, it was noted in [162] that while
the deformation of the instanton size and holographic location are not collec-
tive per say as they incur potentials, they are still soft in comparison to the
more massive quantum excitations in bulk and should be quantized as well.
The ensuing quantum states are vibrational and identified with the breath-
ingh modes (size vibration) and odd parity states (holographic vibration).

6.5.1 Collectivization

The leading �Nc contribution is purely instantonic and its quantization is
standard and can be found in [163]. For completeness we have summarized
it in the Appendix. The quantization of the subleading �0mH contribution
involves the zero-mode and is new, so we will describe iin more details. For
that, we let the zero-mode slowly translates, rotates and deforms through

� ! V (aI(t))�(X0(t), Z(t), ⇢(t),�(t))

�0 ! 0 + ��0 (255)

Here X0 is the center in the 123 directions and Z is the center in the z
directon. aI is the SU(2) gauge rotation moduli. We denote the moduli by
X↵ ⌘ (X,Z, ⇢) with
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�iV †@0V = � = �@tXNAN + �a�a

�a = �iTr
�
⌧a a�1

I
@t aI

�
(256)

aI is the SU(2) rotation which carries the isospin and angular momentum
quantum numbers. The constraint equation (301) for �0 has to be satisfied,
which fixes ��0 at sub-leading order

�D2
M
��0 +DM �̄M(@tXi@Xif�+ @t�)

+i(@tX↵@↵�M �DM�)�̄M�+ �Scs = 0 (257)

The solution to (257) can be inserted back into the action for a general
quantization of the ensuing moduli.

6.5.2 Leading heavy mass terms

There are three contributions to order �0mH , namely

16imH�
†@t�f

2 + 16imH�
†�A0f

2
�mHf

2�†�µ��̄µ�

(258)

with the rescaled U(1) field A0, and the Chern-Simons term

imHNc

8⇡2
�†
M
FMN�N =

i3mHNc

⇡2

f 2⇢2

(x2 + 1)2
�†� (259)

with the field strength given in (296). Explicit calculations show that the
third contribution in (258) vanishes owing to the identity �µ⌧a�̄µ = 0.

The coupling �†�A0 term in (258) induces a Coulomb-like back-reaction.
To see this, we set  = iA0 and collect all the U(1) Coulomb-like couplings
in the rescaled e↵ective action to order �0mH

SC(A0)

aNc

=

Z ✓
1

2
(r )2 +  (⇢0[A]� 16mHf

2�†�)

◆

⇢0[A] =
1

64⇡2a
✏MNPQFMNFPQ (260)
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The static action contribution stemming from the coupling to the U(1)
charges ⇢0 and �†� is

SC

aNc

!
SC [⇢0]

aNc

+ 16mH�
†�

Z
f 2(�iAcl

0 )�
(16mH�†�)2

24⇡2

(261)

The last contribution is the Coulomb-like self-interaction induced by the
instanton on the heavy meson through the U(1) Coulomb-like field in bulk.
It is repulsive and tantamount of fermion number repulsion in holography.

6.5.3 Moduli e↵ective action

Putting all the above contributions together, we obtain the e↵ective action
density on the moduli in leading order in the heavy meson mass

L = L0[aI , X↵] + 16aNcmH

✓
i�†@0�

†
Z

d4x f 2

��†�

Z
d4x f 2

✓
iAcl

0 �
3

16a⇡2

⇢2

(x2 + ⇢2)2

◆◆

�aNc

(16mH�†�)2

24⇡2⇢2
(262)

with L0 referring to the e↵ective action density on the moduli stemming from
the contribution of the light degrees of freedom in the instanton background.
It is identical to the one derived in [162] and to which we refer the reader for
further details. In (262) We have made explicit the new contribution due to
the bound heavy meson through �. To this order there is no explicit coupling
of the light collective degrees of freedom aI , to the heavy spinor degree of
freedom �, a general reflection on heavy quark symmetry in leading order.
However, there is a coupling to the instanton size ⇢ through the holographic
direction which does not upset this symmetry. After using the normalizationR
d4x f 2 = 1, inserting the explicit form of Acl

0 from (294), and rescaling
�! �/2

p
aNcmH , we finally have

L = L0[aI , X↵] + �†i@t�+
3

32⇡2a⇢2
�†��

(�†�)2

24⇡2a⇢2Nc

(263)
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Remarkably, the bound vector zero-mode to the instanton transmutes to a
massive spinor with a repulsive Coulomb-like self- interaction. The mass is
negative which implies that the heavy meson lowers its energy in the presence
of the instanton to order �0. We note that the preceding arguments carry
verbatum to an anti-heavy meson in the presence of an instanton, leading
(318) with a positive mass term. This meson raises its energy in the presence
of the instanton to order �0. These e↵ects originate from the Chern-Simons
action in holography. They are the analogue of the e↵ects due to the Wess-
Zumino-Witten term in the standard Skyrme model [166, 167]. While they
are leading in 1/Nc in the latter causing the anti-heavy meson to unbind
in general, they are subleading in 1/� in the former where to leading order
the bound state is always a BPS zero mode irrespective of heavy-meson or
anti-heavy-meson.

6.5.4 Heavy-light spectra

The quantization of (318) follows the same arguments as those presented
in [162] for L0[aI , X↵] and to which we refer for further details in general,
and the Appendix for the notations in particular. Let H0 be the Hamiltonian
associated to L0[aI , X↵], then the Hamiltonian for (318) follows readily in the
form

H = H0[⇡I , ⇡X , aI , X↵]�
3

32⇡2a⇢2
�†�+

(�†�)2

24⇡2a⇢2Nc

(264)

with the new quantization rule for the spinor

�i�
†
j
± �†

j
�i = �ij (265)

The statistics of � needs to be carefully determined. For that, we note the
symmetry transformation

�! U� and �M ! U⇤MN�N (266)

since U�1�̄MU = ⇤MN �̄N . So a rotation of the spinor � is equivalent to
a spatial rotation of the heavy vector meson field �M which carries spin 1.
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Since � is in the spin 1
2 representation it should be quantized as a fermion.

So only the plus sign is to be retained in (320). Also, � carries opposite
parity to �M , i.e. positive. With this in mind, the spin J and isospin I are
then related by

~J = �~I+ ~S� ⌘ �~I+ �†~⌧

2
� (267)

We note that in the absence of the heavy-light meson J+ I = 0 as expected
from the spin-flavor hedgehog character of the bulk instanton (see also the
Appendix).

The spectrum of (319) follows from the one discussed in details in [162]
with the only modification of Q entering in H0 as given in the Appendix

Q ⌘
Nc

40a⇡2
!

Nc

40a⇡2

✓
1�

15

4Nc

�†�+
5(�†�)2

3N2
c

◆
(268)

The quantum states with a single bound state NQ = �†� = 1 and IJ⇡

assignments are labeled by

|NQ, JM, lm, nz, n⇢i with IJ⇡ =
l

2

✓
l

2
±

1

2

◆⇡

(269)

with nz = 0, 1, 2, .. counting the number of quanta associated to the collective
motion in the holographic direction, and n⇢ = 0, 1, 2, .. counting the number
of quanta associated to the radial breathing of the instanton core, a sort of
Roper-like excitations. Following [162], we identify the parity of the heavy
baryon bound state as (�1)nz . Using (323) and the results in [162] as briefly
summarized in the Appendix, the mass spectrum for the bound heavy-light
states is

MNQ = +M0 +NQmH

+

✓
(l + 1)2

6
+

2

15
N2

c

✓
1�

15NQ

4Nc

+
5N2

Q

3N2
c

◆◆ 1
2

MKK

+
2(n⇢ + nz) + 2

p
6

MKK (270)
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with MKK the Kaluza-Klein mass and M0/MKK = 8⇡2 the bulk instanton
mass. The Kaluza-Klein scale is usually set by the light meson spectrum
and is fit to reproduce the rho mass with MKK ⇠ m⇢/

p
0.61 ⇠ 1 GeV [157].

Whenever possible, we will try to eliminate the uncertainties on the value of
MKK through model independent relations for fixed NQ.

We note that the net e↵ect of the heavy-meson is among other thinghs,
an increase in the iso-rotational inertia by expanding (325) in 1/Nc. The
negative NQ/Nc contribution in (325) reflects on the fact that a heavy meson
with a heavy quark mass is attracted to the instanton to order �0. As we
noted earlier, a heavy meson with a heavy anti-quark will be repelled to
order �0 hence a similar but positive contribution. The positive N2

Q
/N2

c

contribution is the repulsive Coulomb-like self-interaction. Note that it is of
the same order as the rotational contribution which justifies keeping it in our
analysis.

(325) is to be contrasted with the mass spectrum for baryons with no
heavy quarks or NQ = 0, where the nucleon state is idendified as NQ = 0, l =
1, nz = n⇢ = 0 and the Delta state as NQ = 0, l = 3, nz = n⇢ = 0 [162].
The radial excitation with n⇢ = 1 can be identified with the radial Roper
excitation of the nucleon and Delta, while the holographic excitation with
nz = 1 can be interpreted as the odd parity excitation of the nucleon and
Delta.

6.5.5 Single-heavy baryons

Since the bound zero-mode transmuted to spin 1
2 , the lowest heavy baryons

with one heavy quark are characterized by NQ = 1, l = even,Nc = 3 and
nz, n⇢ = 0, 1, with the mass spectrum

MXQ = +M0 +mH (271)

+

✓
(l + 1)2

6
�

7

90

◆ 1
2

MKK

+
2(n⇢ + nz) + 2

p
6

MKK (272)
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6.5.6 Heavy baryons

Consider the states with nz = n⇢ = 0. We identify the state with l = 0 with
the heavy-light iso-singlet ⇤Q with the assignments IJ⇡ = 01

2

+
. We identify

the state with l = 2 with the heavy-light iso-triplet ⌃Q with the assignment
11
2

+
, and ⌃?

Q
with the assignment 13

2

+
. By subtracting the nucleon mass

from (327) we have

M⇤Q �MN �mH = �1.06MKK

M⌃Q �MN �mH = �0.17MKK

M⌃⇤
Q
�MN �mH = �0.17MKK (273)

Hence the holographic and model independent relations

M⇤Q0 = M⇤Q + (mH0 �mH)

M⌃Q0 = 0.84mN +mH0 + 0.16 (M⇤Q �mH) (274)

with Q,Q0 = c, b. Using the heavy meson masses mD ⇡ 1870 Mev, mB =
5279 MeV and m⇤c = 2286 Mev we find that M⇤b

= 5655 MeV in good
agreement with the measured value of 5620 MeV. Also we find M⌃c = 2725
Mev and M⌃b = 6134 Mev, which are to be compared to the empirical values
of M⌃c = 2453 Mev and M⌃b = 5810 Mev respectively.

6.5.7 Excited heavy baryons

Now, consider the low-lying breathing modes R with n⇢ = 1 for the even
assignments 01

2

+
, 11

2

+
, 13

2

+
, and the odd parity excited states O with nz = 1

for the odd assigments 01
2

�
, 11

2

�
, 13

2

�
. (327) shows that the R-excitations are

degenerate with the O-excitations. We obtain (E = O,R)

M⇤EQ0 = +0.23M⇤Q + 0.77mN � 0.23mH +mH0

M⌃EQ0 = �0.59M⇤Q + 1.59mN + 0.59mH +mH0

(275)

We found M⇤Oc = 2686 MeV which is to be compared to the mass 2595
MeV for the reported charm 01

2

�
state, and M⇤Ob

= 6095 MeV which is close
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to the mass 5912 MeV for the reported bottom 01
2

�
state. (275) predicts a

mass of M⌃Oc = 3126 MeV for a possible charm 11
2

�
state, and a mass of

M⌃Ob
= 6535 MeV for a possible bottom 11

2

�
state.

6.6 Double-heavy baryons

For heavy baryons containing also anti-heavy quarks we note that a rerun
of the preceding arguments using instead the reduction �M = �Me+imHx0 ,
amounts to binding an anti-heavy-light meson to the bulk instanton in the
form of a zero-mode also in the fundamental representation of spin. Most
of the results are unchanged except for pertinent minus signs. For instance,
when binding one heavy-light and one anti-heavy-light meson, (318) now
reads

L = +L0[aI , X↵]

+�†
Q
i@t�Q +

3

32⇡2a⇢2
�†
Q
�Q

��†
Q̄
i@t�Q̄ �

3

32⇡2a⇢2
�†
Q̄
�Q̄

+
(�†

Q
�Q � �†

Q̄
�Q̄)

2

24⇡2a⇢2Nc

(276)

As we indicated earlier the mass contributions are opposite for a heavy-light
and anti-heavy-light meson. The general mass spectrum for baryons with
NQ heavy-quarks and NQ̄ anti-heavy quarks is

MQ̄Q = +M0 + (NQ +NQ̄)mH

+

✓
(l + 1)2

6

+
2

15
N2

c

✓
1�

15(NQ �NQ̄)

4Nc

+
5(NQ �NQ̄)

2

3N2
c

◆◆ 1
2

MKK

+
2(n⇢ + nz) + 2

p
6

MKK (277)
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6.6.1 Pentaquarks

For NQ = NQ̄ = 1 we identify the lowest state with l = 1, nz = n⇢ = 0

with pentaquark baryonic states with the IJ⇡ assignments 1
2
1
2

�
and 1

2
3
2

�
,

and masses given by

MQ̄Q �MN � 2mH = 0 (278)

Amusingly the spectrum is BPS as both the attraction and repulsion bal-
ances, and the two Coulomb-like self repulsions balance against the Coulomb-
like pair attraction. Thus we predict a mass of Mc̄c = 4678 MeV for the 1

2
3
2

�

which is close to the reported P+
c
(4380) and P+

c
(4450). We also predict a

mass of Mb̄c = 8087 MeV and Mb̄b = 11496 MeV for the yet to be oberved
pentaquarks. Perhaps a better estimate for the latters is to trade MN in
(333) for the observed light charmed pentaquark mass Mc̄c = 4678 MeV
using instead

MQ̄Q = MQ̄0Q0 + 2 (mH �mH0) (279)

Using (279) we predict Mb̄c = 7789 MeV and Mb̄b = 11198 MeV, which
are slightly lighter than the previous estimates. The present holographic
construction based on the bulk instanton as a hedgehog in flavor-spin space
does not support the 1

2
5
2

+
assignment suggested for the observed P+

c
(4450)

through the bound zero-mode for the case Nf = 2.

6.6.2 Excited pentaquarks

For NQ = NQ̄ = 1 we now identify the lowest state with l = 1, nz = 1, n⇢ = 0

with the odd parity pentaquarks O with assignments 1
2
1
2

+
and 1

2
3
2

+
, and the

l = 1, nz = 0, n⇢ = 1 with the breathing or Roper R pentaquarks with the
same assignments as the ground state. The mass relations for these states
are (E = O,R)

MEQ̄Q �MN � 2mH = 0.82MKK (280)

which can be traded for model independent relations
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MEQ̄Q = 1.51mN + 2mH + 0.51 (mH0 �M�Q0 ) (281)

by eliminating MKK using the first relation in (329). Using (281) we predict
MEc̄c = 4944 MeV, MEb̄c = 8353 MeV, MEb̄b = 11762 MeV as the new low
lying excitations of heavy pentaquarks with the preceding assignments.

6.6.3 Delta-like pentaquarks

For NQ = NQ̄ = 1, the present construction allows also for Delta-type pen-
taquarks which we identify with l = 3, nz = n⇢ = 0. Altogether, we have
one 3

2
1
2

�
, two 3

2
3
2

�
, and one 3

2
5
2

�
states, all degenerate to leading order, with

heavy flavor dependent masses

M�Q̄Q �MN � 2mQ = 0.71MKK (282)

Again we can trade MKK using the first relation in (329) to obtain the model
independent relation

M�Q̄Q = 1.57mN + 2mH + 0.57 (mH0 �M⇤Q0 ) (283)

In particular, we predict M�c̄c = 4976 MeV, M�c̄b = 8385 MeV, and M�b̄b =
11794 MeV, which are yet to be observed.

6.7 Conclusions

We have presented a top-down holographic approach to the single- and
double-heavy baryons in the variant of D4-D8 we proposed recently [165]
(first reference). To order �m0

Q
, the heavy baryons emerge from the zero

mode of a reduced (massless) vector meson that transmutes both its spin
and negative parity, to a spin 1

2 with positive parity in the bulk flavor in-
stanton. Heavy mesons and anti-mesons bind on equal footing to the core
instanton in holography in leading order in � even in the presence of the
Chern-Simons contribution. This is not the case in non-holographic models
where the anti-heavy meson binding is usually depressed by the sign flip in
the Wess-Zumino-Witten contribution [166]. Unlike in the Skyrme model,
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the bulk flavor instanton o↵ers a model independent description of the light
baryon core. The binding of the heavy meson over its Compton wavelength
is essentially geometrical in the double limit of large � followed by large mQ.

We have shown that the bound state moduli yields a rich spectrum after
quantization, that involves coupled rotational, translational and vibrational
modes. The model-independent mass relations for the low-lying single-heavy
baryon spectrum yield masses that are in overall agreement with the reported
masses for the corresponding charm and bottom baryons. The spectrum
also contains some newly excited states yet to be observed. When extended
to double-heavy baryon spectra, the holographic contruction yields a pair
of degenerate heavy iso-doublets with IJ⇡ = 1

2
1
2

�
, 12

3
2

�
assignments. The

model gives naturally a charmed pentaquark . It also predicts a number of
new pentaquarks with both hidden charm and bottom, and five new Delta-
like pentaquarks with hidden charm. The hedgehog flavor instanton when
collectively quantized, excludes the IJ⇡ = 1

2
5
2

+
assignment for Nf = 2.

The shortcomings of the heavy-light holographic approach stem from the
triple limits of large Nc and strong 0t Hooft coupling � = g2Nc, and now large
mH as well. The corrections are clear in principle but laborious in practice.
Our simple construct can be improved through a more realistic extension
such as improved holographic QCD [171]. Also a simpler, bottom-up formu-
lation following the present general reasoning is also worth formulating for
the transparency of the arguments.

Finally, it would be interesting to extend the current analysis for the
heavy baryons to the more realistic case of Nf = 3 with a realistic mass for
the light strange quark as well. Also, the strong decay widths of the heavy
baryons and their exotics should be estimated. They follow from 1/Nc type
corrections using the self-generated Yukawa-type potentials in bulk, much like
those studied in the context of the Skyrme model [24]. We expect large widths
to develop through S-wave decays, and smaller widths to follow from P-wave
decays because of a smaller phase space. Also the hyperfine splitting in the
heavy spectra is expected to arise through subleading couplings between the
emerging spin degrees of freedom and the collective rotations and vibrations.
The pertinent electromagnetic and weak form factors of the holographically
bound heavy baryons can also be obtained following standard arguments [162,
163]. Some of these issues will be addressed next.
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7 Heavy and Strange Holographic Baryons

This section is an edited version of my previous publication :
Heavy and Strange Holographic Baryons
Yizhuang Liu, Ismail Zahed (SUNY, Stony Brook)May 3, 2017. 12 pp
Phys.Rev. D96 (2017) no.5, 056027

7.1 Introduction

Fowllow the treatment of Nf = 2 heavy-light system in previous section,
in this section we will move to Nf = 3 . In subsection 2 and 3 we briefly
recall the geometrical set up for the derivation of the heavy-light e↵ective
action for three flavors in terms of the bulk DBI and CS actions. We detail
the heavy-meson interactions to the flavor instanton, and the ensuing heavy
meson bound state to the instanton in bulk in the double limit of large
coupling and heavy meson mass. In subsection 4 and 5, we use the collective
quantization approach to derive the pertinent spectra for holographic heavy
baryons and their exotics with strangeness. Our conclusions are in subsection
6. In the Appendix we briefly review the collective quantization of the light
baryons for Nf = 2, 3.

7.2 Holographic e↵ective action

7.2.1 The setup and the DBI action

Here the setup are essentially the same as for theNf = 2 case so we omit most
details. We have Nc D4 branes and Nf = 3 U shape light probe D8D̄8 flavor
brane pairs connecting smoothly in the infrared region. The heavy-light
messons are massive vectorial fields near the probe brane and the e↵ective
action on the probe light-branes consists of the non-Abelian DBI and CS
action. After integrating over the S4, the leading contribution in 1/� to the
DBI action is

SDBI ⇡ �

Z
d4xdz Tr (f(z)Fµ⌫F

µ⌫ + g(z)FµzF
⌫z) (284)

Our conventions are (�1, 1, 1, 1) with A†
M

= �AM . The warping factors are
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f(z) =
R3

4Uz

, g(z) =
9

8

U3
z

UKK

(285)

with U3
z
= U3

KK
+ UKKz2, and  ⌘ a�Nc and a = 1/(216⇡3) [157]. The

e↵ective fields in the field strengths are (M,N run over (µ, z))

FMN = 
FMN � �[M�†

N ] @[M�N ] + A[M�N ]

�@[M�†
N ] � �†

[MAN ] ��†
[M�N ]

!
(286)

The matrix valued 1-form gauge field is

A =

✓
A �

��† 0

◆
(287)

For Nf coincidental branes, the � multiplet is massless. However, their
brane world-volume supports an adjoint and traceless scalar  in addition
to the adjoint gauge field AM , which we have omitted from the DBI action
for notational simplicity. The scalar admits a quartic potential with finite
extrema and a vev v for the diagonal of  [161], leading to a Higgs-like mass
for the � multiplet

1

2
m2

H
Tr
⇣

�†
M

�M

⌘
⇠

1

2
v2Tr

⇣
�†

M
�M

⌘
(288)

The vev is related to the separation between the light and heavy branes [161],
which is about the length of the HL string. Below, mH will be taken as the
heavy meson mass for the heavy-light (0�, 1�), i.e. (D,D⇤) for charm and
(B,B⇤) for bottom. The introduction of a finite non-zero strange quark mass
will be discussed also below.

7.2.2 Chern-Simons action

For Nf > 2, the naive Chern-Simons 5-form

SCS =
iNc

24⇡2

Z

M5

Tr

✓
AF 2

�
1

2
A3F +

1

10
A5

◆
(289)
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fails to reproduce the correct transformation law under the combined gauge
and chiral transformations [181]. In particular, when addressing the Nf = 3
baryon spectra, (289) fails to reproduce the important hypercharge con-
straint [181]

J8 =
Nc

2
p
3

(290)

This issue was recently revisited in [182] where boundary contributions were
added to (289) to address these shortcomings. Specifically, the new Chern-
Simons (nCS) contribution is [182]

SnCS = SCS

+

Z

N5

1

10
Tr
�
h�1dh

�5
+

Z

@M5

↵4

�
dhh�1, A

�
(291)

Here N5 is a 5-dimensional manidold whose boundaries are @N5 = @M5 =
M4+1 �M4�1, with the asymptotic flavor gauge field

A|z!±1 = Â±h
±
= h±(d+ Â±)h±�1 (292)

The gauged 4-form ↵4 is given in [182]. Â± refer to the external gauge
fields, and h|@M5 = (h+, h�). A is assumed to be well defined throughout M5

and produces no-boundary contributions. In other words, in this gauge all
topological information is moved to the holographic boundaries at z = ±1.
We can actually work in the Az = 0 gauge, and for the instanton profile (as
discussed below) we have

(h�, h+) ⌘
⇣
1, P e�

R1
�1 Azdz

⌘
(293)

Note that in our case A ! A as defined in (358). As a result, the contribu-
tions from (289) are similar to those in the Nf = 2 case discussed in [165].
The contributions from the new terms in (291) will be detailed in the quan-
tization approach below.
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7.3 Heavy-Light Baryons

7.3.1 Bulk instanton

In the original Sakai and Sugimoto model [157] light baryons are identified
with small size flavor instantons in bulk [162]. This construction carries to
our current set up as we have recently shown for the Nf = 2 case in [165]. For
the present Nf = 3 case shown in Fig. 29, a small size instanton translates
to a flat space 4-dimensional instanton in the [1� 4] directions. Specifically,
the SU(3) flavor instanton AM and its time components are [181]

AM = diag

✓
��̄MN

xN

x2 + ⇢2
, 0

◆
(294)

A0 =
�1

8⇡2ax2

r
2

3

✓
1�

⇢2

(x2 + ⇢2)2

◆
diag(1, 1, 0)

+
1

16⇡2ax2

✓
1�

⇢2

(x2 + ⇢2)2

◆
diag

✓
1

3
,
1

3
,�

2

3

◆

where the rescaling

x0 ! x0, xM ! xM/
p

�,
p

�⇢! ⇢

(A0,�0) ! (A0,�0),

(AM ,�M) !
p

�(AM ,�M) (295)

was used. From here on M,N runs only over 1, 2, 3, z unless specified other-
wise. The instanton solution AM in (294) carries a field strength

FMN = diag

✓
2
�̄MN⇢2

(x2 + ⇢2)2
, 0

◆
(296)

7.3.2 Heavy-light e↵ective action

To order �0 the rescaled contributions describing the interactions between
the light gauge fields AM and the heavy fields �M to quadratic order split to
several contributions

L = aNc�L0 + aNcL1 + LCS (297)
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with each contribution given by

L0 = �(DM�†
N
�DN�†

M
)(DM�N �DN�M)

+2�†
M
FMN�N

L1 = +2(D0�
†
M

�DM�†
0)(D0�M �DM�0)

�2�†
0F

0M�M � 2�†
M
FM0�0

�2m2
H

�†
M

�M + S̃1

LCS = �
iNc

24⇡2
(d�†Ad� + d�†dA� + �†dAd�)

�
iNc

16⇡2
(d�†A2� + �†A2d� + �†(AdA+ dAA)�)

�
5iNc

48⇡2
�†A3� + SC(�

4, A) (298)

and

L̃1 = +
1

3
z2(Di�j �Dj�i)

†(Di�j �Dj�i)

�2z2(Di�z �Dz�i)
†(Di�z �Dz�i)

�
2

3
z2�†

i
Fij�j + 2z2(�†

z
Fzi�i + c.c.) (299)

The additional boundary contributions in (291) do not generate any new
heavy meson contribution besides those generated by the standard Chern-
Simons contributions quoted in (298).

7.3.3 � equation of motion

We now consider the bound state solution of the heavy meson field �M in
the (rescaled) instanton background 294). We note that the field equation
for �M is independent of �0 and reads

DMDM�N + 2FNM�M �DNDM�M = 0 (300)

while the (contraint) field equation for �0 depends on �M through the Chern-
Simons term
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DM(D0�M �DM�0)

�F 0M�M �
✏MNPQ

64⇡2a
KMNPQ = 0 (301)

with KMNPQ defined as

KMNPQ = +@MAN@P�Q + AMAN@P�Q

+@MANAP�Q +
5

6
AMANAP�Q (302)

7.3.4 Heavy meson limit

In the heavy meson mass limit it is best to redefine �M = �Me�imHx0 for
particles. The anti-particle case follows through mH ! �mH with pertinent
sign changes. In the double limit of � ! 1 followed by mH ! 1, the
leading contributions are of order �m0

H
from the ligh e↵ective action, and of

order �0mH from the heavy-light interaction term L1 in (298)

L1,m

aNc

= 4imH�
†
m
D0�m � 2imH(�

†
0DM�M � c.c.) (303)

and the standard Chern-Simons term in (298)

mHNc

16⇡2
✏MNPQ�

†
M
FNP�Q =

mHNc

8⇡2
�†
M
FMN�N (304)

The constraint equation (301) simplifies considerably to order mH , that is
DM�M = 0 and implying that �M is transverse in leading order in the double
limit.

7.3.5 Zero-Mode

We now observe that the heavy field equation (300) in combination with the
constraint equation (301) are equivalent to the vector zero-mode equation in
the fundamental representation. For that, we recall that the field strength
(296) is self-dual, and L0 in (298) can be written in the compact form
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L0 = �
1

2
|fMN � ?fMN |

2 (305)

using the Hodge ? product, with fMN = @[M�N ]+A[M�N ]. Therefore, the sec-
ond order field equation (300) can be replaced by the anti-self-dual condition
(first order) and the transversality condition (first order),

fMN � ?fMN = 0 and DM�M = 0 (306)

which are equivalent to

�MDM = D = 0 with  = �̄M�M (307)

The spinor zero-mode  is unique, and its explicit matrix form reads

 a

↵�
= ✏↵a��

⇢

(x2 + ⇢2)
3
2

with a = 1, 2 (308)

with explicitly �M = (�̄Mf(x)�, 0). Here �↵ is a constant two-component
spinor. We have to understand that only the first two component of the spin-
zero modes are non-zero. It can be checked explicitly that �M is a solution to
the first order equations (306). In the presence of the instanton, the spin-1
vector field binds and transmutes to a spin 1

2 spinor.

7.4 Quantization

The classical bound instanton-zero-mode breaks iso-rotational, rotational
and translational symmetries. To quantize it, we promote the solution to
a slowly moving and rotating solution. The leading contribution for large
� is purely instantonic and its quantization is standard and can be found
in [163], so we will assume it here. The quantization of the subleading �0mH

contribution involves the zero-mode and for Nf = 2 was recently addressed
in [180]. Here, we will address the new elements of the quantization for
Nf = 3.

The collective quantization method proceeds by first slowly rotating and
translating the instanton configuration in bulk using
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� ! V (aI(t))�(X0(t), Z(t), ⇢(t),�(t)) (309)

with �0 = 0. Here X0 is the center in the 123 directions and Z is the center
in the z directon. aI is the SU(3) gauge rotation moduli. The moduli is
composed of the collective coordinates X↵ ⌘ (X,Z, ⇢) and by the collective
SU(3) rotation aI . The time-dependent configuration is then introduced in
the heavy-light e↵ective action described earlier and expanded in leading
order in the time-derivatives as we now detail.

7.4.1 The new Chern-Simons contributions

The additional Chern-Simons contributions in (291) picks up from the col-
lectively quantized instanton by defining

h� = diag
�
aI(t)

�1, 1
�

h+ = h0 diag
�
aI(t)

�1, 1
�

(310)

We now note that the field A composed of the instanton solution A plus
the zero-mode solution �, carries the same topological number as the field
with the instanton solution A but � = 0. Therefore, h0 in (310) can be
represented by only the latter. With this in mind, we insert (310) in the new
contributions in (291) to obtain

SnCS = SCS �
iNc

48⇡2

Z

M4

dtTr
�
(aI

�1@taI)(h
�1
0 dh0)

3
�

(311)

The heavy-light contributions from SCS are those in (298), while the new
second contribution is identical to the one obtained in the light sector [182]

Nc

2
p
3
a8 (312)

When combined to terms emerging from the heavy sector it will give rise to
the correct hypercharge constraint as we will show next.
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7.5 Heavy contributions in leading order

There are four contributions to order �0mH from the heavy meson sector,
namely

L

aNc

= +16imH�
†@t�f

2
� 16mH�

†�f 22
p
6 + 1

6
A0

�mHf
2�†�µ��̄µ�+mH�

†�f 2 3

a⇡2

⇢2

(x2 + ⇢2)2

(313)

The second contribution is from the A0 coupling, and the third contribution
simplifies for the zero-mode

�†�µ��̄µ� = a8
8�†�
p
3

(314)

The last contribution originates from the heavy terms in naive CS term, and
also simplifies using the instanton field strength and the zero-mode

imHNc

8⇡2
�†
M
FMN�N =

i3mHNc

⇡2

f 2⇢2

(x2 + 1)2
�†� (315)

In addition to the terms retained in (313) the �†� coupling to the U(1)
flavor gauge field A0 induces a Coulomb-like correction of the form (�†�)2

as we have shown in [180]. With this in mind and after using the rescaling
�! �/

p
4aNcmH in (313) we obtain

L = +L0[aI , X↵]

+i�†@t�+
⌘ �†�

32⇡2a⇢2
�

µ (�†�)2

24⇡2aNc⇢2

+a8
Nc

2
p
3

✓
1�

�†�

Nc

◆
(316)

where the parameters ⌘, µ are given by
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⌘ ⌘ 2x+ 1 ⌘
2
p
6 + 1

3
+ 1 ⇡ 2.966 and µ =

13

12
(317)

Here L0[aI , X↵] refers to the e↵ective action density on the moduli stem-
ming from the contribution of the light degrees of freedom in the instanton
background without the a8 term [162] .

The term linear in a8 in (316) couples to the hypercharge J8 = Nc

2
p
3
(1 �

�
†
�

Nc
). So (316) can be seen as an action density of light and heavy degrees of

freedom supplemented by a hypercharge constraint, namely

L ! L0[aI , X↵] + �†i@t�+
⌘ �†�

32⇡2a⇢2
�

µ (�†�)2

24⇡2aNc⇢2

J8 =
Nc

2
p
3

✓
1�

�†�

Nc

◆
(318)

From (317) we note that ⌘ ⇡ 3 and µ ⇡ 1 which are remarkably close to
the same parameters derived in [180] for the Nf = 2 case. These terms are
inertial and not sensitive to the value of Nf .

7.5.1 Heavy-light spectra

The quantization of (318) follows the same arguments as those presented
in [162, 181] for L0[aI , X↵] as we briefly recall in the Appendix. Let H0 be the
Hamiltonian associated to L0[aI , X↵], then the full heavy-light Hamiltonian
for (318) is

H = H0[⇡I , ⇡X , aI , X↵]�
⌘ �†�

32⇡2a⇢2
+

µ (�†�)2

24⇡2aNc⇢2

(319)

with the new quantization rule for the spinor and the hypercharge constraint

�i�
†
j
+ �†

j
�i = �ij

J8 =
Nc

2
p
3

✓
1�

�†�

Nc

◆
(320)
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We recall that the statistics and parity of � were fixed in [180]. Specifically,
we note the symmetry transformation

�! U� and �M ! U⇤MN�N (321)

since U�1�̄MU = ⇤MN �̄N . So a rotation of the spinor � is equivalent to a
spatial rotation of the heavy vector meson field �M . Since � is in the spin 1

2
representation it should be quantized as a fermion. Its parity is opposite to
that of �M , hence positive. With this in mind, the total spin J is given by

~J = �~ISU(2) + ~S� ⌘ �~ISU(2) + �†~⌧

2
� (322)

Here for a general SU(3) representation, ~ISU(2) means the induced represen-
tation for the first three generators, J1,2,3 as noted in the Appendix.

The spectrum of (319) follows from the one discussed in [162, 181] and
recalled in the Appendix, with two key modifications

Q ⌘
Nc

40a⇡2
!

Nc

40a⇡2

✓
1�

5⌘

4Nc

�†�+
5µ(�†�)2

3N2
c

◆
(323)

and the change of the hypercharge as obtained in (320). The quantum states
with a single bound state NQ = �†� = 1 and the general (p, q) representation
for SU(3) and spin j are labeled by

|NQ, p, q, j, nz, n⇢i with IJ⇡ =
l

2

✓
l

2
±

1

2

◆⇡

(324)

with nz = 0, 1, 2, .. counting the number of quanta associated to the collective
motion in the holographic direction, and n⇢ = 0, 1, 2, .. counting the number
of quanta associated to the radial breathing of the instanton core, a sort of
Roper-like excitations. Following [162], we identify the parity of the heavy
baryon bound state as (�1)nz . Using (323), the mass spectrum for the bound
heavy-light states is

MNQ = M0 +NQ mH +
r

49

24
+

K

3
+

r
2

3
(nz + n⇢ + 1)MKK (325)
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with

K = +
2N2

c

5

✓
1�

5⌘NQ

4Nc

+
5µN2

Q

3N2
c

◆
�

N2
c

3

✓
1�

NQ

Nc

◆2

+
4

3
(p2 + q2 + pq + 3(p+ q))� 2j(j + 1) (326)

with MKK the Kaluza-Klein mass and M0/MKK = 8⇡2 the bulk instanton
mass. The Kaluza-Klein scale is usually set by the light meson spectrum and
is fit to reproduce the rho mass with MKK ⇠ m⇢/

p
0.61 ⇠ 1 GeV [157].

(325) is to be contrasted with the mass spectrum for baryons with no
heavy quarks or NQ = 0, where the nucleon state is idendified as NQ = 0, l =
1, nz = n⇢ = 0 and the Delta state as NQ = 0, l = 3, nz = n⇢ = 0 [162].
The radial excitation with n⇢ = 1 can be identified with the radial Roper
excitation of the nucleon and Delta, while the holographic excitation with
nz = 1 can be interpreted as the odd parity excitation of the nucleon and
Delta.

7.5.2 Single-heavy baryons

Since the bound zero-mode transmutes to a spin 1
2 , the lowest heavy baryons

with one heavy quark are characterized by nz, n⇢ = 0, 1, NQ = 1, and
(p, q, j) = (0, 1, 0) for 3̄ and (p, q, j) = (2, 0, 1) for 6 . The 3̄-plet states have
spin and parity 1

2

+
. We identify them with ⇤Q,⌅Q(3̄). The 6-plet states

have J = 1
2 ,

3
2 . We identify them with ⌃Q,⌅Q(6),⌦Q and ⌃?

Q
,⌅Q(6)?,⌦?

Q
,

respectively. In the absence of symmetry breaking, the mass spectra are
degenerate

M3̄ = +M0 +mH + 1.75MKK

+
2(n⇢ + nz) + 2

p
6

MKK (327)

M6 = +M0 +mH + 2.103MKK

+
2(n⇢ + nz) + 2

p
6

MKK (328)

or equivalently
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M3̄ �Mp=q=1,NQ=0,j=1/2 �mH = �0.570MKK

M6 �Mp=q=1,NQ=0,j=1/2 �mH = �0.236MKK

(329)

with the mass splitting M6 �M3̄ = 0.334MKK .

7.5.3 Double-heavy baryons: QQ

While the binding of a pair of heavy mesons with QQ or QQ̄ content is always
BPS-like to leading order in 1/�, the Chern-Simons contribution is twice
more attractive with the QQ content than with the QQ̄ content (see below),
although the Coulomb induced contribution penalizes the former and not the
latter. With this in mind, heavy baryons with two heavy quarks follow the
same construct with NQ = 2 or �†� ! 2 in (319-320) and J8 = 1/2

p
3. As

a result, the lowest heavy baryons with two bound heavy mesons are now
characterized by nz, n⇢ = 0, 1 and (p, q, j) = (1, 0, 0) for the flavor 3-plet with
assignment 1

2

+
, which we identify as ⌅QQ with u, d light content, and ⌦QQ

with s content. To this order, their degenerate masses are given by

M3 �Mp=q=1,NQ=0,j=1/2 � 2mH = �0.844MKK (330)

7.5.4 Double-heavy baryons: QQ̄

For heavy baryons containing also anti-heavy quarks we note that a rerun
of the preceding arguments using instead the reduction �M = �Me+imHx0 ,
amounts to binding an anti-heavy-light meson to the bulk instanton also in
the form of a zero-mode in the fundamental representation of spin, much like
the heavy-light meson binding. Most of the results are unchanged except for
pertinent minus signs. For instance, when binding one heavy-light and one
anti-heavy-light (318) now reads
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L = L0[aI , X↵]

+�†
Q
i@t�Q +

⌘

32⇡2a⇢2
�†
Q
�Q

��†
Q̄
i@t�Q̄ �

⌘

32⇡2a⇢2
�†
Q̄
�Q̄

�

µ(�†
Q
�Q � �†

Q̄
�Q̄)

2

24⇡2aNc⇢2
(331)

with the hypercharge constraint

J8 =
Nc

2
p
3

 
1�

�†
Q
�Q

Nc

+
�†
Q̄
�Q̄

Nc

!
(332)

The mass spectrum for baryons with NQ heavy-quarks and NQ̄ anti-heavy
quarks is the same as in (325) with the substitution NQ ! NQ � NQ̄ to
the present order of the analysis or �0mH . For NQ = NQ̄ = 1 the hyper-
charge constraint is simply J8 =

p
3/2. Therefore the lowest states carry

(p, q, j) = (1, 1, 1/2) and are identified with the baryonic states in the 8-plet
representation with the J⇡ assignments 1

2

�
and 3

2

�
, and (p, q, j) = (3, 0, 3/2)

in the 10-plet representation with J⇡ assignments (one) 5
2

�
, (two) 3

2

�
and

(one) 1
2

�
. Their masses are given by

M8
Q̄Q

= MN + 2mH +
2(nz + n⇢)

p
6

MKK

M10
Q̄Q

= MN + 2mH + 0.386MKK +
2(nz + n⇢)

p
6

MKK

(333)

with the mass splitting M10
Q̄Q

�M8
Q̄Q

= 0.386MKK .

7.6 Strange quark mass correction

To compare the previous results for single-heavy and double-heavy baryons
to some of the reported physical spectra, we need to address the role of a
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finite strange quark mass. In so far, the light flavor branes D8̄-D8 only
connect at UKK because of the bulk gravity induced by D4, thereby sponta-
neously breaking chiral symmetry. To break explicitly chiral symmetry, say
by introducing a finite strange quark mass, an additional bulk D6 brane can
be introduced to connect D8̄ to D8 [183, 184]. For the Nf = 3 case with
mu = md = 0 and finite ms, the worldsheet instanton in D6 interpolating
D8̄ to D8, induces an explicit light mass breaking term for the light baryons,
which takes the following form on the moduli [184]

HSB = ⌧⇢3(1�D88(aI)) (334)

with ⌧ ⇡ |ms hs̄si |. Aside from the dependence on the moduli parameter
through ⇢3, the explicit symmetry breaking term (334) is standard. An esti-
mate of ⌧ follows from holography, but here we will use ⌧ as a free parameter
to be adjusted below through the baryonic spectrum. (334) will be treated in
perturbation theory by averaging ⇢3 using the radial baryonic wavefunctions
�n⇢,K discussed in the Appendix. For n⇢ = nz = 0, the averaged result is

⌦
⇢3
↵
n⇢=0,K

=
1

f 3
⇡

 p
6

4⇡3

! 3
2 �
⇣
1 +

q
49
4 + 2K+ 3

2

⌘

�
⇣
1 +

q
49
4 + 2K

⌘ (335)

The emergence of the pion decay constant f⇡ = 93 MeV follows from the
holographic ⇢-wavefunction as discussed in the Appendix. For the 3̄-plet
and 6-plet representations, we have specifically

⌦
⇢3
↵
3̄
=

1

f 3
⇡

 p
6

4⇡3

! 3
2

⇥ 13.65

⌦
⇢3
↵
6
=

1

f 3
⇡

 p
6

4⇡3

! 3
2

⇥ 16.70 (336)

The corresponding mass shifts induced by the explicit symmetry breaking
term (334) on the heavy-light baryonic spectra is then

�Mi = bi(1� ai)
⌧

f 3
⇡

 p
6

4⇡3

! 3
2

⌘ bi(1� ai)m0 (337)
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with the representation dependent parameters

bi =
�(1 +

q
49
4 + 2Ki +

3
2)

�(1 +
q

49
4 + 2Ki)

ai = hpq, j|D88|pq, ji (338)

For the specific representations of relevance to our analysis we have

aN =
3

10
, bN = 18.97

a⇤ =
1

4
, a⌅3 = �

1

8

a⌃ =
1

10
, a⌅6 = �

1

20
, a⌦ = �

1

5
(339)

7.6.1 Single-heavy baryon spectrum

Combining all the previous results for the heavy-light masses, including the
correction induced by the strange quark mass symmetry breaking term (334)
yield the following mass spectrum for the single-heavy baryons

m⇤Q = mN +mH � 0.57MKK � 3.04m0

m⌅(3̄)Q = mN +mH � 0.57MKK + 2.08m0

m⌃Q = mN +mH � 0.236MKK + 1.75m0

m⌅(6)Q = mN +mH � 0.236MKK + 4.25m0

m⌦Q = mN +mH � 0.236MKK + 6.76m0 (340)

In the original Sakai and Sugimoto analysis, the Kaluza-Klein parameter is
fixed by the light rho mass as indicated earlier withMKK ⇡ 1 GeV. Although
we will use this value for all the heavy-light baryon masses to follow, we note
that this value of MKK was noted to be large in [162, 181]. The nucleon
mass mN = 938 MeV is set to its empirical value. The symmetry breaking
parameter m0 will be fitted to reproduce the mass splitting between the
nucleon in the octet and the ⌦� = sss in the decuplet as it is the baryon
with the largest strangeness. Specifically, we set
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m⌦� �mN = 0.386MKK + 15.32m0 = 732MeV (341)

which fixes m0 = 22.6 MeV.
So for nz = n⇢ = 0, the lowest heavy-light mass spectra corrected in first

order by the light strange quark symmetry breaking, with their J⇡ assign-
ments are

⇤Q(
1

2
)+,M = mN +mH � 0.57MKK � 3.04m0

⌅3̄
Q
(
1

2
)+,M = mN +mH � 0.57MKK + 2.08m0

⌃Q(
1

2
)+,M = mN +mH � 0.236MKK + 1.75m0

⌅6
Q
(
1

2
)+,M = mN +mH � 0.236MKK + 4.25m0

⌦Q(
1

2
)+,M = mN +mH � 0.236MKK + 6.76m0

⌃?

Q
(
3

2
)+,M = mN +mH � 0.236MKK + 1.75m0

⌅6?
Q
(
3

2
)+,M = mN +mH � 0.236MKK + 4.25m0

⌦?

Q
(
3

2
)+,M = mN +mH � 0.236MKK + 6.76m0

(342)

The lowest excited states of these heavy-light baryons carry finite n⇢, nz. For
instance, for n⇢ = 1, nz = 0 we have the even-parity or Roper-like excitation
corresponding to ⌦EQ(

1
2)

+, and for n⇢ = 0 and nz = 1 we have the odd-parity
excitation corresponding to ⌦Q(

1
2)

�. Their masses are

⌦Q(
1

2
)�,M = mN +mH + 0.580MKK + 6.76m0

⌦EQ(
1

2
)+,M = mN +mH + 0.580MKK + 10.74m0

(343)

The masses of the single-heavy light baryons with charm follow by setting the
charm heavy meson mass mH to its empirical value mH = mD = 1870 MeV,
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and similarly for the bottom heavy meson mass mH = mB = 5279 MeV. The
specifics mass values are quoted below in [MeV] with the measured masses
from [185] indicated in bold numbers.

7.6.2 Charm baryon masses [MeV]

⇤c(
1

2
)+,M = 2117 [2286]

⌅3̄
c
(
1

2
)+,M = 2320 [2468]

⌃c(
1

2
)+,⌃?

c
(
3

2
)+,M = 2641 [2453,2518]

⌅6
c
(
1

2
)+,⌅6?

c
(
3

2
)+,M = 2740 [2576,2646]

⌦c(
1

2
)+,⌦?

c
(
3

2
)+,M = 2840 [2695,2766]

⌦c(
1

2
)�,⌦?

c
(
3

2
)�,M = 3656 [3050,3066]

⌦Ec(
1

2
)+,⌦?

Ec
(
3

2
)+,M = 3813 [3090,3119] (344)

7.6.3 Bottom baryon masses [MeV]

⇤b(
1

2
)+,M = 5580 [5619]

⌅3̄
b
(
1

2
)+,M = 5696 [5799]

⌃b(
1

2
)+,⌃?

b
(
3

2
)+,M = 6022 [5813,5834]

⌅6
b
(
1

2
)+,⌅6?

b
(
3

2
)+,M = 6079 [⇤ ⇤ ⇤⇤,5955]

⌦b(
1

2
)+,⌦?

b
(
3

2
)+,M = 6153 [6048, ⇤ ⇤ ⇤⇤]

⌦b(
1

2
)�,⌦?

b
(
3

2
)�,M = 6951

⌦Eb(
1

2
)+,⌦?

Eb
(
3

2
)+,M = 7041 (345)
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7.7 Double-heavy baryon spectrum

The double-heavy baryons with hidden charm or bottom are currently re-
ferred to as pentaquarks. Their masses in the 8-plet of the flavor represen-
tation (333) corrected by the strange quark mass are

N
( 12 ,

3
2 )

�

Q̄Q
, M = mN + 2mH

⇤
( 12 ,

3
2 )

�

Q̄Q
, M = mN + 2mH + 3.80m0

⌃
( 12 ,

3
2 )

�

Q̄Q
, M = mN + 2mH + 7.59m0

⌅
( 12 ,

3
2 )

�

Q̄Q
, M = mN + 2mH + 9.48m0 (346)

The penta-quark masses in the 10-plet representation corrected by the strange
quark mass are

�
( 12 ,

3
2 ,

5
2 )

�

Q̄Q
, M = mN + 2mH + 0.386MKK + 6.74m0

⌃
?( 12 ,

3
2 ,

5
2 )

�

Q̄Q
, M = mN + 2mH + 0.386MKK + 9.60m0

⌅
?( 12 ,

3
2 ,

5
2 )

�

Q̄Q
, M = mN + 2mH + 0.386MKK + 12.46m0

⌦
( 12 ,

3
2 ,

5
2 )

�

Q̄Q
, M = mN + 2mH + 0.386MKK + 15.32m0

(347)

The double heavy baryons consisting of two heavy bound mesons with
explicit charm or bottom will be referred to by ⌅QQ and ⌦QQ in the flavor
3-plet representation as we noted earlier. Their strangeness corrected masses
are

⌅
( 12 )

+

QQ
,M = mN + 2mH � 0.844MKK � 2.67m0

⌦
( 12 )

+

QQ
,M = mN + 2mH � 0.844MKK � 0.54m0 (348)

It is clear, that the holographic construct also describes their excited Roper-
like with even parity as well as their odd parity partners, which can be
retrieved from our formula.
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7.7.1 Charm penta-quark masses [MeV]

Nc̄c(
1
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2
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,
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2
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7.7.2 Mixed penta-quark masses [MeV]
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7.7.3 Bottom penta-quark masses [MeV]

Nb̄b(
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2
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⌃b̄b(
1

2
,
3

2
)�, M = 11670

⌅b̄b(
1

2
,
3

2
)�, M = 11712
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7.7.4 Charm and bottom 3-plet masses [MeV]

⌅cc(
1

2
)+, M = 3776 [3519]

⌦cc(
1

2
)+, M = 3848

⌅cb(
1

2
)+, M = 7184

⌦cb(
1

2
)+, M = 7257

⌅bb(
1

2
)+, M = 10584

⌦bb(
1

2
)+, M = 10657 (352)

7.8 Conclusions

We have presented a top-down holographic approach to the single- and
double-heavy baryons in the variant of D4-D8 we proposed recently [165]
(first reference). To order �m0

H
, the heavy baryons emerge from the zero
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mode after binding a heavy meson in the multiplet (0�, 1�) to the instan-
ton. Remarkably, in the bulk instanton field the spin 1 and odd parity heavy
meson transmutes equally to a spin 1

2 and even parity massless fermion and
anti-fermion. At subleading order, the Chern-Simons term is attractive for
the bound meson with a heavy quark content and repulsive for the bound
meson with heavy anti-quark content.

One of the key di↵erences between the Nf = 2 and Nf = 3 case is the
role played by the amended form of the Chern-Simons term which results in
a good hypercharge quantization rule [181, 182]. We have shown that the
rule gets modified by the presence of the bound zero mode states, leading
to a rich heavy-light spectra for single-heavy and double-heavy baryons with
hidden charm and bottom. In particular, the formers follow from the 3̄ and
6 flavor representations, while the latters from the 8 and 10 representations
for the lowest states. The holographic set up allows for a simple description
of the low-lying odd-parity and Roper-like excitations of the heavy baryons.
Our results for Nf = 3 with massive strangeness confirm and extend our
previous findings for massless Nf = 2.

To compare our results with currently known heavy-light charm and me-
son spectra, it is necessary to account for the light strange quark mass.
In holography this is induced by a worldsheet instanton that connects D8
and D8̄ [183]. By accounting for this correction in leading order perturba-
tion theory, we have found reasonable agreement for the lowest single-heavy
baryons with a single adjustable parameter, namely the overall strength of
the symmetry breaking term. The holographic model describes 2 neutral
⌦0

c
,⌦⇤0

c
states with 1

2

+
, 32

+
assignments as the odd parity partners of the low-

est ⌦0
c
,⌦⇤0

c
states, and 2 Roper-like neutral states with 1

2

+
, 32

+
assignments

as the even parity partners also of the lowest ⌦0
c
,⌦⇤0

c
states. The 1

2

� 3
2

�
are

predicted to be lighter than the excited 1
2

+ 3
2

+
states, however both pairs are

found to be heavier than the 5 neutral ⌦0
c
states reported recently by the

LHCb collaboration.
The holographic set up for the heavy baryons is remarkable by the limited

number of parameters it carries. Once the initial parameter  is traded for
the pion decay constant f⇡, only the symmetry breaking parameter m0 was
left to be fixed in either the light or heavy sector. We choose the latter to
fix it. Clearly, the model can and should be made more realitic through the
use of improved holographic QCD [171].

The shortcomings of the heavy-light holographic approach stem from the
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triple limits of large Nc, strong 0t Hooft coupling � = g2Nc, and heavy me-
son mass. The corrections in 1/mH are straighforward but laborious and
should be studied as they shed important light on the hyperfine type split-
tings. Also, it should be useful to explore the sensitivity of our results by
relaxing the value of MKK as fixed in the light meson sector and addressing
the strangeness mass correction beyond leading order perturbation theory.
The one-meson radiative decays of the heavy baryons and their exotics can
be addressed in this model for further comparison with the experimentally
reported partial widths.
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Part IV: Random matrix models for QCD

8 Polaykov line model in 1+2,3 dimensions

This section is an edited version of my publication:
Hydrodynamics of the Polyakov line in SU(Nc) Yangills
Yizhuang Liu (Stony Brook U.), Piotr Warcho(Jagiellonian U.), Ismail Za-
hed (SUNY, Stony Brook). May 8, 2015. 4 pp. Phys.Lett.B753 (2016) 65-68

1. Polyakov line in 1 + 2 dimensions. The matrix model partition
function for the eigenvalues of the Polyakov line for SU(Nc) in 1+2 dimensions
was discussed in [87]. If we denote by diag(ei✓1 , ..., ei✓Nc ) with

P
i
✓i = 0 the

gauge invariant eigenvalues of the Polyakov line, then [87]

Z[↵, �] =

Z NcY

i=1

d✓i

NcY

i<j

|zij|
�(T )e�↵(T )

P
i<j V (|zij |) (353)

with zij = zi � zj and zi = ei✓i . The perturbative potential V (zij) is
center symmetric and quadratic in leading order or V (|zij|) ⇡ |zij|2, with
↵(T ) = T 2 V2/2⇡ and V2 the spatial 2-volume [87]. The mass expansion of
the one-loop determinant gives �(T ) = m2

D
V2/⇡ [87]. The Debye mass is

self-consistently defined as m2
D
= Ncg2T (ln(T/mD) +C)/2⇡ [94] to tame all

infra-red divergences, with C ⇡ 1.3 from lattice simulations [95, 96].
(353) can be regarded as the normalization of the squared and real many-

body wave-function  0[zi] which is the zero-mode solution to the Shrodinger
equation H0 0 = 0 with the self-adjoint squared Hamiltonian

H0 ⌘

NcX

i=1

(�@i + ai) (@i + ai) (354)

with @i ⌘ @/@✓i and the pure gauge potential ai ⌘ @iS. Here S[z] = �ln 0[z]
is half the energy in the defining partition function in (353). In (354) the
mass parameter is 1/2.
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2. Hydrodynamics. We can use the collective coordinate method
in [91] to re-write (354) in terms of the density of eigenvalues as a collective
variable ⇢(✓) =

P
Nc

i=1 �(✓ � ✓i). For that, we re-define H0 ! H through
a similarity transformation to re-absorb the diverging 2-body part induced
by the Vandermond contribution � =

Q
i<j

|zij|�(T ), i.e.  =  0/
p

� and
p

�H = H0

p
�. Now H is of the general form discussed in [91] and is

amenable after some algebra to

H =

Z
d✓ (@✓⇡⇢ @✓⇡ + ⇢u[⇢]) (355)

with the potential-like contribution

u[⇢] =

✓
A(✓)�

⇡�(T )⇢H
2

+
1

2
@✓ln⇢

◆2

⌘ A2 (356)

Here

A(✓) =
1

2
↵(T )

Z
d✓0⇢(✓0) @✓V

✓
2 sin

✓
✓ � ✓0

2

◆◆
(357)

and ⇢H is the periodic Hilbert transform of ⇢

[⇢]H ⌘ ⇢H(✓) =
1

2

P

⇡

Z
⇢(✓0) cotan

✓
✓ � ✓0

2

◆
(358)

As conjugate pairs, ⇡(✓) and ⇢(✓) satisfy the equal-time commutation rule
[⇡(✓), ⇢(✓0)] = �i (�(✓ � ✓0)� 1/2⇡). We identify the collective fluid velocity
with v = @✓⇡ and re-write (355) in the more familiar hydrodynamical form

H ⇡

Z
d✓⇢(✓)

�
v2 + u[⇢]

�
⇡

Z
d✓⇢(✓) |v + iA|

2 (359)

modulo ultra-local terms. The Heisenberg equation for ⇢ yields the current
conservation law @t⇢ = �2@✓ (⇢v), and the Heisenberg equation for v gives
the Euler equation
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@tv = i[H, v] = (360)

�@✓
�
v2 +A2

� @✓A�A@✓ln⇢+ ⇡�[A⇢]H � 2↵[A⇢]S
�

with the sine-transform [A⇢]S =
R
sin(✓ � ✓0)A(✓0)⇢(✓0). Note that all the

relations hold for large but finite Nc.

3. Hydro-static solution. The static hydrodynamical density follows
from the minimum of (358) with v(✓) = 0,

�(T )⇡⇢H(✓)� @✓ln⇢(✓) = 2A(✓) (361)

To solve (361), we insert the leading quadratic contributionA(✓) ⇡ 2↵(T )sin2(✓/2)
in (361)

⇢⇢H � a@✓⇢ = bc1⇢ sin(✓) (362)

with a ⌘ 1/⇡�(T ), b ⌘ 2↵(T )/�(T ) and c1 the first moment of the density
or ⇡c1 ⌘

R 2⇡

0 ⇢(✓)cos✓d✓. Let ⇢0 = Nc/2⇡ be the uniform eigenvalue density
and ⇢1 = ⇢� ⇢0 its deviation. Consider the Cauchy transform

G(z) =
1

⇡i

Z

C

⇢1(⌘)

⌘ � z
d⌘ (363)

with ⌘ = ei✓. The contour C is counter-clockwise along the unit circle. G(z)
is a holomorphic function in the complex z-plane. Let G+ and G� be its
realization inside and outside C respectively, so that

G±(z ! ei✓) = ±⇢1(✓) + i⇢H(✓) (364)

We now carry the Hilbert transform on both sides of (362). Setting G(z) =
G+(z) and using 2[⇢1⇢H ]H = ⇢2

H
� ⇢21 , we have for (362)

1

2
G2 + (⇢0 �

1

2
bc1(z � z�1))G+ az@zG = bc1⇢0z +

1

2
bc21

(365)
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on the boundary C, thus within the circle. Here, we should require G(z =
0) = 0 to ensure that ⇢1 integrates to zero.

a ⇡ 1/V2 is subleading and will be dropped. Thus (365) is algebraic
in G(z). Since ⇢(✓) = ⇢0 + ReG+(z = ei✓), careful considerations of the
singularity structures of the quadratic solutions to (365) yield (⇥ is a step
function)

⇢(✓) =
p

bc1(cos✓ + 1)
1
2 (cos✓ � cos✓0)

1
2 ⇥(|✓0|� |✓|)

(366)

The analytic properties of G(z) fix c1/⇢0 = 1+ (1� 1/b)
1
2 and ✓0 at cos ✓0 =

1 � 2⇢0/bc1. For b < 1 the non-uniform solution with ⇢1 6= 0 is absent. For
b � 1, c1 ! 2⇢0 and

⇢(✓) !
Nc

2⇡

p
8b� 4b2✓2 (367)

Therefore (366) interpolates between a uniform density distribution ⇢0 (con-
fined phase) and a Wigner semi-circle (deconfined phase) with a transition
at b = 1 or Tc = mD. In 1 + 2 dimensions the fundamental string tension is
given to a good accuracy by

p
�1/g2Nc = ((1 � 1/N2

c
)/8⇡)

1
2 [99]. Thus the

ratio in 1 + 2 dimensions

Tc
p
�1

=
C

2⇡

✓
8⇡

1� 1/N2
c

◆ 1
2

!

r
2

⇡
C (368)

with C ⇡ 1.3 [95, 96]. In Fig. 30 we show the behavior of (368) (upper curve)
versus Nc, in comparison to the numerical fit Tc/

p
�1 = 0.9026 + 0.880/N2

c

to the lattice results (lower curve) in [100]. Amusingly, (368) at large Nc is
consistent with

p
3/⇡ in the string model [97].

4. Dyson Coulomb gas. We note that (361) coincides with the saddle
point equation to (353) by re-writing it using Dyson charged particle analogy
on S1 with the energy 2S[z] =

P
i<j

G(zij) and the pair interaction

G(zij) = �ln|zij|
�(T ) + ↵(T )V (|zij|) ⌘ G(✓i � ✓j) (369)
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Figure 30: Tc/
p
�1 versus Nc in (368) (upper curve) compared to the numer-

ical fit to the lattice results (lower curve) from [100].

At large Nc the ensemble described by (353) is su�ciently dense to allow the
change in the measure. Following Dyson [120] we obtain

Z[↵, �] !

Z
D⇢ e��[↵,�;⇢] (370)

with the e↵ective action

�[↵, �; ⇢] =
1

2

Z
⇢(✓)G(✓ � ✓0)⇢(✓0)

�

✓
�(T )

2
� 1

◆Z
d✓⇢(✓)ln

✓
⇢(✓)

⇢0

◆
(371)

The � contribution is the self Coulomb subtraction and is consistent with the
subtraction in the Hilbert transform. The saddle point equation ��/�⇢ = 0
following from (370-371) is in agreement with the hydro-static equation (361),

d

d✓

��[↵, �; ⇢]

�⇢(✓)
= 2A = 0 (372)

5. Hydrodynamical instanton. The fixed time zero energy solution
to (359) is an instanton with imaginary velocity v = �iA. We have checked

154



that this is a solution to (360) for all times. The current j ⌘ ⇢v = �i⇢A is
conserved.Thus @⌧⇢� 2@✓(⇢A) = 0 or

@⌧⇢+ �(T )@✓(⇡⇢⇢H) = @2
✓
⇢+ 2@✓(⇢A(✓)) (373)

for Euclidean times ⌧ = it. For A = 0 and �(T ) = 2, (373) agrees with
the viscid Burger0s equation describing large Wilson loops in 1 + 1 dimen-
sions [176]. Following [120] we identify ⌧ with the stochastic (Langevin)
time. (373) describes the stochastic relaxation of the eigenvalue density of
the Polyakov line (out of equilibrium) to its asymptotic (in equilibrium)
hydro-static solution.

6. Sound waves. The hydrodynamical action follows from standard
procedure.The momentum ⇡(✓) = (1/@✓)v is canonically conjugate to the
density ⇢, and the Lagrange density is L = ⇡@t⇢ � H. Thus the action
S =

R
dtd✓ ⇢(✓) (v2 � u[⇢]), which is linearized by

⇢ ⇡ ⇢0(✓) + 2@✓' and ⇢v ⇡ �@t' (374)

Inserting (374) into S yields

S2 =

Z
dt

d✓

⇢0(✓)

�
(@t')

2
� ⇢20(✓)W

2[']
�

(375)

with the potential

W ['] = 2↵(T )[@✓']S � ⇡�(T )[@✓']H + @✓

✓
@✓'

⇢0(✓)

◆
(376)

For constant ⇢0 and large Nc, (375) simplifies to

S2 ⇡ m2
D
V2

Z
dtd✓

�
(@t')

2
� (@✓')

2
�

(377)

after the rescaling vst ! t with vs = ⇡⇢0�(T ). (377) describes sound waves
in the large Nc space of holonomies.
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7. Z(Nc) bubble. In a de-confined phase of infinite volume, the
Yang-Mills ground state settles in one of the degenerate Z(Nc) vacua. In
a finite volume, bubbles of di↵erent vacua may form [102]. Consider a de-
confined bubble of volume V2 immersed in a confined volume V2. In V2 all
the eigenvalues are localized initially within a small �✓ around the origin
with ⇢(⌧ = 0, ✓) = Nc/�✓ ⌘ ⇢B, and zero otherwise.

Using this piece-wise wave as an initial condition we solve (373) with
A = 0 for simplicity. For large times ⌧ , the result is

⇢(⌧, ✓) ⇡ ⇢0 �

✓
2

⇡
⇢B sin

✓
�✓

2

◆◆
cos ✓ e�vs⌧ (378)

which shows the relaxation of the piece-wise wave over a time ⌧ ⇡ 1/vs set
by the speed of sound. Using (378) in S yields the Euclidean action estimate
for small �✓

SE(V2) ⇡ V2

✓
⇡mD⇢B sin

✓
�✓

2

◆◆2

! V2

⇣⇡
2
NcmD

⌘2
(379)

The bubble formation probability or fugacity is e�SE(V2).

8. Polyakov line in 1 + 3 dimensions. To extend our analysis to
1 + 3 dimensions, we approximate the Yang-Mills thermal state by a dense
plasma of dyons and anti-dyons [83, 111]. This semi-classical description
reproduces a number of key features of the Yang-Mills phase both in the
confined (center-symmetric) and de-confined (center-broken) phase. There
are two key di↵erences with the 1 + 2 dimensional partition function in (1).
First the many-body energy 2S[z] = �2ln 0[z] in (1) is now shifted

2S[z] ! 2S[z]� �(T )
NcY

i

(✓i+1 � ✓i)
1
Nc (380)

with �(T ) = 4⇡NcfV3 and f = 4⇡⇤4/Tg4 the dyon fugacity [83]. Second and
more importantly �(T ) = 2 and is not extensive with the spatial 3-volume
V3. Finally, ↵(T ) = T 3V3/3. Since (✓i+1 � ✓i) ⇡ 1/2⇡⇢(✓i), then in the
continuum the additional string of factors in (380) is

156



NcY

i

(✓i+1 � ✓i)
1
Nc ! e

1
Nc

R
d✓⇢(✓)ln(1/2⇡⇢(✓)) (381)

With this in mind, a re-run of the preceding arguments yields the Hamilto-
nian in (355-356) with the shifted potential

A ! A+
�(T )

4⇡N2
c

e��0[⇢]@✓ln⇢(✓) (382)

and Ncln�0[⇢] =
R
d✓⇢(✓)ln(⇢(✓)/Nc). The hydro-static equation (361) now

reads

�⇡⇢H(✓)� 2A(✓) =

✓
1 +

�(T )

4⇡N2
c

e��0[⇢]

◆
@✓ln⇢(✓) (383)

The � = 2 contribution is now sub-leading and can be dropped. The corre-
sponding solution to (383) is a localized density for ⇡c1 =

R 2⇡

0 d✓⇢(✓)cos✓ 6= 0,
and a uniform density ⇢0 = Nc/2⇡ for c1 = 0. Specifically

⇢(✓)

⇢0
=

e
8⇡↵�0

�0 c
0cos✓

I0(
8⇡↵�0
�0 c0)

(384)

with c0 = c1/Nc and �0 = �/N3
c
. The two parameters ⌘ = 8⇡↵(T )/�0 and

x = c0 ⌘�0 are fixed by the transcendental equations

I1(x)

I0(x)
=

⇡x

⌘�0
and

I1(x)

I20 (x)
ex

I1(x)
I0(x) =

2⇡2x

⌘
(385)

A solution exists only for �0 < 2↵(T )/⇡. Else the density is uniform.
Thus the transition temperature from center symmetric (confining) to center-
broken (deconfining) occurs for ↵(Tc)/�(Tc) = ⇡/2N3

c
or T 4

c
= 3

8⇡
⇤4

�2 with
� = g2Nc/8⇡2. For the dyon model, the fundamental string tension is given
by �1 = (Nc/⇡) sin(⇡/Nc)⇤2/� [83]. Thus the model independent ratio in
1 + 3 dimensions
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Tc
p
�1

=

✓
3⇡

8N2
c
sin2(⇡/Nc)

◆ 1
4

!

✓
3

8⇡

◆ 1
4

(386)

(386) compares favorably to the lattice results [101] even for small Nc as
shown in Fig. 31. At large Nc, (386) is consistent with the value of

p
3/2⇡

in the string model [97].

Figure 31: Tc/
p
�1 versus Nc in (386). The dots are the lattice results

from [101].

9. Conclusions. The hydrodynamical description of the Polyakov line
captures aspects of the center dynamics in Yang-Mills theory in terms of the
gauge invariant density of eigenvalues. The hydro-static equations yield so-
lutions that interpolate between a center symmetric (confining) and a center-
broken (de-confining) phase. The transition temperatures normalized to the
string tension compare well to the lattice results over a broad range ofNc, and
asymptote the string model results at Nc = 1. The hydrodynamical set-up
supports a hydrodynamical instanton that describes the stochastic relaxation
of the eigenvalues of the Polyakov line viewed as a fluid. The fluid supports
sound waves that can be used to estimate the probability of formation of
Z(Nc) bubbles. The relaxation of a fluid of holonomies across the critical
temperature may prove useful for understanding the onset of equilibration in
a Yang-Mills plasma.
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9 Chiral matrix evolution at finite chemical
potential.

This section is an edited version of my publication :
Chiral Random Matrix Model at Finite Chemical Potential: Characteristic
Determinant and Edge Universality
Yizhuang Liu (Stony Brook U.), Maciej A. Nowak (Jagiellonian U. (main)),
Ismail Zahed (SUNY, Stony Brook). Feb 2, 2016. 29 pp. Nucl.Phys.B909
(2016) 14-42

9.1 Introduction

The organization of this section is as follows: In subsection II, we review
the matrix model description of the partition function for Nf flavors at fi-
nite µ and its phase quenched approximation. In subsection III we show
that a pertinent characteristic determinant is the phased quenched matrix-
model partition function for Nf = 4. We follow the recent work analysis
in [116] and identify a mathematical time with a continuous deformation of
the harmonic trap. We explicit the evolution equation for the characteristic
determinant and show that it is parabolic asymptotically. In subsection IV
we use the WKB method to solve the evolution equation for the boundary of
the eigenvalue droplet in leading order. In subsection V we derive an exact
solution for the evolution of the characteristic determinant using the method
of characteristics. In subsection VI we develop a semi-classical expansion
of the exact solution to explicit the universal character of the edges of the
droplet of complex Dirac eigenvalues. At the chiral point, the characteristic
determinant in the microscopic limit follows from a universal Bessel kernel.
Our conclusions are in subsection VII. In Appendix I we detail an alternative
scaling law for the characteristic determinant on the real edge of the complex
spectrum. In Appendix II, we briefly quote the results for the characteristic
determinant following from a 2-matrix model and confirm its microscopic
universality at the chiral point.

9.2 Chiral Matrix Model

The low lying eigenmodes of the QCD Dirac operator capture some aspects of
the spontaneous breaking of chiral symmetry both in vacuum and in matter.
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Remarkably, their fluctuations follow by approximating the entries in the
Dirac operator by purely random matrix elements which are chiral (paired
spectrum) and fixed by time-reversal symmetry (Dyson ensembles). At finite
µ the Dirac spectrum on the lattice is complex [122, 123]. The matrix models
at finite µ [110, 112] capture this aspect of the lattice spectra and the nature
of the chiral phase transition [103, 114, 115].

In this section, we will briefly review the salient features of the standard
or 1-matrix model and explicit the relationship between the chiral Dirac en-
semble and a deformed Wishart ensemble both at finite µ. For that, consider
the 1-matrix model at finite chemical potential for Nf fundamental quarks
in the complex representation or � = 2 [110, 111]

ZNf
[⌧, z = �imf , µ] =

D
det (z�D)Nf

E

⌘

Z
dT dT† P(⌧,T) det

✓
z T� iµ

T†
� iµ z

◆Nf

(387)

for equal quark masses mf in the complex representation. Here

P(⌧,T) = e�
N
⌧ Tr(T†T) (388)

and T is (N + ⌫)⇥N valued complex matrix. ⌫ accounts for the di↵erence
between the number of zero modes and anti-zero modes. The chiral Dirac
matrix D in (387) has ⌫ unpaired zero modes and N paired eigenvalues ±izj
in the massless limit. The paired eigenvalues delocalize and are represented
by (387). The unpaired zero-modes decouple. Throughout we will set ⌫ =
0 and T is a square complex matrix. In the vacuum, the Banks-Casher
formula [105] fixes the dimensionful parameter to a constant ⌧ ! 1/a with
p
a = |q†q|0/n in terms of the massless quark condensate and the density of

zero modes n = N/V4.
In Fig. 32 we display the distribution of eigenvalues following from the

1-matrix model with T sampled from a Gaussian ensemble of 200 ⇥ 200
matrices with ⌫ = 0 and µ = 0.9. The eigenvalue distribution forms a
connected droplet in the z-plane for µ < µc =

p
⌧ , and splits into two

droplets symmetric about the real-axis for µ > µc =
p
⌧ , restoring chiral

symmetry [110, 111]. In the spontaneously broken phase, all droplets are
connected and symmetric about the real-axis. Some of these feature are
shared by the lattice droplets of Dirac eigenvalues [122, 123].
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Figure 32: Eigenvalue distribution for the chiral Dirac matrices D for µ/µc =
0.9 and ⌧ = 1.

The complex nature of the eigenvalues entering in the determinant in
(387) yields to the so-called sign problem when evaluating the complex par-
tition function. In lattice numerical analyses, the phase quenched partition
function whereby the phase of the determinant is dropped is usually used.
In the 1-matrix model this amounts to using

ZNf
[⌧, z = �imf , µ] =

D
det |z�D|

Nf

E
(389)

where the averaging is carried using (388). In leading order in large N ,
the distribution of eigenvalues and its boundaries are the same for both the
unquenched and quenched partition functions since the phase factor is sub-
leading in 1/N . If we set z = z2 + µ2, (389) can be re-written as

ZNf
[⌧, z, µ] =

⌧
|det (z �W)|

Nf
2

�
(390)

with the deformed Wishart matrix

W = T†T� iµ(T† +T) (391)

The eigenvalue distribution for the deformed Wishart matrices (391) is shown
in Fig. 33 for 20⇥20 matrices sampled from a similar Gaussian ensemble with
µ/µc = 0.9. The droplet spreads and stretches vertically for increasing µ but
does not break. The density of eigenvalues within the droplets in Figs. 32, 33
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breaks spontaneously conformal symmetry [110, 111]. This breaking is best
captured through the following regulated partition function

ZNf
[⌧, z, w, µ] ⌘

⌧�
det
�
|z �W|

2 + ww
��Nf

4

�
(392)

which gives the partition function in the double limit

ZNf
[⌧, z, µ] = lim

w!0
lim

N!1
ZNf

[⌧, z, w, µ] (393)

The measure in (387-392) acts as a harmonic trap for the complex eigen-
values that are deformed and split by the chemical potential. Following [116]
we will identify ⌧ with a mathematical and continuous time deformation of
the harmonic trap. (388) satisfies the formal matrix di↵usion equation

N@⌧P =
@2P

@T†@T
with P(0,T) ⇡ �(T) (394)

(394) shows that the di↵usive equation is purely kinetic with no potential
or pressure like contribution. This is to be contrasted with the many-body
hydrodynamics expansion of the Dirac eigenvalues where both kinetic and
pressure terms are identified in the Eulerian flow in [117].

0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

-2

-1

0

1

2

y

Figure 33: Eigenvalue distribution for the deformed Wishart W matrices for
µ/µc = 0.9 and ⌧ = 1.
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9.3 Di↵usion

In this subsection we will define a pertinent characteristic determinant that
will be used to analyze the nature and evolution of the complex eigenvalues
of the deformed Wishart ensemble. We will show that the evolution of the
characteristic determinant obeys a non-local equation that is di↵usion-like
asymptotically.

Indeed, a simple understanding of the accumulation and di↵usion of the
eigenvalues of the Dirac operator in the complex plane follows by identifying
the phase quenched and regulated partition function (392) for Nf = 4 with
the characteristic determinant

 (⌧, z, w) ⌘ ZNf=4[⌧, z, w, µ] (395)

(395) defines a 2N -degree polynomial which asymptotes |z|2N [114]. The
zeros of the characteristic determinant are the complex eigenvalues of the
deformed Wishart matrix W in (391). They are related to the eigenvalues
of the Dirac operator D in the complex 2-plane by recalling the mapping
z = z2 + µ2. The macroscopic density of complex and deformed Wishart
eigenvalues is

⇢W (⌧, z) = lim
w!0

lim
N!1

1

N⇡
@2
zz̄
ln (⌧, z, w) (396)

with ln /N acting as a Coulomb-like potential at large N . The correspond-
ing eigenvalue density for the chiral Dirac operator as a function of ⌧ , follows
from (396) through

⇢D(⌧, z) = 2|z| ⇢W (⌧, z2 + µ2) (397)

The eigenvalues condense in a droplet, with  ⇡ 0 inside and  /|z|2N ⇡ 1
(order parameter), as the corresponding pressure ln changes sign across the
droplet boundary (phase change) [111, 114].

Unwinding the determinant in  through a Grassmannian quark q and
conjugate quark Q, yields
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 (⌧, z, w) ⌘
⌦
eF+G

↵

⌘

Z
dTdT†dq dq† dQdQ† P(⌧,T)

⇥ eq
†(z�W)q+Q

†(z̄�W†)Q�w̄q
†
Q+wQ

†
q (398)

where we have defined

F = q†(z �W)q +Q†(z̄ �W†)Q

G = �w̄q†Q+ wQ†q (399)

Note that the complex eigenvalues z, z̄ act as complex masses for the pair of
quark bilinears q†q, Q†Q, while w, w̄ act as complex mixing masses for the
pair of mixed quark bilinears Q†q and q†Q. The formers preserve holomorphy,
while the latters do not [114]. (398) obeys the evolution equation

N@⌧ (⌧, z, w, µ) =⌦�
�N(q†q +Q†Q)

�q†qq†Wq �Q†QQ†W†Q� q†QQ†Wq �Q†qq†W†Q

+2iµQ†qq†TQ� 2iµ q†QQ†Tq

�2µ2 q†QQ†q + µ2 (q†q +Q†Q)
�
eF+G

↵
(400)

where we have used (394) . With the help of the identity

⌦�
+2iµQ†qq†TQ� 2iµ q†QQ†Tq

�
eF+G

↵

= �4µ2⌧ 2
@w@w̄(@w@w̄ + @z@z̄)

(1� ⌧@z)(1� ⌧@z̄) + ⌧ 2@w@w̄

⌦
eF+G

↵

(401)

most of the terms on the right-hand-side of (400) can be turned either to
ordinary z-derivatives of eF or some Grassmannian derivative of eF or eG.
The final result is a closed but non-local evolution of the characteristic de-
terminant (398), i.e.
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N@⌧ =

 
� 2(@z + @z̄)

�(z@2
z
+ z̄@2

z̄
� (z + z̄)@2

w̄w
)

�(@z + @z̄)(w@w + w̄@w̄)

+2µ2@2
w̄w

+ µ2(@2
z
+ @2

z̄
)

�

✓
2µ⌧

N

◆2 @w@w̄(@w@w̄ + @z@z̄)��1� ⌧

N
@z
��2 +

�� ⌧
N
@w
��2

!
 

(402)

which is di↵usive-like or parabolic at asymptotic times, subject to the initial
condition

 (⌧ = 0, z, w) = (|z0|
2 + |w0|

2)N (403)

(402-403) is the first main result of this section.
The stochastic evolution of  involves the evolution in both the normal

z, z̄ and mixed w, w̄ masses to allow for the spontaneous breaking of chiral
symmetry as well as the spontaneous breaking of holomorphy, respectively.
The spontaneous breaking of chiral symmetry is signaled by the accumulation
of Dirac eigenvalues around zero or z = 0 (z = µ2), i.e. a non-vanishing⌦
q†q
↵
. The spontaneous breaking of holomorphy is signaled by the spreading

of Dirac eigenvalues in the complex plane, i.e. a non-vanishing
⌦
|q†Q|

2
↵
[110,

111, 114].

9.4 WKB approximation

In this section we will provide a WKB analysis of the non-local and di↵usion-
like equation for the characteristic determinant derived in the previous sec-
tion. We will use it to derive a polynomial and parametric equation for
the time-dependent envelope of the complex eigenvalues for the deformed
Wishart ensemble, and by mapping for the standard but di↵using Dirac en-
semble at finite µ.

(402) is a non-local Schroedinger-like evolution equation in Euclidean
time. Some insights to this evolution can be obtained using the WKB method
in the large N(= 1/~) limit. For that we identify
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 ⇡ eNS (404)

in (402) and define the conjugate momenta p⇠ = @⇠S with ⇠ = z, z̄, r =
p
ww̄.

Note that in leading N , the eigenvalue density for the deformed Wishart class
in (391) is given by

⇢W (⌧, z) = lim
w!0

1

⇡
@z̄pz (405)

which is non-holomorphic inside the droplet.

9.4.1 Hamilton-Jacobi Equations

Using the rescaling N⌧ ! ⌧ , the e↵ective semi-classical action S obeys

@⌧S+H(⌧, ⇠, p⇠) = 0 (406)

with the ⌧ -dependent and non-local e↵ective Hamiltonian

H = +zp2
z
+ z̄p2

z̄
� (z + z̄)p2

r
/4

+r(pz + pz̄)pr � µ2(p2
z
+ p2

z̄
)�

µ2p2
r

2

+µ2⌧ 2
p2
r
(p

2
r
4 + pzpz̄)

(1� ⌧pz)(1� ⌧pz̄) + ⌧ 2 p
2
r
4

(407)

The initial condition is S(0) = ln(|z0|2 + r20).
The semi-classical equations are the standard Hamilton-Jacobi equations,

dpz
d⌧

= �
@H

@z
= �p2

z
+ p2

r
/4

dpz̄
d⌧

= �
@H

@z̄
= �p2

z̄
+ p2

r
/4

dpr
d⌧

= �
@H

@r
= �pr(pz + pz̄) (408)
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which are readily integrated

px(⌧) =
x0 + ⌧

(x0 + ⌧)2 + y20 + r20

py(⌧) =
�y0

(x0 + ⌧)2 + y20 + r20

pr(⌧) =
2r0

(x0 + ⌧)2 + y20 + r20
(409)

and

dz

d⌧
=
@H

@pz
dr

d⌧
=
@H

@pr
(410)

which are in general involved.

9.4.2 Expanding droplet boundary

The initialization of the characteristic determinant through (404) at the
droplet edge or r0 = 0, allows for a simplification of (410) at the edge.
Indeed, (410) for z(⌧) at the edge, yields

z(⌧)� µ2

z0 � µ2
=

✓
1 +

⌧

z0

◆2

(411)

while (410) for small r(⌧) gives

dr

d⌧
= f1(⌧)r + r0f2(⌧) (412)

f1(⌧) =
1

z0 + ⌧
+

1

z̄0 + ⌧

f2(⌧) = �

4µ2
⇣
1� ⌧

2

|z0|2

⌘
+
⇣
(z0 � µ2)(1 + ⌧

z0
) + c.c.

⌘

(x0 + ⌧)2 + y20

The formal solution of (412) is
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r(⌧) = r0

✓
1 +

Z
⌧

0

d⌧ 0f2(⌧
0)e�

R ⌧ 0
0 d⌧

00
f1(⌧ 00)

◆
e
R ⌧
0 d⌧

0
f1(⌧ 0) (413)

The boundary of the eigenvalue droplet is set by the condition

1 +

Z
⌧

0

f2(⌧
0)e�

R ⌧ 0
0 f1(⌧ 00)d⌧ 00d⌧ 0 = 0 (414)

Inserting

e�
R ⌧ 0
0 f1(⌧ 00)d⌧ 00 =

|z0|2

(x0 + ⌧ 0)2 + y20
(415)

in (414) and using

Z
⌧

0

d⌧ 0
x2
0 + y20 � ⌧ 02

|(x0 + ⌧ 0)2 + y20|
2
=

⌧

(x0 + ⌧)2 + y20Z
⌧

0

d⌧ 0
(x0 + iy0 + ⌧ 0)2

|(x0 + ⌧ 0)2 + y20|
2
=

⌧

z̄0(z̄0 + ⌧)
(416)

yield the polynomial condition for z0 = x0 + iy0

4µ2⌧

(x0 + ⌧)2 + y20
+

z0 � µ2

z0

⌧

z̄0 + ⌧
+

z̄0 � µ2

z̄0

⌧

z0 + ⌧
= 1

(417)

A simple check of the result (417) follows for µ = 0, for which we have

z0 + z̄0 + 2⌧ =
1

⌧
(z0 + ⌧)(z̄0 + ⌧) (418)

The general solution is z0 = ⌧ei✓. Inserting this solution in (411), we have

z(⌧) = ⌧(2 + e�i✓ + ei✓) = 4 cos2(✓/2) (419)

168



which is the support of the ⌧ -expandingWishart line segment on the real-axis,
i.e. [0, 4⌧ ]. For general µ, (417) yields the expanding 4 branches (s, s0 = ±)

yss
0

0 (x0) = (420)

s⌧

 
�
x2
0

⌧ 2
+

✓
1

2
+

µ2

⌧

◆ 
1 + s0

✓
1�

8µ2x0

(⌧ + 2µ2)2

◆ 1
2

!! 1
2

which once inserted in (417) give a parametric description of the evolving
⌧ -expanding boundary, as the envelope of the eigenvalues of the deformed
Wishart eigenvalues as shown in Fig. 33. The envelope for the distributions
of Dirac eigenvalues in Fig. 32 follows from the deformed Wishart envelope
by using the inverse mapping z = ±

p
z � µ2. It is in agreement with the

original envelope obtained in [110, 111] using di↵erent arguments.

9.4.3 Characteristic determinant

In this section, we will provide a formal solution for the stochastically evolv-
ing characteristic determinant for the deformed Wishart ensemble, that is
exact for finite size N and time ⌧ . For that, we will use the method of char-
acteristics to solve exactly the partial di↵erential equation (402) in Fourier
space.

A formal but exact solution to the di↵usion-like equation (400) for the
characteristic determinant can be obtained by recasting (402) in conjugate
or Fourier space. Specifically,

 (⌧, z, w) =

Z
d2k

(2⇡)2
d2p

(2⇡)2
eik·w+ip·z  ̃(⌧, k, p) (421)

Taking the Fourier transform of (402) yields

N@⌧ ̃ = H̃  ̃ (422)

with the conjugate Hamiltonian
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H̃ = 2p1 +
µ2

2
(k2 + p21 � p22)

�
µ2⌧ 2

4N2

k2(p2 + k2)

(1� ⌧p1

2N )2 + µ2⌧2

N2

p
2
2+k2

4

+
p21 � p22 � k2

2
@p1 + p1p2@p2 + p1k@k (423)

after the shifts k ! �ik and p ! �ip. Here k is the conjugate to
p
ww̄ ⌘ r.

9.4.4 Characteristic lines

The evolution equation (422) is now first order with rational coe�cients. It
can be solved by the characteristic method exactly. The characteristic lines
are

d⌧

ds
= N

dp1
ds

= �
p21 � p22 + k2

2
dp2
ds

= �p1p2

dk

ds
= �p1k (424)

They are readily solved

p1(s) =
p10 +

s

2(k
2
0 + p210 + p220)

(1 + s

2p10)
2 + s2

4 (k
2
0 + p220)

p2(s) =
p20

(1 + s

2p10)
2 + s2

4 (k
2
0 + p220)

k(s) =
k0

(1 + s

2p10)
2 + s2

4 (k
2
0 + p220)

(425)

and inverted
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p10 =
p1 �

s

2(p
2
1 + p22 + k2)

(1� s

2p1)
2 + s2

4 (p
2
2 + k2)

p20 =
p2

(1� s

2p1)
2 + s2

4 (p
2
2 + k2)

k0 =
k

(1� s

2p1)
2 + s2

4 (p
2
2 + k2)

(426)

We note the identity (p20 = p210 + p220)

p2 + k2

(1� sp1

2 )2 + s2 p
2
2+k2

4

= p20 + k2
0 (427)

9.4.5 Exact determinant

We are now set to evaluate the exact ⌧ -evolution of  . Inserting (424-427)
into (423) yield

dln ̃

ds
= 2p1 � µ2

✓
�
k2 + p21 � p22

2
+ (p20 + k2

0)
s2k2

4

◆

(428)

Using (425) into (428) and undoing the derivative, we have

 ̃(⌧, k, p) = e
�µ

2
s(�sp10(p20+k20)�2(p210�p220�k20))

s2(k20+p20)+4p10s+4

⇥
 ̃0(k0, p0)⇣

(1 + sp10

2 )2 + s2 p
2
20+k

2
0

4

⌘�2 (429)

We now re-write (k0, p0) in terms of (k, p) and then undo the shifts
through (k ! ik, p ! ip). The results are

 ̃(⌧, k, p) = K(⌧, k, p) ̃0(k0(k, p), p0(k, p))

K(⌧, k, p) =
((2� p1s)2 + s2(p22 + k2))�2

16
e�µ

2S(k,p,⌧)

S(⌧, k, p) =
s (sp1 (p2 + k2)� 2 (p21 � p22 � k2))

s2 (k2 + p2)� 4p1s+ 4
(430)
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In terms of the initial variables, the formal solution for K is

K(⌧, k0, p0) =
e
�µ

2
s(�sp10(p20+k20)�2(p210�p220�k20))

s2(k20+p20)+4p10s+4

⇣
(1 + sp10

2 )2 + s2 p
2
20+k

2
0

4

⌘�2 (431)

The initial condition in Fourier space is

 ̃0(k, p) = (r2
p
+r

2
k
)N�2(k)�2(p) (432)

Thus

 (⌧, z, w) = (433)�
(r2

p0
+r

2
k0
)Nep(p0,k0)·z+k(k0,p0)·wJK(⌧, k0, p0)

�
p0=k0=0

Here, J ⌘ J(k, p; k0, p0) is the Jacobian for the variable transformation
(k0, p0) ! (k, p) evaluated at (k0, p0), i.e.

J ⌘

✓⇣
1 +

⌧p10
2

⌘2
+
⌧ 2

4
(p220 + k2

0)

◆�3

⌘
1

F 3
0

(434)

Although (433) is exact for finite N , taking the large N limit and assessing
its corrections is in general more subtle.

9.5 Universality at the Edge

The depletion of the zeros away from the droplet is captured by the way
 departs from zero away from the sharp boundary. The microscopic and
universal changes in the eigenvalue density at the edges are commensurate
with the microscopic rate of depletion of the zeros of the characteristic deter-
minant. We now develop a semi-classical expansion in 1/N and a pertinent
microscopic re-scaling at the edge to show this.
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9.5.1 Saddle point approximation

To explicit this universal behavior, it is more appropriate to insert (430) in
(421) and carry a semi-classical expansion around the saddle point in terms of
the initial coordinates (k0, p0). For notational convenience in this section we
will re-label the coordinates (k0, p0) by (k, p), and the previous coordinates
(k, p) by (K,P ). This means that P ⌘ P (p, k) and K ⌘ K(p, k). With this
in mind, we have

 (⌧, z, w) = (435)
Z

d2k

(2⇡)2
d2p

(2⇡)2
d2z0d2w0 eNf(⌧,p,k,z,w,z

0
,w

0)

⇣
(1 + ⌧p1

2 )2 + ⌧ 2 p
2
2+k2

4

⌘

with

f(⌧, p, k, z, w, z0, w0) = P (p, k) · z +K(p, k) · w

�p · z0 � k · w0
� µ2S(p, k) + ln(|z0|2 + |w0

|
2) (436)

S(p, k) =
p1 +

⌧

2 (p
2
1 + p22 � k2)

(1 + ⌧p1

2 )2 + ⌧ 2 p
2
2+k2

4

� p1 (437)

The saddle point corresponds to @z0,w0,p,kf = 0, which are respectively

@P

@p
z +

@K

@p
w + µ2@S

@p
= z0

@P

@k
z +

@K

@k
w + µ2@S

@k
= w0

pi =
2z0

i

|z0|2 + |w0|2

k =
2r0

|z0|2 + |r0|2
(438)

Near the boundary the first saddle point equation in (438) reduces to

(z � µ2)
z20

(⌧ + z0)2
+ µ2 = z0 (439)
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in agreement with (411). The second saddle point equation in (438) becomes

lim
r0!0

✓
r0

k

◆
2(z0 + ⌧)(z̄0 + ⌧)

|z0|2
=

⌧

✓
4µ2 +

z0 � µ2

z0
(z0 + ⌧) +

z̄0 � µ2

z0
(z̄0 + ⌧)

◆
(440)

which reduces to (417) after using the last two saddle point equations in
(438). In principle, the inversion of the above saddle point equations will de-
termine (z, w) as a function of (z0, w0). In practice, this inversion is involved.
Fortunately, at the boundary there are simplifications since (w = 0, w0 = 0),
and since (417) and (438) relate the saddle point initial positions to the
current positions.

9.5.2 Microscopic correction

The correction to the saddle point in momenta will be sought in holomorphic
coordinates, i.e

p1 � ip2 = p

x1p2 + x2p2 =
1

2
(pz + p̄z̄) (441)

and by expanding around the boundary using the following microscopic
rescalings

z = z(z0) +
�z
p
N

z0 = z0 +
�z0
p
N

w0 =
�r0

N
1
4

p = p0(z0) +
⌘

p
N

k =
!

N
1
4

(442)
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The re-scaling in �z0, �z/
p
N at the boundary is natural, since the droplet

area scales as A ⇡ N to keep the density of eigenvalues finite, while its length
grows as

p
A ⇡

p
N . Inserting (441-442) in (421) and expanding to order

N0 at large N , we obtain

N(f � f0)� ln

✓⇣
1 +

⌧p1
2

⌘2
+ ⌧ 2

p22 + k2

4

◆
⇡

Q(⌘,!, �z, �z0, �r0) +
p

N

✓
�z

z0 + ⌧
+

�z̄

z̄0 + ⌧

◆

+
p

N

✓
(�r0)2

|z0|2
+
!2

|z0|2

4
� ! · �r0

◆

�
1

2

✓
(�z0)2

z20
+

(�̄z0)2

z̄20

◆
� (�r0)2

✓
�z0

z0
+
�z̄0

z̄0

◆
�

(�r0)4

2|z0|4

(443)

with f0 the value of f in (435) at the saddle point and

Q(⌘,!, �z, �z0, �r0) =

�
⌧z30(z � µ2)

4(z0 + ⌧)3
⌘2 �

⌧ z̄30(z̄ � µ2)

4(z̄0 + ⌧)3
⌘̄2

+

✓
z20

2(z0 + ⌧)2
�z �

�z0

2

◆
⌘ +

✓
z̄20

2(z̄0 + ⌧)2
�z̄ �

�z̄0

2

◆
⌘̄

+
⌧ |z0|2!2

4|(z0 + ⌧)|2
(
z0�z

z0 + ⌧
+

z̄0�z̄

z̄0 + ⌧
)�

⌧ 2!4
|z0|4

16|(z0 + ⌧)|2

�
⌧!2

|z0|2(⌘(z̄0 + ⌧)(z0) + ⌘̄(z0 + ⌧)z̄0
8|(z0 + ⌧)|2

�
⌧ 2!2

|z0|2

8|z0 + ⌧ |2
(⌘(z0 � µ2) + ⌘̄(z̄0 � µ2)) (444)

Here z = z(⌧) is defined in (411). Under the shift

! =
2�r0

|z0|2
+ ↵ (445)

the ↵-integration is subleading and decouples. With this in mind, we can
re-structure and simplify Q in (444) as
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Q(⌘,!, �z, �z0, �r0) =

Q(⌘) + Q̄(⌘̄) + (⌘̄, ⌘) · (J̄ , J) +Q3(�r
0, �z) +Q4(�r

0)

(446)

with

Q(⌘) = �
⌧z0(z0 � µ2)

4(z0 + ⌧)
⌘2

J =
1

2

z20
(z0 + ⌧)2

�z �
1

2
�z0 �

⌧(�r0)2((1 + ⌧

z̄0
) + ⌧ z0�µ

2

|z0|2 )

2|(z0 + ⌧)|2

Q3 =
⌧(�r0)2

|z0|2|(z0 + ⌧)|2
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z0�z
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+

z̄0�z̄

z̄0 + ⌧
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Q4 = �
⌧ 2(�r0)4
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(447)

The partial integration in (435) of the quadratic contribution over (⌘,!) gives

Q(�z, �z0, �r0) =

+
J2

⌧z0(z0�µ2)
(z0+⌧)

+
J̄2

⌧ z̄0(z̄0�µ2)
(z̄0+⌧)

�
⌧ 2(�r0)4

|z0|4|z0 + ⌧ |2

+
⌧(�r0)2

|z0|2|(z0 + ⌧)|2

✓
z0�z

z0 + ⌧
+

z̄0�z̄

z̄0 + ⌧

◆
(448)

9.5.3 Microscopic egde profile

The integration around �z0 is Gaussian and is readily performed, leaving the
last and non-Gaussian integral in �r0 undone. The result for the characteristic
determinant close to the boundary and in the microscopic limit is

 (⌧, z(z0) + �z/
p

N, 0) ⇡ eNf0+
p
N( �z+�z̄

z0+⌧ )

⇥

Z 1

0

xdx e�A(z0)x4+B(z0,�z)x2+C(z0,�z) (449)
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with

A(z0) =
1
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⌧ 2
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|z0|2|z0 + ⌧ |2(z0 + ⌧)

�2C

✓
1

z0|z0|2
�

2A
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�
1
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z0
�

2⌧(z0�µ2)
z
2
0

1

A+ c.c. (450)

and

A =
⌧((1 + ⌧

z̄0
) + ⌧ z0�µ

2

|z0|2 )

2|z0 + ⌧ |2

B =
⌧z0(z0 � µ2)

(z0 + ⌧)

C =
z20

2(z0 + ⌧)2
(451)

The depletion of the eigenvalues of the deformed Wishart matrices at the
boundary as defined by (411) and (417), follows the product of a Gaussian
times an incomplete Error Function (Erfc)
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 (⌧, z(z0) + �z/
p

N, 0) ⇡ eNf0+
p
N( �z+�z̄

z0+⌧ )

⇥e
B2(z0,�z)
4A(z0,�z)

+C(z0,�z)
Z 1

�B(z0,�z)
2A(z0)

dye�A(z0)y2

⌘ eNf0+
p
N( �z+�z̄

z0+⌧ )

⇥e
B2(z0,�z)
4A(z0)

+C(z0,�z) Erfc

 
�B(z0, �z)

2
p

A(z0)

!
(452)

Recall that z0 refers to the boundary value as a solution to (411) and is valid
throughout the edge of the deformed Wishart droplet shown in Fig. 33. We
note that for A > 0

lim
B! �1

✓
e

B2

4A Erfc

✓
�

B

2
p
A

◆◆
= 0 (453)

(452) is the second main result of this section.

9.5.4 Special edge points

The depletion at the edge of the Wishart spectrum (452) translates to a
depletion at the edge of the Dirac spectrum. We now make it explicit for the
4 cardinal points where the Dirac droplet crosses the eigenvalue spectrum
along the real and imaginary axes, e.g. see Fig. 32. Specifically, the edge of
the Dirac droplet on the real axis corresponds to y(⌧) = 0. It maps onto the
Wishart boundary point z0 = x0 + i0 with x0 in (452) the real solution to

x4
0 � 2⌧

⇣⌧
2
+ µ2

⌘
x2
0 + 2µ2⌧ 2 x0 = 0 (454)

In general, the two real solutions to (454) are x0 = ⌧ and x1/⌧ = 1
2(�1 �p

1 + 8µ2/⌧). They correspond to the outer and inner edge of the Wishart
distribution in Fig. 33.

The real solution x0 = 1 yields x(⌧) = µ2+4(⌧�µ2) using (411), which is
the outer edge along the real axis in Fig. 33. It maps onto the two outer edges
along the real z axis of the Dirac spectrum in Fig. 32 or z = ±2

p
⌧ � µ2 using
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the Wishart to Dirac map z = µ2 + z2. The corresponding edge parameters
in (450) are

A(x0) =
(µ2

� ⌧)2

16µ2⌧ 5

B(x0) =
µ2

� ⌧

16µ2⌧ 3
(�z + �z̄)

C(x0) = �
1

32µ2⌧
(�z2 + �z̄2) (455)

and the scaling law (452) on the Wishart envelope is (�z = �x+ i�y)

 (⌧, z(x0) + �z/
p

N, 0) ⇡

eNf0 e
p
N�x
⌧ e

�y2

16µ2⌧2 Erfc

✓
�x

4µ
p
⌧

◆
(456)

Finally, the real solution x1/⌧ = 1
2(�1�

p
1 + 8µ2/⌧) corresponds to the

inner edge of the Wishart distribution in Fig. 33 with z(⌧) < µ2. It maps onto
the two outer edges along the imaginary axis of the Dirac spectrum shown
in Fig. 32. The corresponding edge parameters in (450) are too lengthy to
report here.

9.5.5 Application to µ =
p
⌧

2

To be more specific consider the special case of µ/
p
⌧ = 1/2, for which the

two real solutions are z0 = x0 = ⌧ and z0 = x0 = �(
p
3 + 1)⌧/2. The first

solution corresponds to the outer edge along the real axis of the Wishart
spectrum and maps onto the outer edge of the Dirac spectrum also along the
real axis. It gives

A(z0 = ⌧) =
0.14

⌧ 4

B(z0 = ⌧) = �
0.19

⌧ 3
(�z + �z̄)

C(z0 = ⌧) = �
1

8⌧ 2
(�z2 + �z̄2) (457)
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The scaling law at the edge of the Wishart spectrum along the real axis is

 ⇡ eNf0 e
p
N

�x
⌧ e

�y2

4⌧2 Erfc

✓
0.5 �x

⌧

◆
(458)

The second solution corresponds to the inner edge along the real axis of
the Wishart spectrum (z < µ2) and maps onto the outer edge of the Dirac
spectrum along the imaginary axis. It gives

A(z0 = �(
p
3 + 1)⌧/2) =

3

⌧ 4

B(z0 = �(
p
3 + 1)⌧/2) =

11.19

⌧ 3
(�z + �z̄)

C(z0 = �(
p
3 + 1)⌧/2) = �

6.96

⌧ 2
(�z2 + �z̄2) (459)

with A > 0 in this case. Inserting the parameters in (452) we have

 ⇡ eNf0 e
p
N

�x
⌧ e27.83

�x2

⌧2
+13.92 �y2

⌧2 Erfc

✓
�
6.46 �x

⌧

◆
(460)

9.5.6 Translation to Dirac

The general result (452) holds around the envelope or boundary of the de-
formed Wishart ensemble (391) as illustrated in Fig. 33. Its translation to
the envelope of the Dirac ensemble as illustrated in Fig. 32, follows from the
mapping between the complex eigenvalues or z = µ2 + z2. An infinitesimal
displacement �z on the Wishart boundary or z = z0 + �z/

p
N , translates to

the infinitesimal displacement �z on the Dirac boundary

z = z0 +
�z
p
N

= ±

✓
z0 � µ2 +

�z
p
N

◆ 1
2

⇡ ±

 
z0 +

�z

2(z0 � µ2)
1
2

p
N

!
(461)
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Therefore, (452) maps onto the Dirac boundary through the substitution

�z ! ±2
p

z0 � µ2 �z (462)

In this spirit, the translation of the Wishart result (456) to Dirac follows
using the substitution (462), with z0 = ⌧ in this case. The scaling law at the
real edge of the Dirac spectrum is sensitive to the chiral condensate, which
follows from the large N saddle point of the full or unquenched partition
function (387),

hq̄qi = lim
mf! 0

lim
N! 1

✓
�

1

NNf

@ lnZNF

@imf

◆

= �2 ⌧
�
⌧ � µ2

� 1
2 (463)

which is seen to vanish for µ = µc =
p
⌧ in the massless case (second order

transition). This is remarkable, as it allows for a determination of the physical
chiral condensate (463) from the microscopic scaling law at the edge of the
quenched Dirac spectrum. Indeed, if we set ⌃ ⌘ |hq̄qi| at finite µ, the Wishart
edge scaling law (456) translates to the Dirac edge scaling law

 D(⌧, z0 + �z/
p

N, 0) ⇡

eNf0 e
p
N⌃ �x

⌧2 e
⌃2 �y2

16µ2⌧3 Erfc

✓
⌃

4µ⌧

�x
p
⌧

◆
(464)

While the exponent in the second factor in (464) grows initially with �x, it
is countered by the rapid fall o↵ of the complementary error function along
the real axis. (464) is vanishingly small for positively large �x.

In [125] it was shown that for a class of normal matrices, the spectral
density is related to the characteristic determinant for w ! 0, with a propor-
tionality factor related to some pertinent weight factor. This result suggests
that in our case which is non-normal, the first two factors in (464) may be
part of an underlying weight factor as they follow from a standard 1/N sad-
dle point approximation, i.e. order N and order N0. The last factor in (464)
does not. It emerges from the specific 1/

p
N level spacing law in (442). We

identify it with the edge scaling law for the Dirac spectral density
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⇢D(⌧,x0 + �x/
p

N, 0) ⇡
1

2⇡⌧
Erfc

✓
⌃

4µ⌧

�x
p
⌧

◆
(465)

In the microscopic limit, the Dirac eigenvalue density along the real-axis fol-
lows the universal profile of a complementary error function that is sensitive
to the physical chiral condensate ⌃ at finite µ. (465) suggests a complemen-
tary scaling law for extracting ⌃ from the Dirac spectrum.

9.5.7 Check at the edge point x0 = ⌧

As a way to check on the general result (452) we will re-analyze (435) by
trading (P,K) $ (p, k). Using the complex coordinates (441), this amounts
to re-writing (435) as

 (⌧, z, w) =

Z
d2pd2kd2z0d2w0

(2⇡)4
J eNf (466)

with

f =
1

2
pz +

1

2
p̄z̄ + k · r
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2
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+ln(|z0|2 + (r0)2) (467)

and
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2 )(1�
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4
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4

� p (468)

Here 1/J = ((1� ⌧p

2 )(1�
⌧ p̄

2 ) +
⌧
2
k
2

4 )2.
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Around x0 = ⌧ at the boundary, we will use the following microscopic
rescaling

z = 4⌧ � 3µ2 +
⌘

p
N
, p = ⌧ +

p
p
N
, k =

k

N1/4

z0 = ⌧ +
�z0
p
N
, r0 =

r0

N1/4
(469)

and keep only terms that survive at large N . The result in leading order is

N(f � f0) ⇡

p
N

2
(p⌘ + p̄⌘̄) + F (470)

with

F = �2p�z0 � 2p̄�z0 � ⌧(⌧ � µ2)(p2 + p̄2)

+2⌧k2(�z0 + �z̄0) + 4⌧ 3k2(p+ p̄)

+2⌧ 2k2(⌧ � µ2)(p+ p̄)� 4⌧ 4k4
� 4⌧k(p+ p̄)r0

�4
p

Nkr0 +
p

N(r0/⌧)2 + 4
p

N⌧ 2k2

�
(�z0)2 + (�z̄0)2

2⌧ 2
�

(r0)4

2⌧ 4
�

(r0)2

⌧ 3
(�z0 + �z̄0) (471)

Using the shift r0 = 2k⌧ 2 + ↵

N1/4 , we can convert the r0-integral to an ↵-
integral which is Gaussian and decouples. The �z0 integral can be undone.
The result is

 (⌧, 4⌧ � 3µ2 + ⌘/
p

N, 0) ⇡

eNf0e
p
N

(⌘+⌘̄)
2⌧

Z
d2pd2k

(2⇡)4
e

p⌘+p̄⌘̄
2 +k·r+G(k,p) (472)

with

G(k, p) = 2⌧µ2(p2 + p̄2) + 2⌧ 2k2(⌧ � µ2)(p+ p̄) (473)

For r = 0, the momentum integral in (472) gives
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◆
(474)

Thus the scaling law for the characteristic determinant at the edge point
x0 = ⌧ and fixed but un-scaled µ, is

 (⌧, 4⌧ � 3µ2 + �z/
p

N, 0) ⇡

⌧ 2eNf0 e
p
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⌧
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✓
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4
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◆
(475)

for the Wishart ensemble and in agreement with (456). The translation to
the real edge of the Dirac ensemble follows from the substitution (462). The
microscopic scaling law of the characteristic determinant near the real edge
of the complex Dirac spectrum (boundary of the zero mode zone) allows for
a reading of the quenched chiral condensate (463) by fitting to the universal
scaling function (475) or its most general form (??) in Appendix I. This the
third main result of this section.

9.5.8 Airy universality at µ = 0

For µ ! 0 the result (475) is singular. This feature is valid throughout the
envelope of the Wishart and Dirac spectra. The large N limit and the µ = 0
do not commute. Indeed, for µ = 0 the spectra are now real, and the new
microscopic scaling laws

z = 4⌧ +
⌘

N
2
3

, w =
!

N
3
2

(476)

should replace (469), with the new and re-scaled ansatz

 (⌧, 4⌧ + ⌘/N
2
3 ,!/N

3
2 ) ⇡

⌧ 2NeN
1
3 (⌘+⌘̄)

2⌧  (⌧, ⌘, ⌘̄,!) (477)
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To order N2 and N
5
3 , the equation (402) is satisfied identically, irrespective

of  . At order N
4
3 , the new equation fixes  

�4⌧(@2
⌘
+ @2

⌘̄
) +

1

4⌧ 2
(⌘ + ⌘̄) + 8⌧@2

!̄!
 = 0 (478)

The general solution to (478) is

Z
d�(�) I0

 r
�

8⌧ 2
|!|

!���Ai
⇣
2

2
3

⇣ ⌘
4⌧

� �
⌘⌘���

2

(479)

with (�) a general positive weight. The microscopic determinant at the
right edge of the Wishart ensemble involves an Airy kernel. As expected, the
mapping through z = z2 at µ = 0 yields an Airy kernel for both edges of the
real Dirac spectrum.

9.6 Chiral Universality

The mapping z = z2 + µ2 between the deformed Wishart (z) and Dirac (z)
eigenvalues, shows that the zero virtuality point in the Dirac spectrum at
finite µ at z = 0, maps onto the z = µ2 point in the deformed Wishart spec-
trum. For µ/µc < 1, this point lies within the Dirac and Wishart droplets,
and moves out of both droplets for µ/µc > 1. We now analyze the nature
of the accumulation of eigenvalues around this point using the characteristic
determinant.

9.6.1 Pinch at zero virtuality

To analyze the saddle point equations (438) in the vicinity of z ⇡ µ2 for
arbitrary µ2 and w, we will specialize to the case µ2 = 1/4 and ⌧ = 1 for
simplicity. Throughout this section ⌧ = 1. With this in mind, the second
equation in (438) reads
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Figure 34: Saddle point surface r0(x0, y0) viewed along 0 < x0 < 2 for µ2 = 1
4

and ⌧ = 1. The lateral axis is y0, the height is r0 and the depth is x0.
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(480)

with the denominator

D / x0(r
2
0 + (x0 + 1)2)(3x2

0 + x3
0 + r20 + 3xr2) (481)

The positivity of r20 defines a 3-dimensional surface r0(x, 0, y0). In Fig. 35
(front surface) we show a cut of the surface through the plane x0 = 0 for
x0 < 0, while in Fig. 34 (back surface) we show a cut of the same surface
for x0 > 0. As shown, the front surface is composed of an inner and outer
surfaces. In both figures, the side is y0, the height is r0 and the depth is x0.
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Figure 35: Saddle point surface r0(x0, y0) viewed along �2 < x0 < 0 for
µ2 = 1

4 and ⌧ = 1. The lateral axis is y0, the height is r0 and the depth is
x0. The pinch at r0(x0, y0) ⌘ 0(�1, 0) is the chiral point in the deformed
Wishart spectrum.

The inner surface excludes a region in parameter space (r0, x0, y0) where no
mixed condensate develops. Indeed, for D 6= 0 and in the plane r0 = 0 the
surface defines a curve

(1 + 2x0 + x2
0 + y20)

(x0 � 3x2
0 + 2x4

0 � 3y20 + 4x2
0y

2
0 + 2y40) = 0 (482)

The second contribution in (482) is the boundary curve (417). It contains
two connected pieces also, the inner part is just the intersection between the
small island and the (x,y) plane. The first contribution in (482) vanishes at
the point x0 = �1, y0 = r0 = 0 which is where the back surface is pinching
the plane r0 = 0 in Fig. 35. This zero is not spurious as can be seen through
the plane (x0, r0) plane, where (480) simplifies to

(�1 + x2
0 + r20) (483)

(�x0 + x2
0 + 4x3

0 + 2x4
0 + r20 + 4x0r

2
0 + 4x2

0r
2
0 + 2r40) = 0
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There is a continuous limit to x0 = �1 from the parameter space for a
mixed condensate for arbitrary small r0. The factor (r20 + x2

0 � 1) cannot
be cancelled by the denominator D which is non-vanishing at this point.
Thus, the intersection of the condensation region with the real axis shows
x0 = �1 as an accumulation point. Now, within the real axis and the branch
of the surface determined by r20 = 1 � x2

0, which is the ”outer layer” of the
condensation region, the first equation for (438) can be solved at once

x =
1

4
(7 + 6x0) y = 0 (484)

The point x0 = �1, y0 = 0, r0 = 0 correspond to the chiral point z = µ2 = 1
4 .

But, at this point, the saddle point momentum and the free energy f in
(436) diverge. The chiral point z = µ2 is a singular point on the surface
r0 = r0(x0, y0) defined by (480), as the outer surface develops two sharp
holes that connects through a pinch. The standard 1/N expansion breaks
down.

9.6.2 Chiral microscopic universality

To analyze the chiral point more accurately we need an alternative to the
the standard 1/N expansion, that resumes a class of corrections around the
chiral point. For that it is useful to go back to (466-468) and use the following
microscopic rescaling at the chiral point

z � µ2
!

z

N2
, µ2

!
µ2

N

w !
w

N2
, p ! Np, k ! Nk (485)

In leading order (466) simplifies

 (⌧, µ2/N + z/N2, 0) ⇡
Z

d2pkdkd2z0d2w0

(2⇡)3
eF

(p2 + k2)2
(486)

with

188



F ⇡ +
N(z̄0 + z0)

⌧
+N ln(|z0|2 + (r0)2)

+
pz + p̄z̄

2
+ kr + 2

p̄z0 + pz̄0

⌧ 2(p̄p+ k2)
�

4µ2p̄p

⌧(k2 + p̄p)
(487)

We use the saddle point solution in z0, r0 to undo this double integration,
i.e. z0 = �1 + ↵ and r0 = 0 + �. The resulting Gaussian integrations in ↵, �
decouple. Thus
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The k-integration in (488) can be done by expanding part of the exponent,
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We note that

⇠(z) =

Z
dp

2⇡p
epz/2�2t/p⌧ (490)

satisfies
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✓
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t

⌧
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⇠(z) = 0 (491)

⇠(z) = J0(2
p

tz/⌧) is the unique solution regular at the origin. So as long as
we can set the p-integration contour in (489) so that  is regular at z = 0,
we have ⇠(z) = J0(2

p
tz/⌧). Thus the microscopic form of the characteristic

determinant at the chiral point is

 (⌧, µ2/N + z/N2, 0) ⇡

⇡ ⌧ 2N
Z 1

0

dt e�
4µ2t
⌧

�����J0

 
2

r
tz

⌧

!�����

2

(492)

Here µ2 is short for the fixed combination Nµ2 at large N , as defined through
the re-scaling in (485). This is the fourth main result of this section.

In contrast to (475) the scaling law for the characteristic determinant
at the chiral point (492) does not record the quenched chiral condensate at
finite µ. We note the similarity of (492) with the microscopic law at the
chiral point for the phase phase quenched density of eigenvalues in [124].

For completeness, we note that (402) simplifies at the chiral point for
large N , but fixed Nµ2 and N2z, i.e. µ2

! µ2/N , z ! µ2/N + z/N2 and
w ! w/N2. In the microscopic limit, the resulting di↵erential equation is

 
2 (@z + @z̄) + (z@2

z
+ z̄@2

z̄
)

�(z + z̄)@2
w̄w

+ (@z + @z̄)(w@w + w̄@w̄) +

4µ2

⌧

(@z + @z̄) @2w̄w

(@z@z̄ + @2w̄w)

!
 ⇡ 0 (493)

The solution to (493) as w ! 0 is (492).

9.7 Conclusions

The QCD Dirac spectrum at finite chemical potential contains subtle infor-
mation on the chiral dynamics of light quarks in matter. Using a random
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matrix model, we have shown that the characteristic determinant of phase
quenched QCD with Nf = 4 massless quarks is related to the characteristic
determinant of a class of deformed Wishart matrices through a conformal
mapping in the space of eigenvalues.

We have constructed a stochastic evolution for the deformed Wishart
matrices by allowing the Gaussian weights in random matrices to di↵use. The
mathematical di↵usion time is identified with the stochastic time. We have
derived an exact solution to the stochastic di↵usion equation for any finite
N and derived the explicit time-evolving boundary condition of the envelope
of the deformed Wishart eigenvalues through a semi-classical expansion.

Contrary to the lore of random matrix approaches to QCD [126], which
focus on the spectral density distributions of the Dirac operator, we studied
here the characteristic determinant. Following a recent observation in [116],
that the spectral evolution of non-Hermitean and non-normal ensembles in-
volves a hidden complex variable w [114], we have embedded the Dirac opera-
tor into this general algebraic structure. The explicit dependence on w is key
to closing and obtaining the main evolution equations (402-??). While the
complex variable z reflects on the standard quark condensate, the complex
variable w reflects on the ”spurious” quark condensate [110, 111, 114], whose
formation is an artifact of quenching or ignoring the phase of the fermionic
determinant. This evolution equation is exact for any finite N . This fact
allows to trace the co-evolution of both type of condensates, and to perform
all kinds of rescalings in the vicinity of the physically pertinent points.

In general, the complex eigenvalues form a droplet in the complex eigen-
value plane that breaks conformal symmetry. The deformed Wishart droplet
deforms but never breaks. Its boundary is sharp at large N , and smoothens
out in 1/N through a universal edge function in leading order. At the chi-
ral point, the characteristic determinant follows universally from a pertinent
Bessel kernel.

The edge universality and the chiral universality derived in this work can
be numerically checked. In particular, the microscopic scaling law at the
edge of the spectrum scales with the chiral condensate at finite µ, allowing
for its possible extraction directly from current and quenched lattice data.
In practice and in the absence of an apparent edge in real QCD spectra,
this can be achieved by rescaling the numerical eigenvalues within a sliding
window along the real axis, and checking for the edge scaling law for the
Dirac spectrum using for instance (464-465), or along the w-axis using (??-
??). When extended to finite temperature, this practical analysis will allow
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for a determination of the QCD phase diagram solely from the quenched
lattice simulations, without having to solve the QCD sign problem, a major
achievement in this field.

Finally and on general grounds, most of our results for the deformed
Wishart ensemble may be of relevance to a wider audience of practitioners
using non-hermitean random matrix methods in the fields of wireless com-
munication, biological and neural information, and finance [119]
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