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Abstract of the Dissertation
Exploring the Anatomy of QCD and Related Strongly Coupled Theories
by
Moshe Kellerstein

Doctor of Philosophy

in
Physics
Stony Brook University

2019

Following a brief review introducing Chiral Random Matrix Theory as
the low energy limit of QCD, and of two methods for non-perturbative com-
putation of partition functions, we consider bosonic random matrix partition
functions at nonzero chemical potential and compare the chiral condensate,
the baryon number density and the baryon number susceptibility to the re-
sult of the corresponding fermionic partition function. We find that as long
as results are finite, the phase transition of the fermionic theory persists in
the bosonic theory. However, in case that bosonic partition function diverges
and has to be regularized, the phase transition of the fermionic theory does
not occur in the bosonic theory, and the bosonic theory is always in the
broken phase.

We present preliminary results from a perturbative study of gauge in-
variant correlators in coordinate space. These correlators are comprised of
the flavor-off-diagonal, dimension-5 chromelectric dipole moment (CEDM),
and the chromomagnetic dipole moment (CMDM) operators, and have been
calculated up to O(g?) in the QCD coupling constant. Using results for the
correlators, we discuss the renormalization and mixing of the CEDM and
CMDM with lower dimensional operators, and present the renormalization
matrices for the CEDM to CEDM and CMDM to CMDM correlators in the

il



MS scheme. We compute the matching factors necessary to convert the
non-perturbative renormalization factors found for these correlators in the
X-space scheme into MS so that CEDM and CMDM lattice calculations
can be utilized in current studies. We have also computed the renormaliza-
tion group coefficients, and the renormalization group flow of the correlatros
necessary to express these operators at an arbitrary renormalizatoin point.

v



To my parents, Shirley and Joseph Kellerstein



Contents

1 Introduction To Chiral Random Matrix Theory 1
1.1 Chiral Symmetry . . . . .. ..o 1
1.2 Chiral Lagrangian . . . . . . . . .. ... ... 5
1.3 Random Matrix Theory . . . . .. .. ... ... ... .... 6
1.4 Resolvent Methods and Bosonic Partition Functions . . . . . . 11

1.4.1 Finite Chemical Potential Partition Functions . . . . . 14

2 Random Matrix Theories at Nonzero Chemical Potential 16

2.1 Random Matrix Models . . . . . . ... ... ... .. .... 16

2.2 Phase Quenched QCD . . . . . ... ... L. 18

2.3 One Flavor Partition Function at Imaginary Chemical Potential 22
2.3.1 The Fermionic Partition Function at Nonzero (Imagi-

nary) Chemical Potential . . . . . ... ... ... ... 22

2.3.2 The Bosonic Partition Function . . . . .. ... .. .. 24

2.3.3 Limiting Cases . . . . . . . . ... ... .. ... 27

2.4 Bosonic Partition Function for Real Chemical Potential . . . . 31

2.4.1 Heuristic Derivation of the Mean Field Result . . . . . 31
2.4.2 The Finite n Massless Bosonic Partition Function at

Nonzero Chemical Potential . . . . . . ... ... ... 33

2.4.3 Large n Limit of the Bosonic Partition Function . . . . 37

2.5 Conclusions . . . . . . . . . .. 38

Appendices 40
.1 Derivation of the Fermionic Partition Function Using Super-

bosonization . . . . . . ... 41

.2 Massless one Flavor Bosonic Partition Function . . . . . . .. 43

.3 Bosonic Partition function forn=2andn=3. ... ... .. 46

vi



3 X-Space Renormalization of Dimension-5 Operators

3.1 Introduction . . . . . . . . . . .. ...
3.2 Non-Perturbative Renormalization . . . . . . ... ... ...
3.21 RI-Mom . . . . . . .. .
3.2.2 X-Space Scheme . . . . . .. ... ... ... ... ..
3.3 Momentum Space Correlators . . . . . .. .. ... ... ...
3.4 Matching Coefficient . . . . . ... .. .. ... ... ... .
3.5 Coordinate Space Correlators . . . . . .. ... ... .....
3.6 RGFlow . .. ... . . . . ..
3.6.1 Anomalous Dimension . . . . ... ... ... .....
3.6.2 Correlator Running . . . . .. ... ... ... .. ...
3.7 Conclusions . . . . . . . . . . ...
Appendices

1 Conventions . . . . . ..
.2 Fourier Transform . . . . . . . . . . . .. .. ... ...
.3 One Loop Calculation . . .. ... ... .. ..........
4 Massless Pseudo Scalar to Pseudo Scalar Correlator . . . . . .

4.1 Gauge Invariance of Pseudo Scalar to Pseudo Scalar
Correlator . . . . . . . . ...

.5 Massive Pseudo Scalar to Pseudo Scalar and Scalar to Scalar
Correlators . . . . . . .

.6 Massive Pseudo Scalar to CEDM and Scalar to CMDM Cor-
relator . ...
.7 CEDM to CEDM and CMDM to CMDM Correlators . . . . .
7.1  Leading Order Calculation . . . . . ... ... .....
.8 QCD Renormalization Group Coefficients . . . . . . . . . . ..

8.1  Quark Propagator . . .. .. ... ... ... .. ..
8.2 Gluon Propagator . . . . . .. .. .. ... ... ...
8.3  Quark Gluon Vertex . . .. ... ... ... ......
8.4  Coupling and # Function . . . . . . ... ... .....

vil



List of Figures

2.1

2.2

2.3

24

2.5

3.1
3.2
3.3

Phase diagram of the random matrix partition function in the
complex 4 plane in units where the chiral condensate is equal
to 1. o o
The chiral condensate (left) and the baryon density (right)
as a function of the imaginary chemical potential. We show
the result for the one-flavor bosonic partition function (blue),
the one flavor fermionic partition function (red) and the mean
field result (black). . . . .. ... oL
The baryon number susceptibility as a function of the imag-
inary chemical potential, p; for n = 100 and m = 3/10000.
Results are shown for the fermionic partition function (red),
the bosonic partition function (blue), and the mean field limit
of these partition functions. . . . . . . . ... ... ... ...
The baryon number density (left) and baryon number suscep-
tibility (right) as a function of the chemical potential, p for
n = 100 and m = 0. Results are give for the fermionic parti-
tion function (red), the bosonic partition function (blue), and
the mean field limit of the bosonic partition function. . . . . .
The baryon number susceptibility near the critical point for
n =mn = 100 (dashed) and 7 = n = 400 (solid) both for the
bosonic 9 (blue) and the fermionic partition function. Up to a
minus sign, which could have been absorbed by the definition
of the bosonic baryon number susceptibility, the result are
similar. . . ..o

Vector-vector correlator Cy,(x) in the interacting theory [1]. . . . .
Vector-vector correlator Cy,(x) in the free theory [1]. . . . . . ..
Corrected vector-vector correlator Cl, (x) [1]. . . . . . .. . . ..

viil

33



3.4

3.5
3.6
3.7
3.8
3.9
3.10

3.11
3.12
3.13
3.14
3.15
16
17
18
19
20
21
22
23

24

25
26
27
28

Pseudo Scalar to Pseudo Scalar correaltor as a function of

momentum . ... ... L L e 59
Scalar to Scalar correaltor as a function of momentum . . . . 61
CEDM to Pseudo Scalar correaltor as a function of momentum 62
CMDM to Scalar correaltor as a function of momentum . . . . 63
CEDM to CEDM correaltor as a function of momentum . .. 64
CMDM to CMDM correlator as a function of momentum . . . 66
Pseudo Scalar to Pseudo Scalar matching factor as a function

of distance . . . . . . ... 69
Scalar to Scalar matching factor as a function of distance . . . 69
CEDM to Pseudo Scalar correlator as a function of distance . 70
CMDM to Scalar correlator as a function of distance . . . . . 71

CEDM to CEDM matching factor as a function of distance . . 72
CMDM to CMDM matching factor as a function of distance . 74

O(g) CEDM/CMDM vertex diagram . . . . . . .. ... ... 89
O(g*) CEDM/CMDM vertex diagram . . . . . . . .. ... .. 89
lowest order pseudoscalar density two point function from y to x 93
order g> diagrams . . . . . . .. ... ... 93
diagram 19a in momentum space . . . . . . . ... ... ... 94
diagram 19b in momentum space . . . . . . . ... ... ... 95
p-cdiagram . . . ... Lo 100
chromoelectric or chromomagnetic dipole moment at point y

propagating to point x . . . . . . ..o oL 101

CEDM to CEDM or CMDM to CMDM with fixed vertices
in momentum space. The dashed line represents the vertex

momentum to be used in the fourier transform . . . . . . . .. 102
NLO CEDM and CMDM diagrams . . . . . .. .. ... ... 104
1 loop correction to quark propagator . . . . . .. .. .. ... 115
1 loop corrections to gluon propagator . . . . ... .. .. .. 117
1 loop corrections to the quark gluon vertex . . . . ... ... 118

X



Acknowledgements

I would like to thank Professors Jacobus Verbaarschot and Sergey Syrit-
syn for giving me the opportunity to learn, study, and contribute to the
exciting fields of random matrix theory, and lattice field theory. Throughout
the duration of my Ph.D, they always took the time to answer my questions,
and discuss ideas.

I would like to thank my committee for their time, and assistance in my
academic pursuits.

I would like to thank my Stony Brook family, Hualong Gervais, Bing
Wang, Mehdi Namazi, Tacho Ryu, Harikrishnan Ramani, Oumarou Njoya,
Yachao Qian and Scott Mills for being great friends, and making my time in
Stony Brook amazing.

Thanks to my friend and colleague, Dr. Asaf Jeff Dror, for the support,
fun physics discussions and advice throughout the duration of our physics
careers.

Thank you to my family, Aaron, Joseph and Shirley Kellerstein for your
constant support, and for encouraging me to pursue my passion.



Chapter 1

Introduction To Chiral Random
Matrix Theory

Chiral Symmetry

Quantum chromodynamics (QCD), is the theory of the strong nuclear force.
[t is a non-abelian, SU(3) color gauge theory, defining quark and gluon fields,
and their interactions via the QCD lagrangian

Ny
1 a a —-a;b c c He
Locn == 7G G, + > W (5D — mpd"gas) W (1.1)
f=1

where G, are the non-abelian field strength tensors, wﬁ;c are the quark fields
of flavor f (f = u,d, s, ¢, b,t), in the fundamental of SU(3) with Dirac index
[ and color index ¢, and DZC = 5bcﬁu — igAf’f is the covariant derivative, with
gluon fields A in the adjoint representation of SU(3). The operator +*D,
is called the Dirac matrix, and from now on, will be expressed as D. Any
quantity of interest can be computed by taking functional derivatives of the



QCD partition function ZQ¢P
7QCD :/DAMDED@D@IC#IEQCD

- / DA, D Dipe~ I da0(@)(Drmyie) =Sy

Ny
:/DAMHdet (D +my) e Svm, (1.2)
f=1

QCD is asymptotically free at high energies (A > 1 GeV), and is accu-
rately described perturbatively [2]. At low energies, quarks and gluons are
confined in hadrons, and a perturbative treatment no longer suffices. Lattice
QCD, where the path integral is studied using Monte Carlo simulations, has
greatly improved our knowledge of QCD at low energies [3]. However, for
a clearer picture of the relevant degrees of freedom, effective models are ad-
vantageous. Building effective models requires an analysis of QCD’s global
symmetries.

To study the global flavor symmetries of QCD, equation (1.1) is rewritten
in a chiral basis using left and right handed projection operators P, = %(1 —
’)/5> and PR = %(1 + 75).

1o _ .
EQCD = _ZG;WG;W + Z (wR,fZD¢R’f + ¢L7levaf)
f

+ Y (G Mg + ¥ Myjir) (1.3)
X

From equation (1.3), it is clear that in the chiral limit (M — 0), Locp is
invariant under independent, unitary transformations of both the right, and
left handed quark fields

Vg =y = U ey (1.4)
Vry =gy = Uftn,

Where L and R indicate whether it’s a left, or right handed quark, and f and
j are flavor indices. This is a classical U(Ny);, x U(Ny)gr symmetry. Taking
into account, only the three light quarks, (u, d, s) we have Ny = 3. The
chiral transformations can be conveniently re-expressed as parity even and



parity odd transformations

Uy =U" +U"
Uy =U"-U"

While the classical lagrangian is invariant under the full U(Ny)y xU(Ny)a
symmetry, the U(1)4 symmetry is explicitly broken by the regulator [3],
leaving a SU(Ny)y x SU(Nyf)a x U(1)y symmetry.

In the chiral limit, one would naively expect for each parity even state
generated by a SU(Ny)y charge operator, a corresponding state of equal
energy, but negative parity created by a SU(Ny)4 charge operator. Observa-
tions of the hadronic spectrum, however, contradict this claim. The octet of
pseudo scalar mesons have masses much smaller than expected, the expected
parity doubling is not seen, and an SU(3)y symmetry is realized. These
facts suggest that the SU(Ny)4 symmetry is broken spontaneously, and the
pseudoscalar octet are candidates for Goldstone bosons.

Moreover, in the chiral limit, the ground state must be invariant under the
vectorial symmetries [1]. Since the ground state is invariant under SU(3)y x
U(1)y, the Hamiltonian is too, and physical states of the system can be
organized according to its irreducible representations.

Chiral symmetry is spontaneously broken by the quark condensate. It will
now be useful to derive the famous Banks Casher Relation, which describes
the relationship between the spectrum of the Dirac operator p()\), and the
quark condensate ¥ = !(E@ZJ) ‘ The chiral condensate is also equal to

(1.8)

) o1
EZ&%EOVIEEOV‘ om

Solving the partition function can be made simpler by expanding the Fermi
fields ¥ (z) in terms of eigen functions of the Dirac operator

P(x) :Zanun(x), (1.9)

where a,, is a Grassman number, and u,(x) are the eigenfunctions of D

Duy,(x) = un(z). (1.10)



The quantity > can also be found by taking the trace over the dirac
propagator [7]

o1 A
Z _ngmvh—%ov </d xS(m,x)>YM (1.11)

i tim L ([ gt 3 ()
—%%Jilzov</df§m—m o (112

1 1
= lim li = 1.13
o i D7 o5 e )
) . 2m 1
=m0 .
A=>0

We now define the spectral density of the Dirac operator

p(N) =0 6= An))var (1.15)

Rewriting equation (1.14) using the spectral density p(\)

:mwm@/dAW) (1.16)
VJo

m—0V—oo A2 4+ m?2

Solving this integral as a contour integral in the complex plain gives

— o p(im)
= lim 1 1.1
(W) = fim fim =7 (L17)
The spectral density in equation (1.15) has a normalization proportional to
the volume V. Therefore, taking the limits in order, one finds that the chiral
condensate ¥

£ = ()| = mp(0) (1.18)

This result shows that in order for the chiral condensate to spontaneously
break chiral symmetry, there must an accumulation of eigenvalues of the
Dirac operator near A = 0.



Chiral Lagrangian

An effective theory of the Goldstone bosons of chiral symmetry breaking can
be constructed using the symmetries, and symmetry breaking patterns of
QCD. According to Goldstone’s Theorem [(], the spontaneous breaking of
SU(Ny)p x SU(Ny)r = SU(Ny)y gives N7 — 1 massless Goldstone modes.
The Goldstone modes should be parameterized such that they are isomor-
phic with the coset SU(Ny), x SU(Ns)r/SU(N¢)v, the vacuum is left in-
variant under SU(Ny)y transformations, and the vacuum transforms under
SU(Nys)a. The Goldstone modes should also take on the properties of the
broken group they correspond to. Therefore, they should be pseudoscalars.
The SU(N) matrix

U =UrU] = exp (z‘)\a(b]j:@)) , (1.19)

where fields, ¢, are the Goldstone modes, and matrices A, are generators of
SU(Ny), has the transformation properties needed.
Under an SU(Ny¢)r, x SU(Ny)p transformation, U becomes

U —U = UpUU] (1.20)

To lowest order in momentum, in the chiral limit, the lagrangian should
be invariant under a chiral transformation. The kinetic term is
F2
L=—Tr (0,U0"UT), (1.21)

where F' is the pion decay constant.
Quark mass terms explicitly break chiral symmetry,

Ly, =—qgMqy — G, Mgg. (1.22)

If, however, M transforms under SU(Ny), x SU(Ny)r as a member of
the (3x%,3) representation, i.e.

M —UzMU!, (1.23)

chiral symmetry in equation (1.22) would be preserved. Constructing the
most general lagrangian, invariant under equations (1.20) and (1.23), at low-
est order, one finds



2

L ZFZTT (9. U0*UT) — %TT (MUT+UMT), (1.24)

where . = %ZQCD is the chiral condensate.
q

Studying the chiral lagrangian in a box of size L* allows for a connection
with random matrix theory. The chiral lagrangian is valid in when

1

— << L 1.25
R (1.25)
Where A is the mass of a particle heavier than the pion.

Expanding the field U in momentum modes, and comparing the two terms
in equation (1.24), one finds the zero modes become the dominant contribu-
tion to the path integral when

M 1

This implies that when pion compton wavelength is much larger than
the size of the box, the particles do not propagate, and the zero modes are
the dominant contribution. This is called the e-regime. In the e-regime, the
partition function becomes

7 / DU VST MU (1.27)
UeSU(Ny)

Random Matrix Theory

Random matrices made their first appearance in physics, in the modeling of
highly excited nuclear resonances. Rather than attempting to describe the
complex dynamics of each state, Wigner took a statistical approach |7, &].
By exploiting similarities between nuclear interactions, and random matrices
with the same global symmetry, Wigner constructed ensembles of Hamilto-
nians, each Hamiltonian having the same global symmetries.

The approach used by Wigner has, time and time again, provided accurate
descriptions for complicated systems across many physical fields. Random
matrix theory’s success does not lie in its ability to describe a system’s spe-
cific dynamical properties, but rather its simplistic, and accurate calculations



of the observables of a system, determined solely by symmetry. The recipe
for modeling using random matrices is to generate an ensemble of matrices,
with random entries, and the same symmetry structure as the system of
interest. The then sought after physical observables, are the universal prop-
erties, common to all members of the ensemble, and depending only on the
symmetries of the system.

Several generic random matrix ensembles exist, each determined by their
probability density functions, their hermiticity, and symmetry properties.
The ensemble of interest, encoding the global symmetry properties of QCD
is called the chiral ensemble [9, 10]. The chiral ensemble consists of matrices

D with the structure
0 W
D= ( 0 ) , (1.28)

where W is an n x m (n > m) random matrix, chosen to have gaussian
distributed random entries

Py(W) =~ 1 TWW), (1.29)

where (3 is the dyson index, and N = n 4+ m is the number of modes.

Equation (1.3) shows that in the massless limit the QCD lagrangian is
invariant under chiral transformations. Equivalently, one can show that for
a chirally symmetric lagrangian, the QCD Dirac operator D anticommutes
with 75

{75, D} = 0. (1.30)

Vs =( _01 2 ) : (1.31)

the matrix in equation (1.28) and 5 anticommute. Because of this anticom-
mutation relation, for each eigenvector v; of D with nonzero eigenvalue \;,
there is an eigen vector y5v; of D with eigenvalue —\;. Since both the Dirac
operator, and equation (1.28) anticommute with 75, the eigenvalue structure
of the matrix will have this property, where nonzero eigenvalues come in pairs
of £); as well. This is characteristic of the U(1)4 symmetry.

In the chiral basis where

7



Eigenvectors 1 of D are composed of a left handed spinor y, and a right

handed spinor &F
0 W X
o0 Y () w30

:<ZVV5§;): <§<T) (1.33)

WW i =X (1.34)

We therefore see that

Where the index 7 runs from 1 to n. However, the matrix WWT is of rank
m, and therefore, v = n — m of the eigenvalues must be equal to 0. The m
nonzero eigenvalues of WW 1 are the same as the m eigenvalues of W1W. This
is just the Atiyah-Singer index theorem, which, in QCD is the statement that
the difference between states of definite positive, and negative chirality is a
conserved topological charge, and is equal to the number of zero modes of the
QCD Dirac operator. Therefore, encoded in this matrix are the topological
properties of the Dirac operator.

To construct a more accurate random matrix model of the Dirac operator,
one must understand transformation properties of the Dirac operator under
an anti-unitary operator. There are three different non-trivial QCD theories
to be studied, each differing by their transformation properties under some
anti-unitary operator UK, where U is some unitary operator, and K is the
complex conjugation operator.

1. The first interesting QCD scenario gives rise to a random matrix theory
with dyson index g = 1, and real random variables as entries in in the
matrices W. This corresponds to QCD with two colors, and fermions
in the fundamental representation. With two colors, the Dirac operator
is

D =7,(9,, +iA%T/2), (1.35)

where 7 are the pauli matrices. In this case, the Dirac operator com-
mutes with the anti-unitary operator vy, K. The flavor symmetry
resulting from a QCD lagrangian, invariant under this is SU(2Ny).



The chiral condensate, however, spontaneously breaks this symmetry
to Sp(2Ny). Since

(’}/2’}/4’7'20)2 :1, (136)

the matrices W have real entries, and the dyson index is § = 1. There-
fore, the flavor symmetry, and antiunitary symmetry are properties of
W having real entries.

2. The second case corresponds to a dyson index = 4. In this case,
fermions are in the adjoint representation, and there can be any number
of colors. The Dirac operator is

Doy =7u(0ubab + faneAS) (1.37)
In this case, [D, 7274 K] = 0, and

(7274(7)2 = -1 (1.38)

The lagrangian in this case is invariant under an SU(Ny) flavor sym-
metry for even Ny, and majorana fermions, and the chiral condensate
breaks this symmetry into O(NNy). The matrices W, corresponding to
this antiunitary symmetry and flavor symmetry have real quaternion
entries.

3. The third scenario has dyson index = 2, and corresponds to QCD
with three colors, and fermions in the fundamental representation. In
this scenario, no anti-unitary operator exists that commutes with the
Dirac operator. This corresponds to matrices W, with complex entries,
and the flavor symmetry, SU(Ny) x SU(Ny) broken to SU(Ny), as
discussed above.

The partition function for the chiral random matrix thory, with Ny fla-
vors, in the sector of topological charge v, is

Ny
Zy2 (my,ma, . my,) = / DW [ det(D + my)e” 2TVWI - (1.39)
F=1



This can be solved by expressing the determinant as an integral over grassman
variables

- f
23 (mh) = [ DwHDw’”DW‘p{ZW* (bf*)(@% ”VZ) wf)
¥ f
_gTrWTW} (1.40)

where D/ = [] dip;dep}, and the complex conjugate convention of ¢** = —1)

i
is being used. Completing the square in W, and performing the gaussian
integral leaves an irrelevant overall constant, and a four fermion term.

= 2

Z5 5 ({mi}) = / [ v/ D¢’ exp {w “myp! + ¢ mye! + ng”*wgqsg*gb; }
f

(1.41)

= / H DQ/JfDQSf exp {be*mfi/if + ¢f*mf¢f+
f

2 « .
= (vt + ol o sl + 676]) — I 0! — sl e (W] — o7 o] >)}
(1.42)

In the last line, the four fermion term was expressed as the sum of two
quadratic terms. Using a hubbard stratonovich transformation, the fermionic
variables can now be made quadratic, at the expense of adding a new inte-
gration variable

Zﬁ[j’?’({m’}) :/HD¢fD¢f/DUDﬁexp {¢f*mf¢f + ¢f*mf¢f
7
g Tr{o0 +7) + ("0 + 60" 600" + (w4t — of *cb?)ﬁfg}
(1.43)

= / DJDEH D! D¢f exp {—Q—J;Tr(a +i0)(0c —i0)
f

! (01 + i7"+ mpoT )] + ¢ (070 — i + mf5f9)¢?} '
(1.44)

10



The integrals over the grassman variables are now gaussian integrals. For
real, and degenerate quark masses, this simplifies to

= / DoDze” 520D et” (o 4 i7 + my) det” [(o + iE + my) (o — i7 + my)]
(1.45)

The variables o 4+ i can be decomposed into polar coordinates, UAV !,
where A is diagonal, and U and V are unitary matrices. The integral can
now be separated into massive modes, and massless Goldstone modes. As
n — oo, performing the integral over A by a saddlepoint approximation, and
keeping only the integrals over the Goldstone manifold results in

Z,(m) = / DUdet"Uem=TrMU+MIU™Y) (1.46)
UEeU(Ny)

which is just the € regime, finite volume partition function [11].

Resolvent Methods and Bosonic Partition Func-
tions

There are several methods for computing the spectral density. Those meth-
ods, and their connections to bosonic partition functions are briefly reviewed.

As shown in equation (1.15), the spectral density for the Dirac operator
is

P =00 =), (1.47)

where the average is over the guage fields, and the weight is the euclidean
action. Using the identity

5(z) i( CE ) (1.48)

2m, \x — 1€ x + i€

the spectral density becomes

1 1 1
—— T 1.4
Y 2m'< "N—D—ic r)\—D+i€> (1.49)

:anL(Z(zHe) ~N(iA— o). (1.50)




¥(z) is an object called the resolvent, and is defined to be the averaged
trace of the inverse Dirac operator.

(2) :<%TTD1+Z>. (1.51)

Therefore, the spectral density can easily be computed by finding the dis-
continuity across the imaginary axis of the resolvent. In this section, two
methods for computing the resolvent will be discussed. The first is called
the supersymmetric method. The supersymmetric method is defined by the
following generating functional for the resolvent

det (D + z + j)
det (D+2) [y

(1.52)

Zg = <deth (D +m)

where the resolvent is found by taking derivatives of the generating func-
tional.

1 9Zs

Y(2) V9 (1.53)

Jj=0

The partition function in equation (1.52) can be expressed as a functional
integral over both bosonic and fermionic variables, and for j = 0, the original
QCD partition function is restored.

For an arbitrary random matrix theory with system represented by the
random matrix H, source term J, defined by the determinant

det(z — H) = / Dy Dipe ==Y (1.54)
The resolvent is given by
0
Y(z) == logdet(z — H). (1.55)
0z
Using the identity
X" -1
log X :TlLILI(I) — (1.56)
The resolvent can be rewritten without any denominator as
$(2) = lim ~-2det™ (> — H) (1.57)
2) = lim e et"(z )

12



The replica trick for a chiral random matrix theory with N; flavors of mass
m is defined by the generating the following generating functional for the
resolvent

Zpr(Ny,m,n) = (det™’ (D + m) det” (D+2))y (1.58)

where n replicas of the original fermion determinant are made, with spectral
mass z. The resolvent can be computed from Zzr by
10
Y(z) =lim ——Z 1.59
(2) = lim = Zrr (1.59)

When computing the generating functional Zgr, n is assumed to be either a
positive (fermionic replicas), or negative (bosonic replicas) integer, and when
computing the resolvent (or higher point functions), the limit of n — 0 is
taken.

Bosonic partition functions appear in both the supersymmetric and replica
generating functionals as an inverse determinant.

1 ot
— | DoDof e ¢ (P+2)¢ 1.60
det(D + z) / oDg'e ! (1.60)

where ¢, is a vector of 2 commuting variables ¢ = (¢1, ¢2)". The action in
equation (1.60) is invariant under the transformations

¢ —¢' =Ud (1.61)
U ="V (1.62)

where V' is unitary, and represents the vector symmetry, and the axial trans-
formations are represented by matrices, ¢*® where s € {—o00,00}, in the
non-compact coset GI(1)/U(1). For an additional N; bosonic flavors, the
coset becomes GI(Ny)/U(Ny).

For a single bosonic replica of the quenched (N; = 0) replica generating
functional in topological sector v, Zgry was solved in [12], and found to be

Z,(0,z,—1) =2K,(z) (1.63)

While the replica generating functional may seem innocuous, it can only
be solved for an integer number of replicas (n € Z%). However, the resolvent
is obtained in the limit of n close to 0. This limit involves analytically con-
tinuing from the set of positive integers (Z7) to the set of real numbers (R).
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This continuation presents difficulties. To study the validity of the replica
generating functional, fermionic and bosonic partition functions were com-
puted, and compared with one another [13]. It was found that, not only did
the bosonic and fermionic replicas disagree, but both provided the incorrect
result. The validity of the replica generating functional, and relationships
between bosonic and fermionic partition functions were further explored in
[14, 15], where the replica generating functionals were computed as solutions
to the toda lattice equation and the Painleve IV equation, and the replica
number n, served an index parameter. In was found that exact results could
be obtained in the replica limits of these integrable systems.

Finite Chemical Potential Partition Functions

The partition function for a system characterized by Hamiltonian H with
conserved charges N; is

7 =Tre PH-mlN), (1.64)

For QCD at finite temperature, and chemical potential, the partition function
becomes

_ _ 8 N
7 = / DADYDyYDCDC exp / dr / &Y " (D +my+ py0) © + Syar + Syr + Sghost
0
f

=<Hdet <D+mf+mo>> (1.65)
f

YM

The addition of the 5 anti-hermitian chemical potential term, pvyg, to the 75
hermitian Dirac operator D, removes any hermiticiy properties and causes
the fermion determinant at finite density to have a complex phase. Given
that probabilities must be real, positive numbers, this complex phase pro-
hibits the interpretation of the fermion determinant and Yang-Mills action
as a probability density, making Monte-Carlo simulations impossible. This is
known as the sign problem [16, 17]. Random matrix theories at finite chem-
ical potential have helped with our understanding of the sign problem |[15],
and QCD at finite density.

In this chapter, chiral random matrix theory was introduced, and the
role it plays as an effective model of QCD was described. Chapter 2 will

14



describe two different random matrix models at finite density, and several
different bosonic and fermionic generating functionals will be evaluated, and
compared.
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Chapter 2

Random Matrix Theories at
Nonzero Chemical Potential

Random Matrix Models

We consider two different random matrix theories for QCD at nonzero chem-
ical potential,

B ml C+pul
B ml C+uD
Dy = ( —CT+uD" ml ) (2:2)

with complex n x n matrices C' and D distributed according to
P(C) = e mmoCt, (2.3)

The ensemble D; was introduced in [19] for imaginary chemical potential
and in [20] for real chemical potential. D; is constructed by observing in
equation (1.65), that the temporal component of D, (0y — igAg) is added to
the chemical potential. The ensemble Dy was introduced in [21] by choosing
the elements of 7y to be random matrices D. For each of the ensembles we
consider the bosonic and fermionic one-flavor and two-flavor phase-quenched
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partition functions,

ZNf 1—<Ndet D—l—m

(

INy=m1 = <Ndet D +m) > (
Zy41+ = (N det(D + m) (2.

(

1
Zopsre =N < N det(D + m)|2> ’

The normalization factor is chosen such that the free energy is p independent
for small  and m — 0. It turns out that this factor is given by

N =™, (2.8)

In the microscopic domain, m ~ 1/V and p? ~ 1/V, the mass and chemical
potential dependence of the partition functions is universal and coincides
with that of the QCD partition function. In this limit, the random matrix
ensembles D; and D, give the same results which can also be derived from
the corresponding chiral Lagrangian. In particular, the one-flavor partition
function does not depend on the chemical potential in this domain. Since the
chemical potential of the phase quenched fermionic partition function can be
interpreted as an isospin chemical potential [22, 23] this partition function
is p-independent only up to p = m,/2 at which point a phase transition
to a pion condensation phase occurs. The phase quenched bosonic partition
function does not have a phase transition as a function of p [24] as will be
discussed in more detail in the next section. An imaginary chemical potential
does not change the hermiticity properties of the Dirac operator and in the
microscopic domain the partition function does not depend on it.

The ensemble Dy does not have any other phase transitions in the nonuni-
versal domain. On the other hand, the ensemble D; has nonuniversal phase
transition. For g = ip; purely imaginary it has a second order phase tran-
sition to a chirally restored phase at p; = 1 [19], whereas for real p it has a
first order transition at p = 0.527 [20]. This phase transition resembles the
QCD phase transition to a phase of nonzero baryon density which is why this
model is particularly interesting. One of the main questions of this paper is
the fate of this phase transition for the bosonic partition function.

The random matrix partition functions of both ensembles can be eval-
uated by a variety of methods such as the supersymmetric method, the
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replica trick, resolvent expansion technique, the Toda lattice equation, chi-
ral Lagrangians etc. . However, only the partition functions of the of the
two-matrix ensemble Dy can be evaluated analytically at finite n using or-
thogonal polynomial methods |21, 25, 24, 26]. The fermionic as well as phase
quenched partition functions of the ensemble D; have been evaluated both
for real |20, 27] and imaginary chemical potential |19, 25]. Both exact results
in terms of one-dimensional integrals [27] and mean field results [20, 29] have
been obtained. The bosonic partition function of the ensemble D; has not
been studied in the literature, and we will evaluate it both for imaginary
chemical potential at nonzero quark mass and real chemical potential at zero
quark mass.

Phase Quenched QCD

The phase quenched fermionic partition function [22] can be rewritten as
Zig = (N det(D + v + m) ), (2.9)
B D+ pyo+m 0
B R A N A

_ <Ndet(D+“g°+m 0 >> (2.11)

Vs D5 + o +m
= (N det(D + pyo +m) det(D — pryo + m)). (2.12)

Going from line 2.9 to 2.10 can be interpreted as rewriting the quenched
determinant in flavor space, and is therefore the two-flavor partition function
at nonzero isospin chemical potential. It has a phase transition to a Bose
condensed phase at ;1 = m, /2. This transition coincides with the point where
the quark mass enters the cloud of eigenvalues [30].

The phase quenched bosonic partition function (2.7) can be evaluated
simply by writing it as an integral over the joint probability distribution [24]

d*zw(z ,z Sl
Zojrr-(z, 2%, 1) /H k k : ) )|A(Zk)‘ , (2.13)
where [21]
* v n(1—p?) (22422 2 n(1+M2>|Z2|
w(z, 7o 1) = |2]* e (L) 4+2"%) [ 4s® g (Q—MQ _ (2.14)
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The integral diverges logarithmically when one of the eigenvalues is close
to z. While the divergent term dominates the partition function, the diver-
gence can be absorbed into the normalization. Then the bosonic determinant
cancels against the same factor from the Vandermonde determinant and the
partition function reduces to |25, 24|

Zojip1+(2, 2", ) ~ w(z, 2% p) log(e€). (2.15)
This gives rise to a baryon density and a chiral condensate that depend
smoothly on the chemical potential and the phase transition of the fermionic
theory at u = m,/2 does not take place.

The logarithmic singularity is a generic feature of the bosonic partition
function which can also be understood starting from a chiral Lagrangian.
The Dirac operator in the phase quenched bosonic partition function has to
be regularized as [31]

pDres — D + 1 220) R € (216)
—€ —D + pyo

with the chiral block structure of the Dirac operator D given by

A m id
D_(z‘dT m). (2.17)

The determinant of this two-flavor Dirac operator can be rewritten as
det((D + py0) (D + py0) + €°) = det(D1 + pyoms + ey5ima),  (2.18)

so that, physically, € is the source term for the isospin condensate. By per-
mutation of rows and columns, the regularized determinant operator can be
written as

det D (2.19)
with
Fyreg €+ ing ZdTl + ,lLiTQ
D™= < idiT + pity €+ imm > ’ (2.20)

which makes it possible to express the bosonic partition function as a con-
vergent Gaussian integral

B N (9 4 e+imry  idm + pit 01
Zoj141r = </1;[d¢kd¢k P [ ( (o ) idiT + pite € +imm o)) 2.21)
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The pion condensate is given by the expectation value

Liot-ou+ a5 o), (2.22)

which follows by differentiation with respect to the source term. A nonzero
value of this condensate spontaneously breaks the symmetry the GI(1)/U(1)
symmetry

(o) e (). () > (5) ot ez

of D' with s real (for ¢ — 0). Note that an imaginary part of s would
violate the complex conjugation property of the integration variables and
the integral would no longer be convergent. In the chiral Lagrangian, the s-
degree of freedom becomes a “Goldstone mode” which for nonzero € acquires
a mass term

~ €Tre™® = 2ecosh s. (2.24)

The integral over s gives the log e-divergence of the partition function found
earlier in this section. This is a general argument that applies both to the
ensemble Dy and the ensemble Dy and applies as long as the above GI(1)/U(1)
symmetry is spontaneously broken.

The source term for the chiral condensate is the quark mass, and it is
thus given by

%<¢>1k7;72¢1 + @3iTah). (2.25)

The corresponding Goldstone manifold for the noncompact symmetry is thus
given by

e’ 3.e (2.26)

with X, = imy. The s degree of freedom drops out of the Goldstone manifold,
and it is not possible to regularize the partition function by introducing
a regulator mass in this source term. If the partition function has to make
sense we necessarily need a nonzero pion condensate for which the GI1(1)/U(1)
symmetry is spontaneously broken, and the Goldstone degree of freedom s
acquires the mass term (2.24).
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Let m. be the critical mass such that for m < m., m is inside the support
of the spectrum of D, while for m > m, it is outside of this region. Then
it is clear that the anti-Hermitian Dirac operator (2.20) does not have a gap
for m < m, (as a function of €), and the symmetry (2.23) is spontaneously
broken. For m > m,, although the spectrum of the matrix in (2.20) acquires
a gap, the pion condensate (2.22) remains nonzero. The reason is that the
contribution of single eigenvalue of D+ (Yo close to the mass diverges as
log € in the regularized partition function. This follows by writing the phase
quenched bosonic partition function in terms of the eigenvalues of the Dirac
operator D+ Uyo as

p(Ag, -+ A

Z A\ dN;
g L
nloge [ p(A, - A1, £m)
AN\LdN,
A2 / 1= |m2 )\2|2 H kA

(2.27)

For the partition function Dy the bosonic determinant cancels against the
Vandermonde determinant, and we find that the chiral condensate is given
by m/u?. For the partition function D; it is not possible to further sim-
plify (2.27), but we expect that the chiral condensate remains continuous at
m = m,.. Indeed, for the random matrix ensemble D, the partition func-
tion is still dominated by the logarithmic singularity due to a single eigen-
value close to the quark mass, and because of eigenvalue repulsion, there are
no other eigenvalues close to m. In particular, the joint eigenvalue density
p(A1, - A\y_1, 2m) vanishes linearly for any of the Ay, -+, \,,_1 close to +m.
However, we no longer have the exact cancellation of the bosonic determinant
against the Vandermonde determinant.

The chiral Lagrangian for the phase quenched partition function of D,
was derived in [32]. The mean field limit of the corresponding partition
function given by (in units where 3 = 1)

Z(m, p) = e~ tmtmnm?/u? (2.28)

results in the chiral condensate
1

d m
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and the baryon density

1 d m?
ng(p) — 5=~ log Z(m, p) = 4p — E (2.30)

2n du
In the Bose-condensed phase the mean field limit of the fermionic phase
quenched partition function is given by

dnp+nm?/p?

Z1+1*/O(m, M) =€ (231)

resulting in the same chiral condensate and baryon density as obtained for
the bosonic partition function. In the normal phase (m > 2u?) the mean-field
limit of the phase quenched partition function is given by

Zl+1*/0(m, ,u) = €4nm. (232)

This phase is not present in the bosonic partition function.

What we learn from this example is that in order to obtain the loge de-
pendence, the noncompact flavor symmetry of the bosonic partition function
has to be broken spontaneously. If it would not be broken, the noncompact
degree of freedom could not be regularized and the regularization that works
for the fundamental theory, would fail for the effective theory.

One Flavor Partition Function at Imaginary Chem-
ical Potential

The fermionic one-flavor partition function of the random matrix theory Dy
was analyzed in [19, 28] for imaginary chemical potential and in [20, 27|
for real chemical potential. Some of the relevant results for the fermionic
partition function will be reviewed in the next subsection, while the bulk
of this section is devoted to the derivation of an analytical expression for
the bosonic partition function, and a comparison of observables for the two
partition functions.

The Fermionic Partition Function at Nonzero (Imagi-
nary) Chemical Potential

The fermionic one-flavor partition function can be evaluated by writing the
determinant as a Grassmann integral and performing a Hubbard-Stratonovitch

22



1.0
Restored
0.5

;' 0.0 Broken

-1.0

A5 -10 -05 00 05 1.0 15
Re u

Figure 2.1: Phase diagram of the random matrix partition function in the
complex 4 plane in units where the chiral condensate is equal to 1.

transformation after averaging over the randomness, or alternatively by super-
bosonization [33, 34, 35, 36, 37]. The exact result for finite n in the sector of
topological charge v is given by [19, 27]

zv m, == dss” IIV 2mnsy 82 — IMQ ne™n 2(52 2 ’”2). 233
12 ) pe+
0

This result is valid both for arbitrary complex chemical potential, and in
particular for real or purely imaginary chemical potential. It has two phases,
a chirally broken phase and a phase with restored chiral symmetry. In units
where 3 = 1, the critical curve is given by [19, 20, 27]

Re(1 + p? + log i) = 0. (2.34)

In Fig. 1 we show this curve in the complex p-plane. The first order lines
end at p = 47 where the transition is of second order.

An alternative expression for the fermionic partition function can be ob-
tained by means of the superbosonization technique. The result can be ex-
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pressed as (see Appendix .1)

n 4 1)len™

v ( " ' —iB(2n+v) v ) 7 e z? /n3?
Z"(m,p) = 1) dB | adre PP T (2mePx) Jo(2uePV1 — 22)e /nE%

- —1

(2.35)

The integrals over x and 8 can be performed analytically resulting in a finite
sum that can easily be evaluated numerically.

The Bosonic Partition Function

After averaging over the chiral random matrix ensemble, the one-flavor bosonic
partition function for ¥ = 0 and imaginary chemical potential is given by [35]

Z(m, i) = ™ [ doidondgsonexs [z ( o ) < e ) ( o ) - %}2.%)

where the normalization factor exp n¥2u? is chosen to give a p-independent
partition function in the chiral limit below the critical point. We distinguish
n appearing in the probability distribution and the number of components n
of the vector ¢;. Instead of using a Hubbard-Stratonovitch transformation to
linearize the quartic term, we use the bosonic part of the superbosonization
transformation to evaluate the integral. The starting point is to insert the ¢
-function

5(® — S) (2.37)

in the partition function with S a positive definite Hermitian matrix and

_(bo b
q)‘(dﬁ-asl ¢;-¢2)' (2:38)

The partition function can then be rewritten as
Z(m, i) = e / dSdDI(S — @)e ™ IeHiiTror®=5u82/n3" (9 39)

where the integral is over Hermitian matrices S. The J-function can be
expressed as [39]

5(S — @) = / dF el F (52— (2.40)
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resulting in the partition function
Z(m,ip;) = 22 /dedq)dFeiFse—mTﬂD—i-iuiTrm<I>—iTrF<I>—Su:’>‘22/n22‘ (2.41)

The integral over ¢ evaluates to

. 1 2
Z(m,ip;) = €™ | dSdFe™"S “SuSa/mE (9 49
(i) = e [ ASAPETS e (2.42)

The integral over F' is an Ingham-Siegel integral [10, 41, 39, 32| which is
known analytically,

/ dFdet ™™ (F — i)™ = 9(S)det" 2Se 19 (2.43)
where 6(S) indicates that S is positive definite. We thus find

Z(m, ji;) = 67@2#?/ dSdet™ 2 G e~ (S11+S22)Fipi(s12+s21) — 11522 /%2 (2.44)
S>0

For v # 0, we choose ¢; to be of length n + v and ¢4 of length n. When
comparing different topological sectors [12], we will put n = n+vr/2 and keep
n fixed so that the number of eigenvalues of the Dirac matrix is the same for
different v. In Eq. (2.42) this results in an extra factor 1/(Fy; —iz)¥,

1

—S11522/7 45
det"[F —im — oy ) (F11 — im)ye 2(22 )

7" (m, ipi;) = e h / dSe™Ts

and after shifting the diagonal matrix elements of F' by im, we need to
evaluate the integral

/ dEdet™™(F — ie)(Fyy — ie) e ™5, (2.46)
To calculate this integral we rewrite the determinant to obtain
/dF(F22 — i€ — F21F12/<F11 - iﬁ))_n(Fll - Z.E)_V_neiTrSF. (247)

The integral over Fyy can be performed by a contour integration resulting in

2w . Fy1Fi9 | . . .
n—1 . \—v—n 1TrSee 240511 F11+1S12F21 40521 F12
(n” S8 0(S) [ A s(Fy —ie) e TS .

(2.48)
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The integral over Fi, and Fy; = FY, is a Gaussian integral which can be
easily evaluated. We find
2" m . .
Ss12" g(9 AF(F,, — ie)"v—nt1 —iTrS12521 F11/S22+iS11 Fin 249
S (S [ dF(Fy — i) e (2.49)
Also the integral over Fi; can be performed by a contour integration so that
we finally obtain for the integral (2.46)

2 . v+1 2
- 7(;5 —Z)l)! ng_zﬁ(n + 1/7T— 2)! (S11 — 812521/ 592)" 7 720(522)0(S11 — S1251/S22)
4 _ A\ \nu+l
_ (m(—1)) det”*ZS[det S/ 5]70(S), (2.50)

(n—Dl(n+v-—2)

where 6(5) denotes that S is positive definite.
The integration over positive definite matrices S can be performed by
using the parameterization

v e* cosh s ie'® sinh s
S=c ( —ie"®sinhs e “coshs ) ' (2.51)

The integration measure is given by

dS = 4e* cosh ssinh s. (2.52)
This results in the partition function
eﬁzz“? ) eutv 1Y
27 (m g, dvdudsdg cosh s sinh se*
(m, ;) (n—l)!(n+1/—2)!/ vdudsdg cosh s sinh se [coshs}
% emee” cosh s cosh u—2ipu;e? sinh s sin ¢p—e2v cosh? s/n 3> ) (253>

The integrals over u and ¢ can be expressed in terms of Bessel functions

R h s sinh

e cosh ssinh s

v - o (2n+v)v v P

Z"(m,ip;) = CE O] /dvds—cosh” ¢ K, (2me" cosh s)Jy(2p;€" sinh s)
Xe—62“ cosh? s/ﬁEQ‘ (254)

After shifting the v-integration by log cosh s and choosing z = expv as a
new integration variable we obtain

ﬁZQ;L? h inh _
v N (& cosh ssinn s In4r—1 ‘ 7x2/n22
ZY (myip;) = CECETE] /dxds—cosh%“” i K, (2mz)Jo(2p;x tanh s)e :

(2.55)
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The integral over y can be evaluated as a Bessel function resulting in the
expression

n+1

- (n+1)/2  poo
2 (m i) = "W nn. / dwa" Ty 1 (241507 K (2ma/7)e = 152.56)
n—1)! 0

where we have also rescaled the integration variable by y/7. This form can
easily be evaluated numerically also for large values of n. However, because
of the oscillatory nature of the integrand, it is not amenable to mean field
estimates.

Next we derive an expression for the partition function in terms of a
positive definite integrand. This result can be obtained if we insert the
following representation for the K, function

lav [ ds o—s—a? /43

Kolw) =355 | o

(2.57)

resulting in
1 2 2/L1 "n (n+1)/2 (xm\/ﬁ)” o
v . : — nx % ds~——"V "/ d an o 9 : —
(m7 t ) 46 (Tl _ 1) /0 s sv+l /0‘ LT + 1( K 33\/5)
Xe—s—mzxZﬁ/s—x2/22‘ (258)

The integral over x is known analytically [13]

- n+v —ax? /Bn+yil —B?/4a
i dzx"™ Jpq—1(Bx)e = (204)””6 : (2.59)

After changing the integration variable be s — snm? we find

=n ﬁ22u2 © 1

n-e S P =2 2
v m _ —v —snm —nps/(1/s+1/%2)

(m i) = =™ / s”+1€ (1/s + 1/z2)n+v©
n nZQMZ —nm /s 1 —au?/(s+1/%2
= | R

where we also changed s — 1/s in the last line.

Limiting Cases

In this subsection, we derive three limiting cases of (2.60), the microscopic
limit, the p; — 0 limit, the chiral limit and the large n-limit of the bosonic
partition function.
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In the microscopic limit for the mass, mn = fixed for n — oo and n — oo
with n — n at fixed imaginary chemical potential the partition function
simplifies to

o0
e ds 52,2572 25512 Z512,2
v . 2\n+v, v —s —n*m?¥?/s—puin3?(1-nX*m?/s)
Z¥(myip;) = (nE) m / s I
0

n22 ;
- —86 a (S mP2(AmE /1 — p252) Ve M | (2imE4 /1 — 1252)
n_

€n22 7n22n+1/ 2,502
= Syt B @amE T ), (2.61)

which is consistent with the result obtained in [38].
For p; = 0 the partition function (2.54) can be written as

Z"(m,ip; =0) = / dzdsz® " cosh s sinh sKo(2ma cosh s)e ™ b /(2 62)
0

After rescaling x by cosh s , the s integral gives an overall constant so that
the partition function simplifies to

Z¥(m,ip; = 0) = / dza® K, (2ma)e ™ " (2.63)
0

This is indeed the Cauchy transform of a Laguerre polynomial |14, which is
the correct finite n result for the chiral random matrix partition function.
For m — 0 we have that

1
K,(2mavn) ~ i(mx\/ﬁb)’” for v #0,
Ko(2mazv/n) ~ —logm for v =0. (2.64)

For v = 0, the chiral limit can be worked out analytically
1—np (nt1)/2

]. 2,2 o0 2
Z"=(m = 0,ip,;) = —5(3”2 Ha M(nfl)' logm/o da::c”Jn,l(Quix\/ﬁ)e’x /2(22.65)

This integral is known analytically [43] resulting in

—n22n—2

Z"=0(m — 0,ip;) = BRI

log m. (2.66)
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In the chiral limit, the partition function is dominated by the logarithmic
singularity which does not depend on the imaginary chemical potential. Con-
trary to the fermionic partition function, it is always in a phase with zero

“baryon density”.

For large n the partition function can be evaluated by a saddle point
approximation. The saddle point equation for the expression in the second

line of (2.60) reads

2 1 2
SCE S ——
2 1+s (1+5s)?

To leading order in m the solution is given by
m

s=14 V1—u?

N’ZQ_L ﬂ'z>17

/1’i<17

resulting in the free energy (F' = (log Z)/n)

Qm\/l_ugv :ul<17

F = m2
1—,u12+logul2+2— /Lz>1
M —

1 Y

i

The chiral condensate is given by

1 dlog Z V3I—wg, <1,
_Lalgs .

2n dm —_ i > 1,

and the baryon number density by

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

1 dlogZ 10’ pi < 1,
i
The baryon number susceptibility at imaginary chemical potential is defined
by
_ ldlgz ) [ 0omsh
XB = 2n  dp? N ?‘1‘1; i > 1.
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Figure 2.2: The chiral condensate (left) and the baryon density (right) as
a function of the imaginary chemical potential. We show the result for the
one-flavor bosonic partition function (blue), the one flavor fermionic partition
function (red) and the mean field result (black).

In Fig. 2 we show the chiral condensate (left) and the baryon number
(right) as a function of the imaginary chemical potential. The results are
for n = 100, m = 3/100 in case of the chiral condensate and n = 100,
m = 3/10000 in case of the baryon number all in units with ¥ = 1 in
the partition function. Both the results for the fermionic partition function
(blue) and the bosonic partition function (red) are close to the mean field
result (black) which has been obtained for n — oo in the chiral limit.

The baryon number susceptibility defined in Eq. (2.72) is shown in Fig.
2.3 as a function of the imaginary chemical potential for n = 100 and m =
3/10000. Again the bosonic and fermionic susceptibility are close to the mean
field result, but the deviation near the critical point is much larger than in
case of the baryon number density (see Fig. 2.2). The convergence of the
susceptibility to the thermodynamic limit is non-uniform in m.
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Bosonic Partition Function for Real Chemical
Potential

In this section we consider the massless bosonic chiral random matrix parti-
tion function for real chemical potential. In this case, the partition function
can be expressed in terms of the joint probability distribution of the Ginibre
ensemble, which allows us to obtain exact analytical results. We start with a
heuristic derivation of the mean field results for the chemical potential depen-
dence of the partition function, and in the second subsection we reduce this
partition function to a two-dimensional integral. Everywhere in this section
we work in units where > = 1 and in the sector of zero topological charge.

Heuristic Derivation of the Mean Field Result

In units where ¥ = 1 and v = 0, the massless bosonic partition function can
be expressed as

2 1
Z() 1\u) = e " <det—> 2.73
3.0
2.5¢
— Ny=-
200y
Xg 15/ — MFT
1.0p
0.5¢
0'8.0 0.5 1.0 1.5 2.0

Hi

Figure 2.3: The baryon number susceptibility as a function of the imaginary
chemical potential, p; for n = 100 and m = 3/10000. Results are shown for
the fermionic partition function (red), the bosonic partition function (blue),
and the mean field limit of these partition functions.
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with D(u) given by

o= (e, 5", 27

and the normalization factor exp(—nu?) has been included to give the correct
i dependence for small p. If g is inside the domain of eigenvalues, the
partition function has to be regularized. This can be done in the same way
as for the phase quenched bosonic partition function,

B det*D(u)
Zoj () = <det(D(u)D(ﬂ)T + 62)> 7

(2.75)

where the limit ¢ — 0 has to be taken at the end of the calculation. Contrary
to the partition function with a pair of conjugate bosonic quarks at nonzero
chemical potential, this partition function, because of the extra fermionic
determinant, is finite for ¢ — 0. At the mean field level we expect that this
partition function is given by the ratio of two fermionic partition functions,

ZNp=1(})
20 =

_ A=) 2.76
Zn=1+1+ (1) (276)

where Zy,—141+(1t) is the phase quenched partition function, or equivalently,
the product of the same one flavor partition function and the bosonic phase
quenched partition function (see Eq. (2.28)). The baryon density is thus
given by

1 d

np = —%@10g20/1<1u)
1 d d
——log Zy41+(p) — —log Zy1 (). 2.77
2 dp 0g Z141+ (1) dp og Z1(p) ( )
The p dependence of both partition functions is well known [32, 20] and is
given by
L4 e Zoeln) = 01— )+ 00— 1)(2p + 2)
2ndlugl+l*,u = )= H H 0
L e i) = 0u— )t ) (2.78)
ondg 082 = 0= o)t ). :

where p. = 0.527. In Fig. 2.4, the black curve represents the mean field re-
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Figure 2.4: The baryon number density (left) and baryon number suscep-
tibility (right) as a function of the chemical potential, x for n = 100 and
m = 0. Results are give for the fermionic partition function (red), the bosonic
partition function (blue), and the mean field limit of the bosonic partition
function.

sult for the baryon density. In the same figure we have plotted the analytical
for finite n (blue curve), which will be derived in the next subsection, and
the finite n result for the baryon density of the fermionic partition function
(red curve). When p is outside the domain of eigenvalues, the fermionic and
bosonic results become equal in the thermodynamic limit.

The Finite n Massless Bosonic Partition Function at Nonzero

Chemical Potential

In this section we evaluate the massless bosonic random matrix partition
function as a function of the real baryon chemical potential. This partition
function can be written as (the equality only holds for even n) [15]

1 1
<det(d + ) det(—df + u)> N <det(d + 1) det(di — M)> o (279)

where the matrix elements of the complex n X n matrix d are distributed
according to

p(d) = e "', (2.80)
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The quenched matrix ensemble with this distribution, known as the Ginibre
ensemble, has the joint eigenvalue density

P(z) = AAWN) [T e ™, (2.81)

where A(\x) is the Vandermonde determinant. The corresponding monic
orthogonal polynomials and their normalization are equal to

n!

pn(z) = 2", with h, = /dzdz*p;(z)pm(z) = 5an. (2.82)

The partition function of the Ginibre ensemble, defined as the integral over
the probability distribution, can be obtained by expressing the Vandermonde
determinants in terms of these orthogonal polynomials. Performing the in-
tegrals by means of orthogonality relations we obtain

n—1
Zg =n ] e (2.83)
k=0

In terms of the eigenvalues of d, the bosonic partition function can be
written as

Z T anedn — AP 2.84
o) =g /H N e T AR (28)
To evaluate this partition function we need identity
AVION! - P
n—1 k\ g k+n k /
u _ S -1 — AL (\), 2.85
Hk:l(/\k_u) ;( ) (/\k:_u) k( ) ( )

where

Az) = [ (—=). (2.86)

k<l klp

This identity can be proved by including the factors 1/(\; — u) in the deter-
minant and expanding it with respect to the last row. Applying this identity
to the bosonic determinant results in

1 - AL AL () AT

)

2.87)

e a0~ 2T e o B

k=1
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We can distinguish two types of terms, those with £ = [, and those with
k # 1. All terms of each type give the same contribution to the bosonic
partition function. We thus find

. A AL
Z = dApdNpe NN Gin AL )AL (N
) = e /H O MR )
n—1 *\n—1
711“2”(”_1)(_1) /d}\ d\* —AAEAL </\1A2) AI s A/ AF
ZTCL}u2n—2 kAARE (/\1—U)()\§+U) 1( l) 2( ])7
(2.88)
where the partition function is normalized with respect to the Ginibre par-
tition function (2.83). This expression can be rewritten as
-~ 2n<_1>n71 AN AE (Al/\f)nil G
7Z = e [ d\jd\ie ™M Z
0/1 (u) e ZT(L}/,LQn_2 / 1 1€ ()\1 . U)()\T 4 U) n—1
R / DN drgdAge PO e (AAS)"
T T g | e Ou =05+ )
X (Mo (No) T2 (A])) Zyps- (2.89)
where the average of two characteristic polynomials is defined by
AMdN
(M2 (u)mn o (0" =7 /H R H (u = Ap) (0% = X)e ™A Ay, -, Adna)]
(2.90)
This average can be expressed in terms of the two-point kernel of the Ginibre
ensemble [10]
n—2 *\k
uw
<7rn_2(u)7rn_2(v*)> = hn_g ( A ) (291)
k
k=0
This results in the partition function
(‘1)71_1@_"“2/ Sy At
Z = ——————— [ d\id\je " 2.92
onli) = g | T 29
(—1)n_le_n“2/ —AAAT A2 ()\1)\2 L= (AN
———————— [ dA\dA\]dAod5e T2
Py 1272 1A BA2GA9€ On — )%+ 1) I

k=0
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This derivation is also valid for complex values of p. The first integral in
Eq. (2.93) is logarithmically divergent for purely imaginary g and has to
be regularized which can be done by including a mass term. The resulting
logarithmically divergent part of the partition function is p independent,
which agrees with the result for the chiral limit of the bosonic partition
function at imaginary chemical potential which diverges as logm for v = 0
(see Eq. (2.66)).

The integrals can be calculated using polar coordinates and converting
the angular integral to a contour integral,

(_1)71716771;1,2 )\21172

Z = 7 [ d\dpe ™ — .
o1 (k) hnoap?n =2 / " e we + p)
( n 1 —n,u2 ”_2 22 /\n+kei¢(n—l—k)‘| 2

k+n ~
B Ry 272772 Z {/ dAdpe (Aei® — )

=0

2 n 1 —n,u | ] B 2n—1 [e%¢) B 2n—1
- ( [ / e 2y / e ™ 2
0 |

2n 2 Iu2 + )\2 ] Iu2 + )\2
( n 1 —nu2 n—2 k+n 0 o 2
|:/ d}\efn)\ )\2k+1ﬂn2k:|
2n—2
_1M k=0 |ul

(2.93)

Note that this partition function is not an analytic function of p which was
also the case for the bosonic partition function of model (2.2) [21]. Because
of large cancellations this form of the partition function is not amenable
to a mean field analysis. In Appendix .2 we derive a form where these
cancellations have been taken care of analytically. It is given by (for u > 0)

2

—nu [e'e) 77’7‘“2(214»1) 1 7’FL;L2(2:E+1) F _ 1 72
Zoj(u) = c / dos—— / dz” (n 1, —npo)
hn-1 | Jo x+1 0 r+1 I'(n—1)

L emm?(aty) L'(n—1,nu?
dog——-—(—2)" (1 — ——T— || . 2.94
+/0 Tl (=2) < I'(n—1) ) (2.54)

We have checked that this result agrees with a direct evaluation of the par-
tition function for n = 2 and n = 3. See Appendix .3 for the brute force
expressions for n = 2 and n = 3.
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Figure 2.5: The baryon number susceptibility near the critical point for n =
n = 100 (dashed) and 7 = n = 400 (solid) both for the bosonic 9 (blue) and
the fermionic partition function. Up to a minus sign, which could have been
absorbed by the definition of the bosonic baryon number susceptibility, the
result are similar.

Large n Limit of the Bosonic Partition Function

In the large n limit, where we take 1 = n, the first term of Eq. (2.94) is
given by

1 1 —n(4u?—1)
N —— (2.95)
hy—1 4nu 412/ 21
and the second term by
1 —3nu?(_,,,,2\n—3 —1)" —n(3p?—log u?—2)
e (—np?) o (=1)re C for <l
hp1l'(n—1) 2np?(1+ 1/p2)(1/p? = 1) danp?(1+ p?)(1 — p?)
1 e—?n/ﬂ e—n(l—&—?/ﬂ) (296)
for pu>1

hp1 2nu?(1 +1/p2) - V2mn2n(1 + p?)

The last term factorizes into the product of two integrals. For large n it can
be approximated by

F(?’L _ 1) (_1)716—71;1,2 (_1)nlu2e—nlogu2 _ n,u2 ¢ -
~ or u
hp—1 (np?)™(1 + 1/p2) 1+ p? (2.97)
1 (_1 ne—3nu2(_nu2)n—3 (_1)ne—n(3u2—logu2—2) :

for p<1

haoaD(n—1)  20—1/p22 danp2(1— p2)2
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This result agrees with the heuristic estimate of section 2.4.1.

In Fig. 2.4 we show the baryon number density and the baryon number
susceptibility as a function of the chemical potential for n = 100 and m = 0.
Results are given for fermionic partition function (red), the bosonic partition
function (blue) and the mean field limit of the bosonic partition function.
The susceptibility diverges at p = p. = 0.523 as ~ n in the thermodynamic
limit, see Fig. 2.5. This reflects that the slope

dnB

M|y, (2.98)
d'u H=Hc

Note that we could have defined the baryon number susceptibility with the
opposite sign.

Conclusions

We have studied bosonic random matrix partition functions (averages of in-
verse determinants) and compared them to fermionic random matrix parti-
tion functions (averages of a determinants) for the same value of the external
parameters. In particular, we consider the dependence of the chiral con-
densate, the baryon density and the baryon number susceptibility on the
(imaginary) chemical potential and the quark mass. For imaginary chemical
potential, u;, and nonzero quark mass, these observables approach the same
limit for n — oo, where the p;-dependence is given by the mean field result
of the effective partition function. In the chiral limit, the bosonic partition
function diverges as logm whereas the fermionic partition function remains
finite.

We have seen two cases where the bosonic partition is always in the bro-
ken phase while the fermionic partition function undergoes a phase transition
to the restored phase. The first case is the phase quenched partition function,
where the pion condensate of the bosonic partition function is nonvanishing
for all p while it is becomes zero for u < m,/2 in case of the fermionic
partition function. The second case is the chiral limit of the one flavor parti-
tion function as a function of imaginary chemical potential. In this case the
fermionic partition function has as phase transition to the restored phase at
1; = 1 while the bosonic partition diverges as logm and is in the same phase
for all values of p;. As a side remark we note that this gives us two more
examples where the replica trick is doomed to fail [17].
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The spontaneous breaking of noncompact symmetries has also been stud-
ied for hyperbolic spin models in one and two dimensions. The conclusion of
this work is that a noncompact symmetry is always broken spontaneously,
even in one and two dimensions, if the partition function diverges for van-
ishing symmetry breaking term. Our work supports this conclusion for a
different class of models.
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Derivation of the Fermionic Partition Function
Using Superbosonization

Superbosonization was developed as an alternative to the Hubbard-Stratonovitch
transformation [33, 34, 35, 36, 37] in order to be able to deal with non-
Gaussian probability distributions. Below we only use the fermion-fermion
part of the superbosonization transformation. The fermionic partition func-
tion is given by

¥ 1
Z" (=, 26n22“2/d 1dx1dx5dxs ex Xi M XU) 4 = *, . (99
(2, 1) xidxadxadxaexp ||\ b o XXXz xe| s (99)
where the vector y; is of length n + v and the length of the vector ys is
of length n. To linearize the four-fermion term, we use the fermion-fermion
part of the superbosonization transformation by inserting the J-function

5(G-Y)= / dFe™F(E=Y) (100)
with
XaX1  X2X2

and YT =Y. After integration of the y-variables, this results in the partition
function,

Yi1Y2

nY2

7Y (2, p) = =0 / dY dF F’ det"F exp {z(yn + Yas) 4 u(Yia + Yar) + —iTrFY | .
(102)

The integral over F' can be evaluated by means of an Itzykson-Zuber integral
as

[i0y,,]” / dFdet" Fe 'Y (103)
with

n, —iTrFY 9 . det eifry
Joraremn = [TI0 G I (g
det 05D (y)

= A (104)
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where §®)(y) is the p-th derivative of a é-function. Acting on a regular test
function F(Y), it has the property [30]

det 50HD(y) TR R
|y Ay W)= / D ()

= fa f T anemiadu) Yo s —

k=1 Yr(k)
dyk 5 - FWIL 1yﬂk
- Jawf [ e ) ) R o
d —n—p
_ /Y o et YE(Y), (105)

where in the second last equation we have used that the last product is
a Vandermonde determinant. Note the measure dY is the product over
independent differentials. We thus arrive at the partition function

22 dy . V1Y
ZV(z,p0) = em=n / gllidy, ] det™ Y Jexp { (Vi1 + Yaz) + pu(Yig + Y1) + %
YeU(2)
_ (v 1len / dY  [=iYp)” (106)
B (n+1)! veu (2m)* det™ Y

1
X exp {Z(Yn + Yoo) + pu(Yio + Yor) + @YnYzz] .

We parameterize Y as

f1e" 1P
B e Acos@ e" sin
Y=e ( —e ¥sinf e cosf > ’ (107)

where 3 € [0,27], ¢ € [0,27], @ € [0, 7] and 6 € [0, 71]. The invariant measure
is given by
ay _ cosfsin Hdﬁdadeqb
(27)3 det’ Y 273
This results in the partition function
(n+ v+ 1)len= / dBdadode
2 (n + 1)! (2m)?
2ze%P cos 0 cos a+2ipetP sin 6 sin ¢+ﬁe2w cos? 6

(108)

Z(z,p) = cos ) sin fe 2P0 (v e (B=a) cog¥ g

(109)
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The integral over a and ¢ gives a modified Bessel function so that we finally
obtain

cos 0 sin fe=2Pme = cos” 01, (2z¢™ cos 0)

, n+ v+ Den=r [ d3de
2(sp) = ¢ a1

2m(n 4+ 1)! 47

2i3
x Jo(2ue™ sm&)eme cos®0

(110)
The normalization will be fixed by the result for u = 0.
v (Tl +v+ 1)' . —2ifBn _—ifv v i L e218 cos? 9
ZV(z,p=0) = ——= [ dfdfcosbsinbe e "7 cos” 01, (2z€" cos f)ens?
(n+1)!
1! ) ) . 1_,2i8,2
= (ntv+1)! /dﬁdm:e2"3"6“3”56”11,(2261556)6@26 Po
(n+1)!
_ TL + v _I— 1 2k+1/ 1/ 1 2\1 1
- / dez ) () SRR T
k+l=n
(n+v)! ¢ VR (32 1
= (n¥?) . (111)
'kz k(k+u)!(n—k)!
The sum is exactly the expression for a Laguerre polynomial so that
Zl/
Z(z,u=0) = —————L'(—2"n%?). 112
En=0) = oy L ns?) (112)
In the microscopic limit this reduces to
1
Z(z,p=0) = I,(22nY). (113)

(n+ 1)I52ntv

To get the correct v dependence we have to include an additional factor of
¥¥ in the partition function which was already observed in [25].

Massless one Flavor Bosonic Partition Function

The goal of this appendix to derive a form of the massless bosonic one flavor
partition function where the cancellation of the leading order terms has been
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take care of analytically. The starting point is in the expression in (2.93)

Neee1l (_1)n—1 /1 o, xn—l /oo o, In_l
Zn f _ . d nu-T d nu‘r
(1) T [ i ze o + 1 xe po]

n—1 n—2 n ) 2
_(_1) ! Z (_1)k+ |:Iuk:+1/ d$€_ﬁ“2xl‘k:| ]
1

hn—l 5—0 hk:

(114)

The sum on the second line of this equation can be written as

n— 2

00 2
k+1 —nplz, .k
Z hk [ / dxe " }
=0
n— _ 00 ~ 1 ~
hk M 2(+1) / —nu y /0 dxe—np,2zxk o /[; dme—n/}?a:xk)
(_1)k 2(k+1) /Oo —aply, k ( k! /1 —np? k)
dye " —_ — dre " x
e 1 Y Y (np?)F o

o 112 ,UQ(k—H) ! A2 o 7112
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— /1 k 0 1

00 B 1 — (—gy)n1 =2 o(k+1) 1 = o 7
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14y =0 D 0 1

0o Vi 1 fnu Yy 00 fnu Y
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1 1
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(115)
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Inserting this result in the partition function (114) we find

1 n—1 0
—(—1)"’1 / dpe e L 4 / dye ™ L
r+1 1 1+

0o =,,2
dl‘/ dyefn,u x+y+xy)r( —1 y —TU 'Ty)
I'(n—1)

nl—nu:c —nux
/Od:v g / —nu/d:c/ dye ™™ (@tytay)

d.CIZ' /OO e T 2(z+y+zy) TL —1 , —np 'Ty) 1):|

n—l

= {—(—1) /d:ce"’””’ —l—nu/ dx/ dye~ ™ (wHytey)

g / d:z:/ dye~H* @+u+ay) <P(”;(Z:"{)‘ ) 1)] (116)

Next we partial integrate the last term with respect to y. This results in

1 1 o, gl 00 00 .
Z(p) = b l—(—l)nl/o dxe’"”x§+l —|-7_1,,u2/1 dx/l dye™ ™" (z+y+ay)

1 e—ﬁu2(2x+1) F(?’l -1 —77l/,62$)
— ’ —1 11
/de 7+ 1 ( T(n—1) ) (1)

T 1) / dx / dy* il Hy)( )"‘1(@/7%#2)”‘2]-

When the upper limit of the y-integral in the last term is extended to [0, o] it
is equal to I'(n— 1) and cancels the first term. What remains is the y-integral

over [0, 1]. We thus find

o o0 1 —Ap?(2z+1 _ 9
! T_L,U,2/ dx/ dye—ﬁ#Q(ererzy) _ / da’ e (F(n — 1, —np’e) B 1)
! 1 1 0 r+1 T(n—1)

fn,u (z+y)
ot [ [ oy gy

Z(p) =

Z(p) =

(118)
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The integrals over y can be performed analytically resulting in

2

—np o0 —ap2 (2z+1) 1 —i?224+1) /T — 1. —iu2
2w - e / g ey / 4t (n — 1, —npz)
hn-1 | Jo xr+1 0 r+1 I'(n—1)

—/01 dxf;f:(—x)"—l (1 - F(lf‘m_—:l;ﬂ)] | (119)

Bosonic Partition function for n =2 and n =3

In this appendix we evaluate the bosonic partition function without relying
on the tricks used in section 2.4.2. Starting from the definition we obtain
given by

—ﬁ)\* Ak

A — ) (A + 1)

Zo() 2§ = —/d)\ld/\ dhadN5| A — Ao|? H
—n)\ 5k
)M + )

/\*)\le—n)\ A1 / e—’flA;)\Q
= — [ d)\ d)\* dXod X,
/ ' = 1) (AT + 1) T 00— (N + )

Ae— MM 2
+2 ( /dA d\] " )
m PO = ) (A )

—AA2

A2\
= S/d)\)\/\ e 5sign(A — u)/dAA)\ y 5sign(A — p)

2
0 )\Me—ﬁ/\2 1 )\SG—ﬁAQ
+2 2/ d\ —|—2/ AAN———— | . 120
( 1 e o MNP+ p?) (120)
Using the same steps as for n = 2, for n = 3 the partition function can be
expressed in terms of three integrals

2
2
- dAdN; (NTA — A A
1 ( 1 — Al ]:!;[ )\k—

Zs(p) 2§ = 628 (1) Z1 (1) Z5 (1) + 625 (1) (Z7(1))* — 1225 (1) Z7 (1) Z3 (1} 121)
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where

=2
e T P

ary — 2w [ gy Al
Z5 (1) i /0 dxsign(x — 1) 1

) e—ﬁ;ﬂx 1 e—ﬁﬂ Z P
VA = P dx — (—u)? dxr———
p(1) a /1 x+1 (—v) /0 x+1 "
oo efﬁ/ﬂ;m:p 1 6*771#2$xp+1
) = e [ e [
pn) = [ e e

(122)

The n = 2 partition function can be rewritten in terms of the first two
integrals

Zy(u) 25 = (2Z§ () Z3 (1) + 2(Z7 (1)) (123)
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Chapter 3

X-Space Renormalization of
Dimension-5 Operators

Introduction

Violation of the discrete C'P symmetry is a sought after ingredient for new
physics, and a complete understanding of the baryon asymmetry problem.
Standard model C'P violating processes coming from the phase in the CKM
quark mixing matrix of the electroweak sector have been observed in pro-
cesses such as K decays, K% — e mixing and in BY — B mixing, which are
all consistent with theoretical predictions. The dimension 4, QCD 6 term is
parameterized by the dimensionless § parameter which has been constrained
to be less than 10710 [418] through a lack of any observations of C'P violating
processes. Despite the accurate predictions made by the standard model, it
still does not predict enough C'P violation to explain the cosmological baryon
asymmetry problem. The standard model is likely, part of a larger theory
that could contain new sources of C'P violation. As suggested in the seminal
paper by Purcell and Ramsey|19], electric dipole moments can be used as
probes of C'P violation.

After integrating out all standard model fields heavier than the down
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quark, and performing a chiral rotation, the effective lagrangian is

L =Lqcp + LoD
_ gt ( ™ g, G — dgge)%(;uu%) e
—ep® (dgm o F" — A0, FW%> e
+ dimension 6 quark and gluon operators
=Locp + LoD + Laim>s, (3.1)

where ¢ and j are flavor indices. These are the dimension 5 quark chromo-
magnetic dipole moment, chromo-electric dipole moment, magnetic dipole
moment and electric dipole moment operators.

Experimental efforts to detect EDMs of atoms, nucleons and nuclei have
constrained new C'P violating physics to lie at, or above the TeV scale. Uti-
lizing these constraints to improve our understanding of quarks and gluons
requires knowledge of their nonperturbative dynamics in bound state nucle-
ons. These nonperturbative effects can be understood on the lattice.

The goal of lattice calculations is to compute the electric dipole form
factor (EDFF) Fj,

v
oq,

2mN

<Np/‘q'YM‘J‘Np>cPV = Uy {Fl (Q2)7M + (FZ(Q2) + iF3(Q2)75) up, (3.2)

which exists in the presence of the EDM and CEDM terms in equation (3.1).
The path integral for this correlator on the lattice is

1 _ _ ) _ N
(Ny|g7v"aI Np) e pr = / DUDGDge5e¢r~%am=>5 Ngy* g N. (3.3)

At the energy scales of interest, Sg;,>5 is small, and the exponential can be
expanded to give

(NG qN) .y = (NGY'qN) — (NG N Sgim>s,) , (3.4)

where the correlator on left in equation (3.4) is weighted by the entire la-
grangian, equation (3.1), and the correlators on the right are weighted by
the QCD action. To extract Fj3, one must also compute

(NN)

cPV <NN> - <NNSdim25> (3.5)
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Several analyses and lattice EDM and CEDM computations have been
conducted [50, 51, 52|, however, they have been carried out using bare lattice
operators, and cannot be compared to measurements made and expressed in
MS. In what follows, preliminary results of the analytical portion of the
renormalization of dimension 5 operators will be reviewed.

Non-Perturbative Renormalization

To obtain physically meaningful results for the nucleon electric dipole form
factors, the operators used in equations (3.5) and (3.4) must be renormal-
ized. Renormalization is the process of removing unphysical contributions
to amplitudes. This process however, is not unique, and different methods
for subtracting unphysical contributions are outlined in different renormal-
ization schemes. The standard scheme for reporting physical quantities is
MS. However, MS is defined by subtractions to be made at each pertur-
bative order in the theory’s coupling constant, in a dimensionally regulated
(dim-reg) theory. It is therefore, not suited for non-perturbative computa-
tions, made using any other regulator. Non-perturbative renormalization is
an active area of research, where schemes better suited for non-perturbative
compuation are defined. The next two subsections will be dedicated to briefly
reviewing two schemes that can be imposed non-perturbatively.

RI-Mom

Developed by Martinelli et al in their seminal paper [53], the regularization
independent momentum subtraction scheme (RI-Mom) is a renormalization
condition imposed on green functions with operator insertions. Following the
example given in [53], the process of lattice renormalization, and perturbative
renormalization is illustrated using quark bilinear operators ¢¥I'i), where I is
an arbitrary tensor that could have either spin or color indices.

For arbitrary composite operator, Or, the RI-Mom renormalization con-
dition is

ZF <p|OF‘p> |p2=—,u2 = <p‘OF|p>tree order * (36>

This renormalization condition states that the renormalization constant Zr is
fixed to ensure that, at p> = —pu?, the full correlator is equal to the tree order
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correlator. In order to avoid both non-perturbative effects and discretization
effects, p1 should fall within the "window" Agep << p << 1/a.

When Or(z) = ¥(2)I'Y(z), the green function to be used in condition 3.6
is

:% > Si(|0)rsi(oly). (3.7)

where S;(z]0) is the quark propagator in the ith gauge field configuration.
In order to use Gy and the quark propagators in condition 3.6, they must be
fourier transformed, and expressed in momentum space. The quark propa-
gators become

S(pa) = </d4xe S (2]0) > i:: (p|0). (3.8)

The green function becomes

N
. 1
Go(pa) —/d4$d4y6_1p'(m_y)Go($ay) =N > Si(pl0)T (5] (pl0)7s). (3.9)
=1

Using these in condition 3.6 gives

ZFZQZ1 S’l(pa)Go(pa)S’I(pa)|p2:7 =T (3.10)

Using an appropriate projector ]5, such that PT = 1,

p2:u2>_1] . (3.11)

Therefore, to compute non-perturbative renormalization constant, Zr, one
needs lattice computations of the quark propagators S(pa), the green func-
tion Go(pa) and the quark field renormalization constant Z,. The non-
perturbative quark field renormalization can be computed using the con-
served vector current, and the knowledge that vector current renormalization
is equal to 1.

ZF 212Z¢T7’

(ﬁsl<pa>Go<pa>51<pa>

51



Perturbatively, the renormalization constants are expanded, such that at
p? = —pi2, loop corrections vanish. Below, the perturbative renormalization is
computed to 1-loop for the quark mass and field in RI-MOM using naive dim-
reg theory, where the number of dimensions d is 4 — 2¢. Explicit calculation
for the 1-loop diagram has been carried out in appendix .8.1. Those results
will be used here. Given the structure of the bare quark propagator, (see
equation (241)) the RI-MOM condition is

Z,* 1
Shlp2=u2 e =S| —, (3.12)

where Sg is the renormalized quark propagator, Z,, and Z,, are the quark field
and mass renormalization constants, and Xy are the bare loop corrections to
the propagator. By expressing ¥ in terms of its Dirac structure, convenient
RI-MOM renormalization conditions can be derived.

Sr'(0) =Zy (p(1 — Zv(p)) = Znm(1 + Zy(p))) - (3.13)

The condition for the quark field renormalization is

.1 0 1
%1310 mZ¢TT {%a—puso (p, me)}

p2=—p2
1 0
= lim —Z,T —(p(1 =% =1 3.14
moo 1247007 [7“819# A )| I 314
and for the quark mass, it is
lim —— 7, Z,Tr [So']
m—0 12m pom 0 pP=—p2
1
=— lim —Z,7,Tr[1+ %] =—1. (3.15)
m—0 12 pre—p?

¥, and X, have been computed, and can be found in equations (245) and
(247). Plugging these into the renormalization conditions gives

Z¢:1—§% (@jL@)er (3.16)
Zm :1—% (@(8+3§)+3@) + - (3.17)
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One clear difference between renormalization in M.S and RI-MOM is that
M S only has 1 as a finite contribution, whereas RI-MOM requires a different
finite part to meet the renormalization condition.

Having demonstrated both non-perturbative, and perturbative implemen-
tation of RI-MOM, we now discuss the X-space scheme.

X-Space Scheme

Similarly to RI-MOM, the X-space scheme is a renormalization scheme whose
condition is imposed on green functions. The green functions, however, are
two point functions of composite operators in coordinate space. The X-space
scheme condition, again imposed in the chiral limit is

lim (Off (1)O0F (0))],2__3 = (Or(#0)Or (0))] e (3.18)

where O = ZXOr is the renormalized operator in the X-scheme, and xq
is the renormalization point. One big advantage to the X-scheme, over RI-
MOM is that the correlators are gauage invariant. This results in less mixing
for higher dimensional operators. It does however have a window, necessary
for matching to a perturbative scheme like M S. To avoid discretization ef-
fects, ro >> a where a is the lattice discretization. To avoid nonperturbative
contamination, xy << Agcp.The process of non-perturbative renormaliza-
tion will be illustrated using the quark vector current to vector current cor-
relator (OF(r) = ¥(x)y"p(x)), and the plots generated by Gimenez et al [1]
in the original X-space scheme paper.

The first step in renormalizing the vector current in the X-scheme is
finding the bare correlator, with interactions

Cuu() = (Y ()79 (2)1(0)7"¥(0)) - (3.19)
In [1], Cyy(x) was computed on the lattice using wilson fermions, and plotted.
This plot is displayed as figure 3.1.

Figure 3.1 shows a large spread of points. This effect was investigated,
and after finding a very similar spread in the free lattice theory 3.2, it was
concluded that these are discretizaton effects.

Gimenez et al removed these discretization effects by taking the ratio of
the free lattice theory, to the free continuum theory.

<Ov (x)Ov (0)> ’flrsz

0.0 g 320

voll) =
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Figure 3.1: Vector-vector correlator Cy,(x) in the interacting theory |[1].
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Figure 3.2: Vector-vector correlator Cy,(x) in the free theory [I].

A, is equal to unity everywhere, except for where there discretization errors.
Therefore, dividing C,,(x) by A,,(x) will eliminate the discretization errors.
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The corrected correlator,

(3.21)

10 A

* Cly(¥)

10" Lt ]

-+
-
A d
-
e
“'
-
Y

-

"'

7

0 10 20 30 40 50 60 70
2
(x/a)

Figure 3.3: Corrected vector-vector correlator C), () [1].

Using the curve corrected for discretization errors, C!

!, I equation (3.18),
one finds the renormalization constant Z,(xq) is

B 9 C;v(x)
A0, 0,0 e
[ aw ;
Z (o) = <Ov(x)0v(0)>|§£%‘i] | N

In what follows, the analytic work required in renormalizing the C'P vi-
olating dimension 5 operators in the X-space scheme will be explained, and
compared with work previously done for these operators in RI-MOM [51].
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Momentum Space Correlators

To properly express lattice correlators in M S, the two point correlators must
first be dimensionally regulated, computed in the continuum, and renormal-
ized using M S. Correlators in coordinate space will be computed by fourier
transforming the renormalized mometum space correlators (for details on
fourier transform, see appendix .2). In this section, operator mixing, and an
outline of the chromoelectric and chromomagnetic dipole moment renormal-
ization will be given.
The chromoelectric dipole moment operator is

1 —@ .
c. :§g¢( 'Ge, T ), (3.23)

where the ¢ and j label the quark flavor, and are different to emphasize that
only off diagonal flavor operators are studied. The chromoelectric dipole
moment operator mixes with the pseudoscalar current operator upon renor-
malization. The pseudo scalar operator is

P =5y, (3.24)

The Feynman rules for these operators can be found in appendix .1. The three
correlators that must be computed in the continuum for renormalization of
the CEDM operator are

P (Q2, m?2) — / A2 (Py(2) Py(0)) (3.25)
5" (Q?, mg) = / d'ze'" (Ceo(2) Po()) (3.26)
TS+ (Q2, m2) — / 26 (Clo(2)Clo(0)) (3.27)

These correlators are computed using bare quark fields vy, bare gluon fields
Ag, bare ghost fields ¢y and bare coupling and mass parameters go and my.
This choice allows us to ignore counter terms, and decreases the number of
diagrams. In the dimensionally regulated theory, we work in d = 4 — 2¢
dimensions. In d dimensions, the dimensionality of g is

d

lgo] =2 -5 =< (3.28)
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For convenience, in calculations, the dimensionless constant

2
Qo -2 Y90
L 3.29
a1 () (3.29)
is used. The renormalization constants Z, and Z,, to renormalize the cou-
pling and mass are computed in appendix .8.
The dimensions of the pseudoscalar operator, and CEDM operator in d

dimensions are

[P] =d —1 (3.30)
[C]=d+1 (3.31)
Their renormalization matrix has the form

Ce Z ce Z cep Z cem C’eO
QP | = o 2z 0 Q*Py (3.32)
m*P 0o 0 Z m?P,

Where ) is momentum, C,y is the bare CEDM, F, is the bare pseu-
doscalar current. From this matrix, it is clear that the renormalized CEDM
operator is

Ce :ZceCeO + Q2ZcepP0 + Zcemm2P0 (333>
The renormalized pseudoscalar current is
P =Z,F, (3.34)
In momentum space, the renormalized pseudoscalar current density (P P)
is
7(Q% m?, %) = (Z,()) 11§ (Q®, Zwm®) + Q*(1?) ™ Zyp () + m* (1)~ Zimp,
(3.35)

where Z%%° and Z™% are subtractive renormalization constants.
The renormalized cedm to pseudoscalar density correlator is

HceP(Q2> m27 ,u2) :ZceZp<COP0> + (QQZcep + m2Zcem) Zp<POP0>

+ (Q2)2(/~L2>76 qCeP + Q2m2<ﬂ2)76 gmCeP + (m2>2(/1l2)76 mCeP

(3.36)

=2, Z105"(Q%, Zym?®) + (Q Zeep + M Zoew) Zp11 (Q?, Zym?®)
+ (QZ)Q(,Lﬂ)ie qCeP + Q2m2<ﬂ2)76 gmCeP + (m2>2(/1l2)76 mCeP

(3.37)
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It’s clear from equation (3.32) that Z. and Z, both have the structure 1 +
O(a) + ---. However, 119" is of O(«a), and I1° is of O(1). Therefore, Z..,
must start at O(a).

The renormalized cedm to cedm correlator is

HCE (Q27 m27 /L2> :(Zce)2<CeOCeO> + 2 (Q2Zcep + mQZcem) Zce<CeOP0> + (Q2Zcep + mQZcem)2 <P0P0>
+ (@)’ (1) Zyce + (Q%)'m* (1) ™ Zgamee + Q*(m*)?(1*) ™ Zgmace
+ (022 G2) Znc
(3.38)
=(Zee) TG (Q%, Zn®) + 2 (Q* Zeey + M Zeem) Ze MG (Q%, Zm?)
- (Q* Zuey + 1% Zee) T (Q%, Zpun®)+
(Q2)3(N2)_6 qCe + (Q2)2m2(:u2)_6 q2mCe + Q2(m2>2(ﬂ2)_6 qm20e+
(m*)? (1)~ Zince
(3.39)
All terms in the above renormalized correlators that are not proportional
to a bare correlator are subtractive divergences, and describe divergences
arizing when x = 0. These constants are explicitly calculated below, however,
vanish upon fourier transforming to coordinate space.
In the calculations that follow, only the up and down quark masses are
used, and are assumed to be equal (m, = mg = m), and very small compared
to the energy scales of interest. Therefore, only terms of order m? are kept,
and O(m?) and smaller are neglected.
The scalar and chromomagnetic moment operator correlators have the
same structure, only C, and P are replaced by C); and S, respectively.
The results for calculations for the bare correlators are described and

shown in appendices .4, .6 and .7. The renormalized correlators described
above, and the renormalization constants are:

D(R 2
(@m0 _125372; [16m2 (3040 (R)log’ (?)

2

“9(aC(R) + ) log (%) +3aC(R)(1 — 24(3)))
+@Q? (131a0(3) + 4log (%2) (—17aO(R) + 3aC(R) log (%2) — 47r)
—48aC(R)C(3) + 32)] . (3.40)
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The renormalization constants are

. 3aC(R)
7,=1- 220 (3.41)
7 3(24;()16%) (3.42)
. ja%ﬁ)fj R) aC (Qf(m _ liii) (3.43)
_3aC(R)D(R) 5aC(R)D(R) D(R) (3.44)
cep 39732 6473¢ 8m2¢ '

Pseudo Scalar to Pseudo Scalar Correlator

o.oé/’\

" (GeV?)
|
o
>

Momentum (GeV)

Figure 3.4: Pseudo Scalar to Pseudo Scalar correaltor as a function of mo-
mentum

Figure 3.4 is a plot of the pseudo scalar to pseudo scalar correlator. The
renormalization point is set to 1GeV, and the quark mass is set to 1.5MeV .
The correlator increases up until about 1.7GeV and then because to decline.
Shifting the renormalization point changes both the height and position of the
maximum. Increasing the renormalization point increases the maximum, and
causes it to occur at higher momenta. Decreasing the renormalization point
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has the opposite effect. As the momentum scale increases, the maximum
decreases, until eventually the correlator becomes a decreasing function.
The result for the renormalized Scalar to Scalar correlator is

D(R ) 2 2
HS(Q{m?7 ,u2) :12(872” {16m2 (—9aC(R) log (%) + 6(5aC(R) + m) log <%>

+aC(R)(18¢(3) — 47) — 87) + Q.Q (—131aC(R) + 4log (3—22) (17aC(R)

2

—3aC/(R)log (%) + 47r> +48aC(R)((3) — 32%)}

(3.45)
with renormalization constants
3aC(R)
Zs=1— 3.46
(4r)e (3.46)
3aC(R)
L =1 — A
(47)e (347)
3 (—8O7T3aC(R)D(R)) —1007?3040(R)D(R) — 1607T4D<R)
Doy = A
5 2560762 + 128076¢ (3.48)
7 3 (—9607r3aC(R)D(R)) n —480773aC(R)D(R) - 96()7?4D(R)
s 256076 €2 128075¢
(3.49)

Figure 3.5 is as a plot of the scalar to scalar correlator. Its behavior ap-
pears to be the opposite of the pseudo scalar to pseudo scalar correlator. It
begins decreasing, and at momenta of about 1.7GeV, the correlator starts to
increase. This opposite behavior is caused by the absense of the ~; matrix.
Several terms in the pseudo scalar to pseudo scalar correlator will have a mi-
nus sign, relative to the scalar correlator. As the momentum scale increases,
the minimum begins to disappear, and the correlator becomes an increasing
function.

The renormalized CEDM to Pseudo Scalar correlator is

e (@2, i) = CUOPH {@2)2 (35 - 12l (%))

st (o) (o (£) 2) )]

(3.50)
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Figure 3.5: Scalar to Scalar correaltor as a function of momentum

with renormalization constants

Zeep =0 (3.51)

_ 6aC(R)
n = Imle (3.52)
Zgcep = — —O‘Cé]j;i(m (3.53)
quCeP :aC(R)gl(ﬂ_}izgk + 6) (354)

Figure 3.6 is a plot of the CEDM to pseudo scalar correlator. Again,
the renormalization point was set to 1GeV, and the quark mass was set to
1.5MeV. The correlator appears to increase until it reaches a max at around
3.5GeV | and then decreases. It’s peak is smaller than the pseudo scalar to
pseudo scalar correlator, and does not decrease as fast.
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CEDM to Pseudo Scalar Correlator
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Figure 3.6: CEDM to Pseudo Scalar correaltor as a function of momentum

The renormalized CMDM to Scalar correlator is

I95(Q?%, m?, p?) :a% [3@%,% (4 log (%2) (3 log (%2) — 5) + 11>
+(Q?)? (12log (3—22) - 35)] , (3.55)

with renormalization constants

Zemp =0 (3.56)
Zyoms = — BQOW;(?L;E)J;Z?(R). (3.59)

Figure 3.7 is a plot of the CMDM to scalar correlator. Its parameter
settings are the same as the previous plot. This plot displays behavior very
similar to that of figure 3.6, only flipped over the momentum axis. This is
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CMDM to Scalar Correlator
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Figure 3.7: CMDM to Scalar correaltor as a function of momentum

caused by the absence of the 75 matrix. The correlator starts off decreasing,

reaching a min at around 3.5GeV, and begins to increase.
The renormalized CEDM to CEDM correlator is

(@ m*, u*) =

— % {96m2(Q2)2 (108 log (%22) (—661aC(R)

+alog (%) (126C(R) + 4n;T(R) — ATT(A)) — 38an;T(R) + 295aT(A)

+247) + a(132420C(R) + 8432n,T(R) — 64399T(A)) + 5184aT(A)((3)

—62647) + (Q*)? (72 log (%) (—2724aC(R) + 6alog (%) (90C(R)
+4n;T(R) — 47T (A)) — 196an;T(R) + 1853aT(A) + 144r)
+50(65040C(R) + 63160 ;T (R) — 54305T(A))

+10368a¢ (3)(2C(R) 4+ T(A)) — 272167)] (3.60)
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with renormalization constants

a(5C(R) — 2T(A))
Zoe =1 .61
7o aC’(R)D(R)(GaC(R)(?)?e + 60) + 4ome(R)(12 — 356) + aT(A)(745e — 276) + 4327’1’6)
ace = 331776m4e2
(3.62)
aC(R)D(R)(12aC(R)(e + 15) + 8an;T'(R)(3 — 14¢) + oT'(A)(407e — 138) + 216me)
Zamoe = = 691274¢2
(3.63)
CEDM to CEDM Correlator
0.00 ——
. —0.05-
% I
e I
¢ -0.10F
-0.15 -
1' 2 3 s 5
Momentum (GeV)

Figure 3.8: CEDM to CEDM correaltor as a function of momentum

Figure 3.8 is a plot of the CEDM to CEDM correlator. Its renormalization
point g is set to 1GeV and quark mass is set to 1.5MeV'. Just like the figures
3.4 and 3.6, the CEDM to CEDM correlator begins increasing, and reaches
a global max of about 0.02 at roughly 3.4GeV, and then decreases. This
correlator falls off faster than the CEDM to pseudo scalar but slower than

the pseudo scalar to pseudo scalar.
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The renormalized CMDM to CMDM correlator is

C(R)D(R)a

IC™ (02 m2. 12 —

(Q%m 1) = 30813194
2

+alog (%) (30C(R) + 4n;T(R) — 23T (A)) — 42an,T(R)

2

{96#(@2)2 (108log <F) (—179aC(R)

+193aT(A) + 247) 4 a(30252C(R) + 9992n,T(R) — 44983T(A))
+5184aT(A)C(3) — 62647)

+(Q%)? (72 log (3—22) (—834aC(R)

+6alog (f—j) (30C(R) + 4n;T(R) — 23T(A))

—196an;T(R) + 1097T(A) + 1447) + a(57090C(R)

+31580n;T(R) — 164281T(A)) 4 10368 (3)(2C(R) + T(A)) — 272167)]

(3.64)
with renormalization constants
B a(bC(R) — 2T(A))
Zom =1+ (4m)e (3.65)
7 _aC(R)D(R)(6aC(R)(37¢ 4 60) 4 4an;T(R)(12 — 35¢) + oT (A)(745¢ — 276) + 4327e)
acm = 331776me2
(3.66)
aC(R)D(R)(12aC(R)(8¢ — 15) + 8an T (R)(17e — 3) + oT'(A)(138 — 491¢) — 2167e)
Zapmom = = 6912m4e2
e
(3.67)

Figure 3.9 is a plot of the CMDM to CMDM correlator in momentum
space, and appears to have similar behavior to the CEDM to CEDM corre-
lator, only flipped about the momentum axis. One noticeable difference is
that the CMDM to CMDM correlator reaches its minimum at 3.4GeV, it
does not seem to increase as fast the CEDM to CEDM decreases.

The renormalization constants for the CEDM operator were computed in
preparation for an RI-MOM calculation in [51], and for the CMDM in [55].
There appears to be a discrepancy in between Z. computed in this work,
and in [51]. The nature of this difference is currently being investigated.
However, the remaining renormalization constants for CEDM mixing, and
for the CMDM are consistent.
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Figure 3.9: CMDM to CMDM correlator as a function of momentum

Matching Coefficient

Results obtained when computing the same physical processes in two different
renormalization schemes may appear different, however, they are the same.
It should therefore be possible to convert green functions expressed in one
renormalization scheme, into a different scheme. Since schemes do not impact
the physics, results computed on the lattice in the X-space scheme can be
expressed in M S. In this section, the process for computing the conversion,
or matching coefficient, from the X-space scheme to MS is reviewed.

(OX(, 29, a) O (0, 20, a)) :ij((xo, a)Z3 (xg, a) <O?(x, a)09(0,a))  (3.68)

Where O is the i component of the renormalized operator vector in
the X — space scheme, OY is the corresponding bare operator, and Zi)j( is the
renormalization constant in the X-space scheme.

(OMS (2, 1)OM5(0, ) =ZN5 (10) Z315 (1)(O% () OR(0)) (3.69)
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In the continuum (a — 0), a relationship between the two schemes can
be made using the bare correlators.

(ONS (, )OI (0, 1)) = ZNS (1) ZITS (1) (27X (w0) ZiK (20)) ™ (O (2, 26) O (0, )

)
(3.70)
)
(

- TTH(zMS(M))TzMS(#)] [(zX(xo))TZX(xoﬂ }< X (@, 20)0X (0, 20))

3.71)

The matching factor relating the X — space scheme to M S is

1 [(#m) 2] [ )" 2]}

. This can be simplified at the renormalization point zy. Using the definition
of the X — space scheme, line 3.71 becomes

(O, 000 =T { | (2750) " 250 [(2% @) 2%(a0)] " | (OO 0D
(3.72)

Tr { [(zmw))TzMS(u)] [(ZX(J:()))TZX(:UO)]_l} —<Oiﬂ<4;<$;)ﬁgf<) ))S iroeeu»

(3.73)

The matching factor for correlators with just one operator in the X-space
scheme is given by taking the square root of equation 3.73

Therefore, to obtain the matching factor, the amplitude must be com-
puted to the desired order in MS.

In what follows, the matching factors for the C'P violating dimension 5
operators will be computed.

Coordinate Space Correlators
Using the fourier transform identities in appendix .2, in this section the renor-

malized CEDM and CMDM correlators are fourier transformed, and shown
in coordinate space. These are then used to find the matching coefficients.
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The coordinate space pseudo scalar to pseudo scalar correlator is

A on
(a2, ptom) = [ e (@ m) (3.74)

_DIB) [6aC(R) (m*2* — 2) log (“ ZEQ) +aC(R) (m* (2% - 6) 2

+12vg (m*z* = 2) + 1) + 7 (m*z* — 4) 6aC(R) (m°z* — 2) lo g(u%Q)

+aC(R) (m® (2° — 6) 2° + 12yp (m?2® — 2) + 1) + 7 (m*2" — 4)]

(3.75)
The pseudo scalar to pseudo scalar matching factor is
1 pra?
:m (1 = 24vp)aC(R) 4 6aC(R) (m*z* — 2) log 1
+aC(R)m® (2* + 12y — 6) 2° + 7 (m°z* — 4)] (3.76)

Figure 3.10 is a plot of the pseudo scalar to pseudo scalar matching factor
as a function of distance. The renormalization point u is set to 1GeV, the
coupling « is set to 0.1 and quark mass is set to 1.5MeV . For small distances,
the matching is small, and increases with distance.

The coordinate space scalar to scalar correlator is

S 372 2 m) = dQ sz S 2 m
(0%, i m) = [ eI (@2 m) (3.17)
_ ﬂig [2(1 + 67p)aC(R) — 3m2a? (2(1 + 375)aC(R) + 3aC(R) log (“ 45” )
+7) + 6aC(R) log (“15”2) + 44 (3.78)

The matching factor for the scalar to scalar correlator is

:m [3@0(3) (2 — 3m22?) log (“1932)

+2aC(R) (=3(1 + 3yp)m*z* + 6vp + 1) + 7 (4 — 3m*2?)] (3.79)

Figure 3.11 is a plot of the scalar to scalar matching factor. Similarly
to the psuedo scalar matching factor, it increases with distance, however, it
does not increase as fast.
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Pseudo Scalar to Pseudo Scalar Matching Factor
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Figure 3.10: Pseudo Scalar to Pseudo Scalar matching factor as a function
of distance
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Figure 3.11: Scalar to Scalar matching factor as a function of distance
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In coordinate space, the CEDM to pseudo scalar correlator is

ddQ 1Q-x
Oy m) = [ e @O (P g m) (380)
C(R)D(R 22
_ A (F)D(R) m*z? | 3log i +6yg — 5| +12
258 4
(3.81)
CEDM to Pseudo Scalar Correlator
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<~ 0.00015}
% [
[0))
c
@ 0.00010F
Q
[
0.00005
0'00000._............. .
0 2 4 6 8 10
Distance (GeV™")

Figure 3.12: CEDM to Pseudo Scalar correlator as a function of distance

Figure 3.12 is a plot of the CEDM to pseudo scalar correlator with dis-
tance. At small distances, the correlator is dominated by the mig term in the
correlator. As the distance increases, the correlator decreases, assymptoting

the distance axis.
The coordinate space CMDM to scalar correlator is

NS i) = [ S c@enens @2,y m) (352)
__ —O‘C(Qﬁgm {m%z (3 log (” 19"'2) +67p — 5) + 12]
(3.83)
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CMDM to Scalar Correlator
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Figure 3.13: CMDM to Scalar correlator as a function of distance

Figure 3.13 is a plot of the CMDM to scalar correlator as a function
of distance. At small distances, the —xis term dominates the correlator.
Correlator is a constantly increasing function, and assymptotes the distance

axis.
In coordinate space, the CEDM to CEDM correlator is

d
HCe( 7” m) /(QW? ZQxHCG(QZ,MQ,m>

:% [—12alog (1*2?) (P2*(126C(R) + 4n;T(R)
—47T(A)) — 180C(R) — 8n;T(R) + 94T (A))
+am?z?((3057 — 3024vg)C(R) — 96ven;T(R) + 46n;T(R)
+1128ypT(A) — 995T'(A)) + 24alog(2) (m*2*(126C(R) + 4n;T(R)
—47T(A)) — 180C(R) — 8n;T(R) + 94T(A)) 4+ 3c(8(180vx — 239)C(R)

+64v5n,T(R) — 60n;T(R) — 7527gT(A) + 855T(A)) + 727 (m*z* — 2)]
(3.84)
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The CEDM to CEDM matching factor is

1
~72rD(A)T(R) (m22? — 2)
—47T(A)) — 180C(R) — 8n;T(R) + 94T (A)) + am?x*((3057 — 3024v5)C(R)
+2(23 — 48vp)nsT(R) + (1128v5 — 995)T(A)) + 24alog(2) (m*z*(126C(R)
+4n;T(R) — 47T (A)) — 180C(R) — 8n;T(R) + 94T (A))
+3a(8(180vg — 239)C(R) + 4(16vg — 15)nsT(R) + (855 — 752vg)T(A)) + 721 (m*z” — 2))]
(3.85)

[C(R)D(R) (—12aclog (p*2?) (m*a*(126C(R) + 4n;T(R)

CEDM to CEDM Matching Factor
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Figure 3.14: CEDM to CEDM matching factor as a function of distance

Figure 3.14 is a plot of the CEDM to CEDM matching factor as a function
of distance. It increases with distance, and behaves similarly to the pseudo
scalar to pseudo scalar, and scalar to scalar matching factors.
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The coordinate space CMDM to CMDM correlator is

i o
_OUIDUR 1 12,2 — ) g (442) BOC(R) + 4n, TR

—23T(A)) + am?z*((7207 — 663)C(R) + 967sn;T(R)
—34nT(R) — 552v5T(A) + 341T(A)) — 24alog(2) (m*z* — 2) (30C(R)
+4nT(R) — 23T(A)) — 3c((480vg — 662)C(R)
+64vEn T (R) — 60n,T(R) — 368v£T(A) + 355T(A)) — 727 (m*z® — 2)] ,
(3.86)
and the CMDM to CMDM matching factor is
1 _am?z?((720yg — 663)C(R) +2(48ys — 17T)n,T(R) + (341 — 5527)T'(A))
72 m (m?x? — 2)
+3a((4807E —662)C(R) + 4(16vg — 15)nsT(R) + (355 — 368vE)T(A))
m (m?x? — 2)
+24a log(2)(30C' (R) + 4nsT(R) — 23T(A))
™
 12alog (p#*2?) (30C(R) + 4n;T(R) — 23T(A))
T
Figure 3.15 is a plot of the CMDM to CMDM matching factor and is an
increasing function of distance.
Due to assymptotic freedom, the small distance behavior of figures 3.10,
3.11, 3.14, and 3.15 is expected to approach 1 (i.e. « should approach 0). The
fact that they do not shows that, at these energy scales, either more terms

in the perturbative series are needed, or the renormalization point must be
run to higher energies for a physical result at small distances.

+72 (3.87)

RG Flow

In order to express correlators computed at renormalization point p as cor-
relators at y/, one must add up results from infinitesimal changes in p. This
is done using the renormalization group equation

d B 0 0 5, 0
dln,uQH B <81n,u2 B 50‘8_04 - ’Ym%) = (3.88)
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CMDM to CMDM Matching Factor
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Figure 3.15: CMDM to CMDM matching factor as a function of distance

and integrating over y. Rearranging equation (3.88) to solve for the partial
derivative with respect to p simplifies the integration

0 d
I =
Oln p? dIn p?

) , 0

Equation (3.89) is a polynomial in logarithms of p

Anomalous Dimension

In this section, the analysis of Collins [50] is followed to find the multiplica-
tive anomalous dimension for the renormalized dimension 5 operators. The
renormalized cedm operator in equation (3.32) can be written

[Ce] =MC]o, (3.90)

where M is the mixing matrix, [C] is the renormalized CEDM vector and
[Ce]o is the bare CEDM vector. All of the p dependence on the right hand
side of equation (3.90) is contained in the mixing matrix M. Therefore, the
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anomalous dimension can be found by differentiating C, with respect to In 2.

d d
dIn p? Ce] ~dln p? M[Celo
aM

The derivative in equation 3.91 is initially taken in d dimensions. Us-
ing the renormalization group equations and coefficients in appendix .8, the
matrix ~. can be found. In d = 4 dimensions, to order «, it is

IYCG ’YCEP ’ycem

Ve = 0 YpPq 0
0 0 YPm
o [ —@T(A)=5CR) 0  —(5T(A)—3nT(R))
- 0 3C(R) 0 (3.92)
T 0 0 6C(R)

The anomalous dimension for the chromomagnetic moment operator, v,
is
TM  VMes YMem
Yem = 0 7sq 0 , (3.93)
0 0 YSm

and is numerically the same as the chromoelectric dipole moment anomalous
dimension.

In momentum space, the anomalous dimension is more complicated be-
cause it includes the contact terms. These terms however, do not appear in
the coordinate space correlators, and are also specific to this particular cor-
relator. The anomalous dimension matrix computed in this section accounts
for the evolution of the the correlator in coordinate space, and will be used
to evolve the CEDM or CMDM any time they appear in a correlator (such
as equations 3.4 and 3.5).

Correlator Running

Using the RGE equation (3.89), the renormalization group coefficients com-
puted in appendix .8 and the o as a function of p,

a(p) -

127 + (4n,T(R) — 11T(A)) log (42)’

(3.94)

I0)



the renormalization group flow of the correlators was computed. When
matching the lattice correlators to the continuum correlators, the spatial
dependence should be the same. Differences should come from the M S renor-
malization scale u, and lattice spacing a. By computing the running of these
correlators, the renormalization point p can be tuned for a better match.
Here, we present results still in preparation.
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The running of the pseudo scalar to pseudo scalar correlator is

7(Q? 1a) =) (G2 (20(R) (11T (4) — AnyT(R))a () log® (1)

+C(R)a(pr ) (18TT(A)a(per) — 68nsT(R)ae(per) + (24n ;T (R)a(pr)

—66T(A)a (1)) log(Q?) + 72m) log® (113) + 2 (30(R)(11T(A) — 4n;T(R))log*(Q*)a

—4n;T(R))log (

—72m) log(Q*) v
—log (113) (2C(R)(

—4nT(R)) log®(Q*)a(p2)? + 6C(R)(4n;T(R) — 11T (A)) log® (-22)

) (—187T(A)cx(p1) + 68nsT(R)ce(p11)
_l’_

127 (17C(R) (1 +47T)log (,ul)
T(A 2) o

(@
2
2
1
1)
11T(A) — 4n;T(R)) log” (1 )2+ 6C(R)(11T(A

+34C(R)(11T(A) — 4n,T(R))log (—) 2 _ 2C(R)(187T (A)a ()

—68nT(R)a(pa) + 72m) log(Q*)ax(pu2) + C(R) log (113) (18TT (A)ex(paz)
—68nT(R)a(pz) + <24nfT< Jo(p >—66T< > (112)) 1og(Q?) + 727)ax(p12)
+247(17C(R)ov(p2) + 4m))) + 8 (C(R) 36(](R)

+11T(A) - dn;T(R))a log (i) + m1)*(36C/(R)

—11T(A) + 4nsT(R))a ( )(3log(622)—1>log ( 1) +m(m)?* (=3C(R)(36C(R)
—11T(A) + 4n,T(R))log*(@Q*)a(p1)* — BC(R)(36C(R)m(m) + 11T(A)

—dn,T(R)) log? (ff—) o) + 20
e  T(R)) og(Q)a(m)? + 20(R)(I1T(A) — 4n,T(R))a(n)

36m () (C(R)a: 1>+w>>log(i) o) + 12 (9C(RY (mipn) + 1)(—1

+2¢(3))a(p)? + 2C(R)ro(pr) + 27%) ) log (113)

-y 10542 (-IOSCURF () + C(RN=S6(R) 174
i T(R)) log? (12) a(pa)? — 3C(R)(36C(R) — 11T(A)

A T(R)) 087 (@Yl = 10SC(R () o () )’

2

R)(36C(R) — 11T(A)

2

~30(RIT g (L) alu? + 120(R 1R 06 (L) )’

2 2

—108C(R)*m(pus)r(pi2)? + 2C(R)(36C(R) — 11T(A) + 4nsT(R)) log(Q*)a(pus)?
+C(R)(36C(R) — 11T(A) + 4n;T(R))log (112) (310g(Q?) — 1)a(ps)?

+720 R o (£ ) e + 20T (1o (B )

2

—8C(R)n;T(R)log (g—j) a(py)”

2

+216C(R)%¢(3)a(pt2)? + 216C(R)>m(112)¢ (3)u( pia )

2

+72C Ryl tog (% ) aly) + UC(R)Talue) + 2472 )|
(3.95)



The running of the scalar to scalar correlator is

DU o (1) (24m(1a)? (~5640(12) C(R) (1) + 1)

Q? Q*
2470 () C(R)(1 — dm(ps)) + () C(R) (a%)( 1°g<ug> 310g(ﬂz)
~10) (36C(R)m(pa) — AngT(R) + 11T(A)) + 216C(R) (m(js) + 1)C(3)
+log (12) (310g(Q?) — 5)(36C(R >+4nfT<R>—nT<A>>—3log< *)(36C(R)
+4n, T(R) — 11T(A)) + 1010g(Q*)(36C(R) + 4n,T(R) — 11T (A

+log® (13) (—=36C(R) — dnyT(R) 4+ 11T(A))) + 72wm(u») log (—2>) + 247r2)
+Q? (247(170(12)C(R) + A7) + a()C(R) (1og (43) (60x(12) los(Q®) (4n T(R)
—11T(A)) — 68a(p)nfT(R) + 187c(p2)T(A) 4+ 727) + 200(p12) (11T(A)
—4n;T(R)) (17 SIOg( )) log( ) + 6a(p2) log®(Q*) (11T (A)

)

>>_210g<@2>< 680(12)ns T (R) + 187c(u2)T(A) + 727)
+1og? (13) (220 M2 )—8a(u2)nfT( ))))
—log (117) (24m (1) (—564a(s1)*C(R)*(m(pm) + 1) + 24ma (1) C(R)(1

( 1 +
—am()) + o) < (b% )Gm(,>
)

—10) (36C(R)m(j11) — 4nfT(R) + 11T (A)) + 216C(R) (m (1) + 1)¢(3)
+log (117) (3log(Q?%) — 5)(36C(R) + 4nsT(R )—11T(A))—310g( ?)(36C(R)
+4n;T(R) — 11T(A)) + 101og(Q*)(36C(R) + 4n;T(R) — 11T(A
( >) + 247 )
)(4ny
T(A)

HS(Q27 /J’2>

—4TLfT(R
2
2
)

)
+1log” (117) (—=36C(R) — dnyT(R) 4+ 11T(A))) + 72wm(us) log (—

+Q? (24ﬂ(l7a(u1)C(R) +47) + a(p)C ( ) (log (,lh) (6cv(p11) log(Q?
—11T(A)) — 68a(pm)nfT'(R) + 187 (e )+ 727m) 4+ 2a(p) (11

(R)
—4n;T(R)) (17 310g( ))log (—%) o) log?(Q*) (11T (A)

—in/T(R)) — 210g(Q?)(=680 (110, T(R) + 18Ta () T(A) + 72r)
Tlog? (12) (22()T(A) — 8a(m)nsT(R)))))] (3.96)
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The pseudo scalar to CEDM correlator running is

HCEP(Q27 MQ)

log (47) (m(11)*Q” (2 (99a (1) C(R) (m(pn) + 1)

p1)
+a(p) log <%> <310g (M ) 5) (36C(R)m(p1) — 4nfT(R) 4+ 11T(A))
Q*)(36C(R) + 4n;T(R) — 11T(A)) + log(Q*) (727
—5oz(,u1)(360( ) +4n;T(R) — 11T(A))) — 607)
+log (1) (—6a () log(Q*)(36C(R) + 4nyT(R) — 11T (A)) + 5a(p1) (36C(R)
+4n;T(R) — 11T(A)) — 727) + 2a(u1) log? (u7) (36C(R) + 4n;T(R)
-1 (A)) + (@2 (i) (MT() — () (o 1) + 2108 ()

M1

—21og(Q?)) + 24m)) — a(uz) log (k3) (m(12)*Q* (2 (99a(p12) C(R) (m(p2) + 1)
+a(p2) log (%) (3 log (g ) 5) (36C(R)m(ps2) — 4nfT(R) + 11T(A))

+3a(p2) log?(Q?)(36C (R) + 4nfT(R) — 11T(A)) + log(Q?) (727
—5a(p2)(36C (R) + 4nsT(R) — 11T(A))) — 607)

+log (43) (—6a(j12) 10g(Q*)(36C(R) + 4nT(R) — 11T(A)) + 5a(j12) (36C(R)
+4n;T(R) — 11T(A)) — 727) + 2a(ps) log? (13) (36C(R) + 4nyT

(R)
7)) + (@ (alu174) — any 1) (1o :2) + 2108 (%)

—210g(Q?)) + 24m))] (3.97)

The scalar to CMDM correlator running is
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16 5(Q2, 1) = IO (01, o (1) (rm(1)?Q* (2 (990 2) C(R) () + 1)

ra(u)tog (% )(310g( )~ 5) (6C(RIm(ua) — 40y T(R) + 11T(0)
)+

+3a(p2) log®(Q?)(36C (R) + 4n;T(R) — 11T(A)) + log(Q?) (727
—50(112)(36C(R) + 4nsT(R) — 11T(A))) — 607)

+1log (113) (—60(412) 10g(Q*) (36C(R) + 4n; T(R) — 11T(A)) + 5a(u) (36C/(R)
+4n;T(R) — 11T(A)) — 721) + 2a(p2) log” (13) (36C(R) + 4nyT(R) — 11T(A)))

HQP? (a7 () — an, () (108 () + 2108 () - 2100(@?) ) + 217

2

—a(p)log (u7) (m(m)*Q* (2 (99a (1) C(R) (m(u) +1)

(
+a () log (3—;) (3 log (312) 5) (36C(R)m(p1) — 4nsT(R) + 11T(A))
+3a (1) log®(Q*)(36C (R) + 4n;T(R) — 11T(A)) + log(Q?) (727
—5a(1)(36C(R) + 4nsT(R) — 11T(A))) — 60m)

+1og (42) (~6a(1) 1og(Q¥) (36C(R) + 4ny T(R) — 11T(A)) + 5a(ju)(36C(R)

+4n;T(R) — 11T(A)) — 727) + 2a(p1) log” (17) (36C(R) + 4nyT(R) — 11T(A)))
QY (a(un(nT(A) ~an,T(R)) (1og (2) + 2o (fj—) _ 210g<@2>)
+247)) (3.98)

The CEDM to CEDM correlator running is
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HC@(Q2,/~L2) :C(R)D(R)

66355275

2 (@7
{ (1) log (13 (48m ( (1) (6 (a(ul)log (u_%) (126C(R)
+4n;T(R) — 47T (A))(18C (R)ym(p1) — 4nyT(R) + 11T(A))
+10g( 22) (127 (36C(R —AnfT(R) + 11T(A)) — a(p1)(661C(R)
+38n,T(R) — 295T(A))(18C(R)m (1) — 4nsT(R) + 11T(A)))
+864a (1) C(R)(m () + 1)T(A)C(3) + ) log*(Q*)(126C (R) + 4nsT(R)
—47T(A))(18C(R) + 4nsT(R) — 11T(A)) + log(Q?) (247 (81C(R) + 4n;T(R)
—29T(A)) — a(p1)(18C(R) + 4nyT(R) — 11T(A))(661C(R) + 38n;T(R)

—295T(A)))) + 3log (417) (—2a(ju1) log(Q*) (126C(R)

+4n;T(R) — 47TT(A))(18C(R) + 4nyT(R) — 11T(A)) + a(p1)(18C(R)

+4n;T(R) — 11T(A))(661C(R) + 38n;T(R) — 295T(A)) — 247 (81C(R)
+4nT(R) — 29T (A))) + 20(n) log® (12) (126C(R) + 4n;T(R)

—47T(A))(18C(R) + 4nsT(R) — 11T(A))) + a(m)*C(R) (m ()

+1)(132420C(R) + 8432n T (R) — 643997 (A)) — 36ma (1) (C(R)(174m(p) + 835)
+38n;T(R) — 295T(A)) + 86477) + (Q%)° (a(p1) (2 (11T'(A)

—_in, T(R)) log (QD (—2724a(u1)C(R) + 6a(u) log (S—j) (90C/(R)

+4nT(R) —4TT(A)) — 1960(p1)nsT(R) + 1853a(u1)T(1411) + 72m)
+6 (1) 1og?(Q*) (11T (A) — 4nsT(R))(—90C(R) — 4n;T(R) + 47T (A))
+1log(Q*)(a (1) (11T (A) — 4nsT(R))(2724C(R) + 196n,T(R) — 1853T(A))
+1447(45C(R) + 4nyT(R) — 29T(A)))) + log (u7) (—120(p1) log(Q?) (11T (A)
—4n;T(R))(=90C(R) — 4n;T(R) + 47T (A)) + (1) (11T (A)
—4nT(R))(—2724C(R) — 196n;T(R) + 1853T(A)) — 1447 (45C(R) + 4n;T(R)
—29T'(A))) + 4a(p1) log® (7)) (11T(A) — 4nyT(R))(—90C(R) — 4nsT(R)
+4TT(A))) 4+ 127 (a1 ) (—2724C(R) — 1960, T(R) + 1853T(A)) + 1447)))

2 2 2\2 Q2
~a(uog () (48mu(@ () (0 (atuoe” (% ) (1200
+4n;T(R) — A7TT(A))(18C(R)m(ps) — 4nsT(R) + 11T(A))

+ log (%) (127 (36 C&GR)m(112) — 4AnsT(R) + 11T(A)) — a(2)(661C(R)

)
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+38n;T(R) — 295T(A))(18C(R)m(ps) — 4nsT(R) + 11T(A)))
+864a(p2) C(R) (m(p2) + 1)T(A)C ( ) + a(uz) log*(Q*)(126C (R) + 4nT(R)
—47T(A))(18C(R) + 4nsT(R) — 11T(A)) + log(Q?) (247 (81C(R) + 4n;T(R)
—29T'(A)) — a(pu2)(18C(R) + 4nfT(R) — 11T(A))(661C(R) + 38n;T(R)
—295T'(A)))) + 3log (13) (—2a(p2) log(Q?)(126C(R) + 4nT(R)

—4TT(A))(18C(R) + 4nsT(R) — 11T(A)) + o(12)(18C(R) + 4nsT(R)
—11T(A))(661C(R) + 38n;T(R) — 295T(A)) — 247 (81C(R) + 4n;T(R)

—29T(A))) + 20(p2) log® (113) (126C(R) + 4nyT(R) — 47T (A))(18C(R)

+4n;T(R) — 11T(A))) + a(2)2C(R) (m(p) + 1)(132420C (R) + 8432n;T(R)
—64399T(A)) — 36ma(p2)(C(R)(174m(pa) + 835) + 38n,T(R) — 295T'(A)) + 8647>)
(a < ( (11T(A) — 4nsT(R)) log (iy) (—2724a(p)C(R)

+60r(pu2) log (Q—) (90C(R) + 4n;T(R) — ATT(A)) — 1960(p12)n;T(R) + 1853(p12)T(A) + 727r>
(

)
L
) T(A) — 4n;T(R))(—90C(R) — 4n;T(R) + ATT(A))

+6a(p2) log*(Q?)(11
+1og(Q?)(alu2) (11T(A) — 4nsT(R))(2724C (R) + 196n,T(R) — 1853T(A)) + 1447 (45C(R)

+ansT(R) — 29T (A)))) + log (43) (—12a(p2) log(Q?*) (11T (A) — 4n;T(R))(—~90C(R)
—4n;T(R) + 47T (A)) + a(u)(11T(A) — 4nyT(R))(—2724C(R) — 196n,T(R) + 1853T(A))
—1447(45C(R) + 4nsT(R) — 29T (A))) + 4o(pa) log® (p3) (11T (A) — 4nyT(R))(—90C(R)

—4n;T(R) + 47TT(A))) + 127 (c(p2) (—2724C(R) — 196n,T(R) + 1853T(A)) + 1447)))]
(3.99)

The CMDM to CMDM running is
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C(R)D(R)
66355275
2

=)0 () (43m2@2 (atn) (6 (a1 (L) 00t
+dn T(R) — 23T(A))(18C(R)m (1) — 4n;T(R) + 11T(A))

+log (%)(1%(360 R)Ym(p) — 4nyT(R) + 11T(A)) — ) (179C(R)

(

+42n¢T(R) — 193T(A))(18C(R)m(u1) — 4nfT(R) + 11T(A)))
+864a(pi1) C(R) (m(pn) + 1)T(A)C(3) + ) log® ((Q*)) (30C(R) + 4nyT(R)
—23T(A))(18C(R) + 4nsT(R) — 11T(A)) + log(Q?)(247(33C(R) + 4n;T(R)
—17T(A)) — a(p1)(18C(R) + 4nfT(R) — 11T(A))(179C(R) + 42n;T(R)
~1937/(A))) + 31og () (~2a(u1) log(Q*)(30C(R) + 4n,T(R)
—23T(A))(18C(R) 4+ 4n;T(R) — 11T(A)) + a(u1)(18C(R) + 4n;T(R)
—11T(A))(179C(R) + 42n;T(R) — 193T(A)) — 247(33C(R) + 4n;T(R)
—17T(A))) + 20(p1) log? (7) (30C(R) + 4nyT(R) — 23T (A))(18C(R)
+4n;T(R) — 11T(A))) + a(u1)*C(R) (m(um) + 1)(30252C (R) + 9992n ;T (R)
—44983T'(A)) — 36ma(p1)(C(R)(174m (1) + 353) + 42nT(R) — 193T(A))

2 2\3 QZ
+8647%) + (Q?) (a(ul) (2 ((HT(A) —4n;T(R)) log (,u ) (—834a(u1)C(R)

1

Hcm (Q27 M?) =

2

+6a(p1) log (%

+1097 (1) T (A) + 727) + 6c(p1) log?(Q*)(11T(A) — 4n;T(R))(—30C(R)
—4n;T(R) + 23T (A)) + log(Q*)(a(p) (11T (A) — 4nyT(R))(834C(R)
+196n,T(R) — 1097T(A)) + 1447(15C(R) + 4n;T(R) — 17T(A))))

+1og () (—12a(u1) log(Q*) (11T (A) — 4n;T(R))(—30C(R) — 4n;T(R)
+23T(A)) + a(p) (11T (A) — 4n;T(R))(—834C(R) — 196n,T(R)
+1097T(A)) — 1447(15C(R) + 4n;T(R) — 17T (A)))

+4a(pr) log? (u7) (11T(A) — 4nsT(R))(—30C(R) — 4nsT(R) + 23T(A)))
+127 (a1 ) (—834C(R) — 1960 T(R) + 1097T(A)) + 1447)))

) (30C(R) + 4nsT(R) — 23T(A)) — 196 (1 )nfT'(R)
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2

s tog (1) (15m002(@2? (i) (6 (s tog? (% ) (B0C(R) + an,T(RY

—23T(A))(18C(R)m(p2) — 4nsT(R) + 11T(A +log( )127? (36C(R)m(ps) — 4nsT(R)
)(

SC(R)m(ps) — 4nsT(R) + 11T(A)))
(J( )+4nfT( ) — 237(A))(18C(R)
TT(A)) — a(p2)(18C(R)

+11T(A)) — a(p2)(179C(R) + 42n;T(R) — 193T(A))(18
+8640(pi2) C(R) (m(p2) + 1)T(A)C(3) + aprz) log® (Q*)(3
+4n;T(R) — 11T(A)) + log(Q*)(247(33C(R) + 4n;T(R) —
+4n;T(R) — 11T(A))(179C(R) + 42n;T(R) — 193T(A))))
+3log (113) (—2a(pu2) log(Q*)(30C(R) + 4n;T(R) — 23T (A))(18C(R) + 4n;T(R) — 11T(A))
+a(p2)(18C(R) + 4nsT(R) — 11T(A))(179C(R) + 42n;T(R) — 193T(A)) — 247 (33C(R)
+4n;T(R) — 17T (A))) + 2c(p2) log® (13) (30C(R) + 4nyT(R) — 23T (A))(18C(R) + 4nsT(R)
—11T(A))) + oz(pg) C(R)(m(u2) + 1)(30252C(R) + 9992n,T(R) — 44983T(A))
—36ma(p2) (C(R)(174m(pa) + 353) + 42n,T(R) — 193T(A)) + 86477)
Q2
(a ( ( (11T'(A) — 4nsT(R)) log (M ) (—834a(pu2)C(R)

+6a(p2) log (—) (30C(R) + 4n;T(R) — 23T (A)) — 196c(p2)n T (R) + 1097 cr(po) T (A) + 727T>

Q*)(11T(A) — 4nsT(R))(=30C(R) — 4n;T(R) + 23T (A))
2)(11 ( )—4nfT(R))(834C(R)+196nfT(R)—1097T( )) + 1447 (15C(R)
+4n,T(R) — 17T (A)))) + log (113) (—120(p12) log(Q*) (11T(A) — dn;T(R))(~30C(R) — 4nT(R)
+23T(A)) + a(pe) (11T (A) — 4n;T(R))(—834C(R) — 196n,T(R) + 1097T(A)) — 1447 (15C(R)

+4n;T(R) — 17T (A))) + 4a(ps) log? (13) (11T (A) — 4nsT(R))(—30C(R) — 4n;T(R) + 23T(A)))
+127 (a () (—834C (R) — 196n,T(R) + 1097T(A)) + 1447)))] (3.100)

+6a(p2) log*(Q

+1log(Q*)(a(p

Conclusions

The lattice can serve as an excellent tool for improved bounds on C'P vio-
lating physics. Before it can be used properly, however, the lattice operators
must be renormalized. M S is the standard renormalization scheme for con-
tinuum calculations, but is not a suitable scheme for lattice measurements.
In this work, preliminary results of the analytic computations required for
nonperturbative renormalization of the CEDM and CMDM operators were
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presented. We have computed the matching factors to convert coordinate
space CEDM to CEDM and CMDM to CMDM correlators from the X-space
scheme into MS. We have also computed the running of these correlators,
providing all of the analytic factors for proper use of the CEDM and CMDM
operators on the lattice.
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Conventions

The euclidean path integral is
7 = / DYDYDADCDE e~ 58 5 M =5cr—Sghost (101)

Sr, the fermion action is

S = [ '50() b 00+ igAu(@) + M) 0(a), (102)

where p runs from 1 to 4. The fermion propagator, S(p) is

S(p) Z;;}i—t\%, (103)
and the fermion-fermion-gluon vertex factor, Vi, is
Vi =—igy 1" (104)
The covariant derivative, D,,, is
D, (z) =0, + igAj,(x)T" (105)
The field strength tensor G, is
G = — é [Dy, D, (106)
=0, AL (x)T* — a,AZ(l‘)Ta — gfabcT“AZ(x)Af,(x) (107)
The yang-mills action, Sy, is
Sy :%L / d'zGs,G* (108)

_ / ' (%auAg(x)aqu(x) _ %8“A“”(x)8VAZ(x) _ g2 AP (2) A (2)0, A% ()

+ingbcafdmAb%w)AWx)AZ@)AW))
(109)
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b,l/ C>p

The three gluon vertex factor is

Vif,f(q,p, k) :igfabc (9vp(@u = Pu) + 9up(k — @) + 9 (Pp — k) (110)
The field A,(z) is equal to

Aa) = [ e A (111)

For momentum & flowing into the vertex x.

The gauge fixing action, Sgr, and the ghost action, Sgpest, are used to
remove the gauge redundancy from the yang mills action. Using the Lorentz
gauge condition, one finds

1
— (AP A2
Lor 25(8 A“) (112)
Lghost =C" (825“‘3 + gf”bCO“AZ) c* (113)
The ghost propagator is
1 ac
Aghost(k) = — ﬁ(5 (114)

The ghost-gluon vertex factor is
= —igfrekt (115)

The chromoelectric dipole moment is
1 —
Culir) = g9(@) 256, ()T ()

)T (0,43(0) = gl @A) ) wlo) (110
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The chromomagnetic dipole moment is
1 —
Cn() =59(2)0" 256Gl (2) T ()

— 1
@) (0,450 - Jor AL ) w(a) (1)
where o/ = £ [y, ~"]
a, Ve
Figure 16: O(g) CEDM/CMDM vertex diagram

the vertex in figure 16 is produced by the first term of the chromoelectric
dipole moment, and is equal to

ik, got s T (118)
and the first term of the chromomagnetic dipole moment is

ik,go" T (119)

AN

b, et
Figure 17: O(g*) CEDM/CMDM vertex diagram

The vertex in figure 17 comes from the second term of the chromoelectric
(chromomagnetic) dipole moment, and for the chromoelectric dipole moment
is equal to

T, (120)
For the chromomagnetic dipole moment, figure 17 gives

—g? fabeTigH . (121)
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Fourier Transform

The X-space scheme is defined in coordinate space. Perturbative calculations,
however, are significantly easier in momentum space. Therefore, all pertur-
bative calculations were done in momentum space, and fourier transformed
coordinate space. In this section, general details of the fourier transform are
explained.

This paper deals with massless propagators. The fourier transform of a
massless propagator is

dlq e* 1 d’q o 2.
— d a—1_—aq°+iq-x 122
[ Gty ~ra [ e ], deo e )

where the integral definition of the Gamma Function (also referred to as «
parameterization) was used to express the denomenator of the propagator
(%)™ as a gaussian.

1 o0 x?
_ d a—1-d/2 _Z . 12
), e e [ (123)
Changing variables from a to s = o~ ! yields
1 Oo d/2—a—1 x?
:m\/o dSS / exXp |:—SZ (124)
_T(E—a) (" (125)
(dm)47T(a) \ 4

where the o parameterization was used to go from line 124 to line 125.
When fourier transforming objects with lorentz structure, the lorentz
structure can be factored out of the integral as a derivative

ddq ] ani . ddq eiq-x
/(Qﬂ)dequ (42 _H(_Zaai)/(2ﬂ.>d (¢2)e (126)

(5 —a) o] (=)
=) [H(—z@ai)] (Z) (127)

Using the identity

r . o\
(o) =rttim (55 ) 62" (128)



the fourier transform of a logarithm can be found.

d'q 4. (ogq?)" O\" [ dlq e
e =r!li — 129
[T =i (55) | ot 129
O\" T (g —a+ 5) 2\ a—0—d/2

=r!lim [ — —

50 \ 90 (4m)42T (a — §) \ 4
(130)
A list of fourier transform identities can be found in reference [57]. Here,

we add to that list.

Momentum Space Coordinate Space

log (%) — 3
Q*log (%) =
10g2 <§_22) 71.22x4 _1 + 2/7E + log <x24u2
Q?log? (%) =5 (5 — 4y — 2log (x24”2
(Q2)2 log %2> _71.12938
2.2
128( 6vp3log( 22~ ) 10
(QQ)Q 10g2 (;72) ( ,@Ss 4 ) )
(@10 (%) 2
2.2
1536 ( 12log | &2~ | +24vp—47
(Q2)3 10g2 <#_22> - ( (71';;10) )

One Loop Calculation

Converting from M S to the X-scheme involves computing the finite part
of the correlator of interest in M.S. In this appendix, we obtain a closed
form expression for a massless, one loop, dimensionally regulated feynman

integral. For more detailed reviews of multiloop theory, see |58, 59]. The
feynman integral is
) 1
131
| e Y
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Using the a parameterization, we convert the denominators of this integral
into a product of Gaussians

1 ddp 00
- d d ni—1_mno—1 . 2 . 9
['(ny)(ng) / (27T)d/0 Q100000 Qg exp[ a1p® — as(p+q) }
(132)

1 00 anl—lang—l e
— doydog———2 — 2 133
(47420 (1 )T (n2) /0 N T )2 eXp{ a1+a2q] (133)

Making the change of variables oy = nz and ay = n(1 — z), the integral
becomes

1 o0 1
= d / dgpmtre—1=d/2pm=11 _ gyl ovn [ po(1 — 2)q?
Ty ), (1= oy e [=me(l =)
(134)
d d d
:F (nl + ng — 5) r (5 — nl) r (5 — TLQ) <q2)d/2fn17n2 (135>

(47)42T (ny)T(ng)T(d — ny — no)

Massless Pseudo Scalar to Pseudo Scalar Corre-
lator

Throughout this document, amplitudes are computed using the method of
integration by parts. In this section, the massless pseudo scalar to pseudo
scalar amplitude is computed analytically to illustrate integration by parts.

The propagators being used in this section are the euclidean, massless,
momentum space Dirac propagator %Jj. In R, gauge, the gluon propagators

used are A% (k) = %b (gw, + (€ — 1)%5“). In the calculations below, the

feynman gauge is used (¢ = 1). The integrals are regulated using naive dim-
reg (ndr). It is the convention of ndr that 5 anticommutes with 7,, and
TTD(]_) =4,

Evaluating the lowest order contribution to the two point pseudo scalar
correlator, figure 18, gives
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,,,,X y,,,,
p

Figure 18: lowest order pseudoscalar density two point function from y to x

(P(x)P(y)) =(¢(x)vs0 ()b (y) 151 () ) (136)
== Sy —2)%% (1) as S = )5, (V) o (137)
rT—y—>x (138)

o [ e [ S (0, T
(2m) ot P\ pre? T " ( .
r=p+gq 140)

d7,, eir.ac d e —ip.x
el 5 o | 255
(141)
AD(R) . [d\? [22\ '

__ (47§)d)r(§) (Z) — G(d,7) (142)

Where the fourier transforms in line 141 were computed using the identity

in appendix .2

Figure 19: order ¢g* diagrams
In momentum space, diagram 19a is
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Figure 20: diagram 19a in momentum space

=2 [ T (), (m — 01 (05)aaS (o~ 0), 05)anS0  WATR (Y )er

S(n — m)i%AZ’l’,(m —n) (143)
~P G RCRDIR) [ e

d —ipi(p+q) —t d —i(p+
/ D oy, pilp+d) iy 7”/ d_—ilp l>@v“ (144)
(2m) p* (p+q)? p? @2m)? (p+1)* P
In the above line, the subloop diagram (with loop momentum [) has been
put in square brackets. This feynman integral is just the gluon correction

to the fermion propagator. The massless quark propagator has a structure
—ip3(p®) where ¥(p®) is a scalar function.

dp
e [ S

¥ (p?) can be evaluated by multiplying both sides by %ﬁ and then taking the

trace over Dirac space. One finds —ipE(pQ) = _WMWL—MVN'

-t SO (1) (3 e

d’p poprd p poo
/ (%r)dTTD{P<p+q>2ﬁ”ﬂ<pz)z—d/ﬂ } (146)

Making the change of variables p + ¢ = r puts the integral into a form
where both the top, and bottom fermion lines can be seperately Fourier
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transformed.

=— gQ(uz)Q’d”C(R)D(R) LR-5), (c_i - 1) r <5l>

m)@2 T(d—1) \2 2
r ddr eir-xi ddp efip-:r pvufwﬂp
ol [ Gy i G | 1
rese (dT) [ x2\ 22
:G(d, SL‘) [92<,u2)2d/2 ((Cflﬂ- 3/2P (4 _dgg) < > ] (148)
(0 (20U (€U (g 4) g (e 21 202D o)

(149)

In momentum space, diagram 19b is

k p
q — > q
— —
~_ —
k-+q p+q

Figure 21: diagram 19b in momentum space

~ G ECRDIR) [ e
d’kd®p —if —i(f+d) P d) —P g
/(27r)2dTrD {7 2 (k + q)? v p+q? " P (p—k)Q} (150)
(151)

Taking the trace over the numerator yields

d
=— ¢’ (1*)*"*C(R)D(R) / (sﬂidei“

/ d’kd’p {de(p2 + (@) +(k-g)(dp* +4p-q) + (d = 4)(k-p)¢°
(2m)2d k2 (k+q)*(p + q)*p*(p — k)?

(152)
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The integrand can be simplified by making the substitutions

(p-q) :% (p+q)?—p" —¢] (153)
(k-q) :% [(k+q)* = k* — ¢°] (154)
(k- p) :% P+ k= (p—k)?] (155)

These substitutions express the numerators in terms of inverse propagators.
Upon simplification, factors from the denominator cancel inverse propagators
in the numerator, ultimately expressing the diagram as a sum of scalar one-
and two-loop integrals.

diq

— =27t PeRD(R) [ e

/ dkdp {_ 8¢> N (8 — 2d)¢? N
2m)x | (E+q)*p+q)**(p—k)?  E2(k+q)*(p+ q)*p?
4q° - 8¢2 . (4d — 8)
k2(k+q)2(p+q)**(p— k) K (p+q)**(p—k)?  (k+q)*p*(p —( k)2>
156

With the exception of the third term, each integral can be solved by recur-
sively applying the one-loop integral, solved in appendix .3. The third term
can be solved using the multiloop method of Integration By Parts. Integra-
tion By Parts exploits the fundamental theorem of calculus for the purpose
of expressing multiloop integrals as sums of one-loop integrals.

The third term is

d?kd?p 1
/ (27T)2d k2(k; + Q)2(p + q)2p2(p — k,)g (157)

Taking the derivative of the product of (k* + ¢*) and the integrand with
respect to k, gives

/ dikdlp O ket + g

(2m)2d Ok, k2(k + q)2(p + q)2p*(p — k)2 =0. (158)
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Explicitly taking the derivative gives

/ddkddp { d—2 B 2k - (k+q)
(2m)?¢ [k (k+q)*(p+ )P (0 — k)*  (F*)*(k+@)*(p + q)*p*(p — k)?
_ 2(k+4q) - (k—p) _
k2 [(k+ ) (p + 0)?p*(p — k)2
By performing similar substitutions to those done in line 152, the above
expression will contain the two-loop integral, and a sum of recursive one-
loop integrals. Moving the recursive one-loop integrals to the right hand side
gives a solvable expression for the two-loop integral.
Solving all of the integrals gives
2 —41 22?2) — 1 log(2
i 0) (220) _ (GO o ") - 1+ leg2)

TE 21

(159)

For fermions in the fundamental representation, R = F' and C(F) = 3.
Diagram 19a still needs to be multiplied by its symmetry factor, 2, because
the gluon loop can be on either fermion line. In M S, the finite part to order
« is

3 2 9
- (1 = (1/@) +0(a )) (161)

7T4([E2)3

Gauge Invariance of Pseudo Scalar to Pseudo Scalar Cor-
relator

The pseudo scalar to pseudo scalar correlator, shown in line 136, is gauge
invariant. In R¢ gauge, gauge invariance manifests through the vanishing
of all ¢ dependence of the correlator, at each perturbative order. Checking
for gauge invariance ensures the presence of each diagram required for the
correlator, along with proper symmetry factors. Below, gauge invariance for
the pseudo scalar correlator is calculated.

The ¢ dependent term (GI) from figure 19b is

61 = CRDRYE 1) [ e

(2m)
/ddpddkT {ﬁ { d+p p—k d+Fk } ¥ op—k
@t g+ w7 =02 (g + R7] R (p— kP
(162)
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The term in square brackets can be simplified using the following trick

__ 1 dg+p o 4tk
[] _(p_k)g ((q+p)2<p k>(q+k)2) (163)
1 + '
" (p—k)? ((f+£2 ((p+d)—F+q) (g+ E > (164)
Where in line 164, q has been added and subtracted to (p — ;é)
1 d+k gty
kP ((q TR (g +p>2> (165)

Putting this back in G gives

GI == FORD(R)(E 1) [ e

/%T CD{ZQZ% [(zo—lk)? (Jif) - <qgf£)] W%(Z(lg%}

Repeating this trick with the other propagators, and anticommuting the s
past the propagators results in

GI ~C(RD(RE~1) [ e

/%%D { [T ((jff) - <5Lﬁ> (kﬁ - éﬁ)}

(167)
o0 B d’q igx dpd?k 1 g+% ﬁ
-2l | e [ G TTCD{[(pk>212<gé§>+k)2p2)}

98



The & dependent part of figure 19a (G12) is

GI2 = — ¢g*(€ — 1)C(R)D(R) / el

ddpddl ptd p+d £p+g+l 1
e Vi 275 P+ (p+q+1)?| 12
(169)
—— ¢~ o) [ (;qu)defq-w
dipd'ly Sl PP L] prat]

/(QW)QdT CD{(p—l—q)Q,% 2'75(l2) (p+q+10)2 l} (170)
_ 200 diq cira dpd? p o1 ¢+g+l
—e—nemp(r) [ G [ G TCD{ e

(171)

}

Massive Pseudo Scalar to Pseudo Scalar and Scalar

to Scalar Correlators

The quarks of interest for this problem are the up and down quarks. Since
their mass is much less than the energy scales of interest, the massive quark
propagators (equation (103)) can be expanded about M = 0. The propaga-

tors used are
—ip+ M M?
S(p) :'V;T (1 — p_ + (9(M4)) (172)

This expanded propagator now appears to be a product of massless quark
propagators. Diagrams using these can be solved using integration by parts.
Calculations are carried out using Mincer for form.
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The bare pseudoscalar to pseudoscalar correlator computed to O(«) is

D(R)(Q*) (2 (2m3 + Q* (4€® + 2e + 1)))
(4)2e
O‘C(Rﬂl)z g;(g ) [Q% ((—2240¢(3) — 87" + 8045) ¢
+(2270 — 480¢(3))€® + 580€ + 120)
—16mg ((200¢(3) + 7* 4 50) € + 30(2¢(3) — 1)€* — 10e — 30)]
(173)

I (Q%,mp) =

The scalar to scalar correlator has the same diagrams as figures 18 and
25, except the heavy dots at = and y have a vertex of 1. The bare scalar to
sclar correlator is

D(R) (Q?)~¢ (—32mge — 1208 16m2 — 8Q2 — 29 — 4@2)
1672

I15(Q*, mg) =
(174)

Massive Pseudo Scalar to CEDM and Scalar to
CMDM Correlator

Figure 22: p-c diagram
The psuedo scalar to CEDM correlator is (P(x)Ce(y)) = <E(x)75¢(m)@@(y)0“”GW(y)%w(y)>.

The lowest order diagram is depicted in figure 22, and is of O(«a). In coordi-
nate space, this is equal to

(P@IC) = [ #2680 = )0 TSy — TS (2 — ) Ay =)
(175)
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In momentum space, the bare pseudoscalar to CEDM correlator is equal
to

D 2\ —2¢,,2¢
CCTDUDG) I [amg? ((256¢(3) — 657)c" — 214¢* — 65 — 21)
o€

+(¢%)%€ (293¢% + T0¢ + 12)] (176)

HOCEP(Q2> m(z)) =

The bare Scalar to CMDM correlator is

(Q*) > C(R)D(R)mau™
(4m)* 3e?

—68) — 24) + (Q?)%e(e(293¢ + 70) + 12)] (177)

55 (Q% m2) = — [3m3Q%(e(e((256¢(3) — 657)e — 214)

CEDM to CEDM and CMDM to CMDM Cor-
relators

In the work that follows, the bare CEDM to CEDM and bare CMDM to
CMDM correlators will be computed. These computations were made using
the Form version of MINCER [60)].

Leading Order Calculation

Figure 23: chromoelectric or chromomagnetic dipole moment at point y prop-
agating to point x

_ Figure 23 is the leading order contribution to the correlator

((2)0" G (2) 50 (2) 0 (y) 0P G (y) V51 (1)), used to renormalize in the (c)edm
in the x-scheme. At leading order in coordinate space, with fixed coordinates
x and g, this diagram is
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o 0
(Ce(7)Ce(y)) = —Trep (S (y — )" T8 (x — y)o™’ Tb%@a—yaﬁﬁ%(x - y)>
(178)

where Trop means the trace over both color and Dirac indices. It’s clear
that at leading order, despite this being a 2-loop diagram, this diagram is
just the trace of the product of the position space propagators.

In order to account for the vertices fixed at points z and y when evaluating
the diagram in momentum space, the vertices themselves must be given an
incoming momentum ¢ at x and an outgoing momentum ¢ at y. x and y can
be fixed by fourier transforming q.

Figure 24: CEDM to CEDM or CMDM to CMDM with fixed vertices in
momentum space. The dashed line represents the vertex momentum to be
used in the fourier transform

At leading order in momentum space, this diagram is

d?kdl
— / dlqe / a7 rep [S(k)o" TS (—1)o* Tl ys(q + 1 — k)u(q + 1 — k)aAis (g + 1 — k)]

(179)
diq dpd?] P ol o +q=0Dup+q-1)
=—C(RYD(R iq-x T ¥y wt _a m a
(B)D( )/(277)de /(2%)2‘1 TD{pQU 2O g1 }
(180)
Fourier transforming the gluon line gives
r=p+q-—1 (181)
q=r+1l—p (182)
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the integral becomes

d

=~ Ty { [ @i b o [ AL [ retire )
(183)

Replacing the numerators in each of the integrals by derivatives acting on
the exponential puts each integral in a form that can be fourier transformed
using the techniques discussed above

— - CrD(RITrD (oo} 10 | d>zﬂ

0 a1 6 0 [ dir o1
[_’% / (2m)i° 1_2} {_&Wﬁxo‘ / (2r)i° ﬁ] (184)

Solving the fourier transforms of each propagator, and taking the deriva-
tives gives,

:ﬁcw)p(mr (g - 1)3 (1 - g)g (d—1)(d—2) (?) o (185)

This was computed with massive propagators using Form. In momentum
space, the CEDM-CEDM lowest order is

(Ce(@)Ce(y)) 1o = — O‘D(A)Téﬁgq o (—%mﬁ(q% - Qmoe(q :
+é(—29)m3(q2)2 - %((f)?’e - (;]2)6 - 7(36) ) (186)

The CMDM-CMDM lowest order is

(Co)Con)) o = — “CIDINTD o (22 e(223¢ + 58) + 12

+(¢%)*(e(331e + 84) + 16)] (187)

The next to leading order CEDM to CEDM amplitude diagrams are dis-
played in figure 25, and calculated in this section.
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Figure 25: NLO CEDM and CMDM diagrams

Symmetry Factors

The symmetry factor for diagrams 25a, 25g and 25j is 1.

The symmetry factor for diagrams 25b,25¢,25d, 25e, 25f and 25k is 2.
This is because the same diagram is produced when the quark-quark-gluon
vertex is attached to the top fermion line, or the bottom.

The symmetry factors for diagrams 25h, 251 and 25m is % This is because
the diagrams are symmetric under the exchange of the gluons in the gluon
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Diagrams 25m and25k appear twice in the amplitude with their vertices
interchanged. Therefore, they are multiplied by a factor of 2. The total
symmetry factor for diagram 25k is 4, and for diagram 25m is 1.

Color Factors

Tg, are D(R)x D(R) matrix representations of the SU(n) generators, obeying
the group Lie algebra,

(T3, Tp) =if*Ty, (188)

Where f®¢ are the structure constants.

Two numbers, characteristic of a representation are the Casimir invariant
C(R), and the index T'(R). The Casimir invariant is

THTh =C(R)1p, (189)
where 1g is the D(R) x D(R) identity matrix, and the index is defined by
Tr [TETR) =T(R)6®. (190)
The anticommutator of SU(n) matrices in the fundamental representation
1s
1
{T°,T"} ==6°"1,, 4 d**T", (191)
n
where d®° is a tensor, symmetric in its indices. The tensor d*¢ obeys the
relation

n®>—4
n

dacedbce — 5ab (192>
Each of the correlators involves computing the trace over both color, and
Dirac structure of the feynman diagrams. In this section, the traces over the
color structure are computed.
The leading order diagram has color structure

Tr[T*T*6° =T (R)D(A) = C(R)D(R), (193)

Where C(R) is the casimir invariant for representation R, T'(R) is the dinkin
index for representation R, D(R) is the dimension of representation R, and
D(A) is the dimension of the adjoint representation of su(n).
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Diagrams 25a and 25d have color structure

TrT T T = T (T + {7 ) (T + {7 )] (194)

4
:iTr (e, T + {1, 7}’ (195)
1 | abc pabdrperpd 1 ab abcrpc ?
=T | = F T 4 6 4 dT (196)
n
:iTT — [ fTer? + %D(A) + d“bcdadech] (197)
n
1
:i (—T(A)T(R)D(A) + ﬁD(A)D(R) + T(R)d“bcd“bdécd)
198)
L (Zr()T(R)D(A) + £ D(A)D(R) + T(R) —4
4 n? n
(199)
(200)
Diagrams 25a and 25d also can be expressed with the color factors
Tr[T°T*TT") =Tr [i f***T°TT® + T*TT*T"] (201)
:% FeeTr [Te([T, T + {T°, T}] + C*(R)D(R) ~ (202)
% fo T[T + C2(R)D(R) (203)
1
=C*(R)D(R) — 5T(R)C(,ax)D(A) (204)

Diagrams 25b and 25k have color structure

fetery [ToTbTe] :% fate pabdry [pae] (205)
:%T(R)fabCfabc (206)
:%T(R)O(A)D(A) (207)

Diagrams 25c¢, 25e and 25f have color structure
Tr [T*TT"T"] =C(R)*D(R) (208)
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Diagrams 25h, 251, and 25m have color structure

fee pibeTy [T =T(R) fobe fabe (209)
~T(R)C(A)D(A) 210)

and diagram 25j has color structure

Tr [T°T*)* =T(R)C(R)D(R) (211)

Bare Diagrams

In the remainder of this section, momentum space results for the NLO di-
agrams in figure 25 will be briefly explained, and presented. All diagrams
were computed in Form. Each diagram is calculated in R¢ gauge.

Figure 25a
The CEDM contribution from diagram 25a is

dip d%k 4l b N
CEDM, = &) ) (QW)dTrCD [(=ikao®?gvsT)S(p + k) (—igy"T°)

S(L+ k) (ikso™ gysT°)S(Q + D) (—=iy"T7)S(Q + p) Ade (p — DAL (k)] -
(212)

Where @) is the fourier momentum injected into the diagram at x. The form
output is

D(A)T(R)(2C(R) — T(A)) (Q*)~*
CEDM. =~ gy 19440¢? (4m)6
(24mg(Q*)? (e (—8820€ + € (—51990¢ + 360¢(3)((87¢ + T)e + 12)
—265025¢€ + 727" + 298985€ + 58830) + 9900) — 1080(¢ — 1))
+(Q?)? (€ (—9900€ + € (—61890¢ + 1080 (3)((29¢ + 83)e + 12)

—326915€€ + 2167 + 3005¢ + 20310) + 6660) — 1080(¢ — 1)))
(213)

The contribution of diagram 25a to the chromomagnetic dipole moment
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correlator is
C(R)D(R)(2C(R) — T(4)) (@)™

19440¢2 (4m)6
(24m3(@2)2 (€ (—8820¢ + € (—51990¢ + 360¢(3)((87¢ + 19)e + 12)
—265025&€ 4 721t e 4 285485¢ + 57750) + 9900) — 1080(¢ — 1))
+(Q?)? (¢ (—9900€ + € (—61890¢ + 1080((3)((29¢ + 83)e + 12)

—326915€ + 216" 4 3005¢ 4 20310) + 6660) — 1080(¢ — 1)))
(214)

CMDM, =g;

Figure 25b

(@)~
(470
(24mg(Q*)* (2160(2€ 4 7) + € (360(89¢ + 355)
+¢ (177180 — 2160¢(3)((58¢ + 325)¢ + 24) + 863450& e
—8647e + 3878035¢ + 760170))) + (Q*)* (2160(2¢ + 7)
+¢ (180(208¢ + 791) + € (225600¢ — 4320¢(3)((29€ + 176)e + 12)
+11619208e — 8647 + 4742575¢ + 896250)) ) ) (215)

1
CEDM, =g 233802 D(A)T(A)T(R)

C(R)D(R)T(A) (@)~
38880¢2 (4m)®
48m3(Q*)? (e (e (—99570¢ + 1080¢(3)((58¢ + 363)e + 24)
—504595¢€ + 4327e — 2490445¢ — 474330) — 90(190¢ + 853))
—2160(¢€ +4)) + (Q%)® (e (e (—225600¢ + 4320((3)((29€ + 176)e + 12)
—1161920&€ + 864 — 4742575¢ — 896250) — 180(208¢ + 791))
—2160(2¢ + 7)) (216)

CMDM, =g,

Figure 25c

CEDM, =93C(}?j£(m ((42)_:6

+(@%)? (621¢(3)€® — 8(2¢(358¢ + 75) + 27)e — 27) (217)

4mg(Q*)? (€ (8(621¢(3) — 5413)€e” — 9060e — 1647) — 216)
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C(R)’D(R) (Q*)~"

CMDM, =g, e L 12m3(Q%)*(e(2¢((5308 — 621¢(3))e + 1110) + 405) + 54)
+ (Q%) (—621¢(3)€® + 8(2€(358€ + T5) + 27)e + 27) (218)
Figure 25d
CEDM, =gt 2C DR — DIAT(ATT(R) (@) ™

19440¢2 (47)8
48mg(Q*)* (e (e (90¢(3)(173€ + 24) + 367" e — 18535€ + 240) + 855) + 270)
+ 5(Q%)?(e(e((15971 — 2484¢(3))e + 3210) + 612) + 108) (219)

OMDM, = — gt 20 D(R) — CADAT(R) (@) ™
S 19440¢? @y

24mg(Q*)? (e (€ (720¢(3)(83€ + 6) + 721 — 470165¢ — 86370) — 12870) — 1080)
+ 5(Q%)? (e(e((15971 — 2484¢(3))e + 3210) + 612) + 108) (220)

Figure 25e
CEDM, —géc(};ﬁg(}%) (g;)je (4m§(Q%)* (e(e((6264¢(3) — 57131)e — 11058)
—1836) — 216) + (Q*)’¢(e(2563¢ + 378) + 36)) (221)
OMDM, =gt CE D) (@)

216€2  (4n)5
(4m§(Q%)? (e(e((57131 — 6264¢(3))e + 11058) + 1836) + 216)
—(@%)%(e(2563€ + 378) + 36)) (222)

Figure 25f

C(R)*D(R) (@*)~*

216¢2 (47)6
(4m2(Q*)*(e(e((6264¢(3) — 57131)e — 11058) — 1836) — 216)
+ (Q%)3e(e(2563€ + 378) + 36)) (223)

CEDM; =g,
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C(R)*D(R) (Q*)~*
1944€2 (47)°
(£(Q*)°(e(e((65383 — 6264¢(3))e + 12378) + 1980) + 216)
— 24m3(Q?)? (e (—1764¢ + €(—53005¢ + 6264(¢ — 3)¢(3) + 183705)
+6(5745 — 1733¢)e 4+ 5508) — 216(€ — 3))) (224)

CMDM; =g,

Figure 25g

D(AT(A)T(R)
116642
(3m3(Q*)*(e(e((123679 — 12528((3))e + 23970) + 3924) + 432)

+2(Q?)%(e(e((10171 — 783((3))e + 1857) + 279) +27))  (225)

CEDM, =

C(A)D(A)T(R) (Q*) "

11664€2 (47)6
(3m2(Q%)*(e(e((12528¢(3) — 142369)e — 26526) — 4140) — 432)
4 2(Q?)*(e(e((783¢(3) — 10171)e — 1857) — 279) — 27)) (226)

CMDM, =g,

Figure 25h

2\ —6e¢
cED, — PATAT) (@)
(3m§(Q%)* (—432(6€ — 25) + € (640628 — 261822¢
+12528(6& — 25)¢(3) + 2260021) + 6(6£(303¢ — 1741) + 76685)¢>
+36(6£(6¢ — 65) + 2281 )e) + 2(Q%)* (—162€ + €* (5013¢* — 23520¢ + 783(6€ — 25)¢(3)

+(9€(87€ — 592) + 36480)€? + 9(3¢(3¢ — 40) + 664)e + 675))
(227)
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2\ —6¢
CMDM, = — g§C<Aﬁ)6((),ii2T(R) ﬁ;)G
3mg(Q%)? (—432(6€ — 25) + € (71298¢% — 320322¢ + 12528(6¢ — 25)((3) + 2635723)
+6(6£(321¢€ — 2035) + 86003)€> 4 36(6€ (66 — 71) + 2431 )e)
+2(Q%)* (—162¢ + €* (5013¢* — 23520 + 783(6€ — 25)((3) + 189472)

+(9€(87¢ — 592) + 36480)€” + 9(3&(3¢ — 40) + 664)€ + 675)
(228)

Figure 25i

For both the CEDM and CMDM correlators, figure 25i is equal to 0. This
occurs because gluons are massless, and there is a term A(0), which in dim-
reg, is equal to 0. This can be seen by looking at the loop

dil 1 L,
Gluon Loop = / 2n)i (g,w +(€-1) ’22 ) (229)

This is an integral with dimension d — 2. However, there are no dimensionful

parameters. Therefore, the only way this can make sense is if it is equal to
0.

Figure 25j

D(A)T(R)*nys (Q*)~*

729¢2 (4m)6
3ma(Q%)%(e(e((12528¢(3) — 124963)e — 24690) — 4140) — 432)
+2(Q%)* (783¢(3)€® — 2(e(4157e + 789) + 126)e — 27)  (230)

CEDM; =g,

C(R)D(R)T(R)ny (@Q*)~*

729¢? (4m)6
3ma(Q*)? (e(e((141097 — 12528¢(3))e + 27030) + 4356) + 432)
+2(Q%)* (e(e((8314 — 783((3))e + 1578) + 252) +27)  (231)

CMDM; =g,
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Figure 25k

D(A)T(A)T(R) (@)

TT76€2 (4m)6
(24m3(Q*)*(e(36(18¢ + 43) + €(6156¢ + €(39330¢ — 6264¢(3) + 28567)
+7338)) + 216) + (Q%)° (¢*(29148¢ — 6264¢(3) + 79957) + 6(732¢
+2429)€” + 36(12¢ + 61)e + 216)) (232)

CEDM, =g

C(R)D(R)T(A) Q.Q~
CMDM, = g )77é66)2 - (drr)0

(48mZ(Q*)*(e(36(3€ — 119) + €(882¢ + €(5091€ 4 12528(¢(3) — 156461)

— 28374)) — 432) + (Q°)* (€*(29148¢ — 6264((3) + 79957) + 6(732¢ + 2429)¢”
+36(12¢ + 61)e 4 216)) (233)

Figure 251

D(A)T(A)T(R) (@)
1296¢ (47)6 (E+1)

(6m3(Q*)*(72(€ — 2) + €(606¢ + (3559 — 9551)e — 1446))

+ (Q%)*(18(€ — 1) + €(2£(557€ + 87) — 1315¢ — 192)))  (234)

CEDM, =g,

C(A)DA)T(R) (@)~

1296¢€ (47)6
(E+1) ((Q%)® (1315€” — 2£(€(557e + 87) 4+ 9) + 192¢ + 18)
—6mg(Q)*(T2€ + €(642€ + (3961€ + 567)e + 54))) (235)

CM DM, =g,
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Figure 25m

2\ —6¢
cEDiM, - - PATATR) (@)
(3mG(Q%)? (432(€ + 5) + € (21354€% 4 150407€ — 12528(€ + 5)((3) + 474433)
+6(£(606¢ + 4771) + 15977)€® + 36(£(12€ + 125) + 469)e)
+2(Q%)° (27(£ +5) + € (1671 + 12275¢ — 783(€ + 5)¢(3) + 39652)

+3(&(87€ + 731) + 2524)€® + 9(£(3€ + 35) + 136)e)) (236)

—6e
CMDM,, =g§C<A)119)ii)2T(R) Q@%G
(3mg(Q%)* (432(€ + 5) + €° (23766&* + 172217 — 12528(€ + 5)¢(3) + 552127)
+6(£(642¢ + 5245) + 17879)€” + 36(£(12€ + 131) + 499)e)
+2(Q%)* (27(£ +5) + € (16716 4 12275¢ — 783(& + 5)((3) + 39652)

+3(&(87¢ + 731) + 2524)€” + 9(£(3€ + 35) + 136)¢)) (237)

Full Bare Amplitude
Summing up all of the diagrams gives the full bare amplitudes
1 2
g™ (Q*m6) =00 55002 (?473)
(24m3(Q%)? (3C(R)*D(R) (e (€ (720¢(3)(631e + 12)
+1447%e — 3529345¢ — 708510) — 122940) — 15120)
—24C(R)D(A)T(R) (e (e (360 (3) (67 + 3) + 187*e — 154885¢ — 28380)
—4410) — 540) + 2D(A)T(R) (5n;T(R)(e(e(12528¢(3)e — 124963¢ — 24690)
—4140) — 432) 4+ T(A) (e (€ (—540¢(3)(1069€ + 72) — 648m*€ + 3321355¢
+648570) + 108360) + 12420))) + (Q*)® (60C(R)*D(R)(e(e((9936¢(3)
—83585)€ — 18294) — 3420) — 432) — 6C(R)D (A)T(R) (e (e (1080¢(3)(83¢ + 12)
+2167*€ + 3005€ + 20310) + 6660) + 1080) + T(R) (160n;T(R) (783¢(3)
€® — 2(e(4157e + 789) + 126)e — 27) + T(A) (e ( ( 1080(‘( )(787¢ + 36) — 6487¢

+7041125¢ 4 1386870) + 229140) + 24840))))

(238)
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1 (Q2)—6€
Cm 2 2\ _ 4
o™ (@7 mo) =00 756122 (47)0

(C(R)D(R) (%mZ(Cf)Z (15C(R)(e(e( (488419 — 47088((3))e 4+ 101802) + 18180)

+2160) + 10n,T(R)(e(e(—12528((3)e + 141097¢ + 27030) + 4356) + 432)
+4T(A) (e (e (270¢(3)(1033€ 4 72) + 3247*e — 1765895¢ — 341790) — 56070)

—6210)) + (Q*)° (6C(R) (e ((—1944((3) + 2167
H6775)e + 8172) + 1080) + 320, T(R) (e(e((8314 — 783C(3))e + 1578) + 252) + 27)
+T(A) (e (e (2164(3)(7876 +36) + G48rc

—4968)))) (239)

167

+ 167771) € + 6(432¢(3)

— 1408225¢ — 277374) — 45828)

QCD Renormalization Group Coefficients

Quark Propagator
The full quark propagator is

S(p) =(¥y) = (240)

Where Sy (p) = ip +my, is the inverse of the free quark propagator, and
X(p) = ipSy (p®) + moXs(p®), is the corrections to the full propagator due to
loops. The loop corrections have been rearranged into terms proportional to
#, and terms proportional to mgl.

1 1
S =
®) 1= Sy (p?) ip + 1E5<me
=25 (p; 1) (241)

Where Z, is the quark wave function renormalization, and S,(p;p) is the
renormalized propagator. For this to be finite, and for the renormalization
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constants to be found in M S,

Pole Part [Zy (1 -3y (p?))] =1 (242)
1+%
Pole Part L i ES Zm} xPole Part [(1+ Xg) ZyZy,) =1  (243)
— 2y

Zy and Z,, up to order « are found by computing the one loop correction
to the quark propagator, shown in figure 26.

J M %q
< )-( < 3./ <
q+l

Figure 26: 1 loop correction to quark propagator

Figure 26 is

)+ mis(a”) = [ o i) DR () O (g (- 1)
(244)

Yy can be found by multiplying both sides by ¢ and taking the trace over
color, and Dirac indices.

2. 1g2C(R r(2-9r -1’
(7)) _§g(4w)(d/2) 2-a T (Zz —(2) L
FE-HrE-Hr(E-2) TE-HTE-1"\], 2
(245)
Plugging equation (245) into equation (242) gives
Zy =1-¢ C(ER)% (246)

Ys can be found by taking the trace over both Dirac and color space
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r2-frE-y’

2

(4m) 42T (d — 2)

Bs(q®) == gC(R) (d+ (£ — 1)) ()72 (247)

Plugging equation (247) and Z, into equation (243), and solving for Z,,
gives

7 =1 380 @ (248)
€ 4dr
Using Z,,,
8
Y =6C(R) 1~ (249)

Gluon Propagator

It can be shown that to all perturbative orders, loop corrections to the gluon
propagator are transverse. Therefore, the loop corrections, H/‘jl,’/(q), will be of
the form

I (q) =" (¢ g — 4u90)T1(q%) (250)

Therefore, there will only be loop corrections to the transverse part of the
gluon propagator. The full gluon propagator is

b 4.4 4.4
D :—< L ")+ gob dpdv. 9251
w0 = Er gy 9 T e ) T g (251)
:5“”ZADZ,,(q) (252)

Where Z,4 is the wave function renormalization to the gluon field, and Dy,
is the renormalized gluon propagator

r r e qu4qv
D;w :DJ_(q27 ,LL) (g/ll/ - “2 ) + g(u) NQ 2 (253>
q (¢%)
Z!

) .

Since D' is finite,

Z B
Pole Part {m} = (255)
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q+l q+l1
/@L mﬁw m/ \\/‘\JUD
T T
(a) (b) (c)

Figure 27: 1 loop corrections to gluon propagator

The loop corrections to the gluon propagator are shown in figure 27
Figure 27a is equal to

d] —i(g + 1) +my —i] +mg
2 . ab( 2y _ _ i o prpa s vepby P T TR0
(09w — 2u00)115 (¢7) "f/ @yl P {( 900 ) e g T e

(256)

Taking the trace over the lorentz structure and dividing both sides by ¢*(d—1)
allows to solve for II;

2T(R)§%n, T (2 — 4)T (4 —1)
1% (02) =2(2 — 420 f 2 2 2\d/2—2 9
This has a % pole of

 AT(R)ny «

Figure 27b is equal to

2 dl
(q2g,u1/ - qMQI/)Hgb((f) = - %)f(mmfbtr/ (27T)d [_<2q + l)pglﬂl + (q =+ QZ)Ng,WI + (q - l)ngp,u]

(gm (e 1)%

nr

(g +1)?

(¢ —0*¢+ 2L+ q)"g" — (2 +1)"g™]

ot Ll
el (gp7+(€_1> ?2 >

E—4 «
2¢ 4w

Pole [Il;] = —-T(A)
(259)
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Figure 27c is equal to

1 d¥ omr ons
2 ab 2\ . man . sbr
(@9 = @u@) Lgroa (@) = = 5 (27T)d(—zgo)f lum(—@go)f (@ -+
(260)
T(A) «
Pole [ jpost]) = 19 o (261)

By plugging the poles from each of the loop corrections into equation
(255), Z4 is found to be

Zy=1— % [% (g - ?) T(A) + %T(R)nf % (262)

Quark Gluon Vertex

The full quark gluon vertex to all perturbative orders is

I =y + A(q,q) (263)
I =7 ¢ (264)

Where I'# is finite. The diagrams corresponding to the order a contribution

to A¥ are
£ <—q
P 4
| |

(a) (b)

Figure 28: 1 loop corrections to the quark gluon vertex

Figure 28a has the pole
(C(R) = 35T(4))€ a

Pole [A1] = —igo - ET‘W" (265)
Figure 28b has the pole
o 31+ a .,
Pole [Ay] = 2gOT(A)2 - 47rT 0% (266)
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Demanding that the pole part of Z ITw = 1, one finds

«

(4) + 50(3)) o (267)

3+¢§
—T
4

1
Zr =1+ -
: +e(4

Coupling and 8 Function

1 /11 4 a
—1— = (=7(A) - Zn,T(R) ) = p
(T - ) £ (268)
Using Z, and the renormalization group equation for a(pu)
dlog
it = 269
the £ function can be extracted.
ap =Za0 (270)
dag Oln Z, do

=0={1 271
dln p? ( e O )dln;ﬂ (271)

Using equations (268) and 269 in equation (271), 5 can be found. In 4
dimensions (e = 0), at order «, it is

ba) == () = g7 272)

One can find the running of o and m in d = 4 using the renormalization
group equations

dlna
Firye e =—0 (273)
and
dlnm?
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