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Abstract of the Dissertation

Study of Correspondences in

Supersymmetric Quantum Field Theories
by

Saebyeok Jeong

Doctor of Philosophy

in

Physics

Stony Brook University

2019

In this dissertation we study correspondences of supersymmetric field theories with var-

ious objects in theoretical physics, by explicitly computing the relevant field theoretical

quantities and investigating their mathematical properties.

In the first part, we consider a distinguished set of half-BPS observables in four-dimensional

N = 2 supersymmetric gauge theories, called qq-characters. The regularity property of their

gauge theory expectation values leads to the exact relations of four-dimensional N = 2 gauge

theories with quantum integrable systems, conformal field theories, and flat connections on

Riemann surfaces. In particular, we investigate the splitting behavior of degenerate lev-

els in quantum integrable system in the context of the correspondence with gauge theory,

searching for its field theoretical implications. Also, we provide an exact derivation of the

identity between the gauge theory partition functions and the conformal blocks of Liouville

field theory in a specific subsector of the parameter space. Finally, we verify that the twisted

superpotential which governs the effective dynamics of the N = 2 theory subject to the two-

dimensional Ω-background is equivalent to the generating function of a particular complex
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Lagrangian submanifold, called the variety of opers, in the moduli space of flat connections

on a Riemann surface.

In the second part, we attempt to re-assemble the constructs used in the first part in an

algebraic point of view. We consider the five-dimensional uplift of the gauge theory defined on

an orbifold. We introduce a new quantum toroidal algebra as a deformation of the quantum

toroidal algebra of gl(p). We show that it has the structure of a Hopf algebra, and present two

representations, called vertical and horizontal, obtained by deforming respectively the Fock

representation and Saito’s vertex representations of the quantum toroidal algebra of gl(p).

We construct the vertex operator intertwining between these two types of representations.

This object is identified with a deformation of the refined topological vertex, allowing us to

reconstruct the partition function and the qq-characters of the quiver gauge theories.

At last, in the third part we investigate an alternative approach to the correspondence

of four-dimensional N = 2 superconformal theories and two-dimensional vertex operator

algebras, in the framework of the Ω-deformation of supersymmetric gauge theories. The

two-dimensional Ω-deformation of the holomorphic-topological theory on the product four-

manifold is constructed at the level of supersymmetry variations and the action. The super-

symmetric localization is performed to achieve a two-dimensional chiral CFT. The desired

vertex operator algebra is recovered as the algebra of local operators of the resulting CFT.

We also discuss the identification of the Schur index of the N = 2 superconformal theory

and the vacuum character of the vertex operator algebra at the level of their path integral

representations, using our Ω-deformation point of view on the correspondence.
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Chapter 1

Introduction

Quantum field theory is a fundamental framework in modern theoretical physics of un-

derstanding various physical systems, such as elementary particles and condensed matter

systems. It is therefore important to study methodologies of computing field theoretical

quantities, such as correlation functions of observables, to obtain better descriptions of those

physical systems. When Lagrangian description is available, a primary methodology is given

by the path integral over an infinite dimensional space of field configurations. A typical way

to proceed is to work in a certain weak-coupling regime, applying the perturbation theory

to express those quantities as series expansions in coupling constants of the given theory.

While the perturbation theory has been proven to have a good phenomenological pre-

diction power, the study of non-perturbative dynamics is necessary to understand the full

aspects of quantum field theory. When a theory admits multiple saddle-points of the action,

for example, we have to take account for the instanton effect which corrects the correlation

functions even in the weak-coupling regime with exponentially suppressed contributions.

Even though for some cases in quantum mechanics it is known how to exactly determine

those non-perturbative effects, for instance by the resurgence in trans-series expansions, these

methods are not directly applicable to general quantum field theory, and the study of the

1



non-perturbative dynamics mostly remains to be a difficult task so far.

The difficulty is significantly alleviated when we introduce some amount of supersym-

metry. Supersymmetric field theories often allow exact evaluations of important field theo-

retical quantities such as indices, partition functions, and correlation functions of local and

non-local observables, which effectively encode the non-perturbative dynamics of the the-

ory. Moreover, supersymmetry facilitates embedding the quantum field theory into various

string/M-theoretic setups, where the field theory is realized as the low energy effective theory.

In this construction, the intricate and wealthy structures enjoyed in string theory and M-

theory descend to the supersymmetric field theory, which in turn enrich the understanding

of the dynamics of supersymmetric field theory with unexpected dualities and correspon-

dences. The correspondences of supersymmetric field theories, especially, relate them even

with seemingly distinct objects — e.g., (non-supersymmetric) conformal field theories, topo-

logical vertices, matrix models, integrable systems, quantum algebras, flat connections on

Riemann surfaces, and isomonodromic deformations of Fuchsian systems — and sometimes

the knowledge of supersymmetric field theories conversely provides new perspectives on these

objects through the correspondences. Therefore, it is interesting to study dualities and corre-

spondences in supersymmetric field theories, possibly motivated from the string/M-theoretic

background, by exactly evaluating the relevant field theoretical quantities and investigating

their mathematical properties. This is the main theme of this dissertation.

In particular, the dissertation is devoted to making attempts on discovering, verifying,

and extending dualities of supersymmetric field theories and correspondences of them with

other objects in theoretical physics, at least for several cases in which supersymmetric local-

ization can be manipulated as a powerful tool. According to the objects responsible for the

correspondence, the dissertation is divided into three parts: the Part I: Quantum integrable

systems, conformal field theories, and classical symplectic geometry, the Part II: Quantum

toroidal algebras, and the Part III: Vertex operator algebras. We briefly summarize the

results and the plan of each part below.
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1.1 Quantum integrable systems, conformal field the-

ories, and classical symplectic geometry

The low-energy descriptions of four-dimensional N = 2 gauge theories of class S are associ-

ated with the algebraic integrable systems of Hitchin type. According to the Bethe/gauge

correspondence, the quantization of the Hitchin integrable systems can be accomplished by

putting the class S theory on the two-dimensional Ω-background, which retains theN = (2, 2)

supersymmetry. On the other hand, there is an already existing quantization procedure for

the Hitchin integrable systems in the realm of the classical symplectic geometry of flat con-

nections. Here, the holomorphic functions on a complex Lagrangian submanifold, spanned

by certain differential operators called opers, in the moduli space of flat connections are

identified with the (off-shell) spectra of quantum Hitchin Hamiltonians.

It is important to understand in which sense the aforementioned quantization procedures

for the Hitchin integrable systems are equivalent, both to give a gauge theoretical appreci-

ation on the mysterious quantum/classical duality and to have a concrete example of the

quantization via gauge theory. Based on [1], we give a gauge theoretical derivation of a cor-

respondence which reveals the precise relation between those quantization schemes. Firstly

conjectured by Nekrasov, Rosly, and Shatashvili for the lowest rank case, the correspondence

states that the effective twisted superpotential of the class S theory on the two-dimensional

Ω-background is identical to the generating function for the space of opers in a specific

Darboux coordinate system. The derivation involves the following key ingredients:

• The half-BPS codimension-two (surface) defects in the class S theories are used to

construct the opers and their solutions, expressed in exact gauge theoretical terms.

• The surface defect partition functions in different convergence domains are connected

to each other by analytic continuations, enabling the computation of monodromies of

opers.
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• ADarboux coordinate system on the moduli space of flat connections, which generalizes

the NRS coordinate system to arbitrary ranks, is constructed.

The direct comparison between the holonomies of flat connections expressed in the proposed

Darboux coordinates and the monodromies of opers expressed in the gauge theoretical terms

establishes the desired equality.

The correspondence is mutually beneficial; not only do the gauge theories help us un-

derstand the quantization of integrable systems, the quantum integrable systems conversely

improve our insights on the gauge theory dynamics. Based on [2], we study the Bethe/gauge

correspondence at special loci of the Coulomb moduli space where the Nekrasov-Shatashvili

limit of the partition function develops extra singularities. The effective twisted superpoten-

tial is not well-defined in the usual sense, but the corresponding quantum integrable system

provides a hint for the resolution of the singularities. At the special loci, the integrable system

develops degeneracies in the spectra of Hamiltonians which are split by the quantum effects.

It is shown that the partition function in the presence of the regular surface defect, which

provides solutions to the Schrödinger equations by the non-perturbative Dyson-Schwinger

equations, splits correspondingly, recovering the Bethe/gauge correspondence from each split

piece.

The six-dimensional point of view on the class S theories give rise to still another cor-

respondence to two-dimensional non-supersymmetric conformal field theories. The class S

theories are in general engineered by compactifying six-dimensional N = (0, 2) supercon-

formal theories on Riemann surfaces. The famous AGT correpondence thereby identifies

the four-sphere partition functions of the d = 4, N = 2 gauge theories with the correlation

functions of the primaries in the Liouville/Toda CFT. The main obstacle for the exact proof

of the correspondence is the absence of the analytic control on the gauge theory partition

functions. However, it is sometimes possible to sacrifice the generality, by restricting our

attention to a particular sector in the parameter space, to achieve some analytic control in

compensation. Based on [3], we show that the non-perturbative Dyson-Schwinger equations
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for the linear SU(2) quiver gauge theory in the presence of a particular surface defect is

identical to the null-vector decoupling equation for the Liouville correlation function with a

next-to-simplest degenerate field. The result thus proves the AGT correspondence for this

special sector in the parameter space.

1.2 Quantum toroidal algebras

Supersymmetric gauge theories can be enginnered as low-energy effective field theories in

various string/M-theoretic setup. The five-dimensional uplifts of the four-dimensional N = 2

gauge theories admit a very useful construction in the IIB string theory: the web of NS5/D5-

branes. Here, all the branes on line segments are joined together via trivalent vertices,

forming the brane web. The brane web can be thought of as the toric diagram for the

Calabi-Yau threefold on which the topological string theory is compactified to engineer the

five-dimensional N = 1 gauge theory. Hence, the brane web construction establishes an

equivalence between the gauge theory partition function and the topological string amplitude.

The very web diagram can be viewed in a slightly different point of view, linking quantum

toroidal algebras to the story. For each edge of the diagram we associate suitable represen-

tation of the quantum toroidal algebra of gl(1) (also known as Ding-Iohara-Miki algebra).

More precisely, we introduce a horizontal representation for each NS5-brane and a vertical

representation for each D5-brane. Then the topological vertex is replaced by an intertwiner

which connect two horizontal representations and one vertical representation. The gauge

theory partition function, or equivalently, the topological string amplitude, is then identified

with the vacuum amplitude of these intertwiners.

Based on [4], we discuss the generalization of this correspondence with quantum toroidal

algebras to the gauge theories on orbifolds. We introduce a new quantum toroidal algebra as

a deformation of the quantum toroidal algebra of gl(p), and prove its Hopf algebra structure.

We construct analogs of the horizontal, the vertical representations, and the intertwiner for
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this case. The gauge theory partition function is recovered as the vacuum amplitude of

the intertwiners. We also provide an algebraic representation of qq-characters and show the

regularity of their expectation values.

1.3 Vertex operator algebras

Supersymmetric field theories enjoy non-trivial protected sectors of observables. For four-

dimensional N = 2 superconformal theories, there exists a protected sector defined as a

cohomology of certain combination of supercharges, roughly in the form Q + S. This pro-

tected sector is particularly interesting since the local operators in the cohomology with the

operator product expansion comprise a two-dimensional vertex operator algebra. A natural

question is whether we can understand this vertex operator algebra as a non-commutative

deformation of a commutative algebra of local operators in some conformal field theory.

Based on [5], we present here how this question can be answered at least for the La-

grangian N = 2 superconformal theories. The key idea is to view the non-commutative defor-

mation as being implemented by an Ω-deformation. There exists a holomorphic-topological

twist of the N = 2 superconformal theory, in which the algebra of protected local operators

becomes a commutative chiral algebra on a plane. When the Ω-deformation is implemented

at the level of supersymmetric variations of fields and the action, we can perform supersym-

metric localization with respect to the Ω-deformed supercharge. The localization locus is

two-dimensional field configurations whose target are given by certain gradient flows emanat-

ing from the fixed points of some superpotential. Thus, the four-dimensional path integral

reduces to a path integral of two-dimensional CFT, whose algebra of local operators recovers

the vertex operator algebra that we desired.

The correspondence with vertex operator algebras indicates intriguing consequences on

the four-dimensional superconformal theory. We provide a path integral point of view on

the identification between the Schur index of the four-dimensional theory and the vacuum
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character of the vertex operator algebra, which would imply, among other things, non-trivial

modular property of the Schur index.
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Part I

Quantum Integrable Systems,

Conformal Field Theories,

and Classical Symplectic Geometry
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Chapter 2

Generalities

2.1 N = 2 supersymmetric quiver gauge theories

We give a brief review on the partition functions and the chiral observables of the four-

dimensional N = 2 supersymmetric quiver gauge theories. For more details on this subject,

see [6, 7, 8, 9, 10].

2.1.1 Partition functions

For an oriented graph γ, we denote the sets of its vertices and edges and Vertγ and Edgeγ,

respectively. We define s, t : Edgeγ → Vertγ as the maps which send an edge to its source

and target, respectively. For each vertex we assign two integers,

n = (ni)i∈Vertγ ∈
(
Z>0

)Vertγ
, m = (mi)i∈Vertγ ∈

(
Z≥0

)Vertγ
. (2.1.1)

The N = 2 quiver gauge theory associated to γ is the four-dimensional N = 2 supersymmetric

gauge theory, whose gauge group is

Gg =
ą

i∈Vertγ

U(ni), (2.1.2)
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and whose flavor group is

Gf =
 ą

i∈Vertγ

U(mi)× U(1)Edgeγ
/U(1)Vertγ . (2.1.3)

Here the overall U(1)Vertγ transformation has been mod out due to the gauge symmetry,

(ui)i∈Vertγ :
(
(gi)i∈Vertγ , (ue)e∈Edgeγ

)
7→
(
(uigi)i∈Vertγ , (us(e)ueu

−1
t(e))e∈Edgeγ

)
. (2.1.4)

The field contents of the theory are the following: the vector multiplets Φ = (Φi)i∈Vertγ in

the adjoint representation of Gg, the fundamental hypermultiplets Qfund = (Qi)i∈Vertγ in the

fundamental representation of Gg and the antifundamental representation of Gf , and finally

the bifundamental hypermultipletsQbifund = (Qe)e∈Edgeγ in the bifundamental representation

(ns(e), nt(e)) of Gg. The N = 2 supersymmetric action is then fixed up to the gauge couplings,

qi = exp(2πiτi)
(
τi = ϑi

2π + 4πi
g2

i

)
, i ∈ Vertγ, (2.1.5)

and the masses of the hypermultiplets,

m = ((mi)i∈Vertγ , (me)e∈Edgeγ ),

mi = diag(mi,1, · · · ,mi,mi) ∈ End(Cmi), me ∈ C. (2.1.6)

The global symmetry group of the theory is

H = Gg ×Gf ×Grot, (2.1.7)

where Gg (2.1.2) is the group of global gauge symmetry, Gf (2.1.3) is the group of flavor

symmetry, and Grot = SO(4) is the group of the Lorentz symmetry. We turn on equivariant

parameters for the maximal torus TH ⊂ H. The equivariant parameters for Gg is the vacuum
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expectation values of the complex scalars,

〈Φi〉 = ai, ai = diag(ai,1, · · · , ai,ni) ∈ End(Cni), i ∈ Vertγ. (2.1.8)

The equivariant parameters for Gf is the masses of the hypermultiplets (2.1.6). Finally

the equivariant parameters for Grot is the Ω-deformation parameters ε1, ε2. The partition

function of the theory is a function of these parameters (a,m, ε) ∈ Lie(TH). In expressing

the partition function, we abuse our notation and denote the vector spaces and their TH-

equivariant characters in the same letters. Hence we write

Ni =
ni∑
α=1

eβai,α , Mi =
mi∑
f=1

eβmi,f . (2.1.9)

It is helpful to use the following notation for abbreviated expressions,

qi ≡ eβεi , Pi ≡ 1− qi i = 1, 2,

q12 ≡ q1q2, P12 ≡ (1− q1)(1− q2).
(2.1.10)

The action Sγ of the N = 2 supersymmetric γ-quiver gauge theory is given by

Sγ = − 1
8π2

∑
i∈Vertγ

iReτi
∫
X
TrNi FAi ∧ FAi

+ Imτi
∫
X
TrNi FAi ∧ ?FAi + TrNiDAiΦi ∧ ?DAiΦ̄i + TrNi [Φi, Φ̄i]2 + · · ·

+
∫
X

∫
d2θ Wγ + c.c,

(2.1.11)

where we suppressed the fermion terms. The superpotential contains the mass terms and

the cubic coupling terms,

Wγ =
∑

i∈Vertγ
TrMi

(
miQiQ̃i

)
+

∑
e∈Edgeγ

meTrNs(e)Q̃eQe

+
∑

i∈Vertγ
TrMi

(
QiΦiQ̃i

)
+

∑
e∈Edgeγ

TrNs(e)
(
Q̃eΦt(e)Qe − Q̃eQeΦs(e)

)
.

(2.1.12)

11



It is possible to express the action in the Q-cohomological field theory, where Q is the

Donaldson-Witten topological supercharge, as

Sγ = − i

8π2

∑
i∈Vertγ

τi

∫
X
TrNiFAi ∧ FAi + Q (· · · ) (2.1.13)

The Ω-deformation is implemented by modifying the theory to a Qε-cohomological field

theory, where Qε is the Ω-deformed supercharge which is suitably defined to square to the

global symmetry generated by a generic element of (a,m, ε) ∈ Lie(TH). The Ω-deformed

action can be simply written as

Sγ,ε = − i

8π2

∑
i∈Vertγ

τi

∫
X
TrNiFAi ∧ FAi + Qε (· · · ) . (2.1.14)

It is possible to understand this deformation as a supergravity background [7], but we do

not elaborate on it here.

The partition function is an Euclidean path integral given by the Ω-deformed action:

Zγ(a,m, ε, q) =
∫
DADΦDQDQ̃[· · · ] e−Sγ,ε (2.1.15)

with the boundary condition

Φ(x) −→ a, x −→∞. (2.1.16)

The partition function factors into the classical, the one-loop, and the instanton parts:

Zγ(a,m, ε, q) = Zclassical
γ Z1-loop

γ Zinst
γ . (2.1.17)
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The classical part is given by

Zclassical
γ (a, ε, q) =

∏
i∈Vertγ

q
− 1

2ε1ε2

∑ni
α=1 a

2
i,α

i . (2.1.18)

The one-loop part is obtained by integrating out the quadratic fluctuations around the trivial

vacuum:

Z1-loop
γ (a,m, ε)

= ε

 1
(1− e−βε1)(1− e−βε2)

 ∑
i∈Vertγ

(Mi −Ni)N∗i +
∑

e∈Edgeγ

eβmeNt(e)N
∗
s(e)

 , (2.1.19)

where the ε-symbol is defined by

ε [· · · ] ≡ exp
 d
ds

∣∣∣∣∣∣
s=0

1
Γ(s)

∫ ∞
0

dββs−1[· · · ]
 , (2.1.20)

which converts a character into a product of weights. In particular, the ε-symbol regularizes

an infinite product of weights such as (2.1.19) by the Barnes double gamma function,

Γ2(x; ε1, ε2) ≡ exp
− d

ds

∣∣∣∣∣∣
s=0

1
Γ(s)

∫ ∞
0

dββs−1 e−βx

(1− e−βε1)(1− e−βε2)

 . (2.1.21)

The instanton part Zinst
γ is computed by a TH-equivariant integration over the instanton

moduli space:

Zinst
γ (a; m; ε; q) =

∑
k

∏
i∈Vertγ

qki
i

∫
Mγ(n,k)

eTH (Obsγ) . (2.1.22)

Given the vector of the instanton charges k = (ki)i∈Vertγ ∈ Z≥0, the total framed noncom-

mutative instanton moduli space of the quiver gauge theory for γ is

Mγ(n,k) ≡
ą

i∈Vertγ

M(ni, ki), (2.1.23)
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where M(ni, ki) is the ADHM moduli space

M(n, k) =


B1,2 : K → K,

I : N → K, J : K → N

∣∣∣∣∣∣
[B1, B2] + IJ = 0,

[B1, B1
†] + [B2, B2

†] + II† − J†J = ζ


/
U(k).

(2.1.24)

(N = Cn, K = Ck)

Here, ζ ∈ R is a real parameter which originates from the non-commutativity of the spacetime

C2. When a stability chamber is chosen as, say, ζ > 0, solving the real moment map equation

[B1, B1
†] + [B2, B2

†] + II† − J†J = ζ and dividing by the compact U(k) is equivalent to

imposing the stability condition and dividing by the complex group GL(k),

M(n, k) =


B1,2 : K → K,

I : N → K, J : K → N

∣∣∣∣∣∣
[B1, B2] + IJ = 0,

K = C[B1, B2] I(N)


/
GL(k). (2.1.25)

The obstruction sheaf Obsγ over Mγ(n,k) is defined by

Obsγ = Rπ∗
⊕

e∈Edgeγ

Hom
(
Es(e),Et(e)

)
⊕

⊕
i∈Vertγ

Hom (Ei,Mi) , (2.1.26)

where Ei is the universal i’th sheaf over Mγ(n,k)× P2 and π : Mγ(n,k)× P2 →Mγ(n,k) is

the projection. eTH (· · · ) denotes the TH-equivariant Euler class.

The TH-equivariant integration over the instanton moduli space (2.1.23) localizes on the

set of fixed points of TH-action, Mγ(n,k)TH , which is the set of colored partitions λ =

((λ(i,α))ni
α=1)i∈Vertγ , where each λ(i,α) is a partition,

λ(i,α) =
(
λ

(i,α)
1 ≥ λ

(i,α)
2 ≥ · · · ≥ λ

(i,α)
l(λ(i,α)) > λ

(i,α)
l(λ(i,α))+1 = · · · = 0

)
, (2.1.27)

with the size |λ(i,α)| = ∑l(λ(i,α))
i=1 λ

(i,α)
i = ki,α constrained by ki = ∑

α ki,α = |λ(i)| [6, 7]. At
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each fixed point λ, the vector space Ki carrys a representation of TH with the weights given

by the formula

Ki[λ] =
ni∑
α=1

∑
�∈λ(i,α)

eβc� , (2.1.28)

where we have defined the content of the box,

c� = ai,α + ε1(i− 1) + ε2(j − 1) for � = (i, j) ∈ λ(i,α) ⇐⇒ 1 ≤ j ≤ λ
(i,α)
i . (2.1.29)

The tangent bundle and the matter bundle comprise the character

Tγ[λ] =
∑

i∈Vertγ
(NiK

∗
i + q12N

∗
i Ki − P12KiK

∗
i −M∗

i Ki)

−
∑

e∈Edgeγ

eβme(Nt(e)K
∗
s(e) + q12N

∗
s(e)Kt(e) − P12Kt(e)K

∗
s(e)), (2.1.30)

assoicated to each fixed point λ ∈ Mγ(n,k)TH . At last the instanton part of the partition

function is evaluated by

Zinst
γ (a; m; ε; q) =

∑
λ

∏
i∈Vertγ

q
|λ(i)|
i ε [Tγ[λ]] , (2.1.31)

where we have used the ε-symbol (2.1.20). Note that the one-loop part and the instanton

part can be combined into

Z1-loop
γ (a,m, ε) Zinst

γ (a; m; ε; q)

=
∑
λ

∏
i∈Vertγ

q
|λ(i)|
i ε

 1
(1− e−βε1)(1− e−βε2)

 ∑
i∈Vertγ

(Mi − Si)S∗i +
∑

e∈Edgeγ

eβmeSt(e)S
∗
s(e)

 ,
(2.1.32)

with the character Si ≡ Ni − P12Ki.

We conclude this section with a remark on the identity that the 1-loop part of the A1-
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theory partition function satisfies, which will be useful in section 5.6. The formula (2.1.19)

tells that

Z
1-loop
A1 =

∏N
α,β=1 Γ2(aα − aβ; ε1, ε2)∏N

α,β=1 Γ2(aα − a0,β; ε1, ε2)Γ2(a3,α − aβ; ε1, ε2)
. (2.1.33)

Note that we have the following identity,

∂

∂x

(
lim
ε2→0

ε2 log Γ2(x; ε1, ε2)
)

= − log Γ1(x; ε1), (2.1.34)

where we have defined

Γ1(x; ε1) ≡ exp
− d

ds

∣∣∣∣∣∣
s=0

1
Γ(s)

∫ ∞
0

dββs−1 e−βx

1− e−βε1

 =

√
2π/ε1

ε
x
ε1
1 Γ

(
x
ε1

) . (2.1.35)

Thus for the 1-loop part of the effective twisted superpotential,

W̃
1-loop
A1 ≡ lim

ε2→0
ε2 logZ1-loop

A1 , (2.1.36)

we derive the identity,

(
∂

∂aα
− ∂

∂aβ

)
W̃

1-loop
A1 = log

∏
α′ 6=α

Γ
(
aα−aα′
ε1

)
Γ
(
aα′−aα
ε1

) ∏
β′ 6=β

Γ
(
aβ′−aβ
ε1

)
Γ
(
aβ−a′β
ε1

) N∏
γ=1

Γ
(
a3,γ−aα

ε1

)
Γ
(
aβ−a0,γ

ε1

)
Γ
(
aα−a0,γ

ε1

)
Γ
(
a3,γ−aβ

ε1

) ,
(2.1.37)

which is used in section 5.6 to absorb the 1-loop contribution W̃1-loop into W̃full.

2.1.2 Chiral observables

The Coulomb branch chiral observables are generated by the gauge invariant polynomials

Oi,k ≡ TrNiΦk
i , i ∈ Vertγ, k ≥ 1. (2.1.38)
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The gauge theory expectation values of them can be computed again by equivariant local-

ization,

〈
Oi,k

〉
γ

= 1
Zinst
γ

∑
λ

Oi,k[λ]
∏

i∈Vertγ
q
|λ(i)|
i ε [Tγ[λ]] , (2.1.39)

where the chiral observables are represented on the colored partitions as

Oi,k[λ] =
ni∑
α=1

aki,α +
∑

�∈λ(i,α)

(
(c� + ε1)k + (c� + ε2)k − ck� − (c� + ε)k

) . (2.1.40)

Consider the following regularized characteristic polynomials of the adjoint scalars, called

the Y-observables:

Yi(x) ≡ xni exp
∞∑
l=1
− 1
lxl

Tr Φl
i|0, (2.1.41)

Their expressions at the fixed point λ are written as

Yi(x)[λ] =
ni∏
α=1

(x− ai,α)
∏

�∈λ(i,α)

(x− c� − ε1)(x− c� − ε2)
(x− c�)(x− c� − ε)

 . (2.1.42)

which shows that upon the regularization, the instanton contribution makes the characteristic

polynomials into rational functions of the auxiliary variable x. The Y-observable can be

simply written as

Yi(x)[λ] = β−ni ε[−eβxS∗i ]. (2.1.43)

Note that the Y-observables are the generating functions for the chiral observables.

The qq-characters for the quiver gauge theories are given as certain Laurent polynomials

(or Laurent power series) of the Y-observables, as we now describe below.
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2.2 qq-characters

In this section we introduce an important class of half-BPS chiral observables in the N = 2

γ-quiver gauge theory: the qq-characters [10]. As the name suggests, the qq-characters can

be thought of as generalizations of Yangian q-characters of finite dimensional representations

of Yangian Y (gγ), constructed for finite γ in [11], in the sense that the qq-characters reduce

to those Yangian q-characters in the limit ε2 → 0. An analogous story is present for the K-

theoretic uplift, namely, the q-characters for the quantum affine algebras Uq(gγ) constructed

for finite γ in [12] and for affine γ in [13]. The qq-characters of the five-dimensional uplifts

of the γ-quiver gauge theories compactified on a circle reduce to those q-characters in the

form appearing in [9], in the limit q2 → 1 and q1 = q.

2.2.1 Crossed instantons

The physical origin of the qq-characters is the mutually transversally intersecting D3-branes

in type-IIB string theory [10], which we briefly describe below. Consider IIB string theory

on the ten-dimensional manifold R2 ×X × Y/Γ, where X = R4, Y = R4, and Γ is a McKay

ADE subgroup of SU(2). We can introduce a stack of N D3-branes at 0×X × 0, to realize

the N = 2 supersymmetric γ-quiver gauge theories as the low energy effective theory on the

D3-branes, with affine ADE quivers γ corresponding to Γ. To construct the qq-characters,

we need to introduce an additional stack of D3-branes lying along Y/Γ, so that they intersect

with the previous stack of D3-branes at the origin of X × Y/Γ. To fully specify the gauge

theory living on this additional stack of D3-branes, we need to choose the holonomy of

its gauge field along the non-contractible loops on the boundary at infinity, S3/Γ. This is

equivalent to the choice of w = (wi)i∈Vertγ ∈ Z
Vertγ
≥0 . Also, we go to the Coulomb branch

of this theory by choosing non-zero positions of the D3-branes in R2 as ν = (~νi + x)i∈Vertγ

where ~νi ∈ Cwi (in other words, x is the center of mass position in R2).

The qq-character Xw,ν(x) is the local observable in the original gauge theory on the
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D3-branes along X, which is obtained by integrating out the degrees of freedom on all the

transversal D3-branes, in the vacuum determined by the asymptotic holonomy w of the

gauge field and the vacuum expectation values ν of the scalars in the vector multiplet on

Y/Γ.

As for usual N = 2 partition functions, we need to introduce a suitable Ω-deformation to

regularize the infrared divergence in the expectation values of qq-characters. The subgroup

of Spin(8) of X × Y which commutes with the action of Γ generically has rank two, which

enhances to three for Γ of A-type. We will only deal with Γ of A-type throughout this disser-

tation, so we restrict our attention to this case from now on. The Ω-deformation parameters

corresponding to the rank three Cartan torus of the preserved subgroup of Spin(8) can be

introduced as complex numbers ε = (ε1, ε2, ε3) ∈ C3. It is convenient to further introduce

ε4 so that we have ∑4
a=1 εa = 0. We also often denote ε = ε1 + ε2.

Also, we need to properly turn on the B-field which makes D(−1)-instantons bound

to the two orthogonal stacks of D3-branes. Such field configurations, instantons bound to

two transversal gauge theories, are called crossed instantons. In the point of view of the

worldvolume theory on the D(−1)-instantons, the Higgs branch opens up when they become

bound to the D3-branes, which is identified with the moduli space of crossed instantons.

The crossed instanton partition function is precisely the equivariant integration over this

moduli space. As shown in [14], the moduli space of crossed instantons can be viewed as

a certain fibration over the moduli space of ordinary instantons of the gauge theory on X.

Recalling the definition of the qq-character as integrating out the degrees of freedom on the

transversal D3-branes, we obtain the qq-character Xw,ν(x) of the quiver gauge theory on

X by performing the equivariant integration only along the fiber. The further equivariant

integration on the base, which results in the full crossed instanton partition function by

construction, is nothing but taking the gauge theory expectation value
〈
Xw,ν(x)

〉
of the

very qq-character.

As a remark, we point out here that two transversal stacks of D3-brane configurations
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just described can be generalized at most to mutually transversally intersecting six stacks

of D3-branes by inserting one for each choice of two-planes inside C4,
(

4
2

)
= 6. The D(−1)-

instantons bound to these six stacks of D3-branes are called spiked instantons [10, 14]. The

spiked instanton partition functions enjoy the same regularity property that the crossed

instanton partition function possesses [14], and thus produce useful half-BPS observables on

the gauge theory on one of the stack of D3-branes. However, we do not make use of spiked

instantons throughout this dissertation, and refer to [14, 15, 16] for further studies of them.

We also remark that we can recover finite quiver gauge theories from the affine ADE quiver

gauge theories discussed in this section by taking various limits of parameters. For example,

the Ar linear quiver gauge theory with the identical ranks of gauge groups at all vertices,

which is the main concern of this dissertation, can be obtained from the Âr+1-quiver gauge

theory by taking the limit of the gauge couplings q0 → 0 and qr+1 → 0. We refer to [10] for

further discussions.

2.2.2 The main property

The characteristic property of the qq-character Xw,ν(x) is that its expectation value
〈
Xw,ν(x)

〉
is regular in x. Physically, this means that the combined system of transversal stacks of D3-

branes does not experience any phase transition or runaway zero-mode at any value of x,

in the presence of the Ω-deformation. Mathematically, the suggested regularity follows from

the compactness of the moduli space of crossed instantons, which is rigorously proven in [14].

More specifically, Xw,ν(x) is given by a Laurent polynomial (or a Laurent power series

for affine γ) of Y-observables, with possibly shifted arguments of Yi(x), which begins with

Xw,ν (Y(x)) =
∏

i∈Vertγ

wi∏
l=1

Yi(x+ νi,l + ε) +O(q). (2.2.1)
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The main property described above is that the γ-quiver gauge theory expectation value,

〈
Xw,ν(x)

〉
γ

= 1
Zinst
γ

∑
λ

Xw,ν(Y[λ])
∏

i∈Vertγ
q
|λ(i)|
i ε [Tγ[λ]] ≡ Tw,ν(x), (2.2.2)

is a polynomial in x. The degree of the polynomial is given by

degTw,ν(x) =
∑

i∈Vertγ
wini. (2.2.3)

From the regularity of the expectation value (2.2.2), it follows that when it is expanded in

large x the coefficients of negative powers of x identically vanish:

[x−n]
〈
Xw,ν(x)

〉
γ

= 0, n ≥ 1. (2.2.4)

These identities contain non-trivial analytic information of the partition functions, and we

call them non-perturbative Dyson-Schwinger equations.

For the case of w = (δi,j)j∈Vertγ and ν = 0, we denote the corresponding qq-character by

Xi(x) and call it the i’th fundamental qq-character. Throughout the dissertation, we will

only concern the fundamental qq-characters of the Ar-quiver gauge theory, which can be

simply expressed as follows. Define r + 1 complex numbers zi, i = 0, 1, · · · , r by

zi = z0q1 · · · qi, i = 1, · · · , r. (2.2.5)

Let us also define

Ξi(x) = Yi+1(x+ ε)
Yi(x) . (2.2.6)

The i’th fundamental qq-character Xi(x) of the Ar-quiver gauge theory can be written as
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[10]

Xi(x) = Y0 (x+ ε (1− i))
z0z1 · · · zi−1

∑
I⊂[0,r]
|I|=i

∏
j∈I

[zj Ξj (x+ ε (hI(j) + 1− i))] , i = 1, · · · , r, (2.2.7)

where [0, r] = {0, 1, 2, · · · , r} and hI(i) is the number of elements in I which is less than i,

namely,

hI(i) = |{i′ | i′ ∈ I, i′ < i}|. (2.2.8)

Note that the regularity of the expectation values of the fundamental qq-characters of

the Ar-quiver gauge theory can be directly proven without using the compactness of the

moduli space of crossed instantons, by studying the pole cancellation between the measure

factor and the qq-character in (2.2.2). For more complicated theories, however, such a direct

method would not be applicable.

2.3 Surface defects

Surface (codimension-two) defects in four-dimensional supersymmetric field theories are non-

local observables supported on two-dimensional submanifolds in the four-dimensional space-

time. The non-locality of surface defects makes them very interesting objects to study.

Their appearance in the path integral is fundamentally different from how local observ-

ables enter, and sometimes their correlation functions contain significant information on the

non-perturbative dynamics of the bulk theory in four-dimension.

Surface defects in four-dimensional gauge theories are special, since the dimension of

the support D of the surface defect in the four-dimensional spacetime X is the same with

its codimension, and it is also identical to the degree of the gauge curvature 2-form F .

Hence when the gauge group is U(1), the surface defects are characterized by the continuous
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parameters (α, η) [17]. Here α determines the singular behavior of the gauge field around D,

A = αdθ + · · · , (2.3.1)

where (r, θ) are local radial coordinates in the plane normal to D ⊂ X, while η determines

the contribution of the flux on D to the path integral by

exp
(
iη
∫
D
F
)
. (2.3.2)

Note that (2.3.1) assumes that the codimension of D is two while (2.3.2) assumes that the

dimension of D is two. When the gauge group Gg is non-abelian, the surface defects are

further characterized by the choice of the subgroup L ⊂ Gg preserved in its presence. The

continuous parameters should be suitably generalized to WL-invariant pair [17]

(α, η) ∈ Tg × LTg, (2.3.3)

where Tg is a maximal torus in Gg, LTg is a maximal torus of the Langlands dual group LGg,

and WL is the Weyl group of L.

We have described a way of constructing surface defects in which the singular behavior

of the gauge field around the surface is explicitly prescribed. In this case, the field configu-

rations for which the path integral is performed are modified by the presence of the surface

defect. There is another way of constructing surface defects where such modifications of field

configurations do not manifestly occur. It is coupling two-dimensional theory to the bulk

four-dimensional gauge theory, by gauging a flavor symmetry of the two-dimensional theory

to the bulk [17, 18]. To summarize, we discussed two distinct methods of introducing surface

defects:

• Prescribing singular boundary conditions for the four-dimensional gauge field along a

surface
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• Coupling a two-dimensional theory living on a surface to the bulk theory by gauging

the flavor symmetry with the bulk gauge field

It is interesting to study the relations between the two constructions and whether the surface

defect of one type can be realized as the other. We address some of these questions in the

Part I.

When the surface defect is half-BPS, i.e., preserving half of the supersymmetries present

in the bulk theory, the amount of supersymmetry after the insertion of the surface defect is

usually sufficient to apply supersymmetric localization to various path integral computations

regarding the bulk theory with the surface defect insertion. It is the half-BPS surface defects

in four-dimensional N = 2 gauge theories which play crucial roles throughout the discussion

in the Part I, and we will focus on these from now on.

There are several ways to construct half-BPS surface defects in four-dimensional N = 2

gauge theories. Practically, our main concern would be the partition function of the N = 2

theory in the presence of the surface defect on the Ω-deformed R4 = Cε1×Cε2 , and there are

two constructions of half-BPS surface defects which nicely fit to the equivariant integration

for the N = 2 partition functions. These methods can be roughly described as [19, 20, 21]:

• Orbifold: Placing the bulk theory on an orbifold C× C/Zp

• Quiver: Starting with a large quiver gauge theory and partially higging some of the

gauge groups by imposing constraints, in such a way that some two-dimensional degrees

of freedom in the gauge field survive

For the orbifold construction, the surface defect is constructed as a prescription of per-

forming the path integral only over the Zp-invariant field configurations. Indeed, under the

map (z1, z2) 7→ (z̃1 ≡ z1, z̃2 ≡ zp2), the orbifold Cε1 × (Cε2/Zp) is mapped to Cε1 × Cpε2 ,

and the field configurations are allowed to be singular along the surface z̃2 = 0. Therefore,

the resulting theory on Cε1 × Cpε2 can be interpreted as having a surface defect of singular

boundary conditions.
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For the quiver construction, the IIA brane realization [22] of the quiver gauge theory

immediately tells that such higgsing of gauge group leads to the emergence of two-dimensional

theory coupled to the remaining bulk theory via the Hanany-Witten transition of branes [23].

Therefore, the resulting theory can be interpreted as a surface defect of 2d-4d coupled system.

The parameters characterizing the surface defects, i.e., the subgroup L ⊂ Gg and the

continuous parameters (α, η), are determined by the choice of orbifolding action and the

constraints of higgsing, respectively. We will see in the following chapters how these param-

eters natually appear in the process of evaluating their partition functions.

The qq-characters have to be properly generalized in the presence of surface defects. For

the orbifold surface defect, each qq-character fractionalizes into p pieces according to the

p charges of the Zp-action. For the quiver surface defect, the qq-characters of the larger

quiver theory restrict to the qq-characters of the 2d-4d coupled theory once the mentioned

constraints on the gauge theory parameters are imposed. In the following chapters, we

will present the exact expressions of these qq-characters and investigate the implications of

their non-perturbative Dyson-Schwinger equations on various correspondences of the four-

dimensional N = 2 gauge theories.
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Chapter 3

Splitting of surface defect partition

functions and integrable systems

3.1 Introduction

Supersymmetric gauge theories in various dimensions exhibit diverse connections with in-

tegrable systems. The four-dimensional gauge theory with N = 2 supersymmetry is one of

the interesting cases to consider. The common feature of this class of theories is that the

low-energy description achieved in [24, 25] naturally reveals the structure of an algebraic

integrable system [26, 27]. The correspondence was promoted to the quantum level in [28],

by putting the N = 2 gauge theory into the general framework of the Bethe/gauge corre-

spondence [29, 30]. When subject to the Nekrasov-Shatashvili limit of the Ω-deformation

(ε1 = ~, ε2 → 0), the four-dimensional N = 2 gauge theory effectively becomes a two-

dimensional theory with N = (2, 2) supersymmetry. The general Bethe/gauge correspon-

dence states the chiral ring is the set of quantum Hamiltonians, while the set of supersym-

metric vacua is identified with the (Hilbert) space of the corresponding quantum integrable
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system,

|eigen〉 ←→ vac. (3.1.1)

In particular, the spectrum of the Hamiltonian is calculated as the gauge theory vacuum

expectation value of the corresponding chiral observable in the Nekrasov-Shatashvili limit,

〈eigen|HO|eigen〉 = 〈O〉|ε2→0,vac. (3.1.2)

The chiral ring is spanned by the gauge-invariant observables Ok = Trφk, where φ is the

complex scalar in the N = 2 vector multiplet. In generic case, their vacuum expectation val-

ues are finite in the Nekrasov-Shatashvili limit, since they reduce to the vacuum expectation

values of the twisted chiral observables in the effective two-dimensional N = (2, 2) theory.

Therefore the right hand side of the dictionary (3.1.2) is well-defined, providing a way to com-

pute the spectrum of the quantum Hamiltonian from gauge theory perspective. Note that

the partition function of the gauge theory shows the asymptotic behavior logZ = W̃
ε2

+O(ε0
2)

in the Nekrasov-Shatashvili limit, where W̃ is the effective twisted superpotential of the

effective two-dimensional theory.

The equations which describe the vacua in the low-energy theory correspond to the

quantization conditions on the integrable system side. The Nekrasov-Shatashvili limit of

the four-dimensional N = 2 gauge theory leads to several inequivalent quantization schemes,

in particular, the type A and the type B quantizations [28, 31]. In the present chapter we

mainly focus on the type B quantization, in which we impose the condition

exp
(

2πiaα
ε1
− iθα

)
= 1, θα ∈ [0, 2π). (3.1.3)

Note that the θ-angles can be introduced in a gauge-invariant fashion. Namely, for given

values of the gauge-invariant coordinates on the Coulomb moduli space, 〈Ok〉 = 〈Trφk〉, the
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Coulomb moduli aα are determined up to the permutations with each other. Therefore in

the real slice that we are choosing in the type B quantization, aα
ε1
∈ R, the θ-angles are

determined up to the permutations with each other. For the quantization condition (3.1.3),

we look for the eigenfunctions which are quasi-periodic with the Bloch angles (θα). For

example, for the pure N = 2 theory and for the N = 2∗ theory with the gauge group U(N),

the formula (3.1.2) under the condition (3.1.3) computes the spectrum of the Hamiltonians

of the N -particle periodic Toda system and the N -particle elliptic Calogero-Moser system

respectively, whose eigenfunctions are quasi-periodic with the Bloch angles (θα). Note that

the spectrum would have been (N !)-fold degenerate in the non-interacting limit had we tuned

all the Bloch angles to be the same. For generic values of Bloch angles, the SN -symmetry

of the 0-th order wavefunctions is completely broken, leaving non-degenerate level for each

spectrum.

We can revive some of the degenerate levels at the 0-th order by tuning the corresponding

Bloch angles, e.g. as θα = θβ. The integrable system is still well-defined, and the eigenvalues

are expected to be non-degenerate. However, we observe the missing link in the correspon-

dence with the gauge theory. According to the condition (3.1.3), tuning the Bloch angles as

θα = θβ is equivalent to investigaing the special locus of Coulomb moduli,
{
aαβ
ε1
∈ Z \ {0}

}
.1

At the locus, the formula (3.1.2) breaks down since the right hand side becomes divergent

due to the additional singularities in ε2 → 0. The asymptotic behavior of the partition

function is no longer logZ = W̃
ε2

+O(ε0
2), and the effective twisted superpotential cannot be

properly obtained by just taking W̃ = limε2→0 ε2logZ. Inspired by the well-established corre-

spondence for the generic value of the Coulomb moduli, we now may attempt to recover the

correspondence at the special locus, especially by first investigating the perturbative series

in the integrable system side. This is the main subject of the present chapter.

We may try to approach the special locus of Coulomb moduli from the gauge theory

with partial Ω-deformation and partial noncommutativity. Instead of turning on both Ω-
1We have excluded aαβ = 0 since in this case the splitting of the degeneracy at the 0-th order does not

occur and (3.1.2) works as it is.
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deformation parameters and then taking the Nekrasov-Shatashvili limit, we can from the

beginning turn on one of the parameters ε1 only. When the noncommutativity along the ε1-

plane is turned on, the four-dimensional N = 2 theory can be described by a two-dimensional

N = (2, 2) theory with an infinite dimensional gauge group. The investigation shows that

the only massless modes around the trivial vacuum are the diagonal components of the gauge

multiplet, which is consistent with the expectation that the low-energy effective theory is in

Coulomb phase without any matter. However, when the Coulomb moduli assume the special

values as aαβ
ε1
∈ Z \ {0}, additional massless matter multiplets seem to arise, signifying the

failure of the effective description.

The surface defect provides a tool for the investigation. The four-dimensional gauge

theory with a half-BPS surface defect can be viewed as the theory on an orbifold. The

equivariant localization computation applied for the bulk theory immediately generalizes to

compute the surface defect partition function [20]. The gauge theory observables are also

naturally generalized to the theory in the presence of the surface defect. In particular, an im-

portant class of observables, called the qq-character, has its fractionalized counterpart in the

theory with the surface defect [10]. In [15, 21] the qq-characters with and without the surface

defect were realized as the orbifolded crossed instanton partition functions. The compactness

theorem proved in [14] implied a certain vanishing theorem for the expectation value of the

qq-characters. The vanishing equations, called the non-perturbative Dyson-Schwinger equa-

tions, can be used to derive the KZ equation satisfied by the surface defect partition function

of quiver gauge theory [32]. In this chapter, we show that the Dyson-Schwinger equation in

the presence of the surface defect produces a Schrödinger-type equation satisfied by the orb-

ifold surface defect partition function of the pure U(N) gauge theory. Therefore the surface

defect partition function provides a constructive approach to the eigenstate wavefunctions

as well as the spectra of the Hamiltonians of the corresponding quantum integrable system.

The main observation of this chapter is that the orbifold surface defect partition function
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at the special locus
{
aαβ
ε1
∈ Z \ {0}

}
splits into parts, schematically,

Ψ =
∑
γ

Ψγ. (3.1.4)

This behavior accounts for the level splitting on the integrable system side. Each part

of the surface defect partition function shows the proper asymptotic behavior of logΨγ =
W̃γ

ε2
+O(ε0

2), and the dictionary (3.1.2) is recovered to reproduce the spectrum of each split

level. It should be noted that each split part Ψγ of the surface defect partition function shows

the series expansion in fractional powers of the gauge coupling, which correctly accounts for

the series expansions of the spectra of the split levels.

The rest of the chapter is organized as follows. In section 3.2, we explain the Bethe/gauge

correspondence and two inequivalent types of quantization. In section 3.3, we study the

special locus of Coulomb moduli in the four-dimensional gauge theory with partial Ω-

deformation and partial noncommutativity. The investigation reveals the emergence of ad-

ditional massless modes, which indicates a failure of the effective description of the theory.

In section 3.4, we review the orbifold constructions of half-BPS surface defect, and com-

pute the surface defect partition function. We study the non-perturbative Dyson-Schwinger

equations in the presence of surface defects. We verify that the partition function of the

A1-theory with a regular orbifold surface defect satisfies the Schrödinger-type differential

equations. In section 3.5, we observe that at the special locus of the Coulomb moduli, the

surface defect partition function splits into parts, recovering the correspondence with the

quantum integrable system. We conclude in section 3.6 with possible generalizations and

discussions.

3.2 Bethe/gauge correspondence

It has been known that the low-energy effective theory of (un-deformed) four-dimensional

N = 2 supersymmetric gauge theories can be described by classical integrable systems [26,
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27]. A well-established example is the correspondence between the class S theories and the

Hitchin integrable systems [33, 34, 35]. Setting the 6-dimensional N = (0, 2) superconformal

theory on R3 × S1 × Cg,n, where Cg,n is the Riemann surface with g genus and n punctures,

and reducing on S1 × Cg,n in two different orders, we observe that the total space of the

fibration of the Jacobian of the Seiberg-Witten curve on the Coulomb moduli space of the

class S theory is identical to the phase space of the Hitchin integrable system on Cg,n. The

correspondence can be extended to more general four-dimensional N = 2 gauge theories

with less hypermultiplets by taking proper decoupling limits. In this chapter we are mainly

interested in the pure U(N) gauge theory. It is well-known that the corresponding integrable

system is the N -particle periodic Toda system [26, 36].

The N -periodic Toda system is the algebraic integrable system of N non-relativistic

particles in one dimension with the interaction

V (x1, · · · , xN) = Λ2
N∑
i=1

exi−xi+1 , (3.2.1)

and the periodicity xN+1 = x1. The Lax operator for this system can be written as

L(z) =



p1 Λ2ex1−x2 0 · · · · · · ΛNz−1

1 p2 Λ2ex2−x3 0 · · · 0

0 1 p3 Λ2ex3−x4 · · · 0

0 · · · · · · · · · · · · 0

0 · · · · · · · · · pN−1 Λ2exN−1−xN

Λ2−NexN−x1z 0 · · · 0 1 pN



, (3.2.2)

from which we define the spectral curve

Σ(x, z) : 0 = Det(x− L(z)) = −ΛN(z + z−1) + xN + u1x
N−1 + u2x

N−2 + · · ·+ uN .

(3.2.3)
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The standard Lax formalism tells that the (classical) Hamiltonians,

u1 = −
N∑
i=1

pi, u2 = −
∑
i<j

pipj + Λ2∑
i

exi−xi+1 , · · · , (3.2.4)

mutually commute with respect to the Poisson bracket {pi, xj} = δij, and thus establishes

the classical integrability. Note that the spectral curve (3.2.3) is precisely the Seiberg-

Witten curve of the pure U(N) gauge theory, in which {uk = 〈Ok〉|k = 1, · · · , N} spans

the Coulomb branch of the vacua. Therefore we observe the correspondence between the

low-energy description of the pure U(N) gauge theory and the classical N -particle periodic

Toda system. (See also [37, 38] for the earlier work in the case of Toda/pure N = 2.)

In [28] the correspondence between the vacua of N = 2 theories and integrable systems

was promoted further to the quantum level. Let us turn on the Ω-deformation and take

the Nekrasov-Shatashvili limit (ε1 6= 0, ε2 → 0). Since we have used one of the two or-

thogonal rotations to deform the theory, the theory can be now effectively described as a

two-dimensional theory with N = (2, 2) supersymmetry. The low-energy effective action of

this two-dimensional theory contains the twisted F -term2 from the effective twisted super-

potential W̃(a, ε1, q), which can be computed by the supersymmetric localization for generic

(a, ε1) as

W̃(a, ε1, q) = lim
ε2→0

ε2logZ(a, ε, q). (3.2.5)

The effective twisted superpotential becomes important for determining vacua and expecta-

tion values of the twisted chral observables, as we shall see below.

The space of vacua of the effective theory is a representation of the twisted chiral ring,

which is spanned by the gauge-invariant polynomials of the complex adjoint scalar, (2.1.40).3

2In the reduction from the four-dimensional N = 2 to the two-dimensional N = (2, 2), we are choosing
the convention in which N = (2, 2) gauge multiplet is described by the twisted chiral superfield. Note that
the complex adjoint scalar in the N = 2 vector multiplet becomes the one in the N = (2, 2) twisted chiral
multiplet under this reduction. See section 3.3.

3See footnote 2 and section 3.3. The chiral observables in the four-dimensional gauge theory are reduced
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In [29, 30], it was shown that the twisted chiral ring of a two-dimensional N = (2, 2) gauge

theory is identified with the Hamiltonians of the corresponding integrable system. Namely,

the problem of quantization becomes the spectral problem, with the identification

〈Ok〉|ε2→0,a∈vac = Ek(a, ε1), (3.2.6)

the eigenvalue of the corresponding quantum Hamiltonian Ĥk. Here the equation for the

vacua of the two-dimensional effective theory corresponds to the quantization condition of

the integrable system. As noted in [28, 31], the Nekrasov-Shatashvili limit of the N = 2

supersymmetric gauge theory leads to several quantization conditions and correspondingly

to different quantum integrable systems. The choice of quantization condition becomes

manifest in the topological sigma model description of the quantization. We can interpret

the Nekrasov-Shatashvili limit of the Ω-deformation as the cigar metric R × S1 × DR, in

which the cigar has the asymptotic behavior of DR ∼ I × S1 with I = [0, R]. Then by

reducing the four-dimensional N = 2 gauge theory on R × I, the theory is reduced to the

topological A-model with the worldsheet with the boundaries and the target space being

the complexified phase space. We can make use of the brane quantization picture from this

topological A-model description [18]. In particular, the quantization is realized by choosing

the boundary condition at 0 ∈ I to be the canonical coisotropic A-brane and the boundary

condition at R ∈ I to be the Lagrangian A-brane. There are two classes of the Lagrangian

A-branes that can be chosen, which lead to two different types of the quantization:

Type A: exp
2π∂W̃

∂aα
− iθα

 = 1, (3.2.7a)

Type B: exp
(

2πiaα
ε1
− iθα

)
= 1, θα ∈ [0, 2π). (3.2.7b)

In the original four-dimensional gauge theory on R×S1×DR, they correspond to the choices

to the twisted chiral observables in the effective two-dimensional theory.
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of the supersymmetric boundary conditions at R ∈ I. In particular, the type A condition

corresponds to the Neumann boundary condition for the vector multiplet. In this case the

four-dimensional vector multiplet is reduced to the two-dimensional vector multiplet in the

effective theory on R × S1, which is N = (2, 2) abelian gauge theory so that the vacua are

determined by the effective twisted superpotential as (3.2.7a) (we included the θ-shift). The

type B condition corresponds to the Dirichlet condition for the vector multiplet. The gauge

symmetry is completely broken and both vector multiplets and hypermultiplets of the four-

dimensional theory are reduced to chiral multiplets of the effective two-dimensional theory.

We impose the vanishing condition for the holonomy around the boundary ∂DR to preserve

the supersymmetry, yielding the quantization condition (3.2.7b). See [31] for more detail.

For the case of the pure U(N) gauge theoy, type A and B reality conditions correspond

to the following formulations of quantum periodic Toda system. In the type A quantization,

we are taking the real slice of xi ∈ R. After decoupling the motion of the center of mass,

we look for the L2-normalizable eigenfunctions with real and discrete spectra. It was shown

that the vacuum equation (3.2.7a) precisely leads to the Gutzwiller quantization condition

for this type of spectral problem [39]. See also [40, 41, 42, 43, 44] for previous works on the

type A periodic Toda system.

In this chapter, we mainly focus on the type B quantization of the periodic Toda system,

which shows quite a different interesting feature. Here we have (quasi-)periodic eigenfunc-

tions with the period 2πi. The spectra of the Hamiltonians are complex but still discrete.

With the θ-shift, the quantization condition is

aα =
(
nα + θα

2π

)
ε1, nα ∈ Z, (3.2.8)

where θα is precisely the Bloch angle for the shift of xα by the period 2πi. The spectra of

the Hamiltonians can be computed as the expectation value of the observables in the twisted

34



chiral ring, under the Nekrasov-Shatashvili limit with the condition (3.2.8) imposed:

Ek(a, ε1) = 〈Ok〉|ε2→0,(3.2.8) = 1
Zinst

∑
λ

q|λ|Ok[λ]µλ(a, ε)
∣∣∣∣∣∣
ε2→0,(3.2.8)

, (3.2.9)

where the statistical model form of the observable Ok[λ] is given in (2.1.40). In particular,

the spectra of two lowest order Hamiltonians O2 and O3 take simple form:

E2(a, ε1) =
∑

α

a2
α −

1
N
ε1Λ∂W̃

∂Λ

 ∣∣∣∣∣∣
(3.2.8)

, (3.2.10a)

E3(a, ε1) =
∑

α

a3
α −

3ε2
1

2N Λ∂W̃
∂Λ − 6ε1 lim

ε2→0
ε2

〈 ∑
�∈K

c�̂

〉 ∣∣∣∣∣∣
(3.2.8)

. (3.2.10b)

For example, in the case of N = 2 the type B quantum periodic Toda system is reduced

to the Mathieu system, whose discrete energy spectrum has been well-studied. For generic

value of the Coulomb moduli a12 = a1 − a2 (on the integrable system side, generic value of

θ1 − θ2) the gauge theory computation of the spectrum (3.2.10a) precisely reproduces the

known perturbative computation, order by order in the series of Λ4. We also checked that

the perturbative spectra of N = 3 periodic Toda system are reproduced by (3.2.10). The

generalization of the computation to the higher N is straightforward.

However, when the Coulomb moduli assume special values aαβ
ε1
∈ Z \ {0}, the correspon-

dence breaks down as we now describe. A relation among the equivariant parameters implies

that the maximal torus TH used for the equivariant localization becomes smaller than generic

cases. When the torus becomes smaller, the set of fixed points M(N)TH in general becomes

larger; as noted in [10], one may find a copy of P1’s or a even more complicated subvariety

instead of isolated set of fixed points with the reduction of symmetry group.

It can be shown that for the specific case at hand, aαβ
ε1
∈ Z\{0}, M(N)TH actually contains

products of P1’s. Recall that before taking aαβ
ε1
∈ Z \ {0} the isolated fixed points M(N)TH

are classified by N -tuples of Young diagrams {λ}. The boxes in these Young diagrams

encode the weights of linearly independent vectors in the space K[λ] in terms of Coulomb
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moduli and Ω-deformation parameters, and these weights are all distinct. However, once

we introduce the new constraint aαβ
ε1
∈ Z \ {0}, the weights now may overlap (or in terms

of the Young diagrams, two boxes in different Young diagrams may collide). This implies

two isolated fixed points disappear into an emergent fixed point set P1 (so that when the

symmetry group action is refined by an extra U(1) as it used to be, we recover two isolated

fixed points on the emergent P1). Since we get an emergent P1 whenever this overlap occurs,

the fixed point set M(N)TH now contains a product of mutiple P1’s.

Hence the integral that provides the instanton partition function remains finite due to the

compactness of M(N)TH . Nevertheless, the integral over the emergent P1’s gives additional

poles in ε2, altering the asymptotic behavior of the instanton partition function in the limit

ε2 → 0. Most importantly, the effective twisted superpotential is not properly obtained by

taking W̃ = limε2→0 ε2logZ since the expression becomes divergent. Therefore we see that

(3.2.10) cannot work as it is stated. The main subject of the present chapter is to recover

the correspondence at this special locus.

3.3 Gauge theory with partial Ω-deformation and par-

tial noncommutativity

To explore the gauge theoretical meaning of the special locus of Coulomb moduli, let us study

the pure N = 2 U(N) gauge theory with partial Ω-deformation and partial noncommuta-

tivity. The four-dimensional N = 2 supersymmetry can be described by the super-covariant

derivatives in the covariant basis,

{∇A
α , ∇̄Bα̇} = −iδAB∇αα̇

{∇A
α ,∇B

β } = iεABεαβΦ̄

{∇̄Aα̇, ∇̄Bβ̇} = iεABεα̇β̇Φ, (3.3.1)
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where we are using the convention σµαα̇ = (1αα̇, ~ταα̇). Here Φ is the N = 2 chiral superfield

constrained by ∇α
A∇BαΦ = −∇̄Bα̇∇̄α̇

AΦ̄ due to the Bianchi identities. The action for the

pure N = 2 gauge theory can be written in the N = 2 chiral superspace as

L = 1
8π Im

∫
d4θ

1
2τTrΦ

2. (3.3.2)

The partial Ω-deformation (ε1 6= 0, ε2 = 0) breaks the N = 2 supersymmetry, but preserves

a N = (2, 2) subalgebra on the (x0, x3)-plane,

{∇1
+, ∇̄1+̇} = −i∇++̇ = −i (∇0 + ∇3)

{∇2
−, ∇̄2−̇} = −i∇−−̇ = −i (∇0 −∇3) . (3.3.3)

Let us choose the following convention for the reduced algebra

∇1
+ ≡∇+, ∇2

− ≡ ∇̄−,

∇̄1+̇ ≡ ∇̄+, ∇̄2−̇ ≡∇−, (3.3.4)

so that the restriction of the N = 2 chiral superfield Σ ≡ Φ| = i{∇̄+,∇−} is a twisted chiral

superfield in the reduced N = (2, 2) supersymmetry. Note that Σ contains the complex

scalar of the N = 2 vector multiplet as its component field. Also it is important that we

have the following relations from the Bianchi identities,

[∇̄±,∇−+̇] = 0. (3.3.5)

The N = 2 superspace action is reduced to the N = (2, 2) superspace,

L = − 1
2g2

∫
d4θTrΣ̄Σ− Im

[
τ

8π

∫
d2θ̃Tr

(
iΣ[∇+−̇,∇−+̇]− [∇−,∇−+̇][∇̄+,∇+−̇]

)]
.

(3.3.6)
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Now let us turn on the noncommutativity on the (x1, x2)-plane, [x1, x2] = iζ, while leaving

the (x0, x3)-plane commutative. Define the raising and the lowering operators:

c = 1√
2ζ (x1 + ix2), c† = 1√

2ζ (x1 − ix2), [c, c†] = 1. (3.3.7)

The effect of the noncommutativity is that the covariant coordinate

Φ ≡ −i 1√
ζ
c− 1√

2
(A1 + iA2) (3.3.8)

can act by commutator as the covariant derivative along the noncommutative direction

[45, 46]. Namely, we can make a substitution ∇−+̇ →
√

2Φ except in the commutator of two

such covariant derivatives,

[∇−+̇,∇+−̇] = 2[Φ, Φ̄]− 2
ζ
, (3.3.9)

where we have the extra term from the commutator of c and c†. Note that Φ is an adjoint

chiral superfield in the N = (2, 2) supersymmetry by the relation (3.3.5). The fields are

now promoted to endomorphisms of the Fock space H that represents the algebra (3.3.7),

on which the dependence of the fields on the noncommutative coordinates are encoded. The

integration along the noncommutative directions is replaced by the trace over the Fock space,

∫
dx1dx2(· · · ) = ζTrH(· · · ). (3.3.10)

Thus, with the Wick rotation, we arrive at the Euclidean two-dimensional N = (2, 2) super-

space action of the four-dimensional theory with the partial noncommutativity

L = i

8π

(
τ
∫
d2θ̃TrH⊗CNΣ + c.c

)
+ ζ

g2

∫
d4θTrH⊗CN

[
−1

2Σ̄Σ + Φ̄eV Φ
]
, (3.3.11)

38



with the following superfield contents4

Twisted chiral : Σ = (σ, λ+, λ̄−, iD + F43) (3.3.12a)

Adjoint chiral : Φ = (φ, ψ±, F ). (3.3.12b)

As is apparent from the definition of Φ as the covariant coordinate, the U(1) = SO(2)12 ⊂

Grot spacetime rotation becomes the flavor symmetry rotating the chiral multiplet Φ. The

partial Ω-deformation (ε1 6= 0, ε2 = 0) is simply weakly gauging this U(1) flavor symmetry

to generate the twisted mass for the chiral multiplet,

Ṽε1 = −ε1θ
−θ̄+ − ε̄1θ

+θ̄−. (3.3.13)

Thus the final form of the action is

L = i

8π

(
τ
∫
d2θ̃TrH⊗CNΣ + c.c

)
+ ζ

g2

∫
d4θTrH⊗CN

[
−1

2Σ̄Σ + Φ̄eV+Ṽε1 Φ
]
, (3.3.14)

which can be expanded to an x-space action,

L = ζ

g2TrH⊗CN
[

1
2F

2
43 +Dµσ

†Dµσ + 1
2D

2 − iD([φ, φ†]− 1
ζ

) + 1
2[σ, σ†]2 + FF †

+Dµφ
†Dµφ+ |[σ, φ] + ε1φ|2 + |[σ, φ†]− ε1φ

†|2

+ 2iλ̄+Dzλ+ − 2iλ̄−Dz̄λ− + 2iψ̄+Dzψ+ − 2iψ̄−Dz̄ψ−

+
√

2λ+[σ, λ̄−]−
√

2[σ†, λ−]λ̄+ +
√

2ψ̄+([σ†, ψ−] + ε̄1ψ−) +
√

2ψ̄−([σ, ψ+] + ε1ψ+)

−i
√

2ψ̄+[λ̄−, φ] + i
√

2ψ̄−[λ̄+, φ]− i
√

2[φ†, λ+]ψ− + i
√

2[φ†, λ−]ψ+
]

− iϑ

8π2TrH⊗CNF43. (3.3.15)

4Here we are denoting the complex scalar which descends from the N = 2 vector multiplet as σ, which
has been denoted as φ so far. The convention may be confusing but is more traditional in N = (2, 2) context.

39



The bosonic part of the action can be written as

Lbos = − iτ4πTrH⊗CNF43

+ ζ

g2TrH⊗CN
1

2

(
F43 + [φ, φ†]− 1

ζ

)2

+ 4|Dz̄φ|2 +Dµσ
†Dµσ + FF †

+1
2

(
D − i

(
[φ, φ†]− 1

ζ

))2

+ |[σ, φ] + ε1φ|2 + |[σ, φ†]− ε1φ
†|2 + 1

2[σ, σ†]2
 ,

(3.3.16)

from which we read off the vaccum equations

F43 + [φ, φ†]− 1
ζ

= 0, Dz̄φ = 0, D − i
(

[φ, φ†]− 1
ζ

)
= 0,

Dµσ = 0, [σ, σ†] = 0, [σ, φ] + ε1φ = [σ, φ†]− ε1φ
† = 0. (3.3.17)

We focus on the trivial sector where F43 = 0. Then the vaccum equations are solved by

D = 0,

σ = ε1c
†c⊗ 1CN + 1H ⊗ diag(a1, a2, · · · , aN),

φ = 1√
ζ
c⊗ 1CN , φ† = 1√

ζ
c† ⊗ 1CN , (3.3.18)

where aα are moduli that parametrize the vacua. Since σ is the complex scalar in the N = 2

vector multiplet, aα are nothing but the Coulomb moduli in the four-dimensional perspective.

The low-energy effective action is obtained by integrating out all the massive modes and high

energy modes around the vaccum (3.3.18). Thus we split the vacuum expectation value and

the quantum fluctuation,

σ = σ0 + σ̂, φ = φ0 + φ̂, (3.3.19)
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and expand the action in fluctuation modes. We introduce the following gauge fixing term

Lfix = ζ

2g2TrH⊗CN
[
∂µA

µ − i[σ†0, σ̂]− i[σ0, σ̂
†]− i[φ†0, φ̂]− i[φ0, φ̂

†]
]2
, (3.3.20)

to cancel the mixing terms in the quadratic order. Then we are left with

Lbos + Lfix

= ζ

g2TrH⊗CN
[1
2F

2
43 + |[Aµ, σ0]|2 + |[Aµ, φ0]|2 +Dµσ̂

†Dµσ̂ +Dµφ̂
†Dµφ̂+ 1

2(∂µAµ)2 + FF †

− iD[φ̂, φ̂†] + 1
2
(
D − i([φ0, φ̂

†] + [φ̂, φ†0])
)2

+ 2|[φ̂, φ†0]|2 + 1
2[σ̂, σ̂†]2

+ [σ̂, σ̂†]
(
[σ0, σ̂

†] + [σ̂, σ†0]
)

+ 2|[σ̂, σ†0]|2 − [Aµ, σ†0][Aµ, σ̂]− [Aµ, σ̂†][Aµ, σ0]

− [Aµ, φ†0][Aµ, φ̂]− [Aµ, φ̂†][Aµ, φ0] + |[σ, φ̂] + ε1φ̂|2 + |[σ, φ̂†]− ε1φ̂
†|2

+|[σ̂, φ0]|2 + |[σ̂, φ†0]|2 + [σ̂, φ̂][φ†0, σ̂†] + [φ̂†, σ̂†][σ̂, φ0] + [σ̂, φ̂†][φ0, σ̂
†] + [φ̂, σ̂†][σ̂, φ†0]

]
− iϑ

8π2TrH⊗CNF43 (3.3.21)

For generic values of Coulomb moduli, the only massless fluctuations are the modes of the

abelian twisted chiral multiplet,

Σ̂ = σ̂ + · · · = 1H ⊗ diag(Σ1,Σ2, · · · ,ΣN). (3.3.22)

All the other modes are integrated out in the effective theory, possibly contributing to the

effective twisted superpotential W̃(Σα). Therefore the effective two-dimensional theory is a

pure abelian gauge theory of rank N with a certain effective twisted superpotential.

However, we discover that additional massless modes emerge at the special locus of

Coulomb moduli, {aαβ = mε1 | m ∈ Z \ {0}}. Namely, the mass term for the chiral
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multiplet mode

Φ̂ ≡ φ̂+ · · · =


(c†)m−1 ⊗ Eβ,αΦαβ, if m > 0

(c†)−m−1 ⊗ Eα,βΦαβ, if m < 0
(3.3.23)

vanishes at the locus. Here, Eα,β is the N × N matrix whose elements are all 0 except 1

for the element in the αth row and the βth column. A massless mode of chiral multiplet is

generated for each such a pair of (α, β). The emergent massless modes signify the failure of

the effective description of the theory. In [47], it was argued that this failure is cured by the

appearance of solitonic particles, which prevent the massless modes to occur through the

wall-crossing. It would be nice to directly see how this wall-crossing phenomenon interplays

with the insertion of surface defects discussed in the following sections.

3.4 Surface defect

3.4.1 Construction

As non-local gauge-invariant observables, the surface defects enrich the study of N = 2

supersymmetric gauge theories and Bethe/gauge correspondence. As discussed in section

2.3, there are two ways of constructing the half-BPS surface defects in the context of the

N = 2 gauge theory. One of them is orbifolding the four-dimesional spacetime with respect

to the action of the cyclic group Zp as Cε1 × (Cε2/Zp). This type of surface defect is referred

as the orbifold surface defect. The second way is inserting a degenerate gauge vertex in the

quiver which defines the quiver gauge theory of interest. Even though these constructions

seem to be distinct, we shall see in the Chapter 5 that for some cases there is an exact

equivalence between the two types of surface defects, which generalizes the IR duality of

[48] (at least in the A1 case) between the two types of surface defect that descends from the

M-theory brane transition. We mainly utilize the orbifold surface defect for the purpose of
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this Chapter, so we will only discuss the orbifold construction in this chapter. More results

regarding the quiver surface defects will follow in the subsequent chapters.

3.4.1.1 Orbifold construction

Throughout the discussion, let us restrict our attention to the pure U(N) gauge theory. The

orbifold surface defect DZp,ρ is constructed by specifying the embedding

ρ : Zp −→ H = Gg ×Grot, (3.4.1)

from which we define the surface defect as the prescription of performing the path integral

over the space of Zp-invariant fields. The rotation group part of the embedding is always

chosen to be

Ω(ζ) : (z1, z2) 7→ (z1, ζz2), for ζ = exp
(

2πi
p

)
. (3.4.2)

To fully characterize the surface defect we need to further specify the gauge group part of

the embedding ρ. It is assigned by the coloring function

c : [N ] = {0, · · · , N − 1} −→ Zp, (3.4.3)

from which we define the gauge group part of the embedding ρ such that the vector space

N decomposes as

N =
∑
α

eβaαRc(α) =
∑
ω∈Zp

NωRω =⇒ Nω =
∑

α∈c−1(ω)
eβaα , (3.4.4)
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where Rω is the one-dimensional irreducible representation of Zp of weight ω,

Zp −→ End(Rω)

ζ 7−→ ζω. (3.4.5)

Then we also decompose

K =
∑
ω∈Zp

KωRω, where Kω =
∑
α

∑
(i,j)∈λ(α)

c(α)+j−1≡ω mod p

eβ(aα+ε1(i−1)+ε2(j−1)). (3.4.6)

We can identify the spacetime C2 with the orbifold C2/Zp through the map (z1, z2) 7→ (z̃1 =

z1, z̃2 = zp2). This map is singular along the surface z2 = 0. Therefore the path integral over

the space of the Zp-invariant fields on (z1, z2)-space is interpreted as the path integral over

the (z̃1, z̃2)-space with the insertion of a defect along the surface z̃2 = 0.

An orbifold surface defect is called regular for the special case when p = N and c ∈ SN ,

where SN is the permutation group of [N ] = {0, · · ·N − 1}. This special kind of surface

defects plays an important role in constructing the eigenstate wavefunctions of the integrable

system in section 3.4.2.1 and section 3.5.

3.4.1.2 N = 2 supersymmetric gauge theory with orbifold surface defect

We now investigate the N = 2 gauge theory in the presence of the orbifold surface defect.

In the presence of the surface defect, the coupling constant is fractionalized

q 7→ qω ≡ Λ2 zω
zω−1

, ω ∈ Zp, (3.4.7)

with zω+p ≡ zω. The surface defect partition function is the path integral over the space

of Zp-invariant fields, which can be easily obtained from the bulk partition function. From
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(2.1.31), the instanton part of the surface defect partition function is immediately obtained

Ψinst
c (a, ε, q, z) =

∑
λ

∏
ω∈Zp

qkωω ε(T [λ]Zp,c), (3.4.8)

where kω[λ] = dimKω[λ] is the fractionalized instanton number and (· · · )Zp,c is the prescrip-

tion of keeping the Zp-invariant piece for the given coloring function c only. The Zp-invariant

piece of the character (2.1.30) is given by

T[λ]Zp,c =
∑
ω∈Zp

[
NωK

∗
ω + q1q2N

∗
ωKω−1 − (1− q1)KωK

∗
ω + q2(1− q1)KωK

∗
ω+1

]
. (3.4.9)

In the special case that the coloring function c : [N ]→ Zp is chosen to be surjective, (3.4.8)

is identical to the computation from the chain-saw quiver [20]. Note that the instanton part

of the surface defect partition function also defines a statistical model on the set of colored

partitions {λ}, with the measure µZp,cλ (a, ε) = ∏
ω∈Zp q

kω
ω ε(T [λ]Zp,c).

3.4.2 Consequences of the non-perturbative Dyson-Schwinger equa-

tions

We now derive the differential equations that surface defect partition functions satisfy, using

the non-perturbative Dyson-Schwinger equations. For generic quiver gauge theories with

half-BPS surface defects, the non-perturbative Dyson-Schwinger equations derived in [21]

can be used to prove the KZ equation and the BPZ equation satisfied by the partition

functions [32]. In this chapter, we study the surface defects on the pure U(N) gauge theory

which is relevant to the periodic Toda system. The orbifold surface defect partition function

is shown to satisfy the Schrödinger-type equation, while the degenerate gauge vertex partition

function satisfies the Baxter-type equation. Note that those differential equations are valid

for all values of ε = (ε1, ε2), as the fact will be crucial for investigating the special locus of

the Coulomb moduli.

45



3.4.2.1 A1-theory with orbifold surface defect

Let us consider the A1-theory with the gauge group U(N) in the presence of the regular

orbifold surface defect DZN ,ρ, with the coloring function s ∈ SN . With respect to the

representations of ZN , the Y-observable factors as:

Y(x) =
∏
ω∈ZN

Yω(x), (3.4.10)

where

Yω(x)[λ] = (x− as−1(ω))
∏

�∈Kω

x− c�̂ − ε1

x− c�̂

∏
�∈Kω−1

x− c�̂ − ε2

x− c�̂ − ε
. (3.4.11)

In terms of these Yω’s we also have the fundamental refined qq-characters, which are obtained

as the orbifolded crossed instanton partition functions [15],

Xω(x) = Yω+1(x+ ε) + Λ2zωz
−1
ω−1

Yω(x) , (3.4.12)

whose expectation value in the gauge theory in the presence of the surface defect,

〈Xω(x)〉s ≡
1

Ψinst
s

∑
λ

Xω(Y[λ])q|λ|µZN ,sλ (a, ε) = Ts,ω(x), (3.4.13)

is a polynomial in x by the compactness theorem proven in [14]. In particular, we have the

vanishing equations,

[x−n]〈Xω(x)〉s = 0, n ∈ Z>0. (3.4.14)
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We study the coefficients of x−n of the fundamental refined qq-character in the large x limit.

The lowest order coefficients are given by:

[x−1]Xω = ε2
1

2

(
kω − kω+1 −

as−1(ω+1)

ε1

)2
− 1

2a
2
s−1(ω+1) + ε1ε2kω + Λ2zωz

−1
ω−1

+ ε2
1

2 (kω − kω+1) + ε1

 ∑
�∈Kω

c�̂ −
∑

�∈Kω+1

c�̂

 , (3.4.15a)

[x−2]Xω = ε3
1

6 (kω − kω+1)3 − ε3
1

2 (kω − kω+1)2 + ε2
1ε2kω+1(kω − kω+1)

+ (ε− as−1(ω+1))
ε2

1
2 (kω − kω+1)2 − ε2

1
2 (kω − kω+1) + ε1ε2kω+1 + ε1

 ∑
�∈Kω

c�̂ −
∑

�∈Kω+1

c�̂


+ Λ2zωz

−1
ω−1(as−1(ω) + ε1(kω − kω−1)) + ε2

1(kω − kω+1)
 ∑

�∈Kω
c�̂ −

∑
�∈Kω+1

c�̂


+ ε3

1
3 (kω − kω+1)− ε2

1

 ∑
�∈Kω

c�̂ −
∑

�∈Kω+1

c�̂

+ ε1

 ∑
�∈Kω

c2
�̂ −

∑
�∈Kω+1

c2
�̂


− ε1ε2εkω+1 + 2ε1ε2

∑
�∈Kω+1

c�̂. (3.4.15b)

The expectation values of (3.4.15) yield the vanishing equations. We take the sum over ω ∈

ZN , while simplifying (3.4.15b) using (3.4.15a), to get the following differential equations,

0 =
ε2

1
2
∑
ω

(
zω

∂

∂zω
−
as−1(ω+1)

ε1

)2

+ Λ2∑
ω

zωz
−1
ω−1 −

1
2
∑
ω

a2
s−1(ω+1) + 1

2ε1ε2Λ ∂

∂Λ

Ψinst
s (a, ε, q, z),

(3.4.16a)

0 =
−ε3

1
3
∑
ω

(
zω

∂

∂zω
−
as−1(ω+1)

ε1

)3

+ Λ2∑
ω

zωz
−1
ω−1

(
−ε1

(
zω

∂

∂zω
+ zω−1

∂

∂zω−1
−
as−1(ω+1)

ε1
−
as−1(ω)

ε1

)
+ ε2

)

−1
3
∑
ω

a3
s−1(ω+1) + 1

2ε1ε2εΛ
∂

∂Λ + 2ε1ε2

〈 ∑
�∈K

c�̂

〉
s

Ψinst
s (a, ε, q, z). (3.4.16b)

Note that (3.4.16a) is the one-line rederivation of the results of [37, 38]. In the Nekrasov-

Shatashvili limit (ε2 → 0), these differential equations produce the spectral equations for the

Hamiltonians O2 and O3 of the periodic Toda system, as we shall see shortly in section 3.5.
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3.5 Splitting of the surface defect partition function

Finally we study the splitting behavior of the regular orbifold surface defect partition func-

tions and its relation with integrable systems. A crucial remark is that the differential equa-

tions (3.4.16) are still valid even at the special locus of the Coulomb moduli,
{
aαβ
ε1
∈ Z \ {0}

}
.

Thus the surface defect partition function can be used as a probe for the special locus, where

the bulk partition function does not provide a simple picture for the correspondence. Mean-

while, on the integrable system side the special locus still gives the well-defined spectral

problem of mutually commuting Hamiltonians, except that the spectra become degenerate

at the 0-th order due to the specially tuned Bloch angles. In particular, the differential

equations that define the spectral problem are still the same. Therefore the surface defect

partition function is expected to detect such a splitting behavior of the corresponding inte-

grable system. In particular, we will observe that, while the surface defect partition function

still has the additional singularities in the limit ε2 → 0, it splits into parts in such a way

that those extra singularities are resolved in each split part.

First note that for generic values of Coulomb moduli the surface defect partition function

exhibits the typical asymptotic behavior in ε2 → 0,

Ψ̃s(a, ε,Λ, z) ≡
∏
ω

z
−
a
s−1(ω+1)

ε1
ω Ψinst

s (a, ε,Λ, z) = e
W̃(a,ε1,Λ)

ε2 (ψs(a, ε1,Λ, z) +O(ε2)), (3.5.1)

up to some prefactor. Therefore the differential equations (3.4.16) realize the Schrödinger

equations for the periodic Toda system

ε2
1

2
∑
ω

(
zω

∂

∂zω

)2

+ Λ2∑
ω

zωz
−1
ω−1 − E2(a, ε1,Λ)

ψs(a, ε1,Λ, z) = 0, (3.5.2a)
−ε3

1
3
∑
ω

(
zω

∂

∂zω

)3

− ε1Λ2∑
ω

zωz
−1
ω−1

(
zω

∂

∂zω
+ zω−1

∂

∂zω−1

)
− E3(a, ε1,Λ)

ψs(a, ε1,Λ, z) = 0,

(3.5.2b)
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where

E2(a, ε1,Λ) = 1
2
∑
ω

a2
ω −

1
2ε1Λ∂W̃(a, ε1,Λ)

∂Λ , (3.5.3a)

E3(a, ε1,Λ) = 1
3
∑
ω

a3
ω −

1
2ε

2
1Λ∂W̃(a, ε1,Λ)

∂Λ − 2ε1 lim
ε2→0

ε2

〈 ∑
�∈K

c�̂

〉
s

(3.5.3b)

are nothing but the eigenvalues of the Hamiltonians (3.2.10) we have derived in the theory

without the surface defect.56 Note that even though the meaning of the expectation values in

(3.2.10b) and (3.5.3b) are different, the final results agree in the limit ε2 → 0. Thus the sur-

face defect partition function provides a constructive way to obtain both the eigenfunctions

and the eigenvalues of the Hamiltonians of the corresponding integrable system.

Now we attempt an analogous construction at the special locus of the Coulomb moduli.

The investigation reveals the splitting behavior of the surface defect partition functions.

3.5.1 N = 2

Let us first consider the simplest case, N = 2, in which there are two choices for the regular

orbifold surface defect corresponding to the elements of S2 = {id, (01)}. The Schrödinger

equation (3.5.2a) is precisely the Mathieu equation up to some change of variables. At

the special locus {a01 = mε1 | m ∈ Z \ {0}}, we observe that the surface defect partition

functions split into two parts,

Ψ̃id(a01 = mε1, ε,Λ, z)± Ψ̃(01)(a01 = mε1, ε,Λ, z) = e
W̃
±
m(ε1,Λ)
ε2

(
ψ±m(ε1,Λ, z) +O(ε2)

)
.

(3.5.4)

5The relative factor N in the second term is due to the map (z1, z2) 7→ (z1, z
N
2 ) in the orbifold construction

of the regular orbifold surface defect, which shifts the equivariant parameter as ε2 → Nε2.
6Although the eigenvalue (3.5.3b) seems to depend on the choice s ∈ SN through the expectation value

〈· · · 〉s, it turns out not to. This is consistent with the computation in the absence of the surface defect,
(3.2.10b).
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Note that (3.4.16a) guarantees the wavefunctions ψ±m(ε1,Λ, z) to be the split eigenfunctions

of the Schrödinger equation (3.5.2a) with the split energy spectrum

E±2,m = m2ε2
1

8 − 1
4ε1Λ∂W̃

±
m(ε1,Λ)
∂Λ . (3.5.5)

We decoupled the irrelevant center of mass contribution and rescaled by a factor of 2 for

convenience. The splitting behavior exactly accounts for the broken degeneracy due to the

quantum tunneling effects on the integrable system side. Note that (3.5.4) is not obvious

in the sense that the split twisted superpotential W̃±m is non-divergent and is independent

of the fractional gauge coupling z. Also, it should be emphasized that the split twisted

superpotential W̃±m shows the series expansion in Λ2, as opposed to the Λ4-expansion of the

generic twisted superpotential.

We have checked that the split eigenfunctions ψ±m and the split eigenvalues E±2,m in (3.5.4)

and (3.5.5) precisely match with the well-known results of the half-periodic and the periodic

solutions for the Mathieu equation, for various m ∈ Z\{0} to some order of Λ. Therefore the

splitting of the surface defect partition functions accounts for the splitting of the degenerate

levels in the integrable system, and the correspondence between the gauge theory and the

integrable system is recovered for the special locus of the Coulomb moduli space. We present

some specific examples of the computation in Appendix A.1.

3.5.2 N = 3

In the case N = 3, the Hamiltonians are no longer Hermitian and the eigenvalues are not

necessarily real, yet the perturbative series is well-defined including the degenerate case.

Therefore we can still compare the spectra and the wavefunctions obtained from the gauge

theory with the quantum mechanical computations. As mentioned in section 3.2, for the

non-degenerate cases the known dictionary of the correspondence works as stated. Let us

turn to the degenerate cases. There are three types of degeneracy possible, which are 2-fold,
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3-fold, and 6-fold respectively. Without loss of generality, those degeneracies occur at the

loci

2-fold : {a01 = mε1, a02 is generic | m ∈ Z \ {0}}

3-fold : {a01 = a02 = mε1 | m ∈ Z \ {0}}

6-fold : {a01 = mε1, a02 = lε1 | m, l ∈ Z \ {0},m 6= l}.

There are some subtle issues for the 2-fold and 6-fold degeneracies that obstruct our under-

standing of the splitting of the surface defect partition function, so we leave them to future

work. Here we discuss the splitting of the surface defect partition function for the 3-fold

degeneracy.

We have 6 different regular surface defects corresponding to the elements s ∈ S3. Due

to the residual symmetry, only 3 out of 6 are independent of each another in the case of

a12 = 0. We form the split surface defect partition functions as

[
Ψ̃(012)(a, ε,Λ, z) + ζΨ̃(021)(a, ε,Λ, z) + ζ2Ψ̃id(a, ε,Λ, z)

] ∣∣∣∣∣∣
a01=a02=mε1

= e
W̃
ζ
m(ε1,Λ)
ε2

(
ψζm(ε1,Λ, z) +O(ε2)

)
, (3.5.6)

where ζ is any third root of unity, ζ3 = 1. Therefore each surface defect partition function

splits into three parts, accounting for the level splitting of the 3-fold degeneracy. The wave-

functions ψζm(ε1,Λ, z) are the common split eigenfunctions of O2 and O3 by (3.4.16) with the

split eigenvalues

Eζ
2,m = m2ε2

1
3 − 1

2ε1Λ∂W̃
ζ
m(ε1,Λ)
∂Λ , (3.5.7a)

Eζ
3,m = 2m3ε3

1
27 − ε2

1
2 Λ∂W̃

ζ
m(ε1,Λ)
∂Λ − 2ε1c

ζ
1(ε1,Λ), (3.5.7b)

where we have decoupled the irrelevant center of mass contribution and defned the split
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expectation value

cζ1(ε1,Λ)

= lim
ε2→0

ε2

〈∑
�∈K c�̂

〉
(012)

Ψ̃(012) + ζ

〈∑
�∈K c�̂

〉
(021)

Ψ̃(021) + ζ2
〈∑

�∈K c�̂

〉
id

Ψ̃id

Ψ̃(012) + ζΨ̃(021) + ζ2Ψ̃id

∣∣∣∣∣∣
a01=a02=mε1

.

(3.5.8)

It is not obvious that cζ1(ε1,Λ) neither diverges nor depends on the fractional coupling z;

in those cases the split eigenvalue (3.5.7b) would not be well-defined. The computation

shows that cζ1(ε1,Λ) indeed behaves as desired. Note that the split twisted superpotential

W̃ζ
m and the split expectation value cζ1 have the series expansions in Λ2, as opposed to the

Λ6-expansion of the generic twisted superpotential and expectation value. We present some

examples of computation in Appendix A.2.

3.6 Discussion

In this chapter we have studied the Bethe/gauge correspondence for the special locus of the

Coulomb moduli of the gauge theory, where the integrable system becomes degenerate in the

non-interacting (free) limit. The analysis on the gauge theory with partial noncommutativity

and partial Ω-deformation revealed the emergence of extra massless modes of matter multi-

plet at the speical locus, which makes the generic effective description without matter multi-

plet inapplicable. We used half-BPS surface defects, which are constructed out of orbifolds,

to investigate the problem. The orbifold surface defect provided a constructive approach

for the common eigenfunctions as well as the spectra of the Hamiltonians of the integrable

system. Namely, the non-perturbative Dyson-Schwinger equations can be used to show that

the surface defect partition function satisfies the Schrödinger-type equations, which indeed

reduce to the spectral equations for the Hamiltonians in the Nekrasov-Shatashvili limit. We
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have seen that at the special locus of the Coulomb moduli the orbifold surface defect partition

functions split into parts. Each split part assumes the desired asymptotic behavior in the

Nekrasov-Shatashvili limit so that the degenerate perturbative series for the eigenfunctions

and the eigenvalues could be presicely reproduced from the gauge theory perspective. We

have presented some examples of the splitting.

There is a natural generalization of the investigation, i.e. adding various flavors to the

theory. It is manifest from the instanton counting procedure that the theories with various

types of flavor share the same denomenator in the effective twisted superpotential. Thus

U(N) gauge theories with flavors show the same divergent phenomena at the special locus of

the Coulomb moduli space, which are expected to correspond to the splitting of degeneracies

in the integrable system side. We may introduce the regular surface defect in those theories,

with some proper assignment of the colorings for the flavors, and investigate the splitting

behavior at the special locus. Some theories with fundamental hypermultiplets have non-

Hermitian Hamiltonians even in the simplest case N = 2. It would be a nontrivial check to

see how the splitting works for those theories.

Another interesting issue to be considered is the 5d uplift. While d = 4, N = 2 gauge

theories correspond to the non-relativistic integrable systems realized on the Seiberg-Witten

geometry, the d = 5, N = 1 gauge theories compactified on a circle correspond to their

relativistic cousins [49]. The main difference is that the spectral equations become difference

equations instead of differential equations. It was checked in [50] at some low instanton

numbers that the codimension-two surface defect partition function satisfies those difference

equations, for the example of N = 1∗ theory. It would be nice to construct a rigorous

analytic proof of those relations as done in this work for the four-dimensional case, using

the 5d version of the qq-characters [10]. The algebraic engineering of codimension-two defect

partition functions à la [51] can be useful for this study. The splitting of degeneracies would

persist in those relativistic integrable systems, and the insertion of codimension-two defects

is expected to detect this splitting through their partition functions.
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The study of resurgence in integrable systems can have a connection with our story. For

example, let us consider the Mathieu system which corresponds to the pure N = 2 SU(2)

gauge theory. The exact spectrum of the Mathieu system around a minimum of the Mathieu

potential V (x) = Λ2cosx exhibits the trans-series expansion, which can be computed by the

exact quantization condition [52, 53]. In [54], it was argued that this exact quantization

condition can be regarded as the Nekrasov-Shatashvili quantization condition in the strong

coupling regime. The analysis showed that the prepotential at the strong coupling regime

gets non-perturbative corrections (in the sense of quantum mechanics). Using the connection

between the weak and the strong coupling regimes described in [55, 56], we may look for

the gauge theoretical understanding of a nontrivial relation between the aformentioned non-

perturbative effect in the strong coupling regime and the non-perturbative effect in the weak

coupling regime, i.e. the splitting of the degenerate levels studied in this chapter. The

topological string point of view on the exact quantization in [57, 58, 59] can also be related

along these lines.

It would also be interesting to clarify the implication of the other eigenfunctions for the

split eigenvalues. For example, it is well-known that for the Mathieu system the second

solution for the split eigenvalue includes a logz term. Actually the second solution for

a01 = 0 (where the splitting does not occur) can be obtained by taking a derivative of the

surface defect partition function with respect to the Coulomb moduli. When a01 = mε1

this procedure is not available since the surface defect partition function has discontinuity

at the special locus. However, we may insert a ’t Hooft line operator on top of the surface

operator to get a ε2-shift of the Coulomb moduli [60, 61, 62], which becomes infinitesimal

in the Nekrasov-Shatashvili limit. Since the configuration is expected to have a well-defined

effective twisted superpotential in the Nekrasov-Shatashvili limit, its partition function may

produce the second solution with log. Unfortunately, the supersymmetric localization for

such configuration of non-local observables is not available as of yet.

54



Chapter 4

BPZ equations and non-perturbative

Dyson-Schwinger equations

4.1 Introduction

The paradigm of BPS/CFT correspondence [10] is to establish exact connections between

the correlation functions of half-BPS (local and non-local) observables in four-dimensional

N = 2 supersymmetric field theories and the correlation functions of primary and descendant

fields in two-dimensional CFTs. One of the remarkable manifestations of the BPS/CFT

correspondence is the AGT correspondence [63], where the S4 partition functions of N = 2

gauge theories are identified with the correlation functions of Liouvlle/Toda primary fields.

The AGT correspondence emerges most naturally in the six-dimensional point of view. As

briefly discussed in section 3.2, the N = 2 theory of class S can be obtained by compactifying

the six-dimensional N = (0, 2) theory on a Riemann surface C [33]. In turn, the S4 partition

function of the class S theory is identical to the partition function ofN = (0, 2) on S4×C. Now

by compactifying along S4 instead of C, we expect the same partition function is equivalent
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to the partition function of a CFT on C. Consequently, we expect

Zclass S(S4) = ZCFT(C). (4.1.1)

The non-conformal N = 2 gauge theories can also be obtained by taking various limits of

the gauge theory parameters. Hence the six-dimensional point of view provides a physical

intuition on the AGT correspondence.

The identity (4.1.1) was firstly conjectured for superconformal SU(2) quiver gauge the-

ories and the Liouville theory [63], and was soon extended to more general relationships

between quiver gauge theories with other gauge groups and Toda field theories [64]. As

described above, the four-dimensional N = 2 superconformal field theories considered in the

AGT correspondence are obtained by the compactification of the six-dimensional N = (0, 2)

superconformal theory on a punctured Riemann surface C. When there is a weakly-coupled

Lagrangian description of the theory, we can compute its partition function in the Ω-

background [6]. It was discovered that the instanton part of the partition function Z instanton

can be identified with certain conformal blocks in the Liouville/Toda field theory, and the

partition function on a (squashed) sphere S4
b [65, 66], which is equal to the integral of the ab-

solute value squared of the full partition function, can be identified with correlation functions

in the Liouville/Toda field theory on the Riemann surface C.

It is interesting to drop the genericity assumption for the parameters of the theory. In

the two-dimensional conformal field theory, we can make one of the fields in the correlation

function degenerate. Belavin, Polyakov, and Zamolodchikov showed that the correlation

function in the Liouville field theory that involves a degenerate field satisfies a linear partial

differential equation as a result of the decoupling of the null descendant field [67, 68]. The

order of the differential equation is the level of the null field in the corresponding degenerate

representation. In the case of Toda field theories, similar differential equations has been

derived for certain four-point correlation functions in [69, 70]. On the other hand, the gauge
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field configurations of the corresponding four-dimensional N = 2 superconformal quiver

gauge theories are constrained, leading to a differential equation on the instanton partition

function. To confirm the BPS/CFT correspondence, we should be able to identify the

differential equations derived from both the conformal field theory side and the gauge theory

side. This program has been investigated carefully in the Nekrasov-Shatashvili limit [28]

of the Ω-background, which corresponds to the classical limit c → ∞ of two-dimensional

conformal field theories [71, 72, 73, 74, 75, 76, 77, 9, 78, 79]. However, previous methods

become less powerful when we would like to go beyond such limits.

In this chapter, we shall follow the idea of [32] to provide a derivation of the differential

equation using the non-perturbative Dyson-Schwinger equations, which result from the fact

that the path integral of the instanton partition function is invariant with respect to the

transformations changing topological sectors of the field space. We review the result of

[32] and study the case of U(2) superconformal linear quiver gauge theories with the next-

to-simplest constraint in this chapter. The natural generalization to U(N) superconformal

linear quiver gauge theories will be discussed in a follow-up work. Similar method has also

been applied to the study of Bethe/gauge correspondence [30, 29, 28] in [2].

The rest of the chapter is organized as follows. In Section 4.2, we recall some basic facts

about two-dimensional Liouville field theory and review the derivation of BPZ equations on

the degenerate correlation functions. In Section 4.3, we review the relevant details of the

AGT correspondence and discuss the restrictions on gauge theory parameters. In Section

4.4, we study the superconformal gauge theory with gauge group U(N). We show that the

instanton partition function at the simplest nontrivial degenerate point in the parameter

space is a (generalized) hypergeometric function. After working out this simple warm-up

example, we consider the U(2) superconformal linear quiver gauge theory in Section 4.5. We

review the second order differential equation on the instanton partition function derived in

[32] and derive the third order differential equation for the next-to-simplest case. We also

identify the differential equations derived from both sides using the AGT dictionary. Finally,
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we conclude in Section 4.6 and discuss possible directions for future work. In the Appendix

B we review some standard material on the (generalized) hypergeometric function. In the

Appendix C we derive the partition function of the U(1) factor using the non-perturbative

Dyson-Schwinger equations.

4.2 Degenerate correlation functions in the Liouville

field theory

In this section, we recall some basic facts about two-dimensional Liouville field theory and

present the derivation of the BPZ equations on the degenerate correlation functions.

4.2.1 Degenerate fields in the Liouville field theory

The two-dimensional Liouville conformal field theory is defined by the action

SLiouville =
∫
d2σ
√
g
( 1

4π∂aφ∂
aφ+ µe2bφ + Q

4πRφ
)
, (4.2.1)

where the background charge Q = b+ b−1, and R is the Ricci scalar of the Riemann surface.

The symmetry algebra of the theory is two independent copies of the Virasoro algebra, with

the central charge c = 1+6Q2. In the following, we focus on the chiral part, which is spanned

by generators Ln for n ∈ Z and the central charge c, satisfying

[Lm, Ln] = (m− n)Lm+n + c

12
(
m3 −m

)
δm+n,0. (4.2.2)

For the Virasoro algebra, a conformal primary field V∆ with the conformal dimension ∆

is defined to be

Ln>0V∆ = 0, L0V∆ = ∆V∆. (4.2.3)

The descendant fields are obtained by taking the linear combinations of the basis vectors
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L−~nV∆ = L−n1L−n2 · · ·L−nlV∆, where ~n = {1 ≤ n1 ≤ n2 ≤ · · · ≤ nl}. The conformal dimen-

sion of the basis vector L−~nV∆ is ∆ + |~n|, where the number |~n| = ∑l
i=1 ni is called the level

of L−~nVα.

A primary field V∆ is called degenerate if it has a null descendant field Ṽ = ∑
~nC~nL−~nV∆ 6=

V∆, such that LnṼ = 0 for n > 0. If the null field is at the level one, then

Ln (L−1V∆) = 0, n > 0. (4.2.4)

This is automatically true for n ≥ 2, and for n = 1 we have

0 = L1L−1V∆ = 2L0V∆ = 2∆V∆. (4.2.5)

Thus the field V∆ = 1 with zero conformal dimension. If the level-two descendant field

Ṽ =
(
C1,1L

2
−1 + C2L−2

)
V∆ is null, then LnṼ = 0 for n ≥ 1. The nontrivial constraints are

0 = L1Ṽ = ((4∆ + 2)C1,1 + 3C2)L−1V∆,

0 = L2Ṽ =
(

6∆C1,1 +
(

4∆ + c

2

)
C2

)
V∆. (4.2.6)

Therefore, we have ∣∣∣∣∣∣∣∣
4∆ + 2 3

6∆ 4∆ + c
2

∣∣∣∣∣∣∣∣ = 0, (4.2.7)

which gives two solutions

∆(2,1) = −1
2 −

3
4b

2, Ṽ(2,1) =
( 1
b2L

2
−1 + L−2

)
V∆(2,1) , (4.2.8)

∆(1,2) = −1
2 −

3
4b2 , Ṽ(1,2) =

(
b2L2

−1 + L−2
)
V∆(1,2) . (4.2.9)

If the level-three descendant field Ṽ =
(
C1,1,1L

3
−1 + C1,2L−1L−2 + C3L−3

)
V∆ is null, then
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LnṼ = 0 for n ≥ 1. Since L3 = [L2, L1], we only need

0 = L1Ṽ = ((2∆ + 4)C1,2 + 4C3)L−2V∆ + ((6∆ + 6)C1,1,1 + 3C1,2)L2
−1V∆,

0 = L2Ṽ =
(

(6 + 18∆)C1,1,1 +
(

4∆ + 9 + c

2

)
C1,2 + 5C3

)
L−1V∆. (4.2.10)

Therefore, we have ∣∣∣∣∣∣∣∣∣∣∣∣

0 2∆ + 4 4

6∆ + 6 3 0

6 + 18∆ 4∆ + 9 + c
2 5

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (4.2.11)

which gives two solutions

∆(3,1) = −1− 2b2, Ṽ(3,1) =
( 1

4b2L
3
−1 + L−1L−2 +

(
b2 − 1

2

)
L−3

)
V∆(3,1) , (4.2.12)

∆(1,3) = −1− 2
b2 , Ṽ(1,3) =

(
b2

4 L
3
−1 + L−1L−2 +

( 1
b2 −

1
2

)
L−3

)
V∆(1,3) . (4.2.13)

Generally, the conformal dimension of a degenerate field can be read from the Kac determi-

nant formula, and is given by

∆(m,n) = Q2 − (mb+ nb−1)2

4 , m, n ∈ Z+, (4.2.14)

with the null vector being at the level mn.

4.2.2 BPZ equations

Now we are ready to derive the BPZ equations on the (r + 3)-point correlation function of

the conformal primary fields, with one of the primary fields being degenerate. In order to

relate a correlation function involving Virasoro generators acting on a primary field with a

correlation function of purely primary fields, we use the conformal Ward identities, which

state that inserting the holomorphic energy-momentum tensor in a correlation function of
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primary fields yields

〈
T (z)

r+1∏
i=−1

V∆i
(zi)

〉
=

r+1∑
i=−1

(
1

z − zi
∂

∂zi
+ ∆i

(z − zi)2

)〈
r+1∏
i=−1

V∆i
(zi)

〉
. (4.2.15)

The simplest nontrivial example is the second order BPZ equation. We assume that

∆0 = ∆(2,1). The decoupling of the null descendant field (4.2.8) implies that the (r + 3)-

point correlation function satisfies

 1
b2
∂2

∂z2
0

+
∑
i 6=0

(
1

z0 − zi
∂

∂zi
+ ∆i

(z0 − zi)2

)〈V∆(2,1)(z0)
∏
i 6=0

V∆i
(zi)

〉
= 0. (4.2.16)

Similarly, the third order BPZ equation with ∆0 = ∆(3,1) can be derived from the decoupling

of the null vector (4.2.12),

0 =
 1

4b2
∂3

∂z3
0

+ ∂

∂z0

∑
i 6=0

(
1

z0 − zi
∂

∂zi
+ ∆i

(z0 − zi)2

)

−
(
b2 − 1

2

)∑
i 6=0

(
1

(z0 − zi)2
∂

∂zi
+ 2∆i

(z0 − zi)3

)〈V∆(3,1)(z0)
∏
i 6=0

V∆i
(zi)

〉
.(4.2.17)

There are additional constraints on the correlation functions due to the global conformal

symmetry. Using the holomorphy of the energy-momentum tensor at infinity, T (z) = O (z−4)

as z →∞, we deduce the global conformal Ward identities

 r+1∑
i=−1

∂

∂zi

〈 r+1∏
i=−1

V∆i
(zi)

〉
= 0, (4.2.18)

 r+1∑
i=−1

(
zi
∂

∂zi
+ ∆i

)〈 r+1∏
i=−1

V∆i
(zi)

〉
= 0, (4.2.19)

 r+1∑
i=−1

(
z2
i

∂

∂zi
+ 2zi∆i

)〈 r+1∏
i=−1

V∆i
(zi)

〉
= 0. (4.2.20)

For our purpose, it is convenient to get rid of all the ∂−1 and ∂r+1 terms using (4.2.18) and
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(4.2.20),

∂

∂z−1

〈
r+1∏
i=−1

Vαi(zi)
〉

=
 r∑
i=0

z2
i − z2

r+1
z2
r+1 − z2

−1

∂

∂zi
+

r+1∑
i=−1

2zi∆i

z2
r+1 − z2

−1

〈 r+1∏
i=−1

V∆i
(zi)

〉
,

∂

∂zr+1

〈
r+1∏
i=−1

Vαi(zi)
〉

=
 r∑
i=0

z2
i − z2

−1
z2
−1 − z2

r+1

∂

∂zi
+

r+1∑
i=−1

2zi∆i

z2
−1 − z2

r+1

〈 r+1∏
i=−1

V∆i
(zi)

〉
.(4.2.21)

We then fix z−1 = ∞ and zr+1 = 0, and the remaining global conformal Ward identity

(4.2.19) gives

[
r∑
i=0

(∇i + ∆i)−∆−1 + ∆r+1

]〈
V∆−1(∞)

r∏
i=0

V∆i
(zi)V∆r+1(0)

〉
= 0. (4.2.22)

Let us decouple a prefactor from the correlation function

〈
V∆−1(∞)V∆(m,n)(z0)

r∏
i=1

V∆i
(zi)V∆r+1(0)

〉
=
( r∏

i=0
zLii

) ∏
0≤i<j≤r

(
1− zj

zi

)Tijχ(m,n)
r+3 (z),

(4.2.23)

where χ(m,n)
r+3 (z) only depends on the ratios of zi, i = 0, · · · , r. The identity (4.2.22) is

satisfied if
r∑
i=0

(Li + ∆i)−∆−1 + ∆r+1 = 0. (4.2.24)

Using

zi ∂
∂zi

,

(
r∏
i=0

zLii

) ∏
0≤i<j≤r

(
1− zj

zi

)Tij =
Li +

r∑
j=i+1

Tij
zj

zi − zj
+

i−1∑
j=0

Tji
zi

zi − zj


×
(

r∏
i=0

zLii

) ∏
0≤i<j≤r

(
1− zj

zi

)Tij
, (4.2.25)
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the second order BPZ equation (4.2.16) can be express in terms of χ(m,n)
r+3 (z) as

0 =
 1
b2

∇0 + L0 +
r∑
j=1

T0j
zj

z0 − zj

2

−
(

1 + 1
b2

)∇0 + L0 +
r∑
j=1

T0j
zj

z0 − zj


+

r∑
i=1

z0

z0 − zi

∇i + Li +
r∑

j=i+1
Tij

zj
zi − zj

+
i−1∑
j=0

Tji
zi

zi − zj


+

r∑
i=1

z2
0∆i

(z0 − zi)2 + ∆r+1

χ(2,1)
r+3 (z), (4.2.26)

and the third order BPZ equation (4.2.17) becomes

0 =
 1

4b2

∇0 + L0 +
r∑
j=1

T0j
zj

z0 − zj

3

−
( 3

4b2 + 1
)∇0 + L0 +

r∑
j=1

T0j
zj

z0 − zj

2

+
(

1
b2 + b2 + 3

2 +
r∑
i=1

z2
0∆i

(z0 − zi)2 + ∆r+1

)∇0 + L0 +
r∑
j=1

T0j
zj

z0 − zj


+

r∑
i=1

z0

z0 − zi

∇0 + L0 +
r∑
j=1

T0j
zj

z0 − zj

∇i + Li +
r∑

j=i+1
Tij

zj
zi − zj

+
i−1∑
j=0

Tji
zi

zi − zj


−
(
b2 + 1

2

) r∑
i=1

z0 (2z0 − zi)
(z0 − zi)2

∇i + Li +
r∑

j=i+1
Tij

zj
zi − zj

+
i−1∑
j=0

Tji
zi

zi − zj


−
(
2b2 + 1

)( r∑
i=1

z3
0∆i

(z0 − zi)3 + ∆r+1

)χ(3,1)
r+3 (z), (4.2.27)

where we denote

∇i = zi
∂

∂zi
. (4.2.28)

We should determine Li and Tij when we identify the BPZ equations with the differential

equations derived in the corresponding gauge theories.

4.3 AGT corresponence with surface defects

In this section, we review some results regarding the AGT correspondence of four-dimensional

N = 2 quiver gauge theories in the Ω-background [63]. We also discuss imposing constraints
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on the gauge theory parameters, which in special cases generate surface defects in four-

dimensional theory as discussed in section 2.3. The insertion of surface defects correspond

to the insertion of degenerate fields in the CFT side [60].

4.3.1 Dictionary of AGT correspondence

It is useful to summarize the dictionary of AGT correspondence in order to make this chapter

self-contained. The main statement of the AGT correspondence is an identification between

the (r+ 3)-point correlation function in the Liouville field theory with the partition function

of superconformal quiver gauge theory with gauge group SU(2)r.

Let us decompose the U(2) gauge group into the U(1) part and the SU(2) part,

āi = 1
2

2∑
α=1

ai,α, a′i,α = ai,α − āi. (4.3.1)

From the point of view of an SU(2) linear quiver gauge theory, the masses of the anti-

fundamental, fundamental and bifundamental hypermultiplets are given by

µ̄α = a0,α − ā1, µα = ar+1,α − ār, , µi,i+1 = āi+1 − āi, i = 1, · · · , r − 1. (4.3.2)

If we identify the Liouville parameter b with the Ω-deformation parameters ε1, ε2 as

b2 = ε1

ε2
, (4.3.3)

and relate the conformal dimensions ∆i with the Coulomb parameters a in the following

way,

∆−1 = ε2 − (a0,1 − a0,2)2

4ε1ε2
, ∆r+1 = ε2 − (ar+1,1 − ar+1,2)2

4ε1ε2
,

∆i = (āi+1 − āi) (āi − āi+1 + ε)
4ε1ε2

, i = 0, · · · , r, (4.3.4)
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then we have

〈
V∆−1(∞)

r∏
i=0

V∆i
(zi)V∆r+1(0)

〉

= f (∆−1, · · · ,∆r+1)
∣∣∣∣∣
(
z

∆−1−∆0− ε2
4ε1ε2

0

)(
r−1∏
i=1

z−∆i
i

)(
z

ε2
4ε1ε2

−∆r−∆r+1
r

)∣∣∣∣∣
2

×
∫ r∏

i=1
[da′i]

∣∣∣∣∣ Z (a; z; ε1, ε2)
ZU(1) (a; z; ε1, ε2)

∣∣∣∣∣
2

, (4.3.5)

where the prefactor f (∆−1, · · · ,∆r+1) is independent of z, and ZU(1) (a; z; ε1, ε2) is the U(1)

part of the partition function.

4.3.2 Degenerate partition function

In section 2.1 we assumed that the Coulomb moduli a are generic. Then the instanton

partition function (2.1.31) contains an infinite sum over collections of Young diagrams Y .

However, we can tune some of the parameters to special values so as to force some of Y (i,α)

to have a constrained shape [32]. For example, we can adjust

a0,α =


a1,1 + (m− 1)ε1 + (n− 1)ε2, α = 1,

a1,α, α 6= 1,
(4.3.6)

where m,n ∈ Z+. Since the measure of the instanton partition function contains a factor

∏
�=(u,v)∈Y (1,α)

(a0,α − a1,α − ε1 (u− 1)− ε2 (v − 1)) , (4.3.7)

the contribution to the instanton partition function vanishes unless the Young diagrams

Y (1,α) = ∅ for α 6= 1, and � = (m,n) /∈ Y (1,1). Hence the number of Young diagrams we

need to sum over reduces drastically. In particular, when m > 1 and n = 1, the Young

diagram Y (1,1) can have at most m − 1 rows. According to the AGT dictionary, (4.3.6)

corresponds to a degenerate field with the conformal dimension ∆(m,n).
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4.4 Superconformal theory with gauge group U(N)

In this section, we take a simple example to illustrate the basic idea of deriving the dif-

ferential equation on the instanton partition function at a special point in the parameter

space. We consider the U(N) gauge theory with N fundamental hypermultiplets and N

anti-fundamental hypermultiplets for general N ≥ 2. At the degenerate point of parameter

space,

a0,α =


a1,1 + ε1, α = 1,

a1,α, α 6= 1,
(4.4.1)

the instanton partition function is only summed over the Young diagram Y (1,1) which has

only one row,

Y (1) =
 (1, 1) (1, 2) . . . (1, k1) , ∅, · · · , ∅

 . (4.4.2)

Therefore, we can label the Young diagram Y (1,1) by the instanton charge k1.

In this case, we face no obstruction in proving directly that the instanton partition

function is a (generalized) hypergeometric function from the instanton partition function.

The instanton partition function is

Z instanton =
∞∑
k1=0

qk1
1
k1!

∏N
α=1

(
a0,1−a2,α+ε2

ε2

)k1

∏N
α=2

(
a0,1−a0,α+ε2

ε2

)k1
(4.4.3)

= NFN−1

((
a0,1 − a2,α + ε2

ε2

)N
α=1

;
(
a0,1 − a0,α + ε2

ε2

)N
α=2

; q1

)
, (4.4.4)

which is a (generalized) hypergeometric function, and satisfies the (generalized) hypergeo-

metric differential equation (see the Appendix B for details),
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0 =
q1

N∏
α=1

(
q1

∂

∂q1
+ a0,1 − a2,α + ε2

ε2

)

−q1
∂

∂q1

N∏
α=2

(
q1

∂

∂q1
+ a0,1 − a0,α + ε2

ε2
− 1

)Z instanton. (4.4.5)

Now we would like to derive the above differential equation using the non-perturbative

Dyson-Schwinger equations. There is only one fundamental qq-character in this theory,

X1(x) = Y1(x+ ε) + q1
Y0(x)Y2(x+ ε)

Y1(x) . (4.4.6)

At the degenerate point (4.4.1), the value Y1(x)[Y ] simplifies

Y1(x)[Y ] =
[
N∏
α=1

(x− a1,α)
]  k1∏

v=1

(x− a1,1 − ε2 (v − 1)− ε1) (x− a1,1 − ε2v)
(x− a1,1 − ε2 (v − 1)) (x− a1,1 − ε2v − ε1)


=

[
N∏
α=1

(x− a1,α)
] [

(x− a1,1 − ε1) (x− a1,1 − ε2k1)
(x− a1,1) (x− a1,1 − ε2k1 − ε1)

]

=
[
(x− a1,1 − ε1)

N∏
α=2

(x− a1,α)
] [

x− a1,1 − ε2k1

x− a1,1 − ε2k1 − ε1

]

= Y0(x)x− a0,1 + ε1 − ε2k1

x− a0,1 − ε2k1
. (4.4.7)

Accordingly, X1(x)[Y ] becomes

X1(x)[Y ] = Y0(x+ ε)
(

1 + ε1

x+ ε− a0,1 − ε2k1

)

+q1Y2(x+ ε)
(

1− ε1

x− a0,1 + ε1 − ε2k1

)
. (4.4.8)

The x−1 coefficient of the large x expansion of X1(x)[Y ] is given by

X
(−1)
1 [Y ] = ε1Y0(a0,1 + ε2k1)− q1ε1Y2(a0,1 + ε2k1 + ε2). (4.4.9)

67



Using the relation

〈kp1〉 = Z instanton
(
a; ~Y ; ε1, ε2

)−1 ∑
~Y={Y (α)}

qk1
1 Z instanton

(
a; ~Y ; ε1, ε2

)
kp1

= Z instanton
(
a; ~Y ; ε1, ε2

)−1
(
q1

∂

∂q1

)p
Z instanton (a; q1; ε1, ε2) , (4.4.10)

the equation 〈X(−1)
1 〉 = 0 becomes

0 =
[
N∏
α=1

(
a0,1 + ε2q1

∂

∂q1
− a0,α

)
− q1

N∏
α=1

(
a0,1 + ε2q1

∂

∂q1
+ ε2 − a2,α

)]
Z instanton, (4.4.11)

which coincides with the differential equation (4.4.5).

4.5 Superconformal linear quiver gauge theories

In this section, we would like to derive the differential equation on the instanton partition

function of the superconformal linear quiver gauge theory using the non-perturbative Dyson-

Schwinger equations. Recall that the fundamental qq-characters of the Ar-linear quiver gauge

theory are given as (2.2.7). From the non-perturbative Dyson-Schwinger equation for these

qq-characters,

[x−n]
〈
Xl(x)

〉
= 0, n ≥ 1, l = 1, · · · , r, (4.5.1)

we derive the differential equations that the degenerate partition functions satisfy.
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4.5.1 Large x expansion of fundamental Y-observables

The first step is to compute the large x expansion of the Y-observables,

Yi(x)[Y ] = xN exp
 N∑
α=1

log
(

1− ai,α
x

)
+

N∑
α=1

∑
�∈Y (i,α)

(
1− ĉ�+ε1

x

) (
1− ĉ�+ε2

x

)
(
1− ĉ�

x

) (
1− ĉ�+ε

x

)


= xN exp
(
−
∞∑
n=1

Ci,n[Y ]
nxn

)
, (4.5.2)

where

Ci,n[Y ] = TrΦn
i (0)[Y ]

=
N∑
α=1

ani,α +
∑

�∈Y (i,α)

[(ĉ� + ε1)n + (ĉ� + ε2)n − ĉ�n − (ĉ� + ε)n]
 . (4.5.3)

In particular, we have

Ci,1[Y ] =
N∑
α=1

ai,α,

Ci,2[Y ] =
(

N∑
α=1

a2
i,α

)
− 2ε1ε2ki, (4.5.4)

We also have the similar expression for Yi(x+ ε)[Y ],

Yi(x+ ε)[Y ] =
N∏
α=1

(x− (ai,α − ε))
∏

�∈Y (i,α)

(x− ĉ� + ε1) (x− ĉ� + ε2)
(x− ĉ�) (x− ĉ� + ε)

= xN exp
(
−
∞∑
n=1

C ′i,n[Y ]
nxn

)
, (4.5.5)

where

C ′i,n[Y ] =
N∑
α=1

(ai,α − ε)n +
∑

�∈Y (i,α)

[(ĉ� − ε1)n + (ĉ� − ε2)n − ĉ�n − (ĉ� − ε)n]
 . (4.5.6)
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Therefore, we obtain the large x expansion of Ξi(x)[Y ],

Ξi(x)[Y ] = Yi+1(x+ ε)[Y ]
Yi(x)[Y ] = 1 +

∞∑
n=1

ζi,n[Y ]
xn

. (4.5.7)

The first two terms of ζi,n are given explicitly as

ζi,1 = A(1)
i ,

ζi,2 = A(2)
i − ε1ε2 (ki − ki+1) , (4.5.8)

where

A(1)
i =

N∑
α=1

(ai,α − ai+1,α + ε) ,

A(2)
i = 1

2

N∑
α=1

[
a2
i,α − (ai+1,α − ε)2

]
+ 1

2
(
A(1)
i

)2
(4.5.9)

4.5.2 Generating function of the fundamental qq-characters

After expanding the Y-observables, we would like to calculate the large x expansion of the

qq-characters. In order to deal with all of the fundamental qq-characters at the same time,

we introduce the generating function

Gr(x; t) = Y0(x)−1∆−1
r

r+1∑
`=0

z0z1 · · · z`−1t
`X` (x− ε(1− `))

= ∆−1
r

∑
I⊂[0,r]

[(∏
i∈I
tzi

)∏
i∈I

Ξi (x+ εhI(i))
]
, (4.5.10)

where

∆r =
∑

I⊂[0,r]

(∏
i∈I
tzi

)
=

r∏
i=0

(1 + tzi) . (4.5.11)
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In the following, we would like to sum over I ⊂ [0, r] to obtain the large x expansion of

Gr(x; t),

Gr(x; t) =
∞∑
n=0

G(−n)
r (t)
xn

. (4.5.12)

Let us define

ui = tzi
1 + tzi

. (4.5.13)

When r = 0, G0(t) is given by a sum over I = ∅ and I = {0},

G0(x; t) = 1
1 + tz0

+ tz0

1 + tz0
Ξ0(x) = 1 +

∞∑
n=1

u0ζ0,n

xn
. (4.5.14)

Hence,

G
(0)
0 (t) = 1, G

(−n)
0 (t) = u0ζ0,n, n ∈ Z+. (4.5.15)

For general r ≥ 1, we can compute the value of the generating function (4.5.10) using

the recurrence relation between Gr(x; t) and Gr−1 (x; t). We divide the sum over I ⊂ [0, r]

into two classes: r /∈ I and r ∈ I,

Gr(x; t) = 1
1 + tzr

∆−1
r−1

∑
I′⊂[0,r−1]

∏
i∈I′

tzi

 ∏
i∈I′

Ξi (x+ εhI′(i))


+ tzr
1 + tzr

∆−1
r−1

∑
I′⊂[0,r−1]

∏
i∈I′

tzi

Ξr (x+ ε|I ′|)
∏
i∈I′

Ξi (x+ εhI′(i))


= Gr−1(x; t) + ur∆−1
r−1

(
Ξr

(
x+ εt

∂

∂t

)
− 1

)
(∆r−1Gr−1(x; t))

= Gr−1(x; t) + ur∆−1
r−1

∞∑
n=1

ζr,n(
x+ εt ∂

∂t

)n (∆r−1Gr−1(x; t))

= G0(x; t) +
r∑
j=1

uj∆−1
j−1

∞∑
n=1

ζj,n(
x+ εt ∂

∂t

)n (∆j−1Gj−1(x; t)) . (4.5.16)
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Hence, we obtain the recursive relations,

G(0)
r (t) = G

(0)
0 (t) = 1, (4.5.17)

G(−1)
r (t) =

r∑
j=0

ujζj,1, (4.5.18)

G(−2)
r (t) =

r∑
j=0

ujζj,2 +
r∑
j=1

ujζj,1G
(−1)
j−1 (t)

−ε
r∑
j=1

ujζj,1∆−1
j−1t

∂

∂t
∆j−1, (4.5.19)

G(−3)
r (t) =

r∑
j=0

ujζj,3 +
r∑
j=1

uj
[
ζj,1G

(−2)
j−1 (t) + ζj,2G

(−1)
j−1 (t)

]

−ε
r∑
j=1

uj∆−1
j−1

[
ζj,1t

∂

∂t

(
∆j−1G

(−1)
j−1 (t)

)
+ 2ζj,2t

∂

∂t
∆j−1

]

+ε2
r∑
j=1

ujζj,1∆−1
j−1

(
t
∂

∂t

)2

∆j−1, (4.5.20)

G(−4)
r (t) =

r∑
j=0

ujζj,4 +
r∑
j=1

uj
[
ζj,1G

(−3)
j−1 (t) + ζj,2G

(−2)
j−1 (t) + ζj,3G

(−1)
j−1 (t)

]

−ε
r∑
j=1

uj∆−1
j−1

[
ζj,1t

∂

∂t

(
∆j−1G

(−2)
j−1 (t)

)
+ 2ζj,2t

∂

∂t

(
∆j−1G

(−1)
j−1 (t)

)
+ 3ζj,3t

∂

∂t
∆j−1

]

+ε2
r∑
j=1

uj∆−1
j−1

ζj,1
(
t
∂

∂t

)2 (
∆j−1G

(−1)
j−1 (t)

)
+ 3ζj,2

(
t
∂

∂t

)2

∆j−1


−ε3

r∑
j=1

ujζj,1∆−1
j−1

(
t
∂

∂t

)3

∆j−1. (4.5.21)

We further introduce the notation

Ur [s1, s2, · · · , s`] ≡
∑

0≤i1<···<i`≤r

∏̀
n=1

(uinζin,sn) , (4.5.22)

where [s1, · · · , s`] is a sequence of non-negative integers, and we adopt the convention that
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ζi,0 = 1. We have the following useful relations from the definition

t
∂

∂t
∆r = ∆rUr[0], (4.5.23)

t
∂

∂t
(∆rUr[s1, · · · , s`]) = ∆r

(
`Ur[s1, · · · , s`] + U⊕r [s1, · · · , s`]

)
, (4.5.24)

r∑
j=1

ujζj,mUj−1[s1, · · · , s`] = Ur [s1, s2, · · · , s`,m] , (4.5.25)

where

U⊕r [s1, · · · , s`] ≡ Ur[0, s1, · · · , s`] + Ur[s1, 0, · · · , s`] + · · ·+ Ur[s1, · · · , s`, 0]. (4.5.26)

We also have

∆−1
r t

∂

∂t
∆r = Ur[0], (4.5.27)

∆−1
r

(
t
∂

∂t

)2

∆r = Ur[0] + 2Ur[0, 0], (4.5.28)

∆−1
r

(
t
∂

∂t

)3

∆r = Ur[0] + 6Ur[0, 0] + 6Ur[0, 0, 0], (4.5.29)

73



After solving the recurrence relations, the first few terms of G(−n)
r (t) can be written as

G(0)
r (t) = 1, (4.5.30)

G(−1)
r (t) = Ur[1], (4.5.31)

G(−2)
r (t) = Ur[2] + Ur[1, 1]− εUr[0, 1], (4.5.32)

G(−3)
r (t) = Ur[3] + Ur[2, 1] + Ur[1, 2]− ε (Ur[1, 1] + 2Ur[0, 2]) + ε2Ur[0, 1]

+Ur[1, 1, 1]− ε (2Ur[0, 1, 1] + Ur[1, 0, 1]) + 2ε2Ur[0, 0, 1], (4.5.33)

G(−4)
r (t) = Ur[4] + Ur[1, 3] + Ur[2, 2] + Ur[3, 1]

−ε (Ur[2, 1] + 2Ur[1, 2] + 3Ur[0, 3]) + ε2 (Ur[1, 1] + Ur[0, 2])− ε3Ur[0, 1]

+Ur[2, 1, 1] + Ur[1, 2, 1] + Ur[1, 1, 2]

−ε (3Ur[1, 1, 1] + 3Ur[0, 2, 1] + 3Ur[0, 1, 2] + 2Ur[1, 0, 2] + Ur[2, 0, 1])

+ε2 (6Ur[0, 1, 1] + 3Ur[1, 0, 1] + 6Ur[0, 0, 2])− 6ε3Ur[0, 0, 1]

+Ur[1, 1, 1, 1]− ε (3Ur[0, 1, 1, 1] + 2Ur[1, 0, 1, 1] + Ur[1, 1, 0, 1])

+ε2 (6Ur[0, 0, 1, 1] + 3Ur[0, 1, 0, 1] + 2Ur[1, 0, 0, 1])− 6ε3Ur[0, 0, 0, 1].(4.5.34)

In this chapter, we are interested in the special case N = 2, with Y0(x) = x2 −

(a0,1 + a0,2)x + a0,1a0,2. We can deduce from the non-perturbative Dyson-Schwinger equa-

tions (4.5.1) that 〈Y0(x)Gr(x; t)〉 is a polynomial in x for arbitrary t. In particular, we have

0 = 〈G(−3)
r (t)〉 − (a0,1 + a0,2) 〈G(−2)

r (t)〉+ a0,1a0,2〈G(−1)
r (t)〉

= 〈Ur[3]〉 − (a0,1 + a0,2) 〈Ur[2]〉+ a0,1a0,2〈Ur[1]〉

+〈Ur[2, 1]〉+ 〈Ur[1, 2]〉 − 2ε〈Ur[0, 2]〉 − (a0,1 + a0,2 + ε) 〈Ur[1, 1]〉+ ε (a0,1 + a0,2 + ε) 〈Ur[0, 1]〉

+〈Ur[1, 1, 1]〉 − ε〈Ur[1, 0, 1]〉 − 2ε〈Ur[0, 1, 1]〉+ 2ε2〈Ur[0, 0, 1]〉, (4.5.35)
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and

0 = 〈G(−4)
r (t)〉 − (a0,1 + a0,2) 〈G(−3)

r (t)〉+ a0,1a0,2〈G(−2)
r (t)〉

= 〈Ur[4]〉 − (a0,1 + a0,2) 〈Ur[3]〉+ a0,1a0,2〈Ur[2]〉

+〈Ur[1, 3]〉+ 〈Ur[3, 1]〉 − 3ε〈Ur[0, 3]〉+ 〈Ur[2, 2]〉

− (a0,1 + a0,2 + ε) 〈Ur[2, 1]〉 − (a0,1 + a0,2 + 2ε) 〈Ur[1, 2]〉+ ε (ε+ 2a0,1 + 2a0,2) 〈Ur[0, 2]〉

+ (a0,1 + ε) (a0,2 + ε) 〈Ur[1, 1]〉 − ε (a0,1 + ε) (a0,2 + ε) 〈Ur[0, 1]〉

+〈Ur[2, 1, 1]〉+ 〈Ur[1, 2, 1]〉+ 〈Ur[1, 1, 2]〉

−ε〈Ur[2, 0, 1]〉 − 2ε〈Ur[1, 0, 2]〉 − 3ε〈Ur[0, 2, 1]〉 − 3ε〈Ur[0, 1, 2]〉+ 6ε2〈Ur[0, 0, 2]〉

− (a0,1 + a0,2 + 3ε) 〈Ur[1, 1, 1]〉+ ε (a0,1 + a0,2 + 3ε) 〈Ur[1, 0, 1]〉

+2ε (a0,1 + a0,2 + 3ε) 〈Ur[0, 1, 1]〉 − 2ε2 (a0,1 + a0,2 + 3ε) 〈Ur[0, 0, 1]〉

+〈Ur[1, 1, 1, 1]〉 − ε (3〈Ur[0, 1, 1, 1]〉+ 2〈Ur[1, 0, 1, 1]〉+ 〈Ur[1, 1, 0, 1]〉)

+ε2 (6〈Ur[0, 0, 1, 1]〉+ 3〈Ur[0, 1, 0, 1]〉+ 2〈Ur[1, 0, 0, 1]〉)− 6ε3〈Ur[0, 0, 0, 1]〉. (4.5.36)

By taking the residue of (4.5.35) at t = −z−1
i , we have

0 = 〈ζi,3〉+
−a0,1 − a0,2 +

i−1∑
j=0

zj
zj − zi

(
A(1)
j − 2ε

)
+

r∑
j=i+1

zj
zj − zi

A(1)
j

 〈ζi,2〉+ a0,1a0,2A(1)
i

+
i−1∑
j=0

zj
zj − zi

[
A(1)
i 〈ζj,2〉 − (a0,1 + a0,2 + ε)

(
A(1)
j − ε

)
A(1)
i

]

+
r∑

j=i+1

zj
zj − zi

[(
A(1)
i − 2ε

)
〈ζj,2〉 − (a0,1 + a0,2 + ε)

(
A(1)
i − ε

)
A(1)
j

]
+

∑
0≤i1<i2<i

zi1zi2
(zi1 − zi) (zi2 − zi)

(
A(1)
i1 − 2ε

) (
A(1)
i2 − ε

)
A(1)
i

+
i−1∑
i1=0

r∑
i2=i+1

zi1zi2
(zi1 − zi) (zi2 − zi)

(
A(1)
i1 − 2ε

) (
A(1)
i − ε

)
A(1)
i2

+
∑

i<i1<i2≤r

zi1zi2
(zi1 − zi) (zi2 − zi)

(
A(1)
i − 2ε

) (
A(1)
i1 − ε

)
A(1)
i2 . (4.5.37)

75



In particular, when j = 0, we have

0 = 〈ζ0,3〉 −
(
a0,1 + a0,2 +

r∑
i=1

zi
z0 − zi

A(1)
i

)
〈ζ0,2〉+ a0,1a0,2A(1)

0

−
r∑
i=1

zi
z0 − zi

[(
A(1)

0 − 2ε
)
〈ζi,2〉 − (a0,1 + a0,2 + ε)

(
A(1)

0 − ε
)
A(1)
i

]
+

∑
1≤i1<i2≤r

zi1zi2
(z0 − zi1) (z0 − zi2)

(
A(1)

0 − 2ε
) (
A(1)
i1 − ε

)
A(1)
i2 . (4.5.38)

We also need the equation obtained by taking residue of (4.5.36) at t = −z−1
0 ,

0 = 〈ζ0,4〉 −
(
a0,1 + a0,2 +

r∑
i=1

zi
z0 − zi

A(1)
i

)
〈ζ0,3〉+ a0,1a0,2〈ζ0,2〉

−
r∑
i=1

zi
z0 − zi

 (A(1)
0 − 3ε

)
〈ζi,3〉+ 〈ζ0,2ζi,2〉 − (a0,1 + a0,2 + ε)A(1)

i 〈ζ0,2〉

+
(
ε (ε+ 2a0,1 + 2a0,2)− (a0,1 + a0,2 + 2ε)A(1)

0

)
〈ζi,2〉+ (a0,1 + ε) (a0,2 + ε)

(
A(1)

0 − ε
)
A(1)
i


+

∑
1≤i1<i2≤r

zi1zi2
(z0 − zi1) (z0 − zi2)

 (A(1)
i1 − ε

)
A(1)
i2 〈ζ0,2〉+

(
A(1)

0 − 3ε
)
A(1)
i2 〈ζi1,2〉

+
(
A(1)

0 − 3ε
) (
A(1)
i1 − 2ε

)
〈ζi2,2〉 − (a0,1 + a0,2 + 3ε)

(
A(1)

0 − 2ε
) (
A(1)
i1 − ε

)
A(1)
i2


−

∑
1≤i1<i2<i3≤r

zi1zi2zi3
(z0 − zi1) (z0 − zi2) (z0 − zi3)

(
A(1)

0 − 3ε
) (
A(1)
i1 − 2ε

) (
A(1)
i2 − ε

)
A(1)
i3 . (4.5.39)

4.5.3 Derivation of the differential equations

Now we are ready to derive the differential equations satisfied by the instanton partition

function using the non-perturbative Dyson-Schwinger equations. The key point is that ζ0,n

take special values at a degenerate point in the parameter space.

4.5.3.1 Second order differential equation

In order to derive a second order differential equation, we should tune the parameters in the

following way,

a0,1 = a1,1 + ε1, a0,2 = a1,2. (4.5.40)
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The configuration of the gauge fields are constrained so that the Young diagram Y (1,1) has

only one row and Y (1,2) = ∅,

Y (1) =
 (1, 1) (1, 2) . . . (1, k1) , ∅

 . (4.5.41)

Hence, the Young diagram Y (1,1) is completely determined by the instanton charge k1, and

Ξ0(x)[k1] = Y1(x+ ε)[k1]
Y0(x)

= (x+ ε− a0,1) (x+ ε− a0,2)
(x− a0,1) (x− a0,2)

x− a0,1 + 2ε1 − ε2 (k1 − 1)
x− a0,1 + ε1 − ε2 (k1 − 1)

= 1 +
∞∑
n=1

ζ0,n[k1]
xn

, (4.5.42)

Which gives

ζ0,1[k1] = 3ε1 + 2ε2,

ζ0,2[k1] = (2ε1 + ε2) a0,1 + εa0,2 + ε (2ε1 + ε2) + ε1ε2k1,

ζ0,3[k1] = (2ε1 + ε2) a2
0,1 + ε (2ε1 + ε2) a0,1 + εa2

0,2 + ε (2ε1 + ε2) a0,2

+2ε1ε2a0,1k1 + ε1ε
2
2k

2
1. (4.5.43)

Hence, from (4.5.38), we have

0 = ε1ε2 (a0,1 − a0,2) 〈k1〉+ ε1ε
2
2〈k2

1〉

−
r∑
i=1

zi
z0 − zi

ε1
[
−a0,2A(1)

i + ε2A(1)
i 〈k1〉+A(2)

i − ε1ε2〈ki − ki+1〉
]

+
∑

1≤i1<i2≤r

zi1zi2
(z0 − zi1) (z0 − zi2)ε1

(
A(1)
i1 − ε

)
A(1)
i2 . (4.5.44)

Using

Z instanton〈k1〉 = −∇0Z instanton, Z instanton〈ki − ki+1〉 = ∇iZ instanton, (4.5.45)
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we obtain a differential equation on the instanton partition function,

0 =
ε2

2∇2
0 − ε2

(
a0,1 − a0,2 −

r∑
i=1

zi
z0 − zi

A(1)
i

)
∇0

+
r∑
i=1

zi
z0 − zi

[
a0,2A(1)

i −A
(2)
i + ε1ε2∇i

]

+
∑

1≤i1<i2≤r

zi1zi2
(z0 − zi1) (z0 − zi2)

(
A(1)
i1 − ε

)
A(1)
i2

Z instanton. (4.5.46)

This is the equation that was derived in [32] to confirm the BPS/CFT correspondence for

this particular case.

4.5.3.2 Third order differential equation

The derivation can be extended to the next-to-simplest case, as we now explain. To obtain

a third order differential equation, we tune the parameters

a0,1 = a1,1 + 2ε1, a0,2 = a1,2. (4.5.47)

In this case, the configurations of the gauge field are required to satisfy that the Young

diagram Y (1,1) has at most two rows and Y (1,2) = ∅,

Y (1) =


(1, 1) (1, 2) . . . (1, y2) . . . (1, y1)

(2, 1) (2, 2) . . . (2, y2)
, ∅

 , (4.5.48)
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where we denote the number of boxes in the first and the second row of the Young diagram

Y (1,1) as y1 and y2, respectively. The instanton charge k1 = y1 + y2. Then, we have

Ξ0(x)[Y ] = Y1(x+ ε)[Y ]
Y0(x)

= (x+ ε− a0,1) (x+ ε− a0,2)
(x− a0,1) (x− a0,2)

×x+ ε− a0,1 + 2ε1 − ε2y1

x+ ε− a0,1 + ε1 − ε2y1

x+ ε− a0,1 + ε1 − ε2y2

x+ ε− a0,1 − ε2y2

= 1 +
∞∑
n=1

ζ0,n[Y ]
xn

. (4.5.49)

We have

ζ0,1 = 4ε1 + 2ε2,

ζ0,2 = (3ε1 + ε2) a0,1 + εa0,2 + ε (3ε1 + ε2) + ε1ε2k1, (4.5.50)

while ζ0,4 are related to ζ0,3 as

ζ0,4 =
(

3a0,1 − 2ε1 − ε2 + 3
2ε2k1

)
ζ0,3 −

1
2ε1ε

3
2k

3
1 −

1
2ε1ε

2
2 (6a0,1 − ε1) k2

1

−ε2

(3
2 (5ε1 + ε2) a2

0,1 + 1
2 (ε1 + 3ε2) (3ε1 + ε2) a0,1 + 3

2εa
2
0,2 + 1

2ε (7ε1 + 3ε2) a0,2

)
k1

−2 (3ε1 + ε2) a3
0,1 − ε2 (3ε1 + ε2) a2

0,1 + ε (2ε1 + ε2) (3ε1 + ε2) a0,1 − 3εa0,1a
2
0,2

−2ε (3ε1 + ε2) a0,1a0,2 + εa3
0,2 + ε (5ε1 + 2ε2) a0,2 + ε (2ε1 + ε2) (3ε1 + ε2) a0,2.(4.5.51)
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Using 4.5.38, (4.5.51) and (4.5.37), we can get rid of all terms with 〈ζ0,3〉, 〈ζ0,4〉 and 〈ζi,3〉 in

(4.5.39), and we obtain a differential equation on the instanton partition funtion

0 =
ε3

2
2 ∇

3
0 + ε2

2
2

(
−3a0,1 + 3a0,2 + ε1 + 3

r∑
i=1

zi
z0 − zi

A(1)
i

)
∇2

0

+ε2

 (a0,1 − a0,2) (a0,1 − a0,2 − ε1)

−
r∑
i=1

zi
z0 − zi

(
2A(2)

i − 2ε1ε2∇i +A(1)
i

(
2a0,1 − 4a0,2 + ε2

2

))

+
r∑
i=1

z2
i

(z0 − zi)2A
(1)
i

(
A(1)
i − ε1 −

ε2

2

)

+2
∑

1≤i1<i2≤r

zi1zi2
(z0 − zi1) (z0 − zi2)

(
2A(1)

i1 − ε
)
A(1)
i2

∇0

−
r∑
i=1

zi
z0 − zi

(2a0,1 − 2a0,2 + ε2)
(
a0,2A(1)

i −A
(2)
i + ε1ε2∇i

)
+

r∑
i=1

z2
i

(z0 − zi)2

(
2A(1)

i − 2ε1 − ε2
) (
a0,2A(1)

i −A
(2)
i + ε1ε2∇i

)

+2
∑

1≤i1<i2≤r

zi1zi2
(z0 − zi1) (z0 − zi2)

 (A(1)
i1 − ε

)
A(1)
i2 (−a0,1 + a0,2 − ε)

+A(1)
i1

(
−A(2)

i2 + a0,2A(1)
i2 + ε1ε2∇i

)
+A(1)

i2

(
−A(2)

i1 + a0,2A(1)
i1 + ε1ε2∇i

) 
+2

∑
1≤i1<i2<i3≤r

zi1zi2zi3
(z0 − zi1) (z0 − zi2) (z0 − zi3)

(
A(1)
i1

(
3A(1)

i2 − ε
)
A(1)
i3 − 2εA(1)

i2 A
(1)
i3

)

+
∑

1≤i1<i2≤r

z2
i1zi2

(z0 − zi1)2 (z0 − zi2)
(
A(1)
i1 − ε

) (
2A(1)

i1 − 2ε1 − ε2
)
A(1)
i2

+
∑

1≤i1<i2≤r

zi1z
2
i2

(z0 − zi1) (z0 − zi2)2

(
A(1)
i1 − ε

)
A(1)
i2

(
2A(1)

i2 − 2ε1 − ε2
)Z instanton.(4.5.52)

4.5.4 Identification with the BPZ equations

The final step is to identify the differential equations we derived in the gauge theory side

with the BPZ equations by solving the undetermined parameters Li and Tij. We find that
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there exists the following solution

L0 = ∆−1 −∆0 −
ε2 − (a1,1 − a1,2)2

4ε1ε2
,

Li = −∆i −
(ai,1 − ai,2)2

4ε1ε2
+ (ai+1,1 − ai+1,2)2

4ε1ε2
, i = 1, · · · , r − 1,

Lr = −∆r −∆r+1 + ε2 − (ar,1 − ar,2)2

4ε1ε2
,

Tij =

(
A(1)
i − 2ε

)
A(1)
j

2ε1ε2
. (4.5.53)

With this identification of parameters, we observe the precise agreement between (4.2.26),

(4.2.27) and (4.5.46), (4.5.52). It is easy to check that (4.2.24) is also satisfied. Notice that

the prefactor can also be written as

(
r∏
i=0

zLii

) ∏
0≤i<j≤r

(
1− zj

zi

)Tij
=

(
z

∆−1−∆0− ε2
4ε1ε2

0

)(
r−1∏
i=1

z−∆i
i

)(
z

ε2
4ε1ε2

−∆r−∆r+1
r

)

×
r∏
i=1

q
−

(ai,1−ai,2)2

4ε1ε2
i

∏
0≤i<j≤r

(
1− zj

zi

) 2(āi−āi+1)(āj−āj+1+ε)
ε1ε2

.(4.5.54)

which give the expected tree-level partition function and the U(1) part of the partition func-

tion (see the Appendix C for details). Therefore, we confirm the BPS/CFT correspondence.

4.6 Discussion

In this chapter, we perform the derivation of the differential equation on the instanton parti-

tion function at a special point in the parameter space using the method of non-perturbative

Dyson-Schwinger equations, and identify the differential equations with the BPZ equations

in the Liouville field theory. Therefore, we confirm the main assertion of the BPS/CFT

correspondence.

There are several obvious generalizations of the contents of this chapter. First of all, it is

natural to consider the general degenerate fields with conformal dimension ∆(m,n), and derive
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the differential equation of order mn on the instanton partition function. The computation

will be unavoidably lengthy, but the basic idea is the same. To simplify the derivation,

it is sometimes useful to consider the non-perturbative Dyson-Schwinger equations of both

fundamental and non-fundamental qq-characters.

We can also generalize the discussion to the U(N) superconformal linear quiver gauge

theories. However, from the knowledge of corresponding Toda field theory, we do not expect

to obtain a differential equation on the instanton partition function. Instead, the equations

derived from the non-perturbative Dyson-Schwinger equations will generally relate the in-

stanton partition function with expectation values of certain BPS observables. Only if we

take the Nekrasov-Shatashvili limit can we get an differential equation on the instanton

partition function. The non-conformal A2-quiver SU(3) gauge theory and the degenerate

irregular conformal block in the A2 Toda field theory were studied in [2] along this direction.

The detailed discussion on general quiver will appear in a separate work.

In spite of the successful application of the non-perturbative Dyson-Schwinger equations

to derive the BPZ equations, there are still some open problems. From the point of view of

conformal field theory, it is equally good to choose any one of the fields to be degenerate, and

we have the BPZ equation for every choice. In the corresponding four-dimensional theory,

we need to tune the parameters in the following way for arbitrary i = 0, · · · , r,

ai,α =


ai+1,1 + (m− 1)ε1 + (n− 1)ε2, α = 1,

ai+1,α, α 6= 1.
(4.6.1)

However, we do not get the expected constraints of the from (4.6.1). For example, the

constraint is Y (i+1,α) ⊂ Y (i,α) rather than Y (i+1,α) = Y (i,α) for α 6= 1. This problem is

associated with the annoying U(1) factor in the AGT dictionary. We may have to figure

out how to factor out the U(1) factor at the level of the measure Z instanton (a;Y ; ε1, ε2). A

progress in this direction will also lead us immediately to a derivation of the BPZ equation
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for the conformal field theory on a torus.
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Chapter 5

Opers, surface defects, and

Yang-Yang functional

5.1 Introduction

The dynamics of supersymmetric gauge theories is a rewarding research subject. The exact

low-energy description of the four-dimensional gauge theories with N = 2 supersymmetry

was proposed in [24, 25] for the SU(2) theories with various matter multiplets. The proposal

has been generalized in the subsequent works, allowing for different gauge groups and matter

representations. In many cases the Coulomb branch of the moduli space of vacua is a family of

algebraic curves (called the Seiberg-Witten curves) equipped with meromorphic differential.

The periods of the differential compute the central charges of the supersymmetry algebra

determining the masses of the BPS particles at this vacuum. The microscopic study of these

theories using direct quantum field theory methods and supersymmetric localization was

initiated in [6], leading to the exact computation of the partition functions of a deformed

version of the theory, the realization they coincide with the partition functions of some two

dimensional chiral theory, and connecting that theory to theM - and string theory fivebranes

[6, 80, 19, 33, 63].
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The method of [6] reduces the computation of the path integral to a problem of counting

fixed points under the action of the global symmetry group on a finite dimensional BPS

field configurations. More specifically, the partition function can be written as a product of

analytic functions,

Z(a,m, ε, q) = Zclassical(a, ε, q) Z1-loop(a,m, ε) Zinst(a,m, ε, q). (5.1.1)

Here q schematically denotes the gauge couplings of the theory, while a, m, and ε = (ε1, ε2)

denote the equivariant parameters for the group of global gauge symmetry, the group of

flavor symmetry, and the group of Lorentz symmetry, respectively. ε1,2 are also called Ω-

deformation parameters (See appendix 2.1 for a more detailed review of the N = 2 partition

functions). The effective prepotential is then obtained by taking the limit (while keeping

a,m, q generic)

F(a,m, q) = lim
ε1,ε2→0

ε1ε2 logZ(a,m, ε, q), (5.1.2)

which provides the direct microscopic derivation of the results in [24, 25] (either using the

limit shape approach [7], or the blowup equations [81]).

Meanwhile, it was observed in [26, 27, 36] that the Coulomb branch of vacua of a N = 2

theory canonically has a structure of a base B of an algebraic integrable system. The full

structure is revealed when the theory is compactified [82] on a circle S1
R [35]. The moduli

space of the effective N = 4, d = 3 theory is a hyper-Kähler manifold which metrically

collapses to the Coulomb moduli space B of the four-dimensional theory in the limit R→∞

[82]. In this limit, one of the complex structures, say, I is singled out, with respect to

which we have a holomorphic symplectic form ΩI . For finite R, the moduli space is a ΩI-

Lagrangian fibration over B by abelian varieties. More specifically, the Coulomb branch B

is parametrized by the expectation values uk = 〈Ok〉 of chiral observables (these are local

operators anticommuting with the four nilpotent supercharges of one Lorentz chirality).
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These observables carry over to the theory with finite R. We define the Hamiltonians to

be the I-holomorphic functions on the moduli space of the compactified theory by

Hk = 〈Ok〉 , k = 1, · · · , dimB, (5.1.3)

and it is not difficult to show that these functions Poisson-commute with respect to the Ω−1
I .

5.1.1 Quantization via gauge theory:

Effective twisted superpotential as Yang-Yang functional

The remarkable correspondence between the gauge theory and integrable system was pro-

moted to the quantum level in [28], by placing the gauge theory into the realm of Bethe/gauge

correspondence [29, 30]. We consider the theory in the Ω-background affecting two out of

four dimensions of spacetime. Equivalently, we take the Nekrasov-Shatashvili limit (ε1 =

~ 6= 0, ε2 → 0) of the general Ω-background, so that the theory retains the two-dimensional

N = (2, 2) supersymmetry. The effective action includes the twisted F -term given by the

effective twisted superpotential,

W̃(a,m, ~, q) = lim
ε2→0

ε2 logZ(a,m, ε1 = ~, ε2, q). (5.1.4)

Typically, the theories with four supercharges have isolated vacua. In this way the Ω-

deformation of the four dimensional theory lifts the continuous moduli of vacua. The discrete

set of vacua is in one-to-one correspondence with the solutions to the following equation,

exp ∂W̃(a,m, ~, q)
∂aα

= 1, α = 1, · · · , dimB (5.1.5)

In the context of Bethe/gauge correspondence, this equation is identified with the Bethe

equation which determines the set of joint eigenvalues of the mutually commuting Hamilto-

nians. The Coulomb moduli a in (5.1.5) map to the quasi-momenta, or Bethe roots, of the
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integrable system. The spectrum of the Hamiltonians for a given solution a∗ of (5.1.5) is

computed as

uk(a∗,m, ~, q) = 〈Ok〉ε1=~,ε2=0; m,q
a=a∗ , (5.1.6)

The Ω-deformation parameter ~ plays the role of the Planck constant of the quantum inte-

grable system. The potential W̃ of the Eqs. (5.1.5) determining the Bethe roots is identified

with the Yang-Yang functional [83] in the context of the integrable system. The effective

twisted superpotential, or the Yang-Yang functional, can be written in the following form

according to the decomposition of (5.1.1),

W̃(a,m, ~, q) = W̃classical(a,m, ~) log q + W̃1-loop(a,m, ~) + W̃inst(a,m, ~, q). (5.1.7)

The 1-loop part depends on the regularization scheme but is independent of the gauge

coupling q, while the instanton part is expanded as a series in q. The series can be exactly

computed by taking the Nekrasov-Shatashvili limit of the Young diagram expansion of the

instanton partition function. See appendix 2.1 for more background on the localization

computation of the effective twisted superpotential.

5.1.2 Hitchin systems, flat connections, and opers

In this chapter, we study a specific subclass of the four-dimensional N = 2 theories, which is

called the class S theories [33]. The class S theory T [g,C] (g = ADE) is the four-dimensional

N = 2 superconformal theory engineered by compactifying the 6-dimensional N = (0, 2)

superconformal theory of type g on the Riemann surface C, with a partial topological twist.

As we discussed earlier, the further compactification of T [g,C] on a circle S1 yields a three-

dimensional N = 4 gauge theory whose Coulomb moduli space is the phase space of the

Seiberg-Witten integrable system. By changing the order of compactification on C× S1[84],

it can be verified that the moduli space is equivalent to the moduli space MH(G,C) of the
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Hitchin pairs (P , ϕ), that is, the locus of the Hitchin equations on C [34],

FA + [ϕ, ϕ̄] = 0

∂̄Aϕ = 0, ∂Aϕ̄ = 0.
(5.1.8)

modulo the G-gauge transformations. Here, G is the simple Lie group corresponding to g, A

is a G-connection on the principal G-bundle P → C, and ϕ ∈ Γ(C, KC⊗adP) is the gC-valued

(1,0)-form called the Higgs field. Note that C may have punctures, and the Higgs field is

prescribed to have specific singular behaviors at those punctures. Therefore, the Seiberg-

Witten integrable system for the class S theory T [g,C] is the Hitchin integrable system with

the phase space MH(G,C).

As discussed in [85], we can view the Hitchin moduli spaceMH as a hyper-Kähler quotient

of the affine space W of all the field configurations of (A,ϕ). W is hyper-Kähler with a

natural P1-family of complex structures,

I = aI + bJ + cK, I2 = −1, for a2 + b2 + c2 = 1, (5.1.9)

where we may choose the convention that I, J , and K are the complex structures with the

holomorphic coordinates (Az̄, ϕz), (Az ≡ Az + iϕz,Az̄ ≡ Az̄ + iϕz̄), and (Az + ϕz, Az̄ − ϕz̄),

respectively. The corresponding Kähler forms are

ωI = − 1
4π

∫
C
Tr (δA ∧ δA− δϕ ∧ δϕ),

ωJ = 1
2π

∫
C
|d2z| Tr (δϕz̄ ∧ δAz + δϕz ∧ δAz̄),

ωK = 1
2π

∫
C
Tr (δA ∧ δϕ).

(5.1.10)

Then the Hitchin equations (5.1.8) are just the moment map equations for these Kähler

forms. Therefore MH(G,C) is also hyper-Kähler with the same complex structures and
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Kähler forms. We also define ΩI = ωJ + iωk and its cyclic permutations,

ΩI = 1
π

∫
C
|d2z| Tr (δϕz ∧ δAz̄),

ΩJ = − i

4π

∫
C
Tr (δA ∧ δA),

ΩK = − i

2π

∫
C
|d2z| Tr(δAz̄ ∧ δAz − δϕz̄ ∧ δϕz − δϕz̄ ∧ δAz − δϕz ∧ δAz̄),

(5.1.11)

each of which is a holomorphic symplectic (2,0)-form with respect to the complex structure

I, J , and K, respectively.

The complete integrability of MH(G,C) is manifest when we work in the complex struc-

ture I. We restrict our attention to the case g = AN−1 from now on. Let us define the

Hitchin fibration by the map,

π : MH(AN−1,C) −→ B ≡
N⊕
k=2

H0(C, Kk
C),

(P , ϕ) 7−→
(
Trϕk

)N
k=2

.

(5.1.12)

It is possible to show that under the partial topological twist, the vacuum expectation

values of the chiral observables of U(1) R-charge k exactly span H0(C, Kk
C). Therefore, we

observe that the base B of the Hitchin fibration is precisely the Coulomb moduli space of

T [AN−1,C]. It is clear from the expression for ΩI in (5.1.11) that all the base elements

are mutually Poisson-commuting under ΩI . A dimension counting also shows that dimB =
1
2 dimMH(AN−1,C). Finally, the preimage of u = (uk(z))Nk=2 ∈ B can be shown to be an

abelian variety, the Jacobian Jac(Σu) of the spectral curve

Σu = {x ∈ T ∗C | xN +
N∑
k=2

uk(z)xN−k = 0} ⊂ T ∗C, (5.1.13)

establishing the algebraic integrable structure of MH(AN−1,C). The spectral curve Σu is

identified with the Seiberg-Witten curve of the theory T [AN−1,C].

On the other hand, we can alternatively view MH(AN−1,C) through the complex struc-
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ture J . Up to some stability issue that we do not discuss here, the hyper-Kähler quotient

can be equivalently performed by imposing only the moment map equation for ΩJ ,

F ≡ dA+A ∧A = 0, (5.1.14)

and moding out the GC(= SL(N))-gauge transformations. Thus, the Hitchin moduli space

MH(AN−1,C) is identified with the moduli space of flat SL(N)-connections on C,Mflat(SL(N),C).

It is convenient to use the holonomy map to express Mflat(SL(N),C) as the character variety,

i.e., the representations of the fundamental group of C,

Mflat(SL(N),C) = {ρ ∈ Hom(π1(C), SL(N)) | [ρ(γi)] fixed} /SL(N), (5.1.15)

where {i} enumerates all the punctures in C, γi is the loop encircling the i-th puncture only,

and the bracket [· · · ] denotes the conjugacy class. The Poisson structure induced by ΩJ on

Mflat(SL(N),C) can be explicitly written as the skein-relations on the Wilson loops [86, 87].

To see the quantization at work, the class S theory T [AN−1,C] is subject to the Ω-

deformation in the Nekrasov-Shatashvili limit. This is most effectively implemented by

deforming the underlying geometry into the product of a cylinder and a cigar-like geometry,

X4 = R× S1 ×D2 [31]. The following metric on D2 is taken,

ds2 = dr2 + f(r)dθ2, r ∈ I = [0,∞], θ ∈ [0, 2π),

with f(r) ∼ r2 for r ∼ 0,

f(r) ∼ const for sufficiently large r

(5.1.16)

Note that this metric asymptotes toX4 ∼ R×S1×I×S̃1. One recalls that the Ω-deformation

with respect to the isometries of the two-torus can be undone by a redefinition of the fields

of the theory [31]. In the limit where both circles S1 and S̃1 are small we can approximate

the theory by its reduction. The dependence of the theory on the radii of the circles S1 and
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S̃1 is Q-exact, where Q is the supercharge preserved by the Ω-deformation. The dimensional

reduction along the two-torus S1 × S̃1 results in a two-dimensional N = (4, 4) sigma model,

with the worldsheet R × I and the target space MH(AN−1,C). The quantization of the

Hitchin integrable system arises by correctly specifying the boundary conditions at 0,∞ ∈ I

[31]. The boundary condition at ∞ ∈ I determines the space of states in the integrable

system, implemented by a ωK-Lagrangian brane. It is also argued in [31] that the effect of

the Ω-deformation is correctly accounted by the boundary condition at 0 ∈ I corresponding

to the canonical coisotropic brane of MH(AN−1,C) [88]. Surprisingly, this brane could be

T-dualized along the fibers of the Hitchin fibration to produce a brane supported on a

distinguished J~-holomorphic ΩJ~-Lagrangian submanifold of MH(AN−1,C): conjecturally,

the variety of opers [89]. Here, J~ differs from I,−I, and is determined by the Ω-deformation

parameter ~. In the absence of punctures on C all complex structures different from I,−I are

diffeomorphic. When punctures are present the diffeomorphism rotating J~ to J changes the

masses of the matter hypermultiplets, and, accordingly, the eigenvalues of the monodromy

around the punctures. With this subtlety understood, we shall skip the subscript ~ in the

notation for the complex structure J in what follows.

The variety ON [C] = {D̂} of opers can be represented as a set of N -th order meromorphic

differential operators

D̂ = ∂Nz + t2(z)∂N−2
z + · · ·+ tN(z) : K−

N−1
2

C −→ K
N+1

2
C ⊗O(N ·D), (5.1.17)

where D is the divisor of punctures. Here we view D̂ as an element of Mflat(SL(N),C) by

associating it to the representation

ρ
D̂

: π1(C) −→ SL(N)

γ 7−→Mγ(D̂),
(5.1.18)

where Mγ(D̂) is the SL(N)-valued monodromy of the solutions of D̂ along the loop γ. More
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specifically, the conjugacy class of the monodromy around each puncture is fixed, so that

ON [C] =
{
D̂

∣∣∣∣ [Mγi(D̂)
]
fixed

}
, (5.1.19)

leaving only dimON [C] = dimB degrees of freedom for the meromorphic functions (tk(z))Nk=2

which is equal to the half of the dimension of the full moduli space Mflat(SL(N),C). In fact,

as an oper (5.1.17) can be regarded as a quantization of the Seiberg-Witten curve (5.1.13),

the variety of opers ON [C] provides a quantization of the Coulomb moduli space B, and the

holomorphic functions on ON [C] precisely correspond to the off-shell spectra of the mutually

commuting quantum Hitchin Hamiltonians [90].

The ωK-Lagrangian brane at infinity ∞ ∈ I is T-dualized to another ωK-Lagrangian

brane L. The ground states of open strings with two ends on ON [C] and L, respectively,

define the space of morphisms in Fukaya category

H = Hom(ON [C], L). (5.1.20)

The space of morphisms between two Lagrangian branes in Fukaya category is the symplec-

tic Floer homology HF •symp(ON [C], L), which can be obtained as a cohomology of a com-

plex spanned by the intersection points with the differential obtained by studying pseudo-

holomorphic disks with boundaries on ON [C] and L. For hyper-Kähler manifolds, such as

the Hitchin space in our case, there is no contribution coming from the disks of non-zero

relative degree, thus the space of states are determined by the classical intersection points.1

In other words, the problem of quantization reduces to enumeration of the intersection of

the variety of opers and a ωK-Lagrangian brane. The isolated intersection point defines a

common eigenstate of the quantum Hamiltonians. The spectra of quantum Hamiltonians

are the holomorphic functions on the variety of opers restricted to this locus.
1There is a subtlety when the Lagrangians are not transversal. It appears the lift of degeneracy of the

ground states [2, 47] in quantum mechanics corresponds to such singularities.
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5.1.3 Nekrasov-Rosly-Shatashvili conjecture

Since the variety of opers ON [C] is a complex Lagrangian submanifold of Mflat(SL(N),C),

there exists the generating function S [ON [C]] for ON [C],

βi = ∂S [ON [C]]
∂αi

, i = 1, · · · , 1
2 dimMflat(SL(N),C), (5.1.21)

for any Darboux coordinate system {αi,βj} = δij on Mflat(SL(N),C). In [91], it was

suggested that there exists a specific Darboux coordinate system (which we refer to as

the NRS coordinate system), in which the generating function for the variety of opers is

identified with the effective twisted superpotential, up to a contribution from the boundary

at the infinity which is independent of the gauge coupling, namely,

S [ON [C]] = 1
ε1

(
W̃ [T [AN−1,C]]− W̃∞

)
. (5.1.22)

In the N = 2 case, the NRS coordinate system on the moduli space of SL(2,C)-flat connec-

tions essentially restricts to the coordinate systems proposed in [92, 93, 94] for the SU(2) flat

connections, Teichmüller space (which is a component of the moduli space of SL(2,R)-flat

connections) and the SO(1, 2)-flat connections, respectively. The intuition behind the above

equivalence is that as we vary the complex structure of C, the corresponding variation of

O2[C] is represented by a closed holomorphic one-form on O2[C], which is a derivative of a

holomorphic function since O2[C] is simply-connected. As we noted earlier, the holomorphic

functions on O2[C] are the spectra of the quantum Hamiltonians, which are, in the spirit of

the Bethe/gauge correspondence,

u = q
∂W̃ [T [A1,C]]

∂q
. (5.1.23)

Since the complex structure of C is controlled by the gauge coupling q, this motivated [91]

to identify the generating function for the variety of opers with the effective twisted super-
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potential, and thereby with the Yang-Yang functional. As a result, the classical symplectic

geometry (which operates with symplectic manifolds and thier Lagrangian subvarieties),

the N = 2 gauge theory, and quantum integrable system (which belongs to the domain of

noncommutative algebras, their commutative subalgebras, and representation theory) are

nicely interconnected through the equality (5.1.22). Note that this is a finite-dimensional

version of the quantum/classical duality studied at some examples in [95], which connects

the integrable quantum field theories to the classical nonlinear differential equations.

There were many questions that remain unanswered. Some of them are:

1. Can one precisely describe the variety of opers ON [C] as of a deformation of the

Coulomb moduli space B (of course, the first order deformation is simply the WKB

approximation)? In particular, how the meromorphic coefficients (tk(z))Nk=2 in (5.1.17)

are related to the expectation values (uk)Nk=2 of the chiral observables in (5.1.6)?

2. How is the NRS coordinate system generalized to the higher rank case, at least for

g = AN−1?2

3. How should the equality (5.1.22) be understood? Specifically, the left hand side is

written in the NRS coordinates, while the right hand side is written in the gauge

theoretic terms. How do we match these parameters?3

4. Most importantly, derive the equality (5.1.22) from the first principles of the gauge

theory (to all orders in the gauge coupling q)?

We address these questions below:

5.1.4 Outline

The key players of the work are the half-BPS codimension two (surface) defects in the four-

dimensional N = 2 gauge theories. The surface defects can be constructed in several ways
2In the genus one case it was done in [96, 97].
3Some of these questions are addressed in [98] from a geometric point of view.
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[19, 18, 60]. The exact computation of their partition functions became accessible in part

by [99, 100, 20], and in a more general setting in [15, 21]. In particular, the explicit forms

of the surface defects as the observables in the underlying gauge theory were written down

in [21].

Meanwhile, the analysis of the analytic properties of the N = 2 partition functions be-

came available since [10]. The qq-characters were introduced as gauge theory observables,

which can be constructed out of the spiked instanton configurations [14, 15, 16]. The crucial

property of these observables is the regularity of their expectation values [10], which follows

from the compactness theorem [14]. From the regularity of qq-characters follows the van-

ishing theorem for the non-regular parts of the expectation values, thereby constraining the

partition functions. We call these vanishing equations the non-perturbative Dyson-Schwinger

equations [10].

In section 5.2, we recall two independent constructions of surface defects: the quiver and

the orbifold. In section 5.3, we describe the fundamental qq-character for the surface defects,

and derive the non-perturbative Dyson-Schiwnger equations for their partition functions.

We show that the final equations satisfied by the surface defect partition functions can be

regarded as a quantized version of the opers, in the sense that they reduce to the differential

equations for the opers in the Nekrasov-Shatashvili limit ε2 → 0. The relations of the

expectation values of the chiral observables to the holomorphic coordinates on the variety of

opers are naturally revealed through this procedure, clarifying in what sense the variety of

opers is a quantization of the Coulomb moduli space.

Being solutions to the non-perturbative Dyson-Schwinger equations, in the Nekrasov-

Shatashvili limit the asymptotics χ of the appropriately normalized surface defect partition

function becomes the oper solution D̂χ = 0. Consequently, the monodromy of the solutions of

the oper can be obtained by first computing the monodromy of the surface defect partition

functions and then taking the Nekrasov-Shatashvili limit. However, each surface defect

partition function has its own convergence domain, and to compute the monodromy we need
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the connection matrix which links the surface defect partition functions lying on different

domains. This is the subject of the section 5.4. Namely, we present how the surface defect

partition function is analytically continued to another convergence domain, and how they

can be glued together. In fact, the analytically continued quiver surface defect partition

function is shown to be identical to a specific orbifold surface defect partition function,

suggesting the equivalence of the two distinct types of surface defects. It may be regarded

as an independent nontrivial result in itself, realizing the duality between the surface defects

[48] at the level of the partition functions.

In relating the gauge effective theory twisted superpotential to the generating function

of the variety of opers, we need to specify the Darboux coordinate system on the moduli

space of flat connections relevant to the correspondence. More precisely, we need at least

the coordinates on the patch of the moduli space, in which the theory has a weak coupling

description (the twisted superpotential is defined, of course, everywhere, however we can only

compute it directly in quantum field theory in that region). It may appear that the coupling

constant of the theory, being the complex moduli of the underlying Riemann surface, has

nothing to do with the coordinate charts on the moduli space of flat connections in the

J-complex structure, as the latter depends only on the topology of C. The explanation is

the following. The continuous dependence on the couplings q is indeed absent. However,

the universality classes of the Lagrangians describing the theory depend on the type of

the degeneration of the Riemann surface C, the so-called pair-of-pants decomposition. The

latter is determined by the choice of a handlebody (together with an embedded graph) whose

boundary is C (with the punctures being the end-points of the graph edges).

With this understood, in section 5.5, we propose Darboux coordinates on a particular

patch of the moduli space of flat SL(N)-connections on the r + 3-punctured sphere. Our

coordinates agree (up to a simple shift) with the NRS coordinates [91] restricted to the

corresponding patch of the SL(2)-moduli space. We verify the canonical Poisson relations

for the proposed coordinate system by using the geometric representation of Poisson brackets
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between the Wilson loops in the classical Chern-Simons theory. We compute explicitly the

invariants of the holonomies of flat connections in our main r = 1 example.4

Finally, the monodromy data of opers is computed in section 5.6. More precisely, we

compute the analytic continuation of the surface defect partition functions, using the results

of section 5.4. Then we take the Nekrasov-Shatashvili limit of the resulting transfer matrices

to reduce them to the monodromies of the opers. Then we express those data in terms of

the generalized NRS coordinates proposed in the section 5.5. This procedure reveals that

the effective twisted superpotential is naturally identified with the generating function of

the variety of opers. The conclusions and discussions are presented in the section 5.7. The

appendices contain some computational details.

5.2 Surface defects

We start on the Hitchin system side. We will mainly consider the four-punctured Riemann

sphere C = P1\{0, q, 1,∞}. All the punctures are assumed to be regular. That is, we only

allow a simple pole for the Higgs field ϕ at each puncture. Moreover, we call a puncture

maximal when the residue of ϕ at the puncture belongs to a generic semisimple conjugacy

class of g = AN−1, and minimal when the residue is in a maximally degenerate semisimple

conjugacy class (as in [107, 108]). We assume the punctures at 0 and ∞ are maximal (this

is the typical limit of a Hitchin system on a stably degenerate curve, see [109]), while the

punctures at q and 1 are minimal. In what follows in listing the punctures we underline

the minimal ones, as in {0, q, 1,∞}. We shall also denote by C the punctured Riemann

surface together with the assignment of the minimal and maximal punctures, e.g. C =

P1\{0, q, 1,∞}. There is no distinction between the maximal and the minimal punctures in
4There are alternative approaches to the construction of Darboux coordinates from spectral networks

[101], motivated by the work of A. Voros [102] on the exact WKB approximation, and from symplectic
doubles [103], motivated by the work of W. Thurston on the measured laminations. The spectral networks
were used in [101, 104, 103, 98] to generalize Fock-Goncharov [105], NRS [91], Goldman [86] and Fenchel-
Nielsen [93] coordinates. We stress that we only work on an open subset of the moduli space, so the subtleties
discussed in [105, 106, 103], forcing one to work on certain covers of the moduli space, are not visible at the
level we are working.
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the N = 2 case. For N > 2 the difference is significant. The corresponding class S theory

T [AN−1,C] is the superconformal N = 2 gauge theory with the gauge group SU(N) and the

2N hypermultiplets, whose gauge coupling is q and the masses of the hypermultiplets are

determined by specific combinations of the eigenvalues of the residue of ϕ [33].

A half-BPS surface defect on T [AN−1,C] can be constructed in several ways. Here we

present two constructions relevant to our study, which were reviewed in 2.3. It is conve-

nient to treat the gauge group formally as U(N), by making an overall shift in the masses

of the hypermultiplets, as we do throughout the discussion. The SU(N) gauge theory pa-

rameters can be easily recovered by shifting back the Coulomb moduli and the masses of

hypermultiplets.

5.2.1 The quiver construction

The construction starts with the superconformal A2-quiver U(N) gauge theory. As reviewed

in appendix 2.1 in detail, the equivariant localization reduces the instanton partition function

of the theory to that of a grand canonical ensemble on the 2N -tuples of Young diagrams

λ = {λ(i,α) | i = 1, 2, α = 1, · · · , N}. It can be conveniently written as

ZA2 (a0; a1; a2; a3|ε1, ε2|q1, q2) =
∑
λ

∏
i=1,2

q
|λ(i)|
i ε [TA2 [λ]] (5.2.1)

where the character TA2 is

TA2 =
∑

i=1,2
(NiK

∗
i + q12N

∗
i Ki − P12KiK

∗
i )−M0K

∗
1 − q12M

∗
3K2

−N1K
∗
2 − q12N

∗
2K1 + P12K1K

∗
2 ,

(5.2.2)
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and the ε-operation5, also known as the plethystic exponent, converts a character into the

product of weights,

ε(R) =
∏
w∈R− w(θ)∏
w∈R+ w(θ) for θ ∈ Lie(TH), R =

∑
w∈R+

ew(θ) −
∑
w∈R−

ew(θ). (5.2.3)

Let us choose β ∈ {1, · · · , N}, and tune the Coulomb moduli of the first gauge node as


a1,β = a0,β − ε2

a1,α = a0,α for α 6= β

(5.2.4)

We define the defect partition function as ZA2 with the constrained Coulomb parameters:

ZLβ ≡ ZA2

(
a0; a1,α = a0,α − ε2δα,β; a2; a3 | ε1, ε2 | q1 = z−1, q2 = q

)
. (5.2.5)

The constraints can be succintly expressed as the relation between the characters

M0 = N1 − P2µ, (5.2.6)

where we have defined µ = eβ(a0,β−ε2). Note that due to the constraints, almost all the Young

diagrams for the first gauge node have vanishing contributions to the partition function,

except the ones of the form

λ(1) =

∅, · · · ,∅, ...

 k ,∅, · · · ,∅
 , (5.2.7)

which is empty λ(1,α) = ∅ except the single-columned λ(1,β).

We can view the constraint (5.2.4) as adding an extra equation in the ADHM construction

for the quiver instanton moduli space, as we now recall. First, the A2-quiver U(N) theory
5Not to be confused with the Ω-deformation parameters ε1, ε2.
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can be obtained by the Z4-orbifold procedure from the N = 2∗ U(4N) theory. The ADHM

data for the N = 2∗ U(4N) gauge theory is the following collection of linear maps between

complex vector spaces:

B1,2,3,4 : K −→ K

I : N −→ K

J : K −→ N,

(5.2.8)

where N = C4N and K = Ck1+k2 . The reason for strange dimensions of these spaces will

become clear momentarily. The extended ADHM equations are written as [14]

[B1, B2] + IJ + [B3, B4]† = 0

[B1, B3] + [B4, B2]† = 0

[B1, B4] + [B2, B3]† = 0

s+ ≡ B3I + (JB4)† = 0

s− ≡ B4I − (JB3)† = 0.

(5.2.9)

We also impose the stability condition (cf. (2.1.25))

C[B1, B2, B3, B4]I(N) = K. (5.2.10)

Upon the Z4-orbifolding, the spaces N and K become Z4-modules, and therefore can be

decomposed according to the Z4-representations

N =
⊕
ω∈Z4

Nω ⊗ Rω, K =
⊕
ω∈Z4

Kω ⊗ Rω. (5.2.11)

The coupling constant is also fractionalized accordingly, qω for ω ∈ Z4. We manually set

q0 = q3 = 0, then we are restricted to K0 = K3 = 0 due to the measure factor q|Kω |ω . Let

|K1| = k1 and |K2| = k2. Also, we impose the Z4-weights to the space N in such a way that

100



Nω = CN for each ω ∈ Z4. Let the maps

ΩN : N −→ N, ΩK : K −→ K, (5.2.12)

be defined by the diagonal action of iω to the elements in Nω and Kω. Then we impose the

conditions for the ADHM data

Ω−1
K B1,2 ΩK = B1,2

Ω−1
K B3 ΩK = iB3

Ω−1
K B4 ΩK = −iB4

Ω−1
K I ΩN = I

Ω−1
N J ΩK = J,

(5.2.13)

which fractionalize these matrices as

Bω,1 : Kω −→ Kω

Bω,2 : Kω −→ Kω

Bω,3 : Kω −→ Kω+1

Bω,4 : Kω −→ Kω−1

Iω : Nω −→ Kω

Jω : Kω −→ Nω.

(5.2.14)

Note that many of these maps are identically zero due to the restriction K0 = K3 = 0. Hence

101



only the following equations survive among the ADHM equations (5.2.9),

[B1,1, B1,2] + I1J1 −B†1,3B
†
2,4 = 0

[B2,1, B2,2] + I2J2 −B†2,4B
†
1,3 = 0

B2,1B1,3 −B1,3B1,1 +B†2,2B
†
2,4 −B

†
2,4B

†
1,2 = 0

B1,1B2,4 −B2,4B2,1 +B†1,3B
†
2,2 −B

†
1,2B

†
1,3 = 0

s+
1 ≡ B1,3I1 +B†2,4J

†
1 = 0

s−2 ≡ B2,4I2 −B†1,3J
†
2 = 0.

(5.2.15)

The stability condition also becomes

C[B1,1, B1,2, B2,1, B2,2, B1,3, B2,4]I(N) = K. (5.2.16)

We find that the sum of the squares of the norms of the first two equations of (5.2.15) can

be simplified, using the other four equations, into a sum of squares,

0 = ||[B1,1, B1,2] + I1J1||2 + ||[B2,1, B2,2] + I2J2||2 + ||B1,3I1||2 + ||B2,4I2||2

+ ||B2,1B1,3 −B1,3B1,1||2 + ||B1,1B2,4 −B2,4B2,1||2.
(5.2.17)

Applying the last two equations to the stability condition, we can commute B1,3 and B2,4

through all the way to hit I1(N1) or I2(N2), respectively. This vanishes as a result of the

third and the fourth equations. Hence, the stability condition is reduced to

C[Bi,1, Bi,2]Ii(Ni) = Ki, i = 1, 2. (5.2.18)

This implies B1,3 = B2,4 = 0. The first and the second equations of (5.2.17) provide the

reduced ADHM equations

[Bi,1, Bi,2] + IiJi = 0, i = 1, 2, (5.2.19)
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which are precisely the ADHM equations for the instanton moduli space of the A2-quiver

U(N) theory.

In this construction of the A2-theory, the constraint (5.2.4) can be understood as adding

an equation “s+
0 ” : N0 −→ K1. Note that we neglected the equation

s+
0 ≡ B0,3I0 +B†1,4J

†
0 : N0 −→ K1, (5.2.20)

since it is identically zero by B0,3 = I0 = B1,4 = J0 = 0 due to the restriction K0 = 0.

However, we can avoid this restriction if we first set

N0 = Ñ ⊕ L, N1 = Ñ ⊕ q2L, (5.2.21)

where we have chosen an one-dimensional subspace L ⊂ N0, which corresponds the choice

of β ∈ {1, · · · , N} in the constraint (5.2.4). Then we may define a non-vanishing map

s+
0 = I1

∣∣∣
Ñ
⊕B1,2I1

∣∣∣
L

: N0 −→ K1. (5.2.22)

Adding the equation s+
0 = 0 to the ADHM construction, we find that the space K1 is further

restricted by the stability condition (5.2.18),

K1 = C[B1,1, B1,2] I1(N1) = C[B1,1] I1(L). (5.2.23)

In other words, the Young diagram that denotes the space K1 only grows in one direction

from the chosen basis vector I1(L). This exactly manifests the single-columnedness expressed

in (5.2.7). The physics picture of what is happening is the following. The constraint (5.2.4)

makes N hypermultiplets nearly massless (exactly massless in the absence of Ω-deformation).

The theory can then go to the Higgs branch, where the gauge group is partially Higgsed to

a subgroup, by the expectation values of the hypermultiplet scalars. Now, the theory allows
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N0 N1 N2 N3

K1 K2

I1 J1 J2I2

B1,1, B1,2 B2,1, B2,2

s+
0

Figure 5.1: The ADHM data for the A2-quiver gauge theory, with the extra map s+
0 .

for the half-BPS field configurations where the gauge group is restored along a codimension

two defect, essentially a vortex string. Consequently, the gauge field configuration of the first

gauge node is squeezed into a two-dimensional plane (ε1-plane), effectively forming a vortex.

The resulting two-dimensional supersymmetric sigma model couples to the remaining four-

dimensional A1-theory, generating a surface defect in the four-dimensional point of view.

We can confirm that the 2d-4d coupled system arises at the level of the partition function.

First we have the simplified expression for

K1 = µ
1− qk1
1− q1

. (5.2.24)

Therefore, the character (5.2.2) can also be simplified into

TA2 = [N2K
∗
2 + q12N

∗
2K2 − P12K2K

∗
2 −N1K

∗
2 − q12M

∗
3K2] +

[
P2µq

k
1K
∗
1 + q12K1(N∗1 − S∗2)

]
.

(5.2.25)

Accordingly, the partition function (5.2.1) of the A2-quiver gauge theory is reduced to the

expectation value of an observable in the A1-quiver gauge theory

ZLβ =
∑
λ(2)

q
|λ(2)|
2 ILβ [λ(2)] ε

[
TA1 [λ(2)]

]
= 〈ILβ 〉 ZA1 , (5.2.26)
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where we have defined the character for the A1-theory

TA1 ≡ N2K
∗
2 + q12N

∗
2K2 − P12K2K

∗
2 −N1K

∗
2 − q12M

∗
3K2, (5.2.27)

which defines the instanton partition function of the A1-theory by

ZA1 ≡
∑
λ(2)

q
|λ(2)|
2 ε

[
TA1 [λ(2)]

]
, (5.2.28)

and the surface defect as an element of the chiral ring

ILβ [λ(2)] ≡
∞∑
k=0

qk1 ε
[
P2µq

k
1K
∗
1 + q12K1(N∗1 − S∗2)

]

=
∞∑
k=0

qk1 ε

[
k∑
l=1

ql1(P2 + µq2(N∗1 − S∗2))
]

=
∞∑
k=0

qk1

k∏
l=1

Y2(a0,β + lε1)[λ(2)]
P0(a0,β + lε1) .

(5.2.29)

Here, we have used the Y-observable (2.1.42) for the second gauge node, and P0(x) ≡∏N
α=1(x − a0,α) by definition. Let us focus on the zero bulk instanton sector, |λ(2)| = 0.

The contribution of this sector is the vortex partition function of a two-dimensional gauged

linear sigma model. This sigma model generates the surface defect, when coupled to the

four-dimensional bulk [19, 99]. The Y-observable in this sector simply reduces to a poly-

nomial Y2(x) → A2(x) ≡ ∏N
α=1(x − a2,α). The partition function (5.2.29) is exactly that

of the gauged linear sigma model on the Hom(O(−1),CN)-bundle over PN−1 whose Kähler

modulus is q1 [21]. For the non-trivial sectors of the four-dimension, the two-dimensional

sigma model couples to the four-dimensional gauge theory through the non-perturbative cor-

rections to the Y-observable. Thus, the full partition function (5.2.26) represents the 2d-4d

coupled system in this manner.

It is instructive to cast the surface defect partition function (5.2.29) into the form relevant
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to our study. Recall that the Y-observable (2.1.42) can be written as a ratio

Yi(x)[λ] =
N∏
α=1

∏
�∈∂+λ(i,α)(x− c�)∏

�∈∂−λ(i,α)(x− c� − ε)
. (5.2.30)

This suggests to represent the Y-observable as a ratio of two entire functions [10],

Yi(x) = Qi(x)
Qi(x− ε1) , (5.2.31)

where we have defined the Q-observable

Qi(x)[λ] ≡
N∏
α=1

 (−ε1)
x−ai,α
ε1

Γ
(
−x−ai,α

ε1

) ∏
�∈λ(i,α)

x− c� − ε2

x− c�

 . (5.2.32)

Therefore, the surface defect (5.2.29) can be understood as an infinite sum of Q-observables,

ILβ [λ(2)] =
∞∑
k=0

qk1

 N∏
α=1

Γ
(
1 + a0,β−a0,α

ε1

)
εk1 Γ

(
k + 1 + a0,β−a0,α

ε1

)
 Q2(a0,β + kε1)[λ(2)]

Q2(a0,β)[λ(2)]
. (5.2.33)

We will observe that the Q-observable reduces to the so-called Baxter Q-function in the

Nekrasov-Shatashvili limit. It will be more apparent in section 5.3 that this representation

is useful for our purpose.

Likewise, we can similarly impose the constraints for the Coulomb moduli in the second

gauge node,


a2,β = a3,β − ε− ε2

a2,α = a3,α − ε α 6= β,

(5.2.34)

for some chosen β ∈ {1, · · · , N}. Here, we are using the abbreviated notation ε ≡ ε1 + ε2.
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The constraint can also be written as

q−1
12 M3 = N2 − P2µ, (5.2.35)

where now µ = eβ(a3,β−ε−ε2). For a reason that will be clarified in section 5.4.2, we make the

following re-definition for the parameters after imposing the constraints (5.2.35),

a0,α −→ −a0,α − ε

a1,α −→ −a1,α α = 1, · · · , N

a3,α −→ −a3,α + 2ε,

(5.2.36)

The corresponding partition function,

ZRβ ≡ ZA2

(
−a0,α − ε; −a1,α; −a3,α + ε− ε2δα,β; −a3,α + 2ε | ε1, ε2 | q1 = q, q2 = q−1 z

)
,

(5.2.37)

can be likewise simplified to:

ZRβ =
∑
λ(1)

q
|λ(1)|
1 IRβ [λ(1)] ε

[
TA1 [λ(1)]

]
, (5.2.38)

where the character for the A1-theory is now

TA1 ≡ N1K
∗
1 + q12N

∗
1K1 − P12K1K

∗
1 −M0K

∗
1 − q12N

∗
2K1, (5.2.39)

and the surface defect is

IRβ [λ(1)] ≡
∞∑
k=0

qk2

k∏
l=1

Y1(−a3,β + lε1)
P3(−a3,β + 2ε+ lε)

=
∞∑
k=0

qk2

N∏
α=1

 Γ
(
1 + a3,α−a3,β

ε1

)
εk1 Γ

(
k + 1 + a3,α−a3,β

ε1

)
 Q1(−a3,β + kε1)

Q1(−a3,β) ,

(5.2.40)
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where we have used the Y-observable for the first gauge node and P3(x) ≡ ∏N
α=1(x+a3,α−2ε)

(Be cautious about the re-definition of the parameters). Also, the Y-observable has been

replaced by a ratio of Q-observables in the second line. Note that the bulk coupling is now

q1, while the Kähler modulus for the two-dimensional sigma model is q2. Thus it is natural

to expect that the q2 of ZLβ would correspond to q1 of ZRβ , when we try to connect these

partition functions. The issue will be clarified in section 5.4.

5.2.2 The orbifold construction

We construct a surface defect by placing the gauge theory on an orbifold. We first form an

orbifold Cε1 × (Cε2/Zp) by the following Zp-action on Cε1 × Cε2

ζ : (z1, z2) 7−→ (z1, ζz2), ζ ≡ exp
(

2πi
p

)
∈ Zp. (5.2.41)

Here, Cεi denotes the complex plane with the equivariant paramter εi for the C×-action.

Then the surface defect is constructed as a prescription of performing the path integral only

over the Zp-invariant field configurations. Indeed, under the map (z1, z2) 7→ (z̃1 ≡ z1, z̃2 ≡

zp2), the orbifold Cε1 × (Cε2/Zp) is mapped to Cε1 × Cpε2 , and the field configurations are

allowed to be singular along the surface z̃2 = 0. Therefore, the resulting theory on Cε1×Cpε2
can be interpreted as a surface defect inserted upon the underlying gauge theory.

To fully characterize the surface defect, we have to specify how the field configurations

are projected out by the Zp-action. We present here how this is done for the A1-theory. Let

us introduce the coloring function

c : [N ] −→ Zp. (5.2.42)
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Then the space N is decomposed according to the Zp-representations,

N =
⊕
ω∈Zp

Nω ⊗ Rω, Nω ≡
∑

α∈c−1(ω)
eβaα . (5.2.43)

Also,

K =
⊕
ω∈Zp

Kω ⊗ Rω, Kω ≡
N∑
α=1

eβaα
l(λ(α))∑
i=1

qi−1
1

∑
1≤j≤λ(α)

i
c(α)+j−1≡ω mod p

qj−1
2 , (5.2.44)

where Rω is the one-dimensional irreducible representation of Zp with the weight ω, and

l
(
λ(α)

)
= λ

(α) t
1 is the number of rows in the Young diagram λ(α). It is straightforward to

include the fundamental matter fields, namely,

M =
⊕
ω∈Zp

Mω ⊗ Rω. (5.2.45)

Now as explained, we perform the path integral only for the Zp-invariant field configurations,

projecting out the non-invariant contributions. At the level of the character (see (2.1.32)),

this is to pick up the Zp-invariant piece, namely,

TZp ≡
[ 1
P12

(−SS∗ +M∗S)
]Zp

, (5.2.46)

from which the partition function is given by

ZZp,c ≡
∑
λ

q|Kω |ω ε
[
TZp [λ]

]
. (5.2.47)

Though providing a concrete formula, it is not so obvious from (5.2.47) that the partition

function can be interpreted as an insersion of an observable in the A1-theory. Thus it is
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important to properly construct the projection of the set of N -tuples of Young diagrams

ρ : λ 7−→ Λ, (5.2.48)

where Λ is supposed to enumerates the fixed points of the instanton moduli space of the

A1-theory on Cε1 × Cpε2 = C2/Zp.

The construction of the map ρ can be done as follows. Let us first re-define the Coulomb

moduli by the shift

ãα ≡ aα − ε2 c(α), (5.2.49)

so that

Ñω ≡
∑

α∈c−1(ω)
eβãα , Ñ ≡

p−1∑
ω=0

Ñω. (5.2.50)

and

K̃ω ≡ Kωq
−ω
2 =

N∑
α=1

eβãα
l(λ(α))∑
i=1

qi−1
1

li,α,ω∑
j=1 or 2

q̃j−1
2 , (5.2.51)

where

li,α,ω =
λ(α)

i + c(α)− ω + p− 1
p

 (5.2.52)

q̃2 ≡ qp2 (ε̃2 ≡ pε2), (5.2.53)

and the lower limit of the sum over j is equal to 1 for c(α) ≤ ω and 2 for c(α) > ω. In

particular, for ω = p− 1,

K̃ ≡ K̃p−1 =
N∑
α=1

eβãα
l(Λ(α))∑
i=1

qi−1
1

Λ(α)
i∑
j=1

q̃j−1
2 , (5.2.54)
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where we have defined a new N -tuple of Young diagrams Λ =
(
Λ(α)

)N
α=1

by

Λ(α)
i = li,α,p−1 ≡

λ(α)
i + c(α)

p

 . (5.2.55)

The map ρ is defined by this relation, ρ(λ) = Λ.

The partition function (5.2.47) is a weighted sum over λ, which can be first summed over

ρ−1(Λ) for fixed Λ and then summed over Λ. We will show the sum over ρ−1(Λ) provides

an observable insertion to the A1-theory whose measure for the partition function is given

by Λ. First, the vector multiplet contribution in the measure (5.2.46) is

−
p−1∑

ω,ω′,ω′′=0

SωS
∗
ω′

P1(1− q̃2)q
ω′′

2 δ
Zp
ω−ω′+ω′′ , (5.2.56)

where we have used the identity

1
1− q2R1

= 1
1− q̃2

p−1∑
ω=0

qω2 Rω. (5.2.57)

After defining

S̃ω ≡ Sωq
−ω
2 , S̃ ≡

p−1∑
ω=0

S̃ω = Ñ − P1P̃2K̃, (5.2.58)

the character (5.2.56) can be written as

− S̃S̃
∗

P̃12
+ 1
P1

∑
0≤ω<ω′<p

S̃ω′S̃
∗
ω. (5.2.59)

Note that the first term is precisely the vector multiplet contribution to the partition function

of the A1-theory on Cε1 × Cε̃2 in the k̃-instanton sector. The second term is interpreted as
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an observable insertion to this theory. We can further simplify it by introducing

Σω ≡ Ñ0 + · · ·+ Ñω−1 − P1K̃ω−1 + q̃2P1K̃, ω = 1, · · · , p. (5.2.60)

The second term in (5.2.59) is now given by

1
P1

p−1∑
ω=1

(Σω+1 − Σω)Σ∗ω. (5.2.61)

Similarly, the matter contribution in the measure (5.2.46) can be written as

p−1∑
ω,ω′,ω′′=0

M∗
ω′Sω

P1(1− q̃2)q
ω′′

2 δ
Zp
ω−ω′+ω′′ . (5.2.62)

After defining M̃ω ≡Mωq
−ω
2 and M̃ ≡ q̃−1

2
∑p−1
ω=0 M̃ω, it can be re-expressed as

M̃∗S̃

P̃12
+ 1
P1

p−1∑
ω=0

M̃∗
ωΣω+1 (5.2.63)

Note that the first term is the usual fundamental matter contribution to the measure of

the A1-theory on Cε1 × Cε̃2 in the k̃-instanton sector. The second term is interpreted as an

observable insertion to the theory.

We also introduce the auxiliary variables (zω) and q to express the fractionalized cou-

plings,

qω ≡
zω+1

zω
, ω = 0, · · · , p− 2,

qp−1 = q
z0

zp−1
,

(5.2.64)

so that

p−1∏
ω=0

qω = q. (5.2.65)
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Note that q is weighted with the power k̃ in the measure and therefore is the bulk coupling

of the A1-theory on Cε1 × Cε̃2 .

As a result, the full partition function (5.2.47) can be written as

ZZp,c =
∑
Λ

q|Λ| Ic[Λ] ε
[

1
P̃12

(
−S̃S̃∗ + M̃∗S̃

)]
= 〈Ic〉ZA1 , (5.2.66)

where the surface defect is expressed as a chiral ring element

Ic[Λ] ≡
∑

λ∈ρ−1(Λ)

p−1∏
ω=0

zkω−1−kω
ω ε

 1
P1

p−1∑
ω=1

(
(M̃ω−1 − Σω)∗Σω + Σω+1Σ∗ω

)
+ M̃∗

p−1S̃

 .
(5.2.67)

Let us focus on the zero-instanton sector, |Λ| = k̃ = 0. An element of the inverse image

λ =
(
λ(α)

)N
α=1
∈ ρ−1(∅) is of the form

λ(α) =

c(α) c(α)+1 . . . p−2

... ... ... ...

... ... ...

... ...

...

, (5.2.68)

where the number in each box denotes its color. We may define the length of the column of

color ω to be dω+1,α (c(α) ≤ ω < p− 1). Note that kω−1 = ∑
α dω,α. Consequently, we have

K̃ω =
∑

c(α)≤ω
eβãα

dω+1,α∑
i=1

qi−1
1 , (5.2.69)
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from which we simplify (5.2.60) as

Σω =
∑

c(α)<ω
eβãαq

dω,α
1 . (5.2.70)

Therefore, the partition function (5.2.67) is reduced to a sum over the non-negative integers

 dω,α ≥ 0
∣∣∣∣∣∣

ω = 1, · · · , p− 1, c(α) < ω

dω,α ≥ dω+1,α

 , (5.2.71)

with the simplified Σω given above. This is precisely the partition function of the gauged lin-

ear sigma model on the⊕p−1
ω=1 Hom(Eω, M̃ω−1)-bundle over the partial flag variety Flag(l1, l2, · · · , N),

with

lω ≡ |{α | c(α) < ω}|, (5.2.72)

under certain stability condition [21]. Here, Eω is the ω-th tautological bundle with rkEω = lω.

The Kähler moduli are precisely {qω−1 = zω/zω−1 | ω = 1, · · · , p− 1}.

In the non-zero instanton sector of the four-dimensional theory, the sigma model couples

to the four-dimensional gauge theory through (5.2.67) in a non-trivial way, generating a

surface defect. In this way, the full partition function (5.2.66) represents the 2d-4d coupled

system.

The investigations in this chapter mainly utilize the special case, the (N − 1, 1)-type

Z2-orbifold. That is, we set p = 2 and assign the coloring function

cβ(α) ≡


1 for α = β

0 otherwise
, (5.2.73)

for some chosen β ∈ {1, · · · , N}. We also set M̃0, M̃1 = CN . For later use, it is instructive
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to separate out the instanton part in the partition function (5.2.66),

ZZ2
β =

∑
Λ

q|Λ| Iβ[Λ] ε
[
Ñ∗K̃ + q−1

12 ÑK̃
∗ − P ∗12K̃K̃

∗ − M̃∗K̃
]
, (5.2.74)

where the instanton part of the surface defect is

Iβ[Λ] =
∑

λ∈ρ−1(Λ)
zk0−k1 ε

[
(K̃0 − K̃1)(Ñ0 − P1K̃0 + q̃2P1K̃1)∗

+q1Ñ1(K̃0 − q̃2K̃1)∗ − M̃∗
0 (K̃0 − q̃2K̃1)− P̃2M̃

∗
1 K̃1

]
.

(5.2.75)

In this special case, the target space of the two-dimensional sigma model that generates the

surface defect is the Hom(O(−1),CN)-bundle over PN−1, which is exactly the same with that

of the quiver surface defect in section 5.2.1. Thus it is natural to expect the two distinct

types of surface defects are actually related to each other. However, it is not so obvious from

the explicit expressions for their partition functions, (5.2.26) and (5.2.66), how they can

really be associated. In particular, the combinatorics that define these partition functions

are quite different; one involves a simple sum over non-negative intergers while the other

involves the non-trivial mapping ρ between N -tuples of Young diagrams. We come back to

this problem in section 5.4.2.

5.3 Dyson-Schwinger equations and opers

We investigate the non-perturbative Dyson-Schwinger equations satisfied by the surface de-

fect partition functions that we constructed in the previous section. The primary object of

this investigation is the qq-character, which is a gauge theory observable formed as a certain

Laurent polynomial of Y-observables [10]. The most general qq-characters were constructed

in [10, 15] from the spiked instanton configurations, by integratng out the degrees of freedom

orthogonal to the four-dimensional gauge theory. The compactness theorem for the spiked
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instanton moduli space proven in [14] provided the crucial property of the qq-character, the

holomorphicity of its expectation value. Schematically,

〈
X(Y(x))

〉
= 1

Zinst

∑
λ

X(Y(x)[λ]) q|λ| µλ = T (x), (5.3.1)

where T (x) is a polynomial in x of certain degree. Therefore, the qq-character generates

an infinite number of constraints that the partition function satisfies, from the expectation

values of its non-regular parts

[x−n]
〈
X(Y(x))

〉
= 0, n ≥ 1, (5.3.2)

which we call the non-perturbative Dyson-Schwinger equations.

In this section, we present the fundamental qq-characters relevant to each surface defect,

and study the consequences of their non-perturbative Dyson-Schwinger equations. For other

analysis on the non-perturbative Dyson-Schwinger equations, see [32, 3] in the context of

the BPS/CFT correspondence, and [2] in the context of the Bethe/gauge correspondence.

5.3.1 The quiver

As in section 5.2.1, we start with the A2-quiver gauge theory with the U(N) gauge group.

The fundamental qq-characters for this theory is given by [10]

X1(x) = Y1(x+ ε) + q1
Y0(x)Y2(x+ ε)

Y1(x) + q1q2
Y0(x)Y3(x+ ε)

Y2(x) , (5.3.3a)

X2(x) = Y2(x+ ε) + q2
Y1(x)Y3(x+ ε)

Y2(x) + q1q2
Y0(x− ε)Y3(x+ ε)

Y1(x− ε) , (5.3.3b)

where Y0(x) ≡ ∏N
α=1(x− a0,α) and Y3(x) ≡ ∏N

α=1(x− a3,α) by definition.6 We construct the

surface defect by imposing the constraints (5.2.4) or (5.2.34) for the Coulomb moduli. In
6Be cautious about the re-definition of parameters (5.2.36) when we deal with the case (5.2.34). The

expressions for Y0 and Y3 also change correspondingly.
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each case, the Y-observable of the first or the second gauge node is simplified to

Y1(x)[λ(1)(k1)] = Y0(x)x− a0,β + ε2 − k1ε1

x− a0,β − k1ε1
, for (5.2.4) (5.3.4a)

Y2(x)[λ(2)(k2)] = Y3(x+ ε)x+ a3,β − ε1 − k2ε1

x+ a3,β − ε− k2ε1
, for (5.2.34) (5.3.4b)

It is now straighforward to plug (5.3.4) back into (5.3.3) and compute their expectation

values of the non-regular parts. However, it is convenient to follow the systematic procedure

establihshed in [3], which was reviewed in the Chapter 4. First let us define

G(x; t) ≡ 1
Y0(x)∏2

i=0(1 + tzi)

3∑
l=0

z0z1 · · · zl−1 t
l Xl(x− ε(1− l)) =

∞∑
n=0

G(−n)(t)
xn

, (5.3.5)

where we have defined the parameters zi by qi ≡ zi
zi−1

(z−1 = ∞ and z3 = 0 by definition),

and t is an auxiliary parameter. The non-perturbative Dyson-Schwinger equations imply

[x−n]
〈
Y0(x)G(x; t)

〉
= 0, n ≥ 1, (5.3.6)

for any value of t. As we summarized the systematic approach for computing G(−n)(t) in the

Chapter 4, we do not reproduce it here. We focus on presenting the results below.

5.3.1.1 N = 2

We observe that Y0(x) = ∏N
α (x − a0,α) is a polynomial of degree N . Hence in the case of

N = 2, the x−1-term in (5.3.6) is

0 =
〈
G(−3)(t)

〉
− (a0,1 + a0,2)

〈
G(−2)(t)

〉
+ a0,1a0,2

〈
G(−1)(t)

〉
. (5.3.7)
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Recall that with the constraints (5.2.4) the Young diagram λ(1) for the first gauge node is

restricted to be single-columned. Thus we can simplify

〈 ∑
�∈λ(1)

c�

〉
= (a0,β − ε)

〈
k1

〉
+ ε1

2

〈
k1(k1 + 1)

〉

= 1
ZLβ

(a0,β − ε−
ε1

2

)
q1

∂

∂q1
+ ε1

2

(
q1

∂

∂q1

)2
ZLβ .

(5.3.8)

Using this relation, the residue of (5.3.7) at t = −z−1
0 can be written as the following second

order differential equation

0 =
ε2

1

(
z0

∂

∂z0

)2

− ε1

( 2∑
i=1

zi
zi − z0

A(1)
i + 2a0,β − a0,1 − a0,2

)(
z0

∂

∂z0

)

+
2∑
i=1

zi
zi − z0

(
1
2

(
A(2)
i +

(
A(1)

1

)2
)
− ε1ε2zi

∂

∂zi
− (a0,1 + a0,2 − a0,β)A(1)

i

)

+ z1z2

(z1 − z0)(z2 − z0)
(
A(1)

1 − ε
)
A(1)

2

]
ZLβ ,

(5.3.9)

where we have introduced

A(n)
i ≡

N∑
α=1

(
ani,α − (ai+1,α − ε)n

)
, i = 1, 2. (5.3.10)

Here N = 2 but we will also extend to the higher N by the same expression. In particular,

for n = 1 we can write

A(1)
i = N(āi − āi+1 + ε), (5.3.11)

where we have defined āi ≡ 1
N

∑N
α=1 ai,α. For our purpose of investigating the relations with

the opers, it is important to re-define the partition function as

Z̃A2 ≡
2∏
i=0

zLii
∏

0≤i<j≤2

(
1− zj

zi

)Tij
ZA2 , (5.3.12)
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where we have multiplied the prefactors with the exponents,

Li ≡
(ai+1,1 − ai+1,2)2 − (ai,1 − ai,2)2

4ε1ε2
+ (āi − āi+1 + ε)(āi − āi+1)

ε1ε2
, i = 0, 1, 2,

Tij = 2(āj − āj+1 + ε)(āi − āi+1)
ε1ε2

, i, j = 0, 1, 2.
(5.3.13)

With the constraints (5.2.4) imposed on these prefactors, the modification for the surface

defect partition function ZLβ is simpler than the most generic case. Let us set z0 = z, z1 = 1,

and z2 = q by using the redundancy of overall scaling of zi’s. Then we find the prefactors

(with the overall constant that we choose at our convenience) for ZLβ can be written as

(
−1
z

)−rL,β
q
−∆q−∆0+

ε2−(a2,1−a2,2)2

4ε1ε2

(
1− 1

z

) 2ā0−2ā2+2ε1+ε2
2ε1

(
1− q

z

) ā2−ā3+ε
ε1 (1− q)

2(ā2−ā3+ε)(2ā0−2ā2−ε2)
ε1ε2 ,

(5.3.14)

where we have defined

(rL,β)β=1,2 =
(−a0,1 + a0,2 + ε+ ε2

2ε1
,
a0,1 − a0,2 + ε+ ε2

2ε1

)
, (5.3.15)

and

∆0 ≡
ε2 − (a3,1 − a3,2)2

4ε1ε2

∆q ≡ −
(ā2 − ā3)(ā2 − ā3 + ε)

ε1ε2

∆1 ≡ −
(2ā0 − 2ā2 + 2ε1 + ε2)(2ā0 − 2ā2 − ε2)

4ε1ε2

∆∞ ≡
ε2 − (a0,1 − a0,2)2

4ε1ε2
.

(5.3.16)
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For the re-defined partition function Z̃Lβ , the differential equation (5.3.9) becomes

0 =
[
ε2

1∂
2 − ε1ε2

2z − 1
z(z − 1)∂ + ε1ε2

q− 1
z(z − 1)(z − q)q

∂

∂q

+ε1ε2

(
∆0

z2 + ∆1

(z − 1)2 + ∆q

(z − q)2 −
−2ε+ε2

4ε1 + ∆1 + ∆q + ∆0 −∆∞
z(z − 1)

)]
Z̃Lβ .

(5.3.17)

We can view this differential equation as the second-order differential operator ̂̂D2 annihi-

lating the modified partition function Z̃Lβ . Note that the operator ̂̂D2 is independent of β,

so that each choice of β ∈ {1, 2} provides a solution to ̂̂
D2. We may regard ̂̂

D2 as the

quantization of the SL(2)-oper D̂2 for the four-punctured sphere P1\{0, q, 1,∞}, as we now

argue.

Under the Nekrasov-Shatashvili limit (ε1 6= 0, ε2 → 0), the surface defect partition func-

tion (5.2.26) is dominated by the limit shape [7]. Viewed as the expectation value of ILβ
in the A1-theory, the surface defect partition function gets the singular contribution, or the

effective twisted superpotential, from the bulk A1-theory, while the observable ILβ only con-

tributes regular terms. Therefore, we arrive at the following asymptotics of the partition

function

Z̃Lβ (a2 ≡ a, z, q) = e
W̃(a,q)
ε2 (χβ(a, z, q) +O(ε2)) , (5.3.18)

where we have omitted the subscript for the Coulomb moduli a2 since it precisely becomes

the Coulomb moduli a of the A1-theory. W̃ is a part of the effective twisted superpotential

of the underlying A1-gauge theory,

W̃ ≡ lim
ε2→0

ε2 log Z̃Lβ

= W̃classical + W̃inst + W̃extra,

(5.3.19)
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where we have defined

W̃classical ≡ −(a1 − a2)2

4ε1
log q (5.3.20a)

W̃inst ≡ lim
ε2→0

ε2 logZinst
A1 (5.3.20b)

W̃extra ≡ ε1

(1
4 − δq − δ0

)
log q + 2(ā0 − ā)(ā− ā3 + ε1)

ε1
log(1− q), (5.3.20c)

where the instanton partition function Zinst
A1 for the A1-theory is given by (5.2.28). In partic-

ular, W̃inst is fully determined by the Young diagram expansions reviewed in appendix 2.1.

Also, we have defined the limit,

ε2∆i
ε2→0−−−→ ε1δi, i = 0, q, 1,∞. (5.3.21)

We have emphasized that (5.3.19) is only a part of the full effective twisted superpotential,

since we are missing the 1-loop term. This is because the 1-loop term is independent of the

gauge coupling and therefore ignorant of the differential equation that the partition function

satisfies. The missing 1-loop part will re-combine in section 5.6.

Thus, under the Nekrasov-Shatashvili limit the equation for the differential operator ̂̂D2

becomes

0 =
[
∂2 + δ0

z2 + δ1

(z − 1)2 + δq
(z − q)2 −

δ1 + δq + δ0 − δ∞
z(z − 1) + H

z(z − 1)(z − q)

]
χβ, (5.3.22)

which is exactly the equation for the Heun’s oper, the Fuchsian differential operator D̂2 of

degree 2 with fixed conjugacy class of monodromy at each puncture of P1\{0, q, 1,∞}. The

variety O2[P1\{0, q, 1,∞}] of these opers is spanned by the accessory parameter,

H ≡ −q(1− q) 1
ε1

∂W̃

∂q

= (1− q)
(

1
2ε2

1
lim
ε2→0

〈
O2

〉
A1

− 1
4 + δq + δ0

)
+ 2(ā0 − ā)(ā− ā3 + ε1)

ε2
1

q.

(5.3.23)

121



All the terms are just some constants except the expectation value of chiral observable

O2 = Trφ2
2. Thus, a holomorphic coordinate on the variety O2[P1\{0, q, 1,∞}] of op-

ers is provided by the expectation value of the chiral observable O2 in the limit ε2 → 0.

The variety O2[P1\{0, q, 1,∞}] of opers is a quantization of the Coulomb moduli space of

T [A1,P1\{0, q, 1,∞}] in this sense. The expectation value limε2→0

〈
O2

〉
A1

is also identified

with the off-shell spectrum of the quantum Hitchin system on P1\{0, q, 1,∞} through the

Bethe/gauge correspondence. Hence, we observe that the relation (5.3.23) establishes the

connection between the accessory parameter H of D̂2 and the off-shell spectrum of quantum

Hitchin Hamiltonian. A proper on-shell condition is expected to be introduced by a ωK-

Lagrangian brane which intersects with O2[P1\{0, q, 1,∞}] at isolated points. As we argued

earlier, the holomorphic coordinate, i.e., the expectation value, (5.3.23) evaluated at these

points gives the on-shell spectrum of the quantum Hitchin system.

Remarks

• It was checked in [110, 111] that the series expansion (5.3.23) for the accessory param-

eter H matches with the direct computation in which H is determined by fixing the

monodromy of the oper D̂2 along the A-cycle (see Figure 5.5), up to some low orders

in the gauge coupling q. The derivation above is purely gauge theoretical and therefore

guarantees the validity to all orders in q.

• The series expansion for the instanton partition function is valid when 0 < |q1|, |q2| < 1.

This implies that the solutions Z̃Lβ for the operator ̂̂D2 are in the convergence domain

0 < |q| < 1 < |z|.

• The solution χβ for the oper D̂2 can be represented as a sum of the Baxter Q-functions,

by using (5.2.33) and taking the limit ε2 → 0. This expression reflects that the equation

for the oper is the Fourier transform of the Baxter TQ-equation.
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• The fact that (5.3.17) coincides with well-known null-vector decoupling equation in two-

dimensional CFT [67], see also [112, 113, 114], confirms the paradigm of the BPS/CFT

correspondence [80] at the example of the AGT correspondence [63].

Similarly, it is not too difficult to derive a closed differential equation for ZRβ . Again, we

re-define partition function as in (5.3.12) with the prefactors (5.3.13), yet with the constraints

(5.2.34). Also we need the re-definition of parameters (5.2.36) for the prefactors this time.

By setting z0 = 1, z1 = q, and z2 = z, the relevant prefactor for ZRβ is

(
−q

z

)−rR,β
q
ε2−(a1,1−a1,2)2

4ε1ε2
−∆0−∆′q+ 2ε+ε2

4ε1

(1− q)
(ā0−ā1+ε)(2ā1−2ā3−ε2)

ε1ε2 (1− z)
ā0−ā1+ε

ε1

(
1− z

q

) 2ā1−2ā3+2ε1+ε2
2ε1

(5.3.24)

where we have defined

(rR,β)β=1,2 ≡
(−a3,1 + a3,2 + ε

2ε1
,
a3,1 − a3,2 + ε

2ε1

)
, (5.3.25)

and

∆′q ≡ −
(2ā1 − 2ā3 − ε2)(2ā1 − 2ā3 + 2ε1 + ε2)

4ε1ε2

∆′1 ≡ −
(ā0 − ā1)(ā0 − ā1 + ε)

ε1ε2
.

(5.3.26)

Then the differential equation satisfied by the modified partition function Z̃Rβ is

0 =
[
ε2

1∂
2 − ε1ε2

2z − 1
z(z − 1)∂ + ε1ε2

q− 1
z(z − 1)(z − q)q

∂

∂q

+ε1ε2

(
∆0

z2 + ∆′1
(z − 1)2 +

∆′q
(z − q)2 −

−2ε+ε2
4ε1 + ∆′1 + ∆′q + ∆0 −∆∞

z(z − 1)

)]
Z̃Rβ .

(5.3.27)

Note that this differential equation is precisely the equation (5.3.17) for ̂̂D2, except ∆1 →

∆′1,∆q → ∆′q. To equate these quantities to get the same equation, we have to clarify how
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the Coulomb moduli of the two theories are associated. This will be the subject of section

5.4.2.2.

Remarks

• This time, 0 < |q1|, |q2| < 1 implies the convergence domain 0 < |z| < |q| < 1. Thus

the domains for the solutions Z̃Lβ and Z̃Rβ are disjoint.

5.3.1.2 N = 3

Since Y0(x) is now a polynomial of degree 3, the x−1-term of (5.3.6) can be written as

0 =
〈
G(−4)(t)

〉
−

3∑
α=1

a0,α

〈
G(−3)(t)

〉
+

∑
1≤α<β≤3

a0,αa0,β

〈
G(−2)(t)

〉
−

3∏
α=1

a0,α

〈
G(−1)(t)

〉
.

(5.3.28)

In addition to (5.3.8), we utilize the following relation from the single-columnedness of λ(1)

〈 ∑
�∈λ(1)

c2
�

〉
= (a0,β − ε)2

〈
k1

〉
+ ε1(a0,β − ε)

〈
k1(k1 + 1)

〉
+ ε2

1
6

〈
k1(k1 + 1)(2k1 + 1)

〉

= 1
ZLβ

ε2
1

3

(
q1

∂

∂q1

)3

+
(
ε2

1
2 + ε1(a0,β − ε)

)(
q1

∂

∂q1

)2

+
(
ε2

1
6 + (a0,β − ε)(a0,β − ε2)

)(
q1

∂

∂q1

)ZLβ .
(5.3.29)
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Using the relations (5.3.8) and (5.3.29), the residue of (5.3.28) at t = −z−1
0 can be written

as the following third order differential equation

0 =
−ε3

1

(
z0

∂

∂z0

)3

+ ε2
1

(
3a0,β −

3∑
α=1

a0,α − ε2
z1

z1 − z0
+

2∑
i=1

zi
zi − z0

A(1)
i

)(
z0

∂

∂z0

)2

− ε1

∏
α 6=β

(a0,β − a0,α) + z1z2

(z1 − z0)(z2 − z0)A
(1)
2 (A(1)

1 − ε)− ε2ε (2a0,β − ε− ε1) z1

z1 − z0

+
2∑
i=1

zi
zi − z0

((
2a0,β −

3∑
α=1

a0,α

)
A(1)
i − ε1ε2zi

∂

∂zi
+ 1

2

(
A(2)
i +

(
A(1)
i

)2
)))(

z0
∂

∂z0

)

+
2∑
i=1

zi
zi − z0

(
1
6(A(1)

i )3 + 1
3A

(3)
i + 1

2A
(1)
i A

(2)
i −

1
2

(
A(2)
i +

(
A(1)
i

)2
)( 3∑

α=1
a0,α − a0,β

)

+ε1ε2

( 3∑
α=1

a0,α − a0,β −A(1)
i

)(
zi
∂

∂zi

)
+
∏
α 6=β

a0,α A(1)
i − ε1ε2ε z2∂2


− 2ε1ε2

z0(z1 − z2)
(z0 − z1)(z0 − z2)

〈 ∑
�∈λ(2)

c�

〉
A2

+ z1z2

(z1 − z0)(z2 − z0)

(1
2
(
A(1)

1 − 2ε
)(
A(2)

2 +
(
A(1)

2

)2
)

+ 1
2A

(1)
2

(
A(2)

1 +
(
A(1)

1

)2
)

−A(1)
2

(
A(1)

1 − ε
)( 3∑

α=1
a0,α − a0,β + ε

)
− ε1ε2

(
A(1)

2 z1
∂

∂z1
+ (A(1)

1 − 2ε)z2
∂

∂z2

))]
ZLβ ,

(5.3.30)

where we have used (5.3.10). We modify the partition function by multiplying the prefactors,

Z̃3 ≡
2∏
i=0

zLii
∏

0≤i<j≤2

(
1− zj

zi

)Tij
Z3, (5.3.31)

where

Li ≡
(ai+1,1 − ai+1,2)2 + (ai+1,1 − ai+1,3)2 − (ai+1,1 − ai+1,2)(ai+1,1 − ai+1,3)

3ε1ε2

− (ai,1 − ai,2)2 + (ai,1 − ai,3)2 − (ai,1 − ai,2)(ai,1 − ai,3)
3ε1ε2

+ 3(āi − āi+1 + ε)(āi − āi+1)
ε1ε2

, i = 0, 1, 2,

Tij ≡
3(āj − āj+1 + ε)(āi − āi+1)

ε1ε2
, i, j = 0, 1, 2.

(5.3.32)
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With the constraints (5.2.4), the prefactors simplify. We also set z0 = z, z1 = 1, and z2 = q.

Then the prefactor for ZLβ becomes

(
−1
z

)−rL,β
q
−∆q−∆0+ 1

ε1ε2

(
ε2−

(a2,1−a2,2)2+(a2,1−a2,3)2−(a2,1−a2,2)(a2,1−a2,3)
3

)
(

1− 1
z

) 3ā0−3ā2+3ε−ε2
3ε1

(
1− q

z

) ā2−ā3+ε
ε1 (1− q)

(ā2−ā3+ε)(3ā−3ā2−ε2)
ε1ε2 ,

(5.3.33)

where the exponents are

(rL,β)3
β=1 ≡

(
−3a0,β +∑3

γ=1 a0,γ + 3ε1 + 5ε2

3ε1

)3

β=1
, (5.3.34)

and

∆0 ≡
1
ε1ε2

(
ε2 − (a3,1 − a3,2)2 + (a3,1 − a3,3)2 − (a3,1 − a3,2)(a3,1 − a3,3)

3

)

∆q ≡ −
3(ā2 − ā3)(ā2 − ā3 + ε)

ε1ε2

∆1 ≡ −
(3ā0 − 3ā2 − ε2)(3ā0 − 3ā2 + 3ε− ε2)

3ε1ε2

∆∞ ≡
1
ε1ε2

(
ε2 − (a0,1 − a0,2)2 + (a0,1 − a0,3)2 − (a0,1 − a0,2)(a0,1 − a0,3)

3

)
.

(5.3.35)

It is also convenient to define the quantities

Λ0 ≡
(2a3,1 − a3,2 − a3,3)(−a3,1 + 2a3,2 − a3,3)(−a3,1 − a3,2 + 2a3,3)

27ε3
1

Λq ≡
(ā2 − ā3)(ā2 − ā3 + ε)(2ā2 − 2ā3 + ε)

ε3
1

Λ1 ≡
1
ε3

1

(
ā0 − ā2 −

ε2

3

)(
ā0 − ā2 + ε− ε2

3

)(
2ā0 − 2ā2 + ε− 2ε2

3

)
Λ∞ ≡

(2a0,1 − a0,2 − a0,3)(−a0,1 + 2a0,2 − a0,3)(−a0,1 − a0,2 + 2a0,3)
27ε3

1
.

(5.3.36)
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Then under the modification, the differential equation (5.3.30) defines an operator ̂̂D3 anni-

hilating the partition function Z̃Lβ ,

0 =
[
ε3

1∂
3 − ε2

1ε2
5z − 3
z(z − 1)∂

2 + ε1t̂2(z, q)∂ + t̂3(z, q)
]
Z̃Lβ , (5.3.37)

where we have defined the meromorphic operators,

t̂2(z, q) ≡ ε1ε2

(
∆0

z2 + ∆q

(z − q)2 + ∆1

(z − 1)2 +
∆∞ −∆1 −∆q −∆0 + 3ε+ε2

3ε1
z(z − 1) + Ĥ1

z(z − q)(z − 1)

)

+ ε2

(
3ε1 + 2ε2

z2 − 2(ā2 − ā3 + ε)
(z − q)2 +

ā0 − ā2 + ε− ε2
3

(z − 1)2

−3ā0 − 9ā2 + 6ā3 − 16ε2

3z(z − 1) − 2(1− q)(ā2 − ā3 + ε)
z(z − q)(z − 1)

)
(5.3.38a)

t̂3(z, q) ≡ ε3
1Λ0

z3 + ε3
1Λq

(z − q)3 + ε3
1Λ1

(z − 1)3 +
ε3

1(Λ∞ − Λ0 − Λq − Λ1 − ε2(3ε+ε2)(3ε+2ε2)
27ε31

)
z(z − q)(z − 1)

(5.3.38b)

+ (1− q)(6ā0 − 6ā2 + 3ε1 + ε2)
6z(z − q)(z − 1)2 ε1ε2

(
−∆∞ + ∆0 + ∆q + ∆1 −

3ε+ ε2

3ε1

)

− 1
2z(z − q)(z − 1)ε1ε2

(
2ā2 − 2ā3 + ε

z − q
+ 6ā0 − 6ā2 + 3ε1 + ε2

3(z − 1)

)
Ĥ1

+ Ĥ2

z2(z − q)(z − 1) + ε1

2 ∂
(
t̂2(z, q)

)
+ ε2 (· · · ) .

We have omitted the last term in t̂3(z, q) which is rather lengthy but is constant and sub-

leading in ε2. This term decouples in the limit ε2 → 0. Also, we have defined

Ĥ1 ≡ −q(1− q) ∂
∂q

(5.3.39a)

Ĥ2 ≡ −(1− q)
(

1
3

〈
O3

〉
A2

+ ε1ε2

(
3ā2 − ā3 + 3ε1 + 2ε2

2

)
q
∂

∂q
+ · · ·

)
(5.3.39b)

+ q

(
ε1ε2(3ā0 − 6ā2 + 3ā3 − 2ε− ε2)q ∂

∂q
+ · · ·

)

+ q2

1− q
(3ā0 − 6ā2 + 3ā3 − 2ε− ε2)(3ā0 − 3ā2 − ε2)(ā2 − ā3 + ε).
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It is not very instructive to write down the full lengthy expression of Ĥ2 here, but we

emphasize that it is fully expressed in gauge theoretical terms. In particular, it includes the

expectation value of the chiral observable

O3 = Trφ3
2 =

3∑
α=1

a3
2,α − 3ε1ε2εk2 − 6ε1ε2

∑
�∈λ(2)

c� (5.3.40)

of the A2-theory. We present the full expression for Ĥ2 in the appendix D.

In the Nekrasov-Shatashvili limit, the partiton function exhibits the asymptotics:

Z̃Lβ (a2 ≡ a, z, q) = e
W̃(a,q)
ε2 (χβ(a, z, q) +O(ε2)) , (5.3.41)

where W̃ is a part of the effective twisted superpotential of the underlying A1-gauge theory,

W̃ ≡ lim
ε2→0

ε2 log Z̃Lβ

= W̃classical + W̃inst + W̃extra.

(5.3.42)

Each piece is given as

W̃classical ≡ −(a1 − a2)2 + (a1 − a3)2 − (a1 − a2)(a1 − a3)
3ε1

log q (5.3.43a)

W̃inst ≡ lim
ε2→0

ε2 logZinst
A1 (5.3.43b)

W̃extra ≡ ε1 (1− δq − δ0) log q + 3(ā− ā3 + ε)(ā0 − ā)
ε1

log(1− q), (5.3.43c)

where W̃inst is the is fully determined by the Young diagram expansions. Also we have

defined the limit,

ε2∆i
ε2→0−−−→ ε1δi, i = 0, q, 1,∞. (5.3.44)
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It is convenient to define also

Λi
ε2→0−−−→ λi, i = 0, q, 1,∞. (5.3.45)

It is clear that δi and λi are written in gauge theoretical terms by their definitions. Now,

the equation (5.3.37) for the operator ̂̂D3 becomes

0 =
[
∂3 + t2(z)∂ + t3(z)

]
χβ, (5.3.46)

where the meromorphic functions ti(z) are obtained by taking the limit to the meromorphic

operators t̂i(z, q),

t2(z) ≡ δ0

z2 + δq
(z − q)2 + δ1

(z − 1)2 + δ∞ − δ1 − δq − δ0

z(z − 1) + H1

z(z − q)(z − 1) , (5.3.47a)

t3(z) ≡ λ0

z3 + λq
(z − q)3 + λ1

(z − 1)3 + λ∞ − λ0 − λq − λ1

z(z − q)(z − 1) (5.3.47b)

− H1

2z(z − q)(z − 1)
1
ε1

(
2ā− 2ā3 + ε1

z − q
+ 2ā0 − 2ā+ ε1

z − 1

)
+ H2

z2(z − q)(z − 1)

+ (1− q)(2ā0 − 2ā2 + ε1)
2z(z − q)(z − 1)

1
ε1

(−δ∞ + δ0 + δq + δ1) + 1
2t
′
2(z).

This is exactly the equation for the SL(3)-oper D̂3 on the four-punctured sphere P1\{0, q, 1,∞}.7

In particular, the monodromies of D̂3 around the punctures exhibit the desired semi-simplicity

and degeneracy of the eigenvalues, as verified by the analytic properties of the solutions χ ob-

tained from the surface defect partition functions (see section 5.6). The varietyO3[P1\{0, q, 1,∞}]
7The equation (5.3.46) matches exactly the one for the generalized Heun oper in [98], where it is derived

from the constraints for the minimal punctures.
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of such opers is parametrized by the accessory parameters,

H1 ≡ −q(1− q) 1
ε1

∂W̃

∂q
, (5.3.48a)

= (1− q)
(

1
2ε2

1
lim
ε2→0

〈
O2

〉
A1

− 1 + δq + δ0

)
+ 3(ā− ā3 + ε1)(ā0 − ā)

ε2
1

q

H2 ≡ −(1− q)
 1

3ε3
1

lim
ε2→0

〈
O3

〉
A1

+ 1
ε2

1

(
3ā− ā3 + 3ε1

2

)
q
∂W̃

∂q
+ · · ·

 (5.3.48b)

+ q

 1
ε2

1
(3ā0 − 6ā+ 3ā3 − 2ε1)q∂W̃

∂q
+ · · ·


+ q2

1− q

3(ā0 − ā)(ā− ā3 + ε1)(3ā0 − 6ā+ 3ā3 − 2ε1)
ε3

1
.

We present the full expression for H2 in appendix D. Notice that the accessory parameters

are expanded as series in q whose coefficients are completely determined in gauge theoretical

terms. In particular, the series begin with

H1 = (a1 − a2)2 + (a1 − a3)2 − (a1 − a2)(a1 − a3)
3ε2

1
− 1 + δq + δ0 +O(q)

H2 = λ0 −
λq
2 −

(2a1 − a2 − a3)(−a1 + 2a2 − a3)(−a1 − a2 + 2a3)
27ε3

1

+ 2ā− 2ā3 + ε1

2ε1

(
δ0 − 1 + (a1 − a2)2 + (a1 − a3)2 − (a1 − a2)(a1 − a3)

3ε2
1

)
+O(q).

(5.3.49)

Thus holomorphic coordinates on the variety O3[P1\{0, q, 1,∞}] of opers are given by the

expectation values of the chiral observables in the A1-theory, O2 and O3
8, in the limit ε2 → 0.

Hence we observe that the variety O3[P1\{0, q, 1,∞}] of opers gives a quantization of the

Coulomb moduli space of T [A2,P1\{0, q, 1,∞}]. The Bethe/gauge correspondence identifies
8Here, we are using the fact that

lim
ε2→0

〈
O3

〉
A2

= lim
ε2→0

〈
ILβ O3

〉
A1〈

ILβ
〉
A1

= lim
ε2→0

〈
O3

〉
A1
,

since the expectation value is dominated by the limit shape when ε2 → 0.
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the Nekrasov-Shatashvili limits of the expectation values of O2 and O3 with the off-shell

spectra of the Hamiltonians of the quantum Hitchin system on P1\{0, q, 1,∞}. Thus, the

relations (5.3.48) establish the connection between the holomorphic functions on the variety

O3[P1\{0, q, 1,∞}] of opers and the off-shell spectra of the quantum Hitchin Hamiltonians.

Remarks

• The gauge theoretical derivation of the series expansions (5.3.48) for the accessory

parameters guarantee their validity to all orders in the gauge coupling q. It would be

nice to mimick the procedure in [110, 111] and check the series expansions by directly

computing the monodromy of the oper D̂3 (5.3.46) along the A-cycle on P1\{0, q, 1,∞}

(see Figure 5.5).

• From the point of view of the AGT correspondence [63], the expectation value of the

higher chiral observable O3 corresponds to the conformal block with a W-descendant

(we briefly mention this issue in section 5.7). It is not very obvious how we should

relate the semi-classical conformal block with aW-descendant to the off-shell spectrum

of the higher quantum Hitchin Hamiltonian. In the gauge theoretical perspective, the

Bethe/gauge correspondence immediately establishes the relation between the expecta-

tion value of O3 and the off-shell spectrum of the higher quantum Hitchin Hamiltonian.

Thus, the relation between the accessory parameter H2 and the off-shell spectrum of

the higher quantum Hitchin Hamiltonian is also revealed through (5.3.48b).

Similarly, we can start by imposing other constraints, e.g. (5.2.34) on the A2-theory.

Hence we consider the partition function ZRβ (5.2.37). Again, we modify the partition function

as (5.3.31) with the prefactors (5.3.32), yet this time under the constraint (5.2.34) and the
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re-definition (5.2.36). The final form of the prefactor is

(
−q

z

)−rR,β
q

1
ε1ε2

(
ε2−

(a1,1−a1,2)2+(a1,1−a1,3)2−(a1,1−a1,2)(a1,1−a1,3)
3

)
−∆′q−∆0+ 3ε+ε2

3ε1

(1− q)
(ā0−ā1+ε)(3ā1−3ā3−ε2)

ε1ε2 (1− z)
ā0−ā1+ε

ε1

(
1− z

q

) 3ā1−3ā3+3ε−ε2
3ε1

,

(5.3.50)

where we have defined

(rR,β)3
β=1 ≡

(
−3a3,β +∑3

γ=1 a3,γ + 3ε
3ε1

)3

β=1
(5.3.51)

and

∆′q ≡ −
(3ā1 − 3ā3 − ε2)(3ā1 − 3ā3 + 3ε− ε2)

3ε1ε2

∆′1 ≡ −
(ā0 − ā1)(ā0 − ā1 + ε)

ε1ε2
.

(5.3.52)

Let us also define

Λ′q ≡
(3ā1 − 3ā3 + 3ε− ε2)(3ā1 − 3ā3 − ε2)(6ā1 − 6ā3 − 3ε+ 2ε2)

27ε3
1

Λ′1 ≡
(ā0 − ā1)(ā0 − ā1 + ε)(2ā0 − 2ā1 + ε)

ε3
1

.

(5.3.53)

Then the modified partition function Z̃Rβ satisfies the equation of the form (5.3.37), after

substituting ∆q,1 → ∆′q,1 and Λq,1 → Λ′q,1.

5.3.2 The (N − 1, 1)-type Z2-orbifold

We construct the surface defect on the A1-theory by placing it on Zp-orbifold. Due to the

orbifolding, the bulk Y-observable fractionalizes into p observables,

Yω(x)[λ] =
∏

α∈c−1(ω)
(x− aα)

∏
�∈Kω

x− c� − ε1

x− c�
∏

�∈Kω−1

x− c� − ε2

x− c� − ε
. (5.3.54)
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The fundamental refined qq-characters are given by [15]

Xω(x) = Yω+1(x+ ε) + qω
Pω(x)
Yω(x) . (5.3.55)

It is often possible to derive a useful equation for the partition function for specific p and

the coloring function c from the non-perturbative Dyson-Schwinger equations of (5.3.55).

We now describe how this is be done for the (N − 1, 1)-type Z2-orbifold. The details of the

computation for the non-regular parts of Xω is given in the appendix E. Below we focus on

the results.

5.3.2.1 N = 2

For N = 2, we consider (1, 1)-type Z2-orbifold. This case is special since the coloring function

is one-to-one. Let us define

c−1(1) = β, c−1(0) = β̄, (5.3.56)

without any loss of generality. Each of the non-perturbative Dyson-Schwinger equations

[x−1]
〈
X0(x)

〉
= [x−1]

〈
X1(x)

〉
= 0 (5.3.57)

involoves the unwanted term

〈 ∑
�∈K0

c� −
∑

�∈K1

c�

〉
, (5.3.58)
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but they can be combined to cancel this term and to yield the following closed equation

0 =
ε2

1(z∂)2 − ε1

−2ãβ̄ +
∑
α=1,2

m̃+,α −
q

z − q

∑
α=1,2

(ãα − m̃−,α) + 1
1− z

∑
α=1,2

(ãα − m̃+,α)
 (z∂)

+ ε1ε̃2
z(1− q)

(1− z)(z − q)q
∂

∂q
+ 1

2

ãβ̄ − ∑
α=1,2

m̃+,α

2

+ 1
2 ã

2
β̄ −

1
2
∑
α=1,2

m̃2
+,α

− 1
2(1− z)


ãβ̄ − ∑

α=1,2
m̃+,α

2

+ ã2
β̄ −

∑
α=1,2

m̃2
+,α


− q

2(z − q)


ãβ − ∑

α=1,2
m̃−,α −

ε̃2

2

2

+
(
ãβ + ε̃2

2

)2
−

∑
α=1,2

(
m̃−,α + ε̃2

2

)2

ZZ2

β ,

(5.3.59)

where we have re-defined the couplings as in (5.2.64), q0 = −z and q1 = − q
z
(up to the sign

which is not very important). Now, let us also re-define the parameters as

ãα = a2,α, m̃+,α = a0,α, m̃−,α = a3,α − ε1 − ε̃2, α = 1, 2. (5.3.60)

Then we decouple multiplicative prefactors

Z̃Z2
β ≡ −

(
−1
z

)−rZ2
β

q
ε2−(a2,1−a2,2)2

4ε1ε2
−∆0−∆q

(1− z)
ε(2ā0−2ā2−ε2)

2ε1ε2 (1− q)
(2ā0−2ā2−ε2)(ā2−ā3+ε)

ε1ε2

(
1− q

z

) ā2−ā3+ε
ε1

ZZ2
β ,

(5.3.61)

where

(
rZ2
β

)
β=1,2

≡
(−a2,1 + a2,2 + ε

2ε1
,
a2,1 − a2,2 + ε

2ε1

)
, (5.3.62)
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and the other exponents have been defined in the previous section. The differential equation

(5.3.59) then becomes

0 =
[
ε2

1∂
2 − ε1ε2

2z − 1
z(z − 1)∂ + ε1ε2

q− 1
z(z − 1)(z − q)q

∂

∂q

+ε1ε2

(
∆0

z2 + ∆1

(z − 1)2 + ∆q

(z − q)2 −
−2ε+ε2

4ε1 + ∆1 + ∆q + ∆0 −∆∞
z(z − 1)

)]
Z̃Z2
β ,

(5.3.63)

which is precisely the differential equation (5.3.17) for ̂̂D2.

Remarks

• The convergence domain for the partition function is 0 < |q0|, |q1| < 1. This implies

the solutions Z̃Z2
β are in yet another intermediate domain 0 < |q| < |z| < 1.

5.3.2.2 N = 3

For N = 3, the computation is more involved. First, recall that the (2, 1)-type Z2-orbifold

surface defect partition function (5.2.74) is split into the underlying A1-theory part and the

surface defect part. The fixed points of the instanton moduli space of the underlying A1-

theory are enumerated by the Young diagrams Λ (5.2.55), whose weights are encoded in the

space K̃ = K̃1 (5.2.54). Thus the observables in the underlying A1-theory descends from the

observables in the space K1 of the original theory on the Z2-orbifold . In particular, we have

∑
�∈K1

c� =
∑
�∈Λ

c̃� + 1
2 ε̃2k1, (5.3.64)

where

c̃� ≡ ãα + (i− 1)ε1 + (j − 1)ε̃2, for �(i,j) ∈ Λ(α). (5.3.65)

135



We will reduce the non-perturbative Dyson-Schwinger equations so that the final equation

only involves the expectation value of this observable, since it comprises the chiral observable

O3[Λ] =
3∑

α=1
ã3
α − 3ε1ε̃2(ε1 + ε̃2)k1 − 6ε1ε̃2

∑
�∈Λ

c̃�, (5.3.66)

of the underlying A1-theory. The non-perturbative Dyson-Schwinger equations that we uti-

lize are

[x−1]
〈
X1(x)

〉
= [x−1]

〈
X0(x)

〉
= [x−2]

〈
X0(x)

〉
= 0. (5.3.67)

The second equation can be used to cancel the unwanted terms

〈 ∑
�∈K0

c�

〉
,

〈
(k0 − k1)

 ∑
�∈K0

c� −
∑

�∈K1

c�

〉, (5.3.68)

while the first and the third equations can be combined to cancel the unwanted term

〈 ∑
�∈K0

c2
� −

∑
�∈K1

c2
�

〉
, (5.3.69)
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The final equation only involves the partition function itself and the expectation value〈∑
�∈Λ c̃�

〉
:

0 =
[
−ε3

1(z∂)3 + ε2
1

(
3ãβ − 3¯̃a+ 3q

z − q

(
−¯̃a+ ¯̃m−

)
− 6z
z − 1

(
¯̃a− ¯̃m+

))
(z∂)2

− ε1

− z

1− z


∑
β̄ 6=β

ãβ̄ −
3∑

α=1
m̃+,α

2

+
∑
β̄ 6=β

ã2
β̄
−

3∑
α=1

m̃2
+,α

− 6ε1

(
ā− ¯̃m+

)
z

(1− z)2 + ε̃2

2

(
ε1 + ε̃2

2

)

+

∏
β̄ 6=β

(
ε1 + ε̃2

2 − ãβ̄
)
z

z − q
+ ε1(ε1 − ãβ)

2(1− z) −
z(ε1 + ε̃2)

(
2ε1 + ε̃2 −

∑
β̄ 6=β ãβ̄

)
2(z − q)

− q

2(z − q)

((
ãβ − 3 ¯̃m− − ε̃2

)2
+ (ε1 + ε̃2)(ãβ − 3 ¯̃m− − ε̃2) +

(
ãβ + ε̃2

2

)2
−

3∑
α=1

(
m̃−,α + ε̃2

2

)2
)

+ z

2(1− z)


∑
β̄ 6=β

ãβ̄ − 3 ¯̃m+

2

+
∑
β̄ 6=β

ã2
β̄
−

3∑
α=1

m̃2
+,α + ε1

∑
β̄ 6=β

ãβ̄ −
3∑

α=1
m̃+,α




−ε1ε̃2
z(1− q)

(z − 1)(z − q)q
∂

∂q
+

∑
β̄ 6=β

ãβ̄ − 3 ¯̃m+ + ε1

2 + 3(¯̃a− ¯̃m+)
z − 1

2
∑
β̄ 6=β

ãβ̄ − 3 ¯̃m+ + 3(¯̃a− ¯̃m+) + ε1

z − 1 + 3q(¯̃a− ¯̃m−)
z − q

 (z∂)

+

− 2ε1z

(1− z)2 + 1 + z

2(1− z)

−2
∑
β̄ 6=β

ãβ̄ + 3 ¯̃m+ −
3(¯̃a− ¯̃m+) + ε1

z − 1 − 3q(¯̃a− ¯̃m−)
z − q

− ε1
z(1− q)

(1− z)(z − q)

−ε1 −
ε̃2

2 + ε1 − ãβ
2(1− z) +

z(2ε1 + ε̃2 −
∑
β̄ 6=β ãβ̄)

2(z − q) +
z
(
−
∑
β̄ 6=β ãβ̄ + 3 ¯̃m+

)
2(z − 1) + (ãβ − ε̃2 − 3 ¯̃m−)q

2(z − q)

 ε1ε̃2q
∂

∂q

+ z(1− q)
(1− z)(z − q)

(
2ε1ε̃2

〈 ∑
�∈Λ

c̃�

〉
+ ε1ε̃2(ε1 + ε̃2)q ∂

∂q

)
+ zε1

(1− z)2


∑
β̄ 6=β

ãβ̄ − 3 ¯̃m+

2

+
∑
β̄ 6=β

ã2
β̄
−

3∑
α=1

m̃2
+,α


+ z

2(1− z)


∑
β̄ 6=β

ãβ̄ − 3 ¯̃m+

2

+
∑
β̄ 6=β

ã2
β̄
−

3∑
α=1

m̃2
+,α


2

∑
β̄ 6=β

ãβ̄ − 3 ¯̃m+ + 3(¯̃a− ¯̃m+) + ε1

z − 1 + 3q(¯̃a− ¯̃m−)
z − q



− q

z − q


(
ãβ − 3 ¯̃m− − ε̃2

)3

6 +

(
ãβ + ε̃2

2

)3
−
∑3
α=1

(
m̃−,α + ε̃2

2

)3

3

+

(
ãβ − 3 ¯̃m− − ε̃2

)((
ãβ + ε̃2

2

)2
−
∑3
α=1

(
m̃−,α + ε̃2

2

)2
)

2


− z

1− z


(∑

β̄ 6=β ãβ̄ − 3 ¯̃m+

)3

6 +
∑
β̄ 6=β ã

3
β̄
−
∑3
α=1 m̃

3
+,α

3 +

(∑
β̄ 6=β ãβ̄ − 3 ¯̃m+

)(∑
β̄ 6=β ã

2
β̄
−
∑3
α=1 m̃

2
+,α

)
2


ZZ2

β ,

(5.3.70)
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where we have re-defined the couplings as q0 = −z and q1 = − q
z
. Let us also re-define the

other parameters as

ãα = a2,α, m̃+,α = a0,α, m̃−,α = a3,α − ε1 − ε̃2, α = 1, 2, 3. (5.3.71)

and modify the partition function by the prefactors,

Z̃Z2
β ≡ −

(
−1
z

)−rZ2
β

q
1

ε1ε2

(
ε2−

(a2,1−a2,2)2+(a2,1−a2,3)2−(a2,1−a2,2)(a2,1−a2,3)
3

)
−∆q−∆0

(1− z)−
2(3ā0−3ā2−ε2)

3ε1 (1− q)
(3ā0−3ā2−ε2)(ā2−ā3+ε)

ε1ε2

(
1− q

z

) ā2−ā3+ε
ε1

ZZ2
β .

(5.3.72)

Here, we have defined the critical exponent for z as

(
rZ2
β

)3

β=1
=
(
−3a2,β +∑3

γ=1 a2,γ + 3ε
3ε1

)3

β=1
. (5.3.73)

Then the equation satisfied by the modified partition function Z̃Z2
β becomes of the form

(5.3.37).

5.4 Analytic continuation and gluing

To compute the monodromies of the solutions to the quantized opers, it is necessary to

know how to connect the solutions in different convergence domains. We accomplish this

by analytically continuing the surface defect partition functions to different convergence

domains, and gluing those continuations in the intermediate regime.

5.4.1 Analytic continuation

We use the duality transformation similar to the one described on p.13 of [115]. There, one

traded the sum over the fluxes of the two dimensional abelian gauge field (magnetic fluxes)

for the sum over a dual integral variable (electric flux), which could be viewed as the label
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enumerating the sheets of the (possibly disconnected) effective target space.

5.4.1.1 Gauged linear sigma model

Let us begin with the two-dimensional gauged linear sigma model (GLSM), which would

generate the surface defect when coupled to the four-dimensional A1-theory. In section 5.2,

we have shown that the 2d GLSM responsible for the quiver surface defect and the (N−1, 1)-

type Z2-orbifold surface defect is the one which flows to the non-linear sigma model on the

Hom(O(−1),CN)-bundle over PN−1. This theory is the N = (2, 2) supersymmetric U(1)

gauge theory with the field contents

Twisted chiral : Σ = (σ,A)

Fundamental chiral : Qα α = 1, · · · , N,

Anti-fundamental chiral : Q̃α α = 1, · · · , N,

(5.4.1)

where we have only denoted the bosonic component fields. By weakly gauging the (U(N)× U(N)) /U(1)

flavor symmetry, the fundamental and the anti-fundamental acquire the twisted masses which

we denote as (a0,α)Nα=1 and (a2,α)Nα=1 respectively, for the reason to be clarified soon. Note

that we may re-define σ by a constant amount so that the twisted masses appear as if weakly

gauging the full U(N)×U(N) symmetry. Due to the twisted masses all the chiral multiplets

can be integrated out. The resulting effective theory is the N = (2, 2) U(1) gauge theory

with the effective twisted superpotential

W̃(σ) = −tσ −
N∑
α=1

(σ − a0,α) (log(σ − a0,α)− 1)−
N∑
α=1

(−σ + a2,α) (log(−σ + a2,α)− 1) ,

(5.4.2)
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where we have introduced the complex coupling t = r− iθ from the Fayet-Illiopoulos param-

eter r and the two-dimensional θ-angle. Hence the vacuum equation reads

N∏
α=1

−σ + a2,α

σ − a0,α
= et = z, (5.4.3)

with the Kähler modulus defined by z ≡ et. Note that the Fayet-Illiopoulos parameter r is

not renormalized since the total charge of the chiral multiplets is zero, and we can imagine

flowing from the region r � 0 to the region r � 0. The GLSM in both regions gives rise

to the non-linear sigma model on the Hom(O(−1),CN)-bundle over PN−1, yet with the base

and the fiber exchanged with each other as we cross r = 0. The classical singularity at

r = 0 is actually shifted by the quantum effect, leaving only a single point θ = Nπ (mod

2π) singular. Hence the flow can be smoothly continued to the other region, connecting the

two sigma models. The vacuum equation (5.4.3) implies that the N -vacua continuously flow

from σ ∼ a0,α at r � 0 to σ ∼ a2,α at r � 0.

Upon the Ω-deformation on the two-dimensional plane, the partition function of the

GLSM can be exactly computed by the equivariant localization. The effective twisted super-

potential only exhibits the leading singular term in the partition function, so we investigate

how the flow of z appears at the level of the partition function. The partition function

localizes on the generalized vortex configurations,

Dz̄Q ≡ ∂z̄Q+ Az̄Q = 0

Dz̄Q̃ = 0

Fzz̄ + |Q|2 − |Q̃|2 = r.

(5.4.4)

Depending on the sign of r, we are forced to localize on either vortices or anti-vortices. Let us

assume r > 0 for now. The asymptotics of the D-term equation forbids the anti-fundamental

Q̃ to generate any bosonic moduli, and only allows its fermionic zero-modes [116]. The final

form of the partition function is precisely the expression (5.2.29) without the coupling to the
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four-dimension,

ZGLSM
β =

∞∑
k=0

z−k

k!

∏N
α=1

(
1 + a0,β−a2,α

ε1

)
k∏

α 6=β

(
1 + a0,β−a0,α

ε1

)
k

= NFN−1

((
1 + a0,β − a2,α

ε1

)
α=1,··· ,N

;
(

1 + a0,β − a0,α

ε1

)
α 6=β

; z−1
)
,

(5.4.5)

where we have chosen the vacuum at the infinity as σ = a0,β. The effective twisted superpo-

tential evaluated at this vacuum can be obtained by taking the asymptotics of the partition

function,

ZGLSM
β = e

W̃β
ε1 (1 +O(ε1)) . (5.4.6)

Once we flow to the region r < 0, the above series expansion is no longer valid. However, we

can still study the asymptotics of the partition function, i.e., the effective twisted superpo-

tential, in this region by applying the Picard-Lefschetz theory to the integral representation

of the partition function [117]. To illustrate the idea, let us consider the case N = 2. Also let

us assume Re
(
1 + a0,1−a0,2

ε1

)
> Re

(
1 + a0,1−a2,2

ε1

)
> 0 for simplicity. Then the Euler integral

representation for the hypergeometric function gives

ZGLSM
1 =

Γ
(
1 + a0,1−a0,2

ε1

)
Γ
(
1 + a0,1−a2,2

ε1

)
Γ
(
a2,2−a0,2

ε1

) ∫ 1

0
dt t

a0,1−a0,2
ε1 (1− t)−1+

a2,2−a0,2
ε1 (1− z−1t)−1−

a0,1−a2,1
ε1 .

(5.4.7)

We now promote the real integral to an integral on the complex t-plane. We can represent
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the integral as

∫
C=[0,1]

dt g(t)e
S(t)
ε1 ,

g(t) = (1− t)−1(1− z−1t)−1

S(t) = (a0,1 − a0,2) log t+ (a2,2 − a0,2) log(1− t)− (a0,1 − a2,1) log(1− z−1t).

(5.4.8)

The critical points of S(t) are at

S ′(t) = a0,1 − a2,2

t
− a2,2 − a0,2

1− t + (a0,1 − a2,1)z−1

1− z−1t
= 0. (5.4.9)

Let us denote the critical points as t±, namely, S ′(t±) = 0. Let us assume that the masses

are generic enough so that the critical points t± are distinct. We would like to deform the

integration contour C into a union of paths, in which each path passes through one of the

critical points and the imaginary part ImS(t) is constant along the path. Such paths are

called the Lefschetz thimbles, and can be obtained by treating the imaginary part of S(t) as

a Hamiltonian

H(t) ≡ ImS(t) = 1
2i(S(t)− S̄(t)), (5.4.10)

which defines the gradient flow by the equation

˙̄t = {H, t̄} = ωab∂aH∂bt̄ = −∂S(t)
∂t

, (5.4.11)

where the symplectic form on the t-plane is given by ω = 1
2idt ∧ dt̄. The Lefschetz thimble

J± is defined as the union of these paths emanating from the critical points t±. Note that

ReS(t) monotonically decreases along the flow (5.4.11), so that the integral along J± would

show good convergence. Now the problem is decomposing the contour C into a union of those
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Lefschetz thimbles, and this procedure can be done as follows. Note that the integration

contour C defines an element of the relative homology H1(C,C−T ;Z), where

C−T ≡ {t ∈ C | ReS(t) ≤ −T}, (5.4.12)

for T � 1. The Lefschetz thimbles are defined as the paths emanating from the critical

points, in which ReS(t) decreases along the flow. Hence the Lefschetz thimbles also define

elements of the relative homology, J± ∈ H1(C,C−T ;Z), and moreover they actually form

a basis of this relative homology. Thus we can express C as a linear combination of the

basis elements J±, say, C = ∑
± n±J±. Then the integral in the partition function can be

expressed as

∑
±
n±

∫
J±
dt g(t)e

S(t)
ε1 . (5.4.13)

The remaining problem is to find the number n±. For this, let us consider the relative

homology H1(C,CT ;Z), where

CT ≡ {t ∈ C | ReS(t) ≥ T}, (5.4.14)

for T � 1. This relative homology is generated by the dual Lefschetz thimbles, K±, which

are defined as the union of the paths (5.4.11) converging to the critical point t±. Note that

we have the intersection pairing

〈Jτ ,Kτ ′〉 = δτ,τ ′ , τ, τ ′ = ±, (5.4.15)

under an appropriate orientation on these thimbles, since J± and K± intersect at t± and
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ReS(t) only decreases or increases along these thimbles. Therefore, we derive

n± = 〈C,K±〉, (5.4.16)

and the final form of the integral is

∑
±
〈C,K±〉

∫
J±
dt g(t)e

S(t)
ε1 . (5.4.17)

When r > 0 (|z| > 1), it can be checked that only one dual thimble, say, K+, intersects

with the original contour C = [0, 1]. Hence the integral can be performed in the WKB sense

as

√
− πε1

S ′′(t+) g(t+) e
S(t+)
ε1

(
1 +

∞∑
k=1

c+,k ε
k
1

)
(5.4.18)

In particular, the effective twisted superpotential is essentially S(t+). This confirms that

we have a contribution from the single vacuum σ = a0,β. However, when r < 0 (|z| < 1)

the topology of thimbles change so that both dual thimbles K± intersect with the contour

C = [0, 1]. Hence the integral is rather performed as

√
− πε1

S ′′(t+) g(t+) e
S(t+)
ε1

(
1 +

∞∑
k=1

c+,k ε
k
1

)
+
√
− πε1

S ′′(t−) g(t−) e
S(t−)
ε1

(
1 +

∞∑
k=1

c−,k ε
k
1

)
,

(5.4.19)

In other words, we start to get a contribution from the other vacuum, represented by the

thimble J−. The continuous flow the the vacua (5.4.3) only exhibits the leading contribution

from J+, but the Picard-Lefschetz analysis shows that the contribution from the other

vacuum also emerges as we flow to the region r < 0.

For higher ranks N ≥ 3, we have to deal with the Euler integral representation for the

generalized hypergeometric function NFN−1 which is N − 1-complex dimensional. It is more

difficult to visualize, but the basic idea is the same. When we fix a vacuum in the region
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r > 0 and flow to the region r < 0, the exponentially suppressed contributions from the

other N − 1-vacua start to emerge. It can be also understood as the manifestation of the

analytic continuation of the generalized hypergeometric function. In the domain |z| < 1, the

generalized hypergeometric function (5.4.5) is still well-defined by the analytic continuation,

and the proper series expansion for this analytic continuation is simply obtained by the

connection formula,

NFN−1

((
1 + a0,β − a2,γ

ε1

)
γ=1,··· ,N

;
(

1 + a0,β − a0,β′

ε1

)
β′ 6=β

; z−1
)

= −
N∑
α=1

∏
β′ 6=β

Γ
(
1 + a0,β−a0,β′

ε1

)
Γ
(
a2,α−a0,β′

ε1

) ∏
α′ 6=α

Γ
(
a2,α−a2,α′

ε1

)
Γ
(
1 + a0,β−a2,α′

ε1

)(−z)1+
a0,β−a2,α

ε1

NFN−1

((
1 + a0,γ − a2,α

ε1

)
γ=1,··· ,N

;
(

1 + a2,α′ − a2,α

ε1

)
α′ 6=α

; z
)
.

(5.4.20)

The Picard-Lefschetz analysis provides a physical interpretation of this formula, i.e., the

emergence of other N − 1-vacua as a consequence of the flow from r > 0 to r < 0.

5.4.1.2 Four-dimensional theory with surface defect

The analytic continuation along the flow of the Kähler modulus can be conducted in a

more general setting: the two-dimensional gauged linear sigma model coupled to the four-

dimensional gauge theory. Let us start with the quiver surface defect partition function

(5.2.5) with the constraints (5.2.4), namely,

ZLβ = ZA2

(
a0; a1,α = a0,α − ε2δα,β; a2; a3 | ε1, ε2 | q1 = z−1, q2 = q

)
. (5.4.21)
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We recall that this can be expressed in terms of the Q-observables (5.2.32). Thus (5.2.5) can

be written as

ZLβ =
∑
λ(2)

q
|λ(2)|
2 µλ(2)

∞∑
k=0

qk1

N∏
α=1

(−1)k Γ
(
1 + a0,β−a0,α

ε1

)
Γ
(
−a0,β−a2,α

ε1

)
Γ
(
k + 1 + a0,β−a0,α

ε1

)
Γ
(
−k − a0,β−a2,α

ε1

)
∏

�∈K2

a0,β + kε1 − c� − ε2

a0,β + kε1 − c�
a0,β − c�

a0,β − c� − ε2

=
∑
λ(2)

q
|λ(2)|
2 µλ(2)

∞∑
k=0

qk1

N∏
α=1

Γ
(
1 + a0,β−a0,α

ε1

)
Γ
(
k + 1 + a0,β−a2,α

ε1

)
Γ
(
k + 1 + a0,β−a0,α

ε1

)
Γ
(
1 + a0,β−a2,α

ε1

)
∏

�∈K2

a0,β + kε1 − c� − ε2

a0,β + kε1 − c�
a0,β − c�

a0,β − c� − ε2
,

(5.4.22)

where we have used the reflection formula Γ(x)Γ(1− x) = π
sinπx in the second equality. It is

crucial to notice that the partition function now can be represented as a contour integral

ZLβ = −
N∏
α=1

Γ
(
1 + a0,β−a0,α

ε1

)
Γ
(
1 + a0,β−a2,α

ε1

)(−q1)−
a0,β
ε1
∑
λ(2)

q
|λ(2)|
2 µ̃λ(2)

∮
C
dx (−q1)

x
ε1

Γ
(
−x−a0,β

ε1

)∏N
α=1 Γ

(
1 + x−a2,α

ε1

)
∏
α 6=β Γ

(
1 + x−a0,α

ε1

) N∏
α=1

l(λ(2,α))∏
i=1

x− a2,α − (i− 1)ε1 − λ(2,α)
i ε2

x− a2,α − (i− 1)ε1
,

(5.4.23)

where we have defined

µ̃λ(2) ≡ µλ(2)

∏
�∈λ(2)

a0,β − c�
a0,β − c� − ε2

= ε [N2K
∗
2 + q12N

∗
2K2 − P12K2K

∗
2 −M0K

∗
2 − q12M

∗
3K2] .

(5.4.24)

The contour C is described in Figure 5.2. Here, we are assuming the Coulomb moduli

a2 = (a2,α)Nα=1 and the masses of hypermultiplets a0 = (a0,α)Nα=1 (and a3 = (a3,α)Nα=1 for

ZRβ ) are generic, so that the simple poles do not overlap with each other. Note that this

contour integral is analogous to the famous Barnes integral. It is straightforward to prove

that the integral (5.4.23) uniformly converges as long as Arg(−q1) < π, i.e., q1 /∈ R+, using
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R+R−

C

a2,1−a0,β
ε1

+ l
(
λ(2,1)

)
− 1

a2,N−a0,β
ε1

+ l
(
λ(2,N)

)
− 1

0 1 2

Figure 5.2: The contour C on the x−a0,β
ε1

-plane.

the asymptotics of the Γ-functions. The equality in (5.4.23) is obtained as we close the

contour by adding the semi-circle R+ at the infinity, picking only the poles at x = a0,β +kε1,

k ∈ Z≥0. It can be shown that the integral along R+ uniformly converges to zero in the

regime |q1| < 1, and therefore it is safe to add R+ to the contour C.

Now, we take the contour integral representation (5.4.23) as the analytic continuation

of the partition function ZLβ . In particular, the partition function assumes a different series

expansion in the regime |q1| > 1, and it can be computed as we close the contour by

adding a semi-circle R− on the opposite side. It is possible to show that the integral along

R− uniformly converges to zero in the regime |q1| > 1, and hence it is safe to add R−

to the contour C. The resulting contour encloses the rest of the poles, i.e., x = a2,α +(
l
(
λ(2,α)

)
− k − 1

)
ε1 where α = 1, · · · , N and k ∈ Z≥0. First note that the denominator in
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the contour integral can be absorbed into the Γ-functions, yielding

∮
C
dx (−q1)

x
ε1

Γ
(
−x−a0,β

ε1

)∏N
α=1 Γ

(
−l
(
λ(2,α)

)
+ 1 + x−a2,α

ε1

)
∏
α 6=β Γ

(
1 + x−a0,α

ε1

)
N∏
α=1

l(λ(2,α))∏
i=1

x− a2,α − (i− 1)ε1 − λ(2,α)
i ε2

ε1
.

(5.4.25)

Then we can pick up the residues of the N -rays of poles at x = a2,α +
(
l
(
λ(2,α)

)
− k − 1

)
ε1,

α = 1, · · · , N and k ∈ Z≥0. We can write the resulting series expansion for the analytically

continued partition function as a sum over these N -rays,

ZLβ =
N∑
α=1

∏
β′ 6=β

Γ
(
1 + a0,β−a0,β′

ε1

)
Γ
(
a2,α−a0,β′

ε1

) ∏
α′ 6=α

Γ
(
a2,α−a2,α′

ε1

)
Γ
(
1 + a0,β−a2,α′

ε1

)q−1
1 (−q1)

a2,α−a0,β
ε1 ZL→Mα , (5.4.26)

where we have defined the basis function in the regime |q1| > 1, which is independent of the

choice of β in the constraints (5.2.4), by

ZL→Mα (a2) ≡
∑
λ(2)

q
|λ(2)|
2 µ̃λ(2)

∞∑
k=0

q
−k+l(λ(2,α))
1

(−1)k
k!

∏
α′ 6=α

Γ
(
−k + l

(
λ(2,α)

)
− l

(
λ(2,α′)

)
+ a2,α−a2,α′

ε1

)
Γ
(
a2,α−a2,α′

ε1

) N∏
γ=1

Γ
(
a2,α−a0,γ

ε1

)
Γ
(
−k + l (λ(2,α)) + a2,α−a0,γ

ε1

)
N∏
γ=1

l(λ(2,γ))∏
i=1

a2,α − a2,γ +
(
l
(
λ(2,α)

)
− k − i

)
ε1 − λ(2,γ)

i ε2

ε1
,

(5.4.27)

so that the choice of β only affects the coefficients of the continuation formula (5.4.26). We

will explicitly write the argument of ZL→Mα only when we emphasize its Coulomb moduli,

but otherwise we omit it. Note that the basis function can be expressed as the expectation
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value of an infinite sum of Q-observables (5.2.32),

ZL→Mα =
∑
λ(2)

q
|λ(2)|
2 µ̃λ(2)

∏
�∈λ(2)

a2,α − ε− c�
a2,α − ε1 − c�

∞∑
k=0

q
−k+l(λ(2,α))
1 ε

N(k−l(λ(2,α)))
1

N∏
γ=1

Γ
(
a2,α−a0,γ

ε1

)
Γ
(
−k + l (λ(2,α)) + a2,α−a0,γ

ε1

) Q2
(
a2,α +

(
l
(
λ(2,α)

)
− k − 1

)
ε1
)

Q2 (a2,α − ε1) .

(5.4.28)

Remarks

• The ratios of the Γ-functions in (5.4.27) and (5.4.28) can be expressed as Pochhammer

symbols, but they may appear either in the numerator or in the denominator depending

on k and l
(
λ(2,α)

)
’s.

• While the exponent of q2 is always positive, the exponent of q1 can either be positive or

negative depending on k and l
(
λ(2,α)

)
. The convergence regime is 0 < |q2| < |q−1

1 | < 1.

We may introduce new coupling constants

q1 ≡ q′1
−1
, q2 ≡ q′1q

′
2, (5.4.29)

so that the the convergence regime becomes 0 < |q′1|, |q′2| < 1. Indeed, the exponent of

the new coupling constant q′1 is k+ |λ(2)|− l
(
λ(2,α)

)
≥ k ≥ 0, i.e., bounded below. The

first inequality is saturated if and only if λ(2) is single-columned, namely, λ(2,α′) = ∅ for

all α′ 6= α and λ(2,α) is single-columned. This suggests the basis function Zα is related

to the A2-theory in which the Coulomb moduli of the two gauge nodes are subject to

certain constraints. We come back to this question in section 5.4.2.1.

• The reparametrization of the couplings q1 = z−1 and q2 = q of (5.2.5) were introduced

to be consistent with the convention in (5.3.17). Note that q′1 = z and q′2 = q
z
under

the reparametrization.

• Let O be an observable lying only on the second gauge node, i.e., O[λ] = O[λ(2)].

The expectation value of such observables can similarly be analytically continued. We
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simply need to insert the observable inside (5.4.27), along with the measure µ̃λ(2) .

Similarly, we can analytically continue the quiver surface defect partition function (5.2.38).

After imposing the constraints (5.2.34) and the re-definition of parameters (5.2.36) we con-

sider

ZRβ = ZA2

(
−a0,α − ε; −a1,α; −a3,α + ε− ε2δα,β; −a3,α + 2ε | ε1, ε2 | q1 = q, q2 = q−1 z

)
,

(5.4.30)

The partition function can be analytically continued in the same way,

ZRβ =
N∑
α=1

∏
β′ 6=β

Γ
(
1 + a3,β′−a3,β

ε1

)
Γ
(
a3,β′−a1,α

ε1

) ∏
α′ 6=α

Γ
(
a1,α′−a1,α

ε1

)
Γ
(
1 + a1,α′−a3,β

ε1

)q−1
2 (−q2)

a3,β−a1,α
ε1 ZR→Mα , (5.4.31)

where

ZR→Mα (a1) =
∑
λ(1)

q
|λ(1)|
1 µ̃λ(1)

∞∑
k=0

q
−k+l(λ(1,α))
2

(−1)k
k!

∏
α′ 6=α

Γ
(
−k + l

(
λ(1,α)

)
− l

(
λ(1,α′)

)
+ a1,α′−a1,α

ε1

)
Γ
(
a1,α′−a1,α

ε1

) N∏
γ=1

Γ
(
a3,γ−a1,α

ε1

)
Γ
(
−k + l (λ(1,α)) + a3,γ−a1,α

ε1

)
N∏
γ=1

l(λ(1,γ))∏
i=1

−a1,α + a1,γ +
(
l
(
λ(1,α)

)
− k − i

)
ε1 − λ(1,γ)

i ε2

ε1
.

=
∑
λ(1)

q1
|λ(1)|µ̃λ(1)

∏
λ(1)

−a1,α − c� − ε
−a1,α − c� − ε1

∞∑
k=0

q
−k+l(λ(1,α))
2 ε

N(k−l(λ(1,α)))
1

N∏
γ=1

Γ
(
a3,γ−a1,α

ε1

)
Γ
(
−k + l (λ(1,α)) + a3,γ−a1,α

ε1

) Q1
(
−a1,α +

(
l
(
λ(1,α)

)
− k − 1

)
ε1
)

Q1 (−a1,α − ε1) ,

(5.4.32)

We have defined the modified measure

µ̃λ(1) ≡ µλ(1)

∏
�∈K1

−a3,β − c�
−a3,β − c� − ε2

= ε
[
N1K

∗
1 + q12N

∗
1K1 − P12K1K

∗
1 −M0K

∗
1 − q2

12M
∗
3K1

]
.

(5.4.33)
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Remarks

• The convergence regime of (5.4.32) is 0 < |q1| < |q−1
2 | < 1. We may define new

coupling constants

q1 ≡ q′1q
′
2, q2 ≡ q′2

−1
, (5.4.34)

so that the convergence regime becomes 0 < |q′1|, |q′2| < 1.

• The reparametrizations of coupling constants (5.2.37) were introduced to be consistent

with the convention in (5.3.27). Note that the new coupling constants q′1 = z and

q′2 = q
z
match with the previous ones. Thus, both analytically continued partition

functions lie in the intermediate domain, 0 < |q| < |z| < 1.

5.4.2 Gluing the partition functions

5.4.2.1 The connection matrix

Recall that the surface defect partition functions are annihilated by the operators ̂̂D obtained

in section 5.3. The uniqueness of the analytic continuation guarantees that the continued

functions satisfy the same differential equations. Therefore we may regard the analytically

continued partition functions as the extentions of the solutions to other convergence domains.

Motivated by the analytic continuation formulas (5.4.26) and (5.4.31), let us define the

connection matrices

(C∞)αβ ≡
∏
α′ 6=α

Γ
(
1 + a0,α−a0,α′

ε1

)
Γ
(
a2,β−a0,α′

ε1

) ∏
β′ 6=β

Γ
(
a2,β−a2,β′

ε1

)
Γ
(
1 + a0,α−a2,β′

ε1

) , (5.4.35a)

(C0)αβ ≡
∏
α′ 6=α

Γ
(
1 + a3,α′−a3,α

ε1

)
Γ
(
a3,α′−a1,β

ε1

) ∏
β′ 6=β

Γ
(
a1,β′−a1,β

ε1

)
Γ
(
1 + a1,β′−a3,α

ε1

) . (5.4.35b)

We will scrutinize below how the connection matrices associate the solutions to ̂̂D in different

convergence domians, for each N ≥ 2.
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N = 2 We have shown in section 5.3.1.1 that the modified surface defect partition func-

tions,

Z̃
L ≡

(
Z̃Lα

)
α=1,2

, (5.4.36)

solve the differential equation (5.3.17) given by ̂̂
D2, with the prefactors in (5.3.13). These

functions provided the solutions of the form

∞∑
k1,k2=0

ck1,k2 z
rL−k1 qL2+k2 , (5.4.37)

in the domain 0 < |q| < 1 < |z|. It is not so difficult to show that they are the only solutions

once the critical exponent L2 is given. Indeed, by directly acting ̂̂
D2 to the ansatz and

expanding in z−1 and q, we get a recursive relations for the coefficients ck1,k2 . In particular,

the zeroth order equation is

0 =
(
ε2

1r
2
L − ε1(ε1 + 2ε2)rL + ε1ε2

(2ε+ ε2

4ε1
+ ∆1

))
c0,0. (5.4.38)

The existence of the solution (c0,0 6= 0) implies that we are restricted to only two choices for

the critical exponent rL,

(rL,α)α=1,2 =
(−a0,1 + a0,2 + ε+ ε2

2ε1
,
a0,1 − a0,2 + ε+ ε2

2ε1

)
, (5.4.39)

which are precisely (5.3.15). Once rL is chosen, the recursive relations fully determine all

the coefficients ck1,k2 . Since the partition functions Z̃
L already provide two solutions, we

conclude that the surface defect partition functions Z̃
L provide all solutions to ̂̂

D2 in the

domain 0 < |q| < 1 < |z|, for each fixed L2.

With the modification of the partition function by the multiplication of the prefactors
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(5.3.13), the analytic continuation formula (5.4.26) becomes

Z̃Lα = −
∑
β=1,2

(C∞)αβ
(
−1
z

)−rL,α+ 2ā0−2ā2+ε2
2ε1

+
a2,β−a0,α

ε1
q
−∆q−∆0+

ε2−(a2,1−a2,2)2

4ε1ε2

(1− z)
2ā0−2ā2+2ε1+ε2

2ε1

(
1− q

z

) ā2−ā3+ε
ε1 (1− q)

2(ā2−ā3+ε)(2ā0−2ā2−ε2)
ε1ε2 ZL→Mβ .

(5.4.40)

Note that the critical exponent of z is independent of α, namely,

(rL→M,β)β=1,2 ≡
(
rL,α −

2ā0 − 2ā2 + ε2

2ε1
− a2,β − a0,α

ε1

)
β=1,2

=
(−a2,1 + a2,2 + ε

2ε1
,
a2,1 − a2,2 + ε

2ε1

)
.

(5.4.41)

Finally, we define the modified basis functions as

Z̃L→Mβ ≡ −
(
−1
z

)−rL→M,β
q
−∆q−∆0+

ε2−(a2,1−a2,2)2

4ε1ε2

(1− z)
2ā0−2ā2+2ε1+ε2

2ε1

(
1− q

z

) ā2−ā3+ε
ε1 (1− q)

2(ā2−ā3+ε)(2ā0−2ā2−ε2)
ε1ε2 ZL→Mβ ,

Z̃
L→M ≡

(
Z̃L→Mβ

)
β=1,2

.

(5.4.42)

The uniqueness of analytic continuation guarantees that Z̃
L→M also provides solutions tô̂

D2. Therefore, the analytic continuation formula,

Z̃
L = C∞Z̃

L→M
, (5.4.43)

connects the solutions to the differential operators ̂̂
D2 in different convergence domains,

through the connection matrix defined in (5.4.35a).

Remarks

• In the limit ε2 → 0, the modified functions ZL→M produce solutions to the oper D̂. It

is evident from the expression (5.4.28) that the solutions are again expressed as sums

of the Baxter Q-functions.
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• We observe that the critical exponent rL→M,β of z for Z̃L→Mβ is precisely the L1 in

(5.3.13) subject to the constraint


a1,β = a2,β + ε2

a1,α = a2,α (α 6= β)
. (5.4.44)

This strongly indicates the identity,

ZL→Mβ = (1− z)−
2ε
ε1ε2

(ā0−ā2−ε2)
ZA2 (a1,α = a2,α + ε2δα,β) , (5.4.45)

between the two seemingly distinct partition functions. Even though this identity is

rather obvious in the point of view of AGT [63], its rigorous proof in the gauge theory

side is not. As is clear from the definition of each side, this identity implies a lot of non-

trivial combinatoric identities. It would be nice to directly prove the identity, perhaps

by using the non-perturbative Dyson-Schwinger equations, but it is not necessary for

our study so we do not attempt it here.

Similarly, we have shown that the modified surface defect partition functions,

Z̃
R ≡

(
Z̃Rα

)
α=1,2

, (5.4.46)

give solutions to ̂̂
D2 in the domain 0 < |z| < |q| < 1, which are now of the form

∞∑
k1,k2=0

ck1,k2 z
rR+k2 qL1+k1−k2 =

∞∑
k1,k2=0

ck1,k2 q
L1+rR+k1

(
z

q

)rR+k2

. (5.4.47)

We can act with ̂̂
D2 on this series and expand in q and z

q
, to find the indicial equation,

0 = ε2
1r

2
R − ε1ε rR + ε1ε2∆0, (5.4.48)

154



whose solutions are precisely (5.3.25), namely,

(rR,α)α=1,2 ≡
(−a3,1 + a3,2 + ε

2ε1
,
a3,1 − a3,2 + ε

2ε1

)
. (5.4.49)

Once rR is chosen, all the coefficients ck1,k2 are determined recursively. Thus we conclude

that Z̃R provide the only two solutions to ̂̂
D2 in the domain 0 < |z| < |q| < 1, for each fixed

L1 + rR. With the prefactors (5.3.24), the analytic continuation formula (5.4.31) becomes

Z̃Rα = −
∑
β=1,2

(C0)αβ
(
−q

z

)−rR,α− 2ā1−2ā3+ε2
2ε1

−
a3,α−a1,β

ε1
q
ε2−(a1,1−a1,2)2

4ε1ε2
−∆0−∆′q+ 2ε+ε2

4ε1

(1− q)
(ā0−ā1+ε)(2ā1−2ā3−ε2)

ε1ε2 (1− z)
ā0−ā1+ε

ε1

(
1− q

z

) 2ā1−2ā3+2ε1+ε2
2ε1

ZR→Mβ .

(5.4.50)

Note that the critical exponent for z becomes, again, independent of α,

(rR→M,β)β=1,2 ≡
(
rR,α + 2ā1 − 2ā3 + ε2

2ε1
+ a3,α − a1,β

ε1

)
β=1,2

=
(−a1,1 + a1,2 + ε+ ε2

2ε1
,
a1,1 − a1,2 + ε+ ε2

2ε1

)
.

(5.4.51)

Hence we define the modified basis function by

Z̃R→Mβ ≡ −
(
−q

z

)−rR→M,β
q
ε2−(a1,1−a1,2)2

4ε1ε2
−∆0−∆′q+ 2ε+ε2

4ε1

(1− q)
(ā0−ā1+ε)(2ā1−2ā3−ε2)

ε1ε2 (1− z)
ā0−ā1+ε

ε1

(
1− q

z

) 2ā1−2ā3+2ε1+ε2
2ε1

ZR→Mβ ,

Z̃
R→M ≡

(
Z̃R→Mβ

)
β=1,2

.

(5.4.52)

By the uniqueness of the analytic continuation, we conclude that Z̃R→M gives the solutions

to ̂̂
D2 in the domain 0 < |q| < |z| < 1. The analytic continuation formula,

Z̃
R = C0 Z̃

R→M
, (5.4.53)

connects the solutions in different convergence domains, through the connection matrix de-
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fined in (5.4.35b).

N = 3 Under the modification (5.3.31) with the prefactors (5.3.32), the analytic continu-

ation formula (5.4.26) becomes

Z̃Lα = −
3∑

β=1
(C∞)αβ

(
−1
z

)−rL,α+ 3ā0−3ā2+2ε2
3ε1

+
a2,β−a0,α

ε1 (5.4.54)

q
−∆q−∆0+ 1

ε1ε2

(
ε2−

(a2,1−a2,2)2+(a2,1−a2,3)2−(a2,1−a2,2)(a2,1−a2,3)
3

)
(5.4.55)

(1− z)
3ā0−3ā2+3ε−ε2

3ε1

(
1− q

z

) ā2−ā3+ε
ε1 (1− q)

(ā2−ā3+ε)(3ā−3ā2−ε2)
ε1ε2 ZL→Mβ . (5.4.56)

Again, the critical exponent of z is independent of α,

(rL→M,β)3
β=1 ≡

(
rL,α −

3ā0 − 3ā2 + 2ε2

3ε1
− a2,β − a0,α

ε1

)3

β=1

=
(
−3a2,β +∑3

γ=1 a2,γ + 3ε
3ε1

)3

β=1
.

(5.4.57)

Hence, we define the modified basis functions as

Z̃L→Mβ ≡ −
(
−1
z

)−rL→M,β
q
−∆q−∆0+ 1

ε1ε2

(
ε2−

(a2,1−a2,2)2+(a2,1−a2,3)2−(a2,1−a2,2)(a2,1−a2,3)
3

)

(1− z)
3ā0−3ā2+3ε−ε2

3ε1

(
1− q

z

) ā2−ā3+ε
ε1 (1− q)

(ā2−ā3+ε)(3ā−3ā2−ε2)
ε1ε2 ZL→Mβ ,

Z̃
L→M ≡

(
Z̃L→Mβ

)3

β=1
.

(5.4.58)

Then the analytic continuation formula,

Z̃
L = C∞Z̃

L→M
, (5.4.59)

connects the solutions to ̂̂
D3 in different converence domains.

Likewise, under the multiplication of the prefactors (5.3.50), the analytic continuation
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formula (5.4.31) becomes

Z̃Rα = −
3∑

β=1
(C0)αβ

(
−q

z

)−rR,α− 3ā1−3ā3+2ε2
3ε1

−
a3,α−a1,β

ε1 (1− q)
(ā0−ā1+ε)(3ā1−3ā3−ε2)

ε1ε2 (1− z)
(ā0−ā1+ε)

ε1

q
1

ε1ε2

(
ε2−

(a1,1−a1,2)2+(a1,1−a1,3)2−(a1,1−a1,2)(a1,1−a1,3)
3

)
−∆′q−∆0+ 3ε+ε2

3ε1

(
1− q

z

) 3ā1−3ā3+3ε−ε2
3ε1

ZR→Mβ .

(5.4.60)

Note that the critical exponent of z becomes independent of α, namely,

(rR→M,β)3
β=1 ≡

(
rR,α + 3ā1 − 3ā3 + 2ε2

3ε1
+ a3,α − a1,β

ε1

)3

β=1

=
(
−3a1,β +∑3

γ=1 a1,γ + 3ε+ 2ε2

3ε1

)3

β=1
.

(5.4.61)

Therefore we modify the basis function by

Z̃R→Mβ ≡ −
(
−q

z

)−rR→M,β
(1− q)

(ā0−ā1+ε)(3ā1−3ā3−ε2)
ε1ε2 (1− z)

ā0−ā1+ε
ε1

(
1− q

z

) 3ā1−3ā3+3ε−ε2
3ε1

q
1

ε1ε2

(
ε2−

(a1,1−a1,2)2+(a1,1−a1,3)2−(a1,1−a1,2)(a1,1−a1,3)
3

)
−∆′q−∆0+ 3ε+ε2

3ε1 ZR→Mβ

Z̃
R→M ≡

(
Z̃R→Mβ

)3

β=1
.

(5.4.62)

We conclude that the connection formula,

Z̃
R = C0 Z̃

R→M
, (5.4.63)

associate the solutions in different domains, through the connection matrix (5.4.35b).

157



5.4.2.2 The shift matrix

We have verified in section 5.4.2.1 that the analytically continued partition functions Z̃L→M

and Z̃
R→M provide the solutions to the operator ̂̂D in the intermediate domain, 0 < |q| <

|z| < 1. Moreover, we have found in section 5.3.2 that the (N−1, 1)-type Z2-orbifold surface

defect partition functions ZZ2 also provide the solutions to ̂̂
D in the same domain. The

question arises on how these solutions are associated to each other. Exact identities between

these partition functions are established with the help of the shift matrix

Sαβ ≡ eε2
∂
∂aα δαβ, (5.4.64)

which is introduced to facilitate shifting the Coulomb moduli of the underlying A1-theory.

We proceed below with the derivation of the identities, for each N ≥ 2.

N = 2 Let us consider the generic ansatz for ̂̂
D2 in the intermediate domain 0 < |q| <

|z| < 1,

∞∑
k1,k2=0

ck1,k2 z
rM+k1−k2qL2+k2 =

∞∑
k1,k2=0

ck1,k2 z
rM+L2+k1

(
q

z

)L2+k2

. (5.4.65)

By acting ̂̂
D2 to the ansatz and expanding in z and q

z
, we find the indicial equation

0 = ε2
1r

2
M − ε1ε rM + ε1ε2(∆q + ∆0) + ε1ε2L2. (5.4.66)

Once the critical exponents r1 and L2 are chosen to satisfy the indicial equation, all the

coefficients ck1,k2 are determined recursively. The solution is unique in this sense.

We have seen that Z̃
L→M , Z̃R→M , and Z̃

Z2 are annihilated by ̂̂
D2, and therefore their

critical exponents evidently satisfy the indicial equation (5.4.66). Moreover, we observe from
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(5.4.41), (5.4.51), (5.3.62), (5.3.16), and (5.3.26) that

(rL→M,α)α=1,2 =
(
rR→M,α

∣∣∣∣
a1,α→a2,α+ε2

)
α=1,2

=
(
rZ2
α

)
α=1,2

, (5.4.67)

∆q = ∆′q
∣∣∣∣
a1,α→a2,α+ε2

, (5.4.68)

so that the indicial equation guarantees that those solutions are identical under the shift of

the Coulomb moduli, namely,

Z̃
L→M(a) = S Z̃

R→M(a) = Z̃
Z2(a). (5.4.69)

Note that the re-definitions (5.2.36) of the Coulomb moduli and the masses of the hypermul-

tiplets for Z̃R were carefully designed to yield this equality. Consequently, we conclude that

the analytically continued partition functions agree in the intermediate domain, and this is

also identical to the orbifold surface defect partition function.

N = 3 From (5.3.35), (5.3.36), (5.3.52), and (5.3.53), we observe that

∆q,1 = ∆′q,1
∣∣∣∣
a1,α→a2,α+ε2

Λq,1 = Λ′q,1
∣∣∣∣
a1,α→a2,α+ε2

(5.4.70)

Also, from (5.4.57), (5.4.61), and (5.3.73), we have

(rL→M,α)3
α=1 =

(
rR→M,α

∣∣∣∣
a1,α→a2,α+ε2

)3

α=1
=
(
rZ2
α

)3

α=1
. (5.4.71)

Although these relations look promising, they do not guarantee the equality of the partition

functions this time. The problem is that the equation for ̂̂D3 involves the expectation value〈
O3

〉
, which is an object independent of the partition function itself. Without an addi-

tional information on equating the expectation values analytically continued from different
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domains, the single equation of ̂̂D3 is not enough to fully determine the partition function.

Nevertheless, in the limit ε2 → 0 the equation is reduced to the oper D̂3 on P1\{0, q, 1,∞},

and the relations (5.4.70) and (5.4.71) are indeed enough to guarantee that the solutions

agree wih each other. This is because, as we have seen earlier, the expectation value
〈
O3

〉
is dominated by the limit shape and becomes a series only in q, comprising an accessory

parameter for the oper D̂3 which is unambiguously determined once the monodromy along

the A-cycle is fixed.

We furthermore suspect that even for generic values of ε2, there is a proper matching

between the analytically continued expectation values in the intermediate domain, so that

the identities,

Z̃
L→M(a) = S Z̃

R→M(a) = Z̃
Z2(a), (5.4.72)

persist to be true. We have checked the identities at low orders in the gauge couplings z and

q. We discuss more on this issue in section 5.7.

Remarks

• The duality between the quiver-type and the orbifold-type surface defects was realized

in [48] as the M-theory brane transition, for the A1-theories. It would be interesting

to study the relation between the higher rank generalization of the duality in [48] and

the exact identification of the partition functions (5.4.72).

5.5 Darboux coordinates

Recall that the main assertion of [91] is that the generating function for the variety of opers

with respect to the NRS coordinate system is identical to the effective twisted superpotential
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of a class S theory:

S [ON [C]] = 1
ε1

(
W̃ [T [AN−1,C]]− W̃∞

)
. (5.5.1)

We need a generalization of the NRS coordinates for N > 2 to give any meaning to the left

hand side of the correspondence.

Here, we propose a Darboux coordinate system on the moduli space of flat SL(N)-

connections on the r + 3-punctured sphere P1
2,r+1 with two maximal and r + 1 minimal

punctures, for the arbitrary higher rank N − 1. The proposed coordinates reduce to the

usual NRS coordinate system in N = 2 on a specific patch of the moduli space of flat

connections.

In this section Cr denotes P1
2,r+1 = P1\{z−1, z0, . . . , zr, zr+1}. We often set z−1 = ∞,

zr+1 = 0, and z0 = 1.

5.5.1 Construction of Darboux coordinates

5.5.1.1 Definition

We construct Darboux coordinates on a patch of the moduli space of flat SL(N)-connections

on the r+ 3-punctured sphere Cr, which reduces to the NRS coordinates in the N = 2 case.

Our main example of the four-punctured sphere is the case r = 1. As in (5.1.15), the moduli

space Mflat(SL(N),Cr) is the space of (stable) equivalence classes of the homomorphisms

of the fundamental group of the punctured Riemann sphere to SL(N), in which the loops

encircling each puncture are mapped to the prescribed conjugacy classes in SL(N). In

particular, the two maximal punctures correspond to generic semisimple conjugacy classes

in SL(N), while the r+ 1 minimal punctures correspond to semisimple conjugacy classes in

SL(N) with maximally degenerate eigenvalues. We fix the conjugacy classes by specifying

the eigenvalues of the holonomy matrices gi, i = −1, 0, 1, . . . , r + 1. The moduli space is
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given by:

Mflat(SL(N),Cr)

=



(gi)r+1
i=−1

∣∣∣∣∣

gi ∈ SL(N) ,

Det(gi − x) = (mi − x)N−1(m1−N
i − x) , i = 0, . . . , r

Det(gi − x) =
N∏
α=1

((
m

(α)
i

)−sgn(i)
− x

)
, i = −1, r + 1

g−1g0 · · · gr+1 = 1N



stable

/
SL(N).

(5.5.2)

The stability condition chooses an open subset in the set of matrices gi obeying all of the

conditions above. We shall not need to specify the stability condition since we are going to

work on an open patch of the moduli space which belongs to the stable subset.

The holonomies gi ∼ diag(mi, · · · ,mi,m
−N+1
i ) around the minimal punctures require

more detailed notation. We can form such an element of SL(N) by setting

gi = mi

(
1N +

(
m−Ni − 1

)
Ei ⊗ Ẽi

)
, (5.5.3)

where

Ei ∈ CN , Ẽi ∈
(
CN

)∗
(dual space)

Ẽi(Ei) = 1,
(5.5.4)

which are defined up to rescaling
(
Ei, Ẽi

)
7→

(
tiEi, t

−1
i Ẽi

)
, ti ∈ C×. For fixed Ẽi, its null

subspace in CN is N − 1-dimensional. Hence we have N − 1-dimensional eigenspace of gi

with the eigenvalue mi. The one last eigenvector is given by Ei, with the eigenvalue m−N+1
i

fixed by the normalization condition. The number of degrees of freedom in such a gi is equal
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to

2N (from E and Ẽ)− 1 (normalization)− 1 (rescaling) = 2(N − 1). (5.5.5)

Therefore, a simple dimension count gives

dimMflat(SL(N),P1
2,r+1) = 2

(
(N2 − 1)− (N − 1)

)
+ (r + 1) (2(N − 1))− 2(N2 − 1)

= 2r(N − 1).

(5.5.6)

We need to define r(N − 1)-pairs of coordinates which are canonical under the Poisson

bracket. For this, it is convenient to parametrize the moduli space as follows. Let us define

the projection operators

Πi = Ei ⊗ Ẽi, i = 0, 1, · · · , r

Π2
i = Πi,

(5.5.7)

formed by the eigenvector Ei (5.5.4) of gi and its dual-vector. Then gi is expressed as

gi = mi

(
1N +

(
m−Ni − 1

)
Πi

)
, i = 0, 1, . . . , r. (5.5.8)

For later use, we also give the expression for its inverse:

g−1
i = m−1

i

(
1N + (mN

i − 1)Πi

)
, i = 0, 1, . . . , r. (5.5.9)

Let us also define

Mi ≡ g−1g0 . . . gi ∈ SL(N), i = −1, 0, 1, · · · , r + 1. (5.5.10)

These matrices represent the holonomies along the curves on the r + 3-punctured sphere

163



−1

0

1

i

r

r + 1

gi

Mi

Figure 5.3: The r + 3-punctured sphere P1
2,r+1. The (−1)-th puncture (located at z = ∞)

and the (r+ 1)-th puncture (located at z = 0) are maximal, denoted by double circles, while
all the other punctures are minimal, denoted by simple dots. The holonomy along the loop
encircling each puncture is represented by gi (blue line), while the holonomy along the loop
enclosing i+ 2 punctures is represented by Mi (red line).

enclosing i + 2 punctures (see Figure 5.3). In particular, it is immediate that we have

M−1 = g−1, Mr = g−1
r+1, and Mr+1 = 1N . We can express these matrices as

Mi =
N∑
α=1

m
(α)
i Π(α)

i , (5.5.11)

with the projection operators Π(α)
i obeying

Π(α)
i Π(β)

i = δα,β Π(α)
i , (5.5.12)

each having rank one. Using the eigenbasis E(α)
i ∈ CN , i = 0, 1, . . . , r − 1 of Mi, and its

dual-basis Ẽ(β)
i ∈

(
CN

)∗
, Ẽ(α)

i (E(β)
i ) = δα,β, we can write

Π(α)
i = E

(α)
i ⊗ Ẽ

(α)
i . (5.5.13)
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The basis vectors are defined up to rescalings
(
E

(α)
i , Ẽ

(α)
i

)
7→
(
t
(α)
i E

(α)
i ,

(
t
(α)
i

)−1
Ẽ

(α)
i

)
, t(α)
i ∈

C×, and reorderings E(α)
i 7→ E

(σi(α))
i , σi ∈ S(N).

Now we are ready to propose a Darboux coordinate system. We define the coordinates

α
(α)
i , β̃(α)

i , i = 0, 1, . . . , r − 1, α = 1, . . . , N , subject to the constraints

N∑
α=1

α
(α)
i = 0 (5.5.14)

and defined up to the shifts

β̃
(α)
i 7→ β̃

(α)
i + bi , bi ∈ C (5.5.15)

via

Mi E
(α)
i = e2πiα(α)

i E
(α)
i (5.5.16)

and

e−β̃
(α)
i +β̃i = Ẽ

(α)
i (Ei+1)
Ẽ

(α)
i (Ei)

Ẽi+1(Ei) = TrNΠiΠ(α)
i Πi+1

TrNΠiΠ(α)
i

, (5.5.17)

where β̃i is defined by:

eβ̃i =
N∑
α=1

eβ̃
(α)
i TrN

(
Πi+1Π(α)

i

)
. (5.5.18)

Due to the constraint (5.5.14) and the ambiguity (5.5.15), the coordinates α(α)
i , β̃(α)

i are

redundant. Thus we refine the coordinates by choosing mutually independent r(N−1)-pairs

(
α

(α)
i , β

(α)
i ≡ β̃

(α)
i − β̃

(N)
i

)
, i = 0, 1, · · · , r − 1, α = 1, · · · , N − 1. (5.5.19)

to form a proper coordinate system on Mflat(SL(N),P1
2,r+1).
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5.5.1.2 Canonical Poisson relations

To show that
{
α

(α)
i ,β

(α)
i | i = 0, 1, · · · , r − 1, α = 1, · · · , N − 1

}
forms a Darboux coordi-

nate system on Mflat(SL(N),P1
2,r+1), we have to verify that the Poisson brackets [97] are

canonical9

 β̃(α)
i , α

(β)
j

 = δi,jδα,βα(α)
i ,α

(β)
j

=
β̃(α)

i , β̃
(β)
j

= 0,

i, j = 0, 1, · · · , r − 1,

α, β = 1, · · · , N.
(5.5.20)

The Poisson bracket on the space of all gauge fields

Aa(x),Ab(y)
 = δabδ(2)(x, y) (5.5.21)

(the δ(2) is a two-form on P1
2,r+1) has a simple geometric description when represented on

the holonomies. To illustrate, consider two distinct elements of the fundamental group

[γ1,2] ∈ π1
(
P1

2,r+1

)
. We can choose their representatives γ1,2 to intersect transversally. We

assign to each intersection point x ∈ γ1 ∩ γ2 a sign

s : γ1 ∩ γ2 −→ {±} (5.5.22)

according to the orientation of the curves γ1,2 at x relative to the orientation of the sphere

(see Figure 5.4). Then we define

(γ1 ∩ γ2)± ≡ {x ∈ γ1 ∩ γ2 | s(x) = ±} . (5.5.23)

At each intersection x, we compose a resolution (γ1 ∪ γ2)x of the union of the curves as

described in Figure 5.4. Now the Poisson structure on the moduli space of flat connections
9It is clear that the Poisson brackets for the refined coordinates (5.5.19) are also canonical once (5.5.20)

is proven.
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γ1

γ2

+ γ2

γ1

−

Figure 5.4: The sign assignment to intersection points and the resolution of the union of
curves.

can be represented on the holonomies ρ along γ1,2 by

ρ([γ1]), ρ([γ2])
 =

∑
x∈(γ1∩γ2)+

ρ ([(γ1 ∪ γ2)x])−
∑

x∈(γ1∩γ2)−
ρ ([(γ1 ∪ γ2)x]) . (5.5.24)

Using the geometric description of the Poisson structure, we can show that the coordi-

nates defined in (5.5.16) and (5.5.17) satisfy the canonical Poisson relations (5.5.20). Let us

package (5.5.16) into the generating function:

Ai(x) ≡ TrN (x−Mi)−1 =
∞∑
l=0

1
xl+1 TrN M l

i , (5.5.25)

which has a simple geometric meaning as the generating function of the loops which wind

along the same curve (whose holonomy is represented by Mi) multiple times. Since there is

no intersection among these curves, it is clear that we have

Ai(x),Aj(y)
 = 0, (5.5.26)

for any i, j = 0, 1, · · · , r − 1. Thus we derive

α(α)
i ,α

(β)
j

 = 0, (5.5.27)

for any i, j = 0, 1, · · · , r − 1, α, β = 1, · · · , N .
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We can also package (5.5.17) into

Bi(x) ≡ TrN Πi (x−Mi)−1 Πi+1 = eβ̃i
N∑
α=1

e−β̃
(α)
i

TrN ΠiΠ(α)
i

x−m(α)
i

. (5.5.28)

We can re-express this via:

Di(x) ≡ TrN gi (x−Mi)−1 gi+1

= mimi+1(m−Ni − 1)(m−Ni+1 − 1)Bi(x) + mimi+1x
−1
(
Pi−1(m−1

i x)
Pi(x) − 1

)

−mim
1−N
i+1 x

−1
(
Pi+1(mi+1x)

Pi(x) − 1
)

+ mimi+1Ai(x),

(5.5.29)

where Pi(x) is the characteristic polynomial of Mi:

Pi(x) = Det(x−Mi) =
N∏
α=1

(
x−m

(α)
i

)
. (5.5.30)

In deriving the second equality of (5.5.29), we had simple manipulations on the determi-

nants10 and (5.5.11):

Pi−1(m−1
i x)

Pi(x) − 1 = x
(
1−m−Ni

)
Tr(Mi − x)−1Πi (5.5.31)

Pi(mix)
Pi−1(x) − 1 = x

(
1−mN

i

)
Tr(Mi−1 − x)−1Πi. (5.5.32)

The function Di(x) has a simple geometric meaning:

Di(x) =
∞∑
l=0

1
xl+1 TrN giM l

igi+1 (5.5.33)

from which it is obvious that {Di(x),Aj(y)} = 0 for i 6= j (the corresponding loops on the

r + 3-punctured sphere do not intersect), as well as that {Di(x),Dj(y)} = 0 for |i− j| > 1.
10Use that for any rank one projector Π, and any operator A, Det(1 +AΠ) = 1 + Tr(AΠ)
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From these, we derive

β̃(α)
i ,α

(β)
j

 = 0, i 6= j, α, β = 1, · · · , N,
β̃(α)

i , β̃
(β)
j

 = 0, |i− j| > 1, α, β = 1, · · · , N.
(5.5.34)

It remains to compute:

Di(x),Ai(y)
,

Di(x),Di+1(y)
, and

Di(x),Di(y)
, (5.5.35)

which are a bit more involoved. As we elaborate in appendix F in detail, the rest of the

canonical Poisson relations (5.5.20) are obtained out of these brackets, confirming that the

proposed coordinate system is indeed Darboux.

Remarks

• Other constructions generalizing the NRS-type coordinates were proposed in the SL(2)

case in [104], in the arbitrary group case in [103], and specifically in the SL(3) case

in [98]. In [104] and [98], the spectral coordinates are defined as the holonomies of a

(twisted) flat GL(1)-connection on a line bundle over the N -fold branched covering Σ

of the Riemann surface C, which is a certain uplift (called abelianization) of the flat

SL(N)-connection on C [101]. To give some credit to our construction, as described

above, it produces the Darboux coordinates for arbitrary N in an elementary fashion,

albeit only on a specific patch of the moduli space.

5.5.2 The four-punctured sphere

We consider our main example, the four-punctured sphere P1\{0, q, 1,∞}. The generalized

NRS coordinate system on the moduli space Mflat(SL(N),P1\{0, q, 1,∞}) is just a special

case r = 1 of the one defined in the previous section. In this special case, it is convenient to
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express the generalized NRS coordinates in terms of the trace invariants of the holonomies,

and take these expressions as equivalent definitions for those coordinates. Since the dimen-

sion of the moduli space is dimMflat(SL(N),P1\{0, q, 1,∞}) = 2(N − 1), it is enough to

consider two independent cycles on P1\{0, q, 1,∞} which we choose to be the A-cycle and

the B-cycle in Figure 5.5. We describe how the traces of the holonomies MA,B along these

cycles are expressed in terms of the generalized NRS coordinates, for N = 2 and N = 3.

5.5.2.1 SL(2)

We start with the A-cycle. It is clear that we have

MA = M−1
0 =

2∑
α=1

(
m

(α)
0

)−1
Π(α)

0 . (5.5.36)

Thus we find

TrMA =
(
m

(1)
0

)−1
+
(
m

(2)
0

)−1
= e−2πiα(1)

0 + e−2πiα(2)
0 . (5.5.37)

It is convenient to omit the superscript and write α ≡ α(1)
0 = −α(2)

0 . Thus we have

TrMA = 2 cos 2πα. (5.5.38)

Next, we can express the holonomy along the B-cycle as

MB = g2g−1 = g−1
1 g−1

0

= m−1
0 m−1

1

(
12 + (m2

1 − 1)Π1
) (
12 + (m2

0 − 1)Π0
)
.

(5.5.39)

Thus we find

TrMB = m0m
−1
1 + m−1

0 m1 + (m0 −m−1
0 )(m1 −m−1

1 )TrΠ0Π1 (5.5.40)
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Note that we can express the trace in the last term using the β coordinates,

TrΠ0Π1 =
2∑

α=1
TrΠ0Π(α)

0 Π1

=
2∑

α=1
e−β̃

(α)
0 +β̃0 TrΠ0Π(α)

0

=
2∑

α=1
TrΠ0Π(α)

0 TrΠ1Π(α)
0

+ eβ̃
(1)
0 −β̃

(2)
0 TrΠ0Π(2)

0 TrΠ1Π(1)
0 + eβ̃

(2)
0 −β̃

(1)
0 TrΠ0Π(1)

0 TrΠ1Π(2)
0 ,

(5.5.41)

where we have used (5.5.18) in the third equality. Using (5.5.31) and (5.5.32), we can express

the rest of the traces in terms of the α coordinates. For simplicity, let us define m−1 ≡ m
(1)
−1

and m2 ≡ m
(2)
1 .11 Also we refine the β coordinate according to the definition (5.5.19):

β ≡ β̃(1)
0 − β̃

(2)
0 . Then the final expression for the trace of the holonomy along the B-cycle is

TrMB =

(
m2 + m−1

2 −m1 −m−1
1

) (
m−1 + m−1

−1 −m0 −m−1
0

)
8 sin2 πα

+

(
m2 + m−1

2 + m1 + m−1
1

) (
m−1 + m−1

−1 + m0 + m−1
0

)
8 cos2 πα

−
∑
±

(e∓2πiα −m0m−1)
(
m−1

0 e∓2πiα −m−1
−1

) (
e±2πiα −m−1

1 m−1
2

)
(m1e

±2πiα −m2)
4 sin2 2πα e±β.

(5.5.42)

Thus we observe that the coordinates (α,β) determine the traces of the holonomies along

the A-cycle and B-cycle on P1\{0, q, 1,∞} by (5.5.38) and (5.5.42). Conversely, we may

take these formulas as defining equations for the coordinates (α,β).

Remarks
11Not to be confused with the eigenvalue m2 of g2 which appears when r > 1. Here, we restrict ourselves

only to the case r = 1 and there would be no confusion in notation.
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• For a direct comparison with the coordinates defined in [91], let us define

x1 = m−1 + m−1
−1, x2 = m0 + m−1

0 , x3 = m2 + m−1
2 , x4 = m1 + m−1

1 . (5.5.43)

Also we use the abbreviation

A = TrMA, B = TrMB. (5.5.44)

Then we find that (5.5.42) becomes

B(A2 − 4) = 2(x1x4 + x2x3)− A(x1x3 + x2x4)

+
(
eβ + e−β

)√
c12(A)c34(A),

(5.5.45)

where

cij(A) ≡ A2 − Axixj + x2
i + x2

j − 4, (5.5.46)

under the canonical transformation

β → β + 1
2 log

(
e−2πiα −m0m−1

) (
m−1

0 e−2πiα −m−1
−1

) (
e2πiα −m−1

1 m−1
2

) (
m1e

2πiα −m2
)

− 1
2 log

(
e2πiα −m0m−1

) (
m−1

0 e2πiα −m−1
−1

) (
e−2πiα −m−1

1 m−1
2

) (
m1e

−2πiα −m2
)
.

(5.5.47)

The relation (5.5.45) is precisely the defining equation for the NRS coordinate β for the

four-punctured sphere. Thus we confirm that the Darboux coordinate system proposed

in section 5.5.1 is a higher-rank generalization of the NRS coordinate system.

As we will see in section 5.6, the canonical transformation (5.5.47) amounts to change

the boundary contribution to the effective twisted superpotential. Although the trans-

formed coordinates may be natural in some context, we will find in section 5.6 that our
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original definition is more natural in the gauge theoretical context. Therefore we stick

to our original definition of the generalized NRS coordinates in section 5.5.1 without

making additional canonical transformation throughout the discussion.

5.5.2.2 SL(3)

We begin with the A-cycle holonomy which is clearly conjugate to

MA = M−1
0 =

3∑
α=1

(
m

(α)
0

)−1
Π(α)

0 . (5.5.48)

Thus we find

TrM±1
A =

3∑
α=1

(
m

(α)
0

)∓1
= e∓2πiα(1)

0 + e∓2πiα(2)
0 + e±2πi(α(1)

0 +α(2)
0 ). (5.5.49)

For notational convenience, let us define the coordinates without superscripts,

αα ≡ α(α)
0 , α = 1, 2, 3.

α3 = −α1 −α2,

(5.5.50)

so that we have

TrM±1
A = e∓2πiα1 + e∓2πiα2 + e±2πi(α1+α2). (5.5.51)

The expressions for the holonomy along the B-cycle and its inverse are

M±1
B =

(
g−1

1 g−1
0

)±1

= m∓1
0 m∓1

1

(
13 + (m±3

1 − 1)Π1
) (
13 + (m±3

0 − 1)Π0
)
.

(5.5.52)
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Thus we obtain

TrM±1
B = m∓1

0 m∓1
1 (1 + m±3

0 + m±3
1 ) + (m±2

0 −m∓1
0 )(m±2

1 −m∓1
1 )TrΠ0Π1. (5.5.53)

Again, we can express the trace in the last term using the β coordinates,

TrΠ0Π1 =
3∑

α=1
TrΠ0Π(α)

0 Π1

=
3∑

α=1
e−β̃

(α)
0 +β̃0 TrΠ0Π(α)

0

=
3∑

α=1
TrΠ0Π(α)

0 TrΠ1Π(α)
0 +

∑
α 6=β

eβ̃
(α)
0 −β̃

(β)
0 TrΠ0Π(β)

0 TrΠ1Π(α)
0 .

(5.5.54)

The rest of the traces can be expressed in terms of the α coordinates by using (5.5.31) and

(5.5.32). We also write the refined β coordinates without superscripts,

βα ≡ β̃
(α)
0 − β̃

(3)
0 , α = 1, 2. (5.5.55)

Then the final expressions for the traces of the holonomies along the B-cycle are

TrM±1
B = B±0 +B±12e

β1−β2 +B±13e
β1 +B±23e

β2

+B±21e
−β1+β2 +B±31e

−β1 +B±32e
−β2 ,

(5.5.56)

where

B+
0 = m−1

0 m−1
1 + m2

0m
−1
1 + m−1

0 m2
1

− m2
0m
−1
1

16

3∑
α=1

∏3
γ=1

(
m−1

0 eπiαα −m
(γ)
−1e

−πiαα
) (

m1e
πiαα −m

(γ)
1 e−πiαα

)
∏
α′ 6=α sin2 π(αα −αα′)

B−0 = m0m1 + m−2
0 m1 + m0m

−2
1

− m0m
−2
1

16

3∑
α=1

∏3
γ=1

(
m−1

0 eπiαα −m
(γ)
−1e

−πiαα
) (

m1e
πiαα −m

(γ)
1 e−πiαα

)
∏
α′ 6=α sin2 π(αα −αα′)

(5.5.57)
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and

B+
αβ = −m2

0m
−1
1

16

∏3
γ=1

(
m−1

0 eπiαβ −m
(γ)
−1e

−πiαβ
) (

m1e
πiαα −m

(γ)
1 e−πiαα

)
∏
α′ 6=α sin π(αα′ −αα)∏β′ 6=β sin π(αβ −αβ′)

B−αβ = −m0m
−2
1

16

∏3
γ=1

(
m−1

0 eπiαβ −m
(γ)
−1e

−πiαβ
) (

m1e
πiαα −m

(γ)
1 e−πiαα

)
∏
α′ 6=α sin π(αα′ −αα)∏β′ 6=β sin π(αβ −αβ′)

.

(5.5.58)

Therefore, we obtain the traces of the holonomies along theA-cycle andB-cycle on P1\{0, q, 1,∞}

expressed in terms of the generalized NRS coordinates in (5.5.51) and (5.5.56). We can con-

versely regard these formulas as the defining equations for the generalized NRS coordinates

{αα,βα |α = 1, 2}.

Remarks

• After our work has been completed and submitted to the arXiv, we were informed that

the generalized Fenchel-Nielsen spectral coordinates constructed in [98] are equivalent

to the ones obtained here in (5.5.51) and (5.5.56), up to some simple shifts for the β

coordinates. Since our construction is elementary and does not use the auxiliary con-

structs such as the Seiberg-Witten curve disguised in the form of the spectral network,

we may hope that more general spectral network constructions of Darboux coordinates

could be simplified as well. In this way we expect our coordinates to match with the

(generalized) Fenchel-Nielsen spectral coordinates in [104, 98] and their higher-rank

analogues [103], possibly up to some simple shifts.

5.6 Monodromies and generating functions of opers

Finally, we compute the monodromies of opers to find the expressions for the generalized

NRS coordinates restricted to the variety of opers. Since the variety of opers is a Lagrangian

submanifold in the moduli space of flat connections and the generalized NRS coordinates

form a Darboux coordinate system, there exists generating function S
[
ON [P1

2,r+1]
]
for the
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∞

1 q

0

L
RM

A
B

Figure 5.5: The A-cycle and the B-cycle on the four-punctured sphere P1\{0, q, 1,∞}. The
double circles represent the maximal punctures at 0 and ∞, while the simple dots represent
the minimal punctures at q and 1. The shaded regions represent the convergence domains L,
M , and R, respectively. The A-cycle is represented by the dark blue line, while the B-cycle
is represented by the dark red line.

variety ON [P1
2,r+1] of opers with respect to the generalized NRS coordinates:

β
(α)
i =

∂S
[
ON [P1

2,r+1]
]

∂α
(α)
i

, i = 0, 1, · · · r − 1, α = 1, · · · , N − 1. (5.6.1)

We verify that the generating function for the variety of opers is identified with the effective

twisted superpotential of the corresponding class S theory T
[
AN−1,P1

2,r+1

]
, for the example

of the four-punctured sphere P1\{0, q, 1,∞}.

The strategy to compute the monodromies of the oper D̂N is to study the holonomy of

the operator ̂̂
DN , and then take the limit ε2 → 0. The monodromy along the A-cycle is

easy to compute: as noted in the section 5.4, the solution Z̃
L→M is defined in the domain

0 < |q| < |z| < 1 (it is easy to estimate the growth of coefficients of z-expansion to conclude

it converges there). Thus we simply continue along the path

z −→ z eit with 0 ≤ t ≤ 2π, (5.6.2)

to enclose the punctures at 0 and q, thereby making the A-cycle. In this fashion we pick up

the multiplicative factors from the non-integral part of the exponent of z in the perturbative
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prefactor, and thereby obtain the holonomy MA( ̂̂D). The monodromy of the oper D̂ is then

computed by taking the limit:

MA(D̂) = lim
ε2→0

MA( ̂̂D). (5.6.3)

The monodromy along the B-cycle is more involved. First we need the rotation matrices

R0 and R∞ which are the monodromy matrices for the 2π-rotations around the punctures

at 0 and ∞. As noted in section 5.3, the solutions Z̃L and Z̃
R are defined by gauge theory

as series expansions in the domains 0 < |q| < 1 < |z| and 0 < |z| < |q| < 1, respectively.

Thus we get R0 by following Z̃
R along the circle z 7→ z e2πi, and we get R∞ by following

Z̃
L along the circle z 7→ z e−2πi. For completeness, we give the expressions for the rotation

matrices for the punctures at q and 1 also:

Rq = MA C−1
0 R−1

0 C0

R1 = M−1
A C−1

∞ R−1
∞ C∞.

(5.6.4)

It is immediate to see, in the N = 3 case for example, that the eigenvalues of limε2→0 Rq and

limε2→0 R1 are maximally degenerate, which means they correspond to minimal punctures.

Now for the B-monodromy matrix, we start from the solution Z̃
L. By concatenating the

connection matrices, the shift matrices, and the rotation matrices, we construct the following

sequence of continuations of the solutions

Z̃
L C∞−−→ Z̃

L→M S−→ Z̃
R→M C−1

0−−→ Z̃
R R−1

0−−→ Z̃
R C0−→ Z̃

R→M S−1
−−→ Z̃

L→M C−1
∞−−→ Z̃

L R−1
∞−−→ Z̃

L
.

(5.6.5)

Hence the corresponding holonomy is

MB( ̂̂D) = R∞ C∞ S C−1
0 R0 C0 S−1 C−1

∞ . (5.6.6)
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We have seen in section 5.3.1 that under the Nekrasov-Shatashvili limit, the solutions Z̃
L

for ̂̂D behaves as

Z̃
L = e

W̃
ε2 (χ+O(ε2)) , (5.6.7)

which leads to the equation for the oper, D̂χ = 0. Therefore, we compute the B-monodromy

for the oper D̂ as

MB(D̂) = lim
ε2→0

MB( ̂̂D) e
W̃
ε2

= lim
ε2→0

R∞ C∞ S C−1
0 R0 C0 S−1 C−1

∞ e
W̃
ε2 .

(5.6.8)

Now we exhibit in detail how these computations can actually be done.

5.6.1 SL(2)-oper

We obtain the A-monodromy matrix for ̂̂D2 by letting z make the full circle z 7→ z e2πi in

the expression for Z̃L→M . Since the critical exponent for z is given as (5.4.41), we find that

MA( ̂̂D2) = diag
(
e

2πi−a1+a2+ε
2ε1 , e

2πia1−a2+ε
2ε1

)
. (5.6.9)

Then by taking the Nekrasov-Shatashvili limit (ε1 6= 0, ε2 → 0), we obtain the A-monodromy

matrix for the oper D̂2,

MA(D̂2) = lim
ε2→0

MA( ̂̂D2)

= diag
(
e

2πi−a1+a2+ε1
2ε1 , e

2πia1−a2+ε1
2ε1

)
,

(5.6.10)

so that

TrMA(D̂2) = 2 cos 2π
(
a1 − a2 + ε1

2ε1

)
. (5.6.11)

178



Comparing this with (5.5.38), we obtain

α = a1 − a2 + ε1

2ε1
. (5.6.12)

Next, we find the expression for the β coordinate by computing theB-monodromy matrix.

It is necessary to compute the rotation matrices first, by shifting z 7→ z e−2πi and z 7→ z e2πi

for Z̃L and Z̃
R, respectively. Since their critical exponents are given as (5.4.39) and (5.4.49),

we immediately compute

R∞ = diag
(
e
πi
a0,1−a0,2−ε1−2ε2

ε1 , e
πi
−a0,1+a0,2−ε1−2ε2

ε1

)
,

R0 = diag
(
e
πi
−a3,1+a3,2+ε

ε1 , e
πi
a3,1−a3,2+ε

ε1

)
.

(5.6.13)

The connection matrices and the shift matrices are given by (5.4.35) and (5.4.64). For N = 2,

it is easier to write these matrices explicitly. In particular, the connection matrices are

C∞ =



Γ
(

1+
a0,1−a0,2

ε1

)
Γ
(
a1−a2
ε1

)
Γ
(

1+
a0,1−a2

ε1

)
Γ
(
a1−a0,2

ε1

) Γ
(

1+
a0,1−a0,2

ε1

)
Γ
(
a2−a1
ε1

)
Γ
(

1+
a0,1−a1

ε1

)
Γ
(
a2−a0,2

ε1

)
Γ
(

1+
a0,2−a0,1

ε1

)
Γ
(
a1−a2
ε1

)
Γ
(

1+
a0,2−a2

ε1

)
Γ
(
a1−a0,1

ε1

) Γ
(

1+
a0,2−a0,1

ε1

)
Γ
(
a2−a1
ε1

)
Γ
(

1+
a0,2−a1

ε1

)
Γ
(
a2−a0,1

ε1

)

 ,

C0 =



Γ
(

1+
a3,2−a3,1

ε1

)
Γ
(
a2−a1
ε1

)
Γ
(

1+
a2−a3,1

ε1

)
Γ
(
a3,2−a1

ε1

) Γ
(

1+
a3,2−a3,1

ε1

)
Γ
(
a1−a2
ε1

)
Γ
(

1+
a1−a3,1

ε1

)
Γ
(
a3,2−a2

ε1

)
Γ
(

1+
a3,1−a3,2

ε1

)
Γ
(
a2−a1
ε1

)
Γ
(

1+
a2−a3,2

ε1

)
Γ
(
a3,1−a1

ε1

) Γ
(

1+
a3,1−a3,2

ε1

)
Γ
(
a1−a2
ε1

)
Γ
(

1+
a1−a3,2

ε1

)
Γ
(
a3,1−a2

ε1

)

 .
(5.6.14)
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Their inverses can also be computed directly as

C−1
∞ = a1 − a2

a0,1 − a0,2



Γ
(

1+
a0,2−a0,1

ε1

)
Γ
(
a2−a1
ε1

)
Γ
(

1+
a0,2−a1

ε1

)
Γ
(
a2−a0,1

ε1

) −
Γ
(

1+
a0,1−a0,2

ε1

)
Γ
(
a2−a1
ε1

)
Γ
(

1+
a0,1−a1

ε1

)
Γ
(
a2−a0,2

ε1

)
−

Γ
(

1+
a0,2−a0,1

ε1

)
Γ
(
a1−a2
ε1

)
Γ
(

1+
a0,2−a2

ε1

)
Γ
(
a1−a0,1

ε1

) Γ
(

1+
a0,1−a0,2

ε1

)
Γ
(
a1−a2
ε1

)
Γ
(

1+
a0,1−a2

ε1

)
Γ
(
a1−a0,2

ε1

)

 ,

C−1
0 = a1 − a2

a3,1 − a3,2



Γ
(

1+
a3,1−a3,2

ε1

)
Γ
(
a1−a2
ε1

)
Γ
(

1+
a1−a3,2

ε1

)
Γ
(
a3,1−a2

ε1

) −
Γ
(

1+
a3,2−a3,1

ε1

)
Γ
(
a1−a2
ε1

)
Γ
(

1+
a1−a3,1

ε1

)
Γ
(
a3,2−a2

ε1

)
−

Γ
(

1+
a3,1−a3,2

ε1

)
Γ
(
a2−a1
ε1

)
Γ
(

1+
a2−a3,2

ε1

)
Γ
(
a3,1−a1

ε1

) Γ
(

1+
a3,2−a3,1

ε1

)
Γ
(
a2−a1
ε1

)
Γ
(

1+
a2−a3,1

ε1

)
Γ
(
a3,2−a1

ε1

)

 .
(5.6.15)

Now it is straightforward to evaluate the B-monodromy matrix for ̂̂D2 by

MB( ̂̂D2) = R∞ C∞ S C−1
0 R0 C0 S−1 C−1

∞ . (5.6.16)

We need to evaluate the trace of the B-monodromy matrix for the SL(2)-oper D̂2, which is

obtained by taking the limit,

TrMB(D̂2) = Tr
(

lim
ε2→0

R∞ C∞ S C−1
0 R0 C0 S−1 C−1

∞ e
W̃
ε2

)
. (5.6.17)
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A few pages of computation shows that

TrMB(D̂2)

=

(
cosπ a3,1−a3,2

ε1
− cosπ 2(ā3−ā)

ε1

) (
cosπ a0,1−a0,2

ε1
− cos π 2(ā0−ā)

ε1

)
2 sin2 π a1−a2

2ε1

+

(
cosπ a3,1−a3,2

ε1
+ cos π 2(ā3−ā)

ε1

) (
cosπ a0,1−a0,2

ε1
+ cos π 2(ā0−ā)

ε1

)
2 cos2 π a1−a2

2ε1

− 4
∏
γ=1,2 sin π a2−a0,γ

ε1
sin π a3,γ−a1

ε1

sin2 π a1−a2
ε1

Γ
(
a1−a2
ε1

)2

Γ
(
a2−a1
ε1

)2
∏
γ=1,2

Γ
(
a3,γ−a1

ε1

)
Γ
(
a2−a0,γ

ε1

)
Γ
(
a1−a0,γ

ε1

)
Γ
(
a3,γ−a2

ε1

)e
(

∂
∂a1
− ∂
∂a2

)
W̃

− 4
∏
γ=1,2 sin π a1−a0,γ

ε1
sin π a3,γ−a2

ε1

sin2 π a1−a2
ε1

Γ
(
a1−a2
ε1

)2

Γ
(
a2−a1
ε1

)2
∏
γ=1,2

Γ
(
a3,γ−a1

ε1

)
Γ
(
a2−a0,γ

ε1

)
Γ
(
a1−a0,γ

ε1

)
Γ
(
a3,γ−a2

ε1

)

−1

e
−
(

∂
∂a1
− ∂
∂a2

)
W̃

(5.6.18)

It is crucial to note that the products of Γ-functions in the third and the fourth lines can be

absorbed as the 1-loop part of the effective twisted superpotential of the A1-theory computed

under the ζ-function regularization (see (2.1.37) and its derivation above), namely,

(
∂

∂a1
− ∂

∂a2

)
W̃1-loop = log

Γ
(
a1−a2
ε1

)2

Γ
(
a2−a1
ε1

)2
∏
γ=1,2

Γ
(
a3,γ−a1

ε1

)
Γ
(
a2−a0,γ

ε1

)
Γ
(
a1−a0,γ

ε1

)
Γ
(
a3,γ−a2

ε1

) . (5.6.19)

Hence we define the full effective twisted superpotential by

W̃full ≡ W̃classical + W̃1-loop + W̃inst + W̃extra, (5.6.20)

where the 1-loop part is given in (2.1.33) and the other parts have been obtained in (5.3.20),
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W̃classical = −(a1 − a2)2

4ε1
log q (5.6.21a)

W̃1-loop = lim
ε2→0

ε2 log
∏2
α,β=1 Γ2(aα − aβ; ε1, ε2)∏2

α,β=1 Γ2(aα − a0,β; ε1, ε2)Γ2(a3,α − aβ; ε1, ε2) (5.6.21b)

W̃inst = lim
ε2→0

ε2 logZinst
A1 (5.6.21c)

W̃extra = ε1

(1
4 − δ2 − δ3

)
log q + 2(ā0 − ā)(ā− ā3 + ε1)

ε1
log(1− q). (5.6.21d)

Thus the expression for the trace of the B-monodromy matrix is simplified with the full

effective twisted superpotential W̃full. Let us also make an overall shift for the Coulomb

moduli and the masses of the hypermultiplets to recover the SU(2) parameters (see section

5.2). The final form of the expression is

TrMB(D̂2) =

(
cos π a3,1−a3,2

ε1
− cosπ 2ā3

ε1

) (
cosπ a0,1−a0,2

ε1
− cosπ 2ā0

ε1

)
2 cos2 πα

+

(
cosπ a3,1−a3,2

ε1
+ cos π 2ā3

ε1

) (
cosπ a0,1−a0,2

ε1
+ cos π 2ā0

ε1

)
2 sin2 πα

−
∑
±

4
∏
γ=1,2 cos π

(
∓α− a0,γ

ε1

)
cosπ

(
a3,γ
ε1
∓α

)
sin2 2πα e

± 1
ε1

∂W̃full
∂α .

(5.6.22)

This expression exactly matches with (5.5.42) under the identification of parameters,

m−1 = e
πi
a0,1−a0,2−ε1

ε1 , m0 = e
πi
a0,1+a0,2

ε1 , m1 = e
−πi

a3,1+a3,2
ε1 , m2 = e

πi
−a3,1+a3,2+ε1

ε1 . (5.6.23)

Most importantly, we observe that

β = 1
ε1

∂W̃full

∂α
. (5.6.24)

Consequently, the generating function for the variety O2[P1\{0, q, 1,∞}] of opers is identified

182



with the effective twisted superpotential, namely,

S
[
O2[P1\{0, q, 1,∞}]

]
= 1
ε1
W̃full

[
T [A1,P1\{0, q, 1,∞}]

]
, (5.6.25)

by the relation (5.6.24). This identification verifies the main assertion of [91] for all orders

in the gauge coupling q.

Remarks

• The equivalence (5.6.25) involves an extra term in the effective twisted superpotential,

W̃extra. Note that W̃extra has been completely determined in gauge theoretical terms

in (5.6.21d).

• The regularization scheme that has been used to define the 1-loop part W̃1-loop was the

ζ-function regularization, which is natural in the gauge theory context. Note that it is

free to choose other schemes to regularize the infinite product, or the IR divergence, in

the 1-loop contribution. The other choices would lead to the correction in the effective

twisted superpotential of the form,

W̃∞ ∼ Li2 el(a,a0,a3), (5.6.26)

where l is some linear function of the arguments. Physically, IR regulator corresponds

to cutting the cigar D2 (5.1.16) at the infinity. Thus the correction W̃∞ to the effective

twisted superpotential can be interpreted as the contribution from a three-dimensional

theory coupled to the four-dimensional bulk theory at the boundary at infinity. Note

that W̃∞ is independent of the coupling q. Hence this correction to the effective twisted

superpotential corresponds to a canonical coordinate transformation.
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5.6.2 SL(3)-oper

Using the critical exponent (5.4.57) of z, we see that under the z 7→ z e2πi loop the partition

function Z̃
L→M transforms by

MA( ̂̂D3) = diag
(
e

2πi −2a1+a2+a3+3ε
3ε1 , e

2πi a1−2a2+a3+3ε
3ε1 , e

2πi a1+a2−2a3+3ε
3ε1

)
. (5.6.27)

Hence, by taking the limit ε2 → 0, we obtain

MA(D̂3) = lim
ε2→0

MA( ̂̂D3)

= diag
(
e

2πi −2a1+a2+a3
3ε1 , e

2πi a1−2a2+a3
3ε1 , e

2πi a1+a2−2a3
3ε1

)
.

(5.6.28)

Comparing with (5.5.51), we find

αα =
3aα −

∑3
γ=1 aγ

3ε1
, α = 1, 2, (5.6.29)

so that we have

TrMA(D̂3)±1 = e∓2πiα1 + e∓2πiα2 + e±2πi(α1+α2). (5.6.30)

For notational convenience, let us also define α3 ≡ −α1 −α2 as before.

Next, we obtain the expression for the β coordinates restricted to the variety of opers by

evaluating the B-monodromy matrix. First, we compute the rotation matrices by shifting

z 7→ z e−2πi and z 7→ z e2πi for Z̃
L and Z̃

R, respectively. From their critical exponents

(5.3.34) and (5.3.51) we get

R∞ = diag
(
e

2πi
2a0,1−a0,2−a0,3−3ε−2ε2

3ε1 , e
2πi
−a0,1+2a0,2−a0,3−3ε−2ε2

3ε1 , e
2πi
−a0,1−a0,2+2a0,3−3ε−2ε2

3ε1

)
,

R0 = diag
(
e

2πi
−2a3,1+a3,2+a3,3+3ε

3ε1 , e
2πi

a3,1−2a3,2+a3,3+3ε
3ε1 , e

2πi
a3,1+a3,2−2a3,3+3ε

3ε1

)
.

(5.6.31)
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Then the B-monodromy matrix for ̂̂D3 is obtained by (5.6.6)

MB( ̂̂D3) = R∞ C∞ S C−1
0 R0 C0 S−1 C−1

∞ , (5.6.32)

where the connection matrices and the shift matrices are given by (5.4.35) and (5.4.64). The

B-monodromy matrix for the oper D̂3 is obtained by taking the limit,

MB(D̂3) = lim
ε2→0

R∞ C∞ S C−1
0 R0 C0 S−1 C−1

∞ e
W̃
ε2 . (5.6.33)

To determine the β coordinates, we need to compute the following traces of MB(D̂3)

TrMB(D̂3) = Tr
(

lim
ε2→0

R∞ C∞ S C−1
0 R0 C0 S−1 C−1

∞ e
W̃
ε2

)

TrMB(D̂3)−1 = Tr
(

lim
ε2→0

C∞ S C−1
0 R−1

0 C0 S−1 C−1
∞ R−1

∞ e
W̃
ε2

)
.

(5.6.34)

The computation of these traces can be broken in several steps. First note that

TrMB(D̂3) = Tr
(

lim
ε2→0

(C−1
∞ R∞ C∞) S (C−1

0 R0 C0) S−1 e
W̃
ε2

)
, (5.6.35)

due to the limit ε2 → 0. Then

TrMB(D̂3) =
3∑

α,β=1
(C∞)βα (C0)αβ e

(
∂
∂aα
− ∂
∂aβ

)
W̃
, (5.6.36)

where we have defined

(C∞)αβ ≡
(

lim
ε2→0

C−1
∞ R∞ C∞

)
αβ

= e
iπ
ε1

(aα+aβ−2ā0)

δα,β − 2i e
3πi
ε1

(ā0−ā)
∏
β′ 6=β Γ

(
aβ−aβ′
ε1

)
∏
α′ 6=α Γ

(
aα−aα′
ε1

)
sin π aα−aα′

ε1

3∏
α′=1

Γ
(
aα−a0,α′

ε1

)
sin π aα−a0,α′

ε1

Γ
(
aβ−a0,α′

ε1

)
 ,

(5.6.37)
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and

(C0)αβ ≡
(

lim
ε2→0

C−1
0 R0 C0

)
αβ

= e
iπ
ε1

(−aα−aβ+2ā3)

δα,β − 2i e
3πi
ε1

(−ā3+ā)
∏
β′ 6=β Γ

(
aβ′−aβ
ε1

)
∏
α′ 6=α Γ

(
aα′−aα
ε1

)
sin π aα′−aα

ε1

3∏
α′=1

Γ
(
a3,α′−aα

ε1

)
sin π a3,α′−aα

ε1

Γ
(
a3,α′−aβ

ε1

)
 .
(5.6.38)

Similarly, we can write

TrMB(D̂3)−1 = Tr
(

lim
ε2→0

S (C−1
0 R−1

0 C0) S−1 (C−1
∞ R−1

∞ C∞) e
W̃
ε2

)
,

=
3∑

α,β=1
(C−1

0 )αβ (C−1
∞ )βα e

(
∂
∂aα
− ∂
∂aβ

)
W̃
,

(5.6.39)

where we have used

(C−1
∞ )αβ =

(
lim
ε2→0

C−1
∞ R−1

∞ C∞
)
αβ

= e
iπ
ε1

(−aα−aβ+2ā0)

δα,β + 2i e
3πi
ε1

(−ā0+ā)
∏
β′ 6=β Γ

(
aβ−aβ′
ε1

)
∏
α′ 6=α Γ

(
aα−aα′
ε1

)
sin π aα−aα′

ε1

3∏
α′=1

Γ
(
aα−a0,α′

ε1

)
sin π aα−a0,α′

ε1

Γ
(
aβ−a0,α′

ε1

)
 ,
(5.6.40)

and

(C−1
0 )αβ =

(
lim
ε2→0

C−1
0 R−1

0 C0

)
αβ

= e
iπ
ε1

(aα+aβ−2ā3)

δα,β + 2i e
3πi
ε1

(ā3−ā)
∏
β′ 6=β Γ

(
aβ′−aβ
ε1

)
∏
α′ 6=α Γ

(
aα′−aα
ε1

)
sin π aα′−aα

ε1

3∏
α′=1

Γ
(
a3,α′−aα

ε1

)
sin π a3,α′−aα

ε1

Γ
(
a3,α′−aβ

ε1

)
 .

(5.6.41)
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Therefore, the traces can be expressed as

TrMB(D̂3)±1 = B±0 +
∑
α 6=β

B̃±αβ e

(
∂
∂aα
− ∂
∂aβ

)
W̃
, (5.6.42)

where we have computed the coefficients as

B±0 ≡
3∑

α=1

(
C±1

0

)
αα

(
C±1
∞

)
αα
, (5.6.43)

and

B̃±αβ ≡
(
C±1

0

)
αβ

(
C±1
∞

)
βα

= −4e±iπ
ā0−ā3
ε1

∏3
γ=1 sin π aβ−a0,γ

ε1
sin π a3,γ−aα

ε1∏
α′ 6=α sin π aα′−aα

ε1

∏
β′ 6=β sin π aβ−aβ′

ε1∏
α′ 6=α

Γ
(
aα−aα′
ε1

)
Γ
(
aα′−aα
ε1

) ∏
β′ 6=β

Γ
(
aβ′−aβ
ε1

)
Γ
(
aβ−aβ′
ε1

) 3∏
γ=1

Γ
(
a3,γ−aα

ε1

)
Γ
(
aβ−a0,γ

ε1

)
Γ
(
aα−a0,γ

ε1

)
Γ
(
a3,γ−aβ

ε1

) .
(5.6.44)

It is crucial to note that the last line of (5.6.44) is precisely the contribution from 1-loop part

of the effective twisted superpotential of the A1-theory, under the ζ-function regularization

(see (2.1.37) and its derivation above),

(
∂

∂aα
− ∂

∂aβ

)
W̃1-loop = log

∏
α′ 6=α

Γ
(
aα−aα′
ε1

)
Γ
(
aα′−aα
ε1

) ∏
β′ 6=β

Γ
(
aβ′−aβ
ε1

)
Γ
(
aβ−aβ′
ε1

) 3∏
γ=1

Γ
(
a3,γ−aα

ε1

)
Γ
(
aβ−a0,γ

ε1

)
Γ
(
aα−a0,γ

ε1

)
Γ
(
a3,γ−aβ

ε1

) .
(5.6.45)

We define the full effective twisted superpotential by

W̃full ≡ W̃classical + W̃1-loop + W̃inst + W̃extra. (5.6.46)

Here, the 1-loop part of the effective twisted superpotential is given in (2.1.33) and the rest
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was obtained in (5.3.43),

W̃classical = −(a1 − a2)2 + (a1 − a3)2 − (a1 − a2)(a1 − a3)
3ε1

log q (5.6.47a)

W̃1-loop = lim
ε2→0

ε2 log
∏3
α,β=1 Γ2(aα − aβ; ε1, ε2)∏3

α,β=1 Γ2(aα − a0,β; ε1, ε2)Γ2(a3,α − aβ; ε1, ε2) (5.6.47b)

W̃inst = lim
ε2→0

ε2 logZinst
A1 (5.6.47c)

W̃extra = ε1 (1− δq − δ0) log q + 3(ā− ā3 + ε)(ā0 − ā)
ε1

log(1− q). (5.6.47d)

Again, the expression for the traces of the B-monodromy matrix are simplified with the full

effective twisted superpotential W̃full. Let us make an overall shift of the Coulomb moduli

and the masses of the hypermultiplets to recover the SU(3) parameters (see section 5.2).

Then we get the final expressions for the traces of the B-monodromy:

TrMB(D̂3)±1

= B±0 +B±12 e
1
ε1

(
∂
∂α1
− ∂
∂α2

)
W̃full

+B±13 e
1
ε1

∂W̃full
∂α1 +B±23 e

1
ε1

∂W̃full
∂α2

+B±21 e
− 1
ε1

(
∂
∂α1
− ∂
∂α2

)
W̃full

+B±31 e
− 1
ε1

∂W̃full
∂α1 +B±32 e

− 1
ε1

∂W̃full
∂α2 ,

(5.6.48)

where the coefficients are computed as

B±0 = 3e±
2πi
ε1

(ā3−ā0) ± 2i e±
iπ
ε1

(2ā3+ā0) sin π3ā0

ε1
∓ 2i e∓

iπ
ε1

(ā3+2ā0) sin π3ā3

ε1

− 4e±
iπ
ε1

(ā0−ā3)
3∑

α=1

∏3
γ=1 sin π

(
αα − a0,γ

ε1

)
sin π

(
a3,γ
ε1
−αα

)
∏
α′ 6=α sin2 π (αα −αα′)

(5.6.49)

and

B±αβ = −4e±iπ
ā0−ā3
ε1

∏3
γ=1 sin π

(
αβ − a0,γ

ε1

)
sin π

(
a3,γ
ε1
−αα

)
∏
α′ 6=α sin π (αα′ −αα) ∏β′ 6=β sin π (αβ −αβ′)

. (5.6.50)

We observe the precise agreement between (5.5.56) and (5.6.48) under the identification of
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parameters,

m
(α)
−1 = e

2πi
a0,α−ā0

ε1 , m
(α)
1 = e

2πi
a3,α−ā3

ε1 , α = 1, 2,

m0 = e
2πi ā0

ε1 , m1 = e
−2πi ā3

ε1 .

(5.6.51)

Most importantly, we find

βα = 1
ε1

∂W̃full

∂αα
, α = 1, 2. (5.6.52)

Therefore, we verify that the generating function for the variety O3[P1\{0, q, 1,∞}] of opers

with respect to the generalized NRS coordinate system is identical to the effective twisted

superpotential, namely,

S
[
O3[P1\{0, q, 1,∞}]

]
= 1
ε1
W̃full

[
T [A2,P1\{0, q, 1,∞}]

]
, (5.6.53)

by the relation (5.6.52).

Remarks

• The validity of the equivalence (5.6.53) at the 1-loop level was checked in [98].12 The

gauge theoretical derivation of (5.6.53) that we have shown guarantees its validity at

all orders in the gauge coupling q.

5.6.3 Higher SL(N)-oper

It is straightforward to generalize the procedure to the higher SL(N)-opers D̂N on P1\{0, q, 1,∞}.

We schematically describe how we proceed. First, we need to express the traces of the
12In [98], a different, the so-called Liouville/Toda regularization scheme was used. Although Liouville/Toda

scheme is natural in the context of the AGT correspondence [63], the ζ-function regularization arises more
naturally in the gauge theoretical context. Besides, the ζ-function regularization has a notational advantage
in that the defining equations for the generalized NRS coordinates (5.5.51), (5.5.56) are written more simply
without any Γ-functions or square roots.
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holonomies of the flat SL(N)-connections in terms of the generalized NRS coordinates, as

we did for N = 2 and N = 3 in section 5.5.2. It is clear that the holonomy along the A-cycle

is still given by

MA = M−1
0 =

N∑
α

(
m

(α)
0

)−1
Π(α)

0 . (5.6.54)

Hence we obtain

TrMk
A =

N∑
α=1

(
m

(α)
0

)−k
, k = 1, · · · , N − 1. (5.6.55)

The holonomy along the B-cycle is written as

MB = g−1
1 g−1

0

= m−1
0 m−1

1

(
1N + (mN

1 − 1)Π1
) (
1N + (mN

0 − 1)Π0
)
.

(5.6.56)

Due to the properties of the projection operators, we have

Tr (Π0Π1)k = (TrΠ0Π1)k , k ∈ Z>0. (5.6.57)

Thus we can expand the traces of (5.6.56) as a polynomial in TrΠ0Π1,

TrMk
B = m−k0 m−k1 (N − 2 + mNk

0 + mNk
1 )

+ · · ·+ m−k0 m−k1 (mN
0 − 1)k(mN

1 − 1)k (TrΠ0Π1)k ,
(5.6.58)
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for any k = 1, · · · , N − 1. Since we can express TrΠ0Π1 by the β coordinates,

TrΠ0Π1 =
N∑
α=1

TrΠ0Π(α)
0 Π1

=
N∑
α=1

e−β̃
(α)
0 +β̃ TrΠ0Π(α)

0

=
N∑
α=1

TrΠ0Π(α)
0 TrΠ1Π(α)

0 +
∑
α 6=β

eβ̃
(α)
0 −β̃

(β)
0 TrΠ0Π(β)

0 TrΠ1Π(α)
0 ,

(5.6.59)

we obtain the representation of the traces (5.6.58) in terms of the generalized NRS coordi-

nates αα, βα ≡ β̃
(α)
0 − β̃

(N)
0 .

Next, we evaluate the monodromies of the oper D̂N . By shifting z 7→ z e2πi for Z̃
L→M

we compute MA( ̂̂DN). The A-monodromy matrix for the oper D̂N is then

MA(D̂N) = lim
ε2→0

MA( ̂̂DN), (5.6.60)

which can be expressed in terms of the α coordinates by comparing its traces with (5.6.55).

We also compute the B-monodromy for ̂̂DN by

MB( ̂̂DN) = R∞ C∞ S C−1
0 R0 C0 S−1 C−1

∞ , (5.6.61)

from which we compute the B-monodromy matrix for the oper D̂N as

MB(D̂3) = lim
ε2→0

MB( ̂̂DN) e
W̃
ε2

= lim
ε2→0

R∞ C∞ S C−1
0 R0 C0 S−1 C−1

∞ e
W̃
ε2 .

(5.6.62)

Then we find the expressions for the traces

TrMB(D̂N)k, k = 1, · · · , N − 1. (5.6.63)
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By comparing these expressions with (5.6.58), we find that

βα = 1
ε1

∂W̃full

∂αα
, α = 1, · · · , N − 1. (5.6.64)

This relation verifies that the generating function for the variety ON [P1\{0, q, 1,∞}] of opers

in the generalized NRS coordinate system {αα,βα | α = 1, · · · , N − 1} is identical to the

effective twisted superpotential:

S
[
ON [P1\{0, q, 1,∞}]

]
= 1
ε1
W̃full

[
T [AN−1,P1\{0, q, 1,∞}]

]
. (5.6.65)

5.7 Discussion

We have shown that non-perturbative Dyson-Schwinger equations for the class S theories

with the insertion of a surface defect produce the operators ̂̂
D annihilating their partition

functions. These operators were reduced to the opers D̂ in the limit ε2 → 0, providing

an explicit relation between the holomorphic coordinates on the variety of opers and the

expectation values of the chiral observables in the limit ε2 → 0. The surface defect parti-

tion functions, i.e., the solutions to ̂̂
D, were analytically continued to different convergence

domains and glued together in the intermediate domain. This procedure enabled the com-

putation of the monodromies of the solutions to ̂̂
D, and therefore the monodromies of the

opers D̂ by taking the limit ε2 → 0. We constructed a higher-rank generalization of the NRS

coordinate system, and represented the monodromies of opers in terms of these coordinates.

The effective twisted superpotential arose as the generating function for the variety of opers

in the generalized NRS coordinate system by construction.

We believe that the subject deserves more investigations in various aspects. Let us

consider the example of g = A1. We have constructed the Darboux coordinate system

(α,β) in which the generating function for the variety O2[C] oper D̂2 is identified with

the effective twisted superpotential. Meanwhile, O2[C] is a a Lagrangian submanifold of
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Mflat(SL(2),C), which is spanned by the off-shell spectra u2 = limε2→0

〈
O2

〉
for fixed gauge

couplings q. The variation of the gauge couplings, i.e., the elements of the Teichmüller space

T[C] of C, gives the foliation of the moduli space Mflat(SL(2),C) by the leaves of the varieties

of opers with varying gauge couplings. Thus there exists another Darboux coordinate system

(τ2 = log q, u2) on Mflat(SL(2),C) induced from the identification Mflat(SL(2),C) ' T ∗T[C].

We observe that the relations

β = 1
ε1

∂W̃

∂α
, u2 = ∂W̃

∂τ2
, (5.7.1)

identify the effective twisted superpotential with the generating function for the canonical

transformation of the Darboux coordinate systems,

(τ2, u2) W̃←−−→ (α,β). (5.7.2)

Let us consider generalizing this relation to the higher rank g = A2, for a fixed Riemann

surface, say, P1
2,r+1. We still have the generalized NRS coordinate system {α(α)

i ,β
(α)
i | i =

0, 1, · · · , r−1, α = 1, · · · , N−1} on one hand, but it is apparent that the variation on the Te-

ichmüller space T[P1
2,r+1] does not saturate the half of the dimension of the moduli space, since

the dimension of the moduli space increases as the rank increases, dimMflat(SL(3),P1
2,r+1) =

2r(N − 1) = 4r, while the dimension of the Teichmüller space is independent of the rank,

dimT[P1
2,r+1] = r. In other words, we need r more parameters τi,3 to form a Darboux

coordinate system,

{τi,2, τi,3, ui,2, ui,3 | i = 1, · · · , r}, (5.7.3)

in which the effective twisted superpotential produces the spectrum ui,3 = limε2→0

〈
Oi,3

〉
of

the higher Hamiltonian Oi,3 = Trφ3
i under the differentiation with respect to τi,3. Then the

effective twisted superpotential becomes the generating function for the canonical transfor-
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mation between Darboux coordinate systems, through the relations

β
(α)
i = 1

ε1

∂W̃

∂α
(α)
i

, i = 0, 1, · · · , r − 1, α = 1, · · · , N − 1, (5.7.4)

ui,2 = ∂W̃

∂τi,2
, ui,3

?= ∂W̃

∂τi,3
, i = 1, · · · , r. (5.7.5)

But what is the meaning of the parameters τi,3?

In the gauge theory side, the meaning of τi,3 is clear. As investigated in [118], we may

extend the theory by manually adding the higher times to the microscopic action,

L =
r∑

i=1
τi,2

∫
d4θ Tr Φ2

i + τi,3

∫
d4θ Tr Φ3

i , (5.7.6)

whose partition function can still be computed by equivariant localization as, schematically,

Zinst(a,m, ε1, ε2; τ2, τ3) =
∑
λ

r∏
i=1

q
|λ(i)|
i exp

[
r∑

i=1
τi,3 Oi,3[λ]

]
µλ(a,m, ε1, ε2). (5.7.7)

Under the limit ε2 → 0, the partition function shows the asymptotic behavior,

Zinst(a,m, ε1, ε2; τ2, τ3) = e
W̃(a,m,ε1;τ2,τ3)

ε2 (1 +O(ε2)) . (5.7.8)

Then it is straightforward that we produce the relation

ui,3 = lim
ε2→0

〈
Oi,3

〉
= ∂W̃

∂τi,3
. (5.7.9)

Therefore, the extra parameters that foliate the remaining orthogonal directions to the vari-

eties of opers are the higher times of the extended theory. The varieties O3[C] of opers such

as (5.3.46) are located at τi,3 = 0 and only probe the τi,2-variations.

The question is, then, what the extended opers are, which rise under the flow along the

directions of the higher times. When re-phrased in terms of the qq-characters, the problem is
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to derive proper extended operators ̂̂D from the non-perturbative Dyson-Schwinger equations

of the extended theories with an insertion of a surface defect. The limit ε2 → 0 of these

objects would yield the desired extended opers. Note that the expectation values of Oi,3

would be compensated by the derivatives with respect to τi,3, so that the issue of equating the

analytically continued expectation values in the intermediate domain would also be resolved

with this enhancement. It is not clear, however, how to derive meaningful expressions for

these extended quantized opers ̂̂D as of yet, so we leave this to future work. The variation

along the higher times has many different manifestations. It corresponds to varying the

higher Teichmüller structures studied in [105, 106], flowing along the higher Hamiltonians in

the isomonodromic deformation of Fuchsian systems, and properly extending the Hamilton-

Jacobi formulation of the Painlevé equations discussed in [77] to the higher order Painlevé-

type equations. It would be interesting to see how the extended gauge theory ties up these

different realms of mathematical physics.

In the context of the BPS/CFT correspondence, the subject reveals still another fea-

ture along the line of [63]. The well-established relation between the partition functions of

T [AN−1,C] and the correlation functions of AN−1-Toda CFTs has to be extended when we

deal with the higher ranks N ≥ 3. Namely, we start to face the expectation values of higher

chiral observables in the gauge theory side, which cannot be compensated by the derivatives

of gauge couplings, and they are supposed to correspond to the correlation functions with

inclusion of W-descendant fields in the CFT side. The precise dictionary between the two

objects are yet to be accomplished. The realization of the higher times of the extended the-

ories in the CFT side is even more unclear. The free field representation of the monodromies

of degenerate fields studied in [119] can be relavant for this study.

Another problem related to this work is the generalized NRS coordinate systems cor-

responding to the non-Lagrangian theories. It is well-known that the higher rank class S

theories do not always admit Lagrangian descriptions. Our computation of monodromy data

of opers heavily utilized the availability of the exact computations of the partition functions
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and the expectation values of the chiral observables. For the non-Lagrangian theories, it is

not even clear what the instanton counting means. Nevertheless, the Fuchsian systems with

the prescribed monodromies around the punctures are still well-defined, and we may wonder

if it is possible to explicily link the accessory parameters of the corresponding opers and the

expectation values of the chiral observables in the non-Lagrangian theories. In the case when

the non-Lagrangian theory is S-dual to a Lagrangian theory, it is desirable to explicitly con-

struct the coordinate transformation [91] between the relavant generalized NRS coordinate

systems and investigate their field theoretical meaning.
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Part II

Quantum Toroidal Algebras
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Chapter 6

New quantum toroidal algebras from

5d N = 1 instantons on orbifolds

6.1 Introduction

As we observed in the Part I to some extent, the Nekrasov partition function has been a

powerful tool to investigate the correspondences of four-dimensional N = 2 supersymmetric

quiver gauge theories with various objects in theoretical physics, i.e., quantum integrable

systems [29, 30, 28], two-dimensional CFTs [63, 64, 10, 14, 15, 21, 32], flat connections on

Riemann surfaces [91, 1], and isomonodromic deformations of Fuchsian systems [77, 120, 121].

Very rich algebraic structures lie at the heart of these correspondences [9]. For instance,

the AGT correspondence [63, 64] between Nekrasov partition functions and conformal blocks

of Liouville/Toda 2D CFTs can be understood algebraically as the action of W-algebras on

the cohomology of instantons moduli space [122, 123, 124]. In this context, the W-algebra

currents are coupled to an infinite Heisenberg algebra, and the total action is formulated in

terms of a quantum algebra, namely the Spherical Hecke central algebra [124] (isomorphic

to the affine Yangian of gl(1) [125, 126]). The coupling to an Heisenberg algebra is essen-

tial for the definition of a coalgebraic structure, thus emphasizing the underlying quantum
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integrability since the coproduct provides the R-matrix satisfying the celebrated quantum

Yang-Baxter equation.

A closely related but different connection with quantum algebras arises from the type

IIB strings theory realization of the five-dimensional uplifts of 4d N = 2 gauge theories,

that is the 5d N = 1 quiver gauge theories compactified on S1. In this construction, N = 1

gauge theories emerge as the low-energy description of the dynamics of 5-branes webs [127,

128]. Here, each brane carries the charges (p, q), generalizing D5-branes (charge (1, 0)) and

NS5-branes (charge (0, 1)). Their world-volume include the five-dimensional gauge theory

spacetime, together with an extra line segment in the 56-plane. Individual branes’ line

segments are joined by trivalent vertices, and form the (p, q)-branes web. Alternatively,

the (p, q)-brane web can be seen as the toric diagram of a Calabi-Yau threefold on which

topological strings can be compactified [129]. The trivalent vertices are then identified with

the (refined) topological vertex, thereby leading to a very efficient method of computing 5d

Nekrasov partition functions as topological strings amplitudes [130, 131].

Awata, Feigin and Shiraishi observed in [132] that a specific representation of the quantum

toroidal gl(1) algebra (or Ding-Iohara-Miki algebra [133, 134]) can be associated to each edge

of the (p, q)-branes web. The charges (p, q) are identified with the values of the two central

charges while the brane position define the weight of the representation. As such, the D5-

branes correspond to the so-called vertical representation while an horizontal representation

is associated to NS5-branes (possibly dressed by extra D5-branes).1 The refined topological

vertex is then identified with an intertwiner between vertical and horizontal representations,

that is in fact the toroidal version of the vertex operator introduced in [137] for the quantum

group Uq(ŝl(2)). In this way, the Nekrasov partition function is written as a purely algebraic

object using the quantum toroidal algebra, just like conformal blocks with W-algebras [138,
1In fact, the vertical representation is simply the q-deformation of the affine Yangian action mentioned

previously, it is expected to describe a quantum toroidal action on the K-equivariant cohomology of the
quiver variety describing the instanton moduli space. The equivalent of the horizontal representation can
also be defined for 4d N = 2 theories, thus extending the whole algebraic construction of the Nekrasov
partition functions [135]. However, for this purpose, it is necessary to consider the central extension of the
Drinfeld double of the affine Yangian following from the construction given in [136].
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139]. This algebraic construction turns out to be useful in probing various properties of the

partition function, e.g. in addressing the (q-deformed) AGT correspondence [140, 141], or

in studying strings’ S-duality [142, 143].

In [10], an important class of half-BPS observables, called qq-characters, were defined,

whose characteristic property is the regularity of their gauge theory expectation values.

This regularity property encodes efficiently an infinite set of constraints on the partition

function called non-perturbative Dyson-Schwinger equations [10]. The algebraic nature of

these constraints was observed in [144, 145]. Actually, the constraints take an even more

elegant form in the algebraic construction described above as they express the invariance of

an operator T under the adjoint action of the quantum toroidal algebra [51]. This operator

is obtained by gluing intertwiners along the edges of the (p, q)-branes web, and its vacuum

expectation value reproduces the 5d Nekrasov instanton partition.

A natural question is how to generalize the algebraic construction to gauge theories

on more complicated manifolds. Among other manifolds, the Zp-orbifolded C2 are of a

particular interest, since the partition functions on these spaces can be computed by simply

projecting out the contributions which are not invariant under the Zp-action [20, 146, 15].

The generalization of the algebraic construction is not entirely straightforward since it is

necessary to introduce the information of the coloring corresponding to the Zp-action of

the orbifolding. In this scope, deformations of the quantum toroidal gl(1) algebra must be

considered. A special case of the Zp-orbifolded C2 is the (un-resolved) Ap-type ALE spaces.

The ALE instantons were introduced by Kronheimer in [147], and the ALE instanton moduli

spaces were constructed as quiver varieties in [148, 149]. The algebraic construction of the

corresponding 5d Nekrasov partition functions has been realized recently using an underlying

quantum toroidal gl(p) algebra. There, the index carried by the Drinfeld currents renders the

Zp-coloring due to the orbifolding. Incidentally, the vertical representation of this quantum

toroidal algebra should coincide with the q-deformation of the affine Yangian of gl(p) acting

on the cohomology of the moduli space of ALE instantons, extending by further affinization

200



the algebraic actions discovered in [149, 150].

In this work, we extend the algebraic construction of 5d Nekrasov partition functions

to a more general Zp-orbifolding depending on two integer parameters (ν1, ν2). We pro-

pose an extended quantum toroidal algebra relevant to the construction, and prove its Hopf

algebra structure. We define both horizontal and vertical representations, and derive the

vertex operator which intertwines between these representations. Finally, using these ingre-

dients, we give an algebraic construction of Nekrasov partition functions and qq-characters.

The orbifolds considered in this work incorporate the case of codimension-two defect inser-

tion, whose applications to BPS/CFT correspondence, Bethe/gauge correspondence, and

Nekrasov-Rosly-Shatashvili correspondence have been largely investigated [21, 32, 2, 3, 1].

This chapter is written in such a way that mathematicians interested only in the for-

mulation of the extended algebra can focus on the reading of section three, together with

the appendices G (quantum toroidal gl(p)), I (representations) and J (automorphisms and

gradings) for more details. Instead, the section two provides a brief description of the phys-

ical context in which the algebra emerges, i.e. instantons of 5d N = 1 gauge theories on

the spacetime C2/Zp. Finally, the section four is dedicated to the algebraic construction of

gauge theories observables, giving the expression of the (ν1, ν2)-colored refined topological

vertex and a few examples of application.

6.2 Instantons on orbifolds

6.2.1 Action of the abelian group Zp on the ADHM data

In order to derive the group action on the instanton moduli space, we focus first on the case

of a pure U(m) gauge theory. In this case, the ADHM construction of the moduli space

[151] involves only two vector spaces M and K of dimension m and k respectively, where

k is the instanton number. Introducing the four matrices B1, B2 : K → K I : M → K

and J : K → M , the instanton moduli space is identified with the quiver variety (see, for
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instance, [152])

Mk = {B1, B2, I, J�[B1, B2] + IJ = 0,C[B1;B2]I(M) = K}�GL(K). (6.2.1)

The complexified global symmetry group GL(M) × SL(2,C)2 acts on the ADHM matrices,

preserving the quiver varietyMk. It contains an (m+2)-dimensional torus that acts follows,

(B1, B2, I, J)→ (t1B1, t2B2, It, t
−1Jt1t2), (t, t1, t2) ∈ (C×)m × (C×)2. (6.2.2)

The fixed points of this action parameterize the configurations of instantons with total charge

k. They are in one-to-one correspondence with the m-tuple partitions λ = (λ(1), · · ·λ(m)) of

the integer k, here identified with the m-tuple Young diagrams with |λ| = k boxes. At the

fixed point, the vector space K is decomposed into

K =
m⊕
α=1

⊕
(i,j)∈λ(α)

Bi−1
1 Bj−1

2 I(Mα), (6.2.3)

where Mα denotes the one-dimensional vector spaces generated by the basis vectors of M .

Thus, each box = (α, i, j) of the m-tuple partition λ with coordinate (i, j) ∈ λ(α) corre-

sponds to a one-dimensional vector space Bi−1
1 Bj−1

2 I(Mα). We further associate to the box

the complex variable φ = aα+(i−1)ε1 +(j−1)ε2 called instanton position or, sometimes,

the box content of . The parameters a1, · · · , am are the Coulomb branch vevs of the gauge

theory. We also define the exponentiated quantities vα = eRaα , (q1, q2) = (eRε1 , eRε2) and

χ = eRφ = vαq
i−1
1 qj−1

2 .

In this chapter, gauge theories are considered on the 5d orbifolded Ω-background S1
R ×

(Cε1 × Cε2)/Zp where Zp = Z/pZ is a subgroup of the torus U(1)2 ⊂ SO(4). The action of

the group Zp on the spacetime is parameterized by two integers ν1, ν2,

(θ, z1, z2) ∈ S1
R × Cε1 × Cε2 → (θ, e2iπν1/pz1, e

2iπν2/pz2), with (ν1, ν2) ∈ Zp × Zp. (6.2.4)
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Furthermore, it is possible to combine it with a global gauge transformation in the subgroup

U(1)m ⊂ U(m). As a result, we obtain an action of Zp on the ADHM data by specialization

of the (m+ 2)-torus action 6.2.2, taking

t = diag(e2iπcα/p)α=1,··· ,m, t1 = e2iπν1/p, t2 = e2iπν2/p. (6.2.5)

This action of the abelian group Zp is parameterized by the m + 2 integers (cα, ν1, ν2) con-

sidered modulo p. The transformation of the vector spaces in the decomposition 6.2.3 of K

leads to associate to each box = (α, i, j) ∈ λ, in addition to the complex variables φ and

χ , the integer c( ) such that

Bi−1
1 Bj−1

2 I(Mα)→ e2iπc( )/pBi−1
1 Bj−1

2 I(Mα), with c( ) = cα + (i− 1)ν1 + (j − 1)ν2 ∈ Zp.

(6.2.6)

We call color any integer parameter defined modulo p. For short, we also say that cα

and ν1, ν2 are respectively color of the Coulomb branch vevs, and of the parameters q1, q2.

The map c : λ → Zp defines a coloring of the m-tuple partitions λ, and K has a natural

decomposition into sectors of a given color c( ) = ω,

K =
⊕
ω∈Zp

Kω(λ). (6.2.7)

Notations We denote Cω(m) the subset of [[1,m]] such that the Coulomb branch vevs aα

(or vα) with α ∈ Cω(m) have color cα = ω (or, equivalently, that the box (1, 1) ∈ λ(α) with

α ∈ Cω(m) is of color c(α, 1, 1) = cα = ω). Similarly, Kω(λ) denotes the set of boxes ∈ λ

of the m-tuple colored partition λ that carry the color c( ) = ω. Besides, in the generic case

ν1 +ν2 6= 0, the shift of color indices ω by the quantity ν1 +ν2 appears in many formulas. To

simplify these expressions, we introduce the notation ω̄ = ω+ ν1 + ν2 for the shifted indices,

along with the map c̄( ) = c( ) + ν1 + ν2. Finally, we also introduce the extra variables q3

and ν3 such that q1q2q3 = 1 and ν1 +ν2 +ν3 = 0. Due to the fact that the Zp-action coincides
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with a subgroup of the torus action, in all formulas the shift of color indices ω + νi coincide

with a factor qi multiplying the parameters associated to instanton positions in the moduli

space.

McKay subgroups in SO(4) Although we are considering here a different problem, it is

interesting to make a short parallel with the action of SU(2)L × SU(2)R ⊂ SO(4) on the

Ω-background (see, for instance, [153]). This action takes a simpler form if we employ the

quaternionic coordinates

Z =
(
z1 −z̄2
z2 z̄1

)
, (z1, z2) ∈ Cε1 × Cε2 . (6.2.8)

Then the 2×2 matrices (GL, GR) ∈ SU(2)L×SU(2)R act on the quaternions as Z → GLZGR.

The McKay subgroups of SU(2) possess an ADE-classification. For instance, the Ap−1 series

corresponds to the action of Zp, it is generated (multiplicatively) by the diagonal matrices

G =
(
e2iπ/p 0

0 e−2iπ/p

)
. (6.2.9)

Considering only the action of the Ap−1 subgroup on the left, the background coordinates

transform as (z1, z2) → (e2iπ/pz1, e
−2iπ/pz2). This transformation can be recovered from the

action 6.2.4 of Zp by choosing ν1 = −ν2 = 1. The orbifold of the spacetime under this action

of Zp reproduces the ALE space constructed in [147]. Instantons of N = 1 gauge theories

defined on ALE spacetimes have been extensively studied [147, 148, 149, 150]. In [154], their

contributions to the gauge theory partition functions have been reproduced using algebraic

techniques based on the quantum toroidal algebra of gl(p). The generalization to DE-type

McKay subgroups with only left action is expected to involve quantum toroidal algebras

based on either so(p) or sp(p) Lie algebras [150].

It is also possible to consider simultaneously the action of two McKay subgroups Ap1−1

and Ap2−1, with one acting on the left, the other on the right. As a result, coordinates now
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transform as

(z1, z2)→ (e2iπ(p1+p2)/(p1p2)z1, e
2iπ(p1−p2)/(p1p2)z2). (6.2.10)

We recognize here another particular case of the Zp-action defined in 6.2.4, albeit more

general than before. It is simply obtained by the specialization ν1 = p1 + p2, ν2 = p1 − p2

and p = p1p2. Thus, the action 6.2.4 leads to a particularly rich context. Moreover, taking

ν1 = 0, the first coordinate z1 is invariant and the orbifolded spacetime can be reinterpreted

as the insertion of a codimension-two defect in a 5d Ω-background with no orbifold [21, 20].

We build here a general algebraic framework to address this kind of problems. It may be

possible to further generalize our approach to the action of DE-type McKay subgroups with

both left and right actions, but this is beyond the scope of this work.

6.2.2 Instantons partition function

The computation of the Nekrasov instanton partition function on such Zp-orbifolds has

been performed in [20, 146, 15].2 For simplicity, we do not introduce fundamental matter

multiplets, those being obtained in the limit q → 0 of the gauge coupling parameters.

Furthermore, we only discuss the case of linear quiver gauge theories Ar, with U(m(i)) gauge

groups at each node i = 1 · · · r. Thus, the node i carries the following parameters:

• a set of colored exponentiated gauge couplings qω,i,

• a p-vector of colored Chern-Simons levels κ(i) = (κ(i)
ω )ω∈Zp ,

• an m(i)-vector of Coulomb branch vevs a(i) = (a(i)
α )m(i)

α=1 defining the exponentiated

parameters v(i) = (v(i)
α )m(i)

α=1 with v(i)
α = eRa

(i)
α ,

• an associated vector of colors c(i) = (c(i)
α )m(i)

α=1.
2Strictly speaking, in [146], the authors consider the instantons on the minimal resolution of the orbifold.

Instead, here, following [20, 15], we simply consider the Zp-invariant part of the instanton moduli spaceMk.
Both approaches should provide the same result [155].
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In addition, each link i→ j between two nodes i and j represent a chiral multiplet of matter

fields in the bifundamental representation of the gauge group U(m(i))× U(m(j)), with mass

µij ∈ C. For linear quivers, all bifundamental masses can be set to q−1
3 by a rescaling of the

Coulomb branch vevs.

The instantons contribution to the gauge theories partition function is expressed as a

sum over the content of r m(i)-tuple Young diagrams λ(i) describing the configuration of

instantons at the ith node. Each term can be further decomposed into the contributions

of vector (gauge) multiplets, bifundamental chiral (matter) multiplets, and Chern-Simons

factors:

Zinst. =
∑
λ(i)

r∏
i=1

 ∏
ω∈Zp

q
|Kω(λ(i))|
ω,i Zvect.(v(i),λ(i))ZCS(κ(i),λ(i))

 ∏
i→j
Zbfd.(v(i),λ(i),v(j),λ(j)|µij),

with Zvect.(v,λ) = N(v,λ|v,λ)−1, Zbfd.(v,λ,v′,λ′|µ) = N(v,λ|µv′,λ′), ZCS(κ,λ) =
∏
∈λ
χ
κc( ) .

(6.2.11)

Vector and bifundamental contributions are written in terms of the Nekrasov factorN(v,λ|µv′,λ′).

For a better readability, we drop the node indices in the following, and simply distinguish the

two nodes involved in the definition of the Nekrasov factor with a prime. In order to write

down the expression of N(v,λ|µv′,λ′) given in [15], we need to introduce the equivariant

character Mv and Kλ of the vector spaces M and K associated to each node,

Mv =
m∑
α=1

eRaα , Kλ =
∑
∈λ
eRφ , (6.2.12)

A linear involutive operation ∗ acts on such characters by flipping the sign of R: (eRaα)∗ =

e−Raα , (q∗1, q∗2) = (q−1
1 , q−1

2 ) and thus (eRφ )∗ = e−Rφ (see [10, 14, 15] for more details on

these notations). Introducing Sλ = M − P12Kλ with P12 = (1 − q1)(1 − q2), the Nekrasov
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factor writes

N(v,λ|v′,λ′) = I
[
MvM

∗
v′ − SλS∗λ′
P ∗12

]Zp
= I

[
MvK

∗
λ′ + q−1

3 M∗
v′Kλ − P12KλK

∗
λ′

]Zp
, (6.2.13)

where the I-symbol is the equivariant index functor,

I

∑
i∈I+

eRwi −
∑
i∈I−

eRwi

 =
∏
i∈I+ 1− eRwi∏
i∈I− 1− eRwi , (6.2.14)

and [· · · ]Zp denotes the operation of keeping only the Zp-invariant parts. In particular, the

RHS of (6.2.13) involves a coloring function c : Z[aα, ε1, ε2] → Zp defined on weights wi as

the linear map taking the values c(aα) = cα, c(ε1) = ν1 and c(ε2) = ν2 so that c(φ ) = c( )

(justifying our slight abuse of notations). The [· · · ]Zp projects on Zp-invariant factors.

Replacing the equivariant characters by their expressions 6.2.12, the Nekrasov factor can

be written in a more explicit form,

N(v,λ|v′,λ′) =
∏
∈λ
∈λ′

Sc( )c( )(χ /χ )×
∏
∈λ

∏
α∈Cc̄( )(m′)

(
1− χ

q3v′α

)
×
∏
∈λ′

∏
α∈Cc( )(m)

(
1− vα

χ

)
.

(6.2.15)

The function Sωω′(z) is sometimes called the scattering function, it carries two color indices

ω, ω′:

Sωω′(z) = (1− q1z)δω,ω′−ν1 (1− q2z)δω,ω′−ν2
(1− z)δω,ω′ (1− q1q2z)δω,ω′−ν1−ν2

. (6.2.16)

In this expression, the non-zero matrix elements have been expressed in a compact way using

the delta function δω,ω′ defined modulo p (i.e. δω,ω′ = 1 iff ω = ω′ modulo p, zero otherwise).

In fact, Sωω′(z), and more generally all the matrices of size p×p with indices ω, ω′ appearing

in thischapter, are circulant matrices: their matrix elements only depend on the difference

ω − ω′ of row and column indices. In particular, Sω+ν ω′(z) = Sω ω′−ν(z) for all ν ∈ Zp.
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Finally, the function Sωω′(z) satisfies a sort of crossing symmetry,

Sωω̄′(q3/z) = fωω′(z)Sω′ω(z), (6.2.17)

with the function fωω′(z) = Fωω′z
βωω′ defined by3

βωω′ = δωω′+δωω′+ν1+ν2−δωω′+ν1−δωω′+ν2 , Fωω′ = (−1)δωω′ (−q3)−δω,ω′−ν3 (−q1)−δωω′+ν1 (−q2)−δωω′+ν2 .

(6.2.18)

6.2.3 Y-observables

A new class of BPS-observables for supersymmetric gauge theories was introduced in [10],

they are called qq-characters. As the name suggests, they correspond to a natural deforma-

tion of the q-characters of Frenkel-Reshetikhin [12] from the gauge theory point of view [9].

They were defined in [10] as particular combinations of chiral ring observables in such a way

that their expectation values exhibit an important regularity property [10, 14]. This regular-

ity property encodes an infinite set of constraints called non-perturbative Dyson-Schwinger

equations. From a different viewpoint, qq-characters in 5d gauge theories can also be defined

in terms of Wilson loops [156] (see also [157] for a string theory perspective).4

The qq-characters are half-BPS observables written as combinations of Y-observables.5 In

the case of a Zp-orbifold, it is natural to introduce two inequivalent Y-observables Y [λ]
ω (z) =

I
[
e−RζSλ

]Zp and Y [λ]∗
ω (z) = I

[
eRζS∗λ

]Zp where z = eRζ and c(ζ) = ω. These two observables

3The function fωω′(z) also controls the asymptotics of the scattering function since Sωω′(z)∼0 1 and
Sωω′(z) ∼∞fω′ω(z)−1. It obeys an important reflection symmetry fω̄ω′(q3/z) = fω′ω(z)−1 coming from
Fωω′Fω̄′ω = q

−βωω′
3 and βω̄′ω = βωω′ .

4In [21], the qq-characters of 4d N = 2 gauge theories with the insertion of surface defects were considered.
In this case, the non-perturbative Dyson-Schwinger equations produce either Knizhnik - Zamolodchikov
equations or BPZ equations that are satisfied by the surface defect partition functions [32, 3]. These surface
defect partition functions were investigated in the context of Bethe/gauge correspondence in [2], and in their
relation to the oper submanifold of the moduli space of flat connections on Riemann surfaces in [1].

5Note that we use slightly different notations for the observables in the five-dimensional theories, compared
to the four-dimensional counterparts which appeared in the Part I. Namely, the Y-observable is denoted as
Y(x) in 4d and Y(z) in 5d. In the same way, the qq-character is denoted as X(x) in 4d and X (z) in 5d.
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encode the recursion relations satisfied by Nekrasov factors,

N(v,λ|v′,λ′ + )
N(v,λ|v′,λ′) = Y [λ]

c( )(χ ) N(v,λ+ |v′,λ′)
N(v,λ|v′,λ′) = Y [λ′]∗

c̄( ) (q−1
3 χ ), (6.2.19)

Replacing the equivariant characters with the expressions 6.2.12, we find the explicit formulas

Y [λ]
ω (z) =

∏
α∈Cω(m)

(1−vα/z)×
∏
∈λ
Sc( )ω(χ /z), Y [λ]∗

ω (z) =
∏

α∈Cω(m)
(1−z/vα)

∏
∈λ
Sωc̄( )(q3z/χ ).

(6.2.20)

Due to the crossing symmetry 6.2.17, these two Y-observables satisfy the relation

Y [λ]∗
ω (z) = f [λ]

ω (z)Y [λ]
ω (z), (6.2.21)

with

f [λ]
ω (z) =

∏
α∈Cω(m)

(−z/vα)
∏
∈λ
fωc( )(χ /z). (6.2.22)

It will allow us to express all the equations below in terms of Y [λ]
ω (z) only.6 Furthermore,

the Y-observables possess an alternative expression following from the shell formula derived

in appendix H,

Y [λ]
ω (z) =

∏
∈Aω(λ)(1− χ /z)∏

∈Rω−ν1−ν2 (λ)(1− χ /(q3z)) , f [λ]
ω (z) =

∏
∈Rω−ν1−ν2 (λ)(−χ /(q3z))∏

∈Aω(λ)(−χ /z) . (6.2.23)

Here, the sets Aω(λ) and Rω(λ) denote respectively the set of boxes of color ω that can be

added to or removed from the m-tuple Young diagram λ. This expression arises from the

cancellations of contributions by neighboring boxes, it plays an essential role in the definition

of the vertical representation of the algebra.
6The presence of the function f

[λ]
ω (z) can be interpreted as follows. Note that I(X∗) =

(−1)rkX∗ detX∗ I(X), for X =
∑
i∈I+ e

Rwi −
∑
i∈I− e

Rwi , rkX = |I+| − |I−|, and detX =∏
i∈I+ e

Rwi/
∏
i∈I− e

Rwi . Applying this reflection relation to X =
[
e−RζSλ

]Zp , we recover the relation
(6.2.21) with f [λ]

ω (z) given in (6.2.22) identified with (−1)rkX∗ detX∗.
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6.3 New quantum toroidal algebras

In order to reconstruct the instanton partition functions on the general orbifold 6.2.4, the

definition of a new quantum toroidal algebra is necessary. In addition to the complex param-

eters q1, q2 and the rank p ∈ Z>0, this algebra will depend on the integers (ν1, ν2) modulo

Zp. Taking ν1 = −ν2 = 1, the Zp-action 6.2.4 reduces to the standard action defining

ALE spaces. Thus, in this limit the (ν1, ν2)-deformed algebra should reduce to the quantum

toroidal algebra of gl(p). In fact, this is true only up to a twist in the definition of the Drin-

feld currents (see the subsection G.4 of the appendix). A brief reminder on the quantum

toroidal algebra of gl(p) is given in appendix G, it includes its two main representations

called, in the gauge theory context, vertical and horizontal representations.

The key ingredient to define the deformation of the quantum toroidal algebra of gl(p)

is the scattering function Sωω′(z) defined in 6.2.16. Indeed, this function plays an essential

role in the two elementary representations involved in the algebraic engineering of partition

functions and qq-characters. In the vertical representation, it enters through the definition

6.2.20 of the Y-observables that describe the recursion relations among Nekrasov factors.

Instead, in the horizontal representation, it expresses the normal-ordering relations between

vertex operators. Thus, from the physics perspective, the scattering function is the natural

object to consider for the deformation of the algebra. Moreover, through the crossing sym-

metry relation 6.2.17, this function defines the p×p matrix βωω′ that could be identified with

the underlying Cartan matrix of the deformed quantum toroidal algebra (see the subsection

G.4). Note that the matrix βωω′ naturally reduces to the generalized Cartan matrix of the

Kac-Moody algebra ĝlp when ν1 = −ν2 = 1. In general, it is non-symmetrizable, yet, like in

the case of ĝlp, it is a circulant matrix. Its eigenvectors vj = (1,Ωj,Ω2
j , · · · ,Ω

p−1
j ) are written

in terms of the pth root of unity Ωj = e2iπj/p, and the corresponding eigenvalues read

λj = −4eiπν3j/p sin(πν1j/p) sin(πν2j/p). (6.3.1)
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In particular, the eigenvector v0 = (1, 1, · · · , 1) has the eigenvalue zero which relates βωω′ to

the Cartan matrix of affine Lie algebras, and thus justifies the designation toroidal of the

deformed algebra.

6.3.1 Definition of the algebra

Like in the case of gl(p), the (ν1, ν2)-deformed quantum toroidal algebra is defined in terms

of a central element c and 4p Drinfeld currents, denoted x±ω (z) and ψ±ω (z), with ω ∈ Zp.

The currents ψ±ω (z) (together with c) generate the Cartan subalgebra, while the currents

x±ω (z) deform the notion of Chevalley generators eω, fω. The algebraic relations obeyed by

the currents resemble those defining the quantum toroidal algebra of gl(p) in G.1.3, the main

difference being the presence of shifts in the indices ω by the product ν3c:7

x±ω (z)x±ω′(w) = gωω′(z/w)±1x±ω′(w)x±ω (z), ψ+
ω (z)x±ω′(w) = gωω′(z/w)±1x±ω′(w)ψ+

ω (z),

ψ−ω (z)x+
ω′(w) = gω−ν3c ω′(q−c3 z/w)x+

ω′(w)ψ−ω (z), ψ−ω (z)x−ω′(w) = gωω′(z/w)−1x−ω′(w)ψ−ω (z),

ψ+
ω (z)ψ−ω′(w) = gωω′−ν3c(qc3z/w)

gωω′(z/w) ψ−ω′(w)ψ+
ω (z), [ψ±ω (z), ψ±ω′(w)] = 0,

[x+
ω (z), x−ω′(w)] = Ω

[
δω,ω′δ(z/w)ψ+

ω (z)− δω,ω′−ν3cδ(qc3z/w)ψ−ω+ν3c(q
c
3z)
]
.

(6.3.2)

In the last relation δ(z) = ∑
k∈Z z

k denotes the multiplicative Dirac delta function and we

introduced the complex parameter

Ω = (1− q1)δν1,0(1− q2)δν2,0
(1− q1q2)δν1+ν2,0

F 1/2, F = Fωω = −
∏
i

(−qi)−δνi,0 . (6.3.3)

7Comparing with the standard definition of quantum toroidal algebras, the Drinfeld currents have been
redefined as follows: x±(z) → x±(q±c/43 z), ψ+

ω (z) → ψ+
ω (z) and ψ−ω (z) → ψ−ω (q−c/23 z). This redefinition

makes the coincidence between shifts of indices ω± ν3c and spectral parameters zq±c3 manifest. In fact, this
asymmetric form of the algebraic relations appears naturally in the construction of a central extension of
the Yangian double [136].
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The other relations in 6.3.2 involve the structure function gωω′(z) defined as a ratio of two

scattering functions. This function depends on the variables (q1, q2) ∈ C× × C× and the

integers (ν1, ν2) ∈ Zp × Zp:

gωω′(z) = Sωω′(z)
Sω′ω(z−1) = fωω′(z−1)

∏
i=1,2,3

(1− qiz)δω,ω′−νi
(1− q−1

i z)δω,ω′+νi
, (6.3.4)

where the extra variables q3 and ν3 obey q1q2q3 = 1 and ν1 + ν2 + ν3 = 0. Note that

the invariance under the S3-permutation of indices (νi, qi) is broken to S2 corresponding to

exchange (ν1, q1) and (ν2, q2). The structure function satisfies the property gωω′(z)gω′ω(z−1) =

1 necessary for the definiteness of the algebraic relations.

The algebraic relations 6.3.2 are expected to include additional Serre relations. However,

the Drinfeld currents employed here are a twisted version of those used in the formulation

of the quantum toroidal algebra of gl(p). This explains why the function gωω′(z) defined in

6.3.4 does not quite reproduce the gl(p) structure function G.1.6 as we set ν1 = −ν2 = 1.

Even in the case of gl(p), the twist of the currents make the derivation of Serre relations

difficult. We hope to come back to this question in the near future.

Due to the non-trivial power of z in the asymptotics of the functions gωω′(z), namely

gωω′(z)∼0 fωω′(z−1), gωω′(z) ∼∞fω′ω(z)−1, (6.3.5)

the Cartan currents ψ±ω (z) cannot be expanded in powers of z∓k with k > 0 as it is usually

the case for quantum groups. Instead, it is necessary to introduce a zero modes part using

extra operators a±ω,0:

x±ω (z) =
∑
k∈Z

z−kx±ω,k, ψ±ω (z) = ψ±ω,0z
∓a±ω,0 exp

±∑
k>0

z∓kaω,±k

 . (6.3.6)

In the appendix J, the operators ψω,0z∓a
±
ω,0 are constructed as a specific combination of

grading operators. The Cartan zero modes ψ±ω,0 are invertible, they can be used to define
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another central element c̄ setting

q−c̄3 =
 ∏
ω∈Zp

ψ+
ω,0

 ∏
ω∈Zp

ψ−ω,0

−1

=
p−1∏
ω,ω′=0
ω≤ω′

Fω′ω
Fω′ω+ν3c

∏
ω∈Zp

ψ+
ω,0(ψ−ω,0)−1. (6.3.7)

Note that the ordering of the zero modes is important since they do not commute. It is

chosen here such that the expression of the coproduct defined below simplifies.

Coalgebraic structure A Hopf algebra A over the field C is a C-module equipped with a

unit 1A, a product ∇, a counit ε, a coproduct ∆ and an antipode S satisfying the following

properties [158].

• A is both an algebra and a coalgebra. This implies the property ∇(1⊗ ε)∆ = ∇(ε⊗

1)∆ = 1 and the coassociativity of the coproduct (1⊗∆)∆ = (∆⊗ 1)∆.

• The counit ε : A → C and the coproduct ∆ : A → A ⊗ A are homomorphisms

of algebras. The compatibility with the scalar multiplication and the addition are

trivially satisfied. On the other hand, the compatibility with the product requires to

verify ε(ee′) = ε(e)ε(e′) and ∆(e)∆(e′) = ∆(ee′) for any two elements e, e′ ∈ A.

• The unit 1A : C→ A and product ∇ : A⊗A → A are homomorphisms of coalgebras.

This means ∆(1A) = 1A ⊗ 1A, ε(1A) = 1, and, once again, ∆(e)∆(e′) = ∆(ee′).

• The antipode S : A → A is a bijective C-module map satisfying ∇(S ⊗ 1)∆ = ε =

∇(1⊗ S)∆.
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The algebra 6.3.2 is a Hopf algebra with the coproduct, counit and antipode given by

∆(x+
ω (z)) = x+

ω (z)⊗ 1 + ψ−ω+ν3c(1)
(qc(1)

3 z)⊗ x+
ω (z),

∆(x−ω (z)) = x−ω (z)⊗ ψ+
ω−ν3c(1)

(q−c(1)
3 z) + 1⊗ x−ω−ν3c(1)

(q−c(1)
3 z),

∆(ψ+
ω (z)) = ψ+

ω (z)⊗ ψ+
ω−ν3c(1)

(q−c(1)
3 z), ∆(ψ−ω (z)) = ψ−ω−ν3c(2)

(q−c(2)
3 z)⊗ ψ−ω−ν3c(1)

(q−c(1)
3 z),

S(x+
ω (z)) = −ψ−ω+ν3c(q

c
3z)−1x+

ω (z), S(x−ω (z)) = −x−ω+ν3c(q
c
3z)ψ+

ω+ν3c(q
c
3z)−1, ε(x±ω (z)) = 0,

S(ψ+
ω (z)) = ψ+

ω+ν3c(q
c
3z)−1, S(ψ−ω (z)) = ψ−ω+2ν3c(q

2c
3 z)−1, ε(ψ±ω (z)) = 1,

(6.3.8)

with the standard notation c(1) = c ⊗ 1, c(2) = 1 ⊗ c. The central element c obeys ∆(c) =

c(1) + c(2), S(c) = −c and ε(c) = 0. The proof is a tedious but straightforward calculation

that the axioms defining a Hopf algebra hold for any pair of currents. The antipode is

an anti-homomorphism of algebra, it satisfies S2 = (−1)1+εId. Using the coproduct of the

Cartan zero modes ψ±ω,0, it is possible to compute the coproduct of the central charge c̄

defined in 6.3.7, we find8

∆(q−c̄3 ) = (q−c̄3 ⊗ q−c̄3 )
(
q
c(2)
∑

ω∈Zp
a−ω,0

3 ⊗ q
c(1)
∑

ω∈Zp
a+
ω,0

3 q
c(1)
∑

ω∈Zp
a−ω,0

3

)
. (6.3.10)

In order to reconstruct the instanton partition functions, we need to introduce two types

of representations: a vertical representation ρ(V ) with level c = 0 and a horizontal represen-

tation ρ(H) with level c = 1. Such representations are already known in the case of quantum

toroidal algebras of gl(p) (see [159, 160], or the brief summary presented in appendix G),

but also for the quantum toroidal gl(1) algebra (or Ding-Iohara-Miki algebra [133, 134])

[161, 162]. In fact, there are two different point of view concerning these representations.
8The extra factor in the RHS comes from the shifts of the currents’ arguments in the coproduct that

brings

∆(ψ+
ω,0) = ψ+

ω,0⊗q
2c(1)a

+
ω−ν3c(1)

3 ψ+
ω−ν3c(1),0, ∆(ψ−ω,0) = ψ−ω−ν3c(2),0q

−2c(2)a
−
ω−ν3c(2)

3 ⊗ψ−ω−ν3c(1),0q
−2c(1)a

−
ω−ν3c(1)

3 .

(6.3.9)
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In the mathematics literature [161, 162, 159], one often considers a single module, the Fock

module, and present the action of two subalgebras called horizontal and vertical. Miki’s au-

tomorphism S [163, 134] exchanges the two subalgebras, allowing us to define (for instance)

ρ(H) = ρ(V ) ◦ S. On the opposite, physicists usually introduce two different types of mod-

ules referred as vertical and horizontal modules, somehow fixing the choice of subalgebra.

Of course, the modules are isomorphic thanks to Miki’s automorphism and the two point

of views are equivalent [143]. However, no analogue of Miki’s automorphism is known yet

for the (ν1, ν2)-deformed algebra. Thus, at this stage, we have no choice but to follow the

second approach and define two distinct representations. This will be done in the next two

subsections.

6.3.2 Vertical representation

The vertical representation presented here is a deformation of the Fock representation for the

quantum toroidal algebra of gl(p) [159] (see appendix G.3). This representation is similar

to the usual finite dimensional representations of quantum groups. Indeed, the Cartan

currents ψ±ω (z) are diagonal on a set of weight vectors. The currents x−ω (z) annihilates the

highest weight (or vacuum) |∅〉〉, and x+
ω (z) creates excitations. However, the weight vectors

are labeled here by the box configurations of an m-tuple Young diagrams λ. Thus, this

representation is infinite dimensional, yet it is graded by the total number of boxes |λ|.

From the gauge theory perspective, the vertical representation of the algebra 6.3.2 de-

scribes the relation between sectors of different instanton numbers. Thus, vertical modules

are characterized by a basis of states |λ〉〉 labeled by instanton configurations. Accordingly,

the representation depend on a set of m (highest) weights v = (vα)α=1···m and a choice of

color cα for each weight. This coloring defines the integers mω = |Cω(m)| corresponding

to the number of weights vα of color ω. The integers mω provide the levels of the vertical

representation: ρ(V )(c) = 0 and ρ(V )(c̄) = m with m = ∑
ω∈Zpmω. As mentioned previously,

the Cartan currents ψ±ω (z) are diagonal on the basis |λ〉〉. On the other hand, the operators
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x±ω (z) relate the sectors of instanton charge |λ| and |λ| ± 1 by adding/removing a box to

the m-tuple Young diagram λ. Their action encodes the recursion relation 6.2.19 obeyed by

Nekrasov factors [164]. The action of the Drinfeld currents on the states |λ〉〉 is derived in

appendix I.1, it reads9

ρ(V )(x+
ω (z)) |λ〉〉 = F 1/2 ∑

∈Aω(λ)
δ(z/χ ) Res

z=χ
z−1Y [λ]

ω (z)−1 |λ+ 〉〉,

ρ(V )(x−ω (z)) |λ〉〉 = f̊
[λ]
ω̄ (q−1

3 z)
∑
∈Rω(λ)

δ(z/χ ) Res
z=χ

z−1Y [λ]
ω̄ (q−1

3 z) |λ− 〉〉,

ρ(V )(ψ±ω (z)) |λ〉〉 =
[
Ψ[λ]
ω (z)

]
±
|λ〉〉.

(6.3.12)

In the first two lines, Aω(λ) and Rω(λ) correspond respectively to the set of boxes of color

ω that can be added to or removed from λ. In the last line, the subscript ± denotes the

expansion of the function Ψ[λ]
ω (z) for |z|±1 → ∞. This function is written as a ratio of the

Y-observables defined in 6.2.20,

Ψ[λ]
ω (z) = f̊

[λ]
ω̄ (q−1

3 z)Y
[λ]
ω̄ (q−1

3 z)
Y [λ]
ω (z)

, with f̊ [λ]
ω (z) = f [λ]

ω (z)
∏

α∈Cω(m)
(−vα/z) =

∏
∈λ
fωc( )(χ /z).

(6.3.13)

We notice that the highest weights are still encoded in the form of a Drinfeld polynomial

pω(z):

Ψ[∅]
ω (z) = zmω−mω̄

∏
α∈Cω̄(m)(−q3vα)∏
α∈Cω(m)(−vα)

pω̄(q−1/2
3 z)

pω(q1/2
3 z)

, with pω(z) =
∏

α∈Cω(m)
(1− q−1/2

3 z/vα).

(6.3.14)

When ν3 = 0, we have ω̄ = ω and the prefactor reduces to the usual expression qmω3 where

mω = deg pω(z).

The functions f [λ]
ω (z) and f̊ [λ]

ω (z) controls the asymptotics of the functions Y [λ]
ω (z) and

9The definition of the vertical representation is not unique due, for instance, to the following invariance
of Drinfeld currents at c = 0:

ψ±ω (z)→ Cωz
αωψ±ω (z), x+

ω (z)→ x+
ω (z), x−ω (z)→ Cωz

αωx−ω (z). (6.3.11)

Here a particular choice is made to simplify the derivation of intertwiners in section 4 below.
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Ψ[λ]
ω (z),

Y [λ]
ω (z) ∼∞1, Y [λ]

ω (z)∼0 f [λ]
ω (z)−1 ⇒ Ψ[λ]

ω (z)∼0 f [λ]
ω (z) f̊

[λ]
ω̄ (q−1

3 z)
f

[λ]
ω̄ (q−1

3 z)
, Ψ[λ]

ω (z) ∼∞ f̊
[λ]
ω̄ (q−1

3 z).

(6.3.15)

As a result, the action of the zero-modes of the Cartan currents read

ρ(V )(ψ+
ω,0) |λ〉〉 = f̊

[λ]
ω̄ (q−1

3 ) |λ〉〉, ρ(V )(ψ−ω,0) |λ〉〉 = f̊ [λ]
ω (1)

∏
α∈Cω̄(m)(−q3vα)∏
α∈Cω(m)(−vα) |λ〉〉,

ρ(V )(a+
ω,0) |λ〉〉 =

∑
∈λ
βω̄c( )

 |λ〉〉, ρ(V )(a−ω,0) |λ〉〉 =
mω −mω̄ −

∑
∈λ
βωc( )

 |λ〉〉 (6.3.16)

The value of the second central charge is obtained by taking the product over ω, we recover

ρ(V )(c̄) = m.

Contragredient representation The definition of intertwiners in the next section re-

quires the introduction of the dual basis 〈〈λ|. The algebra 6.3.2 acts on the dual basis with

the contragredient representation ρ(V )∗, defined such that

〈〈λ|
(
ρ(V )(e) |λ′〉〉

)
=
(
〈〈λ| ρ(V )∗(e)

)
|λ′〉〉, (6.3.17)

for any element e of the algebra. Thus, the action of the contragredient representation

depends on the choice of a scalar product for the vertical states. It turns out that the

analysis of intertwining relations simplifies for a particular choice of scalar product for which

states are orthogonal but not orthonormal,

〈〈λ|λ′〉〉 = aλ(v)−1δλ,λ′ . (6.3.18)

The norms aλ(v)−1 are chosen so that the contragredient representation of x±ω (z) acts on

〈〈λ| in the same way as the original representation ρ(V )(x∓ω (z)) acts on |λ〉〉 (note that x±ω
becomes x∓ω ). As a result, the norms have to obey the two following recursion relations for
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a box x of color c( ) = ω:

aλ− (v)
aλ(v) = Ω−1f

[λ]
ω̄ (q−1

3 χ ) Res
z=χ

z−1Y [λ]
ω (z)Y [λ]

ω̄ (q−1
3 z),

aλ+ (v)
aλ(v) = −Ω−1Ff

[λ]
ω̄ (q−1

3 χ )−1 Res
z=χ

z−1Y [λ]
ω (z)−1Y [λ]

ω̄ (q−1
3 z)−1.

(6.3.19)

The solution is expressed in terms of the vector contribution Zvect.(v,λ) defined in 6.2.11,

aλ(v) = (−F 1/2)|λ|Zvect.(v,λ)
∏
∈λ

∏
α∈Cc̄( )(m)

(−χ /(q3vα)). (6.3.20)

6.3.3 Horizontal representation

The horizontal representation of the algebra 6.3.2 is the equivalent of the vertex represen-

tations constructed by Saito in [160] for quantum toroidal algebras of gl(p). It has level

ρ(H)(c) = 1 and depends on p weights uω ∈ C× and p integers nω ∈ Z. In this represen-

tation, Drinfeld currents are constructed as a direct product of two (commuting) algebras.

The first algebra is called here the zero modes factor, it is defined in terms the two operators

Qω(z), Pω(z) satisfying the exchange relation

Pω(z)Qω′(w) = fωω′(w/z)Qω′(w)Pω(z). (6.3.21)

In appendix I.2, these operators are constructed explicitly in terms of 2p Heisenberg algebras.

As a result, the operator Pω(z) acts on the vacuum state |∅〉 as Pω(z) |∅〉 = |∅〉, and Qω(z)

acts on the dual vacuum 〈∅| as 〈∅|Qω(z) = 〈∅|. Accordingly, we define the normal ordering

of these operators by writing the Qω(z)-dependence on the left.

The second algebra involved in the horizontal representation is defined upon the modes
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αω,k of p coupled free bosons (ω ∈ Zp and k ∈ Z×) satisfying the commutation relations,10

[αω,k, αω′,l] = kδk+lq
k/2
3

[
δωω′ + q−k3 δωω̄′ − qk1δω ω′+ν1 − qk2δω ω′+ν2

]
, (k > 0). (6.3.23)

As usual, the vacuum state |∅〉 is annihilated by the positive modes (k > 0), while negative

modes create excitations. The dual state 〈∅| is annihilated by negative modes. Thus, these

modes are normal ordered by moving the positive modes to the right. The representation of

the Drinfeld currents x±ω and ψ±ω is given in terms of the vertex operators

η+
ω (z) = exp

∑
k>0

zk

k
αω,−k

 exp
−∑

k>0

z−k

k
q
−k/2
3 αω,k

 , η−ω (z) = exp
−∑

k>0

zk

k
αω,−k

 exp
∑
k>0

z−k

k
q
k/2
3 αω̄,k

 ,
ϕ+
ω (z) = exp

−∑
k>0

z−k

k
(q−k/23 αω,k − qk/23 αω̄,k)

 , ϕ−ω (z) = exp
∑
k>0

zk

k
(q−k3 αω̄,−k − αω,−k)

 .
(6.3.24)

Combining the zero modes and vertex operators, the horizontal representation writes

ρ(H)(x+
ω (z)) = uωz

−nωQω(z)η+
ω (z), ρ(1,n)

u (x−ω (z)) = u−1
ω znωQω(z)−1Pω̄(q−1

3 z)η−ω (z),

ρ(H)(ψ+
ω (z)) = F−1/2Pω̄(q−1

3 z)ϕ+
ω (z),

ρ(H)(ψ−ω (z)) = F 1/2uω̄
uω
qnω̄3 znω−nω̄

Qω̄(q−1
3 z)

Qω(z) Pω̄(q−1
3 z)ϕ−ω (z).

(6.3.25)

It is shown in appendix I.2 that the expressions in the RHS obey the algebraic relations 6.3.2

at the levels ρ(H)(c) = 1 and ρ(H)(c̄) = n+ p if ν1 + ν2 < p and ρ(H)(c̄) = n otherwise, where

n = ∑
ω∈Zp nω. Note that even in the ALE case ν1 = −ν2 = 1, the horizontal representation

10The RHS of these commutation relations involves the coefficients σ
(k)
ωω′ = −σ(−k)

ω̄′ω =
kq
k/2
3
[
δωω′ + q−k3 δωω̄′ − qk1δω ω′+ν1 − qk2δω ω′+ν2

]
appearing in the expansion of the scattering function

6.2.16,

[Sωω′(z)]− = exp
(∑
k>0

zk

k2 q
−k/2
3 σ

(k)
ω′ω

)
, [Sωω′(z)]+ = fω′ω(z)−1 exp

(
−
∑
k>0

z−k

k2 q
k/2
3 σ

(−k)
ω′ω

)
. (6.3.22)
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given here is slightly more general than the one proposed in [165]. Indeed, in the latter the

Zp-symmetry is broken by a choice of color ω0, setting uω = uδω,ω0 and nω = nδω,ω0 . Instead,

in our construction of the gauge theory partition functions, it is necessary to keep uω and

nω arbitrary in order to be able to assign a different gauge coupling qω and Chern-Simons

level κω for each color ω.

6.4 Algebraic engineering

The algebraic engineering of 5d N = 1 quiver gauge theories on Cε1 × Cε2 × S1
R (without

orbifold) follows from their correspondence with topological string theories in which the

Nekrasov instanton partition function is obtained as a topological strings amplitude [130].

Indeed, these amplitudes are computed using the (refined) topological vertex [131, 166, 167]

that was identified in [141] with an intertwiner between certain modules of the Ding-Iohara-

Miki algebra [133, 134], also known as the quantum toroidal algebra of gl(1). This intertwiner

is in fact the toroidal analogue of the vertex operators introduced in [137] to compute the

form factors of the XXZ Heisenberg spin chain. As result, the powerful topological strings

computational methods for supersymmetric gauge theories can be reformulated in the lan-

guage of quantum integrability.

The correspondence between 5d N = 1 gauge theories and quantum toroidal algebras is

better formulated using the (p, q)-brane realization of the gauge theories in type IIB string

theory [127, 128]. In this realization, quiver gauge theories are reproduced by the low energy

dynamics of a network of 5-branes with charges (p, q). These branes generalize both NS5-

branes (0, 1) and D5-branes (1, 0). They wrap the 5-dimensional spacetime, and define a line

segment in the 56-plane of the ten dimensional strings spacetime. These segments meet at

trivalent vertices and form a web called the (p, q)-branes web. For instance, in the case of

linear quivers, a set of m-D5 branes is associated to each node bearing a U(m) gauge group.

These D5-branes are suspended between dressed NS5-branes (i.e. branes of charge (n, 1)).
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In this context, the relevant quantum toroidal algebra is determined by the spacetime of the

gauge theory. Then, each brane of the (p, q)-branes web is associated to a representation of

the algebra, identifying the levels with the charges ρ(c) = q, ρ(c̄) = p and the weights with

the (exponentiated) position of the branes [154, 139, 138]. Thus, to a D5-brane corresponds

a vertical representation with m = 1, while horizontal representations are associated to

dressed NS-branes of charge (n, 1). It was further noticed in [51] that the set of m D5-

branes of a single node (with a U(m) gauge group) can be directly described by a vertical

representation with ρ(V )(c̄) = m. Following the identification of the (p, q)-branes web with

the toric diagram of the Calabi-Yau in topological strings [129], the trivalent junctions of

branes coincide with the vertex operator of the algebra acting on the modules determined by

the branes charge. Finally, the automorphisms of the algebra renders the various geometrical

operations (translations, rotations) applied to the branes web [143].

For each (p, q)-branes web it is possible to write down an operator T constructed by ‘glu-

ing’ the vertex operators of nodes connected by an edge. The gluing procedure is done by

a product of operators in horizontal representations (NS5), and a scalar product in vertical

ones (D5). The T -operator obtained in this way acts on the tensor product of representa-

tions corresponding to the external branes of the web (i.e. the semi-infinite line segments).

These representations are in fact horizontal modules, and the vacuum expectation value of

the T -operator reproduces the instantons partition function. The qq-characters are further

obtained by introducing algebra elements (in the proper representation) within the vacuum

expectation value [51]. We will give several examples below.

This algebraic construction of gauge theories BPS-observables has been generalized in a

several directions: D-type quivers [168], 6D spacetime and elliptic algebras [169], 4d N = 2

gauge theories and the affine Yangian of gl(1) [135], 5d N = 1 gauge theories on ALE spaces

[154], and 3D N = 2∗ gauge theories [165]. In this section, we present yet another general-

ization corresponding to deformed ALE spaces with the Zp-action described in section two.

However, we do not wish to reproduce the whole construction here as it is a straightforward
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application of the methods developed earlier [154, 139, 138, 51]. Instead, we will only pro-

vide the main ingredient, namely the expression of the vertex operator, and a few selected

examples to illustrate the construction.

6.4.1 Vertex operators

We consider two types of vertex operators, denoted Φ and Φ∗, and obtained, up to a nor-

malization factor, by solving the following equations

ρ(H′)(e)Φ = Φ
(
ρ(V ) ⊗ ρ(H) ∆(e)

)
,

(
ρ(V ) ⊗ ρ(H) ∆′(e)

)
Φ∗ = Φ∗ρ(H′)(e), (6.4.1)

where e is any of the currents x±ω (z), ψ±ω (z) or the central charge c.11 Here ∆′ denotes the

opposite coproduct obtained by permutation ∆′ = P∆P . In order to distinguish the two

horizontal representations, we denoted them ρ(H) and ρ(H′), they depend on the parameters

uω, nω and u′ω, n′ω respectively. Thus, the vertex operator Φ (and also Φ∗) depend on the set

of weights uω, u′ω, vω and integers nω, n′ω,mω. A solution to the equations 6.4.1 is found only

if these parameters satisfy the two constraints

u′ω = uω
∏
α∈Cω̄

(−q3vα), n′ω = nω +mω̄. (6.4.2)

The first relation expresses a constraint among the position of the branes in the 56-planes.

The second equation is the charge conservation at the vertex. Due to the spacetime orbifold,

the branes charges p in (p, q) degenerates into charges pω with ω ∈ Zp identified with the

integers nω and mω̄ of horizontal/vertical representations.12 Summing over ω, these con-

straints reproduce the conservation of the levels n′ = n+m that follows from the application

of the intertwining relations 6.4.1 to the element e = c̄ with the coproduct 6.3.10. Due to the

presence of an algebra automorphism exchanging c and c̄ in the gl(p)-case [163], we expect
11In fact, these relations are also satisfied for the grading operator ξω(z) (see appendix J).
12There is an unfortunate conflict of notations here since the integer p labeling the Zp-orbifold is unrelated

to the charge p =
∑
ω pω of the branes.
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a similar degeneration of the charge q into qω. It is not observed here because only a single

charge q = 1 flow through the topological vertex.

By definition, the vertex operator Φ∗ is a vector in the vertical module while Φ is a dual

vector,

Φ =
∑
λ

Φλ 〈〈λ| , Φ∗ =
∑
λ

Φ∗λ |λ〉〉. (6.4.3)

Each vertical component Φλ (or Φ∗λ) is a Fock vertex operator acting on the horizontal

module,

Φλ = tλ : Φ∅
∏
∈λ
η+
c( )(χ ) :, Φ∗λ = t∗λ : Φ∗∅

∏
∈λ
η−c( )−ν1−ν2

(q3χ ) :,

tλ = F−|λ|/2
∏
∈λ
u′c( )χ

−n′
c( )

∏
∈λ
Qc( )(χ ),

t∗λ = F−|λ|/2
∏
∈λ

(−uc( )−ν1−ν2)−1(q3χ )nc( )−ν1−ν2
∏
∈λ

: Qc( )−ν1−ν2(q3χ )−1Pc( )(χ ) : .

(6.4.4)

A sketch of the derivation can be found in the appendix K, together with the (rather lengthy)

expressions of the vacuum components Φ∅ and Φ∗∅. The vertex operators Φ and Φ∗ given

here are a generalization of the colored refined topological vertex derived in [154, 170] with

extra parameters (ν1, ν2).

The vertical components 6.4.4 of the vertex operators obey important normal ordering

relations, from which we recover the vector and bifundamental contributions to the partition
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functions [51],13

ΦλΦλ′ = G(v′|v)−1N(v′,λ′|v,λ)−1 : ΦλΦλ′ :

ΦλΦ∗λ′ = G(v′|q−1
3 v)N(v′,λ′|q−1

3 v,λ) : ΦλΦ∗λ′ :

Φ∗λΦλ′ = G(v′|v)N(v′,λ′|v,λ) : Φ∗λΦλ′ :

Φ∗λΦ∗λ′ = G(v′|q−1
3 v)−1N(v′,λ′|q−1

3 v,λ)−1 : Φ∗λΦ∗λ′ :,

(6.4.6)

The expression of the one-loop factors G(v|v′) can be found in appendix K, formula K.1.11.

Note also that, following the method presented in [138, 154], it is a priori possible to show

that Φλ and Φ∗λ are solutions of the double deformed Knizhnik - Zamolodchikov (or (q, t)-KZ)

equations.

6.4.2 Partition functions and qq-characters

The simplest example of algebraic engineering is given by the pure U(m) gauge theory with

quiver A1. In this case, the (p, q)-brane web can be described roughly as a set ofm D5-branes

suspended between two (dressed) NS5-branes. The corresponding T -operator is obtained as

a product of vertex operators Φ and Φ∗ in the vertical channel [51], it acts on the tensor

product of two horizontal modules,

T [U(m)] = Φ · Φ∗ =
∑
λ

aλ(v) Φλ ⊗ Φ∗λ : H ⊗H ′∗ → H ′ ⊗H∗. (6.4.7)

13To simplify the notations, we have omitted the dependence of the Nekrasov factors in the vectors of
colors c = (cα)mα=1 and c′. The shortcut notation q−1

3 v′ in N(v,λ|q−1
3 v′,λ′) should be understood as a

shift of the weights q−1
3 v′α together with the corresponding shift of indices c′α − ν3 = c̄′α. Thus, we have the

important relation

N(v,λ|q−1
3 v′,λ′) = N(v′,λ′|v,λ)f(v,λ|v′,λ′), with:

f(v,λ|v′,λ′) =
∏
∈λ
∈λ′

fc( )c( )(χ /χ )×
∏
∈λ

∏
α∈Cc( )(m′)

(
−χ
v′α

)
×
∏
∈λ′

∏
α∈Cc̄( )(m)

(
− vα
q3χ

)
. (6.4.5)
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In order to distinguish the horizontal modules, we added the subscript ∗ to the ones on

which Φ∗ act. Accordingly, we denote the parameters of these representations (n∗ω, u∗ω) and

(n∗′ω , u∗′ω ). Evaluating the vacuum expectation value of this operator, we recover the instanton

partition function of the underlying gauge theory:

Zinst = 〈∅| ⊗ 〈∅| T [U(m)] |∅〉 ⊗ |∅〉 =
∑
λ

∏
ω∈Zp

qKω(λ)
ω Zvect(v,λ)ZCS(κ,λ) (6.4.8)

where we have identified the colored gauge coupling qω and Chern-Simons level κω with

qω = F−1/2 uω
u∗ω+ν3

q
n∗ω+ν3
3 , κω = n∗ω+ν3 − nω. (6.4.9)

By construction, the operator T [U(m)] commutes with the action of the algebra defined

by the opposite coproduct ∆′ [51], namely,

(
ρ(H′) ⊗ ρ(H∗)

)
∆′(e) T [U(m)] = T [U(m)]

(
ρ(H∗) ⊗ ρ(H′)

)
∆′(e), e ∈ A. (6.4.10)

For this reason, T [U(m)] plays the role of the screening operator in [138]. The gauge theory

expectation value of the fundamental qq-characters is obtained by insertion of ∆′(x−ω+ν3(q3z))

in the horizontal vacuum expectation value,

〈
X [λ]∗
ω̄ (q−1

3 z)
〉
gauge

= u−1
ω znω

〈∅| ⊗ 〈∅|
(
ρ(H′) ⊗ ρ(H∗) ∆′(x−ω+ν3(q3z))

)
T [U(m)] |∅〉 ⊗ |∅〉

〈∅| ⊗ 〈∅| T [U(m)] |∅〉 ⊗ |∅〉
(6.4.11)

where the gauge averaging of a chiral ring observable O[λ] is performed over the instanton

configurations weighted by the vector (and Chern-Simons) contributions to the partition

function, 〈
O[λ]

〉
gauge

= 1
Zinst.

∑
λ

∏
ω∈Zp

qKω(λ)
ω Zvect(v,λ)ZCS(κ,λ)O[λ], (6.4.12)
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and the qq-character writes

X [λ]∗
ω (z) = Y [λ]∗

ω (z) + qω+ν3

(q3z)κω+ν3

Y [λ]
ω+ν3(q3z)

. (6.4.13)

Note that the first term involve the Y-observable Y [λ]∗
ω (z) = f [λ]

ω (z)Y [λ]
ω (z). As shown in [51],

it follows from the commutation relations (6.4.10) that the quantity
〈
X [λ]
ω̄ (q−1

3 z)
〉
gauge

is a

finite Laurent series in z (i.e. a polynomial upon multiplication by a positive power of z).

This is in fact due to the radial ordering of operators in the horizontal Fock spaces. Indeed,

when x−ω (z) is inserted on the left of T , the correlator as a well-defined expansion around

z = ∞. On the other hand, when x−ω (z) in inserted on the right, the expansion around

z = 0 is now well-defined. The non-trivial equality between the two expansions (6.4.10)

implies that both series are finite, and thus that the correlator is a finite Laurent series in

z. Asymptotically, the Y-observables behave as Y [λ]
ω
∼
0 z
−β[λ]

ω , Y [λ]∗
ω

∼
0 1 and Y [λ]

ω
∼
∞1, Y [λ]∗

ω
∼
∞z

β
[λ]
ω

with β[λ]
ω = |Aω(λ)| − |Rω+ν3(λ)|. When ν3 = 0, the exponent β[λ]

ω becomes independent of

λ, β[λ]
ω = mω. As a result, the gauge average of the qq-character Xω(z) is a polynomial of

degree mω when |κω| < mω. Unfortunately, when ν3 6= 0 not much can be said.

Another fundamental qq-character can be obtained using the generator x+
ω (z) instead,

〈
X [λ]
ω̄ (q−1

3 z)
〉
gauge

= (u∗ω)−1zn
∗
ω
〈∅| ⊗ 〈∅|

(
ρ(H′) ⊗ ρ(H∗) ∆′(x+

ω (z))
)
T [U(m)] |∅〉 ⊗ |∅〉

〈∅| ⊗ 〈∅| T [U(m)] |∅〉 ⊗ |∅〉 ,

with X [λ]
ω (z) = Y [λ]

ω (z) + qω+ν3F
(q3z)κω+ν3

f
[λ]
ω (z)Y [λ]

ω+ν3(q3z)
.

(6.4.14)

The presence of two different fundamental qq-characters is a specificity of 5d N = 1 gauge

theories on orbifolds: when p = 1, the two qq-characters are equivalent (they only differ by

multiplication of a constant times a power of z). Further, as we shall see below, in the 4d

limit R → 0, the qq-characters X [λ]
ω (z) and X [λ]∗

ω (z) reduce to the same expression. The

gauge averages (6.4.11) and (6.4.14) for the qq-characters have been computed at the first
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few orders in the gauge couplings qω for the gauge groups U(1) and U(2) and various orbifold

parameters. In all cases, it has been observed that these quantities are indeed finite Laurent

series in the argument z. Finally, it is worth mentioning that higher qq-characters can be

obtained by multiple insertions of the coproducts ∆′(x±ω (z)). We refer to [51] for more details

on the computation of qq-characters.

4d limit When the radius R of the background circle S1
R is sent to zero, the gauge theory

reduces to a 4d N = 2 gauge theory. This limit can be performed directly on the parti-

tion functions and qq-characters, re-introducing the radius dependences in the parameters

(q1, q2) = (eRε1 , eRε2), vα = eRaα , χ = eRφ ,... Sending R→ 0 in the expression 6.2.11 of the

instanton partition function, we observe that the Chern-Simons contribution is subdominant

while, after setting the spectral variable to z = eRζ , the scattering function 6.2.16 becomes

S
(4d)
ωω′ (ζ) = (ζ + ε1)δω,ω′−ν1 (ζ + ε2)δω,ω′−ν2

ζδω,ω′ (ζ + ε1 + ε2)δω,ω′−ν1−ν2
. (6.4.15)

This function satisfies a simpler crossing symmetry S(4d)
ωω̄′ (−ζ− ε1− ε2) = f

(4d)
ωω′ S

(4d)
ω′ω (ζ) where

f
(4d)
ωω′ = (−1)βωω′ in now independent of the spectral variable ζ. As a result, the function

f [λ]
ω (z) reduces to a sign. When ν3 = 0, this sign is simply (−1)mω , it can be absorbed in

the definition of qω. In this way, both X [λ]
ω (z) and X [λ]∗

ω (z) reproduce the expression of the

4d fundamental qq-character given in [15, 21].

A2 quiver Linear quiver gauge theories can be treated along the same lines. For instance,

the A2 quiver gauge theory with gauge group U(m1)×U(m2) is obtained by considering two

sets of m1 and m2 D5-branes suspended between three dressed NS5-branes. The T -operator

is simply the product of the single nodes operators T [U(m1)] and T [U(m2)] in a common
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horizontal representation,

T [U(m1)× U(m2)] = Φ1 · Φ2Φ∗1 · Φ∗2 =
∑

λ(1),λ(2)

aλ(1)(v(1))aλ(2)(v(2)) Φ(1)
λ(1) ⊗ Φ(2)

λ(2)Φ(1)∗
λ(1) ⊗ Φ(2)∗

λ(2) .

(6.4.16)

The vacuum expectation value is computed using the normal ordering relation 6.4.6 for the

product Φ(2)
λ(2)Φ(1)∗

λ(1) ,

Zinst. = 1
G(v(1)|q−1

3 v
(2))
〈∅| ⊗ 〈∅| ⊗ 〈∅| T [U(m1)× U(m2)] |∅〉 ⊗ |∅〉 ⊗ |∅〉 . (6.4.17)

It reproduces the instanton partition function 6.2.11 for the A2 quiver gauge theory, with

the identification 6.4.9 of the parameters at each node i = 1, 2. The qq-characters can also

be constructed along the lines of [51].

6.5 Discussion

In this chapter, we have reconstructed algebraically the instanton partition functions for N =

1 linear quiver gauge theories with unitary gauge groups on the five dimensional background

S1
R × (Cε1 ×Cε2)/Zp. The action of the abelian group considered here is a generalization by

two integers (ν1, ν2) of the standard action defining ALE spaces. These extra parameters led

us to introduce a deformation of the quantum toroidal algebra of gl(p). This new quantum

toroidal algebra appears to be defined upon a non-symmetrizable Cartan matrix βωω′ . Yet,

we have shown that it still possesses the structure of a Hopf algebra with the deformed

Drinfeld coproduct given in 6.3.8. We have also presented two different representations,

called vertical and horizontal, that are respectively the deformation of the Fock module [159]

and the vertex representation [160] of the quantum toroidal algebra of gl(p). Other types of

representations should exist, like the Macmahon representation obtained for gl(p) as a tensor

products of Fock modules in [159]. Although the definition of this new algebra may appear

intricate, the physical context in which it emerges is very natural, and its representations
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are simple generalizations of the usual ones.

Quantum toroidal algebras extend the definition of quantum affine algebras (or quantum

groups) by an extra affinization. In fact, the quantum toroidal algebra of gl(p) is generated

by two orthogonal quantum affine subalgebra Uq(ŝl(p)) [171, 172]. Then, one may wonder

if the (ν1, ν2)-deformed algebra possesses a similar property. Of course, it is assuming that

a quantum affine algebra built upon the Cartan matrix βωω′ can be defined properly. In

fact, we expect that this is indeed the case, and that such quantum affine algebra retains

a quasitriangular Hopf algebra structure, making it suitable for the construction of new

quantum integrable systems.

On the gauge theory side, several generalizations of our approach could be implemented.

For instance, the abelian group Zp could be replaced by a Mckay subgroup of SU(2) of type

DE, with either left, right, or both left-right action. As shown by Nakajima in [149, 150],

in the first two cases a quantum affine algebra of type so/sp acts on the cohomology of the

instanton moduli space. This action is expected to be lifted to a quantum toroidal algebra

in K-theory. Accordingly, the algebraic engineering should involve the quantum toroidal

so/sp algebras. However, the effective construction requires some new developments in the

representation theory of these algebras.

When ν2 = 0, the orbifold can be interpreted as the presence of a surface defect [21]. In

this case, the Cartan matrix βωω′ appears to vanish but the algebra remains non-trivial,

Sωω′(z) =
(1− q2z

1− z

)δω,ω′ ( 1− q1z

1− q1q2z

)δω,ω′−ν1
,

gωω′(z) =
(
q−1

2
1− q2z

1− q−1
2 z

)δωω′ ( 1− q1z

1− q−1
3 z

)δω,ω′−ν1 (
q2

1− q3z

1− q−1
1 z

)δω,ω′+ν1
.

(6.5.1)

When ν1 = 1, the structure function gωω′(z) reproduces the one that defines the quantum

toroidal algebra of gl(p) with q2 and q3 exchanged (up to a factor qmωω′/23 ). However, the

function Sωω′(z) is different from the one appearing in G.2.6, and thus horizontal and vertical

representations of the (ν1, ν2)-deformed algebra degenerate into new representations for the
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quantum toroidal algebra of gl(p). We hope to come back to the study of this problem in a

future publication.

Finally, an important question was left behind in our study, namely the correspondence

with (q-deformed) W-algebras. This type of correspondences is now well-understood in the

case of quantum toroidal gl(1). There, the q-W-algebras appearing in horizontal or vertical

representations play different roles. In the horizontal case, a representation of level c = m

can be built by tensoring m level one representations. It is thus expressed in terms of m sets

of bosonic modes that are coupled through their commutation relations. Diagonalizing these

relations, the Drinfeld currents can be expressed in terms of q-Wm currents coupled to an

infinite Heisenberg algebra. This dual q-W-algebra corresponds to the quiver W-algebra of

Kimura and Pestun [173]. Using Miki’s automorphism [163, 134], vertical representations of

level c̄ = m can be mapped on horizontal ones, and thus expressed in terms of q-Wm currents

coupled to the Heisenberg algebra. In the vertical case, the dual W-algebra is responsible

for the AGT-like correspondence with q-deformed conformal blocks [140]. Alternatively,

the AGT correspondence can also be seen directly in the degenerate limit R → 0 in which

the vertical representation of the toroidal algebra reduces to a representation of the affine

Yangian of gl(1) that is known to contain the action of Wm-currents [124, 125, 126].

A similar type of duality is believed to hold between the degenerate limit of the quan-

tum toroidal algebra of gl(p) and the coset14 ĝl(α)m/ ̂gl(α− p)m, leading to an AGT cor-

respondence between instantons on ALE spaces and parafermionic conformal field theories

[174, 155, 175]. This conjecture has been verified for small values of p and m by comparing

the conformal blocks of the coset theory with the gauge theories instanton partition functions

[174, 176, 177, 178, 179, 180], or the limit R→ 0 of 5d topological strings amplitudes [170].

There are two main strategies to extend this duality to the (ν1, ν2)-deformed algebra. One

possibility is again to compare instanton partition functions with conformal blocks. This ap-

proach was taken in [146] where the gauge theory calculations led to conjectural expressions
14The parameter α is determined by the Ω-background parameters (ε1, ε2).
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for these conformal blocks. But, unfortunately, the corresponding conformal field theory

appears to be unknown. Another possible approach consists in identifying directly the (q-

deformed) coset algebra generators acting on the vertical modules of the quantum toroidal

algebra. For this purpose, one could diagonalize the commutation relations for the modes

αω,k in the horizontal representations, and then define the analogue of Miki’s automorphism

to map the horizontal representations to the vertical ones. From the strings theory per-

spective, the latter is expected to exist since it should describe the fiber-base duality of the

topological strings (or, the S-duality in Type IIB string theory) [142, 143]. This approach

appears very promising and we hope to be able to report soon on this problem.
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Part III

Vertex Operator Algebras
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Chapter 7

SCFT/VOA correspondence via

Ω-deformation

7.1 Introduction

Superconformal field theories (SCFTs) exhibit interesting aspects and rich structures due to

their large symmetry group. A striking feature revealed in [181] is that any superconformal

field theory with an su(1, 1|2) superconformal subalgebra which acts as anti-holomorphic

Möbius transformations on a two-dimensional plane possesses a protected sector isomorphic

to a two-dimensional vertex operator algebra (VOA).1 The protected sector is formed as a

certain (Q + S)-cohomology, spanned by twisted-translations of Schur operators with their

operator product expansions (OPEs) in the cohomology.

For Lagrangian four-dimensional N = 2 superconformal theories, the procedure of ob-

taining this chiral algebra can be briefly described as follows. It can be shown that chiral

algebras produced by free hypermultiplet and free vector multiplet are those of symplec-

tic bosons (also known as βγ system) and bc ghosts, respectively. When they are coupled

to produce an interacting SCFT, the prescription is first to take the naive tensor product
1We use the terms vertex operator algebra and chiral algebra interchangeably.

233



of those two-dimensional chiral algebras with the gauge-invariance constraint and then to

pass to the cohomology of the nilpotent BRST operator. Such a procedure led to many

conjectural relations in [181] between N = 2 superconformal QCDs and W-algebras, which

were checked at the level of the equivalence of the superconformal indices and the vacuum

characters. For related works, see also [182, 183, 184, 185].

The protected chiral algebra is particularly interesting since it is a non-commutative

algebra of local operators in two dimensions, which is not easily expected for theories in

higher dimensions. It turns out that the non-commutative deformation parameter ~, which

appears in the numerators of the OPEs of chiral algebra, is given by the relative coefficient

of the combination Q+S. Even though this is a direct consequence of OPE computation, it

seems that an intuitive understanding of the appearance of the non-commutative deformation

parameter is still absent. Therefore, it could be useful to approach the mentioned chiral

algebra in an alternative framework where the origin of the non-commutative deformation

parameter is well understood. The main goal of this chapter is to make such an attempt.

The framework that we are referring to is the Ω-deformation of supersymmetric gauge

theories [6]. It was firstly introduced in [6] to regularize the partition function of N = 2

gauge theories on the non-compact C2. Essentially, the Ω-deformation is implemented by

modifying the theory as a cohomological field theory with respect to the supersymmetry

which squares to an isometry of the underlying manifold. It effectively turns on a potential

along the direction orthogonal to the isometry, and thus localizes the theory on the fixed

points of the isometry. A remarkable discovery made in [28] was that the two-dimensional

Ω-deformation on N = 2 gauge theories can be used to quantize the classical integrable

system whose Hamiltonians are given by the N = 2 chiral operators. One may regard this

quantization at the level of the representations of the non-commutative deformation of the

algebra of holomorphic functions on the phase space of the integrable system, where the non-

commutative deformation paramter is identified with the Ω-deformation parameter ε = ~.

A similar feature is also present in other contexts: in three-dimensional N = 4 theories, for
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example, the Ω-deformation on the Rozansky-Witten theory leads to a non-commutative

deformation of the Higgs branch chiral ring [186, 187, 188].

For which theory should we implement the Ω-deformation to recover the chiral algebra?

In [189], Kapustin discussed the holomorphic-topological twist of N = 2 gauge theories on a

product manifold C× C⊥, in which the theory is topological along, say, C⊥ and holomorphic

along C (see also [190, 191, 192] for earlier works on partially holomorphic and partially

topological theories). The cohomology of local operators, therefore, forms a chiral algebra

on C, albeit a commutative one since local operators can commute with each other by escaping

to the direction of C⊥. Now we can imagine implementing the Ω-deformation with respect

to the isometry on C⊥, effectively creating a potential along the direction of C⊥. As local

operators are now trapped on C due to the potential, it is natural to expect that we obtain

a non-commutative deformation of the chiral algebra. The height of the potential would be

controlled by none other than the Ω-deformation parameter, and we expect the identification

of the non-commutative deformation parameter with the Ω-deformation parameter. We will

see that this is indeed the case.

To obtain the two-dimensional chiral algebra, we have to perform supersymmetric local-

ization of the Ω-deformed holomorphic-topological theory to produce a chiral CFT on C. The

algebra of local operators of this CFT would provide our desired chiral algebra. It turns out

that the localization procedure can be conducted in a very similar manner with [193], where

the localization of the Ω-deformed two-dimensional Landau-Ginzburg model was discussed.

In fact, our localization can be viewed as the gauge theory analogue of [193] on C⊥, which

was discussed in [194] in its application of recovering four-dimensional Chern-Simons theory

from six-dimensional supersymmetric gauge theory (see also [186, 195] for the discussion of

B-models on the compact disk where the localization locus was chosen to be constant maps),

occuring at each point of C. The localization locus is given by solutions to certain gradient

flow equations (emanating from the critical point of the superpotential as we take C⊥ = R2).

To obtain the action of the localized theory on C, we have to evaluate the action on this
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localization locus. This can be accomplished with the help of the equivariant integration, in

a similar manner that [8] applies an equivariant integration on C2 to yield the representations

of N = 2 chiral operators on the instanton moduli space. For the case at hand, it turns out

that there is no non-trivial topological sector of gauge field configurations in the localization

locus, so that the further integration on the instanton moduli space would not take place.

This chapter is organized as follows. In section 7.2, we briefly review the Donaldson-

Witten twist and the holomorphic-topological twist of Kapustin for four-dimensional N = 2

theories. In section 7.3, we perform the supersymmetric localization of the Ω-deformed

holomorphic-topological theory to obtain the two-dimensional chiral CFT. In section 7.4, we

discuss the identification of S3 × S1 partition function of N = 2 SCFT and torus partition

function of chiral CFT, which lead to the equivalence of the Schur index and the vaccum

character. We conclude in section 7.5 with discussions.

7.2 Holomorphic-topological twist of N = 2 theories

Let us consider a N = 2 supersymmetric theory on a four-dimensional Euclidean manifold,

X = C × C⊥, where C and C⊥ are Riemann surfaces. A curved background on X would

generically break all the supersymmetries. To preserve some supersymmetries, we need to

twist the holonomy group with the R-symmetry group, for which the supercharges with

charge 0 under the twisted holonomy group would remain preserved.

The holonomy group of X is U(1)C × U(1)C⊥ and the R-symmetry group of a N = 2

supersymmetric theory is SU(2)R × U(1)r. The N = 2 superalgebra contains the following

supercharges

QAα , Q̃Aα̇ , A = 1, 2, α = ±, α̇ = ±̇, (7.2.1)

where A is the SU(2)R R-symmetry index and α, α̇ are un-dotted and dotted spinor indices.
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We choose the conventions for the generators of the holonomy as

MC =M +
+ +M+̇

+̇, MC⊥ =M +
+ −M+̇

+̇. (7.2.2)

The table 7.1 shows the supercharges and their quantum numbers. Note that U(1)R ⊂

SU(2)R is the maximal torus.

Q1
+ Q1

− Q2
+ Q2

− Q̃1
+̇ Q̃1

−̇ Q̃2
+̇ Q̃2

−̇
U(1)C 1

2 −1
2

1
2 −1

2
1
2 −1

2
1
2 −1

2
U(1)C⊥ 1

2 −1
2

1
2 −1

2 −1
2

1
2 −1

2
1
2

U(1)R 1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2 −1
2

U(1)r 1
2

1
2

1
2

1
2 −1

2 −1
2 −1

2 −1
2

Table 7.1: N = 2 supercharges and quantum numbers

7.2.1 Donaldson-Witten twist

Let us first review how the Donaldson-Witten twist comes about. For a curved metric on

C⊥, we twist the holonomy U(1)C⊥ by taking the diagonal subgroup

U(1)′C⊥ ↪→ U(1)C × U(1)R. (7.2.3)

Under the twist, we preserve the N = (2, 2) supersymmetry on C whose fermionic generators

are

Q1
−, Q2

+, Q̃1
+̇, Q̃

2
−̇. (7.2.4)

When C is also curved, we can make a further twist

U(1)′C ↪→ U(1)C × U(1)R (7.2.5)
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to preserve Q̃1
+̇, Q̃

2
−̇. The Donaldson-Witten supercharge is precisely the linear combination

of these supercharges,

QDW = Q̃1
+̇ + Q̃2

−̇. (7.2.6)

Here, Q̃1
+̇ and Q̃2

−̇ are preserved independently but QDW is the one which is preserved for

any curved background on X, not necessarily a product metric.

To describe the Ω-deformation made upon the twist, let us suppose C⊥ = R2 for a

moment. One may take a specific combination of supercharges

Q̃ = Q̃1
+̇ + Q̃2

−̇ + ε(wQ1
+ − w̄Q2

−), (7.2.7)

where w = x1 + ix2 and w̄ = x1− ix2 are the coordinates on C⊥. This supercharge squares to

the isometry of C⊥ generated by V = w∂w−w̄∂w̄. In general background on C⊥ the deformed

supercharge would not be preserved since the last two supercharges are not preserved as we

have seen above. However, one can still construct a deformation of the theory which has a

supercharge which squares to the isometry on C⊥. In practice, we can start from the theory

on R4, write the variations of component fields with respect to the naive supercharge (7.2.7),

and then seek a way of re-writing them in metric-independent fashion so that deformed

supersymmetry variations are consistently defined on arbitrary product manifold C × C⊥.

The action of the theory has to be modified correspondingly to ensure the invariance under

the deformed supersymmetry.

Q1
+ Q1

− Q2
+ Q2

− Q̃1
+̇ Q̃1

−̇ Q̃2
+̇ Q̃2

−̇
U(1)′C 0 −1 1 0 0 −1 1 0
U(1)′C⊥ 1 0 0 −1 0 1 −1 0

Table 7.2: Donaldson-Witten twist
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7.2.2 Holomorphic-topological twist

Now we apply a similar procedure to our main subject: the holomorphic-topological twist of

four-dimensional N = 2 supersymmetry introduced in [189]. Let us first breifly review the

holomorphic-topological twist. For a curved metric on C⊥, we twist the holonomy U(1)C⊥

by taking the diagonal subgroup

U(1)′C⊥ ↪→ U(1)C⊥ × U(1)r. (7.2.8)

Under the twist, we preserve the N = (0, 4) supersymmetry on C whose fermionic generators

are

QA−, Q̃A−̇, A = 1, 2. (7.2.9)

When C is also curved, we can make a further twist

U(1)′C ↪→ U(1)C × U(1)R (7.2.10)

to preserve Q1
−, Q̃1

−̇. The holomorphic-twist supercharge is the following linear combination

of supercharges,

Q = Q1
− + Q̃1

−̇. (7.2.11)

Note that the translations along C⊥ and the anti-holomorphic translation along C are actually

Q-exact:

{Q,Q2
+} = −P+−̇,

{Q, Q̃2
+̇} = P−+̇

{Q,Q2
−} = −{Q, Q̃2

−̇} = −P−−̇,

(7.2.12)
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hence it gets the name holomorphic-topological twist. Let us suppose C⊥ = R2 for a moment.

Then we would preserve

Qε = Q1
− + Q̃1

−̇ + ε(wQ2
+ + w̄Q̃2

+̇), (7.2.13)

which squares to the isometry on C⊥:

Q2
ε = ε(w{Q̃1

−̇,Q2
+}+ w̄{Q1

−, Q̃2
+̇}) = −2ε(wPw − w̄Pw̄). (7.2.14)

In general background on C⊥, the deformed supercharge would not be preserved since the

last two supercharges are not preserved as we have seen. However, just as the case of

the Donaldson-Witten twist, it is still possible to implement the Ω-deformation of the

holomorphic-topological theory by consistently deforming the supersymmetry variations and

the action. We will see in the following section how this is actually accomplished.

It is crucial to note that, unlike the Donaldson-Witten case, we make use of the U(1)r R-

symmetry to make a twist with the isometry on C⊥. Recalling that the deformed supercharge

squares to the isometry on C⊥, we see that the localization with respect to this supercharge

would not work if the U(1)r R-symmetry is anomalous. This is precisely the case when the

theory is not superconformal. Thus we restrict our attention to N = 2 superconformal the-

ories in relating their Ω-deformation on holomorphic-topological twist with two-dimensional

chiral algebras. It is interesting to see that the superconformality is required in a slightly

different manner compared to the (Q + S)-cohomology story in [181], where the supercon-

formal supercharge S explicitly appears in defining the cohomology of local operators in the

chiral algebra.

Q1
+ Q1

− Q2
+ Q2

− Q̃1
+̇ Q̃1

−̇ Q̃2
+̇ Q̃2

−̇
U(1)′C 1 0 0 −1 1 0 0 −1
U(1)′C⊥ 1 0 1 0 −1 0 −1 0

Table 7.3: Holomorphic-topological twist
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7.3 Chiral CFT from Ω-deformation and localization

The general analysis of the previous section can be applied to N = 2 gauge theories, on

which we focus from now on. We perform supersymmetric localization on the Ω-deformed

holomorphic-topological theory, to produce a two-dimensional chiral CFT. The desired chiral

algebra is obtained as the algebra of local operators of this two-dimensional CFT.

7.3.1 Holomorphic-topological twist of N = 2 gauge theory

Let us start from the N = 2 vector multiplet. The vector multiplet contains a gauge

connection A, gaugini λAα and λ̃Aα̇ , a complex scalar φ, and an auxiliary field DAB, where

A = 1, 2 is the SU(2)R R-symmetry index. Following the analysis of the previous section,

the holomorphic-topological twist changes the quantum numbers of these component fields

as in the table 7.4.

λ1
+ λ1

− λ2
+ λ2

− λ̃1
+̇ λ̃1

−̇ λ̃2
+̇ λ̃2

−̇ φ φ̃ D2
2 D1

2 D2
1

U(1)C 1
2 −1

2
1
2 −1

2
1
2 −1

2
1
2 −1

2 0 0 0 0 0
U(1)C⊥ 1

2 −1
2

1
2 −1

2 −1
2

1
2 −1

2
1
2 0 0 0 0 0

U(1)R 1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2 −1
2 0 0 0 1 −1

U(1)r −1
2 −1

2 −1
2 −1

2
1
2

1
2

1
2

1
2 −1 1 0 0 0

U(1)′C 1 0 0 −1 1 0 0 −1 0 0 0 1 −1
U(1)′C⊥ 0 −1 0 −1 0 1 0 1 −1 1 0 0 0

Table 7.4: N = 2 vector multiplet; gaugini, scalars, and auxiliary field

Correspondingly, we change the notation for the component fields by their representations

under the Lorentz group after the twist,

λ1
+ = λz, λ1

− = λw̄, λ2
+ = λ, λ2

− = λz̄w̄,

λ̃1
+̇ = λ̃z, λ̃1

−̇ = λ̃w, λ̃2
+̇ = λ̃, λ̃2

−̇ = λ̃z̄w

φ = φw̄, φ̃ = φ̃w, D2
2 = D, D1

2 = Dz, D2
1 = Dz̄.

(7.3.1)
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The N = 2 supersymmetry variations can be written as

δAµ = iζAσµλ̃A − iζ̃Aσ̃µλA

δφ = −iζAλA

δφ̃ = iζ̃Aλ̃A

δλA = 1
2Fµνσ

µνζA + 2Dµφσ
µζ̃A + φσµDµζ̃A + 2iζA[φ, φ̃] +DABζ

B

δλ̃A = 1
2Fµν σ̃

µν ζ̃A + 2Dµφ̃σ̃
µζA + φ̃σ̃µDµζA − 2iζ̃A[φ, φ̃] +DAB ζ̃

B

δDAB = −iζ̃Aσ̃µDµλB + iζAσ
µDµλ̃B − 2[φ, ζ̃Aλ̃B] + 2[φ̃, ζAλB] + (A↔ B),

(7.3.2)

with the fermionic parameters ζA and ζ̃A. In a general metric background, the supersym-

metry would be preserved only if ζA and ζ̃A are Killing spinors. Let us first place the

theory on the flat R4. Since the holomorphic-topological supercharge is Q = Q1
− + Q̃1

−̇, it

is straightforward to write out the variations of the component fields with respect to the

holomorphic-topological supercharge, using the notation (7.3.1), as

QAz = λ̃z − λz, QAz̄ = 0, QAw = λ̃w, QAw̄ = −λw̄,

Qφw̄ = iλw̄, Qφ̃w = iλ̃w,

Qλz = Dz, Qλw̄ = 0, Qλz̄w̄ = −4Fz̄w̄ + 4iDz̄φw̄,

Qλ = 2Fzz̄ + 2Fww̄ − 4iDwφw̄ + 2i[φw̄, φ̃w] +D,

Qλ̃z = Dz, Qλ̃w = 0, Qλ̃z̄w = −4Fz̄w − 4iDz̄φ̃w,

Qλ̃ = 2Fzz̄ − 2Fww̄ + 4iDw̄φ̃w − 2i[φw̄, φ̃w] +D,

QDz = 0, QDz̄ = 4dz̄(λ− λ̃) + 4dwλz̄w̄ − 4dw̄λ̃z̄w + 4[φw̄, λ̃z̄w] + 4[φ̃w, λz̄w̄],

QD = 2Dz̄(λ̃z − λz)− 2Dwλw̄ + 2Dw̄λ̃w − 2[φw̄, λ̃w]− 2[φ̃w, λw̄].

(7.3.3)
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Now we turn to the action for the vector multiplet. It is given by

Stop = − iϑ

8π2

∫
TrF ∧ F

Svec = 1
g2

∫
d4x Tr

[1
2FµνF

µν − 1
2D

ABDAB − 4dµφ̃Dµφ+ 4[φ, φ̃]2

−2iλAσµDµλ̃A − 2λA[φ̃, λA] + 2λ̃A[φ, λ̃A]
]
,

(7.3.4)

where g is the gauge coupling. As we will see momentarily, the topological term does not

affect the theory and there would be no dependence on ϑ. Thus we drop the topological

term from now on. Then a computation shows that the rest of the action turns out to be

Q-exact:

Svec = Q

[
1
g2

∫
d4x Tr

[
2λz̄w̄(−Fzw + iDzφ̃w)− 2λ̃z̄w(Fzw̄ + iDzφw̄) + 1

2(λz + λ̃z)Dz̄

+ (λ+ λ̃)
(
−Fzz̄ + 1

2D − iDw̄φ̃w + iDwφw̄

)
+(λ− λ̃)

(
−Fww̄ − iDw̄φ̃w − iDwφw̄ − i[φw̄, φ̃w]

)]]
.

(7.3.5)

To ensure the positive-definiteness of the action, we impose the reality properties to the

bosonic fields,

Āµ = Aµ, φ̄ = −φ̃, D̄AB = −DAB, (7.3.6)

while requiring the symplectic-Majorana conditions to the gaugini,

(λAα) = εABεαβλBβ, (λ̃Aα̇) = εABεα̇β̇λ̃Bβ̇. (7.3.7)

As mentioned in the previous section, the holomorphic-topological supercharge Q = Q1
−+

Q̃1
−̇ is in fact preserved in any product metric background as long as we make the proper twist

of the isometry with the R-symmetry group. Hence we would like to write the supersymmetry
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variation rules to make sense in a general metric background. This requires a bunch of re-

definition of component fields,

φ = φ̃wdw − φw̄dw̄, A = A+ iφ, Ā = A− iφ, λ = 2λwdw − 2λ̃w̄dw̄

µz = λz + λ̃z
2 dw ∧ dw̄, Dz = Dzdw ∧ dw̄, α = λ+ λ̃

2 , ν = λ− λ̃
4 dw ∧ dw̄

θz = λ̃z − λz, ρ̄z̄ = λ̃z̄wdw + λz̄w̄dw̄

4 , Dz̄ = 1
16Dz̄dw ∧ dw̄

D = D + 2Fzz̄ − 2iDwφw̄ + 2iDw̄φ̃w.

(7.3.8)

For convenience, let us also denote the curvature of the complexified connection A, Ā by

F = ∂wAw̄ − ∂w̄Aw − i[Aw,Aw̄], F̄ = ∂wĀw̄ − ∂w̄Āw − i[Āw, Āw̄],

Fwz̄ = ∂wAz̄ − ∂z̄Aw − i[Aw, Az̄], Fw̄z̄ = ∂w̄Az̄ − ∂z̄Aw̄ − i[Aw̄, Az̄],

F̄wz = ∂wAz − ∂zAz − i[Aw, Az], F̄w̄z = ∂w̄Az − ∂zAw̄ − i[Aw̄, Az],

Fz̄ = Fwz̄dw + Fw̄z̄dw̄, F̄z = F̄wzdw + F̄w̄zdw̄.

(7.3.9)

Then the supersymmetry variations are significantly simplified in terms of these new fields,

QA = 0, QĀ = λ,

Qλ = 0, Qν = F ,

Qα = D, QD = 0,

QAz̄ = 0, QAz = θz,

Qρz̄ = Fz̄, Qθz = 0,

QDz̄ = DC⊥ρz̄ +Dz̄ν, Qµz = Dz, QDz = 0,

(7.3.10)

where we have used the new covariant derivative DC⊥ = dC⊥ − iA (we also denote D̄C⊥ =
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dC⊥ − iĀ). The action (7.3.5) for the vector multiplet can be also written in these fields as

Svec = Q

 1
g2

∫
C
d2z

∫
C⊥

Tr
[
−F̄ ?C⊥ ν − α (?C⊥D− 2iDC⊥ ?C⊥ φ− 4 ?C⊥ Fzz̄)

+4F̄z ∧ ?C⊥ρz̄ + 4µz ?C⊥ Dz̄

].
(7.3.11)

To make a N = 2 gauge theory superconformal, we in general need to couple hypermulti-

plets to the vector multiplet. Let us consider r hypermultiplets which consist of scalars qAI ,

fermions ψI , ψ̃I , and auxiliary fields FǍI , where I = 1, · · · , 2r is the Sp(r) flavor index. The

auxiliary SU(2) Ǎ = 1, 2 is introduced to achieve an off-shell description of the hypermulti-

plet. We will only use Sp(1)r ⊂ Sp(r) subgroup of the flavor symmetry, so let us restrict a

single free hypermultiplet (r = 1) for a moment.

Recall that U(1)C is twisted with the maximal torus of the SU(2)R R-symmetry group,

U(1)R ⊂ SU(2)R. For the hypermultiplet, we will take a further twist with the maximal

torus of the flavor symmetry:

U(1)′C ↪→ U(1)C × U(1)R × U(1)F,F̌ , (7.3.12)

where U(1)F,F̌ is the maximal torus of the SU(2) flavor group or the SU(2) auxiliary group.

This is not really necessary but it will fix the spins of the resulting two-dimenisonal symplectic

bosons to be integers. One can always undo this further twist. The tables 7.5 and 7.6 show

the quantum numbers of the component fields in the hypermultiplet under the twist.

q11 q12 q21 q22
U(1)C 0 0 0 0
U(1)C⊥ 0 0 0 0
U(1)R −1

2 −1
2

1
2

1
2

U(1)r 0 0 0 0
U(1)F 1

2 −1
2

1
2 −1

2
U(1)′C 0 −1 1 0
U(1)′C⊥ 0 0 0 0

Table 7.5: N = 2 hypermultiplet, scalars
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ψ+1 ψ−1 ψ+2 ψ−2 ψ̃+̇1 ψ̃−̇1 ψ̃+̇2 ψ̃−̇2
U(1)C 1

2 −1
2

1
2 −1

2
1
2 −1

2
1
2 −1

2
U(1)C⊥ 1

2 −1
2

1
2 −1

2 −1
2

1
2 −1

2
1
2

U(1)R 0 0 0 0 0 0 0 0
U(1)r 1

2
1
2

1
2

1
2 −1

2 −1
2 −1

2 −1
2

U(1)F 1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2 −1
2

U(1)′C 1 0 0 −1 1 0 0 −1
U(1)′C⊥ 1 0 1 0 −1 0 −1 0

Table 7.6: N = 2 hypermultiplet, fermions

We define correspondingly

qz ≡ q21, qz̄ ≡ −q12, q̃ ≡ q22, q̃† = q11,

ψzw ≡ ψ+1, ψzz̄ ≡ ψ−1, ψ̃zw̄ ≡ ψ̃+̇1, ψ̃zz̄ ≡ ψ̃−̇1

ψw ≡ ψ+2, ψz̄ ≡ ψ−2, ψ̃w̄ ≡ ψ̃+̇2, ψ̃z̄ ≡ ψ̃−̇2,

Fz ≡ F21, Fz̄ ≡ F12, F̃ ≡ F22, F̃ † = −F11.

(7.3.13)

Let us take the hypermultiplet to be valued in a unitary representation R of the gauge

group (R̄ denotes the complex conjugate representation which is isomorphic to the dual

representation). We take the convention such that the component fields qz, q̃†, ψzw, ψzz̄,

ψ̃zw̄, ψ̃zz̄, Fz, F̃ † are valued in R while qz̄, q̃, ψw, ψz̄, ψ̃w̄, ψ̃z̄, Fz̄, F̃ are valued in R̄. The

N = 2 supersymmetry variations are given by

δqAI = −iζAψI + iζ̃Aψ̃I

δψI = −2σµζ̃ADµqAI + 4iζA(φ̃ · qA)I − σµDµζ̃
AqAI − 2ζ̌ǍFǍI

δψ̃I = −2σ̃µζADµqAI + 4iζ̃A(φ · qA)I − σ̃µDµζ
AqAI − 2˜̌

ζǍFǍI

δFǍI = iζ̌Ǎσ
µDµψ̃

α̇
I − i

˜̌
ζǍσ̃

µDµψI − 2(φ · ζ̌Ǎψ)I − 2(ζ̌ǍλB · qB)I + 2(φ̃ · ˜̌ζǍψ̃)I + 2(˜̌
ζǍλ̃B · q

B)I ,

(7.3.14)
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where the fermionic parameters ζ̌A, ˜̌
ζA should satisfy the constraints

ζAζ̌B̌ − ζ̃A
˜̌
ζB̌ = 0, ζAζA + ˜̌

ζǍ
˜̌
ζǍ = 0, ζ̃Aζ̃A + ζ̌Ǎζ̌Ǎ = 0, ζAσµζ̃A + ζ̌Ǎσµ

˜̌
ζǍ = 0,

(7.3.15)

to ensure the off-shell invariance of the supersymmetry. Since the holomorphic-topological

supercharge is Q = Q1
− + Q̃1

−̇, we have to find the solutions for ζ̌A and ˜̌
ζA for ζ−1 = 1 and

ζ̃−̇1 = 1. It is not hard to find that ζ̌+
2 = 1 and ˜̌

ζ2−̇ = −1 satisfy the equations (7.3.15). Now

it is straightforward to write out all the variations of component fields under the action of

the holomorphic-topological supercharge:

Qqz = 0, Qq̃ = 0, Qqz̄ = iψz̄ + iψ̃z̄, Qq̃† = − i2g
zz̄(ψzz̄ + ψ̃zz̄)

Qψzw = 4iDwqz, Qψzz̄ = −4iDz̄qz + 2F̃ †

Qψw = 4iDwq̃, Qψz̄ = −4iDz̄ q̃ − 2Fz̄

Qψ̃zw̄ = −4iDw̄qz, Qψ̃zz̄ = 4iDz̄qz − 2F̃ †

Qψ̃w̄ = −4iDw̄q̃, Qψ̃z̄ = 4iDz̄ q̃ + 2Fz̄

QFz̄ = 0, QF̃ † = 0

QFz = 2Dw̄ψzw + 2Dwψ̃zw̄ − 2Dz(ψzz̄ + ψ̃zz̄)− 2(λ̃z − λz) · q̃† + 2(λ− λ̃) · qz

QF̃ = 2Dw̄ψw + 2Dwψ̃w̄ − 2Dz(ψz̄ + ψ̃z̄) + 2(λ̃z − λz) · qz̄ + 2(λ− λ̃) · q̃.

(7.3.16)

Finally the action for the hypermultiplet is given by

Shyp = 1
g2

∫
d4x

[1
2Dµq

ADµqA − qA{φ, φ̃}qA + i

2q
ADABq

B − i

2 ψ̃σ̃
µDµψ −

1
2F

ǍFǍ

−1
2ψφψ + 1

2 ψ̃φ̃ψ̃ − q
AλAψ + ψ̃λ̃Aq

A
]
.

(7.3.17)

To ensure the positive-definiteness of the action, we impose the following reality properties

247



for the scalars,

(qAI) = ΩIJεABqBJ , (FǍI) = −ΩIJεǍB̌FB̌J , (7.3.18)

while requiring the fermions to be Ω-symplectic Majorana

(ψαI) = εαβΩIJψβJ , (ψ̃α̇I) = εα̇β̇ΩIJ ψ̃β̇J , (7.3.19)

where ΩIJ is the real antisymmetric Sp(r)-invariant tensor satisfying

(ΩIJ)∗ = −ΩIJ , ΩIJΩJK = δIK . (7.3.20)

Repeating the argument made for the vector multiplet, the holomorphic-topological su-

percharge is preserved for any product manifold after the twist. Hence we would like to write

the supersymmetry variations in metric-independent fashion. This is achieved by making a

bunch of re-definition of fields,

σ ≡ 1
4i(ψwdw − ψ̃w̄dw̄), ξz ≡

1
4i(ψzwdw − ψ̃zw̄dw̄), γ ≡ − i2g

zz̄(ψzz̄ + ψ̃zz̄),

χ ≡ −ig
zz̄(ψzz̄ − ψ̃zz̄)

4 dw ∧ dw̄, ηz̄ ≡
i(ψz̄ − ψ̃z̄)

2 dw ∧ dw̄, ζz̄ ≡ i(ψz̄ + ψ̃z̄),

hz ≡
i

8(Fz + 2iDz q̃
†)dw ∧ dw̄, h ≡ i

8(F̃ − igzz̄Dzqz̄)dw ∧ dw̄,

h† ≡ −2i(F̃ † − igzz̄Dz̄qz)dw ∧ dw̄, hz̄ ≡ −2i(Fz̄ + 2iDz̄ q̃)dw ∧ dw̄.

(7.3.21)

In terms of these new fields, the holomorphic-topological supercharge is represented in a
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simple manner,

Qqz = 0, Qξz = DC⊥qz, Qhz = DC⊥ξz + iν · qz

Qq̃ = 0, Qσ = DC⊥ q̃, Qh = DC⊥σ + iν · q̃,

Qχ = h†, Qh† = 0, Qηz̄ = hz̄, Qhz̄ = 0,

Qq̃† = γ, Qγ = 0, Qqz̄ = ζz̄ Qζz̄ = 0.

(7.3.22)

Also in terms of the re-defined fields, the hypermultiplet action can be written as a linear

combination of Q-closed part and a Q-exact part,

Shyp = Shyp,cl + Shyp,ext, (7.3.23)

where the Q-exact part is given by

Shyp,ext = Q

{
1
g2

∫
C
d2z

∫
C⊥
ηz̄

(
?C⊥hz −

i

2Dz q̃
†
)

+ χ
(
?C⊥h+ i

2Dzqz̄

)
− 1

2
(
q̃†α · q̃ + qz̄α · qz

)
−D̄C⊥ q̃

† ∧ ?C⊥σ − D̄C⊥qz̄ ∧ ?C⊥ξz −
1
2qz̄µz · q̃

†
}
,

(7.3.24)

whereas the Q-closed part is given by

Shyp,cl = 8i
g2

∫
C
d2z

∫
C⊥
ξz ∧Dz̄σ + hzDz̄ q̃ − hDz̄qz − iqzDz̄ · q̃ − iq̃ξz ∧ ρz̄ − iqzρz̄ ∧ σ.

(7.3.25)

Combining the vector multiplet action (7.3.11) and the hypermultiplet action (7.3.24), (7.3.25),

we obtain the full action of the holomorphic-topological theory

S = Svec + Shyp,cl + Shyp,ext. (7.3.26)

It should be reminded that, as firstly discovered in [189], the dependence on the metric on C⊥
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and the Kähler form on C enters only through the Q-exact terms, ensuring that the theory

is topological along C⊥ and holomorphic along C. Also note that we can absorb the gauge

coupling in the Q-closed part into the fields, so that the dependence on the gauge coupling

also becomes absent. We also absorb the irrelevant numerical prefactors in some terms in

Svec by rescaling the metric on C. Now we may take the theory on a general product metric

background of C×C⊥ while its component fields take values of appropriate differential forms.

For later use, it is convenient to define the following specific combinations of component

fields:

Qz ≡ qz + ξz + hz

Q̃ = q̃ + σ + h

Az̄ = Az̄ + ρz̄ + Dz̄,

(7.3.27)

on which our localizing supercharge will act as the equivariant differential on C⊥. Note that

we can re-write the Q-closed part of the action (7.3.25) using these combinations as

Shyp,cl = 8i
∫
C
d2z

∫
C⊥
Qz ∧ (∂z̄ − iAz̄·)Q̃. (7.3.28)

where · denotes the action according to the representation under the gauge group. This

expression will turn out to be useful in finding the action of the localized theory on C.

7.3.2 Ω-deformation

Suppose there is a vector field V = Vect(C⊥) which generates an isometry on C⊥. The Ω-

deformation can be defined at the level of supersymmetry variations of component fields, so

that the deformed supercharge squares to this isometry plus possibly a gauge transformation,

in a similar manner with [193, 194] for two-dimensional theories. For the case at hand, the

holomorphic-topological theory on C× C⊥, we can deform the supersymmetry variations in
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(7.3.10) and (7.3.22) as

QεA = ειV ν, QεĀ = λ− ειV ν,

Qελ = 2ειV F − 2iεDC⊥ιV φ, Qεν = F ,

Qεα = D, QεD = ειVDC⊥α,

QεAz̄ = ειV ρz̄, QεAz = θz,

Qερz̄ = Fz̄ + ειV Dz̄, Qεθz = ειVFz,

QεDz̄ = DC⊥ρz̄ +Dz̄ν, Qεµz = Dz, QεDz = εDC⊥ιV µz,

(7.3.29)

for the vector multiplet and

Qεqz = ειV ξz, Qεξz = DC⊥qz + ειV hz, Qεhz = DC⊥ξz + iν · qz

Qεq̃ = ειV σ, Qεσ = DC⊥ q̃ + ειV h, Qεh = DC⊥σ + iν · q̃,

Qεχ = h†, Qεh
† = εDC⊥ιV χ, Qεηz̄ = hz̄, Qεhz̄ = εDC⊥ιV ηz̄,

Qεq̃
† = γ, Qεγ = ειVDC⊥ q̃

†, Qεqz̄ = ζz̄ Qεζz̄ = ειVDC⊥qz̄.

(7.3.30)

for each hypermultiplet. Note that

Q2
ε = ε(DC⊥ιV + ιVDC⊥) = εLV + Gauge[ειVA], (7.3.31)

where the first term is the Lie derivative with respect to the vector field V and the second

term is the infinitesimal gauge transformation generated by ειVA. Hence the deformed

supercharge squares to an isometry generated by V plus a gauge transformation. Also it

is immediate that Qε reduces to the original holomorphic-topological supercharge Q when

ε = 0. Hence Qε indeed implements the Ω-deformation of the holomorphic-topological theory

on C× C⊥ with respect to the isometry V .

We should correspondingly deform the action so that it is annihilated by the deformed

supercharge. The action for the vector multiplet can be taken as the variation under the
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deformed supercharge of the same expression:

Svec,ε = Qε

∫
C
d2z

∫
C⊥

Tr
[
−F̄ ?C⊥ ν − α (?C⊥D− 2iDC⊥ ?C⊥ φ− ?C⊥Fzz̄)

+F̄z ∧ ?C⊥ρz̄ + µz ?C⊥ Dz̄

]
.

(7.3.32)

Similarly the Q-exact part of the hypermultiplet action can be modified to:

Shyp,ext,ε = Qε

∫
C
d2z

∫
C⊥
ηz̄

(
?C⊥hz −

i

2Dz q̃
†
)

+ χ
(
?C⊥h+ i

2Dzqz̄

)
− 1

2
(
q̃α · q̃† + qz̄α · qz

)
− D̄C⊥ q̃

† ∧ ?C⊥σ − D̄C⊥qz̄ ∧ ?C⊥ξz −
1
2qz̄µz · q̃

†.

(7.3.33)

Since V generates an isometry on C⊥, LV leaves the metric invariant and commutes with

?C⊥ . Hence (7.3.31) guarantees that these actions are Qε-invariant.

When there is no boundary on C⊥, the Qε-closed part of the action can be taken as before

(7.3.28). It is straightforward to check the Qε-invariance of this action.

7.3.3 Gauge-fixing

Gauge-fixing is needed to properly evaluate the path integral. We implement the gauge-fixing

by the standard BRST procedure. We introduce a ghost c, an antighost c̄, and an auxiliary

field p which are in adjoint representation of the gauge group. The BRST transformations

of these fields are

QBc = − i2{c, c}, QB c̄ = p, QBp = 0,

QBX = Gauge[c]X,
(7.3.34)
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whereX denotes all other component fields introduced in previous section. We also postulate

the Qε-variations for these fields as

Qεc = −ειVA, Qεc̄ = 0, Qεp = ειV dC⊥ c̄. (7.3.35)

Now we define a new supercharge Q̂ as the combination of the Ω-deformed supercharge and

the BRST supercharge, Q̂ = Qε + QB. Then we observe that

Q̂2 = ε(dC⊥ιV + ιV dC⊥) = εLV (7.3.36)

for all fields. Note that the supercharge now squares to the isometry generated by V without

any gauge transformation. We use this supercharge Q̂ to construct our cohomological field

theory.

Since (7.3.32) and (7.3.33) are defined as Qε-variations of gauge invariant expressions,

they are also automatically Q̂-exact:

Svec,ε = Q̂

∫
C
d2z

∫
C⊥

Tr
[
−F̄ ?C⊥ ν − α (?C⊥D− 2iDC⊥ ?C⊥ φ− ?C⊥Fzz̄)

+F̄z ∧ ?C⊥ρz̄ + µz ?C⊥ Dz̄

]
Shyp,ext,ε = Q̂

∫
C
d2z

∫
C⊥
ηz̄

(
?C⊥hz −

i

2Dz q̃
†
)

+ χ
(
?C⊥h+ i

2Dzqz̄

)
− 1

2
(
q̃α · q̃† + qz̄α · qz

)
− D̄C⊥ q̃

† ∧ ?C⊥σ − D̄C⊥qz̄ ∧ ?C⊥ξz −
1
2qz̄µz · q̃

†,

(7.3.37)

It is also clear that (7.3.28) is Q̂-closed since it is gauge-invariant. To gauge-fix we introduce

another Q̂-exact term to the action

Sfix = Q̂

∫
Tr c̄ Gfix, (7.3.38)

where Gfix is a properly chosen gauge-fixing function. We will take the standard Lorentz
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gauge-fixing function

Gfix = ∇µA
µ, µ = w, w̄, (7.3.39)

where ∇ the Levi-Civita connection on C⊥, while keeping the gauge redundancy on C intact.

We will fix the residual gauge redundancy after localizing the theory onto C.

7.3.4 Localization

For the purpose of recovering the chiral CFT on C, we will take C⊥ = R2 from now on. Let

us analyze the localization locus of the path integral. The auxiliary fields Dz, hz̄, and h†

only enters in the action in linear terms. Hence we can integrate them out to find

Dz̄ = 1
2 ?C⊥ qz̄ q̃

†

hz = i

2 ?C⊥ Dz q̃
†

h = − i2 ?C⊥ Dzqz̄.

(7.3.40)

The localization locus is given by the fixed point set of the supersymmetry variations. Hence

we set the right hand sides of (7.3.29) and (7.3.30) to zero. Thus we have, among other

equatoins,

F = 0, ιV F − iDC⊥ιV φ = 0, D = 0,

Fz̄ + ειV Dz̄ = 0, DC⊥qz + ειV hz = 0, DC⊥ q̃ + ειV h = 0.
(7.3.41)

From the equations in the first low and the gauge-fixing condition, we get A = 0. Applying

this to the equations in the second row yields, among other equations, Dz̄φ = [φ,qz] = [φ, q̃] =

0 and thus φ = 0 for non-trivial solutions of Az̄, qz, and q̃. Then we arrive at

A = 0. (7.3.42)
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With (7.3.40) and (7.3.42) the rest of the equations in the second row of (7.3.41) yield

dC⊥Az̄ = −1
2ειV ?C⊥ qz̄ q̃

†

dC⊥qz = − i2ειV ?C⊥ Dz q̃
†

dC⊥ q̃ = i

2ειV ?C⊥ Dzqz̄.

(7.3.43)

Let us introduce the polar coordinate on C⊥ = R2, where the flat metric on C⊥ is simply

written as ds2
C⊥ = dr2 +r2dϕ2. Then our generator of the isometry is V = ∂ϕ. The equations

(7.3.43) can be written in the polar coordinates as

∂ϕAz̄ = 0, ∂ϕqz = 0, ∂ϕq̃ = 0,

∂rAz̄ = −1
2εrqz̄ q̃

†, ∂rqz = − i2εrDz q̃
†, ∂rq̃ = i

2εrDzqz̄.
(7.3.44)

By re-defining the radial coordinate by t = εε̄ r
2

2 , the equations in the second line become

∂tAz̄ = − 1
2ε̄ qz̄ q̃

†, ∂tqz = − i

2ε̄Dz q̃
†, ∂tq̃ = i

2ε̄Dzqz̄. (7.3.45)

Solutions to these equations are precisely the gradient trajectories on which two-dimensional

B-model on R2 localizes, as discussed in [193] with its full detail, generated by the function

Re
(
W
ε

)
whereW is the holomorphic superpotential. For the case at hand, one could view the

four-dimensional holomorphic-topological theory on C× C⊥ as a two-dimensional B-twisted

gauge theory on C⊥, as done in [194] for the six-dimensional holomorphic-topological theory

to obtain the four-dimensional Chern-Simons theory. The superpotential has to be chosen

as W =
∫
C d

2z qzDz̄ q̃ to reproduce the four-dimensional holomorphic-topological theory in

the ε → 0 limit. As we approch to infinity t → ∞, Az̄, qz, and q̃ should end on the critical

points {dW = 0} of the superpotential to guarantee that the action (7.3.28) does not diverge

[193].2

2Generally, when the critical points are non-isolated we can choose a Lagrangian submanifold of the
critical points to have a constant one-loop determinant [194], so we make such a choice here.
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Now that we identified the localization locus, let us evaluate the effective action of the

localized path integral. Recall that our theory is holomorphic along C, so that the localized

path integral should define a two-dimensional chiral CFT on C. Also note that the localiza-

tion locus does not contain any non-trivial topological sector of gauge field configurations, so

that all we have to do is to evaluate the Q̂-closed part of the action on the localization locus

properly. This can be accomplished by performing an equivariant integration on C⊥ = R2

for the action integral (7.3.28) as follows.

To facilitate the equivariant integration, it is crucial to note that Q̂ acts on the combi-

nations (7.3.27) as the equivariant differential dC⊥ + ειV on C⊥ = R2 plus a gauge covariant

contribution:

Q̂Qz = (dC⊥ + ειV − iC·)Qz

Q̂Q̃ = (dC⊥ + ειV − iC·)Q̃

Q̂Az̄ = (dC⊥ + ειV − iC·)Az̄ − ∂z̄C,

(7.3.46)

where

C ≡ c+A+ ν (7.3.47)

acts as if it is a gauge connection for those complexes. Note that the last term in the third

equality ensures that ∂z̄ − iAz̄ can be treated as a covariant derivative as far as Q̂-variation

is concerned, namely it preserves the gauge charge:

Q̂
(
(∂z̄ − iAz̄·)Q̃

)
= (dC⊥ + ειV − iC·)

(
(∂z̄ − iAz̄·)Q̃

)
. (7.3.48)

This would have failed without the last term of the third equality of (7.3.46). Therefore, Q̂
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acts as the equivariant differential on the gauge-invariant combination,

Q̂
(
Qz ∧ (∂z̄ − iAz̄·)Q̃

)
= (dC⊥ + ειV )

(
Qz ∧ (∂z̄ − iAz̄·)Q̃

)
. (7.3.49)

In other words, Qz ∧ (∂z̄ − iAz̄·)Q̃ is equivariantly closed when it is viewed as an element in

the Q̂-cohomology. Hence we apply the Atiyah-Bott equivariant localization formula for the

action integral (7.3.28) (while absorbing irrelevant numerical constant in front into qz and

q̃) to obtain

Shyp,cl = 1
ε

∫
C
d2z qzDz̄ q̃, (7.3.50)

where q = qzdz is a (1, 0)-form in the representation R and q̃ is a 0-form in the representation

R̄ of the gauge group, respectively. Here qz, q̃, and Az̄ are understood as solutions to the

gradient trajectory equations (7.3.45) evaluated at the origin of C⊥, w = w̄ = 0. Note that

the Ω-deformation parameter ε appears in the denominator of the action since C⊥ = R2 has

the unit weight under the isometry of V = ∂ϕ. Consequently ε plays the role of the Planck

constant of the localized theory on C, which therefore appears in the numerator of the OPEs.

Hence we confirm the identification of the non-commutative deformation parameter and the

Ω-deformation parameter.

Now we choose to fix the residual gauge by the gauge-fixing function Az̄ = 0, yielding

the gauge fixing term in the action

1
ε

∫
C
d2zTr (−pzAz̄ + bzDz̄c). (7.3.51)

Hence when the auxiliary field pz is integrated out, we are left with

1
ε

∫
C

(
Tr b∂̄c+

∑
i

qi∂̄q̃i
)
, (7.3.52)
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where i enumerates all the hypermultiplets that we coupled to the vector multiplet to make

the original N = 2 theory superconformal. The algebra generated by the local operators of

this theory are nothing but the chiral algebra of the standard bc-βγ system with the BRST

charge

QBRST = 1
ε

∮ dz

2πi

(
Tr bcc−

∑
i

qicq̃i
)
. (7.3.53)

Hence we arrive at the result expected from [181].

7.4 Superconformal indices and vacuum characters

As a consequence of the SCFT/VOA correspondence in [181], the Schur index of the N = 2

SCFT and the vacuum character of the chiral algebra are identified by directly comparing

their state-counting formulas. Here we discuss how the Ω-deformation approach provides a

path integral point of view on the identification.

7.4.1 Schur index of N = 2 SCFT

The Schur index is defined by the Schur limit of the N = 2 superconformal index [196]. It is

given as

IS = TrHS (−1)F qE−R, (7.4.1)

where E is the scaling dimension and R is the Cartan of the SU(2)R R-symmetry as before.

The trace is over the 1
4 -BPS states satisfying

HS : E − (j1 + j2)− 2R = 0, j1 − j2 + r = 0. (7.4.2)
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The operators corresponding to these states are called Schur operators. It is straightforward

to compute the single-letter indices for the vector multiplet and the hypermultiplet by finding

those operators in the component fields. The full index is simply given by the plethystic

exponential of the sum of all the single-letter indices, integrated over the gauge group. We

will not reproduce the exact forms of those expressions here.

7.4.2 Schur index and vacuum character

In [197], the Schur index was derived by supersymmetric localization of N = 2 SCFT par-

tition function on S3 × S1, up to a multiplicative factor of the Casimir energy. The metric

background used in the computation was the following S3-fibration over S1:

ds2 = l2 cos2 θ (dφ− (β1 + β2)dt)2 + l2 sin2 θ (dχ− (β1 − β2)dt)2 + l2dθ2 − l2(τ + (β1 + β2))2dt2,

(7.4.3)

where φ, χ, and t are periodic coordinates with period 2π and θ ∈ [0, π2 ]. l is the radius of

the three-sphere which was written as a torus fibration over the θ-interval. It was shown in

[197] that the variations of β1 and β2 do not affect the partition function. Then β1 and β2

were chosen to be real and Re τ = −(β1 + β2) so that above metric restricts to the Kähler

metric on the torus at θ = 0. Here, we may make a different choice of these parameters at

our convenience: β1 = −β2 = β. Then the metric becomes

ds2 = l2(−τ 2dt2 + cos2 θdφ2) + l2(dθ2 + sin2 θ(dχ− 2βdt)2). (7.4.4)

First note that sin θ ∼ θ as θ ∼ 0 and sin θ ∼ const as θ ∼ π
2 . Hence the above metric

describes the product of a torus (t, φ) and a cigar (θ, χ) with a twist along the t direction

with respect to the isometry on the cigar V = ∂χ. This is precisely the context where the

Ω-deformation is realized as a metric background [7, 31].

Hence we can make a direct connection between the partition functions in four-dimension
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and two-dimension. First we localize the Ω-deformed holomorphic-topological theory on C, as

we have shown in the previous section, we would get the chiral CFT of the gauged symplectic

bosons on the torus C with the metric

ds2
C = l2(−τ 2dt2 + dφ2) = l2dzdz̃, (7.4.5)

where z = φ + τt and z̃ = φ − τt. Hence the we arrive at the identification of the S3 × S1

partition function of the four-dimensinoal SCFT with the torus partition function of the

two-dimensional chiral CFT.

In the localizing supercharge related to the holomorphic-topological twist, the S3 × S1

partition function of four-dimensinoal SCFT computes the Schur index of the theory up to

some multiplicative factor of Casimir energy [197]. Also the torus partition functions of two-

dimensional chiral CFT compute the characters of the chiral algebra. Hence we re-discover

one of the consequences of the SCFT/VOA correspondence found in [181], the identification

of the Schur index and the vaccum character. To fully justify the appearance of the vacuum

character, we really have to understand how the boundary condition (periodicity) for the

local operators follows from the metric (7.4.4). It should be inherited from the β-deformation

of the metric from the usual S3 × S1 to (7.4.4), so that a more detailed analysis is needed

on the meric (7.4.4) as the Ω-background. We leave this to future work.

7.5 Discussion

In the (Q+S)-cohomology construction of the chiral algebra [181], the bc-system is obtained

by the cohomology of the Schur operators in the vector multiplets: the gaugini. In our

notation, the relevant gaugini fields are precisely µz and θz in (7.3.8). However, it is still not

very clear how these fields are related to the bc-system in our construction which arises in

the two-dimensional gauge fixing. The main problem is that neither µz nor θz is Q-closed, so

that it is not immediate to see how they come into play in the Q-cohomological field theory.
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It would be nice if we can understand this issue more clearly.

An interesting observation was made in [198] for the SCFT/VOA correspondence at the

level of N = 2 superconformal indices. It discovered a relation between the Macdonald index,

a refinement of the Schur index, of N = 2 SCFTs and the refined character of VOAs. A

conjectural construction of a filtration of the vacuum module was suggested, from which the

refined character was defined by its associated graded vector space. In [199], the construction

of such filtrations was analyzed in great detail. It would be nice if we can understand

this relation through the Ω-deformation formulation of the chiral algebra. A path integral

representation of the Macdonald index or the suggested refined character would be helpful

for this study.

Finally, the Ω-deformation approach to the chiral algebra discussed so far only applies

to Lagrangian SCFTs. It was observed that in some cases there are N = 1 preserving

deformations of N = 2 SQCDs such that the renormalization group flows from the deformed

SQCDs to non-Lagrangian N = 2 SCFTs such as Argyres-Douglas theories and Minahan-

Nemeschansky theories [200, 201, 202, 203, 204]. It would be nice if we could find a way to

apply the Ω-deformation procedure to the non-Lagrangian SCFTs, perhaps by using such

deformations.
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Appendix A

Examples of split surface defect

partition functions

A.1 N = 2

For N = 2 case we can compare the results from the gauge theory with the well-known

Mathieu functions with half-period and whole-period, in [205] for example. We observe the

precise match between the two.
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i) a01 = ε1

Ψ̃id(a01 = ε1, ε,Λ, z)± Ψ̃(01)(a01 = ε1, ε,Λ, z)

= e
1
ε2

(
±Λ2
ε1

+ Λ4
4ε31
∓ Λ6

12ε51
+ Λ8

96ε71
± 11Λ10

720ε91
+O(Λ12)

)
[
z1/2 ± z−1/2 + Λ2

ε2
1

z3/2 ± z−3/2

2 + Λ4

ε4
1

(
z5/2 ± z−5/2

12 − z1/2 ± z−1/2

8 − z−3/2 ± z3/2

12

)

+ Λ6

ε6
1

(
z7/2 ± z−7/2

144 + ∓z
5/2 − z−5/2

18 − z3/2 ± z−3/2

48 + ±z
1/2 + z−1/2

8

)

+ Λ8

ε8
1

(
z9/2 ± z−9/2

2880 + ∓z
7/2 − z−7/2

192 + 49(±z3/2 + z−3/2)
28 − 37(z1/2 ± z−1/2)

1152

)

+ Λ10

ε10
1

(
z11/2 ± z−11/2

86400 + ∓z
9/2 − z−9/2

3600 + z7/2 ± z−7/2

5760

+41(±z5/2 + z−5/2)
1152 − 317(z3/2 ± z−3/2)

2304 − 121(±z1/2 + z−1/2)
1728

)
+O(Λ12) +O(ε2)

]

(A.1.1)

Using the dictionary (3.5.5) we compute

E±2,m=1 = ε2
1

8 ∓
Λ2

2 −
Λ4

4ε2
1
± Λ6

8ε4
1
− Λ8

48ε6
1
∓ 11Λ10

288ε8
1

+O(Λ12). (A.1.2)

These split eigenvalues and split eigenstate wavefunctions exactly match with the known

results for the Mathieu function.
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ii) a01 = 2ε1

Ψ̃id(a01 = 2ε1, ε,Λ, z)± Ψ̃(01)(a01 = 2ε1, ε,Λ, z)

= e
1
ε2

(
(− 1

3∓
1
2)Λ4

ε31
+( 379

864±
4
9)Λ8

ε71
+O(Λ12)

)
[
z ± z−1 + Λ2

ε2
1

(
z2 ± z−2

3 − (1± 1)
)

+ Λ4

ε4
1

(
z3 ± z−3

24 −
(5

9 ±
1
2

)
(z ± z−1)

)

+ Λ6

ε6
1

(
z4 ± z−4

360 +
(
− 7

72 ∓
1
18

)
(z2 ± z−2) + 49

18(1± 1)
)

+ Λ8

ε8
1

(
z5 ± z−5

8640 −
( 1

120 ±
1

576

)
(z3 ± z−3) +

(25655
10368 ±

133
54

)
(z ± z−1)

)

+ Λ10

ε10
1

(
z6 ± z−6

302400 −
( 11

25920 ∓
1

14400

)
(z4 ± z−4) +

( 91283
155520 ±

37
64

)
(z2 ± z−2)− 134855

5184 (1± 1)
)

+O(Λ12) +O(ε2)
]

(A.1.3)

E±2,m=2 = ε2
1

2 +
(1

3 ±
1
2

) Λ4

ε2
1
−
(379

432 ±
8
9

) Λ8

ε6
1

+O(Λ12) (A.1.4)

iii) a01 = 3ε1

Ψ̃id(a01 = 3ε1, ε,Λ, z)± Ψ̃(01)(a01 = 3ε1, ε,Λ, z)

= e
1
ε2

(
− Λ4

8ε31
± Λ6

12ε51
− 13Λ8

1280ε71
∓ Λ10

64ε91
+O(Λ12)

)
[
z3/2 ∓ z−3/2 + Λ2

ε2
1

(
z5/2 ∓ z−5/2

4 − z1/2 ∓ z−1/2

2

)
+ Λ4

ε4
1

(
z7/2 ∓ z−7/2

40 − 5(z3/2 ∓ z−3/2)
32 − z1/2 ∓ z−1/2

4

)

+ Λ6

ε6
1

(
z9/2 ∓ z−9/2

720 − 11(z5/2 ∓ z−5/2)
640 + ∓z

3/2 + z−3/2

8 + z1/2 ∓ z−1/2

64

)

+ Λ8

ε8
1

(
z11/2 ∓ z−11/2

20160 − 11(z7/2 ∓ z−7/2)
11520 + ∓z

5/2 + z−5/2

64 − 1621(z3/2 ∓ z−3/2)
51200 + 21(±z1/2 − z−1/2)

128

)

+ Λ10

ε10
1

(
z13/2 ∓ z−13/2

806400 − z9/2 ± z−9/2

32256 + 3(∓z7/2 + z−7/2)
3200 − 12329(z5/2 ± z−5/2)

1843200

+9(±z3/2 − z−3/2)
128 + 14061(z1/2 ∓ z−1/2)

102400

)
+O(Λ12) +O(ε2)

]
(A.1.5)
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E±2,m=3 = 9ε2
1

8 + Λ4

8ε2
1
∓ Λ6

8ε4
1

+ 13Λ8

640ε6
1
± 5Λ10

128ε8
1

+O(Λ12) (A.1.6)

A.2 N = 3

In the case of N = 3 we do not have a known result to compare to. Although the degenerate

perturbative expansion can be done in principle for the non-Hermitian Hamiltonians, it

quickly becomes tedious for increasing orders. The following results from gauge theory

provides an alternative way to compute the split eigenfunctions and the split eigenvalues.

i) a01 = a02 = ε1

[Ψ̃(012)(a, ε,Λ, z) + ζΨ̃(021)(a, ε,Λ, z) + ζ
2Ψ̃id(a, ε,Λ, z)]|a01=a02=ε1

= e

1
ε2

(
ζ Λ2
ε1

+ζ2 Λ4
2ε31

+ Λ6
12ε51

−ζ 3Λ8
9ε71

+O(Λ10)

)
z
− a0
ε1

0 z
− a0
ε1

+1

1 z
− a0
ε1

+1

2[
1 + ζ

z0

z1
+ ζ

2 z0

z2
+

Λ2

ε21

(
z1

2z0
+
z2

z1
+ ζ

(
z0z2

2z2
1

+
z2
0

z1z2

)
+ ζ

2
(
z2
0

2z2
2

+
z1

z2

))
+

Λ4

ε41

(
−
z0

2z1
−

z2
1

12z2
0
−

z2
0

4z2
2
−

z1

2z2
+ ζ

(
3z2

0
4z2

1
−

z1

4z0
+

z3
0

4z1z2
2
−

z0

2z2

)
+ ζ

2
(
−

1
2

+
z3
0

12z3
2

+
3z0z1
4z2

2
−

z2
0

z1z2
+

z2
1

4z0z2

))
+

Λ6

ε61

(
1
8

+
z3
1

144z3
0
−
z3
0
z3
2
−

3z0z1
4z2

2
−

5z2
0

4z1z2
−

z2
1

6z0z2
−
z0z2

4z2
1

+
z1z2

6z2
0

+
z2
2

4z0z1
+

z3
2

36z3
1

+ζ
(
z0

8z1
−

z2
1

18z2
0

+
z4
0

36z1z3
2
−

z2
0

4z2
2

+
z3
0

4z2
1z2
−

5z1
4z2
−

5z1
4z2
−

3z2
4z0

+
z2
0z2

6z3
1
−

z2
2

6z2
1

+
z0z

3
2

144z4
1

)
+ζ2
(
−

3z2
0

4z2
1
−

z1

4z0
+

z4
0

144z4
2

+
z2
0z1

6z3
2
−

z3
0

6z1z2
2

+
z2
1

4z2
2

+
z0

8z2
2

+
z3
1

36z2
0z2
−

5z2
4z1
−
z0z

2
2

18z3
1

))
+

Λ8

ε81

(
−

3z2
0

4z2
1

+
z1

4z0
+

z4
1

2880z4
0
−

z4
0

192z4
2
−

7z2
0z1

36z3
2
−

25z3
0

72z1z2
2
−

7z2
1

24z2
2

+
z3
1

48z2
0z1

+
13z2
8z1

+
5z2

1z2

288z3
0

+
5z2

2
72z2

0
−
z0z

2
2

24z3
1

+
5z3

2
144z0z2

1
+

z4
2

576z4
1

+ ζ

(
25
16

+
5z3

0
72z3

1
−

z3
1

192z3
0

+
z5
0

576z1z4
2
−

z3
0

24z3
2

+
5z4

0
144z2

1z
2
2
−

3z0z1
4z2

2
+

13z2
0

8z1z2
−

25z2
1

72z0z2
+
z0z2

4z2
1
−

7z1z2
36z2

0
+

5z2
0z

2
2

288z4
1
−

7z2
2

24z0z1
−

z3
2

48z3
1

+
z0z

4
2

2880z5
1

)
+ζ2
(

+
25z0
16z1

−
z2
1

24z2
0

+
z5
0

2880z5
2

+
5z3

0z1

288z4
2
−

z4
0

48z1z3
2

+
5z0z2

1
72z3

2
+

z2
0

4z2
2

+
5z3

1
144z0z2

2
−

7z3
0

24z2
1z2

+
13z1
8z2

+
z4
1

576z3
0z2
−

3z2
4z0
−

7z2
0z2

36z3
1
−

25z2
2

72z2
1
−

z0z
3
2

192z4
1

))
+O(Λ10) +O(ε2)

]
(A.2.1)

From the dictionary (3.5.7) we compute

Eζ
2,m=1 = ε2

1
3 − ζΛ2 − ζ2 Λ4

ε2
1
− Λ6

4ε4
1

+ ζ
3Λ8

2ε6
1

+O(Λ10) (A.2.2)

Eζ
3,m=1 = 2ε3

1
27 + ζΛ2(−2a0 + ε1)− ζ2 2(a0 − ε1)Λ4

ε2
1

− (2a0 + ε1)Λ6

4ε4
1

+ ζ
3(4a0 − 3ε1)Λ8

4ε6
1

+O(Λ10).

(A.2.3)
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ii) a01 = a02 = 2ε1

[Ψ̃(012)(a, ε,Λ, z) + ζΨ̃(021)(a, ε,Λ, z) + ζ
2Ψ̃id(a, ε,Λ, z)]|a01=a02=2ε1

= e

1
ε2

(
−ζ Λ4

2ε31
− 2Λ6

27ε51
+ζ2 5Λ8

16ε71
+O(Λ10)

)
z
− a0
ε1

0 z
− a0
ε1

+2

1 z
− a0
ε1

+2

2[
1 + ζ

z2
0
z2
1

+ ζ
2 z

2
0
z2
2

+
Λ2

ε21

(
z1

3z0
−
z0

z2
+
z2

z1
+ ζ

(
−
z0

z1
+

z3
0

z2
1z2

+
z2
0z2

z3
1

)
+ ζ

2
(
z3
0

3z3
2

+
z0z1

z2
2
−

z2
0

z1z2

))
+

Λ4

ε41

(
z2
1

24z2
0
−

z2
0

2z2
2
−

2z1
z2

+
4z2
9z0

+
z2
2

4z2
1

+ ζ

(
−

1
2

+
4z3

0
9z3

1
+

z4
0

4z2
1z

2
2
−

2z0z2
3z2

1
+
z2
0z

2
2

24z4
1

)
+ ζ

2
(
−
z2
0

2z2
1

+
z4
0

24z4
2

+
4z2

0z1

9z3
2
−

2z3
0

3z1z2
2

+
z2
1

4z2
2

))
+

Λ6

ε61

(
14
27

+
z3
1

360z3
0
−

z3
0

18z3
2
−
z0z1

6z2
2

+
3z2

0
2z1z2

+
3z2

0
2z1z2

−
z2
1

8z0z2
+
z0z2

4z2
1

+
5z1z2
72z2

0
+

5z2
2

36z0z1
+

z3
2

36z3
1

+ ζ

(
14z2

0
27z2

1
−

z1

18z0
+

z5
0

36z2
1z

3
2

+
z3
0

4z1z2
2

+
3z0
2z2

+
5z4

0
36z3

1z2
+

5z3
0z2

72z4
1
−

z2

6z1
−
z0z

2
2

8z3
1

+
z2
0z

3
2

360z5
1

)
+ζ2
(

3z0
2z1

+
z5
0

360z5
2

+
5z3

0z1

72z4
2
−

z4
0

8z1z3
2

+
5z0z2

1
36z3

2
+

14z2
0

27z2
2

+
z3
1

36z0z2
2
−

z3
0

6z2
1z2

+
z1

4z2
−
z2
0z2

18z3
1

+
z0z

2
2

8z3
1

))
+

Λ8

ε81

(
35z2

0
32z2

1
+

29z1
162z0

+
z4
1

8640z4
0
−

z4
0

576z4
2

+
2z2

0z1

27z3
2

+
7z3

0
9z1z2

2
−

z2
1

96z2
2
−

44z0
27z2

−
z3
1

90z2
0z2

+
61z2
54z1

+
z2
1z2

180z3
0

+
5z2

2
192z2

0
+
z0z

2
2

18z3
1

+
z3
2

54z0z2
1

+
z4
2

576z4
1

+ ζ

(
5z4

0
192z4

1
−

44z0
27z1

−
z2
1

576z2
0

+
z6
0

576z2
1z

4
2

+
z4
0

18z1z3
2

+
35z2

0
32z2

2
+

z5
0

54z3
1z

2
2

+
61z3

0
54z2

1z2
+

7z1
9z2

+
2z2
27z0

+
29z2

0z2

162z3
1

+
z3
0z

2
2

180z5
1
−

z2
2

96z2
1
−
z0z

3
2

90z4
1

+
z2
0z

4
2

8640z6
1

)
+ζ2
(

35
32

+
2z3

0
27z3

1
+

z6
0

8640z6
2

+
z4
0z1

180z5
2
−

z5
0

90z1z4
2

+
z2
0z

2
1

192z4
2

+
29z3

0
162z3

2
+

z3
1

54z3
2
−

z4
0

96z2
1z

2
2

+
61z0z1
54z2

2
+

z4
1

576z2
0z

2
2
−

44z2
0

27z1z2
+

z2
1

18z0z2
+

7z0z2
9z2

1
−

z2
0z

2
2

576z4
1

))
+O(Λ10) +O(ε2)

]
(A.2.4)

Eζ
2,m=2 = 4ε2

1
3 + ζ

Λ4

ε2
1

+ 2Λ6

9ε4
1
− ζ2 5Λ8

4ε6
1

+O(Λ10) (A.2.5)

Eζ
3,m=2 = 16ε3

1
27 + ζ

2(a0 − ε1)Λ4

ε2
1

+ 4(a0 − 4ε1)Λ6

9ε4
1

− ζ2 (5a0 − 6ε1)Λ8

2ε6
1

+O(Λ10) (A.2.6)
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Appendix B

Generalized hypergeometric function

A generalized hypergeometric function pFq (a1, · · · , ap; b1, · · · , bq; z) is defined as the power

series

pFq (a1, · · · , ap; b1, · · · , bq; z) =
∞∑
n=0

an̄1 · · · an̄p
bn̄1 · · · bn̄q

zn

n! , (B.0.1)

where the parameters a1, · · · , ap, b1, · · · , bq are complex numbers. The notation xn̄ is the

rising factorial or Pochhammer function, which is defined for real values of n using the

Gamma function provided that x and x+ n are real numbers that are not negative integers,

xn̄ = Γ(x+ n)
Γ(x) . (B.0.2)

The generalized hypergeometric function pFq (a1, · · · , ap; b1, · · · , bq; z) is a solution to the

generalized hypergeometric function,

[
z

p∏
n=1

(
z
d

dz
+ an

)
− z d

dz

q∏
n=1

(
z
d

dz
+ bn − 1

)]
pFq (a1, · · · , ap; b1, · · · , bq; z) = 0. (B.0.3)

Clearly, the order of the parameters {a1, · · · , ap}, or the order of the parameters {b1, · · · , bq}

can be changed without changing the value of the function. The standard hypergeometric

function 2F1 (a, b; c; z) is simply a special case of the generalized hypergeometric function

when p = 2 and q = 1.
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If any aj is a non-positive integer, then the series (B.0.1) only has a finite number of

terms and becomes a polynomial of degree −aj. If any bk is a non-positive integer (excepting

the previous case with bk < aj), then the series (B.0.1) is undefined. Excluding these special

cases for which the numerator or the denominator of the coefficients can be 0, the radius of

convergence can be determined using the ratio test. In this dissertation, we are interested

in the case p = q + 1. The ratio of coefficients tends to one, implying that the series (B.0.1)

converges for |z| < 1 and diverges for |z| > 1.
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Appendix C

U(1) factor

In this appendix, we derive the U(1) factor using the non-perturbative Dyson-Schwinger

equations.

When N = 1, we have Y0(x) = x − ā0, and the non-perturbative Dyson-Schwinger

equations lead to

0 = 〈[Y0(x)Gr(x; t)](−1)〉〉

= 〈G(−2)
r (t)〉 − ā0〈G(−1)

r (t)〉

= 〈Ur[2]〉+ 〈Ur[1, 1]〉 − ε〈Ur[0, 1]〉 − ā0〈Ur[1]〉

=
r∑
i=0

ui (〈ζi,2〉 − ā0〈ζi,1〉) +
∑

0≤i1<i2≤r
ui1ui2 (〈ζi1,1ζi2,1〉 − ε〈ζi2,1〉) , (C.0.1)

where

ζj,1 = āj − āj+1 + ε, (C.0.2)

ζj,2 = āj (āj − āj+1 + ε)− ε1ε2 (ki − ki+1) . (C.0.3)
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Picking up the residue at t = −z−1
j , we obtain

ε1ε2〈kj − kj+1〉 = (āj − ā0) (āj − āj+1 + ε)

+
r∑

i=j+1

zi
zi − zj

(āj − āj+1) (āi − āi+1 + ε)

+
j−1∑
i=0

zi
zi − zj

(āi − āi+1) (āj − āj+1 + ε)

=
r∑

i=j+1

zi
zi − zj

(āj − āj+1) (āi − āi+1 + ε)

+
j−1∑
i=0

zj
zi − zj

(āi − āi+1) (āj − āj+1 + ε) . (C.0.4)

From the structure of the instanton partition function, we see that

〈kj − kj+1〉 = zj
d

dzj
logZ instanton. (C.0.5)

Therefore, we have the U(1) part of the instanton partition function

Z instanton =
∏

0≤i<j≤r

(
1− zj

zi

)− (āi−āi+1)(āj−āj+1+ε)
ε1ε2

. (C.0.6)
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Appendix D

The accessory operator Ĥ2

We present the full expression for the accessory operator Ĥ2(z, q) in ̂̂
D3 below.

Ĥ2(z, q)

= −(1− q)

1
3

〈
O3

〉
A2

+ ε1ε2(12ā0 − 4A(1)
1 + 2A(1)

2 + 15ε1 + 8ε2)
6 q

∂

∂q
− 1

3

3∑
α=1

a3
2,α +

2
(
A(1)

1

)2
A(1)

2

9

−
(
A(1)

2

)2
(

3ā0 −A(1)
1

3 + 33ε1 + 22ε2

36

)
+ A

(2)
1 A

(1)
2

3 +A(2)
2

(
−ā0 + 4A(1)

1 + 2A(1)
2 − 9ε1 − 2ε2

12

)
+ A

(3)
2
3

− 8ā0 + 7ε1 + 2ε2

6 A(1)
1 A

(1)
2 −

2ε1ε2

3 (∆0 −∆a)A(1)
1 −

(
A(1)

2

)3

18 + ε1ε2(∆0 −∆a)
6 (12ā0 + 15ε1 + 8ε2)

+
(
ε1ε2(∆0 + ∆∞ −∆a)

3 + 7ā0ε1

2 +
∏
α<α′ a0,αa0,α′ + ε2(2a0,β + 3ā0)

3 + 51ε2
1 + 48ε1ε2 + 2ε2

2
18

)
A(1)

2

]

− q

ε1ε2

(
−A(1)

1 +A(1)
2 + 2ε

)
q
∂

∂q
+ A

(3)
1 +A(2)

2
3 +

A(2)
1

(
−12ā0 + 2A(1)

1 + 8A(1)
2 + 3ε1 + 10ε2

)
12

+
A(2)

2

(
−12ā0 + 8A(1)

1 + 2A(1)
2 − 21ε1 − 14ε2

)
12 +

(
A(1)

1

)3
− 5

(
A(1)

2

)3

18 +
(−12ā0 + 4A(1)

2 − 3ε1 − 10ε2)
(
A(1)

1

)2

36

+

(
−12ā0 + 28A(1)

1 − 39ε1 − 46ε2

)(
A(1)

2

)2

36 +A(1)
1 A

(1)
2

(
−2ā0 −

ε1

6 + 8ε2

9

)
+A(1)

1

(
ε1ε2(∆a −∆0)− ā0ε1

2 − 2ā0ε2 + a0,βε2

3 + 3ε2
1 + 9ε1ε2 + 38ε2

2
18 +

ε1ε2∆∞ − ε2 +
∏
α<α′ a0,αa0,α′

3

)
+A(1)

2

(
ε1ε2(∆0 −∆a) + ā0

(
3ε1

2 − ε2

)
+ 4a0,βε2

3 + 12ε2
1 − 15ε1ε2 − 16ε2

2
18 +

ε1ε2∆∞ − ε2 +
∏
α<α′ a0,αa0,α′

3

)
+2ε1ε2ε(∆0 −∆a) + ε2(a0,β − ā0)(2a0,β − 2ā0 − 3ε1)

2 + ε2
2(4a0,β − 4ā0 + 3ε1)

6 − 35ε3
2

9

]
+ q2

3(1− q)A
(1)
2

(
A(1)

1 − 3ε
)(
A(1)

1 −A
(1)
2 − 2ε

)
,

(D.0.1)
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where we have defined

∆a ≡
1
ε1ε2

(
ε2 − (a2,1 − a2,2)2 + (a2,1 − a2,3)2 − (a2,1 − a2,2)(a2,1 − a2,3)

3

)
. (D.0.2)

The accessory parameter H2 can be obtained simply by taking the limit ε2 → 0.
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Appendix E

Computing the non-regular parts of

Xω

We present the explicit expressions for the non-regular parts of the fundamental refined

qq-character Xω for the N = 3 case, i.e., the (2, 1)-type Z2-orbifold surface defect. The

computation for the N = 2 case is easier and can be done in a similar way.

[x−1] X0(x)

= ε2
1

2 (k0 − k1)2 − ε2
1

2 (k0 − k1) + ε1ε2k1 + (ε− aβ)ε1(k0 − k1) + ε1

∑
K0

c� −
∑
K1

c�


+ q0

1
2

∑
β̄ 6=β

aβ̄ −
∑
α

m+,α + ε1(k0 − k1)
2

+ 1
2
∑
β̄ 6=β

a2
β̄ −

1
2
∑
α

m2
+,α + ε2

1
2 (k0 − k1)− ε1ε2k1

+ε1

∑
K0

c� −
∑
K1

c�


(E.0.1)
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[x−2] X0(x)

= ε3
1

6 (k0 − k1)3 − ε3
1

2 (k0 − k1)2 + ε2
1ε2k1(k0 − k1) + ε3

1
3 (k0 − k1)− ε1ε2εk1 + 2ε1ε2

∑
K1

c�

+ ε2
1(k0 − k1)

∑
K0

c� −
∑
K1

c�

− ε2
1

∑
K0

c� −
∑
K1

c�

+ ε1

∑
K0

c2
� −

∑
K1

c2
�


+ (ε− aβ)

ε2
1

2 (k0 − k1)2 − ε2
1

2 (k0 − k1) + ε1ε2k1 + ε1

∑
K0

c� −
∑
K1

c�


+ q0

1
6

∑
β̄ 6=β

aβ̄ −
∑
α

m+,α + ε1(k0 − k1)
2

+ ε1

2

∑
β̄ 6=β

a2
β̄ −

∑
α

m2
+,α

 (k0 − k1)

+ ε3
1

2 (k0 − k1)2 − ε2
1ε2k1(k0 − k1) + ε2

1(k0 − k1)
∑
K0

c� −
∑
K1

c�

+ ε3
1

3 (k0 − k1)− 2ε1ε2
∑
K1

c�

+ 1
3

∑
β̄ 6=β

a3
β̄ −

∑
α

m3
+,α

+ ε2
1

∑
K0

c� −
∑
K1

c�

+ ε1

∑
K0

c2
� −

∑
K1

c2
�

− ε1ε2εk1

+
∑
β̄ 6=β

aβ̄ −
∑
α

m+,α

1
2
∑
β̄ 6=β

a2
β̄ −

1
2
∑
α

m2
+,α + ε2

1
2 (k0 − k1)− ε1ε2k1 + ε1

∑
K0

c� −
∑
K1

c�


(E.0.2)
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[x−1] X1(x)

= −ε
3
1

6 (k0 − k1)3 − ε3
1

2 (k0 − k1)2 − ε3
1

3 (k0 − k1)− ε2
1ε2k0(k0 − k1) + ε2

1(k0 − k1)
∑
K0

c� −
∑
K1

c�


+ ε2

1

∑
K0

c� −
∑
K1

c�

− ε1

∑
K0

c2
� −

∑
K1

c2
�

+ 2ε1ε2
∑
K0

c� − ε1ε2εk0 − ε1(k0 − k1)
∏
β̄ 6=β

(ε− aβ̄)

+
2ε−

∑
β̄ 6=β

aβ̄

ε2
1

2 (k0 − k1)2 + ε2
1

2 (k0 − k1) + ε1ε2k0 − ε1

∑
K0

c� −
∑
K1

c�


+ q1

1
6

(
aβ −

∑
α

m−,α − ε1(k0 − k1)
)3

+ ε3
1

2 (k0 − k1)2 + ε2
1ε2k0(k0 − k1)− ε3

1
3 (k0 − k1)

− ε1

2

(
a2
β −

∑
α

m2
−,α

)
(k0 − k1)− ε1ε2εk0 − 2ε1ε2

∑
K0

c� + 1
3a

3
β −

1
3
∑
α

m3
−,α

+ ε2
1(k0 − k1)

∑
K0

c� −
∑
K1

c�

− ε2
1

∑
K0

c� −
∑
K1

c�

− ε1

∑
K0

c2
� −

∑
K1

c2
�


+
(
aβ −

∑
α

m−,α

)−ε2
1

2 (k0 − k1)− ε1ε2k0 − ε1

∑
K0

c� −
∑
K1

c�

+
a2
β

2 −
∑
αm

2
−,α

2


(E.0.3)
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Appendix F

Computing the Poisson brackets

Let us first recap some definitions. Let N ≈ CN be a vector space with a volume form. Let

gi,Mi ∈ End(N), , i = −1, 0, 1, . . . , r + 1 (F.0.1)

be SL(N) matrices, such that

M−1 = g−1

gi = mi

(
1 +

(
m−Ni − 1

)
Πi

)
, i = 0, 1, . . . , r

Mi = g−1g0g1 . . . gi =
N∑
α=1

m
(α)
i Π(α)

i , i = 0, 1, . . . , r

Mr+1 = 1N ,

(F.0.2)

where the projection operators Π are written in terms of

Ei, E
(α)
i ∈ N, Ẽi, Ẽ

(α)
i ∈ N∗,

Ẽi(Ei) = 1, Ẽ
(α)
i (E(β)

i ) = δα,β

(F.0.3)
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as

Πi = Ei ⊗ Ẽi, i = 0, 1, · · · , r − 1,

Π(α)
i = E

(α)
i ⊗ Ẽ

(α)
i , i = −1, 0, 1, · · · , r, α = 1, · · · , N.

(F.0.4)

The following formulas are useful throughout the computation: for any α, β = 1, . . . , N ,

Ẽ
(α)
i+1(E(β)

i ) = m
(α)
i+1(mN

i+1 − 1)
mi+1m

(β)
i −m

(α)
i+1

Ẽ
(α)
i+1(Ei+1)Ẽi+1(E(β)

i )

Ẽ
(α)
i (E(β)

i+1) = m
(α)
i (m−Ni+1 − 1)

m−1
i+1m

(β)
i+1 −m

(α)
i

Ẽ
(α)
i (Ei+1)Ẽi+1(E(β)

i+1).
(F.0.5)

We packaged the Darboux coordinates into

Ai(x) ≡ TrN (x−Mi)−1 =
∞∑
l=0

1
xl+1 TrN M l

i

Bi(x) ≡ TrN Πi (x−Mi)−1 Πi+1 = eβ̃i
N∑
α=1

e−β̃
(α)
i

TrN ΠiΠ(α)
i

x−m(α)
i

,

(F.0.6)

where we express Bi(x) via

Di(x) ≡ TrN gi (x−Mi)−1 gi+1

= mimi+1(m−Ni − 1)(m−Ni+1 − 1)Bi(x) + mimi+1x
−1
(
Pi−1(m−1

i x)
Pi(x) − 1

)

−mim
1−N
i+1 x

−1
(
Pi+1(mi+1x)

Pi(x) − 1
)

+ mimi+1Ai(x).

(F.0.7)

The brackets remained to be computed are

Di(x),Ai(y)
,

Di(x),Di+1(y)
, and

Di(x),Di(y)
. (F.0.8)

Using the geometric representation (5.5.24), the first Poisson bracket is computed as (see
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Figure F.1: The geometric picture for {Di(x),Ai(y)}.

Figure F.1)

Di(x),Ai(y)
 = TrN

(
Mi

(y −Mi)2 gi
1

x−Mi

gi+1

)
− TrN

(
gi

Mi

(y −Mi)2
1

x−Mi

gi+1

)

= mimi+1(m−Ni − 1)(m−Ni+1 − 1) TrN
[

Mi

(y −Mi)2 ,Πi

]
1

x−Mi

Πi+1.

(F.0.9)

On the other hand, a direct computation gives (we omit the 2πi in front of the α coordinates)

Di(x),Ai(y)
 = mimi+1(m−Ni − 1)(m−Ni+1 − 1)

eβ̃i
N∑
α=1

e−β̃
(α)
i TrΠiΠ(α)

i

x−m
(α)
i

,
N∑
β=1

1
x−m

(β)
i


= mimi+1(m−Ni − 1)(m−Ni+1 − 1)

∑
α,β

m
(α)
i TrΠiΠ(β)

i Πi+1

(x−m
(β)
i )(y −m

(α)
i )2
{α(α)

i , β̃
(β)
i }

−mimi+1(m−Ni − 1)(m−Ni+1 − 1)
∑
α,β,γ

m
(α)
i TrΠiΠ(β)

i Πi+1Π(γ)
i

(x−m
(β)
i )(y −m

(α)
i )2

{α(α)
i , β̃

(γ)
i }

(F.0.10)

By comparing the two expressions, we derive:

β̃(α)
i , α

(β)
i

 = δα,β, i = 0, 1, · · · , r − 1, α, β = 1, · · · , N. (F.0.11)
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Figure F.2: The geometric picture for {Di(x),Di+1(y)}.

Next, we compute from the geometric representation (see Figure F.2)

Di(x),Di+1(y)
 = TrN

gi+1, gi(x−Mi)−1

gi+1(y −Mi+1)−1gi+2

 . (F.0.12)

On the other hand, a direct computation gives

Di(x),Di+1(y)
 = mim

2
i+1mi+2(m−Ni − 1)(m−Ni+1 − 1)(m−Ni+2 − 1){Bi(x),Bi+1(y)}

+ mim
2
i+1mi+2(m−Ni − 1)(m−Ni+1 − 1)y−1

{
Bi(x), Pi(m

−1
i+1y)

Pi+1(y)

}

−mim
2−N
i+1 mi+2(m−Ni+1 − 1)(m−Ni+2 − 1)x−1

{
Pi+1(mi+1x)

Pi(x) ,Bi+1(y)
}
.

(F.0.13)

Each term can be explicitly computed. By comparing the results we derive

β̃(α)
i , β̃

(β)
i+1

 = 0, i = 0, 1, · · · , r − 1, α, β = 1, · · · , N. (F.0.14)
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Figure F.3: The geometric picture for {Di(x),Di(y)}.

Finally, we compute from the geometric representation (see Figure F.3)

Di(x),Di(y)
 = TrN

([
1

y −Mi

gi+1, gi+1

]
1

x−Mi

gi+1gi
Mi

x−Mi

)

+ TrN
([
gi

1
x−Mi

, gi+1

]
Mi

y −Mi

gi+1gi
1

y −Mi

)

+ TrN
(
gi

1
y −Mi

gi+1

[
gi,

1
x−Mi

gi+1

])

+ TrN
(
gi

1
y −Mi

gi+1

[
gi+1, gi

1
x−Mi

])
.

(F.0.15)

On the other hand, a direct computation gives

Di(x),Di(y)


= m2
im

2
i+1(m−Ni − 1)(m−Ni+1 − 1) ({Bi(x),Ai(y)}+ {Ai(x),Bi(y)})

+ m2
im

2
i+1(m−Ni − 1)(m−Ni+1 − 1)

(
y−1

{
Bi(x), Pi−1(m−1

i y)
Pi(y)

}
+ x−1

{
Pi−1(m−1

i x)
Pi(x) ,Bi(y)

})

−m2
im

2−N
i+1 (m−Ni − 1)(m−Ni+1 − 1)

(
y−1

{
Bi(x), Pi+1(mi+1y)

Pi(y)

}
+ x−1

{
Pi+1(mi+1x)

Pi(x) ,Bi(y)
})

+ m2
im

2
i+1(m−Ni − 1)2(m−Ni+1 − 1)2{Bi(x),Bi(y)},

(F.0.16)
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in which all the brackets are explicitly computable. By comparing the results we derive

β̃(α)
i , β̃

(β)
i

 = 0, i = 0, 1, · · · , r = 1, α, β = 1, · · · , N. (F.0.17)

Therefore, we confirm that the Poisson brackets for the coordinates α(α)
i , β̃

(α)
i are canonical.
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Appendix G

Quantum toroidal algebra of gl(p)

In this appendix, we remind the definition of the quantum toroidal algebra of gl(p), give its

vertical and horizontal representations, and comment on the reduction ν1 = −ν2 = 1 of the

algebraic relations 6.3.2.

G.1 Definition

Quantum toroidal algebras were introduced by V. Ginzburg and M. Kapranov and E.

Vasserot in [171]. In general, they can be built over an affine Kac-Moody algebra ĝ, but

we will focus in this appendix on the case of an algebra of type A(1)
p−1, also called quantum

toroidal g = gl(p) algebra. This algebra is formulated in terms of the Drinfeld currents

x±ω (z) =
∑
k∈Z

z−kx±ω,k, ψ±ω (z) =
∑
k≥0

z∓kψ±ω,±k. (G.1.1)

Like the Chevalley generators, the operators x±ω (z) are associated to the simple roots αω of

ĝ. On the other hand, the operators ψ±ω (z) describe the Cartan sector of the algebra, they

are naturally associated to the coroots α∨ω. We denote the Cartan matrix βωω′ = 〈α∨ω, αω′〉,

in the case of gl(p), we have βωω′ = 2δω,ω′−δω,ω′+1−δω,ω′−1 (here δω,ω′ denotes the Kronecker

delta with indices taken modulo p). In this case, the original relations can be deformed by
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an extra central parameter κ, using the antisymmetric matrix mωω′ = δω,ω′−1−δω,ω′+1 [160]:1

[ψ±ω (z), ψ±ω′(w)] = 0, ψ+
ω (z)ψ−ω′(w) = gωω′(qcz/w)

gωω′(q−cz/w)ψ
−
ω′(w)ψ+

ω (z), x±ω (z)x±ω′(w) = gωω′(z/w)±1x±ω′(w)x±ω (z),

ψ+
ω (z)x±ω′(w) = gωω′(q±c/2z/w)±1x±ω′(w)ψ±ω (z), ψ−ω (z)x±ω′(w) = gωω′(q∓c/2z/w)±1x±ω′(w)ψ−ω (z)

[x+
ω (z), x−ω′(w)] = δω,ω′

q − q−1

[
δ(q−cz/w)ψ+

ω (q−c/2z)− δ(qcz/w)ψ−ω (qc/2z)
]

∑
σ∈S2

[
x±ω (zσ(1))x±ω (zσ(2))x±ω±1(w)− (q + q−1)x±ω (zσ(1))x±ω±1(w)x±ω (zσ(2)) + x±ω±1(w)x±ω (zσ(1))x±ω (zσ(2))

]
= 0,

(G.1.3)

and ψ+
ω,0ψ

−
ω,0 = ψ−ω,0ψ

+
ω,0 = 1. In these relations, q ∈ C×, c is a central element, and the

matrix gωω′(z) writes2

gωω′(z) = q−βωω′
1− qβωω′κmωω′z

1− q−βωω′κmωω′z , gωω′(z−1) = gω′ω(z)−1 = gωω′(κ−2mωω′z)−1. (G.1.5)

In order to compare with the gauge theory quantities, we should set q = q
1/2
3 , κ = (q1/q2)1/2,

then

gωω′(z) =
(
q−1

3
1− q3z

1− q−1
3 z

)δω,ω′ (
q

1/2
3

1− q1z

1− q−1
2 z

)δω,ω′−1
(
q

1/2
3

1− q2z

1− q−1
1 z

)δω,ω′+1

. (G.1.6)

1The generators of this algebra are sometimes denoted x+
ω (z)→ Ei(z), x−ω (z)→ Fi(z), ψ±ω (z)→ K±i (z).

More rigorously the x± − x± exchange relation should be written

(κmωω′ z − q±βωω′w)x±ω (z)x±ω′(w) = (κmωω′ q±βωω′ z − w)x±ω′(w)x±ω (z). (G.1.2)

This subtlety only affects the colliding points z = q±βωω′κ−mωω′w. The parameter κ here bears not connec-
tion with the Chern-Simons levels κω of the gauge theory.

2This matrix is sometimes also written

gωω′(z) = θβωω′ (κ
mωω′ z), θm(z) = q−m

1− qmz
1− q−mz , θm(z−1) = θm(z)−1 = θ−m(z). (G.1.4)
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Modes decomposition The algebraic relations G.1.3 can also be directly written for the

modes of the Drinfeld currents. In particular, introducing

ψ±ω (z) = ψ±ω,0 exp
±∑

k≥1
z∓kaω,±k

 , (G.1.7)

we find,

ψ+
ω,0x

±
ω′(z) = q±βωω′x±ω′(z)ψ+

ω,0, [aω,k, aω′,l] = (qkc−q−kc)c(k)
ωω′δk+l, [aω,k, x±ω′,l] = ±q∓|k|c/2c(k)

ωω′x
±
ω′,k+l,

(G.1.8)

where the coefficients c(k)
ωω′ appear in the expansion of log gωω′(z):3

[gωω′(z)]± = q±βωω′ exp
±∑

k>0
z∓kc

(±k)
ωω′

 , c
(k)
ωω′ = c

(−k)
ω′ω = 1

k
κ−kmωω′ (qkβωω′ − q−kβωω′ ),

(G.1.10)

where [· · · ]± denotes the expansion in powers of z∓1. In addition to the central charge c, it

possible to define a second central charge using the zero modes of the Cartan currents:

p−1∏
ω=0

ψ±ω,0 = q∓c̄. (G.1.11)

Finally, the algebra can be supplemented with the following grading operators,

qdx±ω (z)q−d = x±ω (q−1z), qdψ±ω (z)q−d = ψ±ω (q−1z),

qd̄ωx±ω′(z)q−d̄ω = q±δω,ω′x±ω′(z), qd̄ωψ±ω′(z)q−d̄ω = ψ±ω′(z).
(G.1.12)

3Alternatively,

c
(k)
ωω′ = 1

k

[
(qk3 − q−k3 )δω,ω′ + (qk2 − q−k1 )δω,ω′−1 + (qk1 − q−k2 )δω,ω′+1

]
= k(β[k]

ωω′ − β
[−k]
ω′ω ), (G.1.9)

where β[k]
ωω′ = (1 + qk3 )δωω′ − q−k1 δω,ω′−1 − q−k2 δω,ω′+1 is the mass-deformed Cartan matrix of Kimura and

Pestun [173] with the mass µe = q1 associated to each link e : ω → ω + 1 of the necklace quiver.
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G.2 Horizontal representation

Representations of this type have central charge c = 1, they have been constructed by Saito

in [160] under the name vertex representations. We review here this construction.

For c 6= 0, the Cartan modes aω,k define p coupled Heisenberg subalgebras. For later

convenience we introduce the rescaled modes

αω,k = k

qk − q−k
ρ(H)(aω,k) ⇒ [αω,k, αω′,l] = kδk+l

qkβωω′ − q−kβωω′
qk − q−k

κ−kmωω′ . (G.2.1)

The representation of the currents x±ω (z) and ψ±ω (z) can be factorized into two commuting

parts: a zero mode part (X±ω (z), Y ±ω (z)), and a vertex operator part (η±ω (z), ϕ±ω (z)) built

over the Cartan modes αω,k:

ρ(H)(x±ω (z)) = X±ω (z)η±ω (z), ρ(H)(ψ±ω (z)) = Y ±ω ϕ
±
ω (z). (G.2.2)

We focus first on the vertex operators part, it writes

η±ω (z) =: exp
∓∑

k∈Z

z−k

k
q∓|k|/2αω,k

 :, ϕ±ω (z) = exp
±∑

k>0

z∓k

k
(qk − q−k)αω,±k

 ,
(G.2.3)

note that ϕ±ω (z) =: η+
ω (q±1/2z)η−ω (q∓1/2z) :. The Fock vacuum |∅〉 is annihilated by positive

modes αω,k>0, and we define accordingly the normal ordering : · · · : by writing positive

modes on the right. It is a matter of simple algebra to derive the following normal-ordering
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relations:

η+
ω (z)η+

ω′(w) = Sω′ω(w/z)−1 : η+
ω (z)η+

ω′(w) :, η−ω (z)η−ω′(w) = Sω′ω(q2w/z)−1 : η−ω (z)η−ω′(w) :,

η±ω (z)η∓ω′(w) = Sω′ω(qw/z) : η±ω (z)η∓ω′(w) :,

ϕ+
ω (q∓1/2z)η±ω′(w) =

(
Sω′ω(q2w/z)
Sω′ω(w/z)

)±1

: ϕ+
ω (q∓1/2z)η±ω′(w) :,

η±ω (z)ϕ−ω′(q±1/2w) =
(
Sω′ω(q2w/z)
Sω′ω(w/z)

)±1

: η±ω (z)ϕ−ω′(q±1/2w) :,

ϕ+
ω (z)ϕ−ω′(w) =

(
Sω′ω(qw/z)2

Sω′ω(q−1w/z)Sω′ω(q3w/z)

)
: ϕ+

ω (z)ϕ−ω′(w) :,

(G.2.4)

with the function

Sωω′(z) = exp
∑
k>0

1
k
zkq−kκkmωω′

qkβωω′ − q−kβωω′
qk − q−k

 . (G.2.5)

In fact, it is possible to resum the infinite series and write the matrix elements Sωω′(z) as

simple rational functions:

Sωω′(z) =
|βωω′ |−1∏
r=0

(1− κmωω′q2r−|βωω′ |z)−sign (βωω′ ) = (1− q1z)δω,ω′−1(1− q2z)δω,ω′+1

(1− z)δω,ω′ (1− q1q2z)δω,ω′
. (G.2.6)

We then observe the crossing symmetry,

Sωω′(q2/z) = fωω′(z)Sω′ω(z), fωω′(z) = Fωω′z
βωω′ , Fωω′ = (−q)−βωω′κ−mωω′βωω′ , (G.2.7)

and Fωω′Fω′ω = q−2βωω′ , fωω′(q2/z)fω′ω(z) = 1. The structure function gωω′(z) can be written

as a ratio of functions Sωω′(z) with shifted arguments,

gωω′(z) = q−βωω′
Sωω′(z)
Sωω′(q2z) = fω′ω(qz) Sωω′(z)

Sω′ω(z−1) . (G.2.8)

We now turn to the analysis of the zero-modes. In [160], Saito introduces the symbols eαω
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associated to the roots αω, and obeying the commutation relations eαωeαω′ = (−1)βωω′eαω′eαω

(in particular symbols attached to the same root commute). These symbols, together with

the operators aω,0 and ∂αω act on states parameterized by a root α = ∑
ω∈Zp rωαω (rω ∈ Z)

and a fundamental weight Λω0 ,

eαω |α,Λω0〉 =
∏
ω′<ω

(−1)rω′βωω′ |α + αω,Λω0〉 , ∂αω |α,Λω0〉 = 〈α∨ω, β + Λω0〉 |α,Λω0〉 ,

zaω,0 |α,Λω0〉 = z〈α∨ω ,α+Λω0〉∏
ω′
κrω′βωω′mωω′/2 |α,Λω0〉 .

(G.2.9)

In this representation,

q∂αω eαω′ = qβωω′eαω′q∂αω , zaω,0eαω′ = zβωω′κmωω′βωω′/2eαω′zaω,0 . (G.2.10)

Thus, introducing X±ω (z) = e±αωz1±aω,0 and Y ±ω = q±∂αω , we find the algebraic relations

X±ω (z)X±ω′(w) = fω′ω(qz/w)X±ω′(w)X±ω (z), X±ω (z)X∓ω′(w) = fω′ω(qz/w)−1X∓ω′(w)X±ω (z),

Y +
ω X

±
ω′(w) = q±βωω′X±ω′(w)Y +

ω , Y −ω X
±
ω′(w) = q∓βωω′X±ω′(w)Y −ω , [Y +

ω , Y
−
ω′ ] = 0.

(G.2.11)

It is easy to verify that these are indeed the factors needed to reproduce the algebraic

relations G.1.3. The only difficulty appears in the verification of the commutation relation

[x+
ω , x

−
ω′ ] for which we need to use the property zaω,0w−aω,0 = z∂αωw−∂αω to treat the zero

mode dependence. The value of the central charge c̄ can be recovered by noticing that

∑
ω∈Zp
〈α∨ω, β + Λω0〉 = 1 ⇒

∏
ω∈Zp

q∂αω = q. (G.2.12)

This representation has been extended to higher level c̄ in [154]. Note however that in the

definition of the (ν1, ν2)-deformed horizontal representation, a set of 4p Heisenberg algebras

289



will be employed to define to the zero-modes X±ω and Y ±ω instead of the symbols introduced

in G.2.9.

G.3 Vertical representations

The vertical representations have central charge c = 0 and thus the Cartan currents ψ±ω (z)

commute. They are diagonal in the basis of states |λ〉〉 labeled by m-tuple Young diagram

λ = (λ(1), · · · , λ(m)). The representation depends on anm-vector of weights v = (v1, · · · , vm)

and a choice of coloring cα for each component vα. We denote mω = |Cω(m)| the number of

weights vα of color cα = ω (obviously, m = ∑
ω∈Zpmω). The action of the Drinfeld currents

on the states |λ〉〉 reads

ρ(V )(x+
ω (z)) |λ〉〉 = (qz)−β

[λ]
ω
∏
∈λ

(−κ)−mωc( )/2
∑
∈Aω(λ)

δ(z/χ ) Res
z=χ

1
zỸ [λ]

ω (z)
|λ+ 〉〉,

ρ(V )(x−ω (z)) |λ〉〉 = qzβ
[λ]
ω +2 ∏

∈λ
(−κ)mωc( )/2

∑
∈Rω(λ)

δ(z/χ ) Res
z=χ

z−1Ỹ [λ]
ω (q−1

3 z) |λ− 〉〉,

ρ(V )(ψ±ω (z)) |λ〉〉 =
[
Ψ̃[λ]
ω (z)

]
±
|λ〉〉.

(G.3.1)

In the first two lines, summations are performed over the set of boxes of color ω that can be

added (Aω(λ)) to or removed from (Rω(λ)) the m-tuple Young diagram λ. The summands

are expressed in terms of residues involving the functions Ỹ [λ]
ω (z), and the action of the

Cartan is given as an expansion of the functions Ψ̃[λ]
ω (z) in powers of z∓1. These two sets of

functions are defined as follows:

Ψ̃[λ]
ω (z) = q−mω

∏
α∈Cω(m)

1− q2vα/z

1− vα/z
∏
∈λ
gωc( )(z/χ ) = q−β

[λ]
ω
Ỹ [λ]
ω (q−2z)
Ỹ [λ]
ω (z)

,

Ỹ [λ]
ω (z) =

∏
α∈Cω(m)

(1− vα/z)
∏
∈λ
Sc( )ω(χ /z), β[λ]

ω = mω −
∑
∈λ
βωc( ).

(G.3.2)
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The zero modes of the Cartan act as

ρ(V )(ψ±ω,0) |λ〉〉 = q∓β
[λ]
ω |λ〉〉. (G.3.3)

and, taking the product over the index ω, we deduce the level ρ(V )(c̄) = m.

G.4 Relation with the (ν1, ν2)-deformed algebra

The physical quantity we need to reproduce is the scattering function Sωω′(z) defined in

6.2.16. In this scope, it is easier to compare the horizontal representations, and reproduce

the commutation of the Heisenberg subalgebras 6.3.22 using the gl(p) formula G.2.1. This

leads to identify the Cartan matrix with the matrix βωω′ defined in 6.2.18. Furthermore, the

factor κmωω′ has to be replaced with a more general matrix κωω′ that reads4

κωω′ = q−1q
δω,ω̄′
3 q

−δω,ω′+ν1
1 q

−δω,ω′+ν2
2 . (G.4.1)

Using this identification, the crossing symmetry relation 6.2.17 reduces to G.2.7 for ν3 = 0,

and the formula G.2.7 for Fωω′ reproduces the definition 6.2.18. The function Sωω′(z) defined

in 6.2.16 is recovered by replacing the expression G.2.5 with

Sωω′(z) = exp
∑
k>0

zk

k
q−kκ−kω′ω

qkβω′ω − q−kβω′ω
qk − q−k

 . (G.4.2)

The definition of the structure function gωω′(z) is a little more difficult because of the

freedom in defining the zero-mode factor. Comparing with the formula G.2.8 for the case of

gl(p), the most natural choice would be

g
(1)
ωω′(z) = fωω′(qz) Sωω′(z)

Sω′ω(z−1) = qβωω′F 2
ωω′

∏
i=1,2,3

(1− qiz)δω,ω′−νi
(1− q−1

i z)δω,ω′+νi
. (G.4.3)

4We could also express the coefficients σ[k]
ωω′ = kβωω′κ

−k
ωω′ = kq

k/2
3 β

[k]
ωω′ in terms of the mass-deformed

Cartan matrix β[k]
ωω′ = δω,ω′ + qk3δω,ω̄′ − q−k1 δω,ω′+ν1 − q−k2 δω,ω′+ν2 .
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Unfortunately, with this definition, the identity g(1)
ωω′(z)g(1)

ω′ω(z−1) = 1 is NOT satisfied, yet

it is necessary for the consistency of the algebraic relations. This prompts us to propose

instead the definition given in 6.3.4 where the factor fωω′(qz) is missing. Unfortunately, this

redefinition of the structure function gωω′(z) breaks the natural symmetry between positive

and negative currents, and makes the definition of the central charge c̄ more difficult. Note

also that another possibility could have been to define

g
(2)
ωω′(z) =

∏
i=1,2,3

(1− qiz)δω,ω′−νi
(1− qiz−1)δω,ω′+νi

, (G.4.4)

but this would require us to modify the definition of the function Sωω′(z):

g
(2)
ωω′(z) = − S

(2)
ωω′(z)

S
(2)
ω′ω(z−1)

, S
(2)
ωω′(z) = (1− q1z)δω,ω′−ν1 (1− q2z)δω,ω′−ν2

(1− z−1)δω,ω′ (1− q3z−1)δω,ω′−ν1−ν2
. (G.4.5)
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Appendix H

Shell formula

We provide here a short derivation of the shell formula 6.2.23 for the functions Y [λ]
ω (z).

Since Kω(λ) is a direct sum of Kω(λ(α)), the function Y [λ]
ω (z) factorizes into contributions

of the individual Young diagrams Y [λ(α)]
ω (z). Thus, it is possible to focus on the case of a

single Young diagram λ(α) corresponding to a weight vα of color cα. The proof will be done

by recursion on the number of boxes. We start with an empty Young diagram, for which

Rω(∅) = ∅. The box = (1, 1) is of color c( ) = cα, thus Aω(∅) = {(1, 1)} if ω = cα and

Aω(∅) = ∅ otherwise. Accordingly, we recover Y [∅]
ω (z) = (1− vα/z)δω,cα .

Now, let’s add a box to λ(α). From the definition 6.3.13, we have

Y [λ(α)+ ]
ω (z)
Y [λ(α)]
ω (z)

= (1− q1χ /z)δc( ),ω−ν1 (1− q2χ /z)δc( ),ω−ν2

(1− χ /z)δc( ),ω(1− q1q2χ /z)δc( ),ω−ν1−ν2
. (H.0.1)

q2

q1

q1q−1
1

q2

q−1
2 q−1

1

q−1
2

Figure H.1: Generic and degenerate configurations of a box added to the corner of a Young
diagram
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There are four possible configurations for adding box in λ(α), all represented in figure H.1.

We start with the generic case, for which

Aω(λ(α) + ) = Aω(λ(α)) \ { | c( ) = ω} ∪ {q1 | c( ) = ω − ν1} ∪ {q2 | c( ) = ω − ν2},

Rω−ν1−ν2(λ(α) + ) = Rω−ν1−ν2(λ(α)) ∪ { | c( ) = ω − ν1 − ν2}.

(H.0.2)

We employed here the shortcut notation q±1
1 (q±1

2 ) to designate the box of coordinate

(i± 1, j) (resp. (i, j ± 1)) next to = (i, j). In this generic case, the factors induced by the

variation of the content of the sets Aω and Rω−ν1−ν2 reproduce the extra factor Sc( )ω(χ /z)

in the RHS of H.0.1.

We now turn to the first case of the degenerate configurations represented on figure H.1.

In this case, only one more box can be added to Aω(λ(α) + ). On the other hand, the

addition of the box prevents the removal of the box q−1
1 . As a result,

Aω(λ(α) + ) = Aω(λ(α)) \ { | c( ) = ω} ∪ {q1 | c( ) = ω − ν1},

Rω−ν1−ν2(λ(α) + ) = Rω−ν1−ν2(λ(α)) ∪ { | c( ) = ω − ν1 − ν2} \ {q−1
1 | c( ) = ω − ν2}.

(H.0.3)

Once again, we observe the agreement between the variation of the RHS 6.2.23 and the

recursion relation H.0.1. The other two cases are treated in the same way.
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Appendix I

Representations of the extended

algebra

I.1 Vertical representation

The vertical representation is of the highest weight type. The highest state |∅〉〉, also called

vacuum state, is annihilated by the currents x−ω (z), while x+
ω (z) create excitations. The

excited states |λ〉〉 are parameterized by an m-tuple Young diagram λ. The weights v =

(v1, · · · , vm) parameterize the action of the Cartan ψ±ω (z) on the vacuum state. The two

Cartan currents commute, they are diagonal in the basis |λ〉〉, with the eigenvalue [Ψ[λ]
ω (z)]±

where ± denotes an expansion in powers of z∓1. The action of x±ω (z) add/remove a box of

color ω. In order to produce the Dirac δ-function in the commutator [x+, x−], it is natural

to assume that modes x±ω,k depends on the index k only through a factor of χk where is

the box that is added/removed. Taking all these assumptions in consideration, we arrive at
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the following ansatz:

x+
ω (z) |λ〉〉 =

∑
∈Aω(λ)

δ(z/χ )A+[λ]
ω (x) |λ+ 〉〉,

x−ω (z) |λ〉〉 =
∑
∈Rω(λ)

δ(z/χ )A−[λ]
ω (x) |λ− 〉〉,

ψ±ω (z) |λ〉〉 =
[
Ψ[λ]
ω (z)

]
±
|λ〉〉,

(I.1.1)

where A±[λ]
ω (x) are the coefficients to be determined.

When the central charge c is vanishing, the algebra 6.3.2 simplifies drastically,

x±ω (z)x±ω′(w) = gωω′(z/w)±1x±ω′(w)x±ω (z), [ψ+
ω (z), ψ−ω′(w)] = [ψ±ω (z), ψ±ω′(w)] = 0,

ψ+
ω (z)x±ω′(w) = gωω′(z/w)±1x±ω′(w)ψ+

ω (z), ψ−ω (z)x±ω′(w) = gωω′(z/w)±1x±ω′(w)ψ−ω (z),

[x+
ω (z), x−ω′(w)] = Ωδω,ω′δ(z/w)

[
ψ+
ω (z)− ψ−ω (z)

]
.

(I.1.2)

Plugging in the ansatz I.1.1, and the expression 6.3.13 for Ψ[λ]
ω (z), we find that these relations

are satisfied provided that

A−[λ]
ω (x)A+[λ− ]

ω (x) = Ω Res
z=χ

z−1Ψ[λ]
ω (z), ∈ Rω(λ),

A+[λ]
ω (x)A−[λ+ ]

ω (x) = −Ω Res
z=χ

z−1Ψ[λ]
ω (z), ∈ Aω(λ),

A±[λ±x]
ω (y)
A
±[λ]
ω (y)

= gωω′(χy/χ )±1A
±[λ±y]
ω′ (x)
A
±[λ]
ω′ (x)

, c( ) = ω′, c(y) = ω.

(I.1.3)

The first two relations come from the projection of the commutator [x+, x−] on the basis

|λ〉〉, decomposing the RHS as

[
Ψ[λ]
ω (z)

]
+
−
[
Ψ[λ]
ω (z)

]
−

=
∑
∈Aω(λ)

δ(z/χ ) Res
z=χ

z−1Ψ[λ]
ω (z) +

∑
∈Rω(λ)

δ(z/χ ) Res
z=χ

z−1Ψ[λ]
ω (z).

(I.1.4)

The last equation in I.1.3 arises from the exchange relations x±x±. Then, it is simply a
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matter of calculation to check that the following coefficients do indeed satisfy the relations

I.1.3,

A+[λ]
ω ( ) = F 1/2 Res

z=χ
z−1Y [λ]

ω (z)−1 = ΩY [λ+ ]
ω (χ )−1,

A−[λ]
ω ( ) = f̊

[λ]
ω̄ (q−1

3 z) Res
z=χ

z−1Y [λ]
ω̄ (q−1

3 z) = −ΩF 1/2f̊
[λ]
ω̄ (q−1

3 z)Y [λ− ]
ω̄ (q−1

3 χ ).
(I.1.5)

I.2 Horizontal representation

Here the strategy is to start by computing the algebraic relations satisfied by the vertex

operators η±ω and ϕ±ω , compare them with 6.3.2, and introduce the zero-modes factors to

compensate unwanted factors. Using the definition 6.3.24, we can compute the normal-

ordering relations

η+
ω (z)η+

ω′(w) = Sω′ω(w/z)−1 : η+
ω (z)η+

ω′(w) :, η+
ω (z)η−ω′(w) = Sω′ω(w/z) : η+

ω (z)η−ω′(w) :,

η−ω (z)η−ω′(w) = Sω′ω̄(q3w/z)−1 : η−ω (z)η−ω′(w) := fω′ω(z/w)−1Sωω′(z/w)−1 : η−ω (z)η−ω′(w) :,

η−ω (z)η+
ω′(w) = Sω′ ω̄(q3w/z) : η−ω (z)η+

ω′(w) := fω′ω(z/w)Sωω′(z/w) : η−ω (z)η+
ω′(w) :,

(I.2.1)

and, since ϕ+
ω (z) =: η+

ω (z)η−ω (z) : and ϕ−ω (z) =: η+
ω̄ (q−1

3 z)η−ω (z) :,

ϕ+
ω (z)η±ω′(w) = fω′ω(z/w)±1gωω′(z/w)±1 : ϕ+

ω (z)η±ω′(w) :,

η+
ω (z)ϕ−ω′(w) = fω̄′ω(q3z/w)gωω̄′(q3z/w) : η+

ω (z)ϕ−ω′(w) :

η−ω (z)ϕ−ω′(w) = fω′ω(z/w)−1gωω′(z/w)−1 : η−ω (z)ϕ−ω′(w) :,

ϕ+
ω (z)ϕ−ω′(w) = fω̄′ω(q3z/w)

fω′ω(z/w)
gωω̄′(q3z/w)
gωω′(z/w) : ϕ+

ω (z)ϕ−ω′(w) : .

(I.2.2)

We deduce the algebraic relations between vertex operators. Comparing them with the

currents algebra 6.3.2 at c = 1, we observe that the latter are satisfied provided that we set

ρ(H)
u (x±ω (z)) = X±ω (z)η±ω (z), ρ(H)

u (ψ±ω (z)) = Y ±ω (z)ϕ±ω (z), (I.2.3)
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with1

X+
ω (z)X+

ω′(w) = X+
ω′(w)X+

ω (z), X−ω (z)X−ω′(w) = fω′ω(z/w)
fωω′(w/z)X

−
ω′(w)X−ω (z),

X+
ω (z)X−ω′(w) =: X+

ω (z)X−ω′(w) := fωω′(w/z)X−ω′(w)X+
ω (z),

Y +
ω (z)X±ω′(w) = fω′ω(z/w)∓1X±ω (z)Y +

ω′ (w),

X+
ω (z)Y −ω′ (w) = fω̄′ω(q3z/w)−1Y −ω′ (w)X+

ω (z), X−ω (z)Y −ω′ (w) = fω′ω(z/w)Y −ω′ (w)X−ω (z),

Y +
ω (z) = F−1/2 : X+

ω (z)X−ω (z) :, Y −ω (z) = F 1/2 : X+
ω̄ (q−1

3 z)X−ω (z) : .

(I.2.5)

The last two relations come from the commutator [x+, x−], they have been obtained using

the pole decomposition of the function Sω′ω(w/z) which brings

[Sω′ω(w/z)]+ − [Sω′ω(w/z)]− = Ω
[
δω,ω′δ(z/w)F−1/2 − δω,ω̄′δ(q3z/w)F 1/2

]
. (I.2.6)

The relations I.2.5 are satisfied if we set

X+
ω (z) = Qω(z), X−ω (z) = Qω(z)−1Pω̄(q−1

3 z), Y +
ω (z) = F−1/2Pω̄(q−1

3 z), Y −ω (z) = F 1/2Qω̄(q−1
3 z)

Qω(z) Pω̄(q−1
3 z),

(I.2.7)

where Qω(z) and Pω′(w) obey 6.3.21. These operators can be constructed in terms of 2p

Heisenberg algebras [pω, qω′ ] = δω,ω′ and [p̃ω, q̃ω′ ] = δω,ω′ by setting

Qω(z) = eqω+q̃ω log z, Pω(z) = z−
∑

ω′ βωω′pω′e
∑

ω′ βωω′ p̃ω′ (−1)pω(−q3)−pω+ν3 (−q1)−pω−ν1 (−q2)−pω−ν2 .

(I.2.8)

Combining the operatorsX±ω , Y ±ω and the vertex operators η±ω , ψ±ω , we find the representation

6.3.25. The dependence in the weights uω and levels nω is recovered using the freedom to
1Note that these relations imply

Y +
ω (z)Y −ω′ (w) = fω′ω(z/w)

fω̄′ω(q3z/w)Y
−
ω′ (w)Y +

ω (z). (I.2.4)
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shift the operators qω, q̃ω as qω → qω + log(uω), q̃ω → q̃ω − nω.

It remains to compute the central charge c̄. The zero modes of the Cartan currents write

ρ(H)(ψ+
ω,0) = F−1/2Pω̄(q−1

3 ) ρ(H)(ψ−ω,0) = F 1/2uω̄
uω
qnω̄3

Qω̄(q−1
3 )

Qω(1) Pω̄(q−1
3 ). (I.2.9)

We deduce that

ρ(H)

 ∏
ω∈Zp

ψ+
ω,0(ψ−ω,0)−1

 = q−n−q̃3 , q̃ =
∑
ω∈Zp

q̃ω. (I.2.10)

Since [q̃ω, Pω′(w)] = βω′ωPω′(w), the operator q̃ commute with Pω(z), thus it is central in this

representation. Moreover, since Qω(z) acts trivially on the dual state 〈∅|, we have q̃ = 0.

Finally, we also have to take into account the non-commutation of the zero modes which

brings the extra factor

p−1∏
ω,ω′=0
ω≤ω′

Fω′ω
Fω̄′ω

=
p−1∏
ω,ω′=0
ω≤ω′

q
βωω′
3 Fωω′Fω′ω =

p−1∏
ω,ω′=0
ω≤ω′

q
βωω′
3 × F−p

p−1∏
ω,ω′=0

Fωω′ =
p−1∏
ω,ω′=0
ω≤ω′

q
βωω′
3 . (I.2.11)

Since βωω′ is circulant, it is easy to compute

p−1∑
ω,ω′=0
ω≤ω′

βωω′ =


p (ν1 + ν2 < p),

0 (else),
(I.2.12)

assuming 0 ≤ ν1, ν2 ≤ p− 1. This gives us the value of the central charge c̄.
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Appendix J

Automorphisms, gradings and modes

expansion

J.1 Automorphisms and gradings

The algebraic relations 6.3.2 can be supplemented with the grading operators d and d̄ω

(ω ∈ Zp) acting on the currents as

eαdx±ω (z)e−αd = x±(eαz), eαdψ±ω (z)e−αd = ψ±ω (eαz),

eαd̄ωx±ω′(z)e−αd̄ω = e±αδω,ω′x±ω′(z), eαd̄ωψ+
ω′(z)e−αd̄ω = ψ+

ω′(z), eαd̄ωψ−ω′(z)e−αd̄ω = eα(δω,ω′−ν3c−δωω′ )ψ−ω′(z),

(J.1.1)

for any parameter α ∈ C. The grading operator d reflects the invariance of the algebra

under rescaling of the variable z → eαz, it defines the automorphisms τα acting on an

element x of the algebra as τα(x) = eαdxe−αd. Similarly, the grading operators d̄ω defines

the automorphisms τ̄ω,α(x) = eαd̄ωxe−αd̄ω associated to the invariance under the following

rescaling of the currents for a fixed ω:

x±ω (z)→ e±αx±ω (z), ψ−ω (z)→ e−αψ−ω (z), ψ−ω+ν3c(z)→ eαψ−ω+ν3c(z), (J.1.2)
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while the currents x±ω′ 6=ω(z), ψ+
ω′(z) and ψ−ω′ 6=ω,ω+ν3c

(z) remain invariant.

In addition to the automorphisms τα and τ̄ω,α, the algebraic relations are invariant under

a third class of automorphisms τ̃ω,α(x) = eαd̃ωxe−αd̃ω defined as

eαd̃ωx±ω′(z)e−αd̃ω = z±αδω,ω′x±ω′(z), eαd̃ωψ+
ω′(z)e−αd̃ω = ψ+

ω′(z),

eαd̃ωψ−ω′(z)e−αd̃ω = (q−c3 z)αδω,ω′−ν3cz−αδωω′ψ−ω′(z).
(J.1.3)

This transformation is the generalization of the element T of the SL(2,Z) group of automor-

phisms for the quantum toroidal algebra of gl1 (or Ding-Iohara-Miki algebra) [51]. With a

slight abuse of terminology, we will also call d̃ω a grading operator.

J.2 Modes expansion

In order to define properly the modes expansion of the currents x±ω (z) and ψ±ω (z), we need

to remove some part of the zero modes factors. For this purpose, we use a twist by a

combination of automorphisms to define the new currents x̃±ω (z) and ψ̃±ω (z) with proper

modes expansion. First, we introduce the following combinations of grading operators,

Fω = (−1)d̄ω(−q3)−d̄ω+ν3 (−q1)−d̄ω−ν1 (−q2)−d̄ω−ν2 , βω = −
∑
ω′
βωω′ d̄ω′ , Dω = e

∑
ω′ βωω′ d̃ω′ ,

(J.2.1)

such that

Fωx
±
ω′(w)F−1

ω = F±1
ωω′ x

±
ω′(w), zβωx±ω′(w)z−βω = z∓βωω′x±ω′(w), Dωx

±
ω′(w)D−1

ω = w±βωω′ x±ω′(w),

Fωψ
−
ω′(w)F−1

ω = Fωω′−ν3c

Fωω′
ψ−ω′(w), zβωψ−ω′(w)z−βω = zβωω′−βωω′−ν3cψ−ω′(w),

Dωψ
−
ω′(w)D−1

ω = w−βωω′+βωω′−ν3c ψ−ω′(w),

(J.2.2)

301



and ψ+
ω′(w) remains invariant. Defining ξω(z) = zβωDωFω, we find

ξω(z)x±ω′(w) = fωω′(w/z)±1x±ω′(w)ξω(z), [ξω(z), ξω′(w)] = 0,

ξω(z)ψ+
ω′(w) = ψ+

ω′(w)ξω(z), ξω(z)ψ−ω′(w) = fω ω′−ν3c(q−c3 w/z)
fωω′(w/z) ψ−ω′(w)ξω(z).

(J.2.3)

The operator ξω(z) is used to define the twisted currents

x+
ω (z) = x̃+

ω (z), x−ω (z) = x̃−ω (z)ξω̄(q−1
3 z), ψ+

ω (z) = ψ̃+
ω (z)ξω̄(q−1

3 z), ψ−ω (z) = ψ̃−ω (z)ξω−ν3c(q−c3 z),

(J.2.4)

that satisfy the following algebraic relations,

x̃+
ω (z)x̃+

ω′(w) = gωω′(z/w)x̃+
ω′(w)x̃+

ω (z), x̃−ω (z)x̃−ω′(w) = fωω′(w/z)
fω′ω(z/w)gωω

′(z/w)−1x̃−ω′(w)x̃−ω (z),

ψ̃+
ω (z)x̃±ω′(w) = fω′ω(z/w)±1gωω′(z/w)±1x̃±ω′(w)ψ̃+

ω (z),

ψ̃−ω (z)x̃+
ω′(w) = fω−ν3c ω′(qc3w/z)−1gω−ν3c ω′(q−c3 z/w)x̃+

ω′(w)ψ̃−ω (z),

ψ̃−ω (z)x̃−ω′(w) = fωω′(w/z)gωω′(z/w)−1x̃−ω′(w)ψ̃−ω (z),

ψ̃+
ω (z)ψ̃−ω′(w) = fω′−ν3c ω(qc3z/w)gωω′−ν3c(qc3z/w)

fω′ω(z/w)gωω′(z/w) ψ̃−ω′(w)ψ̃+
ω (z),

x̃+
ω (z)x̃−ω′(w)− fωω′(w/z)−1x̃−ω′(w)x̃+

ω (z) = Ωδω,ω′δ
(
z

w

)
ψ̃+
ω (z)− Ωδω,ω′−ν3cδ

(
qc3z

w

)
ψ̃−ω′(qc3z) ξω(z)

ξω̄′(qc−1
3 z)

.

(J.2.5)

The operators ξω(z) do not fully decouple from the twisted algebra as it appears in the

commutation relation [x̃+, x̃−]. The exchange relations ψ̃±− x̃ now have the correct behavior

as z±1 →∞ to define the expansions

x̃±ω (z) =
∑
k∈Z

z−kx̃±ω,k, ψ̃+
ω (z) = ψ̃+

ω,0 exp
∑
k>0

z−kaω,k

 , ψ̃−ω (z) = ψ̃−ω,0z
ãω,0 exp

∑
k>0

zkaω,−k

 .
(J.2.6)

The currents ψ̃−ω (z) still conserve a zero mode dependence ãω,0 that is required to reproduce

the exchange relation J.2.3 with the grading operator ξω(z). From the asymptotic behavior
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of the algebraic relations, we deduce that this zero mode operator ãω,0 commutes with all

the twisted currents x̃±ω , ψ̃±ω but not with the gradings ξω(z):

ξω(z)wãω′,0 = wβωω′−ν3c−βωω′wãω′,0ξω(z). (J.2.7)

Note that this operator becomes central if ν3 = 0 or c = 0. Expanding in powers of the

spectral parameters, the exchange relations ψ̃ − x̃ and ψ̃ − ψ̃ given in J.2.5 provide the

commutation relations between the modes,

[aω,k>0, aω′,l] = δk+l(q−kc3 c
(k)
ωω′−ν3c

− c(k)
ωω′), [aω,k>0, x̃

±
ω′,l] = ±c(k)

ωω′x̃
±
ω′,l+k,

[aω,−k<0, x̃
+
ω′,l] = q−kc3 c

(−k)
ωω′+ν3c

x̃+
ω′,l−k, [aω,−k<0, x̃

−
ω′,l] = −c(−k)

ωω′ x̃
+
ω′,l−k,

(J.2.8)

where1

c
(k)
ωω′ = c

(−k)
ω′ω = 1

k

∑
i=1,2,3

(qki δω,ω′+νi − q−ki δω,ω′−νi). (J.2.10)

In particular, when c 6= 0, the modes aω,k of the Cartan currents define p Heisenberg sub-

algebras. This property is used to build the horizontal representation in appendix I.2. The

exchange relations x̃ − x̃ can also be written in terms of modes by projecting the following

relations:

zβωω′
∏

i=1,2,3
(w − q−1

i z)δω,ω′+νi x̃+
ω (z)x̃+

ω′(w) = Fωω′w
βω′ω

∏
i=1,2,3

(w − qiz)δωω′−νi x̃+
ω′(w)x̃+

ω (z),

zβω′ω
∏

i=1,2,3
(w − qiz)δω,ω′−νi x̃−ω (z)x̃−ω′(w) = F−1

ω′ωw
βωω′

∏
i=1,2,3

(w − q−1
i z)δωω′+νi x̃−ω′(w)x̃−ω (z).

(J.2.11)

A priori, the commutator [x̃+, x̃−] could also be written in terms of modes, but the expression

is rather cumbersome. On the other hand, the grading operators have simple actions on the
1These coefficients appear in the expansions

[gωω′(z)]+ = fω′ω(z)−1 exp
(∑
k>0

z−kc
(k)
ωω′

)
, [gωω′(z)]− = fωω′(z−1) exp

(
−
∑
k>0

zkc
(−k)
ωω′

)
. (J.2.9)
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modes:

[d, x̃±ω′,k] = −kx̃±ω′,k, [d, aω,k] = −kaω,k, [d, ψ̃±ω′,0] = 0, [d, ãω′,0] = 0,

[d̄ω, x̃±ω′,k] = ±δω,ω′x̃±ω′,k, [d̄ω, aω′,k] = 0, [d̄ω, ψ+
ω′,0] = [d̄ω, ãω′,0] = 0, [d̄ω, ψ̃−ω′,0] = (δω,ω′−ν3c − δω,ω′)ψ̃−ω′,0,

ed̃ω x̃±ω′,ke
−d̃ω = x̃±ω′,k±δω,ω′ , ed̃ω ψ̃+

ω′,0e
−d̃ω = ψ̃+

ω′,0, ed̃ω ψ̃−ω′,0e
−d̃ω = q

−cδω,ω′−ν3c
3 ψ̃−ω′,0,

[d̃ω, aω′,k] = 0, ed̃ωzãω′,0e−d̃ω = zδω,ω′−ν3c−δω,ω′zãω′,0 .

(J.2.12)

J.3 Coproduct

The Hopf algebra structure can be extended to include the grading operators, provided we

define the coproduct, counit and antipode as

∆(d) = d⊗ 1 + 1⊗ d, ∆(d̄ω) = d̄ω ⊗ 1 + 1⊗ d̄ω−ν3c(1) ,

∆(d̃ω) = d̃ω ⊗ 1 + 1⊗ d̃ω−ν3c(1) + (log q3) c⊗ d̄ω−ν3c(1) ,

ε(d) = ε(d̄ω) = ε(d̃ω) = 0, S(d) = −d, S(d̄ω) = −dω+ν3c,

S(d̃ω) = −d̃ω+ν3c + (log q3) cd̄ω+ν3c.

(J.3.1)

We deduce, for the composite operators,

∆(βω) = βω ⊗ 1 + 1⊗ βω−ν3c(1) , ε(βω) = 0, S(βω) = −βω+ν3c,

∆(Fω) = Fω ⊗ Fω−ν3c(1) , ε(Fω) = 1, S(Fω) = F−1
ω+ν3c,

∆(Dω) = Dω ⊗ q
−c(1)βω−ν3c(1)
3 Dω−ν3c(1) , ε(Dω) = 1, S(Fω) = q

cβω+ν3c
3 D−1

ω+ν3c,

(J.3.2)

and, finally,

∆(ξω(z)) = ξω(z)⊗ ξω−ν3c(1)(q
−c(1)
3 z), ε(ξω(z)) = 1, S(ξω(z)) = ξω+ν3c(qc3z)−1. (J.3.3)

304



We can also compute the coproduct for the twisted currents,

∆(x̃+
ω (z)) = x̃+

ω (z)⊗ 1 + ψ̃ω+ν3c(1)(q
c(1)
3 z)ξω(z)⊗ x̃+

ω (z)

∆(x̃−ω (z)) = ξω̄(q−1
3 z)−1 ⊗ x̃ω−ν3c(1)(q

−c(1)
3 z) + x̃−ω (z)⊗ ψ̃ω−ν3c(1)(q

−c(1)
3 z),

∆(ψ̃+
ω (z)) = ψ̃+

ω (z)⊗ ψ̃+
ω−ν3c(1)

(q−c(1)
3 z),

∆(ψ̃−ω (z)) = ψ̃−ω−ν3c(2)
(q−c(2)

3 z)⊗ ψ̃−ω−ν3c(1)
(q−c(1)

3 z)ξω−ν3c(1)−ν3c(2)(q
−c(1)−c(2)
3 z)ξω−2ν3c(1)−ν3c(2)(q

−2c(1)−c(2)
3 z)−1,

(J.3.4)

and deduce

∆(aω,k>0) = aω,k ⊗ 1 + qck3 ⊗ aω−ν3c(1),k, ∆(aω,−k<0) = aω−ν3c(2),−k ⊗ q
−kc
3 + q−kc3 ⊗ aω−ν3c(1),−k,

∆(aω,0) = aω−ν3c(2),0 ⊗ 1 + 1⊗ aω−ν3c(1),0 + 1⊗
(
βω−ν3c(1)−ν3c(2) − βω−2ν3c(1)−ν3c(2)

)
,

(J.3.5)

together with the coproduct of the zero modes ψ±ω,0.

J.4 Vertical representation

In the vertical representation, the grading operators d̄ω and d̃ω commute with the currents

ψ±ω (z), therefore they are diagonal in the basis |λ〉〉. Their eigenvalues can be determined

recursively using the relations with the currents x±(z),

ρ(0,m)
v (d̄ω) |λ〉〉 = |Kω(λ)| |λ〉〉, ρ(0,m)

v (d̃ω) |λ〉〉 =
∑
∈λ
δω,c( ) logχ

 |λ〉〉, (J.4.1)

where the eigenvalues on the vacuum have been chosen to be zero. Then, the representation

of ξω(z) takes the simple form

ρ(V )(ξω(z)) |λ〉〉 = f̊ [λ]
ω (z) |λ〉〉, (J.4.2)
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with the function f̊ [λ]
ω (z) defined in 6.3.13. We find the representation of the twisted currents

to be

ρ(V )(x̃+
ω (z)) |λ〉〉 = F 1/2 ∑

∈Aω(λ)
δ(z/χ ) Res

z=χ
z−1Y [λ]

ω (z)−1 |λ+ 〉〉,

ρ(V )(x̃−ω (z)) |λ〉〉 =
∑
∈Rω(λ)

δ(z/χ ) Res
z=χ

z−1Y [λ]
ω̄ (q−1

3 z) |λ− 〉〉,

ρ(V )(ψ̃+
ω (z)) |λ〉〉 = f̊

[λ]
ω̄ (q−1

3 z)−1
[
Ψ[λ]
ω (z)

]
+
|λ〉〉, ρ(V )(ψ̃+

ω,0) = 1,

ρ(V )(ψ̃−ω (z)) |λ〉〉 = f̊ [λ]
ω (z)−1

[
Ψ[λ]
ω (z)

]
−
|λ〉〉, ρ(V )(ψ̃+

ω,0) =
∏
α∈Cω̄(m)(−q3vα)∏
α∈Cω(m)(−vα) ,

ρ(V )(aω,k) |λ〉〉 =
∑
∈λ
c

(k)
ωc( )χ

k

 |λ〉〉, ρ(V )(ãω,0) = mω −mω̄.

(J.4.3)

J.5 Horizontal representation

Computing the exchange relations of the operators eαpω and eαp̃ω with the Drinfeld currents

leads to the identification of the representation for grading operators

ρ(H)(d̄ω) = pω, ρ(H)(d̃ω) = p̃ω ⇒ ρ(H)(ξω(z)) = Pω(z). (J.5.1)

Thus, we find the representation for the twisted currents,

ρ(H)(x̃+
ω (z)) = uωz

−nωQω(z)η+
ω (z), ρ(1,n)

u (x̃−ω (z)) = u−1
ω znωQω(z)−1η−ω (z),

ρ(H)(ψ̃+
ω (z)) = F−1/2ϕ+

ω (z),

ρ(H)(ψ̃−ω (z)) = F 1/2uω̄
uω
qnω̄3 znω−nω̄

Qω̄(q−1
3 z)

Qω(z) ϕ−ω (z),

(J.5.2)

and the modes

ρ(H)(aω,k>0) = −1
k

(q−k/23 αω,k − qk/23 αω̄,k), ρ(H)(aω,−k<0) = −1
k

(q−k3 αω̄,−k − αω,−k),

ρ(H)(ψ̃+
ω,0) = F−1/2, ρ(H)(ψ̃−ω,0) = F 1/2uω̄

uω
qnω̄−q̃ω̄3 eqω̄−qω , ρ(H)(ãω,0) = nω − nω̄ + q̃ω̄ − q̃ω.

(J.5.3)
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We can verify that ãω,0 commutes with the twisted currents, and satisfies the relation J.2.7

with the grading operator ξω(z).
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Appendix K

Derivation of the vertex operators

K.1 Definition of the vacuum components

Before sketching the derivation of the solution for the intertwining relations, we would like

to provide a bold argument for the definition of the vacuum components Φ∅ and Φ∗∅ entering

in the definition 6.4.4 of the intertwiners. In fact, the full partition function of the gauge

theory, including classical, one-loop and instantons contributions, has a nice description

in terms of the melting crystal picture [7, 206]. Indeed, the one-loop contribution can be

written as a double product over the boxes of completely filled (infinite) Young diagrams

λ∞ = {(α, i, j)�α = 1 · · ·m, i = 1 · · ·∞, j = 1 · · ·∞}, assuming a ζ2-regularization for the

infinite product. Then, the instanton correction of order O(qk) is obtained by removing k

boxes to λ∞, taking the double product over λc = λ∞ \ λ = {(α, i, j)�α = 1 · · ·m, i =

λ
(α)
j + 1 · · ·∞, j = 1 · · ·∞} and summing over the configurations λ of k = |λ| boxes. The

vacuum component Φ∅ of the intertwiner Φ is associated to this infinite product over boxes

in λ∞, so that formally

Φ∅ ':
∏
∈λ∞

η+
c( )(χ )−1 :, Φλ ' tλ :

∏
∈λc

η+
c( )(χ )−1 :, (K.1.1)

and similarly for Φ∗λ, replacing η+
c( )(χ ) with η−c( )+ν3

(q3χ ).
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In order to develop this idea, we may introduce a very crude cut-off N such that λ∞ is

obtained as the limit N →∞ ofm Young diagrams consisting of squares of size (pN)×(pN),

i.e. λN = {(α, i, j)�α = 1 · · ·m, i = 1 · · · pN, j = 1 · · · pN}. Then, we may consider the

product over boxes (α, i, j) ∈ λN and decompose the indices (i, j) as i = ī + 1 + kip,

j = j̄ + 1 + kjp with ī, j̄ = 0 · · · p− 1 and ki, kj = 0 · · ·N − 1. We end up with

:
∏
∈λN

η+
c( )(χ )−1 :=:

m∏
α=1

p−1∏
ī,j̄=0

exp
−∑

k>0

(vαqī1q
j̄
2)k

k

N−1∑
ki,kj=0

qpkik1 q
pkjk
2 αcα+īν1+j̄ν2,−k


× exp

∑
k>0

(vαqī1q
j̄
2γ)−k
k

N−1∑
ki,kj=0

q−pkik1 q
−pkjk
2 αcα+īν1+j̄ν2,k

 :,

(K.1.2)

Performing the sum over ki and kj, we find

:
∏
∈λN

η+
c( )(χ )−1 :=:

m∏
α=1

p−1∏
ī,j̄=0

exp
−∑

k>0

(vαqī1q
j̄
2)k

k

1− qpkN1

1− qpk1

1− qpkN2

1− qpk2
αcα+īν1+j̄ν2,−k


× exp

∑
k>0

(vαqī1q
j̄
2γ)−k
k

1− q−pkN1

1− q−pk1

1− q−pkN2

1− q−pk2
αcα+īν1+j̄ν2,k

 :,

(K.1.3)

At this stage, the limit N → ∞ is ill-defined because the first exponential converges when

|q1|, |q2| < 1 while the second exponential for |q1|, |q2| > 1. However, we notice that each

color can be treated independently, and their contribution written in terms of the vacuum

component for the intertwiner describing instantons on a Ω-background with no orbifold

[141, 51], with the replacement ε1, ε2 → pε1, pε2. Thus, we can borrow the corresponding

operator and simply define

Φ∅ =:
m∏
α=1

p−1∏
ī,j̄=1

exp
−∑

k>0

(vαqī1q
j̄
2)k

k(1− qpk1 )(1− qpk2 )
αcα+īν1+j̄ν2,−k

 exp
∑
k>0

(vαqī1q
j̄
2γ)−k

k(1− q−pk1 )(1− q−pk2 )
αcα+īν1+j̄ν2,k

 : .

(K.1.4)
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The appearance of quantities defined on the background Cpε1 × Cpε2 × S1
R is reminiscent of

the surface defect interpretation of the orbifold developed in [21, 1]. It may also be related

to the abelianization procedure described in the case of gl(p) (unrefined, i.e. q3 = 1) in [154].

Using the definition K.1.4, we obtain the following normal-ordering relations1

η+
ω (z)Φ∅ =

∏
α∈Cω(m)

(1− vα/z)−1 : η+
ω (z)Φ∅ :, Φ∅η+

ω (z) =
∏

α∈Cω̄(m)
(1− z/(q3vα))−1 : η+

ω (z)Φ∅ :,

η−ω (z)Φ∅ =
∏

α∈Cω̄(m)
(1− q3vα/z) : η−ω (z)Φ∅ :, Φ∅η−ω (z) =

∏
α∈Cω̄(m)

(1− z/(q3vα)) : η−ω (z)Φ∅ : .

(K.1.6)

Since ϕ±ω (z) can be expressed in terms of η±ω (z), we easily deduce the normal-ordering rela-

tions for these vertex operators as well. This argument can also be applied to Φ∗∅, it leads

to define

Φ∗∅ =:
m∏
α=1

p−1∏
ī,j̄=0

exp
∑
k>0

(vαqī1q
j̄
2q3)k

k(1− qpk1 )(1− qpk2 )
αcα+(̄i−1)ν1+(j̄−1)ν2,−k


× exp

−∑
k>0

(vαqī1q
j̄
2γ)−k

k(1− q−pk1 )(1− q−pk2 )
αcα+īν1+j̄ν2,k

 :,
(K.1.7)

and we obtain

η+
ω (z)Φ∗∅ =

∏
α∈Cω̄(m)

(1− q3vα/z) : η+
ω (z)Φ∗∅ :, Φ∗∅η+

ω (z) =
∏

α∈Cω̄(m)
(1− z/(q3vα)) : η+

ω (z)Φ∗∅ :,

η−ω (z)Φ∗∅ =
∏

α∈Cω+2ν1+2ν2 (m)
(1− q2

3vα/z)−1 : η−ω (z)Φ∗∅ :, Φ∗∅η−ω (z) =
∏

α∈Cω̄(m)
(1− z/(q3vα))−1 : η−ω (z)Φ∗∅ : .

(K.1.8)

1We have used the following property to perform the sum over indices ī, j̄:

1
k

p−1∑
ī,j̄=0

(qī1q
j̄
2)kq−k/23 σ

(k)
ω,cα+īν1+j̄ν2

= (1− qpk1 )(1− qpk2 )δω,cα . (K.1.5)
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We can also compute

Φ∅Φ′∅ = G(v′|v)−1 : Φ∅Φ′∅ :, Φ∗∅Φ∗′∅ = G(v′|q−1
3 v)−1 : Φ∗∅Φ∗′∅ :,

Φ∅Φ∗′∅ = G(v′|q−1
3 v) : Φ∅Φ∗′∅ :, Φ∗∅Φ′∅ = G(v′|v) : Φ∗∅Φ′∅ :,

(K.1.9)

where we G(v|v′) denotes the bifundamental contribution at one-loop expressed in terms of

the function Gq1,q2(z),2

G(v|v′) =
m∏
α=1

m′∏
α′=1

p−1∏
ī,j̄=0
Gqp1 ,qp2 (vαqī+1

1 qj̄+1
2 /v′α′)

−δc′
α′
,cα+(̄i+1)ν1+(j̄+1)ν2 , Gq1,q2(z) = exp

(
−
∞∑
k=1

1
k

zk

(1− qk1)(1− qk2)

)
.

(K.1.11)

K.2 Solution of intertwining relations

Once projected on the vertical states using the decomposition 6.4.3, the intertwining relations

6.4.1 write

x+
ω (z)Φλ = Ψ[λ]

ω (z)Φλx
+
ω (z) + ρ(V )(x+

ω (z)) · Φλ,

x−ω (z)Φλ = Φλx
−
ω (z) +

[
ρ(V )(x−ω (z)) · Φλ

]
ψ+
ω (z),

ψ+
ω (z)Φλ = Ψ[λ]

ω (z)Φλψ
+
ω (z), ψ−ω (z)Φλ(z) = Ψ[λ]

ω̄ (q−1
3 z)Φλψ

−
ω (z),

(K.2.1)

and

x+
ω (z)Φ∗λ = Φ∗λx+

ω (z)− ψ−ω−ν1−ν2(q3z)
[
ρ(V )∗(x+

ω (z)) · Φ∗λ
]
,

Ψ[λ]
ω̄ (q−1

3 z)x−ω (z)Φ∗λ = Φ∗λx−ω (z)− ρ(V )∗(x−ω̄ (q−1
3 z)) · Φ∗λ,

ψ+
ω (z)Φ∗λ = Ψ[λ]

ω̄ (q−1
3 z)−1Φ∗λψ+

ω (z), ψ−ω (z)Φ∗λ(z) = Ψ[λ]
ω̄ (q−1

3 z)−1Φ∗λψ−ω (z).

(K.2.2)

2Note that when the weights are shifted as v → q3v, we have to shift the colors cα → cα+ν3 accordingly.
For instance,

G(v|q−1
3 v′) =

m∏
α=1

m′∏
α′=1

p−1∏
ī,j̄=0

Gqp1 ,qp2 (v′α′qī+1
1 qj̄+1

2 /vα)
δcα,c′

α′
+(ī+1)ν1+(j̄+1)ν2 . (K.1.10)
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To lighten the notations, we have omitted the horizontal representations ρ(H) and ρ(H′) and

indicated the vertical action with a central dot. In order to show that the operators Φλ and

Φ∗λ defined in 6.4.4 satisfy these relations, we need to compute the factors coming from the

normal ordering of products with the Drinfeld currents in the horizontal representation. It

is easier to treat separately the vertex operators part,

η+
ω (z)Φλ = Y [λ]

ω (z)−1 : η+
ω (z)Φλ :, Φλη

+
ω (z) = f

[λ]
ω̄ (q−1

3 z)−1Y [λ]
ω̄ (q−1

3 z)−1 : η+
ω (z)Φλ :,

η−ω (z)Φλ = Yω̄(q−1
3 z) : η−ω (z)Φλ :, Φλη

−
ω (z) = f

[λ]
ω̄ (q−1

3 z)Y [λ]
ω̄ (q−1

3 z) : η−ω (z)Φλ :,

ϕ+
ω (z)Φλ = f̊

[λ]
ω̄ (q−1

3 z)−1Ψ[λ]
ω (z) : ϕ+

ω (z)Φλ :, Φλϕ
+
ω (z) =: ϕ+

ω (z)Φλ :,

ϕ−ω (z)Φλ =: ϕ−ω (z)Φλ :, Φλϕ
−
ω (z) = f

[λ]
ω̄ (q−1

3 z) f̊ω+2ν1+2ν2(q−2
3 z)

fω+2ν1+2ν2(q−2
3 z)

Ψ[λ]
ω̄ (q−1

3 z)−1 : ϕ−ω (z)Φλ :,

(K.2.3)

η+
ω (z)Φ∗λ = Y [λ]

ω̄ (q−1
3 z) : η+

ω (z)Φ∗λ :, Φ∗λη+
ω (z) = f

[λ]
ω̄ (q−1

3 z)Yω̄(q−1
3 z) : η+

ω (z)Φ∗λ :,

η−ω (z)Φ∗λ = Y [λ]
ω+2ν1+2ν2(q−2

3 z)−1 : η−ω (z)Φ∗λ :, Φ∗λη−ω (z) = f
[λ]
ω̄ (q−1

3 z)−1Yω̄(q−1
3 z)−1 : η−ω (z)Φ∗λ :,

ϕ+
ω (z)Φ∗λ = f̊

[λ]
ω+2ν1+2ν2(q−2

3 z)Ψ[λ]
ω̄ (q−1

3 z)−1 : ϕ+
ω (z)Φ∗λ :, Φ∗λϕ+

ω (z) =: ϕ+
ω (z)Φ∗λ :,

ϕ−ω (z)Φ∗λ =: ϕ−ω (z)Φ∗λ :, Φ∗λϕ−ω (z) = f
[λ]
ω̄ (q−1

3 z)−1f
[λ]
ω+2ν1+2ν2(q−2

3 z)
f̊

[λ]
ω+2ν1+2ν2(q−2

3 z)
Ψ[λ]
ω̄ (q−1

3 z) : ϕ−ω (z)Φ∗λ :,

(K.2.4)

and the zero-modes part,

Pω(z)tλ = f̊ [λ]
ω (z) : Pω(z)tλ :, [Qω(z), tλ] = 0,

Pω(z)t∗λ = f̊
[λ]
ω̄ (q−1

3 z)−1 : Pω(z)t∗λ :, t∗λQω(z) = f̊
[λ]
ω̄ (q−1

3 z)−1 : t∗λQω(z) : .
(K.2.5)

From these relations, we to deduce the normal ordering relations for the currents x±ω and ψ±ω .

Then, the relation K.2.1 and K.2.2 for the Cartan currents ψ±ω follow directly, provided that

the weights and levels satisfy the relation 6.4.2. This condition is related to the difference

312



between the functions f [λ]
ω and f̊ [λ]

ω ,

u′ωz
−n′ω

uωz−nω
= f̊

[λ]
ω̄ (q−1

3 z)
f

[λ]
ω̄ (q−1

3 z)
. (K.2.6)

The relations K.2.1 and K.2.2 involving the currents x±ω are harder to prove. This is done

by decomposition of the functions Y [λ]
ω (z) as sum over poles. We refer the reader to [51] for

a more detailed explanation.
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Appendix L

Spinor conventions

The spinor indices in ψα and ψ̃α̇ are raised and lowered by

ψα = εαβψβ, ψ̃α̇ = εα̇β̇ψ̃
β̇

ψβ = −ψαεαβ, ψ̃β̇ = −ψ̃α̇εα̇β̇,
(L.0.1)

where ε12 = −ε12 = ε1̇2̇ = −ε1̇2̇ = 1. We use the convention for the spinor index contraction

ψχ = ψαχα, ψ̃χ̃ = ψ̃α̇χ̃
α̇. (L.0.2)

The symplectic-Majorana spinors ψA and ψ̃A are defined by

(ψαA)† = εABεαβψβB, (ψ̃α̇A)† = εABεα̇β̇ψ̃β̇B, (L.0.3)

where the SU(2)R indices are raised and lowered as XA = εABXB and XA = εABX
B with

ε12 = −ε12 = 1.

The σ-matrices are defined by

σaαα̇ = (i~τ ,1)αα̇, σ̃aα̇α = (−i~τ ,1)α̇α, (L.0.4)
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where ~τ are the Pauli matrices.
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