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Abstract of the Dissertation
Anomalies, Entanglement and Boundary Geometry in Conformal Field Theory
by
Kuo-Wei Huang

Doctor of Philosophy

in
Physics
Stony Brook University

2018

A conformal field theory embedded in a curved spacetime background can be character-
ized by the trace anomaly coefficients of the stress tensor. We first derive general vacuum
stress tensors of even-dimensional conformal field theories using Weyl anomalies. We then
consider some aspects of conformal field theory in space-time dimensions higher than two
with a codimension-one boundary. We discuss how boundary effect plays an important
role in the study of quantum entanglement. We also obtain universal relationships between
boundary trace anomalies and stress-tensor correlation functions near the boundary. A non-
supersymmetric graphene-like conformal field theory with a four-dimensional bulk photon
and a three-dimensional boundary electron is found to have two boundary central charges
that depend on an exactly marginal direction, namely the gauge coupling.
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Chapter 1

Introduction

As fixed points of renormalization group flow, conformal field theories play a cornerstone
role in our understanding of quantum field theories. A classically conformal field theory has
an action invariant under conformal transformations and the conformal invariance implies a
vanishing trace of the stress tensor.! The well-known trace anomaly represents a quantum
phenomenon that breaks the conformal symmetry and the trace of the “expectation value” of
the stress tensor becomes non-zero. In general, a conformal field theory can be characterized
by the trace anomaly coefficients or central charges of the stress tensor. In addition to their
well-known important roles in determining correlation functions, these central charges also
provide a way of ordering quantum field theories under renormalization group flow. In two
dimensions, the classic c-theorem [12] states that the central charge ¢ decreases through
the renormalization group flow from the ultraviolet to the infrared. In four-dimensions,
the corresponding trace anomaly is defined by two types of central charge, ¢4 and ay. The
conjectural a-theorem which stated that the four-dimensional Euler central charge a4 could
be the analog of ¢ in 2D [13] was proven only recently using dilaton fields to probe the trace
anomaly [14]. The possibility of a 6D a-theorem was explored in [15].

While there are thousands of papers discussing topics related to the conformal anomaly,
the correpsonding discussions in field theories with a boundary have been far less explored,
in particular in spacetime dimensions higher than two. One might naively wonder that
the reason for the relative lack of this research direction might be that boundary effects
play only minor roles and will not lead to interesting consequences. Here we would like to
instead emphasize that boundary effects in fact have becoming a unifying theme in several
areas where there has been significant progress in modern theoretical physics. Indeed, a

boundary is essential for understanding condensed matter systems such as impurity models

!The Weyl transformation is defined by:

guu(x) = 620(1).9”1/(1‘) = Qquu(-r) . (1.1)

For a conformally flat background, g,, = Q21,,.



and topological insulators. D-branes, which gave us insight into non-perturbative properties
of string theory, are the boundaries of fundamental strings. In gauge-gravity duality, which
has provided us a glimpse of connections between quantum gravity and strongly-interacting
field theories, quantum fields fluctuate on the boundary of anti-de Sitter space. As a measure
of quantum information, entanglement entropy is often defined with respect to spatial regions
where an “entangling boundary” plays a crucial role. The concept of entanglement has
deepened our understanding of black hole thermodynamics and has given us new insight
into renormalization group flow in relativistic quantum field theories. Lately, a fascinating
picture is that spacetime geometry might spring up from quantum entanglement. A natural
question arises: “might these developments have been obvious if we simply had understood
quantum field theory and gravity in the presence of a boundary better to begin with?” The
renewed research on boundary physics is therefore timely and needed in view of modern
research developments.

This thesis is devoted to exploring anomalies and boundary effects in field theories, in
particular those in conformal field theories. We shall start with the more familar case where
spacetime has no boundary. In Chapter 2, using trace anomalies, we determine the vacuum
stress tensors of even-dimensional conformal field theories in conformally flat backgrounds,
adopting the dimensional regularization scheme. A simple relation between the Casimir en-
ergy on the real line times a sphere and the type A anomaly coefficient will be demonstrated.
This relation generalizes earlier results in two and four dimensions. These field theory results
for the Casimir are shown to be consistent with holographic predictions in two, four, and
six dimensions. In Chapter 3, we obtain stress tensors from Weyl anomalies in more general
(non-conformally flat) backgrounds. The spacetime remains no boundary in this chapter.
The results of type A anomaly-induced stress tensors in four and six-dimensions generalize
the previous results in Chapter 2 calculated in a conformally flat background. We emphasize
that regulators are needed to have well-defined type B anomaly-induced stress tensors. We
also discuss ambiguities related to type D anomalies and order of limit issues.

In Chapter 4, we compute the universal contribution to the vacuum entanglement entropy
(EE) across a sphere in even-dimensional conformal field theory by employing a conformal
map. Previous attempts to derive the EE in this way were hindered by a lack of knowledge of
the appropriate boundary terms in the trace anomaly. We will show that the universal part
of the EE can be treated as a purely boundary effect. As a byproduct of our computation,
we derive an explicit form for the A-type anomaly contribution to the Wess-Zumino term for
the trace anomaly, now including boundary terms. In d=4 and 6, these boundary terms gen-
eralize earlier bulk actions derived in the literature. Furthermore, a complete classification
of d=4 conformal anomalies with a boundary is given.

Motivated by boundary terms of the conformal anomaly, in Chapter 5 we will study the
structure of current and stress tensor two-point functions in conformal field theory with a
boundary. The main result of this chapter is a relation between a boundary central charge



and the coefficient of a displacement operator correlation function. The boundary central
charge under consideration is the coefficient of the product of the extrinsic curvature and
the Weyl curvature in the conformal anomaly. Along the way, we describe several auxiliary
results. Three of the more notable are as follows: (1) we give the bulk and boundary
conformal blocks for the current two-point function; (2) we show that the structure of these
current and stress tensor two-point functions is essentially universal for all free theories;
(3) we introduce a class of interacting conformal field theories where the interactions are
confined to the boundary. The most interesting example we consider can be thought of
as the infrared fixed point of graphene. This particular interacting conformal model in
four dimensions provides a counterexample of a previously conjectured relation between a
boundary central charge and a bulk central charge. The model also demonstrates that the
boundary central charge can change in response to marginal deformations.

Finally, in Chapter 6 we constrain all the boundary central charges in three and four
dimensional conformal field theories in terms of two- and three-point correlation functions of
the displacement operator. We provide a general derivation by comparing the trace anomaly
with scale dependent contact terms in the correlation functions. We conjecture a relation
between the a-type boundary charge in three dimensions and the stress tensor two-point
function near the boundary. We check our results for several free theories. The thesis ends

with some interesting open questions.



Chapter 2

Stress Tensors from Trace Anomalies:
Conformally Flat Spacetime

This chapter is an edited version of my publication [1], written in collaboration with

Christopher Herzog.

A conformal field theory (CFT) embedded in a curved spacetime background can be
characterized by the trace anomaly coefficients of the stress tensor. Here we only consider
even dimensional CFTs because there is no trace anomaly in odd dimensions. The anomaly
coefficients (or central charges) a4 and cq; show up in the trace as follows,

(TY) = ﬁ (Z cyl)” - <—>%‘adEd) . (2.1)

)

Here E,; is the Euler density in d dimensions and [ J(d are independent Weyl invariants of

[Pl

weight —d. The subscript “j” is used to index the Weyl invariants. Our convention for the

Euler density is that

1 vy, L
Ed - W(SN;‘WZR‘ 1'U2V1l/2 o RMd_l“dVd—lVd : (22)
We will not need the explicit form of the I ](d) in what follows, although we will discuss their

form in d < 6.

Note that we are working in a renormalization scheme where the trace anomaly is free
of the so-called type D anomalies which are total derivatives that can be changed by adding
local covariant but not Weyl-invariant counter-terms to the effective action. For example, in
four space-time dimensions, a (JR in the trace can be eliminated by adding an R? term to
the effective action.

In this chapter, we show how to compute (T"") in terms of a4 and curvatures for a
conformally flat background.



The properties of central charges in the 6D case are of particular interest; the (2,0) theory,
which describes the low energy behavior of M5-branes in M-theory, is a 6D CFT. From the
AdS/CFT correspondence, it has been known for over a decade that quantities such as the
thermal free energy [16] and the central charges [17] have an N? scaling for a large number N
of M5-branes. However, a direct field theory computation has proven difficult. Any results
calculated from the field theory side of the 6D CFT without referring to AdS/CFT should
be interesting. Such results also provide a non-trivial check of the holographic principle.

We would like to study the general relation between the stress tensor and the trace
anomaly of a CFT in a conformally flat background. The main result of this chapter (2.21)
is an expression for the vacuum stress tensor of an even dimensional CFT in a conformally
flat background in terms of a, and curvatures. (By vacuum, we have in mind a state with no
spontaneous symmetry breaking, where the expectation values of the matter fields vanish.)

We pay special attention to the general relation between the Casimir energy (ground
state energy) and ag. Let €4 be the Casimir energy on R x S4~1. The well known 2D CFT
result is [18§]

c as
120 200

where ¢ is the radius of S*. This result is universal for an arbitrary 2D CFT, independent

(2.3)

€y =

of supersymmetry or other requirements. For general R x S9! we will find

13- (d-1ag

=it (2.4)

€d

2.1 Stress Tensor and Conformal Anomaly

We would like to determine the contribution of the anomaly to the stress tensor of a
field theory in a conformally flat background. The general strategy we use was originally
developed in [19]. (See also [20, 21, 22, 23] for related discussion.) The conformal (Weyl)
transformation is parametrized by o(x) in the standard form

G () = e2°($)guy(x) ) (2.5)

Denote the partition function as Z[g,,|. The effective potential is given by

L9 9] = 0 Z[Gy] — In Z[g,.] - (2.6)

The expectation value of the stress tensor (T") is defined by the variation of the effec-
tive potential with respect to the metric. Here we consider a conformally flat background,
G () = €@y, and we normalize the stress tensor in the flat spacetime to be zero. The

(renormalized) stress tensor is given by

ey — 2 0Tl
T S St

5

(2.7)



which implies

5P[§a6] o 5F[gaﬁ]

V=T (2)) = 2gu(2) — = : 2.8
ATHw) = 2g,0(0) 5 0020 = 2.9
We rewrite
O(V=g(Ty (=) o 6 o O0U[Gag]

4 =2 ) ————2G, (1) — ) 2.9
o)~ g @ g 2

Then we use the following commutative property

) )

Iap(2)——, Gy (2)———| =0 2.10
gAP( )5g>\p(x,) g ’Y( )5.9#7(1:) ( )

to obtain the following differential scale equation

[ [Ty =T !

do(x') 0G, ()

This equation determines the general relation between the stress tensor (and hence the
Casimir energy) and the trace anomaly.

Next we would like to re-write the trace anomaly (T}) in terms of a Weyl exact form,
(T) = & (something), so that we can factor out the sigma variation in (2.11) to simplify the
calculation. The integration constant is fixed to zero by taking (T*") = 0 in flat space. We
use dimensional regularization and work in n = d + ¢ dimensions. While we do not alter E,

in moving away from d dimensions, we will alter the form of the j(d). Let lim,,_,q4 Ij(d) = J(d)
where Ij(d) continues to satisfy the defining relation 501;@ = —dI](d). We assume that in

general IJ(»d)’s exist such that

0 n,./ = N —
e | VIR = VR (212)
L no! ST\ D () = —7(d)
(n—d)5a(x)/d 91" () 9L - (2.13)

We now make a brief detour to discuss the existence of Zj(d) ind=2,4 and 6 [24, 25] and

also a general proof of the variation (2.12). In 2D, there are no Weyl invariants I J@) and we

can ignore (2.13). In 4D, we have the single Weyl invariant [ §4) = C’ﬁjs)C(”:‘l) HAP where

CWrAr is the 4D Weyl tensor. If we define the n-dimensional Weyl tensor
R
(n—1)] "

then we find IfA‘) = CZL,)A pC(”) mAP defined in terms of the n-dimensional Weyl tensor satisfies

the eigenvector relation (2.13).

O\, = Ry — 2(53 oy + O BY)) + (2.14)

n —



At this point, our treatment differs somewhat from ref. [19] where the authors vary
instead I£4) with respect to 0. While ref. [19] allows for an additional total derivative OR
term in the trace anomaly, here we choose a renormalization scheme where the trace anomaly
takes the minimal form. It turns out that this scheme is the one used to match holographic
predictions as we will discuss shortly. A OJR can be produced by varying (n — 4)R* with
respect to o. Such an R? term appears in the difference between Ifl) and [ 1(4) in [19].

In 6D, there are three Weyl invariants

19 = C;S?Aa C/(©)ronA Cl()ﬁ)wn : 2.15)

I = COA c®en Clom (2.16)
6

B = Ol (004 4R — SRIE) OO 4 D 217)

To produce the I](-6) when j = 1,2, we replace the six dimensional Weyl tensor with its n-
dimensional cousin as in the 4D case. The variation (2.13) is then straightforward to show.
For j = 3, [26] demonstrated the corresponding Weyl transformation for a linear combination
of the three I](G), there denoted H. The full expression for Iéﬁ) and the n-dimensional version
of J* is not important; we refer the reader to [26, 27| for details. For d > 6, we assume the
Weyl invariants can be engineered in a similar fashion; see [28] for the d = 8 case.

To vary Ej4, we write the corresponding integrated Euler density as

[ (N d)
/dniﬂ _gE’d — / mRmazmm R Rad_ladud-ludemﬂ .. ezrflear"an . (2‘18)

Recall that the variation of a Riemann curvature tensor with respect to the metric is a
covariant derivative acting on the connection. After integration by parts, these covariant
derivatives act on either the vielbeins €, or the other Riemann tensors and hence vanish by
metricity or a Bianchi identity. Thus, in varying the integrated Euler density, we need only
vary the vielbeins. We use the functional relation 20/dg;; = ef, d/def,. One finds

5 —
o / &2’ —GEg = Y R, Ly RO, SR (2.19)

a a Hd—1Hd “v1---vqr
6gy(x) 25+

From this expression, the desired relation (2.12) follows after contracting with 4.
Given the variations (2.12, 2.13), we can factor out the sigma variation in (2.11) to obtain

oy _ oy — ] 2
() = (X = I o= ==

0 / — n d
X /dn.ill vV —g (Z cdeJ( ) — (—)gadEd) .
J

O Gy (z)

(2.20)

(While we specialize to conformally flat backgrounds, under a more general conformal trans-
formation one has (T"(g)) — (X" (g)) = e~ (@27 ((T"(g)) — (X*(g))).) Comparing with

7



(2.7), we see that the effective action must contain terms proportional to (T}). Indeed,
these are precisely the counter terms that must be added to regularize divergences coming
from placing the CFT in a curved space time [29]. We next perform the metric variation for
a conformally flat background. The metric variation of the Weyl tensors Z](d) vanishes for
conformally flat backgrounds because the IJ(»d) are all at least quadratic in the n-dimensional
Weyl tensor. (Conformal flatness is used only after working out the metric variation.) Thus
the stress tensor in a conformally flat background may be obtained by varying only the Euler
density:

d ] 1 Vv Vig_1V,
N (—8m)d/2 }E&l n — dR P e BTy 5511.”12df~ (2.21)

Note that in a conformally flat background, employing (2.14), the Riemann curvature can
be expressed purely in terms of the Ricci tensor and Ricci scalar:

RVv2 _ 2(51/1 sz + Sv2 Ryl ) o R(SZIIZZ
pipz T 9 (11" 2] (2™ "pa] n—1

Contracting a d,/ with the antisymmetrized Kronecker delta 6/ % eliminates the factor of
(n —d) in (2.21).

In 2D and 4D, we can use (2.21) to recover results of [19]. In 2D, the right hand side
of (T} is proportional to R — $Ré" which vanishes in 2D. Thus we first must expand the
Einstein tensor in terms of the Weyl factor o where g, = €21, before taking the n — 2
limit. The result is [19]

(THy = ;—; (0”“” +oto? — g (a,,\;)‘ + %ay,\a”\>> . (2.22)
In 4D, we obtain
(T = (;;)42 [g’“’(%Q - Rip) +2RMRY — gRRW] . (2.23)
In 6D, we obtain (to our knowledge) a new result
() = = 4a7f>3 ER‘;RZRM - szRﬁRK - %g“”RiR;Rz
—%R’“RKR + i—égﬂ”RgRgR + %R#V}# - %g““RP’} S (2:24)

As we work in Weyl flat backgrounds, there is no contribution from B type anomalies. These
(T") are covariantly conserved, as they must be since they were derived from a variational
principle.



2.2 Casimir Energy and Central Charge

Next we would like to relate ay to the Casimir energy defined as

_ 00 VO d—1 ]
o= [, ) wol(st), 2:29

on R x 91, In preparation, let us first calculate E; for the sphere S?. For S¢ with radius ¢,
the Riemann tensor is R"'"?,,,, = 0/1%2 /{>. Tt follows from (2.2) that £y = 4. We conclude
that the trace of the vacuum stress tensor on S takes the form

<T“ aq d!

W)= T (—dn)az (2.26)

Let us now calculate (T#) for S* x S?~1. The Riemann tensor on S x S471 is zero whenever
it has a leg in the S! direction and looks like the corresponding Riemann tensor for S9! in
the other directions. We can write R""2; ;, = 6%%2 /(2. where i and j index the $4'. The
computation of (7g) and (T}) proceeds along similar lines to the computation of Ey:

CLd(d — 1)' i ad(d — 2)' i

(—dme2)d2 (T7) = (_47ng)d/25j : (2.27)
Note that (T*) is traceless, consistent with a result of [22]. Using the definition (2.25), we
compute the Casimir energy €¢,. We find that (for d even)

(19 = -

~ag(d—1)! i1y 1-3---(d—1)ay
In 2D, 4D and 6D, the ratios between the Casimir energy and a, are —ﬁ, % and —5,

respectively.

2.3 Holography and Discussion

Here we would like to use the AdS/CFT correspondence to check our relation between €,
and ag for d = 2, 4 and 6. For CFTs with a dual anti-de Sitter space description, the stress-
tensor can be calculated from a classical gravity computation [30, 31, 32]. The Euclidean
gravity action is

S = Sbulk + Ssurf + Sct s (229)
1 d(d—1)
N - derl o\ )
Sb 1k 92 /M x\/a (R + 72 ) y
1
Ssurf = _? o ddw\/§K7
1 2d—1) L
¢t — T o dd
Set 2/{2/8/\4 ‘”\@[ L Ta—att
L3

e (R )



The Ricci tensor R, is computed with respect to the boundary metric g,, while R is the
Ricci Scalar computed from the bulk metric Gg,. The object K, is the extrinsic curvature
of the boundary OM. The counter-terms S.; render S finite, and we keep only as many as
we need. The metrics with S x S! conformal boundary,

ds® = L*(cosh® r dt? + dr? + sinh®r dQy_,) , (2.30)

and S boundary,
ds* = L*(dr? + sinh®r d) , (2.31)

satisfy the bulk Einstein equations. Note that the S9! and S? spheres have radius ¢ = %e”’
at some large reference o while we take the S* to have circumference 8 (hence the range of
tis 0 <t < /l). We compute the stress tensor from the on-shell value of the gravity action
using (2.7), making the identification I' = —S and using the boundary value of the metric
in place of g,,. One has [31]:

d Fsd Fsl Xsdfl
2 —4:2L log ¢ 7;%
2r3 3m2BL3
4| =L Nogl | —
K 4K20
23 L5 573 BL°
6 K2 log ¢ 16K2¢

We include only the leading log term of I'ga. From (2.7), it follows that (T9) Vol(S¢1) =
9T g1 ga-1 and (T4) Vol(S?) = 9,T'sa For a conformally flat manifold, we have from (2.1)
that (T4) = —aq(—47)"**E; which allows us to calculate aq from (T*) [17]. Defining the
Casimir energy with respect to a time ¢ = ¢t whose range is the standard 0 < ¢ < 3, we can
deduce from (2.25) that e = —03L g1, 5a-1 (see also [33]). We have

<T(§]> €4 <T5> Ed Qq
x5 | il [ 5] o [ %8

Comparing the ¢; and a4 columns, we can confirm the results from earlier, namely that

3 15
S e 66:_8_26, (2.32)

In the 4D case, such a gravity model arises in type IIB string theory by placing a stack
of N D3-branes at the tip of a 6D Calabi-Yau cone. In this case, we can make the further
identification [34, 17]: a4 = N2 VolS). where SEs5 is the 5D base of the cone. These con-

4 Vol(SEs)
structions are dual to 4D quiver gauge theories with N/ = 1 supersymmetry. In 6D, such a

gravity model arises in M-theory by placing a stack of N Mb-branes in flat space. In this
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case, we can make the further identification [17, 27] (see also [35]): ag = NTS. The dual field
theory is believed to be the non-abelian (2,0)-theory.

We would like to also comment briefly on the Casimir energy calculated in the weak
coupling limit.! In typical regularization schemes, for example zeta-function regularization,
the Casimir energy will not be related to the conformal anomaly via (2.4) because of the
presence of total derivative terms (D type anomalies) in the trace of the stress tensor. For a
conformally coupled scalar in 4D, ref. [29] tells us a4 = 1/360. Our result (2.4) would imply
then that €4 = 1/480L, but naive zeta-function regularization yields instead ¢, = 1/240L.
The discrepancy can be resolved either by including a LJR term in the trace, thus changing
(2.4) [22], or by adding an R* counter-term to the effective action, thereby changing €.
Amusingly in zeta-function regularization, the effect of the total derivative terms on ¢4
cancels for the full N' = 4 SYM multiplet, and the weak coupling results for ¢4 and ay are
related via (2.4) [36, 37]. In contrast, for the (2,0) multiplet in 6D, the total derivative terms
do not cancel [27]. The resulting discrepancy [38] in the relation between ag and € can
presumably be cured either by adding counter-terms to the effective action to eliminate the
total derivatives or by improving (2.4) to include the effect of these derivatives. Generalizing
our results to include the contribution of D type anomalies to the stress tensor would allow
a more straightforward comparison of weak coupling Casimir energies obtained via zeta-
function regularization and the conformal anomaly ag4.

There are two other obvious calculations for future study: i) Determine how (T*") trans-
forms in non-conformally flat backgrounds. Such transformations would involve the type B
anomalies. ii) Check the full 6D stress tensor (2.24) for any conformally flat background by
the holographic method. A 4D check of (2.23) was performed in [32].

IWe thank J. Minahan for discussions on this issue.

11



Chapter 3

Stress Tensors from Trace Anomalies:
Non-conformally Flat Spacetime

This chapter is an edited version of my publication [2].

In the previous chapter, we have shown that the stress tensors of conformal field theories
in a conformally flat background can be obtained from the trace anomalies without the
knowledge of a Lagrangian. In this chapter, we generalize these results to arbitrary general
(non-conformally flat) backgrounds.

In Sec. 3.1, we first review the main strategy of obtaining the stress tensor in a confor-
mally flat background discussed in the previous chapter. We then discuss the main issue of
having a well-defined dimensional regularization method when the spacetime is not confor-
mally flat; our main formula will be given in Sec. 3.2.1. In Sec. 3.2.2, we will obtain the
corresponding stress tensors from type A anomalies in 4D and 6D in general backgrounds.
These results generalize the previous results calculated in a conformally flat background ([1],
[19], [22]). In Sec. 3.2.3, we obtain the 4D type B anomaly-induced stress tensor in general
backgrounds. We also discuss the appearance of the term ~ LR from the type B anomaly.
We will comment on various ambiguities related to Weyl invariants in Sec. 3.2.4, where the
4D type D anomaly-induced stress tensor is also given. In the final discussion section, we

compare our 4D results with the literature.

3.1 Review

Let us first review the strategy of obtaining the stress tensors in conformally flat back-
grounds. Again let Z|[g,,| be the partition function. The effective potential is I'[g,, 9] =
In Z[gw] — In Z[g,,]. We normalize the stress tensor in the flat spacetime to be zero. The

(renormalized) stress tensor is (T*(x)) = \/ngg;[g?g. From the previous chapter, we found
7%

that the following equation determines the general relation between the stress tensor and

12



the trace anomalies:

O/=g(T" (x)) _  ov/=g(T3(z"))
o) =2 S (3.1)

In the scheme with no type D anomalies, we further assumed that we could always re-write

the anomalies as o—exact forms using the identities

6 m,. / / _
0 s @y @
(n—d)5a(ac)/d 92, (&) 91" (3.3)

While we did not alter Fy; in moving away from d dimensions but we altered the form of
the [ ](d): let lim,,_.q I](d) =17 ](-d) where I](d) continues to satisfy the defining relation 5013@ =
—dI](d). (We ignored lim,,,4 in (3.3) just for the simplicity of the expression.) The n-
dimensional Weyl tensor (denoted as C' in the previous chapter) is
R
(n— 1)}

QI (3.4)

o [2(5{;3;] + o, RY) +

Factoring out the sigma variation in (3.1) and setting the integration constant to zero in
flat spacetime, we obtained

") = lim ! 2
() = I =g V=5

’ " /=G ) _ ()
Xaguu(l‘) /d o g (; Cd]z_j ( ) adEd> |g .

(3.5)

The type B anomalies do not contribute to the stress tensors in a conformally flat background.
The stress tensor in a conformally flat background could be obtained by varying only the
Euler density and we found

= Qq 1 v
= — i 1V2 ... PRPVd—1V4 e pdpe | ]
(_87T>d/2 'I]:Lll)rgi n—d [R HiK2 R Hd—1Hd 5V1"'VdV ’9 ’

(3.6)

where the factor of (n — d) would be eliminated when using the conformal flatness condition
by contracting with 4.

3.2 (Generalization to Non-Conformally Flat Backgrounds

3.2.1 General Strategy

Using (3.5), we saw in (3.6) that the — could be cancelled by a factor of (n — d) in

the conformally flat case after the metric variation. Thus, the limit n — d is well-defined.

13



However, for general (non-conformally flat) backgrounds, we need to check that the limit
n — d can be still well-defined.
In the type A case, we do not have this issue because the type A anomaly is a topological
quantity.! This means that in the type A anomaly part, after the metric variation in (3.5),
0

it always gives us the form § in the limit n — d, thus we can adopt L’Hospital’s rule to

obtain meaningful results. We will use the following identity for the type A anomalies:

o )
@) — _[ "' —gE ’]:\/_—E . 3.8
= de@” = = dpe() / vV =gEa(@) i (3:8)

In the type B case, we will need a regulator to have a well-defined limit n — d. (Notice

that type B anomalies are generally not invariant under the metric variation.) Let us consider

the following identities:

0 g 0

(n—d)do(z) ' (n —d)do(x)

[/d”x/\/—_glj(d)(x') — /ddx'\/—_g_f](d)(x/) = \/—_gI](d) ;
(3.9)

where we add a term that is essentially the type B anomaly in a given dimension, which is
by definition a Weyl invariant quantity. The method to get rid of the infinite contribution is
as follows. After the metric variation, the parts without the additional term in (3.9) could
be written symbolically as

tim { (= (W) + (R} (310)

The function g(R,W) that causes the infinite contribution will be combined with the addi-

1
(n—d)

we could use L’Hospital’s rule

(gD (R,W)]. Treating the additional term as a regulator,

tional term’s contribution, —

(n) W) = @ 0%
e il E W) 11

Thus, the stress tensors from the type B anomalies contain the following two finite parts:

d
FO(RW) + lim — [g(”)(R, W)} . (3.12)

1One might think the fact that the variation of the Euler density with respect to the metric vanishes
in integer dimensions would imply type A anomalies must give terms all proportional to (n — d) to some
positive powers after the metric variation. But it is not true. Let’s take 4D as an explicit example: in 4D,
the metric variation on the type A anomaly in fact would give additional terms that are not proportional to
(n—4):

~ (§PWogepWeded —qwacdeyyt ) 4 O(n — 4) . (3.7)

In 4D only, the above expression vanishes as an identity. Hence the metric variation of the 4D Euler density
indeed vanishes. A similar structure would apply for higher dimensional type A anomalies.

14



The fact that the regulator is needed for a well-defined effective action of the type B anomaly
agrees with [23, 24], but here we use a different kind of effective action that is given by re-
writing trace anomaly as a o-exact form.

Let us now express the full formula more precisely. Denote

ICg d (Z Cdj[))](-d) — (—)gadA(d)) . (313)
J

N 09 ()

Then we factor out the sigma variation (from (3.1)) to get

V=g(THy — \/=g(T") = lim " i 7 (47T2)d/21Cg ~ lim — 2 K, . (3.14)

We further re-write the above expression as

uv\ — Jrpuv —d /pv\ __ 1; 1 2
oIy = {I"™) — QYT >—}ng; —3(n — d) (4m)3/2

where

. 1 2
[ ..... } 0 = iy s K (3.16)

simply denotes the same curvature tensor forms but only with g replaced by g. (Eq. (3.15)
is the main formula that we will be using in the following sections.)

3.2.2 Type A

In 4D we obtain

Qa Qa a Ci a 3
ST) W = (D) e f)ly = (g AR+ T

—9-4[ ..... } 9 (3.17)

(gabwcdefwcdef . 4Wa6dewbcde)] ’g

where (c.f) denotes the conformally flat case. The 4D stress tensor in a conformally flat
background was obtained in the previous chapter:

— R? 4
T (e.f) = [ ab<_ - R ) +2R*“R; — RR™| . 3.18
< > (C f) (47’(’)2 g 2 cd c 3 ( )
Notice that (3.17) is obtained by rewritting Riemann tensors into Weyl tensors in order to
factor out the (n — 4) factors. After rewritting Riemann/Weyl tensors into Weyl/Riemann
tensors, we should treat the remaining tensors as dimension-independent variables. The
topological nature of the type A anomalies implies that we can use the L’Hospital’s rule on

lim,, 4 ﬁ(gabwcde sWeded — AW, 0. W), which gives zero. Thus, the result is

Qy
G W ol = 7 [

ST, = [Ty (e.f) -
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where the extra term ~ R“W®? , vanishes once traced.? In this type A case,

. ab (A) o 4
lim, TrIS(T") ) = — s (19, — 1)) (3.20)
where
1Y = wihwn=nme (3.21)

is the only Weyl invariant in 4D. Note (3.20) in fact gives zero because of the nature of 1
which transforms covariantly. We also have

[lim, lim ]6(7%*)A =0 | (3.22)

n—4’ W0
since RWa P, vanishes in a conformally flat background.

Let us next consider the stress tensor derived from the 6D type A anomaly in general
backgrounds. We obtain a new result in 6D that (to our knowledge) was not computed
before:

ST Dy = (T (e )l +
(4m)pLs
3 3
+6Rbcwadefwcdef + _gabRcdRefwcdef o 12RCdWaebchedf o _RabWCdechdef

27 27
20 abRWCdefwcdef - 69abRch efngefg . ER‘/Vacclem/b

L RRetyye , — 3Rt W, — 3REREV

cde 3RaCRde Wbdce

where the 6D stress tensor in a conformally flat background was obtained in the previous
chapter:
v 3 R 5% AU 3 vV DA 1 V DO DA
(T D (. f) = T )[ “R\R/R ZR“R S+ g“RRR’)
s

21
A DV D WY DO DA
20R RYR —409 RSRZR
In this case we find

: ab\(A) _
lim, Tl (7"

39 1
“—R"R?4+ —g"R3 . 3.24
100 + g9 ] (3.24)

a N
(473)3 [(8[1(6) + 2I§6>) = Q7 (811“” + 2156)) |g] . (3.25)

where I ) and 15 ) are the first two kinds of 6D Weyl invariant tensors given by

1Y = Wi, WO e (3.26)
o = W(G))\a W(G)pn W(G)W 7 (3.27)
10 = wi, (00 + 4R - —Rdg) WO L p g (3.28)

We see again that (3.25) is zero because of the nature of / fﬁ) and 156) that transform covari-
antly. Finally, similar to 4D, we have

[lim, lim ]6(7%*)) =0 . (3.29)

n—6" W—0
2This result computed in a new way agrees with [21].

16



3.2.3 Type B

As mentioned earlier, the type B anomaly is not metric variation invariant so we need a
regulator to have the form % when taking the lim,,_.4. After the metric variation, the result
from the 4D type B anomaly reads

ab\(B) _ _“ _ cdyyya b _ab cd ac Db
STy B) (47T)2[ ARV | g®R R & 4R“RY.
14 ab 7 ab 8 a b 2 pab 1 ab M2 —4
SRR+ —g" R+ SD'D'R - 2DR" + g DR]|§ QO [ ..... ]|g%g.(3.30)
In this case,
- ab\(B) _ _“4 2 onl o422
[lim, T7]3(T) 7 <3D Rl;— Q™" 2D R\g) . (3.31)

When the §D2R term appears in the 4D trace anomaly, one can relate it to an R? term in
the effective action. However, here it shows up as an artifact of dimensional regularization.
By taking the n — 4 limit, we have used

J
lim | —————— [ d"2'\/—gW? ’}:—W24 .32
tin [ s [ V=W )@)] = V=) (332
where W (n) is defined in (3.4). We factored out the o variation and obtained the stress
tensor after the metric variation. We then found a 2D?R in (3.31) after taking the trace.

This process could be formally re-expressed as

Tr 5;; 1 | (ni@ / 42! g2 (n)(a")] (3.33)
which gives
bl [ [ ] o

The divergent first term will be cancelled by the regulator. It is the second term that gives
2D?R. (One can further check that the orders of taking the metric variation and n — 4
expansion commute.) Therefore, we see that the §D2R has another origin besides adding
an R? term in the effective action. It should be stressed that these two ways of producing a
D?R term will give different contributions to the stress tensor, although they both lead to
%DQR when traced.?

In 6D, there are three kinds of type B anomalies so that three regulators are needed.
One can derive the corresponding transformed stress tensors following the same method we
developed here. But the results are very lengthy so we do not present then here. Moreover, we
will soon comment on ambiguities related to the type B anomalies in the following sections.

3We notice that there were also several related discussions in AdS/CFT regarding this §D2R term. For
instance, [39] discussed this term on page 5 in the context of the holographic c-theorem. [30] mentioned
this kind of ambiguity on page 16. In [40], they included the %DQR term on page 30 to study entanglement
entropy.
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3.2.4 Type D and Ambiguities

In 4D, there is only one kind of the type D anomaly given by:

(1)) = ( 4Z)QD2R , (3.35)

where v = dj4 represents the corresponding type D central charge. This anomaly can be
generated by using the following identity

J
(n —4)(4m)2d0(z)

[ / d”x’ﬁ(n—4)%R2(x’)] = 1 4Z)QDQR. (3.36)

Obviously, there is no n — d problem here. The stress tensor corresponding to this anomaly
is therefore given by the metric variation on the R? term and we have

ab\ (D Y a a a 1 a —
§(1y D), = —W(w D'R—2¢"D*R — 2RR™ + g sz> = O 4[ ..... ] lomsg -

Since one could introduce a counterterm in the effective action to cancel this anomaly, this
contribution is arbitrary. We will not consider 6D type D anomalies, which would presumably
lead to lengthy expressions; we refer readers to [41] for all possible type D anomalies in 6D.

Going back to the case of 4D type B anomaly, (3.30), one might ask if there is an lim,,_,4
and limy_,o order of limits issue since we consider limW_,O(Ta(f)) = 0 under the scheme
that the type B central charge does not contribute to the stress tensor in a conformally flat
background.* Our answer to this question is that there is no definite contribution to the
stress tensor from the type B central charge because of various ambiguities related to Weyl
tensors. Recall that the main strategy in the dimensional regularization approach is to re-
write the trace anomaly into a g-exact term. However, one has some arbitrariness that can
be added in the effective action: (1) (n—4) X [ d*x/=gR? with an arbitrary coefficient. This
term only modifies the coefficient of the type D anomaly, which is arbitrary as mentioned
before; (2) o-variation invariant terms such as (n —4) x [ d*x\/=g type A/B anomaly with
an arbitrary coefficient. But notice that the type A anomaly is topological, so it will not
contribute to the stress tensor. By using the first kind of arbitrariness, it is found that if we
instead use the following identity

limm[/d”x’\/—_gzj(‘l)(x’) — /d4x’\/—_g[(4)(x’)

C(n—4) (% / d'a G R())| = Vgl + §D2R] , (3.39)

4Note that (3.30) is the result after taking lim,,_,4. If we instead take limy _,o first, we have symbolically
limyy 0 ﬁ Ik W2, which simply is already zero because of the squared Weyl tensor.

18



we could modify (3.30) by adding contributions from the metric variation on the R? term.
We then have the following 4D result:

(4

5<Tab>gi)4 = —4

Note that /—g (DCDdWc“db + %RCdWC‘ldb> is conformal invariant and traceless. In this case,
we trivially get

[lim, lim ]6(T,)® =0, (3.40)

n—4" W—0

with the same result as (3.31). Regarding the second kind of arbitrariness, we note that
because of the following identity:

—4\/—_g<DCDdWC“db+ %Rcdwmdb) = % / d*w/—gWapeaW . (3.41)
One could generate the form ( D.DgW e + %RCdWC“db> with an arbitrary coefficient. But
since this term transforms covariantly, it always give zero contribution to the transformed
stress tensor.

Let us make a remark on the orders of different limits: in the previous chapter, which
is based on [1], we followed the same argument in [19] that the type B anomalies do not
contribute to the stress tensors in a conformally flat background because of the (at least)
squared Weyl tensors. This implies that we were actually adopting the order

lim lim . (3.42)

n—4 W—0

For the order limy, .4 lim, .4, one should argue firstly why the n — 4 limit is well-defined
then use the argument of the squared Weyl tensors for the conformally flat case. The
latter consideration is included in this chapter. In fact, using the order lim,_,4 limy g
was the hidden reason why %DQR in c(W? + %DQR) in the trace anomaly gives a separated
contribution to the stress tensor in [19]. In the previous chapter (or in [1]), we simply ignored
c%DQR as the scheme to match with AdS/CFT results. Under the order limy 4 lim, 4
the regulator is needed since the type B anomaly is not a topological quantity. However,
this time we will need c%DQR to have a result that vanishes in W = 0. It might be most
natural to adopt the scheme that one always introduces the regulator instead of considering
the order lim,,_,4 limy _,o on the type B anomaly.
Now, let us discuss yet another ambiguity by observing the following identity®:

J
do(x)

5 [ AoV @) ng)] = v (3.43)

Guv

°Note the basic result §g,, = 2g,,00 implies 55—0 = 0 by considering a fixed g,,, with respect to the
conformal factor.
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After the metric variation, one obtains

c 1 1
ST P — (47;‘)2 [(DCDdW“‘db v §Rcdwcadb> Ing — Z—lWanb] l — 9*4[ ..... ] lsg »
(3.44)
in contrast to (3.39). This case gives nicely that
[lim, Tr)0(TP)) = 0 = [lim, lim |6(TP)) . (3.45)

n—4 n—4 W—0
Moreover, the identity implies the following ¢ invariant form:

o +() [/d"x'\/—_gIM) - /d4x'\/—_gl(4) — é/d‘%’(n — 4)/—gIW lng(x’)] =0,
oz

(n—4)
(3.46)

that can be freely added into (3.38) with an arbitrary coefficient «. In total it gives non-zero
contribution to the stress tensor after the metric variation. As mentioned before, we might
further introduce an a5 R? term that makes the result become the form (DDW + 1/2RW)
when combined with the first two terms in (3.46). Note that « will lead to a different
coefficient of D?R in the trace anomaly. Hence it would change the scheme. Fixing the

coefficient of D?R under a given scheme is needed to completely fix .

3.3 Remarks

Let us relate our results with [21], where a general (trial) solution to the differential
equation (3.1) was given by

R
Y _ C4 [=mpm /15 1, -
_6(47T)2 [Iﬁ —Q 4]5] — 8(47T)2 [DﬂD)\(WPM/\V In Q) + §R;‘WW/\V In Q] . (3.47)

where we have expressed it under the same convention, and

Hu = -3 [g,w<7 - RAP> +2R\Ry» — §RR,W] , (3.48)
1
I, = 2D,D,R—2g,D°R—2RR,, + §gWR2 : (3.49)

The corresponding results from the type A and type D anomaly parts agree with the results
obtained from the dimensional regularization. The only mismatch part comes from the type
B anomaly. The following is our explanation, which is again coming from the ambiguity. We
note that the result (3.47) could be derived by varying the effective action given in (2.2 —2.4)
in [42] with respect to the metric. (One might call those actions as dilaton effective actions.)
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That is, we can re-produce (3.47) by simply adopting these dilaton actions in our formulation.
However, there might be some potential issues. The first issue is that these dilaton actions
were written down with the explicitly given o. One uses these dilaton actions because
their o variation could give trace anomalies. However, in the context of the dimensional
regularization, we see it is certainly not the only way to re-write the anomalies into o-exact
forms. Allowing the explicit o to appear will generate more ambiguities. Moreover, there is
another issue that was already mentioned in [42] (in the paragraph between eq(2.20 —2.24)):
they needed to impose certain assumption on a spacetime background in order to deal with
the metric variation on the ¢. Finally, if we adopt the dilaton action it might lose the spirit of
the dimensional regularization where the results are expressed in terms of curvature tensors.
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Chapter 4

Universal Entanglement and

Boundary Geometry in Conformal
Field Theory

This chapter is an edited version of my publication [3], written in collaboration with
Christopher Herzog and Kristan Jensen.

Entanglement entropy has played an increasingly important role in theoretical physics.
Invented as a measure of quantum entanglement, it has been successfully applied in a much
broader context. Entanglement entropy can serve as an order parameter for certain exotic
phase transitions [43, 44]. It is likely very closely related to black hole entropy [45, 46].
Certain types of entanglement entropy order quantum field theories under renormalization
group flow [47, 48, 49, 14]. Tt is the last result which is most relevant to this chapter. In even
space-time dimension, the connection between entanglement entropy and renormalization
group flow is tied up in the existence of the trace anomaly [47, 49, 14]. In fact, certain
universal terms in the entanglement entropy can be extracted from the anomaly. The moral
of this chapter will be that to use the anomaly correctly, one should understand how to write
it down on a manifold with a codimension one boundary.

To define entanglement entropy, we assume that the Hilbert space can be factorized,
H = Ha ® Hp, where H 4 corresponds to the Hilbert space for a spatial region A of the
original quantum field theory.! Given such a factorization one can construct the reduced
density matrix ps = trg p by tracing over the degrees of freedom in the complementary region
B, where p is the initial density matrix. The entanglement entropy is the von Neumann

IThis factorization is a nontrivial assumption. The boundary between A and B, 0A, plays an important
role in recent discussons regarding the entanglement entropy of gauge theory [50, 51, 52, 7]. The boundary
terms associated with 0A we find in this chapter suggests that the factorization is not always a clean and
unambiguous procedure even for non-gauge theories.
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entropy of the reduced density matrix:
Sg=—tr(palnpa) . (4.1)

Only when p = |¢)(¢| is constructed from a pure state |1)) does Sk measure the quantum
entanglement. Otherwise, it is contaminated by the mixedness of the density matrix p.

In a quantum field theory context, the definition of Sg presents a challenge because
the infinite number of short distance degrees of freedom render Sy strongly UV divergent.
Consider for example a d-dimensional conformal field theory (CFT) in the vacuum. Let d
be even so that the theory may have a Weyl anomaly, and let A be a (d — 1)-dimensional
ball of radius £. In this case, the entanglement entropy has an expansion in a short distance
cut-off ¢ of the form

SE:amzj—fm—i—...jLéla(—l)dﬂln%—l—... (4.2)

The constant o multiplying the leading term is sensitive to the definition of the cut-off §

and thus has no physical meaning. The fact that the leading term scales with the area of

the boundary of A, however, is physical and suggests that most of the correlations in the
vacuum are local.

Most important for this chapter, the subleading term in eq. (4.2) proportional to the

logarithm is “a,” the coefficient multiplying the Euler density in the trace anomaly [24]

4a
(T",) = ch[j - (—1)d/2mEd + D, J", (4.3)
J

with D, the covariant derivative. In this expression, Fq is the Euler density normalized such
that integrating Fy over an S? yields d! Vol(S9). See section 4.2 for more details about the
definition of Fy. The I; are curvature invariants which transform covariantly with weight
—d under Weyl rescalings. There is also a total derivative D, J# whose precise form depends
on the particular regularization scheme used in defining the partition function.?

Our motivation is a puzzle described in ref. [40]. The authors describe several different
methods for verifying the logarithmic contribution to the entanglement entropy in (4.2). One
is to conformally map the causal development of the ball, D, to the static patch of de Sitter
spacetime, and then exploit the trace anomaly (4.3). Another method runs into difficulties.
They attempt to compute Sg by mapping D to hyperbolic space. Here, the authors were
not able to use the anomaly to obtain the expected results. As we shall explain, and as was
anticipated in ref. [40], getting the correct answer requires a careful treatment of boundary
terms in the anomaly.

To our knowledge, the relation between these boundary terms and entanglement entropy

has not been considered carefully before.? In d = 2, the boundary contribution to the trace

2In the terminology of ref. [24], the Euler term is a type-A anomaly and the Weyl-covariants I; are type-B.
3In a somewhat different vein, there is a discussion of entanglement entropy on spaces with boundary in
ref. [53].
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anomaly is textbook material [54]. In d = 4 and d = 6, the bulk anomaly induced dilaton
effective actions are written down in refs. [14] and [15] respectively. (See also [55] for d = 4.)
Given the importance of the dilaton effective action in understanding the a-theorem [14],
and the recent “b-theorem” in d = 3 [56], it seems conceivable the boundary correction terms
may be useful in a more general context.

In this chapter we generalize these dilaton effective actions with boundary terms for a
manifold with codimension one boundary and we show that these boundary terms are crucial
in computing entanglement entropy. We also provide a general procedure, valid in any even
dimension, for computing these boundary terms.

We begin with the two-dimensional case in section 4.1, where we illustrate our pro-
gram and use an anomaly action with boundary terms to recover the well-known results of
the interval Rényi entropy [57, 58] and the Schwarzian derivative. In section 4.2, we con-
struct the boundary terms in the trace anomaly in d > 2 and present an abstract formula
for the anomaly action in arbitrary even dimension. We demonstrate the result satisfies
Wess-Zumino consistency. In section 4.3, we compute the anomaly action in four and six
dimensions, keeping careful track of the boundary terms. (In six dimensions, our boundary
action is only valid in a conformally flat space time, while in four dimensions, the answer
provided is completely general.) In section 4.4, we resolve the puzzle of how to compute the
entanglement entropy of the ball through a map to hyperbolic space in general dimension.
The resolution of this puzzle constitutes the main result of this chapter. Finally, we conclude
in section 4.5. We relegate various technical details to appendices. Appendix 4.6.1 reviews
some useful differential geometry for manifolds with boundary. Appendix 4.6.2 contains
a detailed check of Wess-Zumino consistency in four dimensions. Appendix 4.6.3 contains
details of the derivation of the anomaly action in four and six dimensions.

4.1 The Two Dimensional Case and Rényi entropy

In two dimensions, the stress tensor has the well known trace anomaly

(1) = 5B, (4.4)

where we have replaced the anomaly coefficient a with the more common central charge
¢ = 12a which appears in the two-point correlation function of the stress tensor. Eq. (4.4) is
the Ward identity for the anomalous Weyl symmetry. It is equivalent to the variation of the
generating functional W{g,,] = —In Z|[g,,| under a Weyl variation dg,, = 2¢,,,00. However,
on a manifold with boundary, the anomalous variation of W may contain a boundary term.
In this section, we show how to construct the anomaly effective action with boundary terms
for the simplest case, d = 2. We will reproduce the classic entanglement entropy result using
the boundary term in the anomaly action. We also show that the boundary term correctly
recovers the universal term in the single-interval d = 2 Rényi entropy.
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4.1.1 Anomaly Action with Boundary and Entanglement Entropy

In d = 2, the most general result for the Weyl variation of the partition function consistent
with Wess-Zumino consistency is [54]

C

W = —— / d2x\/§R50—|—2/ dyy/vK do| . (4.5)
247 | Jm oM

To write this expression, we have introduced some notation. In d = 2, the notation is overkill,
but we need the full story in what follows in d > 2. We denote bulk coordinates as x* and
boundary coordinates as y*. Let n* be the unit-length, outward pointing normal vector to
OM and v,p the induced metric on M. We can define K in two equivalent ways. First,
locally near the boundary we can extend n* into the bulk. We can choose to extend it in such
a way that n*D,n, = 0, in which case the extrinsic curvature is defined to be K,, = D,n,).
The trace of the extrinsic curvature is K = K*,. Alternatively, we can also define K purely
from data on the boundary. The bulk covariant derivative D, induces a covariant derivative
%a on the boundary. It can act on tensors with bulk indices, boundary indices, or mixed
tensors with both. We specify the boundary through a map OM — M, which amounts to
a set of d embedding functions X*(y®). The 0,X* are tensors on the boundary, and their
derivative gives the extrinsic curvature as K,g = —nﬁaagx #, and its trace K = y"P K.
For more details on differential geometry of manifolds with boundary, see appendix 4.6.1.

Observe that, for a constant Weyl rescaling 0o = A, the Weyl anomaly (4.5) is equivalent
to

S\W = —gx)\, (4.6)

where x is the FEuler characteristic of M. That is, the boundary term in the Weyl anomaly
is simply the boundary term in the Euler characteristic.

Recall that the stress tensor is defined as

2 0w

™) = —— : 4.7
(") 3 50m (4.7)
in which case (4.5) leads to a boundary term in the trace of the stress tensor,
c
(T",) = Gy (R+2K4(zh)) , (4.8)

where §(21) is a Dirac delta function with support on the boundary.

We now wish to write down a local functional which reproduces the variation (4.5). To do
so we introduce an auxiliary “dilaton” field 7 which transforms under a Weyl transformation
G — €279, as T — T + 0. The quantity

g/.tll = 67279#11 9 (49>
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is invariant under this generalized Weyl scaling and so too the effective action W= Wle ¥ gu] =
WG] Then

W[guw G_QTQW] =W - W: (4.10)

will vary to reproduce the anomaly, 6,V = 0,W. In what follows, we refer to VW as a
“dilaton effective action,” given its similarities with the dilaton effective action presented in
refs. [14, 15]. However, unlike those works we are only considering conformal fixed points and
not renormalization group flows, and so this name is a bit of a misnomer. More precisely, W
is a Wess-Zumino term for the Weyl anomaly, or alternatively an anomaly effective action.
Analytically continuing to Lorentzian signature, it computes the phase picked up by the
partition function under the Weyl rescaling from a metric g, to e *7g,,.

What exactly is W in d = 27 The first quick guess is

C

Wo=—5— / d*z\/gRT + 2/ dy/v7KT| . (4.11)
24w M oM
But the metric scales, and we should take into account that under Weyl scaling in d = 2,

R[BQUQW]
K[e%gu,,]

6_20(R[QW] —20o),
e 7 (K[guw| +n'0,0).

(4.12)

To cancel these variations, we add a (97)? = (9,7)(9"7) term to the effective action. The

total effective anomaly action is then

C

W=—5—- [ /M d*z\/g (Rlgw]T — (07)%) +2 /6 y dy\/ﬁK[gW]T} + (invariant) . (4.13)

The right-hand side is computed with the original unscaled metric g,,.* In writing (4.13),
we have allowed for the possibility of additional terms invariant under the Weyl symmetry.
There are only two such terms with dimensionless coefficients,

/ xR, / dy+/AK . (4.14)
M oM

However, now we use that by definition W = 0 when 7 = 0. Thus neither of these terms can
appear in W, so

C

W | [ @aviRlgnlr - 007 <2 [ awARgr| . a1

The second step, which involved adding by hand a (97)? term to cancel some unwanted

pieces of the Weyl variation, seemed to involve some guess work which could become a

4 This action corrects a typo in eq. (1.2) of ref. [59], as well as accounts for the boundary term.
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problem in d > 2 where the expressions are much more complicated. In fact, there are sev-
eral constructive algorithms which remove this element of guesswork. One method involves
integrating the anomaly [60, 22, 61]:

1
w=—"[ a /d%\/?R[g’y]TH/ dy v/~ Klg, )7
247 J, M g oM g

_ / Lt /M a2/ (T, g, )7

g;//,u:ei2tTg#V

(4.16)

gﬁu:‘f*QtT!]uu

Thus, given the trace anomaly (T ,), it is straightforward albeit messy to reconstruct W.
The second method (which we elaborate in this chapter) is dimensional regularization
[19, 62]. We define Wg,,| in n = 2 + ¢ dimensions:

o Cc

W[gW]E—m [/Md”x\/ER%—Q/aMd"_lyﬁK} : (4.17)

where R, K, g,., and 7,4 are dimensionally continued in the naive way. We claim then that

W = lim (W[gw,] — /W[e_%g,w]) : (4.18)

n—2

as one may verify after a short calculation, using the more general rules for the Weyl trans-
formations in n dimensions,

R[e* guw] = e (Rlgyw] — 2(n — )00 — (n — 2)(n — 1)(90)*) ,

2 - (4.19)
Kle*gw] =€ (K[gw] + (n — 1)n"9,0) .

In all three cases, we are computing the same difference between two effective actions.
It would be preferable to have access to the effective actions themselves. There are two
problems here. The full actions depend on more than the anomaly coefficients. They are also
likely to be ultraviolet and perhaps also infrared divergent. If we focus just on the anomaly
dependent portion, it could easily be that some of this anomaly dependence is invariant
under Weyl scaling and drops out of the difference we have computed. Interestingly, the
dimensional regularization procedure offers a regulated candidate W[guy] for the anomaly
dependent portion of W{g,,].

Let us try to extract some information from the regulated candidate action in flat space:

-~ C

Wi, = ————— d" 1y /K . 4.20
A simple case, which also turns out to be relevant for the entanglement entropy calculations

we would like to perform, is where M is a large ball of radius A with a set of ¢ smaller,

non-intersecting balls of radius J; removed. For each ball, we can work in a local coordinate
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system where r is a radial coordinate. For the smaller balls, \/7K = —r™=2 while for the
large ball \/yK = r"~2. It then follows that

q

Wil =~ 5(1 o+ %(y Flam) +InA — jzlmaj +0om—2)| . (21)
The leading divergent contribution is proportional to the Euler characteristic y = 1 — ¢ of
the surface. We claim that the Ind; pieces of the expression (4.21) can be used to identify
a universal contribution to the entanglement entropy of a single interval in flat space. We
will justify the computation through a conformal map to the cylinder, but in brief, the
computation goes as follows. For an interval on the line with left endpoint v and right
endpoint v, to regulate the UV divergences in the entanglement entropy computation we
place small disks around the points v and v with radius 0. The entanglement entropy then

turns out to be the logarithmic contribution of these disks to —W [0, ]:
c
Sg ~ —glnd . (4.22)

As the underlying theory is conformal, the answer can only depend on the conformal cross
ratio of the two circles 46%/|u — v|?. Thus we find the classic result [63, 58]

(4.23)

Here and henceforth, the ~ indicates that the LHS has a logarithmic dependence given by
the RHS. We neglect the computation of the constant quantity in Sg, as it depends on the
precise choice of regulator and so is unphysical.

A more thorough justification of this computation occupies the next two subsections. In
broad terms, the same result turns out to be valid in even dimensions d > 2, a fact whose
demonstration will occupy most of the remainder of this chapter. More specifically, we mean
that the logarithmic contribution to va[(Ll,] for flat space with D x S92 removed, where D
is a small disk of radius ¢, yields a universal contribution to entanglement entropy for a ball
shaped region in flat space.

To return to d = 2, we describe the plane to the cylinder map and its relevance for
entanglement entropy in section 4.1.3. The demonstration however requires we also know how
the stress tensor transforms under conformal transformations. The transformation involves
the Schwarzian derivative which can be found in most textbooks on conformal field theory. In
an effort to be self contained we will use our effective anomaly action to derive the Schwarzian
derivative in section 4.1.2. In d = 2, the effective action turns out to be useful to compute
not only the entanglement entropy but also the single interval Rényi entropies. A calculation

of the Rényi entropies is provided in section 4.1.4.
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4.1.2 The Schwarzian Derivative

To calculate the change in the stress tensor under a Weyl scaling from g,, to g, =

e ?7g,,, we begin with a variation of W =W — W with respect to the metric g,
" "

W =6W — §W

__ % / 2 (V509 (T )y = /393, (T); ) (4.24)

=3 | Eovadg. (T, = T))

where in the last line we have used that 1/§0g,, = ﬁe_(d“)mguy in d dimensions. The
subscript g on the expectation value refers to (T"") on the space with metric g, and similarly
for g. Using the explicit expression for W in (4.15), we compute its variation

1
SW = ——— | PayfgSg 0707 + D0 — ¢ ( 5(07) + O
247 2
(4.25)
- nv, p
i Mdyﬁc?gwh nf0,T,
where h*” is the projector to the boundary,
h/u/ = Guw — NNy . (426)

In obtaining (4.25) we have used that in two dimensions the Einstein tensor R, — ggw,
vanishes, and that the variation of the Ricci tensor is a covariant derivative 0 R, = D,0I'",, —
D,éI”,,. Putting (4.25) together with (4.24), we find

1 c i
- 1on [8 70,7+ D0, T — g (5(87)2 + DT)] - Eé(w YRy 0,m(4.27)
Suppose we consider a Weyl rescaling which takes us from flat space, g,, = d,,, to the
new metric g, = e 27d,,. The stress tensor for a conformal theory in vacuum on the plane
is usually defined to vanish. Thus the stress tensor on the manifold with metric e=274,,, will

" (L) = == {a 70,7 + 0,0, — Oy (%(67)2 + (DT))} (4.28)

(dropping the boundary contribution). The Schwarzian derivative describes how the stress
tensor transforms under a conformal transformation, i.e. a combination of a Weyl rescaling
and a diffeomorphism that leaves the metric invariant. If the complex plane is parametrized
initially by z and z, we introduce new variables w(z) and w(z) and require that the Weyl

e P = (Z—Zf) (%) : (4.29)
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Start with the stress tensor in the w-plane, and perform a diffeomorphism to go to the z
variables. That transformed stress tensor should be related by a Weyl rescaling by e=%7 to
the stress tensor on the flat complex z-plane. Recalling that ¢.. = 0, we find that

(8zw)2<Tww(w>> = <TZZ(2)>6_276;“/ = _é [(827')2 + (azzT)}
c 2(03w)(0.w) — 3(0%w)?

481 (0.w)? ’

(4.30)

which is the usual result for the Schwarzian derivative.

4.1.3 Entanglement Entropy from the Plane and Cylinder

We now consider the entanglement entropy of an interval with left endpoint v and right
endpoint v. The information necessary to compute the entropy is contained in the causal
development of this interval, i.e. the diamond shaped region bounded by the four null lines
rrt=wvand z £t =wo.

We will indirectly deduce the entanglement entropy by conformally mapping to a thermal
cylinder, keeping careful track of the phase picked up by the partition function under the
transformation.

Consider the following change of variables

L — (4.31)

’
Z—0

where z = x —t = z + itg, and correspondingly for z and w. If we let w = o' + io?,

2 is periodic with periodicity 8, 02 ~ 0% + 5. In other words, the theory on the

then o
w-plane is naturally endowed with a temperature 1/8. The other nice property of this map
is that the the interval at time ¢ = 0 is mapped to the real line Re(w). Thus the reduced
density matrix pa associated with the interval is related by a unitary transformation to
the thermal density matrix ps on the line. As the entanglement entropy is invariant under
unitary transformations, the entanglement entropy of the interval is the thermal entropy

associated with the cylinder, that is the thermal entropy on the infinite line. If we let

e PH
R 4.32
P = o (4.32)
where H is the Hamiltonian governing evolution on the line, then
Sp=—tr(plnp) = Btr(pH) + Intr(e ) = B(H) — Wey , (4.33)
where Wy = —Intre ?# is the partition function on the cylinder. This entropy is infinite

because the cylinder is infinitely long in the o' direction, and we need to regulate the
divergence. The natural way to regulate is to cut off the cylinder such that —A < o! < A.

30



In the z = x + itg plane, these cut-offs correspond to putting small disks of radius § around

the endpoints u and v, where now

O _ e (4.34)
V—Uu

We have two quantities to compute, S(H) and Wy We can use the Schwarzian derivative
from the previous subsection to compute

B(H) = / l(T°0>da1 , (4.35)

where we have analytically continued ¢° = —io?. From the transformation rules (4.30)

and (4.31), the ww component of the stress tensor on the cylinder is
e

(Tww(w)) = 2R (4.36)
In Cartesian coordinates, T2 = —}l(T“’w + T%%). Thus we have, analytically continuing
to real time 0” = —io?, a positive thermal energy (T'%) = £ from which follows the first
quantity of interest
e c. |Jv—u
Hy=—A=-1 4.37

Toward the goal of computing Wey, we first compute the difference in anomaly actions
WI0,, € 278,,,] where the dilaton 7 is derived from the plane to cylinder map

T:_lln{ﬁ( L )}+ (4.38)

2 vV—2 U—Zz

Given the dilaton, we can compute the bulk contribution to the difference in effective actions

2 2 2
/ d22,/g (97)2 = (f) / dw dao |coth ™| = ¥ A | (4.39)
6 cyl B 6
and the boundary contribution
1 2
—2/dyﬁKT ~8mlnd ~ — 6; A. (4.40)

Assembling the pieces, the difference in anomaly actions is then

W[(S,uua 6_2T5#V] ~ _EA = - In |v — U|

35 6 4]

The last component we need is the universal contribution to Wé,, |, which we claimed was

(4.41)

actually equal to the universal contribution to single interval entanglement entropy. Indeed,
everything works as claimed since the contributions from S(H) and W[d,,, e *7d,,] cancel
out:

ot C Uv—U
St = BUH) + Wb €7 ,0] = Wlo] ~ ~W (5] ~ SIn | . |

(4.42)



4.1.4 Rényi Entropies from the Annulus

In d = 2, the anomaly action also allows us to compute the Rényi entropies of an interval
A

Y

Intrp’ . 4.43
~Intr p) (4.43)

We use the replica trick to compute S,,. We can replace tr p’j with a certain ratio of Euclidean

partition functions

trply = (4.44)

where Z(n) is the path integral on an n-sheeted cover of flat space, branched over the interval

A. In the present case, we can use the coordinate transformation,
zZ—u

w = : (4.45)

zZ—U

to put the point u at the origin and the point v at infinity. As is familiar from the computation
in the previous subsection, we need to excise small disks around the points u and v, or
correspondingly restrict to an annulus in the w plane of radius 7y, < 7 < rmax.

To get the Rényi entropies, we would like to compare the partition function on the annulus
to an n-sheeted cover of the annulus. In two dimensions, these two metrics are related by a

Weyl transformation. We take the metric on the annulus to be
g =dr* +r*do* (4.46)

while on the n-sheeted cover we have

G=eTg=dp*+ n?p*d? , (4.47)
with e77 = nr"~! and p = r*. With this choice of 7, the difference in anomaly actions
becomes

W[(Sw,e*”du,,,] = % {/ (O7)*rdr — 27],’231*}
. Tmin . (4.48)
=—m—1)h=2.
12 (n ) . Tmin

Now to isolate the universal contribution to W[e™27§,,], we should remove the universal
contribution from W{é,,]:

max 1 max
We 2 5,) ~ ——(n? + 1) In 22 ~ —é <n + —> I Pmax (4.49)

12 T'min n Pmin

We can tentatively identity this quantity with —In Z(n). To compute the Rényi entropies, we
need to subtract off nln Z(1). There is an issue here, however: both In Z(n) and In Z(1) are
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divergent quantities, and in comparing them we must arrange for the cutoffs to be congruous.
We claim that in order to compare In Z(n) with In Z(1) we ought to use the p-cutoffs so that
we excise discs of the same radius in each case. Thus, we need to subtract nW{é,,| using
the cut-offs in the p coordinate system,

InZ(n) —nln Z(1) ~ 1—62 (—n + %) In Zr: . (4.50)
Using the definition (4.43) of the Rényi entropy, we find that
Sy ~ é (1 + %) In ppz: . (4.51)
Translating back to the z plane, this result recovers the classic result [57, 58]°
Sy~ o (1 + 1) ) Gl (4.52)
6 n )

Taking n — 1, it reduces to the previous entanglement entropy result (4.23). Note that in
d > 2, one still has an n-sheeted cover of an annulus, but it is less clear what to do with the
remaining d — 2 dimensions.

4.2 Anomaly Actions in More than Two Dimensions

The trace anomaly (4.3) and effective anomaly action W have an increasingly compli-
cated structure as the dimension increases. Several issues need to be addressed for a complete
treatment of the effective action. Before embarking, we warn the reader that this section is
technical. The chief results are 1) the boundary term in the a-type anomaly (4.61) and (4.68),
2) two equivalent forms for the a-type anomaly action in (4.69) and (4.113), and 3) a demon-
stration that the a-type anomaly, including the boundary term we obtain, is Wess-Zumino
consistent in any dimension in subsection 4.2.3. Finally, 4) in (4.108) we present the most
general form of the trace anomaly in d = 4, including boundary central charges.

4.2.1 Boundary Term of the Euler Characteristic

As we are motivated by the problem of universal contributions to the entanglement
entropy across a sphere in flat space, our main focus is on how the a contribution to the
anomaly action is modified in the presence of a boundary. Regarding the other issues, we
make a few preliminary comments which will be developed minimally in the rest of the
chapter.

The presence of a boundary affects the ¢; contributions to the trace anomaly (4.3) triv-
ially. Let us dispose of this issue immediately. The I; are, by definition, covariant under

5The calculation we have just presented is very similar in spirit if not in detail to ones in refs. [64, 65].

33



Weyl scaling. In fact the \/gl; are invariant under Weyl scaling and so the ¢; contributions
t0 Wguw, € *" g, are simply

W, = —ch/Mddx g7l , (4.53)
J

with no additional boundary term.

The total derivative term in the trace anomaly (4.3) depends on the choice of scheme.
As we focus on universal aspects of the trace anomaly, with some exceptions we shall largely
ignore this object in what follows. A fourth issue we have little to say about, with one
exception, is the possible existence of additional terms in the trace anomaly associated
purely with the boundary. These additional terms are best understood when the bulk CFT
is odd-dimensional, so that the trace anomaly only has boundary terms. Those boundary
terms can include the boundary Euler density as well as Weyl-covariant scalars [66, 67], in
analogy with the trace anomaly of even-dimensional CFT. See ref. [56], which argued for a
boundary “c-theorem” using this boundary anomaly. In this work we focus on CFTs in even
dimension, with an odd-dimensional boundary. In d = 4, using Wess-Zumino consistency;,
we identify two allowed boundary terms in the trace anomaly, but have nothing to add in
d > 6.

To return to the a-type anomaly, the central observation is that the a dependent con-
tribution to the trace anomaly (4.3) integrates to give a quantity proportional to the Euler
characteristic for a manifold without boundary. The natural guess is then that in the pres-
ence of a boundary, one should add whatever boundary term is needed such that the integral
continues to give a quantity proportional to the Euler characteristic. (Indeed we saw pre-
cisely this story play out in two dimensions in section 4.1.) The requisite boundary term is
well known in the mathematics literature. See for example the review [68]. It is a Chern-
Simons like term constructed from the Riemann and extrinsic curvatures. To write it down,
we need some notation.

We start by introducing the orthonormal (co)frame one forms e

A_B
L€y -

= eﬁdw“, in terms of

which the metric on M is g,, = dape Here and there, we also need their inverse EY,

satisfying Efes = §# and Eﬁef = 4. From the e and the Levi-Civita connection I'*,,, we
construct the connection one-form w? g via
Ouey — TPuuel + wpue) =0. (4.54)
From this definition, it follows that w? = —w?4 and the torsion one-form vanishes,
de? +wigneP =0, (4.55)
Further, the curvature two-form built from wp,
1
RAp =dwp +wic AwCp = §RABde“ Adz” (4.56)

34



is related to the Riemann curvature by

ENRAppel = R,y . (4.57)

The curvature two-form satisfies the Bianchi identity
AR + wic ARCE — RAG AW =0 . (4.58)
The Euler form is then
Eg= RN ARAAde, (4.59)

where €4,...4, is the totally antisymmetric Levi-Civita tensor in dimension d. The Euler form
and Euler density are related in the obvious way &; = Eyvol(M), for vol(M) the volume
form on M. In writing (4.59) we have normalized the Euler form so that its integral over an
S is d!'Vol(S?).

To define the Chern-Simons like boundary term, it is convenient to define a connection
one-form and curvature two-form that interpolate linearly between a reference one-form wy
and the actual one-form of interest w:

w(t) =tw+ (1 —t)wo,
R(t) 5 = dw(t)?s +wt) o Aw(t)5. (4.60)
The boundary term is constructed from the d — 1 form:
Q= g/gl dt o)A AR A AR(E) A ey g, (4.61)
(The density Qg is given by Q4 = Qqvol(OM).) If we also define
Et)g = RYMA2 A  AR(t) A1 4dey g (4.62)
then it follows, as we show below,
E(1)g—E(0)g =dQ, . (4.63)

The relevance of this construction to the Euler characteristic is that we can calculate
the Euler characteristic for a manifold M with boundary by comparing it to a manifold M°
with the same boundary and zero Euler characteristic. Because x(A x B) = x(A)x(B) and
because x vanishes in odd dimensions, one such zero characteristic manifold is a product
manifold where both A and B are odd dimensional. In a patch near the boundary, we can
always choose to express the metric in Gaussian normal coordinates,

g =dr*+ f(r,z),,dz"dz", (4.64)
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where the boundary is located at » = ry. In this patch, we can choose a reference metric gq
so that the patch is a product space,

go = dr* + f(rg, ), datdz” . (4.65)

Let wp be the connection one-form associated with the metric go. By construction £;(1) = &,
and it follows from the local relation (4.63) that the Euler characteristic for a manifold with

boundary is

X(MZ#M(/M&;—/E)MQC[) . (4.66)

We have normalized the characteristic so that x(S9) = 2.
On the boundary dM, we can give an explicit formula for «w*? in terms of the extrinsic

curvature,
W) = wAB — P = KAnB — KPpA | (4.67)

where we have defined the extrinsic curvature one-form K, = Oégdy/j , and converted its

index to a flat index through the e, metric, and embedding functions. Similarly, n = e;:‘

nt.
In analogy with the two dimensional variation (4.5), we therefore posit that the a-

dependent piece of the Weyl anomaly is

4a
d/2
O W = (—1) —! ol(Sd) (/M Eq00 — /aM Qdéa) + ... (4.68)

where the ellipsis denotes terms depending on ¢;, the total divergence in the trace anomaly,
and possibly other purely boundary contributions. We verify this claim in subsection 4.2.3
by showing that the anomaly (4.68) is Wess-Zumino consistent. With this variation in hand,
we can integrate it in one of the same three ways we used in d = 2: guess work, using
the integral (4.16), or dimensional regularization. The integral (4.16) gives the a dependent
contribution to the effective anomaly action,

Wigse gu) = (00t [l [ veig) = [ o]

We also deduce W from dimensional regularization in subsection 4.2.5.

,(4.69)

/I —e—2t
gy.u_e TgLLV

Let us next study the relation between &; and Q4. The relation (4.63) is an example of a
“transgression form” (see e.g. [69] for a modern summary of transgression forms). To prove
it, consider
0E(t)g

ES(t)d = R(t)"5 A TR A, (4.70)
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It is convenient to introduce an exterior covariant derivative D. It takes tensor-valued p-
forms to tensor-valued p + 1-forms. For example it acts on a matrix-valued p-form, f“p
as

Dfip =dfis +wlc A fp — (~1)Pf A0 AwCp, (4.71)
and correspondingly for (co)vector-valued forms. It has the Lifshitz property, e.g.
d(f** A gap) = D(f*® A ga) = Df*P A gap + (=1)? f*" ADgas . (4.72)
Defining D(¢), we then have
DORMAs =0, Rt)*s=Dt)w(t)s. (4.73)

The metric 645 and antisymmetric Levi-Civita tensor €4, 4, are also constant under D(¢),
provided that we let the e depend on t so that w(t) is associated with a metric g(t).
Consequently,

0E(t)a d

D(t) i = 5D (RS AL AR reapa, o) =0, (470

and we can rewrite (4.70) as

d nag , OE()a

) (4.75)
~d <§w(t)A1A2 AR(EBH A A R(t>A“Ad€A1'“AC‘> |

Integrating this equality over ¢ € [0, 1] immediately yields (4.63).

4.2.2 An Explicit Expression For The Boundary Term

It will be expedient in the rest of this section to have an explicit expression for the
boundary term faM Qg, that is to perform the integral over ¢ in (4.61). The final result
is (4.81).

Before doing so, we will use that the pullback of R*? to the boundary can be expressed
in terms of the intrinsic and extrinsic curvatures of the boundary. The relations between
RAP and the boundary curvatures are known as the Gauss and Codazzi equations, and we
discuss them in appendix 4.6.1.

Denoting the intrinsic Riemann curvature tensor of the boundary as R~ 35, we define the
intrinsic curvature two-form

o 1o
R% = §R°‘575dy7 Ady’, (4.76)
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and thereby RAgp. Using the boundary covariant derivative ﬁa, we define a boundary exterior
covariant derivative V just like D. The Gauss and Codazzi equations can then be summarized
as

RAp =R — KA AKp +ngVKA —n'VKp, (4.77)
We can similarly decompose the pullback of R(¢). On the boundary
wt)p = ws + (t — 1)(K*np — nKp) , (4.78)
which implies that on the boundary

Rt = RA%+ (t—1DV(K*ng —n?Kg) + (t — 1)>(K*ne — nKe) A (KEnp — n°Kp)
= R (- DKAANKp+(t— 1) <nB%/cA - nA%/cB) , (4.79)

where we have used that Vn? = K4, Putting this together with (4.77), we have
R(t)Ap = RA5 — 2KANKp +1 (nB%/CA - nA%/cB) . (4.80)

Then on the boundary the definition of Q4 (4.61) becomes

1
Q, = d/ dt nr A2 A (7%"‘3/44 — 12K A ICA4> A A (RAd—lAd — 2 A1 A ICAd> €Ay A,
0

_ drnzl m — 1 (_1)k ﬁm—l—k A ’C2k+1 A (4 81)
- s k 2%k +1 n €a.., .

d
2

curvature forms, all of which are dotted into the epsilon tensor. We have also used that only

where we have defined m = < and in the last line we have suppressed the indices of the

one index of the epsilon tensor can be dotted into the normal vector n*, and so the factors
of VK4 in R(t) never appear in Q.

The integral representation of Qg in the first line of (4.81) is not new. A similar expression
appears in e.g. ref. [70].

For example, in four and six dimensions we have

o 1
Q4 = 4TLAICB A <RCD — gICC A ’CD) €EABCD (482)

. . 2 . 1
Qs = 6nKEA <R0D AREF — 5720’3 ANKEAKE + g/CB AKE ANKP AKE /\ICF> €ABCDEF -

4.2.3 Wess-Zumino Consistency

We now verify that the posited term proportional to a in the Weyl anomaly (4.68) is
Wess-Zumino consistent. In this setting, Wess-Zumino consistency requires that the anomaly
satisfies

(65,6, )W = 0. (4.83)
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Notating the anomalous variation proportional to a as

4a
|/|/ P PR— p— —_ d/2—
OoWe =4 (/M b7 & /8M o Qd) ’ A=) d!'Vol(S9)’

we consider

05100, Wy = A </ 00905, Eq — / 00904, Qd) : (4.84)
M oM
The variation of &; is a total derivative,
o€
0p€q=d <5UWAB Ao jB) , (4.85)
with
SpwB = (eAef - eBeﬁ)8“5a. (4.86)

It then follows that the bulk part of the second variation is

0y 00y, Wy = 2dA/ eAlef"’a“(Sal Addog ARBAN A RAdflAdeAln_Ad + (boundary term),
M

= A/ d*z\/g X} 0,0010,009 + (boundary term), (4.87)
M

where we have defined

d
Xy = R P a-2g” Prpiza (4.88)

— 9d/2 RV1V2P102 T T Wd—3Vd—2Pd—3Pd—2

X} is symmetric, XJ" = X%, on account of R, = Rjsp. The symmetry of X} together
with the variation (4.87) imply

(00,5 00y | Wa = (boundary term) . (4.89)

In other words, the bulk term in the a-anomaly is Wess-Zumino consistent. It suffices now
to show that the boundary term also vanishes.

To proceed, we require the Weyl variations of the extrinsic and intrinsic curvatures. The
variation of K,3 and so KA is

0o Kop = 00K o5 + Yapnt 0,00, 6, K4 = e*nt0,60 = (S,w p)n? (4.90)

where e” in the variation of K4 is pulled back to the boundary, while the variation of RAR
is

5, R = Vs, (4.91)
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for w45 the connection one-form on the boundary. The variation of w?p on the boundary
is related to those of w4 g via

A

50(-"] B — 60(DAB + (nBéowAC - nAaowCB) nC' (492)

Under a general variation of K4 and R4z, Q, in (4.81) varies as

m—1

1 . 11—k . .

6Q.=dy (" (—1)k {5ICB ARCD ¢ L2 T BspBC )\ ICD} ARM2E A K2 Ae, b on (4.93)
k=0 k 2k +1

Specializing to Weyl variations, this becomes

1
E(SJQd :5UWBCnCRm_1nA€AB...
X (m -2
+ (SUCDBC A\ < 1 ) (—1)k(m — 1)VICD AR™2FA }C%?”LAEABCDM
k=0
= (m -2 m—1
+d {50&330 A Z ( I > (—1)k2k—HRm72fk N /C%H?”LAEABC..} ;
k=0
(4.94)

where we have used the Gauss equation in simplifying the 6,K variation along with VR =0
in simplifying the 5, R variation. Using the Codazzi equation, R4gn? = 6ICA, the second
line combines with the first to give

0&q
ORAB

05 Qq = S,w™B A +d {(m—1)6,0"" A (Qa-2)an} - (4.95)

In writing the boundary term, we have defined the matrix-valued (d — 3)-form (Q4_2)ap to
be

= (m—2) (=1)k
(Qu2)ap=d) ( N ) T 1Rm—2—k AKHFFnC e pe. (4.96)
k=0

The reason for the name is the similarity with the explicit expression (4.81) for Qg: the
sum (4.96) is identical to that in the expression for Qg , except it runs to k = m — 2 rather
than k =m — 1.

Putting d,Q  together with the variation of the Euler form (4.85), the boundary term in
the variation of f 1 00204, Eq cancels against the first half of the variation of Q4 in (4.95), so
that

0000 Wy = A ( / A2\ /G X" 0,6010,605 — 2(m — 1) /
M

oM
= A (/ dd.I\/EXﬂyaﬂ(SUlau(soé _/
M

oM

eAefaaéO'l A d(SO-Q VAN (Qd2)AB)
dly /Ay ya58a50185502) : (4.97)

40



where Y8 is

m—2
m— 2 m—1
yaﬁ :deav"flm’m%eﬁ 01...04-3 -1 k
K k; k (=1) (2k 4 1)2m—3-k (4.98)
X R’Y1’Yz5152 T R’Yd—Qk—5'Yd—2k—45d—2k—55d—2k>—4K’Yd—Qk—36d—2k—3 e K’Yd—35d—3 :

V8 is symmetric owing to the symmetry of the boundary curvatures, ]%agmg = Ji’wgag and
K. = Kp,. Then (4.97) yields

(001500 |Wa =0, (4.99)

which is what we sought to show.

4.2.4 A Complete Classification in d = 4 and Boundary Central
Charges

The previous subsection was somewhat abstract. Let us see how the consistency works
in d = 4. Along the way, we will also classify the potential boundary terms in the Weyl
anomaly, finding two “boundary central charges.” To our knowledge, one of these “central
charges” was first noted in [71] and the other later in ref. [72].

In d =4, & and Q4 are equivalent to the scalars

Ey = R, R"" — 4R, R" + R*,
. 2 1 4.100
Q=4 (2EQ5K°‘5 +3 tr(K%) — KK, 3K + §K3) , ( )

where ang = ]f?a/g — %5%5 is the boundary Einstein tensor, and the a-type term in the

anomaly is

a

W, =A (/ d4x\/§50E4 — / d3yﬁ5aQ4) , A= ) (4.101)
M oM 1672

The Weyl variations of E4 and ()4 are
0o By = —460E, + 8D, (E"0,00) , (4.102)
05Q1 = —300Qs — 4{ R o), — 2V, (K — Ky*?) Vs } 60 = 8V, { (K — Kq°%) 060} .
Using the Gauss and Codazzi equations (4.77), which here are

Rogys = Roprs — KayKps + KasKpy,  n"Ruapy = VoKag — VsKoy,  (4.103)
we can rewrite the variation of ()4 as

0,Q4 = —360Q4 + 81, B",60 — 8V, { (K*¥ — K~*F) 9300} . (4.104)
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The second variation of W, is then

Sy 00y Wa = —8A ( / dia/g E™ (9,601)(,002) + /
M 0

M

Py (K — Ky°P) (8a501)(3g(502)(>4.7105)
which is manifestly symmetric under doy <> dos, so that
0615005/ Wa = 0. (4.106)
In this instance, the tensors X** and Y*? are
X =-—8pm, Y¥ =8 (K - Ky). (4.107)

So much for showing that the a-type anomaly is consistent. Are there any other boundary
terms which may be allowed in the anomaly? This is essentially a cohomological question,
which we answer in three steps:

1. Posit the most general boundary variation of W characterized by dimensionless coef-
ficients.

2. Use the freedom to add local boundary counterterms to remove as many of these
coefficients as possible.

3. Demand that the residual variation is Wess-Zumino consistent.

We perform this algorithm in Appendix 4.6.2. The final result is that the total Weyl
anomaly for a d =4 CFT is

1 . R
S W = o3 /M d*z\/g 60 (aBy — W},,,) — /8 y d*y\/v do (AQ4 — bitr K — beyaVK“WaM@.;os)

where Kag is the traceless part of the extrinsic curvature, Kw = Kup— dTKlfyag, and Wog.s is
the pullback of the Weyl tensor. The terms proportional to b; and by are the additional type-
B boundary terms in the anomaly. We refer to b; and by as “boundary central charges,” and
they are formally analogous to ¢ insofar as they multiply Weyl-covariant scalars. The purely
extrinsic term proportional to by first appeared in [71], and the second term proportional to
by later appeared in [72].

It is an interesting exercise to compute b; and by for a conformally coupled scalar field.
The simplest way to proceed is to look at existing heat kernel calculations for a scalar field
in the presence of a boundary and then restrict to the conformally coupled case. The action
for such a conformally coupled scalar is

1 1
S = /Md4x\/§ ((8¢)2 + 6R¢2) +3 /M Py AK* . (4.109)
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Note that the last term ensures Weyl invariance. It is also necessary for coupling the theory
to gravity.® By comparing this result with heat kernel calculations for a conformally coupled
scalar field in the presence of a boundary, we can extract values for b; and b,. There are
two Weyl-invariant boundary conditions to consider, Dirichlet ¢|sy = 0 (in which case the
boundary term can be neglected) and the conformally-invariant Robin (n#9,+ K )d|an = 0.
Comparing with for example (1.17) of [73] or the expressions for a4 on p 5 of [74], we deduce
that

b1 (Robin) = —@5—5 © by(Dirichlet) = —@% by = @% . (4.110)
The value for by(Dirichlet) was computed before in eq. (19) of ref. [71], while b, (Robin) can
be found in eq. (55) of ref. [75]. The coefficient by was computed in the Dirichlet case in
eq. (15) of ref. [72]. (In our conventions, a = 1/360 and ¢ = 1/120 for a 4d conformally
coupled scalar.) As |by(Dirichlet)| > |b;(Robin)|, and one can flow from the Robin theory
to the Dirichlet theory by deforming the Robin theory by a “boundary mass” [ d3ymg¢?;
it is tempting to speculate that b; satisfies a monotonicity property under boundary renor-
malization group flows, similar to the one conjectured for a by Cardy and now proven in
d = 4 by ref. [14]. This conjecture is different from the “boundary F-theorem” conjectured
in [76, 77, 78] for d = 4 boundary flows. We leave further analysis of these boundary central
charges b; and by for the future.

4.2.5 Dimensional Regularization

In the two dimensional case, we saw that an effective anomaly action could be constructed
in dimensional regularization using a combination of the Einstein-Hilbert action and the
Gibbons-Hawking surface term in n = 2 + ¢ dimensions. In the limit ¢ — 0, these objects
sum together to give the Euler characteristic. The obvious guess, which we shall verify, is that
to construct the anomaly action in d dimensions, we need to continue the Euler density along
with the @, Chern-Simons like term to n = d+¢€ dimensions. In the mathematics community,
such a dimensionally continued Euler density is called a Lipschiftz-Killing curvature, while
in the physics community, these objects are used to construct actions for Lovelock gravities.

The mth Lipschitz-Killing curvature form in dimension n, 2m < n, is:

Enim = <7\ RAMA%) A < /n\ eAi> €AyA, (4.111)

i=1 i=2m+1

where €4,...4, is the totally antisymmetric Levi-Civita tensor in dimension n. In n = 2m

n

dimensions, the Lipschitz-Killing form reduces to the Euler form, &, ,,, = ;. The analog

STf we are not interested in dynamical gravity, we could add an additional boundary term of the form
O(K +3nt0,)¢ with arbitrary coefficient. This term preserves Weyl invariance. However, it does not modify
the boundary conditions or the scalar functional determinant. Consequently the boundary central charges
that we determine below do not depend on this term. See the appendix of [56] for a related discussion.
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of the Gibbons-Hawking term we call Q,,

1 m n
Qum = m/ ()42 A (/\ R(t)A%-lA%) A ( A eAi) €an, dt . (4.112)
0

i=2 1=2m+1

It is a n — 1 degree Chern-Simons like form which is only defined on the boundary, which
reduces to Qg4 in n = 2m dimensions.

The obvious guess for the effective action W[gw] in n = d + € dimensions, i.e. the d
dimensional analog of (4.17), is

Wiowl = 0" vy Uy o= [, Qo) - 0119

where d = 2m. The effective anomaly action is then just

Wigu € gy0) = lim (Wg) = Wle™g,0]) - (4.114)

Note that this effective action only recovers the a dependent portion of the trace anomaly.

As in subsection 4.2.2, we can perform the integral over ¢ in the definition of Q,,,, to
deduce an explicit expression for Q,, ,, in terms of the extrinsic and intrinsic curvatures of the
boundary. The integration over t is identical to that performed in subsection 4.2.2, except
now we have n — 2m factors of e? to account for. The final result is

L (m—1) (—1)F
o = 2M | R IR A L A enm2mp A 4115
S = . )
where for brevity we have suppressed the indices of the curvatures and factors of e?, all of
which are contracted with the remaining indices of the epsilon tensor.

Next we show that dimensional regularization (4.113) reproduces the a portion of the
Weyl anomaly. Our approach is almost identical to the demonstration that the a-anomaly
is Wess-Zumino consistent in subsection 4.2.3. We begin with the expressions (4.111)
and (4.115) for &, ,,, and Q,, ,,,. We consider the Weyl variation of

/ Enm — Qnm s (4.116)
M oM

in n dimensions. We compute this variation in two steps. First we show that this difference
does not depend on any variation of the connection one-form w?p while keeping the e?
fixed.” Then the Weyl variation only arises from the Weyl variation of the e?* while keeping
the w?p fixed. This last variation is rather simple, as the e only appear through wedge
products in &, ,, and Q,, .

"This same computation shows that the Lovelock gravities have a well-defined variational principle for
the metric g, on a space with boundary (see ref. [79]).
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A

Now consider a variation of the connection one-form w4p whilst keeping the e and

embedding of the boundary fixed. The bulk and boundary curvatures vary as

0, R =Déwlp,  0.RAs =V,  0.,KY= (bwip)n”, (4.117)

A

where w” g is the connection one-form on the boundary. The computation of this variation

is virtually identical to that in subsection 4.2.3, as the only difference between &, ,,, and &,
and Q,,,, and Qq, is an extra wedge product of n — 2m factors of the e

of (4.85) and (4.95) are

6Enm = d (&UAB A 85”””) ,

. The analogues

aRAB

(4.118)
00 Qnm = SwiB A g%xg + (total deriative),
so that
0w (Enm —dQnm) =0, (4.119)
as claimed.

Now consider a variation under which w?p is fixed and the e vary as in an infinitesimal
Weyl rescaling,

o e = doe?. (4.120)
Then
0o (Enm — dQpm) = (n —2m)do (Epm — dQnm) (4.121)

so that the variation of the dimensionally regulated anomaly action W in (4.113) is

= m 4a
W = (-1) (2m) Vol (§27) (/M Enmdo — - Qmméa) : (4.122)

In the n — 2m limit, this variation coincides with the a-anomaly (4.68).

4.3 Dilaton Effective Actions and Boundary Terms

In this section, we present the a contribution to the dilaton effective action in a spacetime
with boundary in four and six dimensions. The d = 2 dilaton effective action with a bounday
term is given by (4.15). For d > 2, the computation of boundary terms is more laborious.
The details of a derivation using dimensional regularization are provided in appendix 4.6.3 in
dimensions four and six. We save the general discussion of how the universal entanglement
entropy arises from the boundary terms of these dilaton actions for the next section.
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4.3.1 The Dilaton Effective Action in d =4

The Euler density in d = 4 is given by

E, = 15“1"'“41’:{”1”2 RV3v4
4

V1v4 H1p2

= Ruvpe R""7 — 4R, R"™ + R?, (4.123)

M3

where 5511[],'514 is the fully antisymmetrized product of four Kronecker delta functions. The

boundary term is

V1 1 Vo 2 Vo TV = a 2 o 1
Qa4 = —4dikets K (—R % o + = K Kug) =4 <2EaﬁK Py gtr(KS’) — KKK + g17(3)4.124)

Vivov3 2 3 n2
Denote the Einstein tensor as

1
EM = R" — 2g"R. (4.125)

In appendix 4.6.3, we find the dilaton effective action in d = 4 to be

Wl g] = <4i>2 /Md“"ﬁ [7Ey+ 4" (0,7)(0,7) + 8(D,d,7)(9"7) (8" ) + 2(07)"]
a 3 N N 8 ,
e [)Md YV {TQ4 + 4(Ky* — K%Y (0,7)(0p7) + 3Ta| » (4.126)

where 7,, = n#0,7 is a normal derivative of the Weyl scale factor. The bulk term agrees with
ref. [14, 55] while the boundary contribution is to our knowledge a new result.

4.3.2 The Dilaton Effective Action in d =6

The Euler density in d = 6 is given by

1
E6 = —op1he le&muz RV3V4M3M4 RV5V6M5M6 (4- 127)

8 vy lUg

and the boundary term is

a 1 o 2 oo 1o 1 A 2 o ay
Qs = — 6550 K {(53 " s + 3G Kﬁf) (§R " pups + gKﬁ;K/ﬁ)
\ (4.128)
b RERERERE]
To present the bulk dilaton action, we define
E(Q),ul/ = gMVE4 + SR'SRPV —4R" R + 8Rpo-RupVU — 4Rup07RVpaT ) (4 129)

C;wpa = Ruupa - g,upRuo + guchup .
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In appendix 4.6.3, we use dimensional regularization to find the bulk dilaton action

W[guua 672Tg;w](Bulk) =
—3(47T)3 /M d6$\/§ {—TE6 + 3E£2V)8“78”T + 16C 0 pe (D*0PT)(0"T)(07T)
+16E,, [(0"7)(0°T)(D,0"1) — (0"7)(9"7)07] — 6R(OT)*
—24(97)*(DOT)* + 24(97)*(O7)* — 36(07)(97)"* + 24(07)°} .
(4.130)

This reproduces the bulk Wess-Zumino term first obtained in [15].
We have not been able to generate the boundary term in a general curved background.
However, for a conformally flat geometry, we find

a

—27 .
W[éﬂl”e 6/—“/] - _1671'3

/M /G {2(07)2(0,0,7) — 2(0r)*(Or)? + 30r(07)" — 2(07)°)

a

3(4m)3 /aM d5yﬁ[ — 7Qu[6,] + 48P5(0a7)(9°T) + 3Qu[0,](VT)?

+ 48K (07 (Vads7) + 24K (Vo 057)* — 48K o (VP0°7) (V7 057)
— 24K (Or)? — 32K (V7)*0r — 16K (0°7)(8°7) (Vo) (4.131)
+ 16K ,5(8%7)(90°T) 01 + 32K,5(V0°7)(VT)? + 12K 7

+ 12K (V) + 24K (V7)?72 + 48(0r) (V1) (13) + 16(07)(72)

. o 36
— 24(VT)* 72 — 367,(VT)* — ETS] :
where we have defined
Py = (K?—tr(K?)K§ —2KK“ Kg, + 2K,s K"K} . (4.132)

4.4 The Sphere Entanglement Entropy: General Re-

sult

We consider the entanglement entropy across a sphere with radius ¢ in flat space. The
calculation is analogous to the discussion of the entanglement entropy for an interval in
d = 2 in section 4.1.3. The information necessary to compute the entropy is contained in the
causal development of the interior of the sphere, a ball of radius ¢. We can then map that
causal development to all of hyperbolic space cross the real line R x H%! using the change
of variables

sinh /¢
~ “coshu+coshr/¢’
B sinhu
~ coshu+ coshr/¢’

(4.133)
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where 7 labels the new time, u is the radial coordinate in hyperbolic space while (¢,7) are
time and radius in polar coordinates in flat space. The line elements on flat space and
R x H%1 are related by a Weyl rescaling (see for example ref. [30])

n = —dt* +dr?* + r2dQ;_, ,

4.134
= 2 [_de + ?(du® + sinh® u dQ§—2)] ) ( |

where e~ ¢

= cosh u+cosh 7/¢. We proceed by using the Euclidean version of this map, where
TE is a periodic variable with period 27¢ so that the theory is naturally at a temperature
T = ﬁ, and the Euclidean geometry is conformal to S' x H?*"!'. Note a difference here with
the d = 2 case where the temperature was a free parameter.

The computation of the entanglement entropy across a sphere thus reduces to a com-
putation of the thermodynamic entropy of the hyperbolic space Sgp = 27l(H) — W where
W = —Intre 2™, As it did in d = 2, this computation in turn breaks down into three
pieces, a computation of (H), a computation of the effective anomaly action W[, €274 ,]

and a computation of a universal contribution to W[(SW],

Sg = 21l(H) + Wb, e 26, — W[5, (4.135)
To compute (H), we shall not try to write down the Schwarzian derivative in arbitrary even
d, but instead rely on an earlier closely related computation performed in ref. [1].

We have not been able to compute W[4, € 274, ] in general d, but we shall argue based
on computations in d = 2, 4 and 6 that it precisely cancels the contribution to Sg from
(H). Finally, we compute W[éu,,] and show that the logarithmic contribution to it always
reproduces the universal part of the sphere entanglement entropy.

4.4.1 Casimir Energy

The easy part of this computation is (H) because it has essentially been done in the
chapter one, where the stress tensor in the vacuum on R x S9! in even d was computed,
within the scheme where the the trace anomaly takes the form

d 4a
(T",) = E ol — (—1)2m3d, (4.136)
J

i.e. in a scheme where local counterterms are used to remove the total divergence from the
stress tensor trace. Within that scheme, the stress tensor is unambiguously determined by
a to be

4a (T 4a
(—02)4/2d Vol (S?) ~

(T3 = — 5t . (4.137)

3 = CEPdd = 1) Vol(SY)
On R x H%! at the temperature T = ﬁ it follows that
4a , da

(2

“Zivoisy I = @ neEvol(sy)

(T3 = 8% (4.138)
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because the Riemann tensor is the opposite sign, and the result is constructed from the same
product of d/2 Riemann tensors in each case. As the energy density is constant, the total
energy is given by multiplying the energy density by the (divergent) volume of hyperbolic
space, (H) = (T%) Vol(H4™). We need to isolate the logarithmic contribution to this volume

Vol(H*') = ¢ Vol (5972) / sinh®2 u du (4.139)
0
where our cut-off is
5/¢
umax——1n2_5/€ . (4.140)
We find that
d (=12 , d g
Vol(H™ ) = ...+ ———¢"""Vol(S -1)1nZ + ... (4.141)
T
and hence that
d—1
2rl(H) = ...+ (—1)d/28—“V°1(S ) 2 +... (4.142)

d Vol(§%) ¢

Like the stress tensor on R x S9! neither the stress tensor on R x H9! nor (H) is
independent of the choice of scheme. For example, if one computes the partition function of
a d = 4 conformal field theory in two different schemes in d = 4, their generating functionals
may differ by the local counterterm

13 / d'r\/gR?, (4.143)

where the coefficient £ is real. Taking a metric variation of the counterterm, it is clear that
the stress tensor on R x S9! or (H) on R x H% ! depends on the choice of £&. See refs.
[1, 2, 81] for lengthier discussions of this issue. However, the dependence of W on £ is linear
in 3. Thus while (H) depends on the choice of scheme, the result we obtain for the sphere
entanglement entropy Sg does not.

In principle, we should also worry about boundary contributions to (H). We claim these
contributions do not contribute to the logarithm. One way to compute them is to look at
the metric variation of the boundary @, ,,, term in n = d + € dimensions. As we saw before,
the variation of the metric through the spin connection will cancel against a bulk variation
of E,,,. The remaining variation comes only from the vielbeins, and cannot produce a
logarithmic contribution.

4.4.2 Dilaton Effective Action

It is more involved to obtain W[d,,, e 27d,,]. In d = 2,4, and 6, we use the dilaton effec-
tive actions that we found in sections 4.1 and 4.3. We will see that logarithmic contributions
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from (H) and W cancel out, i.e. that
2{H) + Wb, e >8] (4.144)

has no logarithmic contribution. Thus, the entire entanglement entropy contribution comes
from W[(SW], which we will compute next.

In principle, we should be able to evaluate W[d,,,., e 274, | for general even d and find the
same cancelation of the logarithmic pieces. In practice, there is an issue of non-commuting
limits in dimensional regularization which makes the calculation difficult. The correct order
of limits is to take the metric to be completely general, take the n — d limit, and only
then specialize to the metric of interest. To see that the other order of limits is problematic,
consider the following example. If we first fix the metric 7274, to be that of ST x H"~! and
then take the limit n — d, we get a divergence that disappears in the other order of limits.
Because S! x H"™! contains an S* factor, the Euler characteristic, i.e. the leading 1/(n — d)
singularity in fVI\;[e*QUéW], will vanish. In contrast, the leading 1/(n — d) singularity from
the boundary contribution to W[ém,] will not vanish. Thus W[4,,,, e=*°d,,,] computed in this
order will not even be finite.

We identify the conformal factor o in the metric (4.134) with the dilaton 7 of section
4.3 (not to be confused with hyperbolic time). For convenience, we divide up the bulk and
boundary contributions to ¥W. We find the following results.

d=2

The d = 2 case can be evaluated from the effective action (4.15). Denoting 5 = a and
recalling that an interval has two endpoints, we find the bulk contribution to W is

W0, 6_205M,,]Bu1k = — (%) (27ru — 47 In(sinh u)) Vol(S%) + ... (4.145)
The boundary action contributes the following relevant divergence (the logarithmic diver-
gence)
Wi(0ms €28, | Boundary = — (%) (4m> Vol(S%) + ..., (4.146)
so that the logarithmic contribution to W is
W by 28] = —2au+ ... . (4.147)

Using the expression (4.142) for (H), we see 27ml(H) + W0, e *°4,,] has no logarithmic
term.
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d=14

In d = 4, we find that the bulk and boundary terms in the expression (4.126) for W
contribute the following logarithmically divergent terms

—20 a . 2
W, e 70, ]Buk = (4m)? (67ru — 167 In(sinh u))Vol(S Y+ ...,

a

(4 )

i (4.148)
W[(Sw,, e Ué,ul/]Boundary -

(167ru>Vol(S2) +... .

d=26

In d = 6, we find that the bulk and boundary terms in the expression (4.131) for W give

AE It T r—— ( 4“>3 (307w — 967 In(sinh w)) Vol(S%) + ... |
" (4.149)
W[(Suy, 67206,LL1/]B0undary = — (47T>3 (967TU)V01(S4) 4+ ...,

In sum, using the dilaton effective action in d = 2,4,6, we confirm that there is no
logarithmic contribution to 270(H) + W0, e *4,,], as advertised.

4.4.3 The Boundary Contribution to W in General Dimension

The last calculation to do is then an evaluation of the logarithmic contribution to W[(SW]
in general dimension. To keep the boundary parametrization simple, it is useful to work in
the (7,u) coordinate system. In that system, we have that the extrinsic curvature takes the

form

inh o1
smg =y K!'=0, K] = Z(COSh%

Kl =— cothu + cschu)d? . (4.150)

The bulk term in W vanishes identically in flat space, so it remains to evaluate the boundary

term. Two useful integrals for evaluating that boundary term in flat space are, for even d,

/27r (1+coshucost)™® ~— m (d—2)!
0

(coshu + cost)d=1 " sinhu 9d-3 (ﬁgf ’
2 (4.151)

' o1y, VT (F)!
/0(1—3)/ ds-w.

Starting with the expression (4.81) and using the Gauss equation to replace the non-zero

o

Rapys with the vanishing R, ., the logarithmic contribution to the boundary term is

271 (n — d)d! J
Qnapp = ..+ 2mln = d)d! Vol(S“)In— 4 ... . (4.152)
oM d—1 /
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Using that for even d,
Vol(S42)  d—1

= 4.153
Vol(S9) 2 ( )
we then find the logarithmic contribution
—~ 4]
W] = ... + (—=1)¥*4a s+ (4.154)

Using the expression (4.135) for Sp and that 27¢(H) 4+ W[d,,, e 274,,] has no logarithmic
term, we indeed find that the universal term in the entanglement entropy Sg across a sphere
is

SE:...+(—1)d/24aln%+... : (4.155)

as claimed in ref. [40]. Often in these types of computations, knowing the value of a difference
like W[d,,,€7270,,] is useful because there are symmetry reasons to believe that for the
reference background W[éuy] will vanish. Here, precisely because we had a boundary, W[(SW]
did not vanish. As a result, we needed an independent way of calculating W[éw], and in
fact, when the dust settled, we saw that we only needed to calculate W[(SW]. Everything else
canceled.

That W[éu,,] gives the right answer could perhaps have been anticipated. From ref. [49],
it is known at least in four dimensions that the a dependent contribution to the entanglement
entropy for a general entangling surface X is proportional to the Euler characteristic of that
surface, Sg ~ 2ax(X)In(5/¢). The fact that /I/Ivf[éu,,] gives us the entanglement entropy in
our case could be viewed as confirmation of ref. [49] in the case when ¥ is a sphere. It is
not too much of a stretch to imagine that in general even d, the a dependent part of the
entanglement entropy will be Sg ~ (—1)%22ax(X)(In6/¢). Indeed, there are arguments to
this effect in refs. [82, 83].

Before proceeding, we write down an expression for the thermal partition function Wy =
—1InZy on H? ! at temperature T' = 1/(27/) whose logarithmic pieces agree with the results
above

Wy = _GWF/E?(%)! [P(d) —241r (1 - g) r (g)} Vol(H™ ) +... . (4.156)

The first term is proportional to (H) and the second term gives the entanglement entropy.
The quantity in brackets is A160481 in the Online Encyclopedia of Integer Sequences [84].
4.5 Discussion

We resolved the puzzle described in ref. [40]: the universal logarithmic term in the entan-
glement entropy (4.2) across a sphere in flat space (for a conformal theory) can be recovered
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by a Weyl transformation to hyperbolic space, provided one keeps careful track of boundary
terms. One interesting consequence of our results is that the logarithmic term can be inter-
preted as a purely boundary effect. With the help of the conformal map to hyperbolic space
cross a circle, focusing on the universal part, we identify the logarithmic contribution to the
entanglement entropy Sg and the dimensionally regularized effective action W[dm,]:

Sg = —tr(palnpy) ~ —W[5“V] : (4.157)

where /V[v/[éw,] is given by eq. (4.113). /I/Iv/[(SW] corresponds to a dimensionally continued Euler
characteristic of the causal development of the interior of the sphere, a ball, which in turn
receives contributions purely from the spherical boundary of the ball since the Riemann
curvature and hence the Euler density vanish in flat space. The leading area law divergence
in the entanglement entropy is also usually interpreted to be a boundary effect: entangle-
ment entropy scales with the area of the boundary because in the ground state most of
the entanglement is assumed to be local. But here we see that the subleading logarithmic
divergence is also a boundary effect. Perhaps this result should have been anticipated since
both divergences are regulated by a short distance cut-off 9, which one could think of as the
distance between lattice points on either side of the boundary.

As we discussed in section 4.4, that /V\V/[(SW] on its own gives the correct answer for the
log term in the entanglement entropy across a sphere can be viewed as a special case of
Solodukhin’s result [49] using a squashed cone in d = 4 that the a contribution to the
entanglement entropy across a general surface > can be written

Sg ~ 2ax(X)In(6/0) . (4.158)

For non-spherical entangling surfaces, there will of course be other contributions to Sg, for
example from the ¢; central charges. While we are not aware of a derivation (refs. [82, 83]
come close but ultimately only consider the sphere case), it seems reasonable that in general
dimension, the only modification needed to make this formula correct in our conventions is
a factor of (—1)%2.

In the process of resolving this puzzle, we produced a number of auxiliary results which
are interesting in their own right. In two dimensions, where the trace anomaly is perhaps
most powerful, we were able to use an effective anomaly action to reproduce three well-
known results in conformal field theory, namely the Schwarzian derivative, the entanglement
entropy of an interval, and also the Rényi entropies for the interval. Neither the effective
anomaly action we use nor the results are new. However, we have not seen our form of the
effective anomaly action used to derive these three results before.® Additionally, the story
in two dimensions provides a simple warm-up example for the story in general dimension
which we pursued next.

8See however ref. [64] for a similar calculation.
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Between d = 4 and d = 6, our story is the most complete in d = 4. In four dimensions,
we derived from general principles the most general Wess-Zumino consistent result for the
trace anomaly on a manifold with a codimension one boundary, including two boundary
central charges we denoted by and by. It would be interesting to study b; and by further (as
well as their counter-parts in higher dimensions). What values? do they take for massless
fermions? for a gauge field? for superconformal field theories? Might they be ordered under
renormalization group flows, like the coefficient a?

Another pair of key results in this chapter are explicit formulae with boundary terms
for the a contribution to the effective anomaly action in d = 4 and d = 6 dimensions.
Previously, to our knowledge, only the bulk contribution had been worked out [14, 55, 15].
Unfortunately, in d = 6, we were only able to detail the boundary contribution to the
action for a conformally flat metric. The conformally flat case was enough to study the
entanglement entropy across a sphere. Nevertheless, it would be nice to write down the
boundary contribution for a general metric.

We mostly adopted the dimensional regularization to construct W. It would be interest-
ing to construct W using the integral formula (4.69).

4.6 Appendix

4.6.1 Differential Geometry with a Boundary

Let M be a d-dimensional, orientable, Riemannian manifold with metric g with a bound-
ary OM. We use x* to indicate coordinates on patches of M and y“ for coordinates on patches
of 9M. The boundary can be specified by means of the embedding functions X*(y®). These
do not transform as tensors under reparameterizations in M, but their derivatives

ful = 0, X" (4.159)

do. Rather, the f# transform as a vector under reparameterizations of the z* and as a one-
form under reparameterizations of the y*. The f# allow us to pull back covariant tensors on
M to covariant tensors on M. For instance, the metric g pulls back to the induced metric
~v with components

9as(y) = fo"" (W) 5" ()9 (X () - (4.160)

We also define
Fu = 9™ fs” (4.161)

which satisfies
[l =05, [l = hy, (4.162)

9The boundary central charges for fermions and gauge fields were recently computed in d = 4 in ref. [85].
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with h* a tangential projector. We can also define a unit-length, outward-pointing vector
field n* after picking an orientation on OM via

1 ag..o v v
= (d — 1)!5#”1--‘%715 b dilfal oy fad71 . (4163)

The Covariant Derivative and the Second Fundamental Form

We use the Levi-Civita connection built from g to take derivatives D on M. From this
connection we construct a connection on 0M that allows us to take derivatives V of tensors
on OM. V acts on e.g. a mixed tensor T#, via

@al’ig = 80/3“5 + F“Vaf”g — 10175&5”7 , (4164)

with

M =Trpfa”s D%y = [ (0,00 +TM0e) 5" (4.165)
It is easy to show that f‘am is the Levi-Civita connection constructed from the induced
metric 7,4, and furthermore that the derivative satisfies

o o

Vg =0,  Vays, =0. (4.166)

There is a single tensor with one derivative that can be built from the data at hand,
namely the second fundamental form II* g,

Huaﬁ = %afﬁ'u . (4167)
One can show that
Iop =se,  hull’as =0, (4.168)
and the latter implies that
o5 = —n"'Kag, (4.169)

o

where K, is the extrinsic curvature of the boundary. From this and n,V,n* = 0 we also
find
Vo, = 17 Kag . (4.170)

Let us relate this presentation to the more common one in terms of Gaussian normal
coordinates. For some patch on M which includes a patch of M, we choose coordinates so
that ¢ takes the form

g = dr? + Gus(r,y)dy*dy”, (4.171)

where the boundary is extended in the y® at » = 0. That is, the embedding functions are

fa" =0, f.,? =68, and consequently the induced metric is

Vap(Y) = Jap(r =0,y). (4.172)
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In this coordinate choice we have

r r r 1 ~
n = 1, I af = I af = —5 argaﬁ‘yzo . (4173)

Note that the trace of the extrinsic curvature, K = y*° K3 is

oA 2 £,V
g 'Bargaﬁlrzo - y (4174)

\/5 r=0

with £, the Lie derivative along n*, which coincides with a common formula used by physi-

K —

1
2
cists for the extrinsic curvature of a spacelike boundary.

Gauss and Codazzi

Consider the Levi-Civita connection one-form I'*, = I'*, ,dz” and its curvature
1
Rt, =dI', + T, AT", = §R",,pgdm" A dx? . (4.175)

R*, s is the Riemann curvature which can also be defined through the commutator of deriva-
tives
[Dm DO’]UM = Ruupany s (4176)

for v# a vector field. The pullback of R*, to OM can be expressed in terms of the curvature
R*, of T' and the second fundamental form. The resulting expressions are the Gauss and

Codazzi equations. They can be summarized as
P[R",) = R [ 7, + VM, — MF, N M, (4.177)

where V is the covariant exterior derivative and

MH, =TF, Y, — [MLLY, 1, = 1*,5dy” . (4.178)
Alternatively, we can define
I, =TH, dy® — M*, (4.179)
whose curvature satisfies
R", = RO f," %, . (4.180)

In components, the Gauss and Codazzi equations read

o

Ra676 = Ra675 - Koz'yKﬁé + KaﬁKﬁva

. . 4.181
Ryopyn" = =VgKoy + Vo Kog, ( )

and we have used the embedding scalars to convert indices on the bulk Riemann tensor into

indices on OM.
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4.6.2 Wess-Zumino Consistency in d =4

We now perform the algorithm described in Subsection 4.2.4, beginning with step 1. We
need to parameterize the most general variation of W, which we denote as d,W;. After some

computation, we find that this variation contains sixteen independent terms'®

8 8
50Wb:/ d3yﬁ{ZbIB]+ZBJDJ}5O', (4182)
oM 1=1 J=1

indexed by the eight b; and eight B;. (The coefficients b; and B; are used to denote

boundary central charges.) We organize the terms in the following way. The eight B; are

three-derivative scalars. The eight D; all involve derivatives of the Weyl variation do, and

so we denote them with a calligraphic D to suggest a derivative. We distinguish the B; and

D, for two reasons. First, the allowed three-derivative counterterms are given by the Bj.

Second, we will see shortly that those local counterterms redefine the coefficients of the D;.
In any case, the B; are

By =RK, By=RK, Bs=RuK*®, Byi=trKk?,

3 . 4.183
Bs=K?, Bs=n"0,R, Br=trK® Bg=Wys,7""K”, ( )

Here W45 is the pullback of the Weyl tensor to the boundary, and we have defined K to
be the traceless part of the extrinsic curvature,

Kop = Kop — %%5 : (4.184)
which transforms covariantly under Weyl rescaling as Kag — e"f(aﬂ. B; and Bg are then
manifestly covariant under Weyl rescaling. They are the only nonzero scalars that can be
formed from either three factors of K, or one factor of K and one of the Weyl tensor. They
cannot be eliminated by the addition of a local counterterm and are trivially Wess-Zumino
consistent, and so represent genuine boundary anomalies. The tr(f( 3) term first appeared in

vef. [71], while the Wog,57*7 K™ term appeared later in ref. [72]. The D, are

D, =0K, Dy,=V,V3K*, Ds=Rn"d,, Dy=Rn"d,.
Ds = KaﬂK‘an“ﬁu, D¢ = K2n“8ﬂ, D; = Kn*n"D,D,, Ds=n"n"n"D,D,D,,
(4.185)

Continuing with step 2, the most general local boundary counterterm is

6
Wer = / d*yyy > diB; . (4.186)
oM =1

10Tn compiling the list of these sixteen terms, we have made extensive use of the Gauss and Codazzi
equations (4.103). We also use that the action of n#D, is only well-defined on bulk tensors.
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The d; represent a choice of scheme. They can be adjusted to eliminate various coefficients
in 0,W,. We would like to deduce which coefficients can be eliminated. This is an exercise
in linear algebra. As /yB7 and /7B are invariant under Weyl rescalings, we do not include
them in Wep. The Weyl variation of Weopr may then be understood as a linear map X :
RS — R® which maps the {B;} (for I = 1,..,6) to the {D,} as

8
0, | dPyABr = / d*yy7 > %D, (4.187)
oM oM =1
The number of D; which can be eliminated is given by the dimension of the image of ¥, and
the null vectors of X! encode the linear combinations of the D; which cannot be removed by
a judicious choice of scheme.

A straightforward computation gives

-4 -6 -1 0 0 6
0 0 -1 00 O
30 1 00 -3
Y= 05 000 (4.188)
o 0 0 30 3
0O -6 0 09 3
0 -6 0 00 -6
0 0 0 00 -6

The map Y is injective, so six of D can be eliminated. The null vectors of X! are given by
X1:(314000—3 4), x2=(0006003—2>, (4.189)

so the image of ¥ is given by R® modulo the R? spanned by y; and Y. In terms of the Dy,

the linear combinations
3Dy + Dy 4+ 4D3 — 3D; + 4Dy, 6D, + 3D; — 2Dy, (4.190)

are never generated from the variation of Wer. Said another way, the d; can be adjusted to
eliminate all of the D; except for D; and D,. So the most general boundary Weyl variation,
having modded out by local counterterms, is

8
5, Wy, = / By /7y {Z bB; + B,OK + B4Rn“8#} 5o . (4.191)
oM =1

Now we implement step 3, by computing the second Weyl variation. The second variations
of Bidos through Bgdo, follow (almost) immediately from the 6,Wer that we computed
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above. Let us then consider carefully the second Weyl variation of the terms proportional
to By and B4. From these terms we get

5y 00 Wy = / By {31 (3(71“8“501)(5502) n 2K<aa501)(aa502>)
—6B4(n*0,009) (D +n"n’D,D, + Kn”@,,) oo+ .. } (4.192)

where the ellipsis denotes terms that depend on b; through bs. The only terms with a
normal derivative of doy come from B4. Given that fact, it is impossible to symmetrize
under do; <> 0o, the term involving one normal derivative of doy and two normal derivatives
of do1. Thus Wess-Zumino consistency forces By = 0.

It is slightly more involved to see that B; must vanish. First, observe that the Bg term is
the only one which produces a second variation dooDgdoq, which has three normal derivatives
and is not symmetric under do; <+ doy and so is not WZ consistent. So bg = 0. In fact, the
same sort of reasoning tells us that by = by = b; = 0 and that b3 is proportional to b; as
by = —3b;. In terms of the remaining parameters by, By, the second Weyl variation is simply

5018, Wiy = / &y {35150—2@5%%5@ + B (3(71”3#(501)(@502) + 2K(8a501)(8a502))(}4.193)

This expression is not symmetric under doy <> do, for any nonzero value of b; and By, and
so WZ consistency enforces that they both vanish b; = B; = 0.

The only “boundary central charges” that survive are b; and bg, and the boundary term
in the anomaly is

5, W, = /8 By bR b R Wasns)} (4.194)

Putting the pieces together, the total anomaly is given by (4.108) as advertised in Subsec-
tion 4.2.4. In the text, we relabel: b; — by and by — bs.

4.6.3 Effective Action from Dimensional Regularization

In this appendix we consider the anomaly effective action W in even d dimensions as
obtained from dimensional regularization via the expression (4.114), which we recall here

W[gw/v 6_279;11/} = A hm ! {(/ gn,m - / Qn,m) - (/ én,m - / Qn,m) }(4195)
nodn —d M oM M oM

where m = d/2 and A = (—1)%?4a/(d! Vol(59)). Here we obtain the explicit forms of W in
d = 4,6 including boundary terms. (In d = 6 the boundary action will be evaluated in a

conformally flat geometry.) The bulk dilaton effective actions can be found in the literature;
the boundary terms to our knowledge are new results.
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We begin with the Lipschitz-Killing curvature &, ,, and the associated boundary term
Q,.m defined in (4.111) and (4.112) respectively. Denote the densities associated with these
forms as E,,, and @), ,,. The first step in evaluating the expression (4.114) for W is to
deduce how F,, ,,, and @), », change under Weyl rescalings. Starting with the metric g, and

performing a Weyl transformation to g,, = e 7

anm are

Guv, the transformed curvatures £, ,, and

VG Enm =G ¢ "V LB+ D, J" + (n— d)G + O(n — d)*} .

- . . : , (4.196)
V3 Quin = A € {Qut m " + Vol + (n — d)B+O(n — d)*} |

where it remains to determine J*, G, H% and B. Note that, in the n — d limit, (4.196)

implies
lim ( / Enm — / Qnm> = lim ( / Enm — / Qn,m) : (4.197)
n—d M oM n—d M OM

which is just a consequence of the fact that the Euler characteristic is a topological invariant
and so is invariant under Weyl rescalings. This has the practical effect that the dimensionally
regulated formula (4.114) for W is well-defined. From (4.196) we see that the integrand
of (4.195) is

V3Enm — /GEnm = /9 {DMJ“ —(n—d) (TEd — J"9r — G+ DM(TJ”)> +O(n - d)2} ,
VAQnm = V1Qnm = V7 {nﬂJ“ YV HE — (n—d) (r@d + (g Jh + Vo H®) — B) L O(n — d)2} .
In order to write W in as simple a way as possible, it will be useful to decompose G as

G =Gy +D,K", (4.198)

for some current K*. Putting the pieces together, we find that the anomaly action WV is

WG, e’QTgH,,] =A (/ dd$\/§{TEd — JHO, T — Go}
M (4.199)
—/ Aty A {7Q4 — H*Oum — B + n“Kﬂ}) )
oM
Besides obtaining B and G defined in (4.196), we also need to determine J#, K* and H®.
d=4

To obtain the bulk action in d = 4, we find that J* is

Jr = =8{E"d,r + (D"0,7)0"T + (0"7)(07)* — (O71)d"7} , (4.200)
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and we find it useful to split GG into Gy and K* as

K* = gJ“ +4E" 0,1,

(4.201)
Go = 4E"(9,7)(9,7) — 807(d7)* + 6(d7)*
We find that the boundary data H* and B are given by
H® = 8{<K‘”’8 - yaﬂK>8ﬁT —1—7'”8‘17'} ,
B =n"K, + 4V, {057 (K — P K)} — 4 (K% — 4P K) (9,7)(57) (4.202)

o 8
—8(V7)’1, — §7'3,

n

where we have denoted the normal derivative of 7 as 7, = n#0,7. Substituting these ex-
pressions into the general formula (4.199) for W, we find the result (4.126) quoted in sub-
section 4.3.1.

d=6

After some tedious computation, we find that the current J* in d = 6 for general g, is
given by

Soay =J1 +J5 +J5 + i + J5 (4.203)
where J# contains n powers of 7, and

Jo— 6EOMorr)
T = a8 ((D,27)(@r) — (@T)0r) + 48R 0 (9°7) (D70P7)

+48R,, ((077)(DP0"T) — (DP¥7)(0"7)) .

Ji = 48EX(9"7)(07)* + 48(9"7)(O7)* — 9607 (8" 7) (D, 0" ) (4.204)
+96(0"7)(D,0,7)(DPO"T) — 48(DIT)?*(9"7) |
Ji = —144(07)’07(0"7) + 144(07)*(9,7)(DPO"T) |

JE = 144(0m)*(0"7) .

The quantities E@# and C**° are defined in (4.129).

We have also computed G for a general metric g,,. We split it into Gy and K* so that
the bulk part of the anomaly action W matches the expression obtained in ref. [15]. The
resulting K* is

Ko o= e _spemy 16E“V<(8VT)DT - (Dﬂaﬂ)(aﬂ)) +16C" 0 (DP0"7)(077)

6
+48(D 9" 1) (0,7)(07)* + 72(01) (0" 7) — 48(07)*Or (0" 71), (4.205)
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and the expression for Gy is too lengthy to be worth writing here. It can be deduced by
comparing the general expression for W given in (4.199) with the bulk part of the anomaly
action in (4.130), using the formulae for J* and K* above. Similarly we decompose H® into

powers of T as
H* =H{+ HS + Hy + H . (4.206)

The computation on the boundary becomes much more tedious. We have computed B in
general but its expression is too lengthy to present here. We have not yet succeeded in finding
the current H* when for a general metric g,,. When §,,, is conformally flat, §,, = ¢ 270,

we find

HY = 48P50°T + 6Q4[6,,]0°T |

H§ = 48K3(9°r)0r — 48K5(V,0°7)(877) — 48K (9°7)Ur
+A8KP(V857)(0°7) + 48K (957) (V0 1) — 48K (V047)(077) |

HS = —48K§(0°7)(V1)? + 48K (V7)*(0°7) + 48K 72(0°T) — 4872 K5 (077)
+ 967, 007(8°7) — 96771(%0‘857' (0°1)

HY = —1447'71(%7)28“7' — 4873(0%7) ,

(4.207)

~—_—

where we defined P*? in (4.132). Using the expressions present above and the general
expression for the boundary term of W in (4.199), we obtain the explicit form in d = 6 given
in (4.131).
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Chapter 5

Boundary Conformal Field Theory
and a Boundary Central Charge

This chapter is an edited version of my publication [4], written in collaboration with

Christopher Herzog.

Motivated by the boundary terms in the trace anomaly of the stress tensor, in this chapter
we continue the investigation into the structure of boundary conformal field theory (bCFT)
begun over thirty years ago [86, 87, 88].

A term in the trace anomaly of four dimensional CFTs mentioned is the square of the
Weyl curvature with a coefficient conventionally called ¢. In flat space, the form of the
two-point function of the stress tensor is fixed up to an overall normalization constant, a
constant determined by ¢ as well [89]. Less well known is what happens when there is a
boundary. In curved space, one of the additional boundary localized terms in the trace of
the stress tensor can be schematically written KW where W is the bulk Weyl curvature and
K the extrinsic curvature of the boundary [3, 85, 90]. Let us call the coefficient of this term
by. Ref. [85] observed that for free theories, by and ¢ were linearly related: by = 8¢ with
our choice of normalization. A bottom up holographic approach to the problem suggests
that for interacting theories, this relation may not always hold [91, 92, 93]. In this chapter,
generalizing a method of Ref. [89] (see also [94]), we argue that by is fixed instead by the
near boundary limit of the stress tensor two-point function in the case where the two-point
function is computed in a flat half space. For free theories, the bulk and boundary limits of
the two-point function are related by a factor of two, and our proposal is then consistent with
the by = 8c observation. More generally, we will find that interactions modify the relation
between these limits.

To cross the logical chasm between by and the stress tensor two-point function, our ap-
proach is to try to fill the chasm rather than just to build a bridge. With a view toward
understanding the by charge, we investigate bCFT more generally, in dimension d > 2, em-
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ploying a variety of techniques from conformal block decompositions to Feynman diagrams.
As a result, we find a number of auxiliary results which may have interest in their own right.

One such result is the observation that current and stress tensor two-point functions of
free bCFTs have a universal structure. We consider stress tensor two-point functions for the
scalar, fermion, and p-form in 2p+2 dimensions as well as the current two-point functions for
the scalar and fermion. Additionally, we describe their conformal block decompositions in
detail. These calculations follow and generalize earlier work [87, 88, 95]. By conformal block
decomposition, we are referring to a representation of the two-point functions as a sum over
primary operators. In bCFT, there are two distinct such decompositions. Taking an operator
in the bulk close to the boundary, we can re-express it as a sum over boundary primary
fields, allowing for the boundary conformal block decomposition. Alternately, bringing two
operators close together, we have the standard operator product expansion (OPE) where we
can express the two operators as a sum over primary fields in the bulk, leading to the bulk
conformal block decomposition. Our discussion of conformal blocks is in section 5.2.3 and
appendix 5.7.1. Figure 5.1 represents the two types of conformal block decomposition in
pictorial form.

We find generically for free theories that the two-point correlators can be described by
a function of an invariant cross ratio v of the form f(v) ~ 14 v?2, where A is a scaling
dimension. Here, v — 1 is the limit that the points get close to the boundary and v — 0 is
the coincident limit. (The behavior for free scalars is in general more complicated, but the
limits v — 0 and v — 1 of f(v) are the same as for the functions 14 v?2.) The 1 in 1 40?2
then corresponds to the two-point function in the absence of a boundary, and morally at
least, we can think of the v?2 as the contribution of an image point on the other side of the
boundary.

In the context of the by-charge, let us call the relevant cross-ratio function for the stress
tensor a(v) ~ 1+ v?. (Again, the function a(v) for a scalar is more complicated, but the
limits v — 0 and v — 1 are the same.) In this case, we have the relation a(1) = 2a(0). As we
will see, ¢ is proportional to the bulk limit «/(0). It follows that there will be a corresponding
relation between ¢ and «(1) for free theories, which can be understood, given our proposed
general relation (5.155) between «(1) and by, as the equality by = 8¢ in free theories.

What then happens for interacting theories? A canonical example of an interacting bCFT
is the Wilson-Fisher fixed point, analyzed in either the € [96, 87] or large N [88] expansion
or more recently using boot strap ideas [95, 97]. Two choices of boundary conditions at the
planar boundary are Dirichlet (ordinary) or Neumann (special). Indeed, one finds generically,
in both the € expansion and in the large N expansion, that a(1) # 2a(0). In precisely the
limit d = 4, the Wilson-Fisher theory however becomes free and the relation a(1) = 2a(0)
or equivalently by = 8c is recovered.

We would then like to search for an interacting bCFT in d = 4 dimensions that is
tractable. Our strategy is to consider a free field in four dimensions coupled to a free field on
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the planar boundary in three dimensions through a classically marginal interaction that lives
purely on the boundary. We consider in fact three different examples. Two of our examples
turn out to be cousins of the Wilson-Fisher theory with a boundary, in the sense that, with
appropriate fine tuning, they have a perturbative IR fixed point in the € expansion, d = 4 —e.
The first example is a mixed dimensional Yukawa theory with a four dimensional scalar
coupled to a three dimensional fermion. The second is a mixed dimensional scalar theory
with coupled three and four dimensional scalar fields. At their perturbative interacting fixed
points, both interacting theories give (1) # 2a(0) at leading order in perturbation theory.
To our knowledge, neither theory has been examined in the literature. Given the interest
in the Wilson-Fisher theory with a boundary, we suspect these cousins may deserve a more
in depth analysis. Our calculations stop at one loop corrections to the propagators and
interaction vertex. While these theories are free in the IR in d = 4 dimensions with ¢ = 0,
if we set € = 1 we may be able to learn some interesting data about fixed point theories in
d = 3 with a two dimensional boundary. Unfortunately, neither of these interacting theories
gives us an example of by # 8c.

The third and perhaps most interesting example consists of a four dimensional photon
coupled to a three dimensional massless fermion of charge g. The photon wave function is not
renormalized at one or two loops [98, 99]. Indeed, a simple power counting argument suggests
it is not perturbatively renormalized at all. A Ward identity then guarantees that the
function for the coupling g vanishes. Perturbatively, it follows that this mixed dimensional
QED is exactly conformal for all values of g. The theory provides a controllable example
where a(1) # 2a(0) in exactly four dimensions. A leading order calculation in perturbation
theory indeed demonstrates that a(1) # 2a(0).

While we do not demonstrate the relation between «(1) and by for mixed QED in particu-
lar; we do provide a general argument based on an effective anomaly action. The argument is
similar in spirit to Osborn and Petkou’s argument [89] relating ¢ and «(0). The basic idea is
the following. On the one hand, an effective anomaly action for the stress tensor will produce
delta-function distributions that contribute to the stress tensor two-point function in the co-
incident and near boundary limits. As the effective anomaly action is constructed from the
W? and KW curvature terms with coefficients ¢ and by, these delta-function distributions
will also have ¢ and by dependent coefficients. At the same time, the coincident limit of the
stress tensor two-point function has UV divergences associated with similar delta-function
distributions. Keeping track of boundary contributions, by matching the coefficients of these
distributions, we obtain a constraint (5.155) relating by and «(1).

The quantity «(1) is related to the coefficient of the two-point function of the displace-
ment operator. In the presence of a boundary, the Ward identity for stress tensor conservation
is modified to

9,1 = D"§(x,),
9, T = —9gT485(x,) , (5.2)
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where 0(x ) is the Dirac delta function with support on the boundary, u, v are d dimensional
indices, A, B are tangential indices and n is the normal direction. We can identify a scalar
D™ displacement operator, sourced by perturbing the location of the boundary. Through
a Gauss law pill box type argument, the operator D" is equal to the boundary limit of
T™. Moreover, the value a(1) is proportional to the contribution of D" to the stress tensor
two-point function in the boundary limit. A novel feature of all three boundary interacting
theories, which distinguishes them from the Wilson-Fisher theory, is that in the perturbative
limit, they have degrees of freedom that propagate on the boundary and an associated
boundary stress tensor TAB§ (x1). We expect that a classical non-zero TAB generally exists
in theories with boundary degrees of freedom that are coupled to bulk degrees of freedom.
This boundary stress tensor is not conserved on its own, 91458 # 0, and conservation
of energy and momentum in the full theory is guaranteed through an inflow mechanism
involving the boundary limit of the normal-tangential component of the full stress tensor.

We have
Classical :  T""|py = D™, T”A\bry = —0pT"E . (5.3)

While this story makes sense classically, renormalization effects alter the story non-
perturbatively. Because 748 is not conserved, its scaling dimension will shift upward from
the unitarity bound at A = d — 1. It then no longer makes sense to separate out TAB
as a delta function-localized stress tensor; renormalization has “thickened” the degrees of
freedom living on the boundary. Instead, one has just the bulk stress tensor T*", which is

conserved, and whose conservation implies
Operator :  T™"|p,y = D™, T”Ahmry =0, (5.4)

understood as an operator statement (at quantum level). Any insertion of T4, in a
correlation function sets that correlation function to zero. In other words, there can be a
localized, nonzero T”A|bry classically, but quantum effects smear it out. This renormalization
effect leads to subtleties with commuting the small coupling and near boundary limits in our
perturbative calculations. For recent discussions of displacement operators, see [100, 101,
102, 103, 104, 105].t

Before moving to the details, it is worth remarking several features of this mixed dimen-
sional QED theory. While its bCFT aspects have not to our knowledge been emphasized,

1As an application of the boundary conformal anomaly, in [9] we introduced a notation of reduction
entropy (RE). We observed that the RE intriguingly reproduces the universal entanglement entropy upon a
dimensional reduction, provided that by = 8¢ and a term (T™") is added in the RE. Interestingly, from the
present chapter, we realize that (I™") in RE is the displacement operator. Moreover, since we find more
generally that by ~ (1), the RE encodes the information about boundary conditions for interacting CFTs.
The entanglement entropy, when computed by introducing a conical singularity, to our knowledge, however,
does not seem to depend on boundary conditions. It would be interesting to revisit the calculations in ref.
[9] in view of the results presented here.
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the theory is closely related to models of graphene and has been studied over the years
[106, 98, 99, 107, 108] in various contexts. Son’s model [109] of graphene starts with charged,
relativistic fermions that propagate in 2+1 dimensions with a speed vy < 1 and their electric
interactions with 4d photons. There is a 3 function for vy with an IR fixed point at vy = 1.
Restoring the magnetic field and interactions at this IR fixed point, one finds precisely this
mixed dimensional QED [98]. Similar statements about the non-renormalization of the cou-
pling g can be found in the graphene literature (see e.g. [110]). This mixed QED was recently
considered as a relativistic theory exhibiting fractional quantum Hall effect [111].

In the large N limit where one has many fermions, this QED-like theory can be mapped
to three dimensional QED in a similar large N limit, with g ~ 1/N [107]. Indeed, three
dimensional QED is expected to flow to a conformal fixed point in the IR for sufficiently
large N. This map thus replaces a discrete family of CF'Ts, indexed by /N, with a continuous
family of bCFTs, indexed by g. Such a map is reminiscent of AdS/CFT, with ¢ playing
the role of Newton’s constant G. More recently, Hsiao and Son [112] conjectured that
this mixed QED theory should have an exact S-duality. Such an S-duality has interesting
phenomenological consequences. Using it, they calculate the conductivity at the self-dual
point. Their calculation is in spirit quite similar to a calculation in an AdS/CFT context
for the M2-brane theory [113].

An outline of this chapter is as follows. In section 5.1, we review the various boundary
terms that appear in the trace anomaly of bCFTs. In section 5.2, we first review the general
structure of the two-point functions in bCFT. Then, we discuss constraints on these two-
point functions. We also give the boundary and bulk conformal block decompositions. Our
decompositions for the current two-point function (5.84, 5.102-5.105, 5.107) have not yet
been discussed in the literature to our knowledge. Nor have certain symmetry properties
of the boundary blocks (5.109) and positivity properties of the current and stress tensor
correlators (5.65, 5.67). In section 5.3, we give our argument relating «(1) to by-charge in
4d bCFTs. We also review how «(0) is related to the standard bulk c-charge. In section 5.4,
we discuss two-point functions for free fields, including a conformal scalar, a Dirac fermion
and gauge fields. In particular, the discussion of p-forms in 2p + 2-dimensions is to our
knowledge new. Lastly, in section 5.5, we introduce our theories with classically marginal
boundary interactions. In Appendix 5.7.1 we review how to derive the conformal blocks for
scalar, vector, and tensor operators in the null cone formulation. Appendix 5.7.2 describes
some curvature tensors and variation rules relevant to the discussion of the trace anomaly
in sections 5.1 and 5.3. We discuss gauge fixing of the mixed QED in Appendix 5.7.3.

5.1 Boundary Conformal Anomalies

Considering a classically Weyl invariant theory embedded in a curved spacetime back-
ground, the counterterms added to regularize divergences give rise to the conformal (Weyl)
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anomaly, which is defined as a non-vanishing expectation of the trace of the stress tensor.
The conformal anomaly in the absence of a boundary is well-known, in particular in d = 2
and d = 4 dimensions; see for instance [24, 114] for reviews. There is no conformal anomaly
in odd dimensions in a compact spacetime. In the presence of a boundary, there are new
Weyl anomalies localized on the boundary and their structure turns out to be rather rich.
There are also new central charges defined as the coefficients of these boundary invariants.
One expects that these boundary central charges can be used to characterize CFTs with
a boundary or a defect, in a similar way that one characterizes CF'Ts without a boundary
using the bulk central charges.

For an even dimensional CFTy with d = 2n + 2;n =0, 1,2, ..., the Weyl anomaly can be
written as

(T, yi=2n+2 m | > e+ o) > bl — (-1)bag (Ba+ b2 EO) |(5.5)

i j

We normalize the Euler density Fy such that integrating Fy over an S? yields d!Vol(S?). We
denote E®Y) as the boundary term of the Euler characteristic, which has a Chern-Simons-
like structure [68, 79]. See the previous chapter or [3] for an extensive discussion. Notice
that E®) is used to preserve the conformal invariance of the bulk Euler density when a
boundary is present, so its coefficient is fixed by the bulk a-charge. We are here interested
in a smooth and compact codimension-one boundary so we do not include any corner terms.
The normalizations of local Weyl covariant terms, Z; and [;, are defined here such that
they simply have the same overall factor of the Euler anomaly. One can certainly adopt a
different convention and rescale central charges a,c; and b;. The numbers of the local Weyl
covariant terms vary depending on the dimensions. We emphasize that, since Z; and I; are
independently Weyl covariant, there are no constraints relating bulk charges ¢; to b; from an
argument based solely on Weyl invariance of the integrated anomaly.

For an odd dimensional CFT,; with d = 2n + 1, n = 1,2,3,... there is no bulk Weyl
anomaly. In the presence of a boundary, however, there can be boundary contributions. We
write

CE \2/01<Sd1) 5(x)) ( Z bl + (1) adEo’d_1> . (5.6)

<Tuu>d:2n+1 —

where E,_; is the boundary Euler density defined on the d — 1 dimensional boundary. The
coefficient ag with odd d is an a-type boundary charge. Similarly, I; represents independent
local Weyl covariant terms on the boundary.

An important boundary object is the traceless part of the extrinsic curvature defined as

hag

KAB:KAB_d_l

K, (5.7)

where hp is the induced metric on the boundary. K ap transforms covariantly under the
Weyl transformation.
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Note that we have dropped terms that depend on the regularization scheme in (5.5)
and (5.6). For instance, the (R anomaly in d = 4 CFTs can be removed by adding a
finite counterterm R2. It is worth mentioning that, from the previous chapter, Wess-Zumino
consistency rules out the possibility of a boundary total derivative anomaly in d = 4 [3].

Let us consider explicit examples. In d = 2 one has

(TH,)=2 = % (R+2Kd(x.)) . (5.8)

One can replace the anomaly coefficient a with the more common d = 2 central charge
¢ = 12a. Note ¢ = 1 for a free conformal scalar or a Dirac fermion. The d = 2 bCFTs
have been a rich subject but since there is no new central charge, in this chapter we will not
discuss d = 2 bCFTs. Interested readers may refer to [115] for relevant discussion of d = 2
bCFTs and their applications.
In d = 3 the anomaly contributes purely on the boundary. One has [66]
0(xy)
4

where tr K2 = tr K2 — TK? and R is the boundary Ricci scalar. Restricting to free fields of
different spin s, the values of these charges are

(T,)4=3 = (aR+btrK2> , (5.9)

=0 — _9_16 D), == 9_16 (R), a=2=0, (5.10)
and
b= — L DorR)y, pto - (5.11)
64 ’ 327

where (D)/(R) stands for Dirichlet/Robin boundary conditions. Neumann boundary con-
ditions in general do not preserve conformal symmetry, but there is a particular choice of
Robin boundary condition involving the extrinsic curvature which does. The quantity b for
the scalar with Dirichlet and Robin boundary conditions was first computed to our knowledge
by refs. [116] and [56] respectively. The complete table can be found in [117].

In d =4 CFT, the conformal anomaly reads

(T = 1617r2 <CW vip “E4>
+ 51(5;2( EPY) by tr K3 — bpho K7 WQW;) . (5.12)
where
B, = Zag;j,ngwR”%p : (5.13)
EPY = —45pBC K ( REFBC+§KEKC) , (5.14)
trK® = trK°— Ktr K>+ gK?’ : (5.15)
W KPWeps = R, Kyn'nf — ;Rw(n“n"KJrK“") + éKR, (5.16)
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with 5%;\73’ /0ABC being the bulk/boundary generalized Dirac delta function, which evaluates
to +1 or 0. Because of the tracelessness and symmetry of the Weyl tensor, one can write
hov K 55W0575 = — KW, an5. The coefficients b; and b, are new central charges. The
values of these charges were computed for free theories. The bulk charges are independent

of boundary conditions and are given by

1 L 11 31
s=0 S=5 — s=1 _ “7
_ L 5.17
@ 360 " 360 " 180 ° (5:-17)
1 1 1 1
s=0 — S=5 __ s=1 e p— 518
¢ 120° ¢ " T € 10 (518)

(see e.g. [29]). The boundary charge b; of a scalar field depends on boundary conditions.
One has

2 2 =1 2 _, 16
D), === (R), b, == (DorR), b'=— (DorR). (5.19)

bszO - —
! 35 45 7 35

For scalar fields, these results were first obtained for Dirichlet boundary conditions by [71]
and for Robin conditions by [75]. This list is duplicated from the more recent ref. [85] where
standard heat kernel methods are employed. Finally, from free theories one finds

bg = 8c s (520)

independent of boundary condition [85, 90]. (The result for by for scalar fields with Dirichlet
boundary conditions was computed first to our knowledge in [72].) It is one of the main
motivations of this work to understand how general the relation (5.20) is.

The complete classification of conformal anomaly with boundary terms in five and six
dimensions, to our knowledge, has not been given; see [90] for recent progress. Certainly, it
is expected that the numbers of boundary Weyl invariants increase as one considers higher
dimensional bCFTs.

5.2 Boundary Conformal Field Theory and Two-Point

Functions

We would like to first review the general construction of conformal field theory two-point
functions involving a scalar operator O, a conserved current J#, and a stress tensor T* in
the presence of a planar boundary. Much of our construction can be found in the literature,
for example in refs. [87, 88, 95]. However, some details are to our knowledge new. We
provide the conformal blocks for the current-current two-point functions (5.84, 5.102— 5.105,
5.107). We also remark on order of limits, positivity (5.65, 5.67) and some symmetry (5.109)
properties more generally.
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5.2.1 General Structure of Two-Point Functions

A conformal transformation g is a combination of a diffeomorphism z# — z4(z) and a
local scale transformation d,, — Qg(x)_2(5u,, that preserves the usual flat metric 6, on R4,
The group is isomorphic to O(d + 1,1) and is generated by rotations and translations, for
which = 1, and spatial inversion z# — x#/x?, for which Q = z2. In analogy to the rule
for transforming the metric, given a tensor operator O #s of weight A, we can define an
action of the conformal group

S %}
=1

J=

In this language, J* and T" have their usual engineering weights of A = d — 1 and d

OzgH
T
the action of R, on the metric, it is clearly an element of O(d). In a coordinate system

Given

respectively. Notationally, it is useful to define the combination (Ry)* = Q

x = (y,x), a planar boundary at y = 0 is kept invariant by only a O(d, 1) subgroup of the
full conformal group, in particular, the subgroup generated by rotations and translations in
the plane y = 0 along with inversion z* — x#/x2.

While in the absence of a boundary, one-point functions of quasi-primary operators van-
ish and two-point functions have a form fixed by conformal symmetry, the story is more
complicated with a boundary. A quasi-primary scalar field Oa of dimension A can have an
expectation value:

(Oal(x)) = 2 (5.22)

The coefficients ap play a role in the bulk conformal block decomposition of the two-point

function, as we will see later. One-point functions for operators with spin are however
forbidden by conformal invariance.

To some extent, the planar boundary functions like a mirror. In the context of two-
point function calculations, in addition to the location x = (y,x) and 2’ = (3/,x’) of the two
operators, there are also mirror images at (—y,x) and (—y/,x"). With four different locations
in play, one can construct cross ratios that are invariant under the action of the conformal
subgroup. Most of our results will be expressed in terms of the quantities

N2
£ = (5647‘%,), (5.23)
2 _ (x —a')? §

G—oViay T Eil (5.24)

Like four-point correlators in CFT without a boundary, the two-point correlators we consider
can be characterized by a handful of functions of the cross ratios £ or equivalently v. In the
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physical region, one has 0 < ¢ < oo and 0 < v < 1. It will be useful to introduce also the
differences

s=r—12, s=x—-x . (5.25)

Following ref. [88], we construct the two-point correlation functions out of weight zero
tensors with nice bilocal transformation properties under O(d, 1). In addition to the metric

J

there are three:?

2
T,T,
Lulx) = 8, —27552, (5.26)
v 2y
X, = ygﬁuf =0 (s_2$“ - nu) ) (5.27)
v 2y
X, = y'gﬁl;ﬁ’ =0 (_?Su - ”u) . (5.28)

The transformation rules are X — Ry(z) - X, X' — Ry(«') - X', and the bilocal I""(s) —
Ry(x)"\Ry(x")” I*(s). One has X|, = I,,,(s)X". In enforcing the tracelessness of the stress
tensor, it will be useful to note that

X, Xt =X/ X" =1, (5.29)

Two-Point Functions

We now tabulate the various two-point functions

5—(A1+A2)/2

(O1(2)0x(2")) = WGOIOQ(’U% (5.30)

()0 = m&m(v) | (5.31)

(T (2)0()) = @yﬁwawmw , (5.32)

Ny = & s)P(v "O(v

u@) 1) = o (I P) + X, X,Q(0)) (5.33)

—d
(T (x)Wa(2)) = @yﬁw[(hx(s)){uﬂqm(s))@ - %g,WX;) frv(v)

+ X, gTV(v)] , (5.34)
—d

<TW(5L')T/\J($,)> W[auua;pA(v) + BuvopB(v) + IWJP(S)C(U)} , (5.35)

2In this section we follow the notation in [87, 88] where the normal vector is inward-pointing. In following
sections we will adopt instead an outward-pointing normal vector.
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where A; /A, is the scaling dimension of O;/0, and

o = (XX 200) . aly = (XX 25) (5.36)
oo = (XuX0Tp() + XX Lupl8) + XX o (5) + X, X)L (5)

—gagpxﬂxy - 35WX;X; + %@W&,p) , (5.37)

Livop(s) = %(IMU(S)IVP(S) + Iup(s)f,,a(s)) - %l(sﬂ,,éap : (5.38)

In writing the tensor structures on the right hand side, we have enforced tracelessness T# = 0.
However, we have not yet made use of the conservation conditions 9, J* = 0 and 9,7" = 0.3
The conservation conditions fix (5.31) and (5.32) up to constants c;o and cro:

fro=ciov™" , fro = crov? . (5.39)

The mixed correlator (T (z)V*(x')) is fixed up to two constants, cgy:
frv = vt et (5.40)
grv = —(d+2)ch v+ (d = 2)cppvt . (5.41)

If we further insist that the vector V# = J* is a conserved current, such that A = d — 1,

then the correlator is fixed up to one undetermined number, c%v =cry.
The (J#(z)J"(2")) and (T* (2)T*°(2')) correlation functions on the other hand are fixed
up to a single function by conservation. The differential equations are

00,(P+Q) = (d—1)Q, (5.42)
(v, — d)(C +2B) — —g(A +4B) —dC (5.43)
(v9, —d)((d —1)A+2(d—2)B) = 2A—2(d*—-4)B . (5.44)

This indeterminancy stands in contrast to two (and three) point functions without a bound-
ary, where conformal invariance uniquely fixes their form up to constants.

In the coincidental or bulk limit v — 0, the operators are much closer together than they
are to the boundary, and we expect to recover the usual conformal field theory results in the
absence of a boundary. We thus apply the boundary conditions A(0) = B(0) = Q(0) = 0.
The asymptotic values C'(0) and P(0) are then fixed by the corresponding stress tensor and
current two-point functions in the absence of a boundary; we adopt the standard notation,
C(0) = Cr and P(0) = C;. The observables Cr and C'; play important roles when analyzing
CFTs. In particular, for a free d = 4 conformal field theory of Ny scalars, Ny Dirac fermions,
and N, vectors, one has [89]

1 (4
= — [ =N, +8N; + 16N, | . 4
Cr 47T4<3 +8 f+6> (5.45)

3While these conservation conditions may be altered by boundary terms involving displacement operators,
away from the boundary they are strictly satisfied.

73



By unitarity (or reflection positivity), Cr > 0.4 A trivial theory has Cr = 0. Similarly, we
require that Go,0,(0) = kda,a, for some constant k > 0.

The decomposition of the two-point functions into A(v), B(v), C(v), P(v), and Q(v)
was governed largely by a sense of naturalness with respect to the choice of tensors X*
and /*” rather than by some guiding physical principal. Indeed, an alternate decomposition
was already suggested in the earlier paper ref. [87]. While uglier from the point of view of
the tensors X, and I,,,, it is nevertheless in many senses a much nicer basis. This alternate
decomposition, discussed below, is more natural from the point of view of reflection positivity.
It also diagonalizes the contribution of the displacement operators in the boundary conformal
block decomposition.

This basis adopts the following linear combinations:

alv) = dd_zl[(d—l)(A+4B)+d0], (5.46)
Y(v) = —B—%C, (5.47)
(w) = %c. (5.48)

Ref. [87] motivated these combinations by restricting x and 2’ to lie on a line perpendicular
to the boundary, taking x = x’ = 0:

. / A vo
XZILI,IL()(TW(ZE)TW(I ) = :de : (5.49)
In this case, one finds

Annnn = 05(7}) s (550)

AABnn = AnnAB = _ﬁa(v)dAB > (551)

Aangn = 7(v)oap , (5.52)

1 a(v)
Auapep = €()(dacdpp + dapdpc) — —— | 2¢(v) — dadcp - (5.53)

d—1 d—1
Recall that the coincidental limit corresponds to v = 0 and the boundary limit to v = 1,
ly—y/|
y+y'
C'(0), for a non-trival unitary conformal field theory, we have

where in this perpendicular geometry v = Relating these new linear combination to

a(0) = dg Ler >0 . 7(0) = —€(0) = —%OT <0. (5.54)

One can play exactly the same game with the current:

A
g (5.55)

$2(d-1)

lim (J,(2)J,(z")) =

x=x'—0

4See [118] for the discussion of Cr in non-unitary CFTs with four-and six-derivative kinetic terms.
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where

Ay = 7w(v)=P)+Qv), (5.56)
AAB = p(v)(SAB == P(U)(;AB . (557)

Comments on Order of Limits

There are subtleties when considering various limits of the objects v, X, and X. We
define the coincidental (or bulk) limit to be s — 0 with y, ¥’ # 0. In this limit, v — 0 and
. . . . /
}gl_I)IéXu—O—}gg%X#. (5.58)
We define the boundary limit to be y — 0 and 3’ — 0 with s # 0. In this limit, we find
instead that v — 1 and

lim X, =-n,= lim X, . (5.59)

We see that if one imposes the coincidental limit after the boundary limit has been imposed,
the result is different from (5.58).

In the special case where both x and 2’ lie on a perpendicular to the boundary, depending
on the sign of y — %/, one instead finds

lmX, = —lmX,=mn, (y>y #0), (5.60)
m X, = —limX) =-n, (y<y #0). (5.61)

The following quantity is then independent of the relative magnitudes of y and 7/,
lsiil(l)XuX; = —n,n, . (5.62)
A confusing aspect about this third case is that having taken this collinear limit, if we then
further take a boundary y — 0 or a coincident y — ¢’ limit, the answer does not agree
with either (5.58) or (5.59). In the near boundary limit, one finds that A,4,5 = —Y0an
while restricting the insertions to a line perpendicular to the boundary, one finds instead
Apans = 70ap. In general, when comparing physical quantities, one will have to fix an order
of limits to avoid the sign ambiguity. In this case, however, due to our previous arguments,
we expect that (1) = 0 generically under conformal boundary conditions.

5.2.2 Reflection Positivity and Bounds

Unitarity in Lorentzian quantum field theory is equivalent to the reflection positivity in
quantum field theory with Euclidean signature. To apply reflection positivity, let us consider
the case where the coordinates

r=(y,2,0), 2= (y,—20), s,=(0,22,0), 5.63
I
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lie in a plane located at a non-zero y, parallel to the boundary. Denoting this plane as P, we
introduce a reflection operator ©p such that the reflection with respect to P gives Op(x) = 2.
The square of O is the identity operator. Acting on a tensor field, Op(F),,...., (x)), Op will
flip the overall sign if there are an odd number of 2 (z-direction) indices. The statement of
reflection positivity for a tensor operator is that

(Foo (2)Op(Fyo (2))) (5.64)

treated as a d" x d™ matrix, has non-negative eigenvalues. (Note this reflection operator acts
on just one of the points; when it acts on the difference it gives ©p(s) = 0.) In our particular
choice of frame (5.63), Op (., (s)) = 6, and Op(X],) = X,,. Making these substitutions in
the current and stress tensor correlators (5.33) and (5.35), we can deduce eigenvectors and
corresponding eigenvalues.

For the current two-point function, X, is an eigenvector with eigenvalue proportional to
7 while d,3 is an eigenvector with eigenvalue proportional to p, with positive coefficients of
proportionality. (Instead of 3, we could have chosen any index not corresponding to the y

and z directions.) Thus we conclude that
m(v) >0, pv)>0, (5.65)

for all values of v, 0 < v < 1. For the stress tensor, o, X(,0,)3, and d3(,0,)4 are eigenvectors
with eigenvalues proportional to a, —v, and €, demonstrating the positivity that®

a(v) >0, —y(v)>0, €ev)>0. (5.67)

With these positivity constraints in hand, one can deduce a couple of monotonicity properties

from the conservation relations, re-expressed in terms of 7, p, a, 7, and e:

W9y —(d—1)7r = —(d—1)p<0, (5.68)
(W0, —d)a = 2(d—1)y <0, (5.69)
(0D, —d)y = (d—d1)2“ L _d2¥dl+ b, >0 . (5.70)

The last two inequalities further imply (v, —d)?« > 0. While these inequalities provide some
interesting bounds for all values of v, they unfortunately do not lead to a strong constraint
on the relative magnitudes of the two end points of a, (1) and «(0), a constraint, as we
will see, that could be interesting in relating the boundary charge b in (5.132) to the usual
central charge ¢ in d =4 CFTs.

°For instance, the eigen-equation for oy, is

_d_a)

<T#V(x)@P(T)\U(x))>a/\U = d—1 527dal“/ .

(5.66)
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Using current conservation and our new basis of cross-ratio functions, we can write the
stress tensor and current two-point functions in yet a third way, eliminating p, v, and € in
favor of derivatives of m and a. This third way will be useful when we demonstrate the
relationship between «(1) and the boundary central charge by. We write

1 VOLT -
D) = s (RO = T2l (5.71)
1 d 292 fw,pa
<Tu,,(a:)TpU(;g’)> = @ [QHIMMPU(S) + v av&m
B v,po <2d_ 1)j v,po
—vdya [ Lee wre | | 5.72
! a<2(d—1)+(d—2)(d+1) ’ (5:72)
where we have defined some new tensorial objects in terms of the old ones:
jHV(S> = lLu(s) - XX, (5.73)
A d 1.
Livpo(8) = L po(s) — ﬁoﬁwa;a - §5w«po ) (5.74)
Buvpo = Buvpo — 404#,,04;(, ) (5.75)
One nice feature of the hatted tensors is their orthogonality to the X, and X tensors. In
particular
X" = 0=1"X, (5.76)
X, mrr = 0=1""X, (5.77)
XX, B0 = 0= X X (5.78)

In the near boundary limit, v — 1, since X, X — —n,, only the tangential components
Iyp and Iagcp of I, and I, ,, are nonzero. In fact, in this limit, these tensors may be
thought of as the d — 1 dimensional versions of the original tensors I, and I, ,,. For BAW,IM,
only the mixed components B(n A),(nB) SUrvive in a near boundary limit.

5.2.3 Conformal Block Decomposition

Like four point functions in CF'T without a boundary, the two-point functions (O;(x)Oy(z')),
(JH(x)J¥(2")), and (T* ()T (2')) admit conformal block decompositions. We distinguish
two such decompositions: the bulk decomposition in which the two operators get close to
each other and the boundary decomposition in which the two operators get close to the
boundary (or equivalently their images). Our next task is to study the structure of these de-
compositions. For simplicity, in what follows, we will restrict to the case that the dimensions
of O; and O, are equal and take Ay = Ay = 1.
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Bulk Decomposition

Recall that in the presence of a boundary the one-point functions for operators with
spin violate conformal symmetry. As a result, the bulk conformal block decomposition will
involve only a sum over scalar operators with coefficients proportional to the aa.

Allowing for an arbitrary normalization & of the two-point function, the bulk OPE for
two identical scalar operators can be written as

K
Oy(2)0y(x) = = + > MaB(x—2',0,)0a(2') , Ma€ER, (5.79)

AH£0
where the sum is over primary fields. The bulk differential operator B(x — x’,0,/) is fixed
by bulk conformal invariance and produces the sum over descendants. As the OPE (5.79)
reflects the local nature of the CF'T, this OPE is unchanged when a boundary is present.

The bulk channel conformal block decomposition is given by taking the expectation value of
(5.79) using (5.22) and then matching the result with (5.30). We write

Go,0,(v) = K+ Z aaAaGru (A, v) (5.80)
A0

where we have pulled out the leading bulk identity block contribution.® There are analogous
expressions for the functions P(v), Q(v), A(v), B(v), and C(v) out of which we constructed
(JH(x)J¥(«")) and (T* (z)T* (z')). We can write for example

Q) = ZQA)\AQbulk(A,’U), (5.81)
A0

Alv) = ZGA)\AAbulk<A7U)7 (5.82)
A0

where Gpuk(A, v), Qpuk(A,v), and Apuk(A,v) have a very similar form:

Gondv) = €har (5. 51- 5+ A€ | (5.3)

Qudv) = €hafi (14514 F1-F40-6) 04O, (8

And0) = iR (24 5240 G- FHAE) (re . ()
Indeed, one is tempted to define a general form for which each of these functions is a special
case:

Gl(osu)lk(AaU) = £5,R (5 + %, s+ %,1 - g + A, —5) (1+8)°. (5.86)

SFor two-point functions of scalar operators of different dimension, A; # A, Gpuk will depend on A,
and Ay. We refer to the literature [88, 95] for the more general expression, but suppress it here as we are
interested in the simpler case.
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The remaining functions B(v), C(v), and P(v) can be straightforwardly constructed from
the conservation equations (5.42)-(5.44), and can be represented as sums of hypergeometric
functions. Note that the bulk identity block does not contribute to Q(v), A(v), and B(v), but
it does to C'(v) and P(v). We review the derivation of these conformal block decompositions
using the null cone formalism in Appendix 5.7.1.

Boundary Decomposition

In the presence of a boundary, a bulk scalar operator O,, of dimension 7 can be expressed
as a sum over boundary operators denoted as OOA(X). We write

o ao ~ o o o ~
O, () = <2y>n+§)MB<y,a>0A<x> . fia €R, (5.87)

where the sum is over boundary primary fields. Boundary conformal invariance fixes the
operator B(y,d). The two-point function of two identical boundary operators is normalized
to be
o o /ﬁ;dfl

(Oa(x)0s(x)) = 55 (5.88)
where kg1 is a constant. The one-point function of the boundary operator vanishes. Reflec-
tion positivity guarantees the positivity of these boundary two-point functions for unitary
theories. The boundary channel conformal block decomposition is given by squaring (5.87),
taking the expectation value using (5.88), and then matching the result with (5.30). We

write
GOO(U) = 577 GQO + Z ﬂQAGbry(A> U) ) (589)
A£0
where [119]
—A d ]_
Gbry(A,v) = f 2F1 A,l — 5 +A,2—d+2A,—E . (590)

To remove the n dependence from the conformal block, it is useful to include an explicit
factor of £ in the decomposition (5.89). We have made a redefinition pi = fiAr4_1 to
allow for more generally normalized two-point functions. Reflection positivity applied to the
boundary two-point functions along with the fact that in € R guarantees the coefficients
p4 in the boundary expansion are non-negative. There was no such constraint on the bulk
conformal block decomposition.

For a field of spin s, there is an extra subtlety that the sum, by angular momentum
conservation, can involve boundary fields of spin s’ up to and including s. For a conserved

current, we need to consider boundary fields of spin s’ = 0 and 1, while for the stress tensor
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we will need s’ =0, 1, and 2 boundary fields. Fortunately, because of the restricted form of
the (J,(2)O(2")), (T, (x)O(x")), and (T}, (x)V)(z')) correlation functions, the sum over fields
with spin strictly less than s is restricted, and the situation simplifies somewhat. Consider
first (J,(z)O(z’)) in the boundary limit, which vanishes for A < d — 1 and blows up for
A > d — 1. We interpret the divergence to mean that the corresponding coefficient c ;o
must vanish when A > d — 1. It follows that in the boundary conformal block expansion
of (J,(x)J,(«")), the only scalar field that contributes will have A = d — 1. An analogous
argument in the stress tensor case implies that only scalar fields and vectors of dimension
A = d can contribute in the boundary conformal block expansion.

These restrictions on the boundary conformal block expansion are reflected in the possible
near boundary behaviors of the functions 7, p, o, 7, and € allowed by the current conservation
equations (5.68)—(5.70). From the definitions of 7 (5.56) and p (5.57), p corresponds to vector
exchange on the boundary and 7 to scalar exchange. If we exchange a boundary vector VA of
dimension d—2+9Jy, where dy, is an anomalous dimension, the near boundary behavior for p is
p ~ (1—v)~1*% which can be deduced from the boundary conformal block expressions given
in this section and the current conservation equations. The unitary bound implies &, > 0,
and there is a descendant scalar operator d,V* of dimension d — 1+ 6y. (A boundary vector
operator at the unitarity bound d — 2 would be conserved, OuJ? = 0.) Correspondingly,
eq. (5.68) enforces the near boundary behavior 7 ~ (1 — v)%. The exception to this rule is
when dy = 1. Then the conservation equations allow p and 7 to have independent order one
contributions near the boundary, corresponding to the possibility of having both vector and
scalar primaries of dimension d — 1.

The story is similar for the stress tensor with e representing spin two exchange, v spin
one exchange, and « scalar exchange. The generic case is boundary exchange of a spin two
operator S ap of dimension d — 1+ g with dg > 0. The near boundary behaviors of the stress
tensor correlation function are then € ~ (1 —v)™1#%, v ~ (1 —v)%, and a ~ (1 — v)1*%
where the scaling of v and « is consonant with the existence of descendants of the form
4548 and 9405548 . Again, there is one exception to this story, when g = 1. In this case,
the conservation equations allow «, 7, and € to have independent order one contributions
near the boundary, corresponding to scalar, vector, and spin two exchange of dimension d.

The scalar of A = d plays a special role in bCFT. It is often called the displace-
ment operator. The presence of a boundary affects the conservation of the stress tensor,
0,T"(x) = D"(z)0(y), where D" is a scalar operator of A = d. The scalar displacement
operator D" is generally present in boundary and defect CFTs.

For interesting reasons, discussed in what follows, a vector of dimension A = d and scalar
of dimension A = d — 1 are generically absent from the conformal block decompositions of
these two-point functions. In the case of the current two-point function, a natural candidate
for a scalar of dimension A = d — 1 is the boundary limit of J". If there are no degrees of
freedom on the boundary, then J" must vanish as a boundary condition or the corresponding
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charge is not conserved. If there are charged degrees of freedom on the boundary character-
ized by a boundary current jA, then current conservation implies J"|p,y = —8Aj‘4 and the
total charge is conserved by an inflow effect. From the point of view of the conformal field
theory living on the boundary, the current J4 is no longer conserved, and J" |, becomes
a descendant of J4. Because conservation on the boundary is lost, the scaling dimension
of JA must shift upward from d — 2 by a positive amount §;. Correspondingly, the scaling
dimension of J" shifts upwards by d; from d — 1, and it will appear in the conformal block
decomposition not as a primary but as a descendant of J4. We thus expect generically that
a scalar primary of A = d — 1 is absent from the boundary conformal block expansion of the
current-current two-point function.

The story for a vector of dimension A = d is similar. A natural candidate for such
an operator is the boundary limit of 774. In the free models we consider, the boundary
conditions force this quantity to vanish. The interacting models we introduce in section 5.5
have extra degrees of freedom that propagate on the boundary and an associated boundary
stress tensor 7%5. By conservation of the full stress tensor, the boundary limit of 774 is
equal to the descendant operator o TAB , neither of which will necessarily vanish classically.
The scaling dimension of T4B must shift upward from d — 1 by a positive amount dr.
The boundary operator corresponding to 74|,y now enters the boundary conformal block
decomposition not as a vector primary but as a descendant of the spin two field TAB. We
expect generically that a vector of A = d is absent from the boundary conformal block
expansion of (T}, (x)Th,(z")).

We will nevertheless keep these vectors and scalars in our boundary conformal block
decomposition. The reason is that for these interacting models, we only perform leading
order perturbative calculations. At this leading order, we cannot see the shift in dimension
of T™* and J", and it is useful to continue to treat them as primary fields.

The boundary block expansions for (J#(z)J*(z')) and (T (x)T*?(2')) have the forms

m(v) = &1 (/f () + > A (A, )) : (5.91)

A>d—2

a(w) = & (% 0 () + iyt () + > A (A, v)) , (5.92)

A>d—-1

where the indices (0), (1) and (2) denote the spins. One has similar expressions for the other
functions p(v), v(v), and €(v).
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In this basis, we find the following blocks’

o) = g dl_ [ =) ) =) (5.93)
) = g o ). (5.99)
e (V) d (v =) (v = 0?)? . (5.95)

; and 5%{}3 vanish while fdagi)y — 1. In

this basis, the contribution of the displacement operator D™ to the boundary block expansion
(0)

In the boundary limit & — oo, the combinations & d”yé?

is encoded purely by «

Similarly, for the sp?g.one exchange, we find
o) = Tl )i —e), (5.96)
W) =~ =0+ ), (5.97)
W) = g -0 =), (5.98)

where now fdv}gg — —1 in the boundary limit while the other two vanish. For spin two

exchange with weight A = d, we have

ag;(d, v) = (v —v)v —v)?, (5.99)
Vg;(d, v) = _di 1 (v =) (v = v?) (5.100)
Bd0) = 7 T e 2 ) L (a0

where now fdeg?y — 4/(d + 1)(d — 2) and the other two vanish. We have shifted the nor-
malization convention here relative to (5.93) and (5.97) so that we may write the higher
dimensional blocks (5.106) for ag)y(A, v) in a simpler and uniform way.

Playing similar games with the current, we find

1

(V) = S =) T ), (5.102)

1

(0) _ -1 d
pbry(v) - 2(d _ 1) (U - U) ) (5103)
and

T (d—1,0) = (v —v), (5.104)

1
Phe(d = 1,0) = T =0T T ) (5.105)

"The results in the basis of A(v), B(v),C(v) are given in [95].
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For higher dimension operators, we have

d 1

o2 (A0) = €A2R (2 AL =D A2 d 424, _E) , (5.106)
d 1

D (Aw) = €2,F <1 +A 1= 5+ A2 - d 24 _E) . (5.107)

The remaining functions fyg;(A, v), eg;(A, v) and p&i(A, v) have a more cumbersome form
but can be straightforwardly derived from the conservation equations (5.42)-(5.44). Evi-
dently, Gy (A, v), Wéi;(A, v), and ozg)y(A, v) all are special cases of the general form

d 1
AL (3+A,1— §+A,2—d+2A;—E) . (5.108)

We have written all of these blocks to make a symmetry under v — v~! apparent. The

transformation v — v~!

or equivalently £ — —1 — £ corresponds to a reflection ¢y — —v/
keeping y fixed. Under such a partial reflection, the blocks are eigenvectors with eigenvalue

+1 for integer A:

Yy

Rl ) = ()T A (A ) (5.109)

The shift o is one for péi)y and 71()2, and zero otherwise. For the higher dimensional exchanged
operators, this reflection property relies on a hypergeometric identity

oF1(a,b,c;2) = (1 —2) %9 F (a, c—0b,c Ll) , (5.110)
Z —

in the special case where ¢ = 2b.

5.2.4 Crossing Relations

A crossing relation for boundary conformal field theory is the statement that two-point
functions can be expressed either as a sum over boundary conformal blocks or as a sum over
bulk conformal blocks. (See figure 5.1. The left/right plot represents the bulk/boundary
channel.)

The field theories we consider are either free or have some weak interactions that are
constrained to live on the boundary. The solutions to crossing for the current and stress
tensor correlation functions are remarkably universal for the family of theories we consider.
Roughly speaking, they all involve a decomposition of a function of an invariant cross ratio
of the form

G(v) =1+ xv". (5.111)

The parameter y will depend on the boundary conditions. Roughly, one can think of this
expression in terms of the method of images, where the 1 reproduces the answer in the
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Figure 5.1: Crossing symmetry for two-point functions in bCFTs.

coincident/bulk limit, in the absence of a boundary, and the v" represents the correlation
between points and their images on the other side of the boundary. In the bulk channel,
1 is the identity block and v" will generically involve a sum over a tower of fields. In the
boundary channel, we first decompose G(v) = (1 + x)(1 +v") + (1 — x)(1 — v") into
eigenfunctions of the reflection operator v — 1/v and then find infinite sums of boundary
blocks that reproduce 1 4+ v"7. The two-point function may not be precisely of the form
1 + xv", but the discrepancy can always be accounted for by adjusting the coefficients of a
few blocks of low, e.g. A =d — 1 or d, conformal dimension.
A number of the blocks have a very simple form. In the bulk, we find

Gbulk(d - 2, U) = Ud_2 s Qbulk(da U) = Ud s Abulk(d + 2, U) == Ud+2 . (5112)

In the boundary, we already saw that the blocks of dimension d — 1 for (J#(x)J"(z')) and of
dimension d for (T*(x)T*’(z')) have a polynomial form. However, we neglected to point out
that for the scalar two-point functions, the boundary blocks of dimension % +n where n is
a non-negative integer also have a simple polynomial form. The polynomial like expressions

satisfy the recursion relation

d—2 42 -1) d—2
Gbry< 2 + n>U> = (2n — d) [(1 + 2€)Gbry (T +n — 1,’0)
46(E+1) d—2
e oG (g L |- 5113)
The first two values are
_92 _ 2 1
€7 Gy (d 2 ’”) = S+, (5.114)
o d - 2 d—2
§2 Gy (2,?;) = d_2(1 v¥?) (5.115)

These two particular cases are degenerate in fact: they satisfy the same differential equation
(see Appendix 5.7.1). We have imposed boundary conditions that are consistent with the
recursion relation (5.113) and the reflection symmetry (5.109).
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These simple expressions for the conformal blocks motivate the following remarkably

simple relation:

a2 |1 d—2 1l—xd—2 d
é? [ +XGbry (—’U) + —X Gbry <— U>:| =1 +XGbulk(d_ 27U) : (5116)

2 2 2 2 2’

(For y = =£1, this relation is pointed out in [95].) In the next section, we will compute the
two-point function for a free scalar field of dimension A = %. We find a free scalar takes
advantage of precisely such a crossing relation (5.116). Moreover, the case y = 1 corresponds
to Neumann boundary conditions, in which case the contribution from a boundary operator
0n¢ of dimension A = g is absent. Correspondingly, the case y = —1 is Dirichlet boundary
conditions, and the boundary operator ¢ itself is absent. An absent or trivial boundary is
the case y = 0. The contribution from the bulk comes simply from the identity operator
and the composite operator ¢?. By adding an interaction on the boundary, we will be able
to move perturbatively away from the limiting cases x = +1. However, positivity of the

boundary decomposition (5.89) implies the bounds:
1<y<1. (5.117)

Given these bounds, one might interpret that y = £1 correspond to “corners” in the boot-
strap program.

More generally, for a function of the form Goo(v) = a3&” + 1 + v?2, the boundary
and bulk decompositions will involve a sum over infinite numbers of operators. Here &2
corresponds to the boundary identity block and the 1 to the bulk identity block. With a
little bit of guess work, one can deduce a general form of these series expansions. (For a more
rigorous derivation, one can use the a-space formalism [120, 121].) One has the boundary

decompositions
£—A
N (1 + UzA) = Z NiGbry(A +n,0) , (5.118)
ne27*
-A
ST (1 o U2A) - Z NiGbry(A + TZ,U) ) (5119)
ne2Z*+1

where Z* denotes a non-negative integer and the coefficients are

) 24=28=2n /rD(n 4+ 2A —d + 1)T'(n + A)
:un = d—1 d ? (5120)
AT (n+A—-EH)T(n+ 1)I(A+1-9)

where p2 = 1. In contrast, for the bulk decomposition, the boundary identity block decom-
poses into bulk conformal blocks

&= - (2§A_)§]+n)nGbulk(2A+2n,v). (5.121)

2

n=0
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One also has the bulk decomposition

oa _ N~ (D" (A (A-5+1)

=2 2A+n-9)

n=0

nGbulk(QA + 2n U) . (5122)

There are similar decompositions for the (J#(z)J"(z')) and (T* (x)T*?(z')) correlation
functions. For the current, we need to give the decomposition of

Qv) =2x*0*%, w(v) =1 —x**?, (5.123)

and for the stress tensor, we need to give the decomposition of

4d
Av) = ﬁx%w ,av) =1+ X% . (5.124)

(For free theories, x* = 1.) Using the relations

1
] CCRSD W IR P B
ne2Z*+1
1
F1—v*2) = ¢ Y Al d—1+n0) (5.126)
ne27Z*

where

, 20 al(d+n—2)T(d +n)
M T P =20 () T+ 2T (Sl +n)

(5.127)

and p2 = (d — 1)/2, we can find a decomposition similar in spirit to the lhs of (5.116).

Similarly, for the stress tensor

1
5(1 + ) = (abry Z ,uiagy d+n, v)) ) (5.128)

ne22Z*
1(1 —?) = ¢ d—2a Z 20 (d + n, ) (5.129)
2 - 4<d . bry Hy bry ’ :
ne27*+1
where

o 27 /al(d+n— 1) (d+n+2)
M T @ (2= )T+ 30 (B +n)

(5.130)

where pi2 = (d—2)d(d+1)/8(d—1). Finally, there are also corresponding bulk decompositions
for which there is no obvious positivity constraint. We can write decompositions for the

scalar, conserved current, and stress tensor two-point functions in a unified form:

2A - (_1)n (A+8)n (A+1_g_8) (s)
= E LG 2A + 2 . 5.131
v g n! (2 A +n— g)n bulk( + n, U) ( )
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Similar decompositions of 1 + v?2 were discussed in the appendices of ref. [95]. As a
result, many of the formulae here are not entirely new. We have made an attempt to present
them in a way that stresses their symmetry properties under v — 1/v and also stresses the
important role played by the decomposition of 1 4+ v?2 in free theories — for scalar, vector,
and tensor operators.

5.3 A Boundary Central Charge

Consider d = 4 CFTs in curved space with a smooth codimension one boundary dM.
The conformal anomaly is given by

1 2
1= (o)
5
+ 1(5332 (aE(bry bt K3 b hABKCDWACBD) . (5.132)

We construct a projector onto the boundary metric b, = g, — ny,n, with n, being a unit,
outward normal vector to OM; Ejy is the d = 4 Euler density, W, is the Weyl tensor and
Kip=Kup — %h AB is the traceless part of the extrinsic curvature.

The energy-momentum (stress) tensor in the Euclidean signature is defined by

2 0w
Vg (z)]

where W is the generating functional for connected Green’s functions. The two-point func-

(T (2)) = (5.133)

tion in flat space is

2
Bl = i (2t V) (5.134)
We will denote W as the anomalous part of W. Note in general there can be Weyl in-
variant contributions to correlation functions. The theory is assumed to be regulated in a
diffeomorphism-invariant way.

We will adopt the dimensional regulation and will be interested in the mass scale, p,
dependence in the correlation functions. The a-anomaly is topological so it does not produce
any p dependence. The b;-charge does not contribute to the two-point function in the flat

limit, since K? ~ O(gu ).

One will be able to extract b; from a study of three-point
functions in the presence of a boundary— we discuss them in the next chapter. We here only

consider the ¢ and b, anomalies. The relevant pieces of the anomaly effective action are

— —~ by
W W) — 2 17 KABW, ans . 5.135
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These pieces should allow us to compute anomalous contributions to stress tensor correlation
functions in the coincident limit.®

We will perform the metric variation twice on the anomaly action to obtain anomalous
contributions to the two-point function of the stress tensor. We work in Gaussian normal
coordinates. While we do not impose that dg,, = 0 on the boundary, we do keep dg,1 = 0.
In the flat boundary limit (see Appendix 5.7.2),

1
lim 0K p = =0,09a5 . (5.136)
guu_ﬂs;.w 2
Note the g, contribution vanishes in the flat limit in the transformed extrinsic curvature.
The transformed Weyl tensor can be written as

i Waop = —2Pusparss0’0°6g™ (5.137)
guu_ﬂsmj
where P,op.avs8, defined in (5.303), is a projector that shares the same symmetries as the
Weyl tensor:

Pp,apl/,owéﬂ = Pcw56,m7pu ) (5138)

P Puapu,nxsw = Pa'yéﬁ,nxew . (5139)

uopv,aydp

It will be convenient to define the following fourth order differential operator using the
projector:
(d-3)

P‘uopy,a'yéﬁaaapafyaé e mAZIJ&E . (5140)

Some additional properties of this tensor along with its definition can be found in Appendix
5.7.2.

It is useful first to recall the story [89] without a boundary. The argument that gives
a relation between ¢ and «(0) will also work with a boundary, provided we arrange for the
variation dg,, to vanish as we approach the boundary, eliminating any boundary terms that
may arise through integration by parts. We then have, in the bulk limit, that

: T c pe a
9u11§<15w 52(11}1_r>r(1)W( )> = m?/Mnggmxw(dg"w)(8%”‘878559 Ay (5.141)

From the definition of the stress tensor as a variation with respect to the metric, one infers

the scale dependent contribution:

8 / 1 C C ! 1
e Tnl@VTopa N = 5L =) (5.142)

8We remark that the (JR anomaly in d = 4 does not affect the scale dependent contribution to the
two-point function, since the corresponding effective action, R2, is finite.
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The general form of the two-point function without a boundary (or with a boundary but in
the bulk limit) is given by

[ v,0 CT 1
<TMV($)T0,0(37I)> = OT% = %Agwpg ) (5.143)

where we have used (5.140) in d = 4. We next regularize the UV divergence in the two-point
function in d = 4 by taking [122]

1 In p22?
R =0 ( . ) | (5.144)
from which we obtain
0 1
o (Rg) — 2n25%(z) | (5.145)
and hence
0 ™
M8_M<TMV(:E)TUP(O)> = CTﬁAuyapé (l’) : (5146)

Matching (5.146) with (5.142), one identifies

4

7T
Cc = ECT 5 (5147)

where Cr = C(0) = 3a(0).
Now let us consider the variation of the boundary term in the trace anomaly. Given the
variation rules, the bs-anomaly action gives

— by UE
: o) Y92 M AB 750 5 B
gull_rgwé |44 62 < 8M(8nég ) (PanBn,ayep0?0°69°") . (5.148)
Thus,
9 / M\ (b2) by / Y A0 §4(..0 Z
M@(TAB@)TC!B(DT NP = 55000 = ¥) Panbnarspd 0707 (2" = 27)|y-0 - (5.149)

However, it is peculiar that such a boundary term should be present at all. By simple power
counting, we do not expect a pure boundary, log divergent contribution to the stress tensor
two-point function. The corresponding momentum space correlator has odd mass dimension,
4 4+ 4 — 3 = 5, which naively should not involve a logarithmic divergence. More convincing,
perhaps, is the flip in sign of this term under reflection y — —y. As we saw in the boundary
conformal block decomposition of the stress tensor, under reflection the ABC'D and ABnn
components of the two-point function restricted to the boundary should be even. Although
these two arguments fall short of a rigorous proof, it seems natural for such a pure boundary
log divergence to cancel against something else.
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Consider whether this boundary term (5.149) may cancel against boundary terms we
dropped in calculating (5.141). There is an immediate subtlety associated with the noncom-
mutativity of the boundary and coincident limits. The boundary term (5.149) exists in a
strict boundary limit, while the calculation (5.141), which reproduces the anomalous part
of the Sis[ o tensor structure, was performed in the coincident limit. As we see from the
two-point function (5.72), the coefficient a(v) of the I, ,, structure varies as v changes from
the coincident limit 0 to the boundary limit 1.

We posit the existence of an effective action which computes correlation functions of the
stress tensor. Almost everywhere, the scale dependent part of this action is we, However,
if we introduce a small distance € to separate the stress tensor insertions, in a very thin
layer of thickness less than e along the boundary, we should replace the constant ¢ in we
with a generally different constant cy,y. The idea is that cp,y will give us both the freedom
to reproduce the scale dependence of the «(1)/,,,,, contribution to the two-point function
(5.72) and to cancel the offensive boundary term (5.149). In contrast, the terms in the
expression (5.72) proportional to 9, and 9%« give vanishing contribution to the nnnn and
nnAB components of the two-point function. The term proportional to Bul,pg in (5.72) near
the boundary only has nAnB contributions. Because of this index incompatibility, it seems
unlikely that terms in an effective action that would produce this index structure would
also lead to a cancellation of the boundary term (5.149). Unfortunately, we cannot offer a
rigorous proof.

Keeping the surface terms, by varying the metric such that dg,, is nonzero close to the

boundary, the near-boundary limit of the c-anomaly action gives

v —O v—1 472 €

lim 52(1imW<wa>> = ok / Porisg.nxon (897 (070X 8°6¢°)
M

Chry M o
P3| Paspansn(9°597)(07059°7)
™ € Jom

S G40 (5.150)
me € OM

where we have performed integration by parts near the boundary. Consequently, we find for
the scale dependence of the two-point function in the near boundary limit that®

a c Cpr
e T Toala ) = PEAL0 ! = o)

2Cbr
——5 0,00y - Y ) Punim,anspd0°6 (' — 2] 0

2¢y;
7rb2y(5(y - y/)PunAv,avﬁﬁayadaA&(a:, - 5’7”)|y—>0

2¢y,
- szy5(y — 1) Prsmanspd 0°0%6% (' — 2")|,0 - (5.151)

9The two-point functions presented in this section generalize the results given in [8], which has assumed
a certain boundary condition on boundary geometry that removes normal derivatives acting on the metric
variations [90].
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Next observe, through a direct computation, that

1 1
— = lim memmawg =0. (5.152)

lim P, 900
=0 unAv,avés $4 =0

This implies, after adopting the regularized expression (5.145), the last two lines of (5.151)
do not contribute.’® The second line of (5.151) suggests to evaluate

1
. 1
Zl/l—I>I(l) P,unyn,avcs,@a’ya E ) (5153)

which turns out to be non-zero. However, this second line has precisely the right form to
cancel the earlier boundary contribution we found from varying the by anomaly (5.149). As
explained above, we will eliminate this problematic boundary term by requiring a cancellation
between by and c-contributions:

b2 = 4Cbry . (5154)
On the other hand, to reproduce the near boundary structure of the stress tensor two-point
function, «(1)1,, ,,, we must have that ¢y, = 7*«(1)/30. Thus, we conclude that
27
—a«
15

With the relation (5.155), we can achieve a better understanding of the previously con-

5 =

(1) . (5.155)

jectured equality (5.20) (i.e by = 8¢), and discuss how general it is. Observe first that the
relation (5.20) is true only when (1) = 2a(0). (Recall in general one has ¢ = g—éa(O).)
We will find that «(1) = 2a(0) indeed holds for a large class of free CFTs in the following
sections. However, in the 4d mixed dimensional QED theory which we discuss in section
5.5, the boundary value (1) depends on the coupling, while the bulk theory is the standard
Maxwell theory with an unchanged value of ¢ or a(0). In other words, the mixed dimensional
QED can provide a counterexample to the relation (5.20).

5.4 Free Fields and Universality

In this section, we consider three families of free conformal field theories: a conformally
coupled massless scalar in d dimensions, a massless fermion in d dimensions and an abelian
p-form in 2p 4+ 2 dimensions. We will see that the corresponding two-point functions take
a remarkably universal form. They correspond to special cases of the crossing relations we
found in section 5.2 with the parameter y = £1. The parameter x can be promoted to a
matrix, with x? = 1, an identity. To construct CFTs with more general eigenvalues of x?
away from unity, we will include boundary interactions in the next section.

10Tf we also turn on 6g,4 in the Gaussian normal coordinates when varying the b, action, restoring the
last term of (5.311) in the flat limit, we find the additional contributions to the two-point function do not
have a scale dependence.
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5.4.1 Free Scalar

We start with the classical Minkowski action for a conformally coupled scalar in d-
dimensions with a possibly curved codimension-one boundary term:

(d—2) (d—2) 2

I— —/ ((a¢) 279 Re ) 78 [ ge?, (5.156)
M2 A(d—-1) 4(d —1) Jom

where R is the Ricci scalar and K is the trace of the extrinsic curvature. The surface term

is required by Weyl invariance. Restricting to flat space with a planar boundary at y = 0,

the usual improved stress tensor is given by

1
4d—1

(d-2)

m5(y)huu(an¢2)> (5.157)

Ty = 0,60,6 — ((d=2)8,0, + 8,07 6 -
with n, an outward pointing unit normal vector to the boundary. While in the bulk, the
stress tensor is traceless (on shell), the boundary term requires either Dirichlet ¢ = 0 or
Neumann 9,¢ = 0 boundary conditions to preserve the tracelessness.

Let us consider a more general case with a vector of scalar fields, i.e ¢ — ¢%. (We will
suppress the index a in what follows.) Then, we can introduce two complementary projectors

I1. such that T, + IT_ = 1 and 1% = IIy. The generalized boundary conditions are then'!

On(Il4@)|y=0 =0, H_¢[,—0=0. (5.158)

For a single scalar, one can only have either II, = 1,II_ =0 or I, = 0,II_ = 1. For the

scalar, the nA component of the stress tensor is

d (d 2)

The boundary conditions (5.158) force that 7,4 vanishes at y = 0.

Top = ord =1y 0a0n0 (5.159)

It is perhaps useful to discuss the case of a transparent boundary. We have fields ¢r and
¢, on each side of the boundary. Given the second order equation of motion, the boundary
conditions are continuity of the field ¢ = ¢ and its derivative 0,¢0r = 0,¢r. We can
use the folding trick to convert this interface CFT into a bCF'T by replacing the ¢ fields
with their mirror images ¢r on the left hand side. We still have continuity of the fields as
a boundary condition & r = ¢r,, but having reflected the normal direction, continuity of the
derivative is replaced with 8,¢r = —8,¢. In terms of the projectors (5.158), we have

BYEEES e
M = (il 1) , o= (m) . (5.160)

' These boundary conditions are sometimes called mixed in the literature; for instance, see section 5.3 in
[123].
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As the fields ¢ and ¢, do not interact, it is straightforward to go back to the unfolded theory.
One slightly tricky point relates to composite operators like the stress tensor. In the original
theory, there is no reason for a classical T, 4 to vanish at the boundary. However, in the
folded theory (or bCFT), by our previous argument, we saw the T, 4 does vanish classically.
In this case there are really two, separately conserved stress tensors, one associated with é R
and one associated with ¢. The statement that 7,4 vanishes classically in the bCFT is
really the statement that 7,4 computed from the qBR fields cancels T, 4 computed from the
¢r, fields at the boundary. More generally, a nonzero classical T, 4 in a bCF'T corresponds
to a discontinuity in 7,4 for the interface theory. From the pill box argument mentioned
before, this situation corresponds to non-conservation of the boundary stress tensor OpTAB.
(As mentioned before, we expect quantum effects to restore the condition 7,4 = 0 on the
boundary for general bCFTs.)

We note in passing that the component T™" of the scalar field will in general not vanish
on the boundary. Indeed, as discussed before, it corresponds to the displacement operator
which is generally present in bCFTs.

The two-point function for the elementary fields ¢ can be constructed using the method

of images:
/ﬁ‘/ p—
(6o = (1 +x0"7?) (5.161)
where we denote
! Vol(S,_1) 2 (5.162)
K= ) 0 d—1) — .
(d —2)Vol(S4-1) ' INE)
Applying the boundary conditions (5.158), one finds that
x =1 —1_. (5.163)

From the properties of the projectors, x> = 1. The eigenvalues of y must be 1, +1 for
Neumann boundary conditions and —1 for Dirichlet. The relevant cross-ratio function (5.30)
is then Gg4(v) = 1 + xv?=2. In section 5.2, we saw that this particular G44(v) admitted the
decomposition (5.116) into a pair of bulk and a pair of boundary blocks. In fact, because of
the restriction on the eigenvalues of y, we only require a single boundary block, of dimension
d—gQ for Neumann boundary conditions or dimension g for Dirichlet. We will see in the
next section how to move away from eigenvalues 41 perturbatively by adding a boundary
interaction.

Next we consider (¢?(x)¢?(2’)). There is a new element here because ¢* has a nontrivial

one-point function

(6°(y)) = mirl) (5.164)




For N scalars, one finds the following cross-ratio function for the two-point correlator:
Gzge(v) = 267 tr(1 + xv© )2 + k% tr(x) 22 . (5.165)

This function G4 (v) is straightforward to decompose into boundary and bulk blocks,
using the results of section 5.2. For the boundary decomposition, the last term on the
rhs of (5.165), proportional to €472, is the boundary identity block. We may decompose

v9=2 can be

1 + v*9=2) ysing the infinite sum (5.118). The piece proportional to 2 tr(x)
expressed using v47? = £972G,y(d — 2,v). One may worry that this term comes with a
negative coefficient when tr(y) < 0, violating reflection positivity. In fact, in the infinite
sum (5.118), the block Gy (d — 2,v) has coefficient one, which, in the case of Dirichlet
boundary conditions, precisely cancels the G,y (d — 2,v) reproduced from —v?2. Indeed,
for Dirichlet boundary conditions, the boundary ¢? operator is absent. There is no issue for
Neumann boundary conditions since all the coefficients are manifestly positive. The bulk
decomposition is similarly straightforward. The “one” in (5.165) is the bulk identity block.

The term proportional to v?¢—2

can be expressed again as a single block, this time in the
bulk, Gpuk(d — 2,v) = v?¥2. The pieces proportional to £~2 and v*?~2) decompose into
bulk blocks using (5.121) and (5.122).

For the stress tensor two-point function, using Wick’s theorem one obtains

a(v) = (d—2)*? (tr(]l) + tr(XQ)UQd + tr(X)d(d;(dQ%dl;L 1)vd_Q(l — v2)2) ,(5.166)

A(w) = % (tr(x)vd (—=2d(d* — 4) + d(d — 2)*v % + (d* — 4)(d + 4)v*)

+16(d — 1) tr(x2)v2d) . (5.167)

Setting x = £1 we recover the results computed in [87, 88] for a single scalar under Dirichlet
or Neumann boundary condition. In the boundary decomposition, looking at «a(v), we
recognize the v?2(1 — v?)? piece as a contribution from ag;(d, v), with a sign depending
on the boundary conditions. Then, decomposing 1 + v*? using (5.128), we see that the
coefficient of the oz](fri,(d, v) is precisely of the right magnitude to cancel out the possibly
negative contribution from v?~2(1 — v?)2, consistent with the absence of a (94¢)(9p¢) type
boundary operator for Dirichlet boundary conditions. Regarding the bulk decomposition, we
can write ag)y(d, v) as a linear combination of apu(d —2,v), apuk(d, v), and apuk(d + 2,v),

4+2 and v¢, giving a trivial solution of the crossing equations.

all of which are polynomials in v
Let us also consider a complexified scalar ¢ = ¢ + i¢o, or equivalently a pair of real

scalars to define a conserved current. We have

/I: * *

5 [¢ (@mb) - (8@25 )¢] = _¢1au¢2 + ¢2au¢1 : (5-168)

Ju= 5

We introduce real projectors, Il = I14, acting on the complexified combinations, 9, (I, ¢) =
0 and II_¢ = 0. With these boundary conditions, the current is conserved at the boundary,
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J, = 0. Changing the ¢(z) to ¢*(z) in (5.161) and using Wick’s Theorem, one finds

Q(v) = (65_2—2)”2 (tr()v™2((d — 2) — dv?) — 2tr(x*)v**?) (5.169)

_ (d - 2)r” o d—2/1 .2\ 2y, 2d—2
m(v) = — (tr(1) + (d — 1) tr(x)v’?(1 — %) — tr(x*)v**?) . (5.170)
Looking at 7(v), we recognize (d — 1)v4=2(1 — v?) as a contribution from ﬂl()g,(d —1,v).
The 1 — v?¥=2 dependence of 7(v) decomposes into boundary blocks according to (5.126).
Similar to the (¢?(z)¢?(2’)) case we analyzed above, one might again be worried that the

contribution from 7" (d — 1,v) is negative, violating reflection positivity. However, for

bry
Dirichlet boundary conditions, the contributions from 1 — v?¢=2 and (d — 1)v?2(1 — v?)

precisely cancel, consistent with the absence of a ¢04¢ type boundary operator. It turns out
that wé}r;(d —1,v) and K (d —2, v) are proportional, giving a trivial solution of the crossing
equations. Indeed, looking at Q(v) we recognize v?~2((d — 2) — dv?) as a contribution from
Qvuik(d — 2,v). Similar to what we found for the (¢?(x)¢?(2’)) correlation function, looking
now at the 1 —v??~2 dependence of 7(v), we recognize the one as the bulk identity block and
decompose the v2¢=2 using (5.131).

5.4.2 Free Fermion

The Minkowski action for Dirac fermions in curved space is

1= | (Bnro = 0ip) . (5171)

where, as usual, the covariant derivative contains the spin connection and the bar is defined
by 1 = 9%, The scaling dimension of the fermion 1 is A = %(d — 1). The action is
conformally invariant without any boundary term needed. Using a Minkowski tensor with
mostly plus signature the Clifford algebra is given by {v,,7.} = —27n,,. In the flat space,
the current and stress tensor in terms of the spinor field ¢ are

J, = z;yuzp, (5.172)
Tw = %((3(u15)7u>¢—?/77<u3u)1/’) : (5.173)

We symmetrize the indices with strength one, such that
i _ _
T,, = 5 (0 ) b — Y Opt)) (5.174)
Following [124, 87], we define the following hermitian projectors IT, and TT_:

1
M= 5(14x) | (5.175)
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with the parameter y = [I, —II_ for the fermion theory acting on the Clifford algebra such
that

XV = —TaX» XVA=7aX, X’=X"=1, (5.176)

where ¥ = 7xT%. Since the action only has first-order derivatives we only need boundary
conditions imposed on half of the spinor components. We consider boundary conditions
I1_1) = 0 and its conjugate ¥)II_ = 0. In terms of x, they become

(T —=x)¥loamr =0, (1 —xX)loam =0 . (5.177)

As a consequence, from the equation of motion one can deduce a related but not independent
Neumann boundary condition 9, (I1 %) = 0. A physical interpretation of these boundary
conditions is that they make sure J,, and T}, 4 vanish on the boundary. The two-point function
of the spinor field is then

T - (@—a) iy (@)
= — 5.178
(Y(x)p(a')) Ky ( iz — 2| +X 1z — /|4 ’ ( )
where Z = (—x1,x) = (—y,x). The parameter x enters naturally in the fermion theory

with a boundary. We consider a typical choice of normalization of the two-point function
kp=(d—2)k=1/Vol(S%1).

A straightforward application of Wick’s theorem then allows us to calculate the (J,(z)J, ("))
and (1), (x)T\,(z")) correlators. In fact, as we have seen, it is enough to work out just the
components with all normal indices. The remaining components can then be calculated using
the conservation relations. One finds

m(v) = K}ty (1) (1 —tr(x*)v®) | (5.179)
alv) = %(d—l)%%trv(ﬂ) (14 te(?)o) | (5.180)

where the value of tr, (1) depends on the particular Clifford algebra we choose. Essentially
the same result for o(v) can be found in ref. [87]; for Dirac fermions, it is common in the
literature to take tr. (1) = 2L4/2),

The same conformal block decompositions that we worked out for the scalar apply to the
free fermions as well. Observe that, (d — 2) tr,(1) scalars, half of which have Dirichlet and
half of which have Neumann boundary conditions, produce the same (J,(x)J,(z")) two-point
function as the spinor. Similarly, % tr, (1) scalars, again split evenly between Neumann
and Dirichlet boundary conditions, produce the same stress tensor two-point function as our
spinor field.
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5.4.3 Free p-Form Gauge Fields

Now we consider an abelian p-form in d dimensions in the presence of a planar, codimen-
sion one boundary. The Minkowski action is

1 d
I = —m/j\/td xHNl"'Hp+1H#1 Hp+1 s (5181)
where Hy,...i.., = Dy, By, = cylic permutations; D), is the standard covariant derivative.

The action in d = 2(p + 1) is conformally invariant without any boundary term neeeded.
Important special cases are a Maxwell field in four dimensions and a 2-form in six dimensions.
We will again work in a flat half-space with coordinate system z, = (y,x) with a boundary
at y = 0. In ref. [125], the authors computed two- and three-point functions of the stress
tensor in the absence of a boundary. Here we will generalize their two-point calculations to

include a planar boundary. The stress tensor in flat space is given by

1 1
T = ZT!H/WI“‘NPH”M v 2(29——1-1)!5'“”]—[!11“'!1;;4—1}[M1 SARS (5.182)
This stress tensor is traceless only when d = 2p + 2.
We fix a generalization of Feynman gauge by adding M(E)MBWI'””P—I)Q to the action.!?

The two-point function of the B-field is then

vi-Up Z'/ — kOVIVP 1 1
(Bureopy (2) B2 (@) = 00,00 ((a: —) 2 X (=X Ty + y’)2)<d—2>/2) {5.183)

The choice of y is based on the presence or absence of a normal index.!®> There are two
possible choices of boundary conditions, generalizing the “absolute” and “relative” boundary
conditions of the Maxwell field F),, [123]. The Neumann-like or “absolute” choice corresponds
to setting the normal component of the field strength to zero H, 4,..4, = 0 and leads to the
two conditions 0,B4,..4, = 0 and Byja,..a, = 0. The Dirichlet-like or “relative” choice
means B4,..4, = 0 which, along with the gauge fixing condition d, B#**"#» = 0, leads to the
additional constraint 0, B"424» = (. To keep things general, we set Y = x, when one of
the indices of B is the normal index and x = x| otherwise.

Conformal covariance suggests that the two-point function of H with itself can be written

12We remark that there are additional subtleties in p-form theories that are worthy of further consideration.
First, the gauge fixing process breaks conformal invariance. An ameliorating factor is that the ghost and
gauge fixing sectors to a large extent decouple from the rest of the theory. For example, the two-point
function of 0 - B and H = dB vanishes in general. Second, the ghosts required in the gauge fixing process

require further ghost degrees of freedom, so-called “ghosts for ghosts” (see e.g. [126, 127]).
13The parameter x is a c-number for gauge fields, not a matrix.
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in the form

1 p+1
<HH1"'HP+1(x)HVl"'Vp+l(x,)> = E Z (_1>g+h<a(v)HIQ(Mz‘)h(w)(S)
g7h€2p+l =1

p
+0(0) Xg(p 1) X o) Hfg(m)h(un(é’)) , (5.184)

i=1

where X7 is the permutation group of p elements. The objects 1,,,, X,, and X], were defined
in section 5.2.

To fix a(v) and b(v) in (5.184), we don’t need to calculate all components of the two-point

function. Let us focus on the diagonal components. In fact, we can further restrict to the

perpendicular geometry where s = 0. From (5.183), we find

K(d — 2
(Hoopol@) = 72() = 20 1)1y (5.185)
k(d—2
(Hy.pr (z)HY PP (2))) = (T) (p +1—d+ (pxo +(d— 1)X||)vd> . (5.186)
We then compare these expressions with (5.184) in the same limit,
+ 1)!
(Hopa) 722y = 22D (5.187)
Teeptl/ 7 j2
(g (@) H 7 @) = =2 ((p+1a+b). (5.188)
Solving for a(v) and b(v) yields
d—2
o) = B, (5.159)
d—2)k
o) = 2 (=20 +1) - G+ )+ an?)
d—2)k
= —% (X”(d —i—p) -+ Xj_p) v? , (5.190)
where we have set d = 2(p+ 1) to have a traceless stress tensor. In the absolute and relative
cases where x| = —x1 = %1, we find the simpler
d—2
a(v) = (p—|>“(1 + o) (5.191)
(d—2)k (d—2)k
o) = <d —2p+ 1) F dvd) = F = (5.192)

To pin down the form of the stress tensor, we need the following three two-point functions:

(T () T (1)) = (2]125 ((d; 1)((p+ Da +b)? + (Z; i) (p + 1)2a2) , (5.193)

GataTal) =~ (1 )+ D+ 0o+ (5.194)
(Tos(x)Tos(y)) = (fi,f ((z:i’)((w La+b)* + (d;?’) (p+ 1)2a2) . (5.195)
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Away from d = 2p + 2, the calculation becomes inconsistent because the stress tensor is no
longer traceless and there should be additional structures that need to be matched to fix the
complete form of the stress tensor two-point function. For d = 2p + 2, we find

A(w) = 2(2p)W?
2(d — 2)*k%(2p)!

N (p!)2 (ap(d +p) + xup) v, (5.196)
B(v) = —%(217)”)2
- - _22(>p!,;2<2p)! (xi(d+p) +xup) 0™, (5.197)

Cv) = (2p)!(2(p+1)%a®+ 2ab(p + 1) + %)

_ (d—2)*%(2p)! [d? — (d — 2)dv’(x) + xL) +

2(pt)?
1
5 (4 +d(5d = )¢ +4(d = 2)(d = Dxprs + (@ = 233 )] - (5199)
Note that in the bulk limit v — 0, this result agrees with [125], as it should. Restricting to
the absolute and relative boundary conditions where x| = —x 1, we find that
d—1
afv) = =0
d(d — 1)(d — 2)°x*(2p)! 2. 2d
= 1 : 5.199
S0 (14 320 (5199)
Observe that, (Zf;?;)! scalars, split evenly between Neumann and Dirichlet boundary con-

ditions, reproduce the same stress tensor as this p-form with either absolute or relative
boundary conditions. This equivalence means that the conformal block decomposition for
the p-form is the same as that for the scalar.

From (5.199), the 4d U(1) gauge field has the following values:

3 6

a(0) = o a(l) = (5.200)

-
From the bulk relations (5.147) and (5.54), we indeed recover the bulk c-charge given in
(5.18). From the relation (5.155), we get by = 3, which is consistent with the heat kernel
computation of the gauge field [85]. Indeed, the free theories considered in this section all
have the relation «(1) = 2a(0), which implies that by = 8c as we mentioned earlier. In
the next section, we will see how the story changes when interactions are introduced on the

boundary.

5.5 Models with Boundary Interactions

The free theories we studied generically have a current two-point function characterized

2d—2

by a m(v) ~ 1 —w and stress tensor two-point function characterized by an a(v) ~
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1+ 0?1 Since we saw generally that x? = 1, there was as a result no way to modify the

24=2 and v* in 7(v) and a(v) (respectively) relative to the bulk identity block

coefficients of v
contribution. On the other hand, we saw in the boundary conformal block decomposition
that it should be straightforward to realize a bCFT with 7(v) ~ 1 — x?v?2 and «a(v) ~
1+ %024 % < 1, simply by taking advantage of the sums over blocks (5.125) and (5.129)
with the opposite parity under v — 1/v. An obvious question poses itself. Is it possible to
realize physically interesting bCFTs with x2 # 17 In this section we provide several examples
below where we can move perturbatively away from the case where all the eigenvalues of x
are 1. Moreover, we will see that a model with perturbative corrections to y? = 1 provides
a counter-example to the by = 8¢ relation in 4d.

The idea is to couple a free field in the bulk to a free field in the boundary with a
classically marginal interaction that lives purely on the boundary. For simplicity, we will
restrict the bulk fields to a scalar field and Maxwell field in four dimensions. For boundary
fields, we will allow only scalars and fermions. The fermions require less fine tuning as their
larger engineering dimension allows for fewer relevant interactions. We again consider a
planar boundary located at y = 0 while the bulk fields live in y > 0. Here is our cast of
characters:

1. A mixed dimensional Yukawa theory,

1 B .
I==3 / d'2(0"9)(0u9) + / &z (P — gopo) (5.201)
M oM
with the modified Neumann boundary condition d,¢ = —g¢%. In our conventions, the

unit normal n* points in the negative y-direction.

2. A mixed dimensional QED,

1 y -
I=— /M d*'zF*™ F,, + /a y d’z (o) | (5.202)

where D,, = 0, — igA,. The boundary conditions are a modification of the absolute
boundary conditions discussed before, with A, = 0, and F,4 = 0,44 = gi)ya1).

3. A d = 4 mixed dimensional scalar theory,

1 4o 3 (1 A 2
1= [ as@0.0)~ [ @s(30m0" + 006+ a) . 6209

14The story was slightly more complicated for a vector of free scalars, ¢®, where additional pieces propor-
tional to tr(x) appear. While we keep our discussion general, we remark that by having an equal number
of Dirichlet and Neumann boundary conditions, we obtain tr(x) = 0. In supersymmetric theories, an equal
number of Neumann and Dirichlet boundary conditions appears to correlate with preserving a maximal
amount of supersymmetry. In N' = 4 Super-Yang Mills theory in 3+1 dimensions, a 3 + 3 splitting of the
scalars preserves a SO(3) x SO(3) C SO(6) subgroup of the R-symmetry and a OSp(4]|4) subgroup of the
PSU(4/4) superalgebra [128, 129]. Similarly for ABJM theory, a 4 + 4 splitting of the scalars preserves a
SO(4) x SO(4) € SO(8) subgroup of the R-symmetry [130].
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with modified Dirichlet boundary conditions ¢ = gn?. Another scalar field 7 is intro-
duced on the boundary.

The boundary conditions are determined by having a well-posed variational principle
for these classical actions. The coupling ¢ is dimensionless. The limit ¢ — 0 results in
two decoupled free theories, one living in the bulk space and another propagating on the
boundary. We should perhaps emphasize that in each of these models, there is an alternate
trivial choice of boundary conditions — Dirichlet, relative, and Neumann respectively — which
leaves the boundary and bulk theories decoupled. In this case, only the free bulk theory
contributes to central charges, since the free boundary theory can be defined independent of
the embedding space, without “knowing” about extrinsic curvature or bulk curvature.

One can generalize these models to curved space with actions that are explicitly Weyl
invariant. Here we have again focused on flat space. The improved stress tensors of these
models are traceless on shell. This list is not meant to be exhaustive. In general, one can
add additional classical marginal interactions on the boundary, but these toy models are
sufficient to illustrate several interesting features of this class of interacting theories.

Among several other remarkable properties, the mixed QED theory is likely to be exactly
conformal. For the other theories, using dimensional regularization and suitably tuning to
eliminate relevant operators, we will find fixed points in the € expansion using dimensional
regularization

Apart from the mixed dimensional QED, to our knowledge none of these theories has
been studied in the literature. The canonical example of an interacting bCF'T appears to
be scalar ¢* theory in the bulk with no extra propagating degrees of freedom living on the
boundary [87, 88, 95, 97].

The classically marginal interaction serves to alter slightly the boundary conditions on
the bulk field away from Dirichlet or Neumann cases. One may think of these interactions

as a coupling between an operator of dimension 42 and an operator of dimension g. In the

2
Neumann case, the operator of dimension d% is the boundary limit of the bulk field ¢ or

A,. In the Dirichlet case, the operator of dimension g is the boundary limit of 0,,¢.

Recall in the discussion of crossing relations, we found the simple relation (5.116). The
free fields we discussed in the previous section take advantage of this relation only in the
limiting Dirichlet or Neumann cases y — 41 (or more generally when the eigenvalues of x
are +1). In these cases, the two-point function decomposes either into a single boundary
d d—2

5 in the Dirichlet case or a single boundary block of dimension %= in

the Neumann case. Indeed, the operator of the other dimension is missing because of the

block of dimension

boundary conditions. Now we see, at least perturbatively, how the story will generalize. The
boundary interaction adds back a little bit of the missing block, and the two-point function
for the bulk free field will be characterized instead by a x = +(1 — O(g?)). (The story
with the bulk Maxwell field is complicated by the lack of gauge invariance of (A, (x)A,(z')),

but morally the story is the same.) Through Feynman diagram calculations below, we will
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confirm this over-arching picture.

With the modified two-point function of the bulk fields in hand, it will be straightforward
to modify the corresponding two-point functions of the current and stress tensor, using Wick’s
theorem, to leading order in the interaction g. We just need to keep a general value of Y,
instead of setting Y = 41. For the stress tensor, one finds the structure a(v) = 1 + y2v*
instead of a(v) = 1 + v*¢, and similarly for the current two-point function.

In the special case of mixed QED, where the theory is purported to be conformal in
d = 4 dimensions, we have an example of a conformal field theory where a(1) < 2a(0) and
by cannot be directly related to the the central charge ¢ in the bulk trace anomaly. In fact,
the situation is more subtle. In order to evaluate a(v) at v = 1, we take a near boundary
limit. It is in fact not necessarily true that the v — 1 limit commutes with the perturbative
g — 0 limit in these theories.

For the related function v(v), a similar perturbative computation indicates that v(1) =
O(g*) where the nonzero contribution comes from 74 exchange in the boundary conformal
block decomposition. However, as mentioned before, we must have T"’4|my = 0 as an
operator statement since the dimension of 7™ is protected. Mathematically, one expects
Y(v) ~ g*(1 — v)°" where dp ~ O(g?), leading to noncommuting small g and v — 1 limits
and allowing (1) to remain zero.'

From the conservation relations, one could worry there is a similar issue with «(1). But,
looking more carefully, the behavior v(v) ~ g?(1 — v)°T leads to a(v) ~ ¢g*(1 — v)*°7 which
vanishes at v = 1 independent of the order of limits, and €(v) ~ g?d7 (1 — v) 7197 whose as-
sociated divergence will only show up at the next order in perturbation theory. We therefore
claim the O(g?) contribution to (1) we find is independent of the order of limits and comes
from an alteration in the contribution of the displacement operator conformal block to the
two-point function. Indeed, if we were to find a behavior of the form a(v) ~ ¢?(1 — v)°7,
which has the order of limits issue, that behavior through stress tensor conservation cor-
responds to an €(v) ~ ¢%57 (1 — v)~2797 or equivalently exchange of a boundary spin two
operator of dimension d — 2 + d7 which is below the unitarity bound of d — 1 for small d7.
To check these arguments that a(1) # 2a(0), ideally we should go to higher loop order in
perturbation theory. We leave such calculations for the future.

It would be interesting furthermore to see if one can bound «(1) and correspondingly the
boundary trace anomaly bs. It is tempting to conjecture that free theories saturate an upper
bound (1) < 2a(0) in four dimensions.'® The phenomenon that «(1) = 2a(0) at this point
appears to be a special feature of free bCFTs.

15We thank D. Gaiotto for discussions.
16 Away from d = 4, there are already counterexamples. For ¢* theory and Neumann (special) boundary

conditions, «(1) > 2a(0) both in the large N expansion in the range 5/2 < d < 4 and also at leading order
in the € expansion for any N. See (7.31) and (7.23) of ref. [88]. In d = 4, the theory becomes free and one
has a(1) = 2c(0) or by = 8c.

102



5.5.1 Mixed Yukawa Theory

Let us begin with a one loop analysis of the Yukawa-like theory,

1 . -
]:_§/ﬁ&“&%x®@*l/ &’z (W dy — govy) (5.204)

M oM
with modified Neumann boundary conditions 0,¢ = —git). Again, the normal coordinate

will be denoted by y and the coordinates tangential to the boundary by x: = = (x,y).

Our first task will be to calculate a 3-function for the interaction ¢v to see if we can
find a conformal fixed point. We should comment briefly on the space of relevant operators
and the amount of fine tuning we need to achieve our goal. The engineering dimension of
the ¢ field is one, and thus a (1¢)? term should be perturbatively irrelevant. One could
in principle generate relevant ¢ and ¢? and a classically marginal ¢* interactions on the
boundary through loop effects. We will assume that we can tune these terms away.

As we use dimensional regularization, we need the propagators for the scalar and spinor
fields in arbitrary dimension. The Euclidean propagators are

1 1
Gy(z;2") = Cg = T = | (5.205)
(x=x)2+-y)?) > (x=x)P+@y+y))”’
A
VAT Cp 1
Gl = CAT = O g, (XH) | (5.206)
A canonical normalization is Cs = & = 1/(d — 2) Vol(S%!) for the scalar and Cp =

1/Vol(S%2) for the boundary fermion, where Vol(S?!) = 27%2/T'(d/2). Note that, un-
like what we did in section 5.1, here we have started with a propagator with y = 1, fixed
by the required Neumann boundary condition (when g = 0) on a single scalar in this toy
model.

For our Feynman diagram calculations, we need the Fourier transforms along the bound-
ary directions:

e~ PY

/ dx e P*Gy(y,x;0,0) = : (5.207)
oM p

/ AT x e PXGly(x) = —iL (5.208)
oM p

)
=
=

Il

@
<
=

Il

While Gy (p) takes its canonical, textbook form, the scaling of Gy(p) is 1/p instead of the
usual 1/p?. This shift leads to many of the physical effects we now consider. We will perform
our Feynman diagram expansion in Lorentzian signature. Analytically continuing, we find
the usual —i/p rule for an internal spinor line and a —i/[p| for an internal scalar line. As
the beginning and end point of the scalar line must lie on the y = 0 plane, we can remove

the e factor from the momentum space propagator.
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Figure 5.2: For the mixed dimensional Yukawa theory: (a) scalar one loop propagator cor-
rection; (b) fermion one loop propagator correction; (c¢) one loop vertex correction.

We now calculate the one loop corrections shown in figure 5.2. We begin with the

scalar propagator. The diagram has a linear UV divergence which is invisible in dimensional

regularization:
- d=1p trfipi(p + ¢)]
11 = (—=1)(—ig)? 2
sle) = (<)o [ Gt (5.209)
95-2d 72—
-2 d-3
E— , 5.210
T o2
where we have used tr(y4ys) = —2nap and tr[p(p + ¢)] = —2(p* +p-¢)."" In d = 4, the
self-energy reduces to
Iy = —%92 : (5.211)

This result is in contrast to the usual self-energy correction for the 4d Yukawa theory, which
has a logarithmic divergence. As the fermion momentum space propagators are the same
in 3d and 4d, the difference comes from integrating over three rather than four momentum
space dimensions.

The correction to the fermion propagator, in contrast, has a logarithmic divergence:

- d*'p (ip)(—1)

ily(q) = (=i 2/ 5.212
+(4) (~i9) (2m)d=1 p2|p — q| (5.212)

25T (2 - ) D(d—2) 5 -
_ e §) ( >74 1 (5.213)

r(d-3) g+

In d = 4 — ¢, the result becomes
~ 1
— 2 2

My(q) = —dg [67?26 + 36772(10 — 3y —3log(q”/m))| + Ofe) . (5.214)

The logarithmic divergence is evidenced by the 1/¢ in the dimensionally regulated expression,
or we could have seen it explicitly by performing the original integral in d = 4 dimensions
with a hard UV cut-off.

1"Tn this section we take tr 1 = 2 for the three dimensional Clifford space.
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Third, we look at the one loop correction to the vertex:

d=p Z(p+ g1)2(7)+ gz)(_l) _

2m)t (p+ @1)*(p + ¢2)?[pl

CigP(qn @) = (—ig)® / (5.215)

Using Feynman parameters, we can extract the most singular term. In d = 4 — e dimensions,
we find that

O, ) = —¢° + finite . (5.216)

22

To compute the S-function for g, we introduce the wave function renormalization factors
Zg and Zy for the scalar and fermion kinetic terms as well as a vertex renormalization factor
Zg4. The p-function follows from the relation

02,2y = g2, , (5.217)

where we can extract the Z-factors from our one loop computations:

_ 2 ;
Zy = 1l4g (—67T2€ + ﬁnlte) , (5.218)
Zy = 1+ g*(finite) , (5.219)
1 :
Z, = 1+¢° (ﬁ + ﬁmte) : (5.220)

and gy denotes the bare coupling which is p-independent. It follows that the S-function,
Bg(w)) = pg,9(n), is given by

€ 2 3 4
= —= — @) . 5.221
f=-59+559"+0(g) (5.221)
For d > 4, the function remains positive which indicates that the coupling flows to zero at
large distance. For d < 4, the coupling increases or decreases with the distance depending
on the strengh of g. Given our fine tuning of relevant operators, we obtain an IR stable fixed
point:

s  3m?

9s = ¢ (5.222)

in d < 4 dimensions. Note that Zy has no divergent contribution. Indeed, a general feature
of our collection of theories is that the bulk field will not be renormalized at one loop. In
the case of the mixed dimensional QED theory, we can in fact make a stronger argument.
We claimed above that one effect of the classically marginal interaction was to shift
slightly the form of the scalar-scalar two-point function. Let us see how that works by
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Fourier transforming the result (5.211) back to position space'®:

d-1py - e Plntyz)
H¢(33'1;33'2) = / (277-)[1_1 H¢(p> p2 €p6 (5223)
2
1
= . (5.224)

1672 (1 + y2)? + 0%

As we started with a single component scalar with Neumann boundary conditions y = 1,
this Fourier transform implies we have ended up with a two-point function with a slightly
shifted y:

Xx—=x=1-0(g. (5.225)

The corrections to the current and stress tensor two-point functions will be controlled by
the shift in the scalar two-point function, at this leading order O(g?). Thus, we can read
off the corresponding current and stress tensor two-point functions merely by inserting the
modified value of x in the formulae we found for the free scalar. Note this mixed Yukawa
model becomes free in d = 4 where y = 1 is recovered. Our next example will be an
interacting CFT in d = 4 where the parameter x can be different from one.

5.5.2 Mixed Quantum Electrodynamics

The action for the mixed dimensional QED is

_ _1 4 % 3 .7
I= 4/Md zF FW+/8Md z (i Py) (5.226)

where D, = 0, — igA,.. Note there is a potential generalization to include a Chern-Simons
term on the boundary for this mixed QED model. We will work with a four component
fermion to avoid generating a parity anomaly, and proceed with a standard evaluation of the
one loop corrections (see figure 5.3) using the following Feynman rules: photon propagator,
—i%nAB ; fermion propagator, %; interaction vertex, igy?. The ghosts are decoupled in
this abelian theory so below we do not need to consider them. A more general version of
this calculation can be found in ref. [98].

The photon self-energy can be evaluated in a completely standard way:

By — (e [ A D iy + )]
2 = (0 [ et (5.227)
2048 _ gAgB) (d—3)7r2*% 1

_ 92
= —2ig°(¢°n qq 2 cos ()T (D 0

(5.228)

18For the loop computation, we use a propagator from one point on the boundary to another where we
set y = 0. When Fourier transforming back to real space, we are sewing on external propagators, taking us
from points in the bulk (with non-zero y; and ys3) to points on the boundary.
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(a) (b) ()

Figure 5.3: For the mixed dimensional QED: (a) photon one loop propagator correction; (b)
fermion one loop propagator correction; (c) one loop vertex correction.

In d = 4, one gets the finite answer in dimensional regularization

2
- g
() = =5 (@0 —a"d") . (5.229)

There is in fact never a logarithmic divergence at any order in the loop expansion for
ﬁf;‘B (q), and the wave-function renormalization for the photon Z, will be finite in dimensional
regularization. The usual topological argument shows that the photon self-energy diagrams
have a linear superficial degree of divergence. Consider a general n-loop correction to the
scalar propagator with ¢ internal propagators and v vertices. Momentum conservation tells
us that n —/+wv = 1. We can divide up ¢ into photon lines £, and fermion lines £,,. As each
vertex involves two fermion lines and one photon, it must be that ¢, = v and (recalling that
two photon lines are external) ¢, = (v — 2)/2. Therefore n = v/2. The superficial degree of
divergence of the photon self-energy diagrams is thus

n(d—l)—ﬁe—&:n(d—l)—%—i—lzn(d—ll)—i—l, (5.230)
which in d = 4 dimensions is equal to one. Gauge invariance implies that we can strip
off a ¢“qP — n1B¢? factor from the self-energy. As a result, it is conventionally argued
that the degree of divergence is reduced by 2. Thus the photon self-energy is finite in this
mixed dimensional context. (In QED, the superficial degree of divergence is 2, and the
gauge invariance argument changes the divergence to a log. There is then a corresponding
renormalization of the photon wave-function.)

Let us again Fourier transform back to position space. There is a subtle issue associated
with gauge invariance. Our Feynman gauge breaks conformal symmetry, and if we proceed
naively, we will not be able to write the correlator (A4, (x)A,(z')) as a function of the cross-
ratio v, making it difficult to make use of the results from section 5.4. To fix things up, we
have the freedom to perform a small gauge transformation that changes the bare propagator
by a term of O(g?). In fact, we claim we can tune this transformation such that there is a
O(g?) term in the bare propagator that cancels the ¢¢® dependence of (5.229). The details
are in appendix 5.7.3. In our slightly deformed gauge, the corrections to the position space
correlation function become

AB(,.. .\ _ AB
7 (z;2") = —c/ r)iT pe= n (5.231)
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where

(-3 20"~ (5.232)
C = — . .
¥ cos (F) T (1)
In four dimensions, we obtain
2
AB/ . _ 9 AB
5 (z;2") = no . (5.233)

T 16m2(0x% + (31 + 40)?)
Analogous to the Yukawa theory, we can interpret this shift as a shift in the )| parameter
of the (Aa(z)Ap(2’)) two-point function. The corresponding current and stress tensor two-
point functions can then be deduced at leading order O(g?) by making the appropriate
substitutions for x| in the Maxwell theory results obtained in section 5.4.
As in the Yukawa theory case, the corrections to the fermion propagator are modified
slightly by the reduced dimensionality of the theory. The calculation is almost identical:

- =1y gy P (—i)nas
iy(q) = (ig)® / (;iﬁ)dplv ﬁz‘p(_ q)’m (5.234)

d-ly  ip(—i
— (ig)*(d—3) / éﬂ)dplpf;_)ql (5.235)

1
= —flg°;—_ + finite . (5.236)
=€

The result is precisely the result for the fermion self-energy in the Yukawa theory.
Finally, we calculate the singular contributions to the one loop vertex correction:

= . d™1p g+ g )y (P + ¢4,)7" (—i)nes
gl (a1, ¢2) (ig)° / i P, f 1, : . (5.237)
(2m) P+ @1)*(p + @2)?|p]
Evaluating this integral in d = 4 — € dimensions yields
~ 1
Mg, q) = ¢ — . (5.238)

672
There is a relative factor of -1/3 compared to the Yukawa theory. In fact, there is a well known
and relevant Ward identity argument (see e.g. [131]) that can be employed here. Current
conservation applied to the correlation function (J#(2)i(x)y(y)) implies that Z,/Z,, is finite
in perturbation theory. In the minimal subtraction scheme where all corrections to Z, and
Zy are divergent, we conclude that Z, = Z,.

At one loop, we have all the information we need to compute the S-function:

G Z2*Zy = gu*Z, (5.239)
where
1
— 2 ;
Zy = l1l—g (67T2E + ﬁnlte) : (5.240)
Z, = 1+ g*(finite) , (5.241)
1 :
Z, = 1-¢° (67r2€ + ﬁnlte) . (5.242)
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Hence the beta function is

8= —%g +0(g") . (5.243)

In other words, the g-function vanishes in 4d at one loop. In fact, as we have sketched,
the Ward identity argument Z, = Z, and the non-renormalization Z, = 1 + ¢*(finite) are
expected to hold order by order in perturbation theory, and so we can tentatively conclude
that this mixed dimensional QED is exactly conformal in four dimensions, making this theory
rather special.

From the relation between by and «(l) (5.155), the Fourier transformed propagator
(5.233) and the two-point function of U(1) gauge fields in d = 4 (5.199), we obtain the
boundary charge b, for the mixed conformal QED as

2

2 4
ba(Mixed QED) = s <2 - % + .. > <F= 8C(Mixed QED) > (5.244)

where % = by is the boundary charge for the standard bulk U(1) theory. This weakly
interacting conformal model therefore provides an example of by # 8¢ in 4d bCFTs.

In addition to «(v), consider the behavior of v(v), defined in (5.52), and representing
the correlation function of the boundary limit of 774. While for free theories, it vanishes
universally, v(1) = 0, in this mixed conformal QED we find instead that, from the one loop

3g°2

computation given here, v(1) = —5%. But, as mentioned earlier, we must have a vanishing

T4 in the boundary limit as an operator statement. We expect

3¢*

—5 (1—v)’7, (5.245)

Y(v) ~
where dr ~ O(g?) is the anomalous dimension. In this case, the small g and v — 1 limits
do not commute. While perturbatively, we might be fooled into thinking that v(1) # 0, in
point of fact (1) should vanish.

While we do not do so here, there are two further calculations of great interest. The first
is to look at the next loop order in the stress tensor two-point function. The stress tensor
conservation equations suggest that the order of limits will not be an issue for evaluating
a(1). It would be nevertheless nice to verify this claim by actually computing more Feynman
diagrams. While we have no expectation that the value of «(1) is somehow protected in
interacting theories, it would be fascinating if it were. The second project is to calculate the
trace anomaly of this theory directly in curved space with a boundary to verify the relation
between a(1) and by. We leave such projects for the future.

5.5.3 Mixed Scalar

In the two examples we considered so far, the boundary interaction modified a Neumann
boundary condition. In this third example, the boundary interaction modifies a Dirichlet
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Figure 5.4: For the mixed dimensional scalar theory: (a) a 4d bulk scalar one loop self
energy correction; (b) a 3d boundary scalar one loop self energy correction; (c¢) one loop
vertex correction.

condition. There will be a corresponding all important change in sign in the correction to
x = —1. The theory is

1 4o 5 (1 )
I==3 /M 42(0"0)(0u0) — /(,Wd 2(50am@*n) + (00 (—0 +g7%)) . (5.246)

This theory has many possible relevant interactions on the boundary that can be generated
by loop effects, e.g. ¢, n?, n*, etc. We will assume we can fine tune all of these relevant

terms away. We will also ignore additional classically marginal interactions such as ¢?n? and

n°.

We proceed to a calculation of the three Feynman diagrams in figure 5.4. The propagator
correction for the bulk scalar is

T SN2 d=tp (=)
illy, = 2(ig) /(27T)d_1p2(p+q)2 (5.247)
g°
T (5.248)

We can Fourier transform this result back to position space to see how the two-point function
will be modified:

d—1
. — d'p I (p)e—p(y1+y2)eip~5x (5.249)
¢ (271-)(1—1 ¢ '

2

- J (5.250)

8m2(0x* + (y1 + 42)%)

where in the last line, we set d = 4. Crucially, the sign here is different from (5.224) and
(5.233), corresponding to a shift in the two-point function for the scalar away from Dirichlet
conditions x = —1 + O(g?) instead of away from Neumann conditions x = 1 — O(g?).
Note these results are consistent with the bounds on x (5.117). At leading order O(g?), we
can compute the corrected current and stress tensor two-point functions as well, merely by
making the appropriate replacement for y in the free scalar result.
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The correction to the boundary scalar propagator is

0, = e [ S D

2m)t (p+q)?

2¢%¢*

32 + finite .

—1

Finally, we give the divergent contribution to the one loop vertex correction:

d™'p  (=1)*(=1)lp|
2m)d=t (p+ q1)*(p + ¢2)*

CigP(qn @) = 8(—ig)® /

In d = 4 — € dimensions, this reduces to

4 i
(g, q2) = —93—2 + finite .
m2e

We compute the S-function for g using gOZ;nZ77 = gu/*Z, and®

2
Z, = 1-g (WG n ﬁnite) :

Zy = 1+ g*(finite) ,
4

Zg = 1 + 92 (T + ﬁnlte) .
=€

The result is that

€ 14
=— — O(g*
f=—59+359+ (9%)
There is an IR stable fixed point at
3
2 _
T =8

(5.251)

(5.252)

(5.253)

(5.254)

(5.255)
(5.256)
(5.257)

(5.258)

(5.259)

in d < 4 dimensions. In the d = 4 limit, the theory becomes free and one has a(1) = 2a(0)

and by, = 8¢ relations.

5.6 Concluding Remarks

Motivated by recent classification of the boundary trace anomalies for bCFTs [3, 85, 90],

we studied the structure of two-point functions in bCFTs. The main result of this chapter

19We note in passing that bulk fields are not renormalized in our one loop computations. Zg in (5.219) and

(5.256) and Z, in (5.241) are finite. There should be an argument based on locality, that boundary interac-

tions can never renormalize the bulk fields. We are not sure how to make precise the relationship between

locality and the actual Feynman diagram computations, however. We thank D. Gaiotto for discussions on

this point.
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(5.155) states a relation between the by boundary central charge in d = 4 bCFTs and the
spin-zero displacement operator correlation function near the boundary. Since a(1) = 2a(0)
in free theories, we can explain the by = 8¢ relation observed in [85]. Indeed, from our study
of free theories, we find that two-point functions of free bCFTs have a simple universal
structure.

Going beyond free theory, we define a class of interacting models with the interactions
restricted to the boundary. We computed their beta functions and pointed out the locations
of the fixed points. In particular, the mixed dimensional QED is expected to be exactly
conformal in d = 4. We have provided evidence that this model can be a counterexample
of the by = 8¢ relation in 4d bCFTs. As we summarized before, this mixed QED theory
is interesting for at least three other reasons as well: its connection with graphene, its
connection with three dimensional QED, and its behavior under electric-magnetic duality.
It doubtless deserves further exploration.

A feature of this graphene-like theory is that the near boundary limit of the stress tensor
two-point function, characterized by (1), depends on the exactly marginal coupling g. Given
the claimed relationship between by and «(1) (5.155), it follows that by also depends on the
exactly marginal coupling g. This dependence stands in contrast to the situation for the bulk
charges a and ¢. Wess-Zumino consistency rules out the possibility of any such dependence
for a [132]. The idea is to let a(g(x)) depend on the coupling g which we in turn promote
to a coordinate dependent external field. Varying the Euler density must produce a total
derivative. Any spatial dependence of a spoils this feature.

The situation is different for ¢ (and hence also a(0)). While the Euler density varies
to produce a total derivative, the integrated W? term has zero Weyl variation. Thus in
principle, one might be able to find examples of field theories where ¢ depends on marginal
couplings. In [133], an AdS/CFT model without supersymmetry is constructed suggesting
the possibility that the c-charge can change under exactly marginal deformations. In practice,
guaranteeing an exactly marginal direction in four dimensions is difficult and usually requires
supersymmetry. Supersymmetry in turn fixes ¢ to be a constant. For by, the situation is
similar to the situation for ¢. The integrated KW boundary term also has a zero Weyl
variation, and by could in principle depend on marginal couplings. In constrast to the
situation without a boundary, the presence of a boundary has allowed us to construct a
non-supersymmetric theory with an exactly marginal direction in the moduli space — this
mixed dimensional QED. Correspondingly, we are finding that «(1) and by can depend on
the position in this flat direction. A similar situation is that the boundary entropy ¢ in
two dimensional conformal field theories is known to depend on marginal directions in the
moduli space [134].2° There is a potential downside to this dependence. If we are looking
for a quantity that orders quantum field theories under RG flow, it is inconvenient for that
quantity to depend on marginal directions. We normally would like such a quantity to stay

20We would like to thank T. Dumitrescu for this remark.
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constant on the space of exactly marginal couplings and only change when we change the
energy scale. It is nevertheless interesting to understand better how these 4d boundary
central charges behave under (boundary) RG flow.

5.7 Appendix

5.7.1 Null Cone Formalism

The null cone formalism is a useful tool for linearizing the action of the conformal group
O(1,d + 1) [135]. The linearization in turn makes a derivation of the conformal blocks
straightforward [119, 136, 137, 138] for higher spin operators, as we now review, drawing
heavily on [95].

Points in physical space # € R? are in one-to-one correspondence with null rays in
R14*1 Given a point written in light cone coordinates,

PA = (Pt P, P ... P ecRMH (5.260)

a null ray corresponds to the equivalence class P4 ~ AP such that PAP, = 0. A point in
physical space can then be recovered via

PH

s
A linear O(d+ 1, 1) transformation of RY¥*! which maps null rays into null rays corresponds
to a conformal transformation on the physical space.

We are further interested in correlation functions of symmetric traceless tensor fields

F

w1 - FOT @ tensor field lifted to embedding space Fly,...4, (P) and inserted at P,

Fpon,(AP) = X"2Fy,..4,(P), (5.262)

we reduce this problem to that of correlation functions of scalar operators by contracting
the open indices with a vector Z:

F(P,Z)=2% .. Z%%Fy, 4, . (5.263)

Tracelessness means that we can take Z? = 0. In the embedding space, the tensor must be
transverse P41 Fy .. 4, = 0, which implies that P-9zF(P,Z) = 0. Given the redundancy in
the embedding space, we can also choose Z - P = 0 without harm.

In the presence of a boundary, we have an extra unit normal vector V' = (0, ..., 0, 1) which
breaks the symmetry O(1,d + 1) down to O(1,d). For two-point functions with operators
inserted at P and P’, we can form the following scalar quantities invariant under O(1,d):

p.-P, vVv.-P, V.P Zz.P, Z P, V-Z, V-Z. (5.264)
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Note the cross ratio & can be written as

P-P
(V-P)(V-P)’

£=— (5.265)
2
in this formalism. The game is then to write down functions of these invariants which
correspond to a correlation function with the correct scaling weights and index structure.
For the operator F(P;, Z;) of weight A;, we need one Z; field for each index of the original
F,..u,- Also, the expression should be homogeneous in P; with degree —A,;. Furthermore,
we will need to make sure that the expressions satisfy transversality.
The one-point function of a scalar operator is
an

OP) = ————. 5.266

OF) = Gropa (5.266)
Note the one-point function of an operator with spin | would introduce a factor (V - Z)!,
which violates the transversality condition. Indeed, only the one-point function of a scalar
is allowed in the presence of a boundary.

The scalar two-point function is

PP = GO (5.267)
where
FO =50 . (5.268)

And, for current and stress tensor, we have

P(£)S1 +v*Q(£) S

(Z - J(P)Z' - Jo(P") A Py Py (5.269)
/ / / 0(5)5% + 4UZB(€>5132 + U4A(€)SQ2
(Z-TyP)-Z Z'-Ty(P') - Z') LA VAL . (5.270)
where
S, — (Z~Z’)(P-P;>D.—I§/Z-P’)(Z’ P) (5.271)
oL e

The conservation conditions can be expressed in terms of the Todorov differential operator

2
D%):(C_Z_HZ a> o 1, 0

2 '97) 9771 39707 (5.273)

Conservation for an operator F(P, Z) means that (0p - DY)F = 0. The conservation con-
ditions will enforce that A; = d — 1 for the current and A; = d for the stress tensor, but we
leave them arbitrary for now.
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The Todorov differential is also useful for writing the action of an element L 45 of the Lie
algebra o(1,d 4+ 1) on a symmetric traceless tensor:

0 0 1 (d) (d)
LigF(P,Z)= | Py——= — P Z.DY — ZgD F(P,Z). (5274
AapF (P, Z) (AGPB BaPA+%l+S_2(AB sD,’) | F(P,Z) . ( )
The conformal Casimir equation is then
1
§LABLABF(P, 7Z)=—CaF(P,Z) , (5.275)

where Ca; = A(A —d) + (I +d — 2). The conformal blocks in the bulk expansion are then
determined by an equation of the form
1
§(LAB + L) (L8 + L’AB)G(P, Z,P' 7" = —CroG(P,Z, P, 7", (5.276)
acting on the two-point function G(P, Z, P', Z') expressed in the null-cone formalism.
In the boundary conformal block expansion, we need to consider instead the generators
of O(1,d), a,b=4+,1,...,d — 1

0 0 1

apr D +

Ly =P,
b OP? %—{—3—2

(Z,D" Y — z,D4-D) . (5.277)

In this case, the conformal blocks in the boundary expansion are determined by

1 .
éLabL“bG(P, Z,P.7')=—Ca,G(P,Z, P, Z) , (5.278)

where the Casimir operator acts on just the pair P and Z and Cay = A(A—d+1)+1(1+d—3).

We give some details of the derivation for the conserved current. (For conformal blocks
of stress tensor two-point function, we refer the reader to [95] for details.) In this case,
because of the linearity of the two-point function in Z and Z’, the Todorov differentials can
be replaced by ordinary partial differentials with respect to Z:

1 (d) 0 1 - 0
—D D=1 . 5.279
doA T ozA &L _qve 7 gge (5.279)
For what follows, we define the functions
f=P, §=0°Q. (5.280)

In the bulk conformal block decomposition, exchanging a scalar of dimension A with the
boundary leads to the following pair of differential equations:

F: 4201+ 6f" +26026+2—d)f

+[(d—A)A = (A} — A2 f—25=0, (5.281)
G: 48201 4+67 +26(26 -2 —d)§
+[24+d—A)2+A)— (A —Ay)%§=0. (5.282)
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The tensor structure S; gives rise to the differential equation F' while the structure S5 gives
the equation G. This system is compatible with the conservation relation. Restricting to

A; = d — 1, current conservation gives
J: (d+1)§—265 —282(f' +3§)=0. (5.283)

One can construct a linear relation of the form ¢ F” + oG’ + c3F + caG + J" + ¢5J + ¢ J,
indicating that either of the second-order differential equations for f and § can be swapped
for current conservation.

The differential equation G may be solved straightforwardly:

A+%_A{LH&“M+%J—§+A—Q,cwm)

Gouk (A, §) = §1+%2F1 (1 + 5 5

where another solution with the behaviour ~ & -2 s dropped. Note gpux(A,0) = 0. We
introduce un-tilde’d functions that will simplify the equations for the boundary blocks:

f(&) = ¢Brdaldripe) (5.285)
g&) = Brtazdtig(e) (5.286)

Note the distinction disappears for conserved currents. Plugging the soluton (5.284) into the
the conservation equation J one obtains

d—1 A A d
Soutc (A, €) + 0% gounc (A, §) = TfA/QQE (5, 1+ 5 - 5t A, —§> - (5.287)
In the boundary block decomposition, we find the differential equations for fi,,, and guy
as
1 d /
EA+8g" +(26-56B+20 ) g
2+d+d
+ (T — CA74> g = (d — 2)f s (5288)
1 3d !
1+ + (ee-a)+2-2 ) f
(d—2)(1+4d+2¢) 142
+ < 2 Cae | [= 2z 9 (5.289)
where
Car=Ll+d—3)+A(A—d+1). (5.290)

As in the bulk case, these differential equations are compatible with the conservation condi-
tion, as can be verified by constructing a similar linear dependence between the equations.
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We need to solve these equation for (/ =0 and A = d — 1) and also for (¢ =1 and all A).
In the first case

O d=1,6 — l(i)h:v“(l—u?) (5.291)
AV | |

Goy(d =1, = LA+ Md-2+2(d— 1)) =vi(d—-2+dv*) . (5.292)

There are similarly simple expressions for / =1 and A =d — 1:

forg(d—=1,6) = %Sh‘l(l +O™"1+2) = %vd_z(l + %), (5.293)
Gory(d—1,6) = %gh(l + &N d -2 —2¢) = %vd(d —2—dv?) . (5.294)

In general, the spin one exchange is given by

1+A3—d+A1-24+A 1
(8,6 = —¢TTRE ’ T 5.295
A 2:6) ©o 2( 2—d+A2-d+2A 5>> (5:295)
1 gd—A—Q d 1
fory (B, €)= M[2€(A+1_d)2Fl (A,—§+A+1;—d+2A+2;—Z)
1
+(26+1) 2/ (A+1,—§+A+1;—d+2A+2;—EN. (5.296)

5.7.2 Variation Rules

Here we give a brief review on the definitions of the Weyl tensor and extrinsic curvature.
We list relevant metric perturbation formulae.

Under the metric perturbation g,, — g, + d¢,., the transformed Christoffel connection
is given by

N i
60y, = 50 1>(g*P)(vuagpy+vy(ng—v,,ag,w). (5.297)

The Riemann and Ricel curvature tensors transform as

A A A
SR, = V,6T), — V0, (5.298)
1
5R;w = 5 (v/\vudgku + v)\vuégu/\ - g)\pvuvl/ég)\p - Déguu) ) (5299)
SR = —RM"g,, + V" <V”(59W . g)‘pvuég,\p> . (5.300)

The Weyl tensor in d-dimensions (for d > 3) is defined as

2 GulpGv)o
W;Ei)pu = R;wpu - m <g,u[pRz/}a - ga[pRu]u - (lefl)R> . (5.301)
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Note Wiopr = Wiejpv), Wajopr) = 0 and Wi, = 0. One can write the transformation of the
Weyl tensor as

5Wuapl/ = _QPuUpu,avéﬁa’ya(ségaﬂ ’ (5302)
where P,;,.0v58 18 @ projector given by

P,uapl/,a”/éﬂ = % (5;1,0451/66075;)5 + 5#550,85;)0(51/7 — OV p)

+2_14(5ua51/'75p560ﬁ — > OV P Y, 0 5)
_@(%p%g&wéyﬁ + 000505800y — [L 4> O,V 3 p, 04> 7,0 5)
+m (5M05VU — 5IW5PU) ((Sagég,y — 5045(557) . (5303)

For a symmetric tensor or operator t° one has the following symmetric property:
Puapu,aw56t76 = Ppapu,ﬂ'y&atvé 5 (5304)

while in general P,ym.0v68 7 Puopv,prsa-
Defining the induced metric by h,, = g — nun,, where n, is the outward-pointing

normal vactor, the extrinsic curvature is
K = WAV xng = Vun, — nua, (5.305)

where a* = n*V,n*. On the boundary we have the following variations in general coordi-

nates:
on, = %mﬁgm : (5.306)
ot = —%n“cignn — h" g, (5.307)
0K, = %5%” (1l + 0K ) S — huhon” (V3000p + V0920 — Vadons) |
0K = —%K‘“’(Fgm, — én“ <V”5gw, = g”’\Vuég,,,\) — %%A(hAB(San) ) (5.308)

where V* denotes the covariant derivative compatible with the boundary metric.
We can foliate the spacetime with hypersurfaces labelled by y = n*z, and adopt the
Gaussian normal coordinates. The metric reads

ds? = dy* + hap(y, v 4)dadz® . (5.309)
In the Gaussian normal coordinate a* = 0, and one has

1
Kap = EanhAB ; (5.310)
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and Iy = —Kap, Ijp = Kp, Ty, = Ty, = T'Y, = 0. The transformation rules of the

extrinsic curvature become

1 1 1 1 o
(5KAB = §Vn5gAB + EKE(SQBC + §Kg5g,4(j - §KAB5gm - V(A(Sgg)n s (5.311)
]- 1 o
OK = Sh*Vdgap = 5 K0gum — Vg (5.312)
Vabgap = Ondgap — K50gpc — K5dgac - (5.313)

5.7.3 Gauge Fixing Mixed Dimensional QED

In the presence of a planar boundary, which already breaks the full Lorentz invariance
of the theory, it can be more convenient to consider a more general type of gauge fixing,
characterized by two constants 1 and ( instead of just the usual &:

I = / dz (—1 L E — 1(nanA” — gaAAA)Q) + / &P (ipPy) | (5.314)
M 4 2 oM
where the boundary fermions do not affect the discussion of the gauge field Green’s function
in what follows. Standard Feynman gauge is achieved by setting ( =n = 1. We will kill the
off-diagonal terms in the equations of motion by setting n = 1/(.

Our strategy will be to first proceed by ignoring the presence of a boundary and then to
take it into account at a later stage using the method of images. The (Euclidean) Green’s
function is defined by the equation:

825AB + (Cz — 1)8,4(93 0 "
Vg, 2) =60 (z— ') . 31
( ) Pt (2 — 1) G" (z, ) (x — ') (5.315)
Fourier transforming, we obtain
k2545 + (C? — 1)kakp 0 ~
G"(k)=—-1. 5.316
( O k2+(<_2—1)/€72l ( ) ( )

Inverting this matrix, we don’t quite get the usual result because k? # ka k. The full result
is a bit messy. Instead, let us take n? = 1 + dn and expand to linear order in 7. We find

. 1 _
Golh) = 6.0 577( kaks 0

2
+ + . 31
2 0 k2 ) O(on°) (5.317)

The next step is to undo the Fourier transform in the normal direction. We have a
handful of contour integrals to perform:

dg e e~ |kll5y]
I, = = = 31
0 / ork2+q2 2k (5:318)
iq dy —[k]|6y]
o1 (K2 + ¢2)2 e
2,196y —Iklloyl (1 —
27 (K + ¢°)° 4[]
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where we denote ¢ = k,. In the absence of a boundary, we can then write the partially
Fourier transformed Green’s function in the form

- —[kl|oyl —[kl|oyl _
Glleby) = 5,000 dne ( kaks(1+ [k||6y)) 0 ))5,32”

"2k 4fkl? 0 [k[*(1 — [K[|dy|

Recall that édy = y — ¢/. In the presence of a boundary, depending on our choice of abso-
lute or relative boundary conditions, we can add or subtract the reflected Green’s function
G (k,y + ). Let the resulting Green’s function be @fﬁ) (k,y,vy'). To make contact with
the mixed QED theory considered in the text, we would like absolute boundary conditions,
i.e. Dirichlet for A,, and Neumann for Ag. In this case, the partially transformed Green’s
function restricted to the boundary is

~ 1 577 —kAkB 0
CB) (K S . 322

We can thus adopt a small gauge transformation to compensate for the additional O(g?) kkp

dependence in the photon self-energy (5.229) when performing the Fourier transform (5.231).
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Chapter 6

Displacement Operators and
Constraints on Boundary Central
Charges

This chapter is an edited version of my publication [5], written in collaboration with

Christopher Herzog and Kristan Jensen.

The motivation of this chapter is to generalize the discussions in the previous chapter to
consider other boundary charges in d = 3 and d = 4 CFTs. Let us begin with a quick review
of the boundary trace anomalies including definitions of the anomaly coefficients a(sq), b, b1,
and bs.

In d = 3 spacetime dimensions with a two-dimensional boundary, the anomaly only
appears on the boundary, and it is given by [60]

Jeam)
47

(T, )4=3 = (a(gd)é 4 btr f(?) , (6.1)
where 0(z, ) is a Dirac delta function with support on the boundary, and tr K2 = tr K2— TKZ
R is the boundary Ricci scalar. For free fields, the values of these boundary charges were

computed in the literature [116, 56, 117]: af;(;’(D) — L g0 1 oanda

T 967 “(3d) 96 (3d)
(D)/(R) denotes Dirichlet/Robin boundary condition. (In our notation, s is the spin of the
free field.)

The structure becomes much richer in d = 4 CFTs. Dropping a regularization dependent

s==
2 =0, where

term, the trace anomaly reads

L1
(1" = 5 (W, = aua Ba) (6.2)
o(zy) br > ay 1
s (B = by tr K = boli KW, ) |
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where E, is the bulk Euler density in d = 4, and W,,,, is the Weyl tensor. In the presence
of a boundary, the boundary term of the Euler characteristic, E®®¥)  is added in order to
preserve the topological invariance. Let us here repeat and list the values of the b; charge
for free fields: b~ """ = 2 [71], 677" = 2 (73], bE = 2 [117], b=" = 18 [117).

The general strategy is similar to that adopted in the previous chapter: one simply looks
at the correlation functions of the displacement operator in flat space. But there are several
differences when compared with the computation of the by charge. The first difference is
that these b and b; boundary charges do not talk to bulk charges, while the b, structure
is intimately related to the surface term generated from varying the bulk c-type anomaly
effective action, as we considered in the previous chapter. The second difference is that in
order to compute b; in d = 4, one has to look not at two-point functions but at a boundary
three-point function.

We will in this chapter prove that the coefficients b and b; are related to two- and three-
point functions of the displacement operator. The main results of this chapter are (6.11)
and (6.20). We will conjecture that the a(sq coefficient satisfies a related constraint (6.23),
from which follows a lower bound (6.24) on aq)/b. We will demonstrate that our relations
hold for free theories.

6.1 Displacement Operator and General Relations

To set notation, let W be the generating functional for connected Green’s functions. The

stress tensor in Euclidean signature is

2 oW
(T (x)) = _ﬁg“%@ :

(6.3)

Let us first consider d = 3 CFTs with a boundary. Denote W as the anomalous part of

W. The anomaly effective action in dimensional regularization is

__ €1 . .
W:%E (a(gd)/aMR—l—b/BMtI‘K2) . (64)

Consider the special case where OM is almost the planar surface at y = 0, and can be
described by a small displacement dy(z#), which is a function of the directions tangent to
the boundary, denoted by 4. In this situation, the normal vector is well-approximated by

n, = (0ady,1) . (6.5)

The extrinsic curvature then becomes K g = 04050y, and we have

A 1 o
/ trK2:—/ SyPdy (6.6)
oM 2 Jom
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where (2 = 940, acts only on the boundary. Correlation functions of the displacement
operator D"(x) can be generated by varying W with respect to dy(z!). Note that diffeo-
morphisms act on both the metric and the embedding function dy(z?). As the effective
action W is diffeomorphism invariant, there is a Ward identity that relates the stress tensor
to the displacement operator, an integrated version of which in the flat limit becomes

T |oam = D™ . (6.7)

Because the displacement operator lives inside the boundary surface and we have conformal
symmetry in this surface, the two point function is fixed up to a constant, which we call ¢,,,:

(D"(x)D"(0)) = . (6.8)

x2d

(In the notation of the previous chapter, ¢, was called «(1) through its relation to the two
point function of the stress tensor.) Replacing the expression (6.8) with a regularized version
[122, 89] in the case of interest d = 3,

(3d)

n n Cnn~ °
(D"()D"(0)) = ST log 42 (6.9)
the scale-dependent part is then
a C;S;l) 9
u@(D”(X)D"(O» = Wg[] d(x) . (6.10)
Equating the scale dependent pieces yields
2
b= gcf;;l) : (6.11)

A similar calculation for the case of a codimension-two defect in four-dimensions was pre-
sented in ref. [103] in the context of entanglement entropy. Note that the b-charge can change
under marginal deformations, although here we do not discuss a 3d example.

Next we consider d = 4. The constraint on the b, boundary charge was found in the
previous chapter, and it reads

2 4
by = 1) (6.12)

1 nn

In flat space, the two-point function is not enough to constrain the b; boundary charge,
since the related Weyl anomaly has a O(K?) structure. Thus, we will need to consider the
three-point function. The relevant anomaly effective action is

__ be 1€ R
e = LR (6.13)

1672 € Joum
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We again consider M to be nearly flat and described by a small displacement, dy(z4).
Approximating the normal vector by n, = (94d0y, 1), we obtain

tr K3 = tr [(940p0y)*
/a/vt /OaM< [ 2 ) (6.14)
— (C6y) tr [(0a050y)?] + §(D5y)3> .

We will relate this b-charge with the displacement operator three-point function defined by
(D" (x)D"(x') D"(0)) (6.15)

T[] x = X

where ¢,,,, is a constant. The full structure of the stress tensor three-point function with a
boundary has not been studied yet. But, as mentioned earlier, to constrain these boundary
charges one can simply look at the purely normal-normal component of the stress-tensor
correlation functions that represent the displacement operator contributions.

While it is not obvious how to proceed in position space, we note that the Fourier
transform of the three-point function of operators O, Oy and Oj is generally [139, 140]

0o 3
Cla3 / dx z* H pfj Kg,(pjx) , (6.16)

where K, () denotes the modified Bessel function of the second kind, and a = g —-1,8; =
A — %; A; is the conformal dimension of operator O; and ¢ is the dimension of the CFT.
In this case, we are interested in the CFT living on the boundary, so 6 = 3 while the
scaling dimension of the displacement operator is A; = 4. Taking cj93 as the corresponding
coefficient of the position space three-point function, one has [139]

Cnnn = &Cnnn . (617)
\/§7r5/2

The 1/x term in a small 2 expansion of the integrand gives rise to a logarithm in the position

space three-point function and a corresponding anomalous scale dependence. Observe the
1/x term is

3m3/2 2
275 (p? + 5+ P§ — PPy — DiDs — Papy — PaP3 — D3PI — 3Dy — gp?pgpi) . (6.18)
Through integration by parts along the boundary, the above expression can be rewritten as
93/ 2 2, 2 599
P1-DP2)\P2 - P3)\P3 - P1) — P1\P2 " P3 aP1P2Ds | - .
175 (@0 22) (0 )y 20) = B2 )+ (6.19)

The result matches exactly the derivative form (6.14) computed from the b; boundary trace

anomaly. Including a factor % coming from varying with respect to dy three times, we obtain

3/ 5/ ) :
b= & 16#2(94:’/;) (\/%05 2)cmm, which gives

b1 = gcmm. (620)



This boundary charge in d = 4 can depend on marginal interactions. In particular, if
the charge by of the mixed-dimensional quantum electrodynamics (QED) depends on the
marginal interactions (see the previous chapter), so does b.

6.2 Conjecture for a3y

As discussed in the previous chapter, we can write down expressions for the near-
boundary limit of the stress-tensor two-point function:
1
<T/w(xa y)Tpa(Oa y/)> = A;w,pa<xv Y, y/)w ) (621)
where
Ann,nn(xu Y, y/) = Oé(’U) )
AnA,nB (X7 Y, y/) _’}/(U)IAB (Xa Y, y/>7
d
Aapep(%,y,y) = C“(U)ﬁ[}éh%,CD (6.22)

d _
(2600 = 75700 16525

where I4p(7) = dap — 27452 and Igdl)iCD = %(IACIBD +1Iaplpc) — ééAB(SCD. The quantity v
is a cross-ratio v = %, which behaves as ~ 1 — % near the boundary at v = 1. The
functions «, v and € are related to each other by two differential constraints. Conservation
of the stress tensor at the boundary, conformal invariance, and unitarity together impose
that v smoothly vanishes as v — 1, while « is smooth, and € can blow up as (1 — v)°~! for
a small anomalous dimension ¢ > 0. Both « and ¢ may have O(1 — v)? terms, which we
refer to as a(1) and €(1). (Note the relation between a(v) and the D™ two-point function,
a(l) = cup.)

The symmetries also allow for a boundary stress tensor which would only arise from
decoupled boundary degrees of freedom. If present it appears as a distributional term in the
two-point function C’IgdB_BDé(y)é(y’).

We conjecture that the boundary anomaly coefficient a(sq) is a linear combination of
a(l), €(1), and C. The dependence on C' is already fixed by the argument relating the

trace anomaly of a two-dimensional CFT to the two-point function of its stress tensor.

More precisely, cpqy = 27C, where c(aq) is the 2d central charge in the Euler anomaly
(T4 = 6(y)222 R. The coefficient C' vanishes for a theory of free 3d scalars and for free

3d fermions since these theories do not have extra decoupled boundary degrees of freedom.
We fix the dependence on a(1) and €(1) by the known values for the conformal scalar with
Dirichlet and Robin boundary conditions, giving

T

A(3d) = 32 (6(1) — za(l) + SC’) . (6.23)
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Note this conjecture gives the correct result for free fermions, reproducing a‘(sg_di = 0.

In a general interacting bCFT we suspect only a(1) to be nonzero for the following
reason. Interactions coupling boundary degrees of freedom to the bulk ought to lead to
a unique stress tensor, leading to C' = 0. Meanwhile, ¢(1) corresponds to a dimension—3
boundary operator appearing in the boundary operator product expansion of T4p, but the
boundary conformal symmetry does not guarantee the existence of such an operator.

Reflection positivity means that the functions a(v) and €(v) are non-negative, as discussed
in the previous chapter. The coefficient C' is also non-negative. If ¢(v) is regular near the
boundary, then €(1) is non-negative, and comparing with the new result (6.11) for b, we
obtain the bounds

d=3 bCFTs : @z—g, (b>0). (6.24)
These bounds recall the Hofman-Maldacena [141] bounds on d = 4 bulk central charges.
However, if €(v) is singular near the boundary, then there is no constraint on the sign of €(1),
and thus, no definite bound on a(sq) charge. We note that asq) and b have been computed
in a bottom-up holographic model [142] and their ratio falls below our proposed bound.

6.3 Two- and Three-Point Functions in Free Theories

We would like to verify the general relations (6.11) and (6.20) in free theories, including a
conformal scalar, a Dirac fermion and, in d = 4, Maxwell theory. The stress tensor two-point
functions with a planar boundary for the scalar and fermion were already considered in ref.
[87]. In the previous chapter, we have computed the two-point functions for a Maxwell field.
We will list the relevant two-point function results for completeness, and consider three-point
functions with a boundary in free theories. These latter results are, to our knowledge, new.

Considering first a vector of scalar fields, i.e ¢ — ¢ (the index a will be suppressed), we
introduce complementary projectors Il satisfying 1T, +II_ = 1 and II2 = II.. The bound-
ary conditions are 0,(Il;¢)|,—o = 0 and II_¢|,—o = 0. The scalar displacement operator
is

Ton = (0,0)° — *- 1 ((d— 2002 +O) &2 | (6.25)
4d—1 "
which is the boundary limit of the normal-normal component of the improved stress tensor.
The two-point function of the scalar field can be found using the image method:

, 1
(¢(x)o(2")) :m( PR T R e é - y,)Q)(“)/Q) : (6.26)

where the parameter x = II, —II_ is determined by boundary conditions. We have adopted
d

the normalization £ = W where Vol(§971) = 12?%2) Note x? = 1, and that an

eigenvalue of y is 1 for Neumann and -1 for Dirichlet boundary conditions.
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To keep the expressions simple, we will focus on the displacement operator two-point
function in d = 3 and the three-point function in d = 4. These two quantities are required
in computing the boundary central charges from the relations (6.11) and (6.20).

A straightforward application of Wick’s theorem gives

(D)D) = 2 (6.27)
(D" (0 D" () D ()57 = g o =T (6.25)

970 XX — ']
The result (6.27) implies that the b boundary charge (in d = 3) does not depend on boundary
conditions for a free scalar. Indeed, using the relation (6.20), we recover the known value
of the b charge for a d = 3 free scalar, b = é. On the other hand, clearly b; is sensitive to
boundary conditions through the tr(y). Using the relation (6.20), we can verify that b; is 32—5
for a Dirichlet scalar and % for a Neumann scalar.
Next we consider a Dirac fermion. In Minkowski (mostly plus) signature, {v,,7.} =
—21,,,. The fermion’s displacement operator and two-point function are

T = 5 (bt =9t (5= 0,0) (6:29)
(Y(@)p(a)) = —mf<i7|%(f;,|§/) +Xify|¥(f;,|f,)> , (6.30)

where 7 = (—y,x) and k7 = 1/ Vol(S97!) and ¢ = ¥4, The x parameter satisfies

XVn = —YmX, XVa=74X, X'=X=1, (6.31)

where Y = 7%x'1°. Focusing on the fermion displacement operator two-point function in
d = 3 and the three-point function in d = 4, we find

(DX)D(0))3;* = 1612“;(61), (6.32)
(DEDE)DO)Y: = 2 ) (6.33)

476 x4x’4(x —x/)4

where tr,(1) depends on the Clifford algebra one uses; we will take tr., (1) = 2l9/2]. As
x? = 1, the boundary dependence drops out of these two- and three-point functions. We
can again verify the relations (6.11) and (6.20) for the fermion.

Finally, we consider a Maxwell field in Feynman gauge. As the field in d = 3 is not

conformal, we focus on the d = 4 case. The displacement operator is

1 1
Tnn = éFnAFnA — ZFABFAB 3 (634)
and the gauge field two-point function is

v

v 5;; Xy
(Au(z)A"(2)) = H(@ — )2 - (x—x)2+ (y+ y’)2)2> '

(6.35)
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The x}, parameter determines the boundary condition; it is equal to d,, up to a sign. For
gauge fields one can consider the absolute boundary condition where the normal component
of the field strength is zero, which gives 0,44 = 0 and A,, = 0, or the relative boundary
condition where A4 = 0 which gives 9,A™ = 0 when recalling the gauge fixing. See the
previous chapter for more details. We find
3
(D)D" )P O = (6.36)

x|t = x|t

independent of the choice of boundary conditions. From the relation (6.20) we recover the
value of b; charge for the d = 4 Maxwell field with a boundary.

6.4 Discussion

We presented new results for the boundary terms in the trace anomaly for CFTs in 3d
and 4d. By relating b (6.11), by (6.20), by (6.12), and a(zq) (6.23) to two- and three-point
functions of the displacement operator in flat space, these results make the boundary coeffi-
cients more straightforward to compute. Ultimately, perhaps building on the bound (6.24),
we hope that a classification scheme for bCF'T can be organized around these coefficients.

Let us conclude by listing some open problems:

e What can one say about these boundary charges for the maximally supersymmetric
Yang-Mills theory in 4d in the presence of a boundary?

e Search for stronger bounds on boundary charges, building perhaps on the reflection
positivity.

e Understand how these 4d boundary charges behave under boundary RG flow.
e Compute directly the b; and by charges for mixed QED in curved space.
e Search for new interacting bCFTs in 4 and other dimensions.

e Consider the stress tensor two-point function with a codimension-2 surface. Such
geometry has an important relationship to quantum entanglement.

e C(lassify the structure of three-point functions in bCFTs.

Clearly, there is much to be done.
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