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Abstract of the Dissertation

Bootstrapping some continuous families of conformal
field theories

by

Connor Classen Behan

Doctor of Philosophy

in

Physics

Stony Brook University

2019

We explore several related bootstrap techniques in conformal field theory (CFT).
This sheds light on a number of structures which have resisted previous ap-
proaches. First, we develop a procedure for constructing a continuous line of
nonlocal CFTs out of a single local CFT. Applying this to the Ising model re-
veals a way to study its long-range cousin perturbatively in a regime that cannot
be accessed by the standard description. This leads to new insights about the
counting of states at the long-range to short-range crossover. We show that this
infrared duality passes several non-perturbative checks and use it to identify an
infinite tower of non-renormalized operators of odd spin. With this information,
the long-range Ising model can be located with the numerical bootstrap based on
brute-force checks of crossing symmetry and unitarity. Probing numerical results
further, we revisit a puzzling feature which is that generalized minimal models
are allowed by the 2D bounds despite the fact that they are non-unitary. We
prove that this must be the case by combining the exact solution with Euclidean
inversion of the operator product expansion. We also prove a similar property of
an extremal solution involving a single Virasoro block. Finally, we explore con-
formal perturbation theory in CFTs that have exactly marginal operators. When
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the perturbation is infinitesimal, this leads to a dynamical system for CFT data
that can be expressed in closed form when the conformal manifold and space-
time manfiold are both 1D. We show that this system abhors level-crossing and
comment on other features that it can be used to study.
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Chapter 1

Introduction

With the possible exception of gravity, all of our theoretical understanding of fundamental
physics is based on quantum field theories (QFTs) — continuous quantum mechanical sys-
tems (with infinitely many degrees of freedom) that obey the special theory of relativity.
The study of quantum field theories (which is called quantum field theory) became a pillar
of modern physics in 1973 with the discovery of asymptotic freedom [1, 2]. This is the state-
ment that our overall framework is powerful enough to yield renormalizable theories that are
UV complete, i.e. microscopically well defined even when their dynamics are probed at an
arbitrarily high energy scale. Any QFT we observe that does not already have this property
(at least in the idealized picture) must be an effective low energy description of some yet to
be determined UV complete theory. So far, the most all-encompassing theory yet proposed
that has withstood significant experimental testing is the Standard Model.

While this insight is conceptually important, it is far from practical. Exact results in
quantum field theory have always been few and far between. Rather than beginning with
some microscopic theory like the Standard Model and attempting to map out all of its
effective phenomena in a top-down manner, we should develop methods that directly exploit
whatever special structures might be present in a particular part of this landscape. The
standard recipie of perturbative quantum field theory is inadequate for this purpose. Apart
from lacking mathematical rigor and being limited to the weak coupling regime, this approach
assumes that all observables may be built out of finitely many fundamental fields that are
described by a Lagrangian. Even when this is the case, a cumbersome expansion in Feynman
diagrams leaves something to be desired as important symmetries only reappear at the end
of the calculation after a conspiracy of cancelling terms [3].

This thesis will make use of an alternative viewpoint known as the bootstrap philosophy
whose history is richly varied. The bootstrap began in the early 1960s with the proposal that
the principal observable of massive QFT, the S-matrix, should be self-consistently determined
from the basic requirements of analyticity, crossing symmetry and unitarity [4]. At the time,
this was a competitor to the idea of perturbing a free theory using Feynman diagrams. While
perturbative QFT was ultimately found to be the superior choice for modelling scattering
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experiments, the bootstrap arguably left an equally large imprint on physics in that it led
to the development of string theory.

Instead of the S-matrix bootstrap, which is undoubtedly still relevant [5–8], this work will
focus on a slightly newer offshoot that applies to theories with an especially large amount of
symmetry [9, 10]. These are the conformal field theories (CFTs) which are invariant under
all spacetime transformations that preserve angle. CFTs play a privileged role in bottom-
up studies of the landscape due to a powerful organizing principle: a general theory at a
given scale may be reached by deforming another theory that has no dependence on scale.
Scale invariance is necessary for conformal invariance and, under fairly mild assumptions, it
turns out to be sufficient as well [11]. For a time, the conformal bootstrap was best known
for providing an exact solution for infinitely many CFTs in two dimensions [12]. By now,
the technique has expanded its reach into high-precision numerical and asymptotic results
for CFTs in higher dimensions, along with general theorems that transcend any particular
theory [13–15]. The breakthrough that led to this revival came in 2008 with an efficient
algorithm for rigorously bounding the allowed spectral data [16].

1.1 Outline

We begin by reviewing essential aspects of the conformal bootstrap in chapter 2. We will
focus on the numerical bootstrap and present some results that give an overall sense of how
restrictive the bounds can be. This reveals that the bounds harbor lines of CFTs that are
often very different from the theories that have attracted attention in the past. The first
example we explore is the generalized minimal model line which is non-unitary and only
appears due to the special properties of two dimensions. A more serious example to consider
comes about from violating locality. Nonlocal CFTs, which exist in any dimension, are able
to overwhelm a bootstrap search since any local CFT can be regarded as a special point on
a nonlocal line.

Chapter 3 proves a few new results about the generalized minimal models. It also includes
some results about fermionic theories that violate unitarity. Chapter 4 is all about the long-
range Ising model. This nonlocal theory has a simple lattice description where interactions
are allowed to take place between all sites, not just the nearest neighbours. When the
decay of this interaction is sufficiently slow, mean-field theory becomes exact enabling a
field-theoretic treatment of the critical point that goes back to 1972. When the decay of
the interaction is fast, however, we expect the physics of the short-range Ising model to be
reproduced. Taking this seriously leads to a second field theory for exploring the critical
point. The first is weakly coupled if and only if the second is strongly coupled. We use this
duality to make new predictions about long-range Ising critical exponents and initiate the
numerical bootstrap for this model.

The most widely studied CFTs that occur in familes are conformal manifolds, discussed in
chapter 5. These include one or more exactly marginal operators — a very special condition
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which has prevented us from finding any examples without enhanced symmetry. We develop
a bootstrap-like constraint on conformal manifolds which does not depend on the usual step
of assuming superconformal invariance. We further explore how CFT observables are allowed
to depend on the coupling and arrive at a system of coupled nonlinear evolution equations.
These allow us to make some general statements, particularly in one dimension, before we
conclude in chapter 6.
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Chapter 2

A taste of bootstrap methods

The conformal bootstrap [9, 10] has joined holography [17] as one of the most important tools
for understanding strongly coupled conformal field theories (CFTs) in higher dimensions. In
addition to the [16] breakthrough, which revived the numerical prospects for conformal [18–
30] and superconformal [31–35] theories, there are also incarnations of the bootstrap which
use small kinematic parameters to obtain analytic results. These are shown schematically in
Figure 2.1.

These methods are all based on imposing crossing symmetry for a four-point function
of local operators. Crossing symmetry is the statement that we must find a unique answer
after inserting a complete set of states into 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 even though there
are

(
4
2

)
possible ways of doing this. Equivalently, we may take the s-channel expansion

that separates O1(x1)O2(x2) from O3(x3)O4(x4) and demand that it be invariant under a
simultaneous permutation of labels on quantum numbers and spacetime points.

As we will see in more detail later, kinematics only constrain this correlator up to an
arbitrary function of the two invariants

u ≡ x2
12x

2
34

x2
13x

2
24

≡ zz̄ , v ≡ x2
14x

2
23

x2
13x

2
24

= (1− z)(1− z̄) (2.1)

where we have introduced the convenient parameters (z, z̄). Their physical interpretation
can be made clear if use use conformal covariance to move our four points to x1 = 0,
x2 = (x, t, 0, . . . ), x3 = (1, 0, 0, . . . ) and x4 = ∞. In this case, satisfying 2.1 with the
Euclidean norm means that

z = x+ it , z̄ = x− it . (2.2)

The answer for the Minkowskian norm is simply given by a Wick rotation

z = x+ t , z̄ = x− t . (2.3)

While (x, t) can take arbitrary values in (2.3), Figure 2.1 would become more complicated
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Figure 2.1: Important limits for the cross-ratios starting from 0 < z, z̄ < 1. The numerical
bootstrap is usually conducted with reference to the blue point (z, z̄) =

(
1
2
, 1

2

)
, even though

it works for any Euclidean configuration. The red arrows denote the lightcone limit in which
the operator product expansion (OPE) becomes an expansion in twist. This leads to a
universal structure in the large spin sector of a CFT [36–39]. The green arrows denote the
deep Euclidean limit which controls the sector with large scaling dimension. The leading
estimates in [40, 41] have recently been improved through the use of compelx tauberian
theorems [42, 43]. Not shown in the figure is the so called Regge limit which involves the
second sheet and provides an analogue of high energy scattering [44–48].

for z /∈ (0, 1) or z̄ /∈ (0, 1). This is because, outside the diamond, O2 is no longer spacelike
separated from the fixed operators O1, O3 and O4. Its position can be reached by more than
one analytic continuation leading to a multivalued correlator. This reflects the possibility
of having multiple operator orderings in Minkowskian signature. Even though Euclidean
correlators do not have branch cuts, it should be noted that this is not manifest in the OPE.
Indeed, the s-channel expansion cannot be done for 1 < z <∞ as this configuration prevents
us from finding a sphere that separates (x1, x2) from (x3, x4).

This thesis, which has a heavy emphasis on numerics, will also derive some analytic
bootstrap results in 2D. This review will summarize some results from the vast literature on
d = 2 CFT and explain which ones continue to have an analogue in d > 2.
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2.1 CFT basics

A fundamental result in theoretical physics is the Coleman-Mandula theorem which states
that any d > 2 QFT with a mass gap must be free if it includes higher spin currents [49].
The basic reason for this is that, in 2-to-2 scattering, tensorial conservation laws force the
outgoing momenta (p′1, p

′
2) to be a permutation of the incoming momenta (p1, p2). If there

are multiple spatial directions, we must have analyticity in the scattering angle which singles
out the free theory. If there is only one spatial direction — and therefore no scattering angle
— non-trivial permutations are allowed which give rise to a rich landscape of integrable
theories.

There are only a few known extensions of the Poncaré algebra which allow non-integrable
QFTs to exist. We will focus on the conformal algebra, which evades the Coleman-Mandula
theorem by not having a mass gap.1 Although such a setup still leads to a trivial S-matrix,
this no longer implies that the theory is free. Instead, scattering is forbidden for a more
fundamental reason — there is no linear combination of states which becomes asymptotic
to the single-particle states of a free theory. As a result, the more interesting observables in
conformal field theory are correlation functions of local operators, such as those described
above. It is these objects that diagnose whether or not a CFT is free. A variation of
the Coleman-Mandula theorem, which classifies the symmetries compatible with interacting
CFT correlators, was recently proven in [50].

2.1.1 Simple examples

The simplest possible starting point is the free massless scalar in d dimensions.

S =

∫
ddx

1

2
∂µφ∂

µφ (2.4)

To describe the translation symmetry, we will write

x′µ = xµ + aµ , φ
′(x′) = φ(x)

Tµν = ∂µφ∂νφ−
1

2
δµν(∂φ)2 − 1

6

(
∂µ∂ν − δµν∂2

)
φ2 . (2.5)

This stress-energy tensor includes the part that follows from the Noether procedure but also a
manifestly conserved operator acting on φ2. This is the well known improvement term which
cancels the trace of the first part. Our ability to make Tµν traceless is of course a consequence
of the fact that φ is massless. The rotation currents — as with the other currents of interest
to us — will be expressed in terms of Tµν using the fact that an infinitesimal rotation is

1The other famous extension is the Super Poincaré algebra whose additional charges are Grassman-odd.
It is of course very fruitful to study theories that posess both supersymmetry and conformal symmetry.
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simply an infinitesimal translation with a parameter that is linear in x.

x′µ = Λ ν
µ xν , φ

′(x′) = φ(x)

Mµνρ = xµTνρ − xνTµρ (2.6)

Another transformation we can consider (again due to the lack of a mass in (2.4)) is the global
rescaling of all co-ordinates. This time, the field will not be in the singlet representation as
it was for (2.5) and (2.6).

x′µ = λxµ , φ
′(x′) = λ

d−2
2 φ(x)

Dµ = xνTµν (2.7)

The last transformation of interest to us might be slightly harder to notice as it is nonlinear.
However, it is easily checked that

x′µ =
xµ − bµx2

1− 2b · x+ b2x2
, φ′(x′) =

(
1

1− 2b · x+ b2x2

) d−2
2

φ(x)

Kµν = 2xµx
ρTρν − x2Tµν , (2.8)

which we call the special conformal transformation, is a symmetry as well. With explicit
expressions for the currents in hand, the corresponding charges are easily obtained through

Pµ =

∫
dd−1xT0µ , Mµν =

∫
dd−1xM0µν

D =

∫
dd−1xD0 , Kµ =

∫
dd−1xK0µ . (2.9)

After repeatedly invoking the canonical commutation relations, we arrive at the following
algebra of conserved charges.

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pν ] = 2i(δµνD −Mµν) (2.10)

[Kρ,Mµν ] = i(δρµKν − δρνKµ)

[Pρ,Mµν ] = i(δρµPν − δρνPµ)

[Mµν ,Mρσ] = δµρMνσ − δνρMµσ

−δµσMνρ + δνσMµρ

The algebra (2.10), known as the conformal algebra, would hardly be worth discussing if
it were only applicable to free theories. Rather, the conformal algebra has a simple geometric
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Figure 2.2: A set of grid lines and its image under the map eib
µKµ where bµ = (0, 1). Clearly,

the lines continue to meet at right angles.

meaning which makes it imperative that we find other QFTs where it is realized. It is easily
checked that (2.10) is isomorphic to SO(d + 1, 1). The transformations generated by Pµ,
Mµν , D and Kµ are precisely those which preserve the flat metric up to a local rescaling,
i.e. they preserve the angle between two vectors. This can be seen in the solutions to the
conformal Killing equation

∂µεν + ∂νεµ = Ω(x)δµν (2.11)

which is a condition on the vector field εµ∂µ by which x is translated. After showing that
the most general solution is

εµ = δaµ + δΛµνxν + δλxµ + δbν
(
2xµxν − x2δµν

)
, (2.12)

we immediately recognize the results in (2.5), (2.6), (2.7) and (2.8).2

To find conformal theories, it is usually enough to search for scale invariance. This is
because T µµ = 0 automatically ensures that Tµνε

ν is conserved for any conformal Killing
vector. The only way to have scale invariance without a traceless stress-energy tensor is

T µµ = ∂µV
µ , V µ 6= ∂νL

µν . (2.13)

In this case, the dilation current (2.7) is modified to xνTµν − Vµ [51]. This scenario is
implausible since it requires the scaling dimension Vµ to have exactly the conserved current
value d− 1 despite the fact that Vµ is not conserved.3

According to the above logic, one may reach a new CFT by taking an old CFT and

2In two dimensions, (2.12) only describes the solutions that have a globally defined inverse. The others
are most easily constructed in complex notation, which turns (2.11) into the Cauchy-Riemann equations.

3It is also worth noting that only non-unitary theories can achieve conformal invariance without Tµµ = 0.
This is because Vµ saturates the unitarity bound while being a descendant. One such example is the
biharmonic scalar [52].
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deforming it by a relevant operator which modifies the low-energy dynamics. The relevant
operator should be added with a finely tuned coupling so that we sit at an infrared fixed-point
of the renormalization group flow. This thesis will explore some of these flows using conformal
perturbation theory — the (conceptually simple but technically challenging) framework for
perturbing around a solved CFT that is not necessarily free. There are two ways to ensure
that such a flow is perturbative in the first place. One is to choose an operator whose scaling
dimension is very close to d. In the prototypical example, which deforms (2.4) by λφ4, this
is done by setting the spacetime dimension to d = 4 − ε, resulting in an O(ε) zero of the
one-loop beta function. We will call this CFT either the Wilson-Fisher fixed-point or the
critical Ising model, to highlight its connection to the second-order phase transition of

H = −J
∑

〈i,j〉

σiσj . (2.14)

It is also possible to derive RG flows that are neither gapped nor free in the IR by starting
from operators that are classically marginal. This requires two-loop effects to cancel one-loop
effects in the beta function. The celebrated example of this comes from a 4D gauge theory
with massless matter [53, 54]. Taking gauge group SU(Nc) with Nf fundamental fermions
and no scalars, we wil write

β(g) = β0
g3

16π2
+ β1

g5

(16π2)2
+ . . . (2.15)

β0 = −11

3
Nc +

2

3
Nf

β1 = −34

3
N2

c +

(
10

3
Nc + 2

N2
c − 1

Nc

)
Nf

for definiteness. This has a zero given by the Caswell-Banks-Zaks fixed-point:

g2
∗

16π2
= −β0

β1

≈ 11Nc − 2Nf

16NcNf − 34N2
c

. (2.16)

Here, we have taken Nc to be large since Nc ∼ Nf � 1 is the condition for having a small
coupling anyway. As QFTs are either conformal or not conformal, it is perfectly legitimate
to ask how small Nc and Nf can be before this fixed-point ceases to exist. At the time of
writing, there is significant hope that this question can be answered with bootstrap methods.

While the problem of finding the conformal window typically refers to Yang-Mills theory,
there are several ways to mod out by the global symmetry of a CFT in order to produce
a closed subsector. Sometimes this retains the notion of “gauge charge” through the intro-
duction of Wilson lines. Unlike the above examples — free theories and their deformations
— this procedure could easily face obstructions on curved manifolds. Hence, we will limit
our discussion to the best understood example — a 2D CFT with a discrete abelian global
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symmetry. To make its thermal partition function finite, we must compactify both the space
and time directions but the distinction between the two is arbitrary. The direction along
which we quantize may be parameterized by a number τ with positive imaginary part. We
therefore write

Z(τ, τ̄) = Tr
[
e−=τH+i<τP ] . (2.17)

This partition function should be invariant under the transformation that exchanges time
and space. In other words, consistency on the torus requires Z(τ, τ̄) = Z

(
− 1
τ
,− 1

τ̄

)
. This

is one of the modular transformations which should supplement crossing symmetry of all
four-point functions. Clearly, a well defined theory can easily lose modular invariance if
certain (non-singlet) states are removed from the trace (2.17). Gauging should therefore
bring in twisted sectors to ensure that this does not happen. The sum over these sectors can
be represented schematically as

Z(τ, τ̄) =
1

|G|
∑

g,h∈G

g �
h

. (2.18)

This notation means that an arbitrary state |ψ〉 is taken to g |ψ〉 around the first cycle and
h |ψ〉 around the second cycle [55]. What we have just described is the orbifold procedure.
Its name comes from the fact that it can be used to relate two nonlinear sigma models —
one with target space M and the other with target space M/G. A simple and useful example
of an orbifold theory is the free boson on S1/Z2, i.e. with the Z2 global symmetry modded
out. In this case, a second Z2 symmetry emerges which distinguishes states in the twisted
sector from those in the untwisted sector. An orbifold of this symmetry yields the free boson
on S1 again. The phenomenon of recovering the original theory by gauging twice happens
in higher dimensions as well if one considers higher form symmetries.

2.1.2 Examples without locality

Our list of viable theories can be extended greatly if we allow those with various forms of
nonlocality. This does not require us to take the drastic step of eschewing local operators
altogether. Topological QFTs, describing only extended objects, are certainly interesting
objects to study but this thesis will be more concerned with the following definitions of
locality.

1. A local QFT should have a stress-energy tensor in its spectrum of local operators.

2. A local QFT should have conserved currents for all continuous symmetries in its spec-
trum of local operators. This is clearly stronger than definition 1.

3. A local QFT should be consistent on orientable (possibly spin) manifolds with non-
trivial topology. This is certainly not weaker than definition 2 since we will see many
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examples of 2D CFTs posessing conserved currents that are not consistent on S1× S1.
The opposite phenomenon — violating Noether’s theorem while preserving modular
invariance — seems unlikely but we do not have a proof.

To reflect on the importance of a stress-energy tensor, dE
dt

= 0 is a very weak condition —
it allows energy to move from one place to another at arbitrary speeds. A more desirable
conservation law takes the form of a continuity equation where, within some ball B, the
non-conservation dEB

dt
is controlled entirely by the physics at ∂B. As such, one would like to

be able to calculate it by inserting some T 0µ into the
∫
∂B

dSµ . . . surface integral. If there
is no operator that does the job (or if the only such operator is itself the integral of a local
quantity) then predictions about how energy will enter and leave B require information that
comes from an infinite distance away.

Figure 2.3: A torus in two halves, which are topologically equivalent to cylinders. If the
same theory were defined on both halves, losing consistency after they are glued together
would be a type of nonlocal behaviour.

The last definition, which is that local theories should not “know” about non-trivial
topology, appears to be very strong. In two-dimensional CFT, where this condition is also
required for defining perturbative string theory, a useful theorem was proven in [56]. It states
that consistency on arbitrary Riemann surfaces is guaranteed once four-point functions obey
crossing symmetry on the plane and one-point functions obey modular covariance on the
torus. Deriving a similar theorem in higher dimensions appears to be much more difficult.
Looking at Figure 2.3, a torus is cut into two halves, which are both conformally flat. If a
CFT were to pick up an anomaly upon gluing these two halves together, its local operators
would contain information about what happens after we traverse a full cycle.

Let us list a few examples of CFTs which are nonlocal in all three senses of the word.

• Even though free theory two-point functions are supposed to look like 〈φ(x)φ(0)〉 =
1

|x|d−2 , we may define a new theory by considering 〈φ(x)φ(0)〉 = 1

|x|2∆φ
for general ∆φ

with the stipulation that higher-point correlators are defined by Wick’s theorem and
composite operators are defined by point-splitting. The resulting solution to crossing
symmetry, with no stress-energy tensor, is called the generalized free theory.
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• Given any CFT, it is possible to artificially set various co-ordinates to zero so that
correlators live on a defect and still exhibit conformal covariance. Even when this
is done by starting with a local theory, there is no reason to expect locality to be
visible after this restriction. For instance, in the codimension one case, the stress-
energy tensor has divergence −∂⊥T⊥ν and dimension d + 1 from the defect point of
view. As we will see in chapter 4, the generalized free theory is a special case of this
construction in which the bulk harbors a regular free theory. Something very special
happens when an R2 ⊂ R4 is singled out for a local superconformal theory. If there is
at least N = 2 supersymmetry, we may define a nilpotent supercharge that allows us
to recover locality (along with other features helpful for the bootstrap) after passing
to its cohomology [57].

• Given any of the nonlocal CFTs above, it is again possible to identify relevant operators
and use them to flow to new infrared fixed-points. In this case, it is usually much easier
to find some flow that is weakly coupled. The generalized free scalar is just one example
of a theory which has a parameter (other than d) which allows operators to be brought
arbitrarily close to marginality.

• Another deformation procedure involves taking a CFT (local or not) and adding an
operator that is nonlocal. We will see an example of this in chapter 4 which is actu-
ally equivalent to one of the deformations above. In other words, a nonlocal theory
deformed by a local operator becomes a local theory deformed by a nonlocal operator
once one of the fields is integrated out.

Lastly, we should note that even though tensor product theories can be local according to
the above definition, they always have multiple stress-energy tensors if they have one.

2.1.3 The Ward identity

One thing the stress-energy tensor allows us to do is derive the four basic infinitesimal
transformations which would have to be taken as assumptions for defining a nonlocal CFT.

[Pµ,O(x)] = ∂µO(x)

[Mµν ,O(x)] = (xν∂µ − xµ∂ν + Sµν)O(x)

[D,O(x)] = (xµ∂µ + ∆)O(x)

[Kµ,O(x)] = (2xµx
ν∂ν − x2∂µ + 2∆xµ − 2xνSµν)O(x) (2.19)

In (2.19), we have assumed that the “spin parts” of the transformation laws are given by

[Mµν,O(0)] = SµνO(0)

[D,O(0)] = ∆O(0)

[Kµ,O(0)] = 0 (2.20)
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where the matrix Sµν acts on Lorentz indices of O which have been suppressed. The first
two lines indicate that we have chosen to work with operators that are in well defined
representations with respect to dilations and rotations. That this is possible reflects the
fact that D and Mµν commute in (2.10). The fact that angular momentum and scaling
dimension are the only eigenvalues appearing in (2.19) reflects the fact that D and Mµν

generate the maximally compact subgroup of the conformal group. The third line of (2.20)
requires more explanation since there is no way to make it hold for every operator in a theory.
For instance, starting from any operator in the kernel of Kµ, it is clear that powers of Pµ
will take us out of the kernel. However, through repeated differentiation, (2.19) implicitly
defines the transformation law for all such operators obtained in this way. This is enough
for theories with spectra that are bounded from below since Kµ acts as a lowering operator
for scaling dimension. Clearly, all unitary CFTs are included in this class. The operators
annihilated by Kµ, which have the lowest scaling dimension for a given multiplet, are called
primary operators while all others are called descendant operators. In this thesis, we will
not encounter any CFTs that include local operators other than primaries and descendants.
However, we mention in passing that some theories (particularly logarithmic CFTs [58]) have
this as one of their defining properties.

The transformation laws (2.19) are known as conformal Ward identities. Writing an
ansatz for a correlation function that enjoys the right conformal covariance properties for-
mally amounts to imposing (2.19) as a differential equation. A Ward identity, which appears
in any QFT with a stress-energy tensor, is

∂µ 〈T µν(x)O1(x1) . . .On(xn)〉 = −
n∑

i=1

δ(x− xi)∂νi 〈O1(x1) . . .On(xn)〉 . (2.21)

Clearly, there can only be one normalization of T µν for which (2.21) holds as written. This is
called the central charge of the theory and denoted by CT . For other currents with a similar
Ward identity, there are flavour central charges denoted by CJ . In most bootstrap studies,
these exhaust the list of special normalizations since unit normalization is the preferred
choice in the absence of another governing principle. The main quantities that can be
fixed from this Ward identity are the three-point couplings λ12T involving the stress-energy
tensor. Something immediately clear is that this should vanish unless O1 and O2 are the
same. By differentiating an ansatz for 〈T µν(x)O1(x1)O2(x2)〉 on the left-hand side of (2.21),
the undetermined coefficients can be read off from the known two-point functions on the
right-hand side.

A nice application of the conformal Ward identities is to show that the stress-energy
tensor is necessarily primary. For other operators studied using the bootstrap philosophy,
we have a completely arbitrary choice. When asking if a genericO is a primary or descendant,
the answer is that it is whatever it needs to be for constraints like crossing symmetry to hold.
Following an argument in [14], we may write an infinitesimal change in T µν that satisfies
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symmetry, conservation and tracelessness once the conformal Killing equation is imposed.

δT µν = ερ∂ρT
µν + ∂ρε

ρT µν − ∂ρεµT ρν + ∂νερT
ρµ (2.22)

We have required the right-hand side to be linear in ε and dependent only upon operators
that are universal, i.e. T µν itself. Since there are no arbitrary coefficients left, this expression
can be matched against (2.19). We find precisely the result for a conformal primary after
using the fact that

SµνTρσ = δµρTνσ − δνσTµρ . (2.23)

There are two caveats to (2.22) that we want to mention. The first is that in d = 2, primality
of T µν can be violated by the term 2∂µ∂ν∂ρε

ρ − ∂2∂µεν − ∂2∂νεµ. This leads us to conclude
that the algebra of conformal transformations is now centrally extended. The second is
that T µν is also not a primary under an algebra that includes supercharges in addition to
momentum generators. To demonstrate this most convincingly, we should clarify the sense
in which conservation is being demanded for (2.22). Instead of demanding that ∂µδT

µν be
identically zero (even though this happens to hold for (2.10)), we should allow it to also be
some other null quantity. In a Lagrangian QFT, this is reminiscent of certain conservation
laws only holding on-shell. Consider the following combination of 3D supercurrents which is
symmetric and traceless with ∆ = d.

Tµν = Qα(γµ)αβJ
β
ν +Qα(γν)

α
βJ

β
µ (2.24)

If we can show that it is conserved as well, we must conclude that it is a valid stress-energy
tensor leading to additional terms in the variation (2.22). It is clear that we cannot do this
by taking a naive divergence. However, the weak form of conservation that we need is for
the descendant given by the divergence to also be a primary. Abusing notation slightly,

Kρ∂
µTµν = −2dTµν + 2iM µ

ρ Tµν

= −2dTµν + 2i

[
− i

2
Qγ(γ

µ
ρ )γα +QαM

µ
ρ

] [
(γµ)αβJ

β
ν + (γν)

α
βJ

β
µ

]

= −2dTµν + (d+ 1)Qγ(γρ)
γ
βJ

β
ν −Qγ(γν)

γ
βJ

β
ρ

+2iQα(γµ)αβM
µ

ρ Jβν + 2iQα(γν)
α
βM

µ
ρ Jβµ

= −2dTµν + (d+ 1)Qγ(γρ)
γ
βJ

β
ν −Qγ(γν)

γ
βJ

β
ρ

−2Qα(γµ)αβ

[
δρνJ

µβ − δµνJβρ +
1

2
(γ µ
ρ )βγJ

γ
ν

]

−2Qα(γν)
α
β

[
(1− d)Jβρ +

1

2
(γ µ
ρ )βγJ

γ
µ

]

= 0 . (2.25)

14



Note that we have used iεµρσJ
µ = γσJρ−γρJσ twice. Understanding how conserved currents

arrange themselves into multiplets is a fundamental part of the superconformal bootstrap.

d Superalgebras
3 osp(N|4)
4 su(2, 2|N )
5 f2(4)
6 osp(8∗|N )

Table 2.1: The possibile choices for a superconformal algebra in d ≥ 3. The many additions
to this list for d < 3 will be discussed momentarily. The value of N is usually chosen so that
the number of Poincaré supercharges is at most 16. A larger number would lead to higher
spin currents and therefore free theories. Setting N = 0 returns a real form of so(d + 2) or
possibly a double cover.

The above computation has been done with the 3D N = 1 superconformal algebra. Its
fermionic part is

{Qα, Qβ} = Pµ(γµC)αβ

{Sα, Sβ} = Kµ(γµC)αβ

{Qα, Sβ} =
1

4
Mµν(γ

µνC)αβ +DCαβ (2.26)

while the mixed part

[Mµν , Qα] =
i

2
Qβ(γµν)

β
α

[Mµν , Sα] =
i

2
Sβ(γµν)

β
α

[D,Qα] =
i

2
Qα

[D,Sα] = − i
2
Sα

[Pµ, Sα] = iQβ(γµ)βα
[Kµ, Qα] = −iSβ(γµ)βα (2.27)

is what we have directly used. This algebra can be derived geometrically using conformal
Killing spinors as in [59]. The various ways to have a superconformal algebra, shown in
Table 2.1 for at least three dimensions, were classified in [60]. The notation makes it clear
what the maximal bosonic subalgebra is — the N -dependent R-symmetry is on one side of
the bar and the d-dependent conformal symmetry is on the other.
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2.1.4 Radial quantization

The conformal Ward identities allow us to show that two-point functions have a single tensor
structure.

〈Oµ1...µ`(x1)Oν1...ν`(x2)〉 =
Hµ1ν1

12 . . . Hµ`ν`
12 − traces

|x12|2(∆+`)
(2.28)

Three-point functions also have a single tensor structure if they include at most one spinning
operator.

〈φ1(x1)φ2(x2)Oµ1...µ`(x3)〉 =
λ12OV

µ1

3 . . . V µ`
3 − traces

|x12|∆1+∆2−∆−`|x13|∆+`+∆12|x23|∆+`−∆12
(2.29)

Here, we have defined

Hµν
12 = x2

12δ
µν − 2xµ12x

ν
12

V µ
3 =

xµ13x
2
23 − xµ23x

2
13

x2
12

. (2.30)

In chapter 4, we will express these correlators more efficiently by lifting them from Rd to
Rd+1,1 where the conformal group acts linearly. This also goes hand-in-hand with an index-
free formalism that automatically accounts for the subtraction of traces. Here, we would like
to point out that an (n + 1)-point function may be written as a sum of n-point functions
once all the three-point couplings are known. As a result, four-point functions of scalars are
in principle determined by (2.28) and (2.29).

The standard derivation of this employs a quantization scheme in which states are created
by local operators at the origin. Clearly O(0) |0〉 represents some state in the Hilbert space
of a QFT. A stronger statement, unique to CFTs, is that every state may be created this
way after taking linear combinations. Let us trade the radial direction for cylinder time
with t = log r. Under this Weyl transformation, the dilation operator on Rd maps to the
Hamiltonian on Sd−1 × R. In this framework, called radial quantization, a state on the
cylinder determined by data in the infinite past may be thought of as originating from a
single point on the plane. Although not the most formal derivation, we can see how this
works by decomposing a correlator that involves a non-vacuum state.

〈0| . . .O0(r) |Ψ〉 =

∫
[Dϕ] 〈0| . . .O0(r0)

(
r

r0

)D
|ϕ〉Ψ[ϕ, r0] (2.31)

The path integral we have written imagines that there are some “field configurations” {ϕ}.
The wavefunctional assigning a weight to each one lives on the radius r0 slice since our
operators are in the Heisenberg picture. If |Ψ〉 is an eigenstate of D, taking r0 → 0 is well
defined which turns the wavefunctional into a purely local object. We are then free to use
the basic quantum mechanical fact that an operator can be defined by its matrix elements.
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(a) Plane (b) Cylinder

Figure 2.4: The plane and the cylinder showing a mapping between circles at fixed r and
fixed t. States on the right live on these circles while local operators on the left live at points.
We learn two interesting things from the fact that D = r∂r maps to H = ∂t. The first is
that the spectrum of scaling dimensions must be bounded from below in a unitary theory.
The second is a general expectation that D (unlike the plane Hamiltonian) should have a
discrete spectrum.

This allows us to write (2.31) as

∫
[Dϕ] 〈0| . . .O0(r) |ϕ〉 〈ϕ| O(0) |0〉 = 〈0| . . .O0(r)O(0) |0〉 . (2.32)

Once we believe that states created by local operators span the full Hilbert space, a state like
O1(x1)O2(x2) |0〉 can be written as a convergent sum. This leads to the operator product
expansion

φ1(x)φ2(0) =
∑

O

λ12O

|x|∆1+∆2−∆
Cµ1...µ`(x, ∂)Oµ1···µ`(0) (2.33)

where we have distinguished between primaries and descendants. Note that our λ12O in
(2.33) is clearly the same one that appears in (2.29). Since x 7→ −x produces a factor of
(−1)`, only an even-spin operators can appear if φ1 and φ2 are identical. Moreover, the
operators are symmetric as xµ1 · · ·xµ` vanishes against any operator with an antisymmetric
part.4

4A more general OPE will have external indices that do not need to be saturated. In this case, the Young
tableaux for exchanged operators are allowed to contain additional rows.
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2.1.5 The power of the OPE

The OPE allows one to expand the unknown part of

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

|x12|2∆φ|x34|2∆φ
(2.34)

into a sum of kinematically determined special functions called conformal blocks. By rela-
belling points, the s-channel block gO(u, v) turns into the t-channel block after swapping the
arguments and multiplying by an overall factor. This leads to the simplest crossing equation

∑

O

λ2
φφOF

−
O (u, v) = 0

F−O (u, v) ≡ v∆φgO(u, v)− u∆φgO(v, u) . (2.35)

The power of (2.35) is that some choices for quantum numbers and OPE coefficients make
it impossible to solve. To demonstrate this, [16] explored the properties of the 4D blocks

g∆,`(z, z̄) =

(
−1

2

)`
zz̄

z − z̄[
z

∆+`
2 z̄

∆−`−2
2 2F1

(
∆+`

2
, ∆+`

2

∆ + `
; z

)
2F1

(
∆−`−2

2
, ∆−`−2

2

∆− `− 2
; z̄

)
− (z ↔ z̄)

]
(2.36)

near ∆φ = 1. Along the diagonal z = z̄, the convolved blocks in (2.35) are concave up at
z = 1

2
for ` > 0. By contrast, F−∆,0(z, z) is concave down at the same point until ∆ ≈ 3.61.

This reveals a crude bound which states that 4D CFTs with a dimension one scalar must
have a scalar in their OPE with dimension 3.61 or less. In this case, the bound is obtained
by applying the second derivative to (2.35). By applying another differential operator, in
addition to the second derivative, [16] strengthened this bound to ∆ < 1. The point is that
the φ2 and Tµν blocks, F−2,0 and F−4,2, lie on the boundary of the convex hull of the α

[
F−∆,`(z, z̄)

]

vectors. Therefore, omitting either one causes the identity operator to violate the sum rule
(2.35). More generally, it useful to consider all derivatives as a basis for functionals.

α =
∑

m≤n

am,n∂z∂z̄

∣∣∣∣
z=z̄= 1

2

(2.37)

Cutting off this sum at an arbitrary order and searching for a functional that is positive
above a certain gap can be done efficiently with linear or semidefinite programming. With
more than a handful of derivatives, it quickly becomes impossible to visualize the sum rule
vectors — hence the common statement that the numerical bootstrap is a “black-box” or
“oracle” that spits out mysterious bounds. It is worth noting that recent work has increased
the number of components that one may use when performing this optimization by hand.
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This is due to non-trivial geometric properties shared by conformal blocks along the diagonal
[61, 62].

Computing conformal blocks is equivalent to inserting a complete set of descendants for
a given primary — we write this here in one dimension since the higher-dimensional case is
much less practical.

∞∑

n=0

〈φ(x1)φ(x2)∂nO(0)〉 〈∂nO(∞)φ(x3)φ(x4)〉
〈O(∞)O(0)〉 =

g∆(u, v)

|x12|2∆φ|x34|2∆φ
(2.38)

The operators C(x, ∂), which resum the contributions of descendants in the OPE, have only
been computed in full generality very recently [63, 64]. For many years, these OPE blocks
[65] were only known for certain small values of the spin, e.g.

Cµ(x, ∂) = B

(
∆ + ∆12 + 1

2
,
∆−∆12 + 1

2

)−1 ∫ 1

0

dαα
∆+∆12−1

2 (1− α)
∆−∆12−1

2 eαx·∂

1

(∆− d−2
2

)n

∞∑

n=0

1

n!

(
−1

4
α(1− α)x2∂2

)n

[
xµ +

(∆ + ∆12 + 1− d)α− (∆−∆12 + 1− d)(1− α)

4(∆− d+ 1)(∆− d−2
2

+ n)
x2∂µ

]
(2.39)

for ` = 1 [66]. Several modern methods for computing the blocks are based on the conformal
Casimir which gives the same eigenvalue to all operators in a given multiplet. Expressions
(2.57) and (2.58), which we will use later on, come from the formula

C2 =
1

2
MµνM

µν − 1

2
(PµK

µ −KµP
µ)−D2 . (2.40)

To derive (2.40), it is helpful to recognize that time reversal on the cylinder corresponds to
inversion on the plane. This explains why we have written conjugate states as created by
O(∞) rather than O(0). Applying these conjugation properties to the stress-energy tensor,
we may read off the following rules for conformal generators in radial quantization.

M †
µν = −Mµν , D† = D

P †µ = Kµ , K†µ = Pµ (2.41)

An immediate application of (2.41) is to compute the norm of the states Pµ |Oµ1...µ`〉. We
may also compute the norm of PµP

µ |O〉 where O is a scalar primary. Demanding that these
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norms are non-negative, we derive

∆ ≥
{
`+ d− 2 ` > 0
d−2

2
` = 0

(2.42)

which are known as the unitarity bounds. Saturation of (2.42) implies a vanishing norm
and, in a unitary theory, this requires the state itself to be zero. We therefore reinterpret
equations of motion as shortening conditions for a conformal multiplet. A scalar primary of
dimension d−2

2
must have a vanishing Laplacian and is therefore free. A spinning primary

of dimension ` + d − 2 must have a vanishing divergence and is therefore a current. The
bootstrap has motivated a systematic understanding of unitarity bounds and shortening
conditions, especially in the superconformal case [67].

Conformal blocks have become useful in several contexts, leading to a growing interest
in how to compute them. We close this section by mentioning some alternative approaches
that this thesis will not be able to review in depth.

• As with correlation functions in more general QFTs, there is a long history of using
momentum space. This leads to an interesting conservation of difficulty in (2.19). The
order of the differential operator encoding the action of Pµ decreases by one while
the corresponding order for Kµ increases by one. Momentum space can sometimes
be awkward in CFTs because the Fourier transform of the three-point function (2.29)
does not have a closed form expression. On the other hand, a conformal block in
momentum space is immediately computable as a product of two of these three-point
functions [68]. Going back to position space produces a convolution which is known as
the shadow integral.

• The Casimir equation satisfied by the blocks has recently been mapped to the Schrödinger
equation for a famous integrable system known as the Calgero-Sutherland model [69].
Treating conformal blocks as Calgero-Sutherland wavefunctions has led to a number
of new relations involving shifts in the internal and external parameters. It has also
led to some new analytic bootstrap approaches in defect CFT [70, 71].

• Although the correlators of several theories at large ’t Hooft coupling may be computed
holographically in AdS, the Witten diagram expansion does not require one to compute
individual conformal blocks. The holographic dual of a block was found to be geodesic
Witten diagram where vertices are no longer integrated over all of space [72]. Instead,
they are integrated along geodesics which connect pairs of operators corresponding
to the OPE channel of interest. There is also an analogous treatment for the larger
conformal blocks that exist in d = 2 [73]. This machinery leads to explicit linear
combinations of s-channel blocks that compute a full tree-level Witten diagram, be it
a contact diagram or an s-channel exchange. Expanding the other exchange Witten
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diagrams into s-channel blocks again is a much more difficult problem which is related
to studies of the crossing kernel [74, 75].

2.2 The numerical bootstrap

The previous section has advocated a technique based on computing conformal blocks and
searching for functionals that act on them with nice positivity properties. Several codes have
been written to aid in such tasks. The first widely released example was JuliBoots [76], a
conformal bootstrap package based around a linear program solver. Shortly afterward, the
solver SDPB [77] was released, giving the community access to the semidefinite programming
methods pioneered in [24, 32, 78]. The frontend that will be used most in this thesis (which
includes several functions for computing blocks) is PyCFTBoot [79]. There is also the cboot

+ autoboot combination [80, 81] which significantly reduces the work needed to formulate
crossing equations.5 In this section, we review the ideas used in the packages above.

Before beginning, we will emphasize that numerical bounds produced by these programs
are rigorous up to tiny errors in how well the conformal blocks are known. In other words,
only kmax, in the truncation parameters that we call (kmax, `max,mmax, nmax), leads to errors
that might be hard to bound uniformly. Increasing the number of derivatives only leads to
stronger bounds because any functional computed at smaller (m,n) still has the right prop-
erties for (mmax, nmax) once zeros are appended. Also, demanding positivity on sufficiently
many values of ` appears to guarantee positivity on all values of ` — even those that were
not part of the optimization [77].

2.2.1 Conformal blocks

Unlike with two or three point functions, conformal kinematics only determine the four point
function up to an arbitrary dependence on two variables. Specifically for scalars,

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =

( |x24|
|x14|

)∆12
( |x14|
|x13|

)∆34 g(u, v)

|x12|∆1+∆2|x34|∆3+∆4
, (2.43)

where u =
x2

12x
2
34

x2
13x

2
24

and v =
x2

14x
2
23

x2
13x

2
24

. As explained in the seminal works [66, 83] on (global)

conformal blocks, g(u, v) may be expanded in a convergent series with each term coming
from a primary operator in the theory. This is done by way of the OPE (2.33). Using this in
the (12)(34) channels for example produces g(u, v) =

∑
O λ12Oλ34Og

∆12,∆34

O (u, v) where each
function depends on the spatial dimension d or equivalently on ν = d−2

2
. The subscript O is

often written as (∆, `) since all primary operators that couple to scalars transform in some
spin-` representation of SO(d). Crossing symmetry is the statement that all three choices for

5Recent work on semidefinite programming algorithms has led to the interesting proposal of implementing
a program like SDPB on quantum computers [82].
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First Second Crossing point
u = |z|2 v = |1− z|2 (u∗, v∗) =

(
1
4
, 1

4

)

a = z + z̄ b = (z − z̄)2 (a∗, b∗) = (1, 0)

ρ = z
(1+
√

1−z)2 ρ̄ = z̄
(1+
√

1−z̄)2 (ρ∗, ρ̄∗) = (3− 2
√

2, 3− 2
√

2)

r = |ρ| η = ρ+ρ̄
2|ρ| (r∗, η∗) = (3− 2

√
2, 1)

Table 2.2: Useful variables for four point conformal blocks in terms of z and z̄.

the OPE channels must agree. Our discussion above omitted numerically efficient methods
for computing conformal blocks so we rectify that now.

Rather than the cross-ratios u and v, conformal blocks are most often considered as
functions of z and z̄, defined by using conformal transformations to send x1, x3 and x4 to 0,
1 and ∞ respectively. The blocks are analytic for 0 < z, z̄ < 1 and most bootstrap studies
focus on the crossing symmetric point (z∗, z̄∗) = (1

2
, 1

2
). Table 2.2 shows the co-ordinates that

are encountered most often. As observed in [24, 84], a block may be expanded in powers of
r where each term corresponds to a new descendant in the multiplet of O. As the scaling
dimension ∆ is varried, coefficients in the sum diverge at certain non-unitary values. When
they do, the residue is proportional to a conformal block itself.6 This motivated [24] to
develop the recurrence relations

h∆12,∆34

∆,` (r, η) ≡ r−∆g∆12,∆34

∆,` (r, η)

h∆12,∆34

∆,` (r, η) = h∆12,∆34

∞,` (r, η) +
∑

i

c∆12,∆34

i (`)rni

∆−∆i(`)
h∆12,∆34

∆i(`)+ni,`i
(r, η) . (2.44)

The leading term is given by [78]

h∆12,∆34

∞,` (r, η) =
`!

(2ν)`

(−1)`Cν
` (η)

(1− r2)ν(1 + r2 + 2rη)
1
2

(1+∆12−∆34)(1 + r2 − 2rη)
1
2

(1−∆12+∆34)
.

(2.45)
Table 2.3 describes the data needed to construct the poles and residues in (2.44). These

6Because of this, one conformal block can mimic the appearance of another if a certain pole in ∆ is
not ruled out by the gaps being imposed [85, 86]. This fake primary effect can even occur in the unitary
bootstrap since the poles in Table 2.3 (and the appropriate spinning generalization) are not all strictly below
the unitarity bound. Poles sitting precisely at the unitarity bound are present in a system that includes
mixed correlators and / or spinning correlators. As a result, bounds that happen to reach certain integer
values experience a jump — they switch from bounding the lightest operator in a given irrep to bounding
the second lightest since operators at these fixed integer dimensions are already secretly present.
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ni ∆i(`) `i c∆12,∆34

i (`)

k 1− `− k `+ k c∆12,∆34

1 (`, k)

2k 1 + ν − k ` c∆12,∆34

2 (`, k)

k 1 + `+ 2ν − k `− k c∆12,∆34

3 (`, k)

Table 2.3: The three types of poles in ∆ for the meromorphic conformal blocks. Two of
them have infinitely many elements labelled by the integer k > 0. The third type requires
0 < k ≤ `.

were noticed empirically in [78] but most of them were later proven in [87]. We must use

c∆12,∆34

1 (`, k) = −k(−4)k

(k!)2

(`+ 2ν)k
(`+ ν)k

(
1

2
(1− k + ∆12)

)

k

(
1

2
(1− k + ∆34)

)

k

c∆12,∆34

2 (`, k) =
k(ν + 1)k−1(−ν)k+1

(k!)2

`+ ν − k
`+ ν + k

(
`+ ν − k + 1

2

)−2

k

(
`+ ν − k

2

)−2

k(
1

2
(1− k + `−∆12 + ν)

)

k

(
1

2
(1− k + `+ ∆12 + ν)

)

k(
1

2
(1− k + `−∆34 + ν)

)

k

(
1

2
(1− k + `+ ∆34 + ν)

)

k

(2.46)

c∆12,∆34

3 (`, k) = −k(−4)k

(k!)2

(`+ 1− k)k
(`+ ν + 1− k)k

(
1

2
(1− k + ∆12)

)

k

(
1

2
(1− k + ∆34)

)

k

to fill in the last column. One fact that can be seen from (2.46) is that c0,0
1 (`, k) and

c0,0
3 (`, k) are only non-zero when k is even. This means that when the external scalars are

identical, blocks of even and odd spin do not show up in each other’s recurrence relations.
Consequently, adjusting the overall normalization of h0,0

∆,`(r, η) by (−1)` is equivalent to

simply removing the factor of (−1)` from (2.45). Indeed, for many studies involving identical
scalars, it was not present. The generalization to non-zero dimension differences shows us
that more drastic changes would be needed if we still wanted to cancel the (−1)` in (2.45).

For spins up to some `max, we need to know several derivatives of h∆12,∆34

∆,` evaluated at

(r∗, η∗) = (3 − 2
√

2, 1). If we evaluated (2.44) for powers of r up to kmax and differentiated
after, we would suffer a large performance hit. This is because there would be many ap-
pearances of (2.45)’s non-polynomial contributions all multiplied by different powers of r. A
better strategy is to compute all derivatives at the same time via matrix multiplication [25].
To this end, we define the vector h∞,` with all desired derivatives of (2.45) already evaluated
at the crossing point. They are grouped into “chunks” of ∂r powers for a given number of
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∂η powers. For example, a computation going up to third order would set

h∞,` =

[
1
∂

∂r

∂2

∂r2

∂3

∂r3

∂

∂η

∂2

∂η∂r

∂3

∂η∂r2

∂2

∂η2

∂3

∂η2∂r

∂3

∂η3

]T

h∞,` . (2.47)

Seeing what happens when we differentiate rnih∆,` several times, the matrix telling us what
linear combination of derivatives to take is

Rni =




rni∗ 0 0 . . .
nir

ni−1
∗ rni∗ 0 . . .

ni(ni − 1)rni−2
∗ 2nir

ni−1
∗ rni∗ . . .

...
...

...
. . .


 =




r∗ 0 0 . . .
1 r∗ 0 . . .
0 2 r∗ . . .
...

...
...

. . .




ni

. (2.48)

This is the matrix acting on a single chunk. Since η is unaffected, the full R is the tensor
product of (2.48) with the identity. There is a problem with simply writing

h∆,` = h∞,` +
∑

i

ci(`)R
ni

∆−∆i(`)
h∆i(`)+ni,`i (2.49)

and repeating this calculation every time a new block appears. It is most easily seen if we
compare the number of matrix multiplications involved to the number of unique h∆i+ni,`i

terms introduced by the recursion. Looking at (2.46), we see a residue c2(`, k) which may
vanish sometimes and a residue c3(`, k) which only exists for certain spins. Therefore, the
best case scenario (only using c1(`, k)) tells us that the number of matrix multiplications #
satisfies

#(0) = 1

#(kmax) >
kmax−1∑

k=0

#(k) . (2.50)

This is the same relation satisfied by the partition function which counts the number of
ways to write an integer as the sum of smaller ones. The well known asymptotics of this
function [88], tell us that duplicated matrix multiplications will abound by many orders of
magnitude with this naive method. Instead, we should again follow [25] and predicts which
residues will be needed ahead of time. This is simply a matter of letting the spin take values
` ≤ `max + kmax for a table whose final entires describe spins up to `max. For each value of `,
we let the index i run over all admissible poles in Table 2.3 and define the residue vectors

24



d`,i. All of these are initialized to h∞,`i . It is then straightforward to iterate

d`,i = ci(`)R
ni

[
h∞,`i +

∑

j

d`i,j
∆i(`) + ni −∆j(`i)

]
(2.51)

and stop once enough powers of R are introduced. Rather than updating the residues right
away, we consider all d`,i on the right-hand side to be the “old values” and replace them
with the “new values” once everything on the left-hand side has been calculated. These go
into the expression

h∆,` = h∞,` +
∑

i

d`,i
∆−∆i(`)

. (2.52)

It is clear that the entries in h∆,` are rational functions of ∆. They all have different numer-
ators and the same denominator. Instead of computing (2.52) as written and taking extra
time to extract the numerator and denominator, it is convenient to store them separately
from the start. The leading term of (2.52) is multiplied by

∏
j(∆−∆j(`)) and the ith term

of it is multiplied by
∏

j 6=i(∆−∆j(`)).
There is a modification to (2.52) that can be used to produce polynomials of smaller

degree. Described in [24], it slightly increases the time needed to generate a conformal block
table but it can greatly decrease the running time of SDPB. The idea is to split the set of
poles P into “large and small” types and use the poles of P> to approximate those in P<.
As our crieterion, we check whether the maximum component of d`,i is above or below some
cutoff θ. For ∆i ∈ P<, we attempt to choose the ai,k coefficients optimally in

1

∆−∆i

≈
∑

∆k∈P>

ai,k
∆−∆k

. (2.53)

Following the choice in [24], we demand that the first |P>|/2 derivatives of (2.53) hold exactly
at ∆ = ∆unitary +θ and ∆ = θ−1. If |P>| is odd, the last of these derivatives will only hold at
one of the points. Once the ai,k are determined by this invertible linear system, they can be
incorporated into (2.52). Whenever it needs to multiply by

∏
∆j 6=∆i

(∆−∆j) and ∆i ∈ P<,

it instead multiplies by
∑

∆k∈P> ai,k
∏

∆j∈P>\{∆k}(∆−∆j).

After the (2.52) computation with the optional degree reduction step, one must obtain
a vector g∆,` of true conformal block derivatives from its meromorphic version h∆,`. This is
done by restoring the r∆

∗ singularity with another matrix. Specifically,

g∆,` = r∆
∗ Sh∆,` . (2.54)

It is easy to see that r∆
∗ S must be the same matrix as Rni in (2.48) with ni replaced by ∆.

There is no need to build up S by repeatedly multiplying some simpler matrix by itself. Its
(i, j) element is immediately known to be ∆...(∆−j)

rj∗

(
i
j

)
. Elements of the conformal block vector
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continue to be rational functions. However, if all numerators in h∆,` have the same degree,
those in g∆,` will have a degree that increases with the order of the derivative. Looking at
these numerators, the end result is something of the form

∂m+n

∂ηm∂rn
g∆12,∆34

∆,` (r∗, η∗) = χ`(∆)P∆12,∆34;mn
` (∆) (2.55)

which is a polynomial times the positive function χ`(∆) = r∆
∗
∏

j(∆ − ∆j(`))
−1. This is

precisely the form required for a task that involves semidefinite programming.
Going from the (12)(34) to the (14)(23) channel switches u↔ v and modifies the prefactor

in the four point function (2.65). Crossing equations are obtained by setting the differences of
these four point functions to zero. The simplest crossing equation with no global symmetry

is v
∆2+∆3

2 g1234(u, v)− u∆1+∆2
2 g3214(v, u) = 0 [78]. As a result, functions of the form

F±,∆,`(u, v) = v∆φg∆12,∆34

∆,` (u, v)± u∆φg∆12,∆34

∆,` (v, u) , (2.56)

are the natural objects to consider once conformal blocks are known. These have come to be
called convolved conformal blocks [76]. In principle, convolved conformal blocks and their
derivatives could be calculated directly from the (2.55) result with its r and η variables. How-
ever, the simple u↔ v transformation is represented by r and η in a much more complicated
way. When the second half of (2.56) involves a new function g∆12,∆34

∆,` (r̃(r, η), η̃(r, η)), much

of the work that goes into the ∂m+n

∂ηm∂rn
F±,∆,`(r∗, η∗) calculation will be spent differentiating

r̃ and η̃. This extra work during the convolution step can be eliminated if we instead add
extra work during the conformal block step to convert (2.55) to (z, z̄) or (a, b) variables. At
first glance, it might seem that the benefit of this choice is purely organizational — it allows
the fast and slow calculations to be conceptually separate. As we now discuss however, there
is another recurrence relation which gives us a much stronger incentive to change variables.
This is used by the program PyCFTBoot.

Conformal blocks are eigenfunctions of the quadratic Casimir [83]:

[
Dz +Dz̄ + 2ν

zz̄

z − z̄

(
(1− z)

d

dz
− (1− z̄)

d

dz̄

)]
g∆12,∆34

∆,` = c2g
∆12,∆34

∆,` . (2.57)

Here, the definitions

Dz = (1− z)z2 d2

dz2
+

(
1

2
∆12 −

1

2
∆34 − 1

)
d

dz
+

1

4
∆12∆34z

c2 =
1

2
[`(`+ 2ν) + ∆(∆− 2− 2ν)] , (2.58)

are standard. The existence of a linear differential equation satisfied by the blocks suggests
the possibility of building up high order derivatives from lower ones. We may pretend for
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a minute that g∆,`,
∂g∆,`

∂z
and

∂2g∆,`

∂z∂z̄
are all known at

(
1
2
, 1

2

)
. The content of (3.15) is then

to tell us what
∂2g∆,`

∂z2 is at the same point. We could attempt to continue this pattern

by differentiating (3.15) with respect to z but then
∂3g∆,`

∂z3 would not be the only unknown

derivative anymore. The presence of new unknowns like
∂3g∆,`

∂z̄2∂z
forces us to use something

more clever.
Such cleverness was found by [89] in which the quadratic and quartic Casimirs of the

conformal group are used together. This reveals an ordinary differential equation satisfied
by the blocks on the z = z̄ diagonal. In terms of the a co-ordinate, this new equation (which
clearly keeps new derivatives under control) is

D(4,3)
a g∆12,∆34

∆,` = 0 (2.59)

D(4,3)
a ≡

(a
2
− 1
)3

a4 d4

da4
+ p3

(a
2
− 1
)2

a3 d3

da3
+ p2

(a
2
− 1
)
a2 d2

da2
+ p1a

d

da
+ p0 .

The polynomials p0, . . . , p3 used by PyCFTBoot are the ones in [89] except with a slight change:
they are written with a

2
in place of z and multiplied by 8 to force as many coefficients as

possible to still be integers. Differentiating (2.59), a fifth derivative of g∆12,∆34

∆,` becomes the
highest order term. However, the lowest order term continues to be a zeroth derivative.
Because p0(a) has degree 3, our equation only stops having non-derivative terms once it goes

up to
d8g∆,`

da8 . This means that the mth diagonal derivative is calculated from the min(m, 7)
lower ones using a handful of simple polynomials. One only needs m to be at least 4 in order
to start this process. Because of this, vectors in the slow original recursion (2.51) only need
to fit four ∂r powers. Once the a derivatives are known, more recurrence relations determine
the b derivatives. Defining S = −1

2
(∆12 −∆34) and P = −1

2
∆12∆34, we use

2(1− 2n− 2ν)
∂m+ng∆,`

∂am∂bn
=

2m(1− 2n− 2ν)

[
−∂

m+n−1g∆,`

∂am−1∂bn
+ (m− 1)

∂m+n−2g∆,`

∂am−2∂bn
+ (m− 1)(m− 2)

∂m+n−3g∆,`

∂am−3∂bn

]

+
∂m+n+1g∆,`

∂am+2∂bn−1
− (6−m− 4n+ 2ν + 2S)

∂m+ng∆,`

∂am+1∂bn−1

−
[
4c2 +m2 + 8mn− 5m+ 4n2 − 2n− 2

−4ν(1−m− n) + 4S(m+ 2n− 2) + 2P ]
∂m+n−1g∆,`

∂am∂bn−1

−m
[
m2 + 12mn− 13m+ 12n2 − 34n+ 22

−2ν(2n−m− 1) + 2S(m+ 4n− 5) + 2P ]
∂m+n−2g∆,`

∂am−1∂bn−1

+(1− n)

[
∂m+ng∆,`

∂am+2∂bn−2
− (6− 3m− 4n+ 2ν − 2S)

∂m+n−1g∆,`

∂am+1∂bn−2

]
. (2.60)

27



This is the transverse derivative recursion found in [23] generalized to unequal external
dimensions with the different definition of c2 taken into account. It follows from going back
to the original Casimir PDE (3.15) in the (a, b) co-ordinates. The same coefficients can also
be found in recent versions of the [76] source code. The form of (2.60) tells us the shape that
will be taken by a lattice of derivatives we compute this way. When we make m as high as
possible for a given n, the right-hand side shows that 2 must be added to reach the highest
possible m for n− 1. This leads to the triangle

n ∈ {0, . . . , nmax}
m ∈ {0, . . . , 2(nmax − n) +mmax} , (2.61)

depending on two user-defined parameters. As found in [90], a high nmax is more important
than a high mmax. An obvious point worth remembering is that (2.59) and (2.60) are only
satisfied by exact conformal blocks, not their rational approximations. As a result, these
recursions are only valid for computing derivatives if kmax is sufficiently large.

Returning to the task of convolution, we need to compute derivatives of

F±,∆,`(a, b) =

(
(2− a)2 − b

4

)∆φ

g∆12,∆34

∆,` (a, b)±
(
a2 − b

4

)∆φ

g∆12,∆34

∆,` (2− a, b) , (2.62)

at (a∗, b∗) = (1, 0). We may immediately see that only one of the two terms in (4.155)
needs to be differentiated. If the number of a derivatives is even (odd), the other term will
contribute equally (oppositely) for F+,∆,` and oppositely (equally) for F−,∆,`. We therefore
reduce one vector of derivatives to another vector of derivatives having roughly half the
size. As in the unconvolved case, its components have the positive-times polynomial form.
Knowing that ∆φ will eventually be determined by the external dimensions ∆i,∆j,∆k,∆l,
we write

∂m+n

∂am∂bn
F ij;kl
±,∆,`(a∗, b∗) = χ`(∆)P ij;kl;mn

±,` (∆) . (2.63)

The linear combinations we need to take in order to compute these polynomials are known
in closed form. For the following calculation, it is easiest to take all of the b derivatives first
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and then set b = 0. This allows us to treat all terms as being linear in a.

∂m+n

∂am∂bn

(
(2− a)2 − b

4

)∆φ

g∆,` =
m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)
∂i+j

∂ai∂bj

(
(2− a)2 − b

4

)∆φ ∂m+n−i−jg∆,`

∂am−i∂bn−j

→
m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)(
1

4

)j
(−∆φ)j (2.64)

∂i

∂ai

(
1− a

2

)2∆φ−2j ∂m+n−i−jg∆,`

∂am−i∂bn−j

=
m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)(
1

4

)j (
1

2

)i
(−∆φ)j (2j − 2∆φ)i

(
1− a

2

)2∆φ−2j−i ∂m+n−i−jg∆,`

∂am−i∂bn−j

→
m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)(
1

4

)∆φ

(−∆φ)j (2j − 2∆φ)i
∂m+n−i−jg∆,`

∂am−i∂bn−j

We may summarize by saying that the input parameters d, kmax, `max,mmax, nmax,∆12,∆34

are used to prepare a conformal bootstrap environment.
Significant work has been invested into generalizing the above methods to correlators

that involve external spin. It is always possible, though sometimes tedious, to construct the
necessary blocks by acting with weight-shifting operators that change internal and external
representations [91]. More direct methods, based on recursions, are in development with
[92, 93] being the state of the art.

2.2.2 Semidefinite programming

Semidefinite programming has appeared in all efficient implementations of the non-identical
numerical bootstrap, i.e. demanding that crossing symmetry and unitarity hold for the
four-point function:

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 =

( |x24|
|x14|

)∆ij
( |x14|
|x13|

)∆kl
∑
O λijOλklOg

∆ij ,∆kl

O (u, v)

|x12|∆i+∆j |x34|∆k+∆l
. (2.65)

The conformal blocks g
∆ij ,∆kl

O (u, v) are functions of the cross-ratios u =
x2

12x
2
34

x2
13x

2
24

and v =
x2

14x
2
23

x2
13x

2
24

.

Invariance under (1, i) ↔ (3, k), which relates two channels of crossing symmetry, leads to
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the following sum rule [78].

∑

O

[
λijOλklOF

ij;kl
∓,O (u, v)± λkjOλilOF kj;il

∓,O (u, v)
]

= 0 (2.66)

F ij;kl
±,O ≡ v

∆k+∆j
2 g

∆ij ,∆kl

O (u, v)± u
∆k+∆j

2 g
∆ij ,∆kl

O (v, u)

To apply this rule, we choose an odd scalar σ and an even scalar ε and let our external
operators run over all admissible combinations of these. Using λσεO = (−1)`λεσO, this yields

∑

O,2|`

(λσσO λεεO)V+,∆,`

(
λσσO
λεεO

)
+
∑

O

λ2
σεOV−,∆,` = 0 (2.67)

where

V+,∆,` =




(
F σσ;σσ
−,∆,` 0

0 0

)

(
0 0
0 F εε;εε

−,∆,`

)

(
0 0
0 0

)

(
0 1

2
F σσ;εε
−,∆,`

1
2
F σσ;εε
−,∆,` 0

)

(
0 1

2
F σσ;εε

+,∆,`
1
2
F σσ;εε

+,∆,` 0

)




, V−,∆,` =




0
0

F σε;σε
−,∆,`

(−1)`F εσ;σε
−,∆,`

−(−1)`F εσ;σε
+,∆,`



. (2.68)

In ruling out solutions to (2.67), which is a set of five functional equations, we must approx-
imate each row as a finite-dimensional vector. The standard way to do this is to expand
around the point (z, z̄) =

(
1
2
, 1

2

)
. We may either take derivatives with respect to z and z̄

directly, or the diagonal / off-diagonal variables a = z+ z̄, b = (z− z̄)2 [90]. We choose (a, b)

and control the order of our derivatives
∂m+ng∆,`

∂am∂bn
with two parameters mmax and nmax:

n ∈ {0, . . . , nmax}
m ∈ {0, . . . , 2(nmax − n) +mmax} . (2.69)

Since half of the derivatives vanish when our conformal blocks are added or subtracted, the
resulting number of components is

N = b(nmax + 1)(mmax + nmax + 1)/2c . (2.70)

There are two additional parameters needed to turn (2.67) into a concrete bootstrapping
problem. One is a cutoff on the number of spins, which we call `max. The other is the
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accuracy parameter for a single conformal block, which we call kmax. This controls how
many poles from the triple series

∆1(`) = 1− `− k k = 1, 2, . . .
∆2(`) = d

2
− k k = 1, 2, . . .

∆3(`) = d− 1 + `− k k = 1, 2, . . . , `
(2.71)

appear in the function

χ`(∆) =
r∆
∗

Πi(∆−∆i(`))
(2.72)

r∗ ≡ 3− 2
√

2 .

As explained previously, and in [78, 84, 89], there are algorithms for explicitly constructing
each conformal block derivative as a rational approximation:

∂m+n

∂am∂bn
F ij;kl
±,∆,`(a = 1, b = 0) = χ`(∆)P ij;kl;mn

±,` (∆) . (2.73)

Here, P ij;kl;mn
±,` is a polynomial with the same degree as χ` for m = n = 0. Its de-

gree goes up by one whenever the derivative order is increased. The task of inputting
(kmax, `max,mmax, nmax) and computing a table suitable for approximating (2.67) is typically
accomplished with a frontend to SDPB.

With the truncations described above, problems of this form are tractable with semidefi-
nite programming [77]. In the dual formulation, one wishes to find a linear functional y which
sends each term of (2.67) to a positive-definite matrix, thereby certifying that no solution to
crossing symmetry exists. For illustrative purposes, we consider a single correlator problem
which allows us to drop the ij; kl and ± labels on P ij;kl;mn

±,` . We will also drop mn through

our understanding that P` is a vector with components P i
` . If we single out the contribution

of the identity operator as n, we arrive at the polynomial matrix program (PMP) where we
include an objective b for generality.

maximize bTy over nTy = 1

such that P`(∆)Ty ≥ 0 for all ` ≤ `max,∆ ≥ ∆min (2.74)

After all, the crossing equation ∑

k,`

λ2
k,`P`(∆k) = n (2.75)

becomes a contradiction when y solving the above conditions is applied to both sides. If we
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reshuffle each vector according to

P̃ 0
` =

1

n0
P 0
`

P̃ i
` = P i

` −
ni

n0
P 0
` , (2.76)

dotting P` with a functional whose action on n is 1 becomes the same as dotting P̃` with a
functional whose leading component is 1. This is precisely the choice to work with crossing
equations projectively as (2.75) becomes

∑

k,`

λ2
k,`

[
P̃ 0
` (∆k)

P̃ i
` (∆k)

]
=

[
1
0

]
(2.77)

after reshuffling both sides. Any spectrum satisfying the bottom row can automatically be
made to satisfy the top row through a rescaling. From now on, we will denote the polynomial
vector in the bottom row of (2.77) by P` to rewrite the PMP.

maximize bTy

such that P 0
` (x) + P`(x)Ty ≥ 0 for all ` ≤ `max, x ≥ 0 (2.78)

Here, x = ∆ − ∆min. To solve this type of problem efficiently, we use the program SDPB

[77]. Because we will see an alternative choice shortly, we briefly review the process by which
SDPB translates (2.78) into a semidefinite program (SDP).

Positivity of P 0
` (x) + P`(x)Ty on the half-line is equivalent to the requirement that it be

equal to

Tr

([
q`(x)qT

` (x) 0
0 xq`(x)qT

` (x)

]
Y`

)
(2.79)

where Y` is positive-definite and q` is a vector of orthogonal polynomials. We have abused
notation slightly since the maximum power of x that (2.79) needs to express may be even
or odd. Because of this, the first q` might have one more component than the second q`. It
is sufficient to demand this equality on a set of sample points which we denote xk. It is also
possible to combine all Y(k,`) into a single matrix Y . Making the identifications

A(k,`) = diag

(
0, . . . , 0,

[
q`(xk)q

T
` (xk) 0

0 xkq`(xk)q
T
` (xk)

]
, 0, . . . , 0

)

B(k,`),i = −P i
` (xk) (2.80)

c(k,`) = P 0
` (xk)

C = 0 ,
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(2.78) becomes

maximize Tr(CY ) + bTy over Y � 0

such that Tr(A∗Y ) +By = c. (2.81)

In the numerical bootstrap, (2.81) and the primal problem corresponding to it are typically
solved together, in order to see which one becomes feasible first [77].

2.2.3 The extremal functional method

It was shown in [90] that solutions to crossing symmetry may be built by locating the zeros
of y. This functional may be found either by ruling out CFTs just outside the allowed region
or by maximizing an OPE coefficient just inside it. Ideally, elements of the spin-` spectrum
are dimensions ∆k such that

det


yT




(P`(∆k))0,0 . . . (P`(∆k))0,n
...

. . .
...

(P`(∆k))n,0 . . . (P`(∆k))n,n





 = 0 (2.82)

where P` is one of the polynomial vectors appearing in (2.73). On the other hand, we have
to worry about numerical errors.

Since y is defined by its positivity on a continuum of conformal blocks, all but one scaling
dimension satisfying (2.82) will be second-order. The unique zero where the functional
changes sign is the maximal allowed value of the gap. In other words, a functional that has
not converged perfectly will not just have zeros in the wrong places. It will give rise to a
polynomial that never reaches zero for real ∆. Such a functional (which provides a valid
bootstrap bound, but not the best one possible) forces us to relax the condition (2.82).

There are two approaches, both based on the spectrum.py script [94], which make it easy
to account for this. The first is to run the script as written after spending several iterations to
bring the primal and dual solutions close together. A highly converged functional is needed
since spectrum.py assumes that the would-be zeros are close to the local minima of (2.82)
which uses only the polynomial numerator. The second is to modify the script to use a
non-polynomial function minimizer, allowing us to multiply (2.82) by the prefactor χ` from
(2.73). The advantage is that when y acts on a full convolved block, the local minima are
closer to the physical ∆k. As a result, punishing SDPB parameters are no longer required.
We have typically used the first approach and specified

--precision=660

--dualityGapThreshold=1e-75

as the non-default parameters. The rest of the script obtains high precision OPE coefficients
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directly from the primal solution.7

The systematic use of the non-identical extremal functional method in [94] has revealed
a surprising fact about generic interacting CFTs — they are still quite similar to free CFTs!
To explain further, free (or holographic) CFTs start with a single-twist primary φ and define
double-twist primaries (like φ2) as the ones that appear in φ×φ. Quadruple-twist primaries
(like φ4) certainly exist, just not in φ × φ. One has to look at a double-twist OPE such as
φ2 × φ2 in order to find them. Even though OPE coefficients like λφφφ4 , that are allowed
by selection rules, clearly turn on in a generic interacting CFT, the results from the 3D
Ising model suggest that the hierarchy among them is maintained [94]. This leads to OPE
coefficients that are small enough that the numerical bootstrap cannot see them.8 Several
operators that 〈σσσσ〉 alone cannot see become visible once 〈εεεε〉 is considered. It is also
likely that many more operators (which technically appear in σ × σ and ε × ε) would need
an even larger correlator system to become numerically detectable. We have emphasized
that this is the case for generic interacting CFTs because there are some 2D CFTs with
a higher spin symmetry that do not run into this problem [90]. The similarity with the
genericity assumption in the analytic bootstrap is almost certainly not a coincidence [36, 37].
CFTs with infinitely many minimal-twist operators are special while CFTs posessing a twist
gap take on a mean-field spectral density at large spin. The suppressed effect of multi-
twist operators in the numerical bootstrap can be interpreted as the statement that these
asymptotic results continue to be a good approximation at small dimension and spin [38, 39].

These considerations become especially important when one attempts to find multi-twist
operators through an older method which minimizes the error in a set of crossing equations
with known scaling dimensions.9 This method, which uses the dual solution for everything,
was examined in [98] as a potential way to learn about multi-correlator OPE coefficients
from a single correlator. Again, it was found to be ineffective for theories without a higher
spin symmetry. Let us summarize the results below.

Once a set of Z stable operators has been found, we may consider a truncated crossing
equation of the form

Z∑

k=1

akFk = n . (2.83)

7For an implementation with linear programming, see [95]. The semidefinite programming version first
appeared in [35] which uses opposite conventions for what the primal and dual problems are.

8Comparisons to [96] have been suggested as this might depend on the algorithm to a certain extent.
9An analogous approach to the severely truncated bootstrap — fitting operator dimensions and OPE

coefficients at the same time — was recently explored in [97].
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When studying a single correlator involving Z2-even operators, we make the identifications

ak = λ2
φφOk

Fk = Fφφ;φφ
−,∆k,`k

n = −Fφφ;φφ
−,0,0 . (2.84)

The point is that φ may denote σ, ε or indeed any scalar whose self-OPE is well approximated
by the Z operators in our set. We regard (2.83) as a set of N > Z linear equations with
N given by (2.70). A naive approach is to remove rows corresponding to high derivatives
bringing the number of equations down to Z. This often leads to ak coefficients that are
negative, even when we use dimensions that are accurate to four digits. To overcome this,
we follow [90] and leave one extra equation so that N = Z + 1. With this overdetermined
system, we will not be able to find ak that satisfy (2.83) exactly. Rather, we find the ak that
minimize the distance between the left and right sides of (2.83). In this fit, the constraint
ak ≥ 0 may be specified by hand. If our norm for this is the 1-norm, it is convenient to
introduce a vector of positive entries t such that

−t ≤ n−
Z∑

k=1

akFk ≤ t

∥∥∥∥∥n−
Z∑

k=1

akFk

∥∥∥∥∥ ≤
Z+1∑

k=1

tk . (2.85)

We may now concatenate t and a into a vector y and recognize that the norm (2.85) is
bTy with the objective bT = [1, . . . , 1, 0, . . . , 0]. Under the identifications

B =

[
−IZ+1 F1 . . . FZ

−IZ+1 −F1 . . . −FZ

]

c =

[
n
−n

]
, (2.86)

this becomes the linear program (LP):

minimize bTy over y ≥ 0

such that By ≤ c. (2.87)

It is amusing to point out that a reader using SDPB may continue to use it for solving (2.87)
because every linear program is also a semidefinite program. To do this, the (2Z+2)×(2Z+1)
and (2Z+ 2)× 1 matrices B and c must be enlarged to (4Z+ 3)× (2Z+ 1) and (4Z+ 3)× 1
so that they encode component-wise positivity of y in addition to (2.85). The next necessary
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(a) |λσσO| comparison (b) |λεεO| comparison

Figure 2.5: OPE coefficients in the 2D Ising model for operators with ∆ ≤ 8. Wide blue
bars show exact values and narrow red bars show estimates from the fit used in [90].

step is replacing b with −b (and prepending an arbitrary number) as SDPB’s objective is
maximized instead of minimized. Finally, the orthogonal polynomials should all be 1. With
this choice, constraint matrices in (2.81) simply pull off a diagonal component of Y and
c−By = Tr(A∗Y ) reads c−By ≥ 0. In any case, whether (2.87) is solved as an LP or SDP,
it is clear that the returned y will give us the OPE coefficients λ2

φφOk .
To verify that this gives reliable values for ak in two dimensions, we have compared exact

and approximate results in the Ising model where ε× ε operators are also in σ× σ. Starting
with ∆φ = ∆σ, the λ2

σσO coefficients are very close to the ones found in [90]. Changing the
external dimension to ∆φ = ∆ε, the same algorithm produces accurate λ2

εεO coefficients as
well. These are shown in Figure 2.5.

Turning to three dimensions, exact Ising CFT data are not available, but the tables in
[94] have negligible error for our purposes. Despite all the progress in isolating this model, it
appears that several spin-` operators are still missing from these spectra: the ones that do not
fall into [σσ]n, [εε]n and [σε]n twist families. As evidence of this, Figure 2.6 shows that OPE
coefficients fit with the dual method differ greatly from the ones returned by spectrum.py.
To guess where the first missing operator appears, we can take the naive view that twist
families exist all the way down to ` = 0. Constructing one out of an irrelevant operator Φ,
we have ∆ ≈ 2∆Φ + 2n + ` > 2d. Four-point functions approximated by bootstrap data
have already proven useful for conformal perturbation theory and measuring non-Gaussianity
[99, 100]. As it is significantly affected by the incompleteness of the spectrum above ∆∗ ≈ 2d,
a fit to the crossing equations must be a less forgiving problem.

Although we have not done so yet, it should also be possible to fit mixed OPE coefficients
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(a) |λσσO| comparison (b) |λεεO| comparison

Figure 2.6: The analogue of Figure 2.5 for the 3D Ising model. In the fit, we have used the
Z2-even operator dimensions from [94]. This is already a longer list than anything that is
likely to come from a one-correlator bootstrap. Due to a remaining bias in the spectrum,
there is strong disagreement between the primal and dual methods.

in a 2D theory. The last two rows of (2.67) would lead to coupled quadratic equations which
rapidly become impractical to solve as our system grows. Therefore, we will focus on the
third row. If only the identity has been singled out, this is a homogenous equation and its
parameters are ambiguous up to a rescaling. This is why it helps to find OPE coefficients
in a prescribed order. As long as λφφφ2 has been found from the φ × φ fit described above,
permutation symmetry of this coefficient may be used to make our equation inhomogeneous.
In this case, it takes the form of (2.83) but now with

ak = λ2
φφ2Ok

Fk = Fφφ2;φφ2

−,∆k,`k

n = −λ2
φφ2φF

φφ2;φφ2

−,∆φ,0
. (2.88)

Essentially, φ plays the same role that the identity operator played before.

2.3 One and two dimensions

To complete Table 2.1, we should consider a superalgebra, or a pair of two superalgebras, from
the following list: osp(N|2), su(N|1, 1), osp(4∗|2N ), g(3), f0(4) and d0(1, 2, α). These enable
the construction of superconformal quantum mechanics in one dimension. Such theories are
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nonlocal (by our favourite definition) since a traceless stress-energy tensor with a single
component must be identically zero. Two-dimensional CFTs all have a supergroup given
by G× Ḡ, associated to g and ḡ in the above list, but the appropriate conformal algebra is
allowed to be much larger.

This is most easily seen by using complex co-ordinates z = x+ iy and z̄ = x− iy. In this
notation, the Euclidean line element becomes

ds2 = dx2 + dy2 = dzdz̄ . (2.89)

It is clear that any holomorphic reparameterization of z, combined with any anti-holomorphic
reparameterization of z̄, will leave (2.89) invariant up to an overall factor. We therefore find
a conformal algebra with Killing vectors zn+1∂ and z̄n+1∂̄ generated by zn+1T and z̄n+1T̄
respectively. These operators, defined by

T =
1

4
(T11 − 2iT12 − T22) , T̄ =

1

4
(T11 + 2iT12 − T22) , (2.90)

are the two independent components of Tµν once symmetry and tracelessness are imposed.
Conservation implies that ∂̄T = ∂T̄ = 0, which also follows from the algebra. Holomorphic
and anti-holomorphic weights, which dictate an operator’s transformation properties, are
defined by

h =
∆ + `

2
, h̄ =

∆− `
2

, (2.91)

and it is easy to see that one is always zero for T and T̄ . Note that the spin ` is the only
Cartan of the rotation group in two dimensions. The algebra generated by these vector fields
(called the Witt algebra) centrally extends to

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m− 1)(m+ 1)δm+n,0

[
L̄m, L̄n

]
= (m− n)L̄m+n +

c

12
m(m− 1)(m+ 1)δm+n,0 (2.92)

which will be all-important in this section. Known as the Virasoro algebra, (2.92) determines
how infinitesimal transformations rescaling (2.89) are able to act on correlation functions.
It appears as an enhancement of any sl(2)× sl(2) theory with a stress-energy tensor unless
the strictly finite conformal invariance is achieved through the strange mechanism in (2.13).

The operator equations ∂̄J = ∂J̄ = 0 can appear again for higher spin currents in this
context since the conformal Coleman-Mandula theorem does not apply for d = 2. Even in
purely Virasoro-symmetric CFTs, there are infinitely many conserved currents built from
polynomials in T and their derivatives. These have h̄ = 0 by definition, while h must be an
integer to allow single-valuedness of correlation functions. The OPE of such operators was
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explicitly found to be

Ji(z)Jj(0) =
δij

zhi+hj
+
∑

k

∞∑

n=0

λijk
n!

(hi − hj + hk)n
(2hk)n

∂nJk(0)

zhi+hj−hk−n
(2.93)

in [101]. Currents of arbitrarily high spin not generated by T are allowed in 2D CFT as
well. An algebra generated by such currents is called a W-algebra to distinguish it from
a Lie algebra. Generic examples differ from (2.92) in that charges appear nonlinearly in
commutation relations. Although no complete classification is available, several W-algebra
families, along with sporadic examples, have been found since the work of [102].

2.3.1 Exactly solvable theories

Rewriting general CFT results in the complex notation appropriate for this section is a
straightforward exercise. Two-point functions and three-point functions become

〈O(z1, z̄1)O(z2, z̄2)〉 =
1

z2h
12 z̄

2h̄
12

(2.94)

〈O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)〉 =
λ123

zh1+h2−h3
12 zh1+h3−h2

13 zh2+h3−h1
23 z̄h̄1+h̄2−h̄3

12 z̄h̄1+h̄3−h̄2
13 z̄h̄2+h̄3−h̄1

23

which look somewhat more compact than (2.28) and (2.29). Also, we stress that (2.94)
represents the most general three-point function of conformal primaries this time. There is a
further notion of Virasoro primary which describes an operator annihilated by all Virasoro
generators with a positive subscript. Our ability to construct a sensible theory by acting on
these operators with L−|n|, L̄−|n| follows from the same unitarity logic as before. A powerful
fact about the Virasoro algebra is that correlators of descendants may be obtained from
the corresponding correlators of primaries, even when the charges being used to descend are
more complicated than total derivatives.10

To see how this works, we should derive the singular OPE between the stress-energy
tensor and a primary from

δO(w, w̄) =
1

2πi

∮

w

[
dzε(z)T (z)O(w, w̄) + dz̄ε̄(z̄)T̄ (z̄)O(w, w̄)

]
(2.95)

where the Killing vector this time is an arbitrary holomorphic vector field. To have consis-

10Having a larger algebra of spacetime charges generally increases the amount of information that can
be extracted from a correlation function of primaries. However, there are sometimes descendant correlators
that are not determined by the primaries of a higher W-algebra.
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tency with the finite conformal transformation

O′(z′z̄′) =

(
∂z′

∂z

)h(
∂z̄′

∂z̄

)h̄
O(z, z̄) , (2.96)

it must be the case that

T (z)O(0) =
hO(0)

z2
+
∂O(0)

z

T̄ (z̄)O(0) =
h̄O(0)

z̄2
+
∂̄O(0)

z̄
(2.97)

up to regular terms. The other OPE we need is

T (z)T (0) =
c/2

z4
+

2T (0)

z2
+
∂T (0)

z

T̄ (z̄)T̄ (0) =
c̄/2

z̄4
+

2T̄ (0)

z̄2
+
∂̄T̄ (0)

z̄
(2.98)

which is more singular than (2.97) because the stress-energy tensor is not a Virasoro primary.
It is in fact given by T = L−2I. Nevertheless, (2.98) is easy to verify since it reproduces the
commutation relations (2.92) once the charges are written as explicit modes

Ln =

∮
dz

2πi
zn+1T (z) , L̄n =

∮
dz̄

2πi
z̄n+1T̄ (z̄) . (2.99)

Insertion of (2.99) into a correlation function with one descendant, for instance, yields the
expression

〈
L−m1 . . . L−mjO(z, z̄)O1(z1, z̄1) . . .Ok(zk, z̄k)

〉
=

1

(2πi)j

∮
dw1

wm1−1
· · ·
∮

dwj
wmj−1

(2.100)

〈T (w1) . . . T (wj)O(z, z̄)Ok(z1, z̄1) . . .Ok(zk, z̄k)〉

which can be computed by iterating (2.97) and (2.98). There is a very convenient property
of these chiral OPEs when used inside contour integrals (which is sometimes confusingly
referred to as a properties of OPEs in general). It is that the universal singular terms we
have been able to deduce are enough to evaluate (2.100) through the residue theorem.

The other indispensable information about the Virasoro algebra is its representation
theory. This is rich enough to reveal infinitely many interacting CFTs built solely from
primary fields that have null descendants. The extension of (2.41) to the Virasoro case
is simply L†n = L−n. As such, we should demand that representations have a positive
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semidefinite Gram matrix for unitarity.

M =




〈h|h〉 0 0 0 . . .
0 〈h|L1L−1|h〉 0 0 . . .
0 0

〈
h|L2

1L
2
−1|h

〉 〈
h|L2L

2
−1|h

〉
. . .

0 0 〈h|L2
1L−2|h 〉 〈h|L2L−2|h〉 . . .

...
...

...
...

. . .




(2.101)

=




1 0 0 0 . . .
0 2h 0 0 . . .
0 0 4h(1 + 2h) 6h . . .
0 0 6h 4h+ c

2
. . .

...
...

...
...

. . .




Te determinant of the level-l block, found by Kac in [103], is

detMl = αl
∏

rs≤l

[h− hr,s(c)]p(l−rs)

αl =
∏

rs≤l

[(2r)ss!]p(l−rs)−p(l−rs−r) (2.102)

where p(n) is the number theoretic partition function. Its appearance is clear once we know
that a state with weight hr,s(c) is null at level rs. The non-trivial part of the Kac determinant
is the formula for the roots, which has the parameterization

c = 1− 6

m(m+ 1)
, hr,s =

[(m+ 1)r −ms]2 − 1

4m(m+ 1)
. (2.103)

We will not prove (2.103) in this thesis but a singular vector expression used in (3.7) plays
a role in the proof. By plotting (2.103) in the (c, h) plane, we find that the curves where
detMl can change sign are all in the c < 1 half-space. Representations on the other side
are clearly unitary as the Gram matrix is diagonally dominant in the c → ∞ limit. A
detailed analysis in [104, 105] showed that all but countably many points with c < 1 have at
least one p(l)× p(l) block with a negative determinat. The only way to construct a unitary
representation in this half-space is to choose a point where two detMl = 0 curves intersect
(m ∈ N), leading to states that are not just null at level rs but null at level (m−r)(m+1−s)
as well.11 Some work generalizing this to the W-algebra case was recently done in [106].

Let us consider a correlator with three primaries — one with a level-2 null, one with a

11These are in fact the first intersections. There are other points where the curves for two levels intersect
that do not lead to unitary representations. This is because there is a third level for which these points lie
strictly to the left.
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level-rs null and one that is to be determined. If we construct the linear combination of
L2
−1 and L−2 that must annihilate this three-point function, we find only two possibilities

for what the third weight must be.

φ1,2 × φr,s = φr,s−1 + φr,s+1 , φ2,1 × φr,s = φr−1,s + φr+1,s (2.104)

Iterating (2.104) does not lead to primaries with arbitrarily large Kac indices because we
have chosen to take m ∈ N (we relax this assumption in chapter 3). Once an index becomes
large enough, the corresponding weight becomes equal to one we have already seen up to an
integer multiple of rs or (m− r)(m+ 1− s). In other words, we get a closed OPE given by
the ansatz

φr,s × φr′,s′ =

min
(⌊

r+r′−|r−r′|−2
2

⌋
,
⌊

2m−3−r−r′−|r−r′|
2

⌋)
∑

k=0

min
(⌊

s+s′−|s−s′|−2
2

⌋
,
⌊

2m−s−s′−|s−s′|
2

⌋)
∑

l=0

φ|r−r′|+2k+1,|s−s′|+2l+1 (2.105)

having only finitely many Virasoro primaries. Theories that can be constructed from finitely
many primaries are referred to either as rational CFTs or minimal models for a particular
chiral algebra.12 In this case, the theories obeying (2.105) will be Virasoro minimal models.
One way to get a consistent torus partition function (2.17) in a minimal model is to let
every primary have equal weights h and h̄. These so-called diagonal minimal models for
m = 3, 4, 5, . . . are properly called the Ising model, tricritical Ising model, tetracritical Ising
model, etc. Many of them admit orbifolds that take us to a non-diagonal minimal model.
The most famous example is an orbifold of the tetracritical Ising model called the 3-state
Potts model. These models are solved by the bootstrap because the four-point functions

〈φr1,s1(0)φr2,s2(z, z̄)φr3,s3(1)φr4,s4(∞)〉 (2.106)

may be expanded into finitely many Virasoro blocks. These blocks do not have to be com-
puted with a tedious OPE sum because there is always a differential operator annihilating
(2.106). Once the appropriate differential operator is constructed with the Virasoro Ward
identity, the Virasoro blocks in question form a basis of solutions where each one has a dif-
ferent leading behaviour. This is usually illustrated with differential operators that happen
to be second-order leading to hypergeomeric solutions. The constraint of crossing symmetry

12We do not know why the parlance developed in this way. It would be just as correct to say that minimal
CFTs are rational models for a particular chiral algebra.

42



pins down their coefficients after using relations like

2F1(a, b, c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1

(
a, b

a+ b− c+ 1
; 1− z

)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−b2F1

(
c− a, c− b
c− a− b+ 1

; 1− z
)

(2.107)

which describe the branching of a direct channel block into crossed channel blocks. A more
systematic approach needs to be developed when the Virasoro Ward identity is not second-
order. The solutions are usually not generalized hypergeometric functions, and even when
they are, analogues of (2.107) require the Meijer G-function. Instead, there is an elegant
integral representation called the Coulomb gas formalism, reviewed e.g in [85]. Contour
deformations make the crossing kernel transparent, leading to explicit expressions for the
minimal model OPE coefficients [107–109]. We will have more to say about these ideas in
chapter 3.

Our introduction would not be complete without a discussion of the free boson in two
dimensions. This is a c = 1 CFT with a spectrum that is either discrete or continuous
depending on whether we take the target space to be compact: X ∼ X+2πR. Understanding
this theory is actually important for the minimal model problem as well since the Coulomb
gas formalism expresses (2.106) as a free boson correlator in the presence of a background
charge. A strange thing about the free boson theory is that it is only a CFT in the usual
sense once operators that generate logarithmic singularities are removed. This means that
we disregard powers of X(z) and X̄(z̄) when constructing primaries. Instead, we should use
the derivatives i∂X(z) and i∂̄Z̄(z̄) along with exponentials

Vk,k̄(z, z̄) = eikX(z)eik̄X̄(z̄) . (2.108)

We should in fact regard (2.108) as the only primaries once we recognize that the symmetry
of the free boson enhances beyond the Virasoro algebra. The single derivatives of X and
X̄ are generators of this new symmetry, u(1) × u(1), and descendants of the identity with
respect to it. The momenta in (2.108) belong to the lattice

Γ =

{(
n

R
+
mR

2
,
n

R
− mR

2

) ∣∣∣∣ m,n ∈ Z
}

(2.109)

which is invariant under R 7→ 2
R

— the origin of T-duality in string theory. Generically, the
free boson as one discrete symmetry which can be gauged, leading to two continuous families
of free CFTs labelled by the radius. The picture, along with three special orbifolds of the
R =

√
2 theory, is often referred to as the c = 1 moduli space. However, it is more correct

to refer to it as the space of two-dimensional CFTs that have a u(1)× u(1) symmetry [110].
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2.3.2 Fun with twist fields

The most complicated c = 1 CFT is the S1/Z2 orbifold theory. This is the compact free
boson with X ∼ −X identified. A twist field of dimension

(
1
16
, 1

16

)
appears for every fixed

point of the symmetry being modded out — in this case, there are twists around X = 0 and
X = π.

X(e2πiz, z̄)σ0(0) = −X(z, z̄)σ0(0) X(e2πiz, z̄)σ1(0) = [2πR−X(z, z̄)]σ1(0)
X(z, e2πiz̄)σ0(0) = −X(z, z̄)σ0(0) X(z, e2πiz̄)σ1(0) = [2πR−X(z, z̄)]σ1(0)

While three-point functions involving twist fields once again follow from the trick of expand-
ing a four-point function, there are several subtleties in this calculation.

When a correlation function has four twist fields, these create two branch cuts which are
responsible for the multi-valuedness of local operators in the z plane. Alternatively, we may
turn this into a partition function on the two-sheeted cover where the operators are single
valued functions of a parameter τ or q ≡ e2πiτ . The standard map from z to τ is

z =

[
ϑ2(τ)

ϑ3(τ)

]4

⇔ τ = i
K(1− z)

K(z)
(2.110)

and one can actually write nice expressions for the theta functions individually [111].

ϑ2(τ)2 =
2

π
K(z)

√
z

ϑ3(τ)2 =
2

π
K(z)

ϑ4(τ)2 =
2

π
K(z)

√
1− z (2.111)

The statement of crossing symmetry for 〈σ(0)σ(z, z̄)σ(1)σ(∞)〉 is the usual functional equa-
tion. This is equivalent to modular invariance as shown by the standard identities:

ϑ2

(
−1

τ

)
=
√
−iτϑ4(τ) , ϑ2(τ + 1) = e

πi
4 ϑ2(τ)

ϑ3

(
−1

τ

)
=
√
−iτϑ3(τ) , ϑ3(τ + 1) = ϑ4(τ)

ϑ4

(
−1

τ

)
=
√
−iτϑ2(τ) , ϑ4(τ + 1) = ϑ3(τ) . (2.112)

We will show a curious fact that many of these four-point functions are “solvable by radicals”
at R2 = 2M .

Without loss of generality, we may assume that the last twist field is always σ0. This
is due to an invariance under the D4 group generated by σ0 ↔ σ1 and σ0 ↔ −σ0. The
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four-point function in question was found to be

〈σs(0)σr+s(z, z̄)σr(1)σ0(∞)〉 = Z∞(τ, τ̄)ZR(τ, τ̄)

Z∞(τ, τ̄) =
1√

=τ |η(τ)|2

∣∣∣∣
ϑ3(τ)2

4ϑ2(τ)ϑ4(τ)

∣∣∣∣
1
3

ZR(τ, τ̄) =
∑

m,m′∈Z

exp

[
−πR

2

=τ

∣∣∣∣m′ +mτ +
1

2
(s+ rτ)

∣∣∣∣
2
]

(2.113)

in [112]. Under τ ↔ − 1
τ
, the sum reshuffles according to (m,m′) ↔ (m′,−m). Therefore,

both pieces are separately modular invariant. We can force the weights h, h̄ = 1
2

(
n
R
± mR

2

)2

to show up if we perform a Poisson resummation in m′.

〈σs(0)σr+s(z, z̄)σr(1)σ0(∞)〉 =
1

|η(τ)|2
∣∣∣∣

ϑ3(τ)2

4ϑ2(τ)ϑ4(τ)

∣∣∣∣
1
3 ∑

n∈Z
m∈2Z+r

(−1)nsq
1
4( nR+mR

2 )
2

q̄
1
4( nR−

mR
2 )

2

q ≡ e2πiτ , q̄ ≡ e−2πiτ̄ (2.114)

The right-hand side of (2.114) is given in [112] but as a formula for 〈σr(0)σr+s(z, z̄)σs(1)σ0(∞)〉
with z = [ϑ3(τ)/ϑ4(τ)]4. The r ↔ s switch does not seem to compensate the redefinition of
z. Nevertheless, we believe (2.114) is correct for two reasons. The first is that the square of
the non-compact four-point function

Z∞(z, z̄)2 =
π2

2|z(1− z)| 12
1

K(1− z)K(z̄) +K(z)K(1− z̄)
(2.115)

is precisely the complex boson expression which was calculated in [113] by a different method.
The second is that [114] exactly writes (2.114), saying that it comes from tracking down
strange conventions in the original sources and imposing (2.110) instead.

One more point, not made clear in [112], is that R ↔ 2
R

, despite being a duality of the
theory, does not leave ZR(τ, τ̄) invariant. This is because a relabelling of operators occurs.
For R ∈ (0,

√
2), the formula (2.114) describes the four-point functions of σ0 and σ1 as we

defined them above. For R ∈ (
√

2,∞), it describes the four-point functions of new twist
operators defined by

σ+ =
σ0 + σ1√

2
, σ− =

σ0 − σ1√
2

. (2.116)

Although we will see that this is true explicitly, [115] has an argument which explains this
phenomenon in a neighbourhood of R =

√
2. Consider the primaries

V +
m,n = cos

(
n+m√

2
X +

n−m√
2
X̄

)
, V −m,n = sin

(
n+m√

2
X +

n−m√
2
X̄

)
. (2.117)
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If the definition of a vertex operator is extended to allow half-integers, these can be given
weight (h, h̄) =

(
1
16
, 1

16

)
by choosing (m,n) =

(
1
2
, 0
)
. Next we demand that the marginal

operator traversing the orbifold line acquire a sign under T-duality. This says that one of
the chiral components of the scalar field must shift:

J1J̄1 = cos(
√

2X) cos(
√

2X̄) 7→ − cos(
√

2X) cos(
√

2X̄) = −J1J̄1

X 7→ X X̄ 7→ X̄ + π√
2

Performing this shift, we see that V +
1
2
,0

and V −1
2
,0

are mapped to linear combinations of them-

selves that are precisely given by (2.116). We may summarize this discussion by writing the
list in Table 2.4.

R <
√

2 R >
√

2

〈σ0σ0σ0σ0〉 1
|ϑ2ϑ4|

∑
m,n q

1
4( nR+mR)

2

q̄
1
4( nR−mR)

2

〈σ+σ+σ+σ+〉
〈σ+σ+σ+σ+〉 1

|ϑ2ϑ4|
∑

m,n q
1
4( 2m

R
+nR

2 )
2

q̄
1
4( 2m

R
−nR

2 )
2

〈σ0σ0σ0σ0〉
〈σ1σ1σ0σ0〉 1

|ϑ2ϑ4|
∑

m,n(−1)nq
1
4( nR+mR)

2

q̄
1
4( nR−mR)

2

〈σ−σ−σ+σ+〉
〈σ−σ−σ+σ+〉 1

|ϑ2ϑ4|
∑

m,n(−1)nq
1
4( 2m

R
+nR

2 )
2

q̄
1
4( 2m

R
−nR

2 )
2

〈σ1σ1σ0σ0〉
〈σ0σ1σ1σ0〉 1

|ϑ2ϑ4|
∑

m,n q
1
4( nR+mR+R

2 )
2

q̄
1
4( nR−mR−

R
2 )

2

〈σ+σ−σ−σ+〉
〈σ+σ−σ−σ+〉 1

|ϑ2ϑ4|
∑

m,n q
1
4( 2m

R
+nR

2
+ 1
R)

2

q̄
1
4( 2m

R
−nR

2
+ 1
R)

2

〈σ0σ1σ1σ0〉
〈σ1σ0σ1σ0〉 1

|ϑ2ϑ4|
∑

m,n(−1)nq
1
4( nR+mR+R

2 )
2

q̄
1
4( nR−mR−

R
2 )

2

〈σ−σ+σ−σ+〉
〈σ−σ+σ−σ+〉 1

|ϑ2ϑ4|
∑

m,n(−1)nq
1
4( 2m

R
+nR

2
+ 1
R)

2

q̄
1
4( 2m

R
−nR

2
+ 1
R)

2

〈σ1σ0σ1σ0〉

Table 2.4: While (2.114) is a four-point function of twist fields on either side of R =
√

2,
the interpretation of those twist fields changes on either side. This table lists the four
inequivalent correlators in the two different bases.

For some values of R, simple expressions can be obtained by evaluating these sums in
terms of theta functions. This is done in the Appendix A. Looking at just the first two
rows, we can produce Table 2.5 where blue represents a sum computed in Appendix A and
red represents a sum that looks too hard. Staring at Table 2.5, every sum appearing on the
left-hand side for radius R also appears on the right-hand side for radius 1

R
which represents

a different theory. One might therefore imagine an algorithm which starts from the blue
sums and composes the maps R 7→ 1

R
and R 7→ 2

R
to generate closed-form expressions at all

powers of 2. In the rest of this section, we will comment on this hope and explain how the
results in Appendix A verify known dualities.
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R2 〈σ0σ0σ0σ0〉 〈σ+σ+σ+σ+〉
32 1

|ϑ2ϑ4|
∑

m,n q
2(m+n

8 )
2

q̄2(m−n8 )
2

1
|ϑ2ϑ4|

∑
m,n q

8(m+ n
32)

2

q̄8(m− n
32)

2

16 1
|ϑ2ϑ4|

∑
m,n q

(m+n
4 )

2

q̄(m−
n
4 )

2
1

|ϑ2ϑ4|
∑

m,n q
4(m+ n

16)
2

q̄4(m− n
16)

2

8 1
|ϑ2ϑ4|

∑
m,n q

1
2(m+n

2 )
2

q̄
1
2(m−n2 )

2
1

|ϑ2ϑ4|
∑

m,n q
2(m+n

8 )
2

q̄2(m−n8 )
2

4 1
|ϑ2ϑ4|

∑
m,n q

1
4

(m+n)2

q̄
1
4

(m−n)2 1
|ϑ2ϑ4|

∑
m,n q

(m+n
4 )

2

q̄(m−
n
4 )

2

2 1
|ϑ2ϑ4|

∑
m,n q

1
8

(m+2n)2

q̄
1
8

(m−2n)2

= 1
|ϑ2ϑ4|

∑
m,n q

1
2(m+n

2 )
2

q̄
1
2(m−n2 )

2

1 1
|ϑ2ϑ4|

∑
m,n q

1
4

(m+n)2

q̄
1
4

(m−n)2 1
|ϑ2ϑ4|

∑
m,n q

(m+n
4 )

2

q̄(m−
n
4 )

2

1
2

1
|ϑ2ϑ4|

∑
m,n q

1
2(m+n

2 )
2

q̄
1
2(m−n2 )

2
1

|ϑ2ϑ4|
∑

m,n q
2(m+n

8 )
2

q̄2(m−n8 )
2

1
4

1
|ϑ2ϑ4|

∑
m,n q

(m+n
4 )

2

q̄(m−
n
4 )

2
1

|ϑ2ϑ4|
∑

m,n q
4(m+ n

16)
2

q̄4(m− n
16)

2

1
8

1
|ϑ2ϑ4|

∑
m,n q

2(m+n
8 )

2

q̄2(m−n8 )
2

1
|ϑ2ϑ4|

∑
m,n q

8(m+ n
32)

2

q̄8(m− n
32)

2

Table 2.5: The first two rows of Table 2.4 with some powers of 2 plugged in for R2. The fact
that some red sums can be obtained from blue sums indicates that, between the two bases,
difficulty is not always conserved.

Using (A.2) and (A.3), we find two of the four-point functions at R =
√

2.

〈σ0(0)σ0(z, z̄)σ0(1)σ0(∞)〉 =
|ϑ2(τ)|2 + |ϑ3(τ)|2 + |ϑ4(τ)|2

2|ϑ2(τ)ϑ4(τ)|
=

1

2|z(1− z)| 14
(
|z| 12 + 1 + |1− z| 12

)

〈σ0(0)σ1(z, z̄)σ1(1)σ0(∞)〉 =
|ϑ2(τ)|2 + |ϑ3(τ)|2 − |ϑ4(τ)|2

2|ϑ2(τ)ϑ4(τ)|
=

1

2|z(1− z)| 14
(
|z| 12 + 1− |1− z| 12

)
(2.118)
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Two partners of the second line come from (A.4) and (A.5)

〈σ1(0)σ1(z, z̄)σ0(1)σ0(∞)〉 =
−|ϑ2(τ)|2 + |ϑ3(τ)|2 + |ϑ4(τ)|2

2|ϑ2(τ)ϑ4(τ)|
=

1

2|z(1− z)| 14
(
−|z| 12 + 1 + |1− z| 12

)

〈σ1(0)σ0(z, z̄)σ1(1)σ0(∞)〉 =
|ϑ2(τ)|2 − |ϑ3(τ)|2 + |ϑ4(τ)|2

2|ϑ2(τ)ϑ4(τ)|
=

1

2|z(1− z)| 14
(
|z| 12 − 1 + |1− z| 12

)
(2.119)

which could have just been guessed from crossing symmetry. It so happens that the correla-
tors just found are exactly equal to 〈σ+σ+σ+σ+〉, 〈σ+σ−σ−σ+〉, 〈σ−σ−σ+σ+〉 and 〈σ−σ+σ−σ+〉
in that order. We can arrive at these same functions of z if we take correlation functions
of vertex operators which exist in the circle theory at R = 2

√
2. Specifically, we make the

following identifications:

σ0 =
√

2 cos

(
1

2
√

2
(X + X̄)

)
, σ1 =

√
2 sin

(
1

2
√

2
(X + X̄)

)
. (2.120)

This is an operator-level check of the relation ZOrb(R =
√

2) = ZCirc(R = 2
√

2). Although
it will not be relevant for us, we note that this partition function can be written in terms
of finitely many characters. This is clearly true for all powers of 2 (since they are rational)
but the special thing about R2 = 2 is that it is not divisible by 4. The arguments in [114]
therefore tell us that we will need to take complex linear combinations of σ0 and σ1 in order
to construct the diagonal modular invariant.

Treating R = 2 next, we have (A.6) which looks like an Ising four-point function.

〈σ0(0)σ0(z, z̄)σ0(1)σ0(∞)〉 =
|ϑ3(τ)2 + ϑ4(τ)2|+ |ϑ3(τ)2 − ϑ4(τ)2|

2|ϑ2(τ)ϑ4(τ)|

=
|1 +
√

1− z|+ |1−
√

1− z|
2|z(1− z)| 14

(2.121)

We also have (A.7), (A.8) and (A.9) which all look like two-point functions.

〈σ0(0)σ1(z, z̄)σ1(1)σ0(∞)〉 =

∣∣∣∣
ϑ3(τ)

ϑ4(τ)

∣∣∣∣ =
1

|1− z| 14

〈σ1(0)σ1(z, z̄)σ0(1)σ0(∞)〉 =

∣∣∣∣
ϑ3(τ)

ϑ2(τ)

∣∣∣∣ =
1

|z| 14
〈σ1(0)σ0(z, z̄)σ1(1)σ0(∞)〉 = 1 (2.122)
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This is perfectly consistent with the statement that orbifold twist fields become decoupled
Ising spin fields in the duality ZOrb(R = 2) = Z2

Ising. The correlators above are enough to
deduce

〈σ+(0)σ+(z, z̄)σ+(1)σ+(∞)〉 =
|1 +
√

1− z|+ |1−
√

1− z|
4|z(1− z)| 14

+
1

2

(
1

|1− z| 14
+ 1 +

1

|z| 14

)

〈σ+(0)σ−(z, z̄)σ−(1)σ+(∞)〉 =
|1 +
√

1− z|+ |1−
√

1− z|
4|z(1− z)| 14

+
1

2

(
1

|1− z| 14
− 1− 1

|z| 14

)

〈σ−(0)σ−(z, z̄)σ+(1)σ+(∞)〉 =
|1 +
√

1− z|+ |1−
√

1− z|
4|z(1− z)| 14

+
1

2

(
− 1

|1− z| 14
− 1 +

1

|z| 14

)

〈σ−(0)σ+(z, z̄)σ−(1)σ+(∞)〉 =
|1 +
√

1− z|+ |1−
√

1− z|
4|z(1− z)| 14

+
1

2

(
− 1

|1− z| 14
+ 1− 1

|z| 14

)

when we take sums and differences of σ0, σ1. Since these are also the results of (A.10), (A.11),
(A.12) and (A.13), we confirm that (2.116) is indeed the relabelling induced by R↔ 2

R
.

At R = 2
√

2, which corresponds to the 4-state Potts model, four correlation functions
are computed in Appendix A. For (A.14), (A.15) and (A.16), we find:

〈σ0(0)σ0(z, z̄)σ0(1)σ0(∞)〉 =
|ϑ2(τ)|2 + |ϑ3(τ)|2 + |ϑ4(τ)|2

2|ϑ2(τ)ϑ4(τ)|
=

1

2|z(1− z)| 14
(
|z| 12 + 1 + |1− z| 12

)

〈σ0(0)σ1(z, z̄)σ1(1)σ0(∞)〉 =
|ϑ2(τ)ϑ3(τ)[ϑ3(τ)2 + ϑ2(τ)2]|

1
2 + |ϑ2(τ)ϑ3(τ)[ϑ3(τ)2 − ϑ2(τ)2]|

1
2

√
2|ϑ2(τ)ϑ4(τ)|

=
|z 1

4 (1 +
√
z)| 12 + |z 1

4 (1−√z)| 12√
2|z(1− z)| 14

〈σ1(0)σ1(z, z̄)σ0(1)σ0(∞)〉 =
|ϑ3(τ)ϑ4(τ)[ϑ3(τ)2 + ϑ4(τ)2]|

1
2 + |ϑ3(τ)ϑ4(τ)[ϑ3(τ)2 − ϑ4(τ)2]|

1
2

√
2|ϑ2(τ)ϑ4(τ)|

=
|(1− z)

1
4 (1 +

√
1− z)| 12 + |(1− z)

1
4 (1−

√
1− z)| 12√

2|z(1− z)| 14
. (2.123)
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The sum for (A.17) looks a bit harder but it evaluates to

〈σ1(0)σ0(z, z̄)σ1(1)σ0(∞)〉 =
|ϑ2(τ)ϑ4(τ)[ϑ2(τ)2 + ϑ4(τ)2]|

1
2 + |ϑ2(τ)ϑ4(τ)[ϑ2(τ)2 − ϑ4(τ)2]|

1
2

√
2|ϑ2(τ)ϑ4(τ)|

=
|√z +

√
1− z| 12 + |√z −

√
1− z| 12√

2|z(1− z)| 18
. (2.124)

Their images under R↔ 2
R

cannot be computed directly with the techniques in these notes.
However, we may use the fact that these complicated expressions have to be related to the
simpler expressions through the linear combination (2.116). This allows us to predict entirely
non-obvious mathematical identities like

∑

m,n

q2(m+n
8 )

2

q̄2(m−n8 )
2

=
1

4

(
|ϑ2(τ)|2 + |ϑ3(τ)|2 + |ϑ4(τ)|2

)

+
1

2
√

2

[∣∣ϑ2(τ)ϑ3(τ)[ϑ3(τ)2 + ϑ2(τ)2]
∣∣ 1

2 +
∣∣ϑ2(τ)ϑ3(τ)[ϑ3(τ)2 − ϑ2(τ)2]

∣∣ 1
2

+
∣∣ϑ3(τ)ϑ4(τ)[ϑ3(τ)2 + ϑ4(τ)2]

∣∣ 1
2 +

∣∣ϑ3(τ)ϑ4(τ)[ϑ3(τ)2 − ϑ4(τ)2]
∣∣ 1

2

+
∣∣ϑ2(τ)ϑ4(τ)[ϑ2(τ)2 + ϑ4(τ)2]

∣∣ 1
2 +

∣∣ϑ2(τ)ϑ4(τ)[ϑ2(τ)2 − ϑ4(τ)2]
∣∣ 1

2

]

(2.125)

which we have checked numerically. We would now like to see if we can continue this cascade
of inferring increasingly complicated expressions on physical grounds. The sum we deduced
in (2.125), which gives 〈σ+σ+σ+σ+〉 at R2 = 8, is also the sum that gives 〈σ0σ0σ0σ0〉 at
R2 = 32. However, there seems to be no relation between the other correlators at these two
radii, due to the fact that the sums do not treat the two indices symmetrically. To convert
(2.125) into an expression for a mixed correlator of σ+ and σ− at R = 2

√
2, we introduce

(−1)n or increment m by 1
2
. Conversely, we make a mixed correlator of σ0 and σ1 at R = 4

√
2

by introducing (−1)m or incrementing n by 1
2
. It therefore appears that 〈σ0σ0σ0σ0〉 is the

only twist-field four-point function we can compute at this radius. We need at least one
more in order to start learning about what they are at R = 8

√
2 and so on. Most authors

resort to defining new theta functions at these radii but it would be nice to find some way
around this.

2.3.3 Analytic bootstrap functionals

While the bootstrap is applicable to general CFTs, integrable or not, we have seen that
many two-dimensional examples do not need a numerical treatment. They have already
been exactly solved through the power of chiral symmetry. There is also a sense in which
numerics can be obviated in one dimension but the principle underlying this result is very
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different. In [116–118], functionals certifying the non-existence of CFTs above a certain gap
were constructed analytically. This allowed the authors to prove certain numerical bounds
that had previously been seen in [119]. These functionals are specified by their action on

F±∆ (z) =
G∆(z)

z2∆φ
± G∆(1− z)

(1− z)2∆φ
(2.126)

where z = z12z34

z13z24
and

G∆(z) = 2F1(∆,∆, 2∆; z) (2.127)

is the sl(2) block. We have seen that F−∆ occurs in single correlator bootstrap problems.
We can also see F+

∆ without external dimension differences if we consider operators that
transform non-trivially under an internal symmetry.

The functionals we discuss will all have the “cut-touching” form

ω[F(z)] =
1

2πi

∫ ∞

1

h(z)Disc[F(z)]dz

Disc[F(z)] = lim
ε→0+

[F(z + iε)−F(z − iε)] . (2.128)

When F(z) is a convolved conformal block, (2.128) can be written as (the analytic continu-
ation of)

ω[F(z)] =

∫ ∞

1

z2∆φ−2g

(
z − 1

z

)
Ĝ∆(1− z)

(z − 1)2∆φ
dz −<

[
e−iπ(∆−2∆φ)

∫ ∞

1

f(z)
Ĝ∆(1− z)

(z − 1)2∆φ
dz

]

(2.129)
where

Ĝ∆(z) = (−z)∆
2F1(∆,∆; 2∆; z) . (2.130)

The precise relation between the various kernels depends on whether the convolved block is
F−∆ (z) or F+

∆ (z) as shown in Table 2.6. The conjugation condition in the last line follows
immediately from taking h(z) to be real for z ∈ (1,∞).

F(z) = F−∆ (z) F(z) = F+
∆ (z)

g(z) = −Disc[h(z)]
2πi

g(z) = −Disc[h(z)]
2πi

f(z) = h(z)−h(1−z)
πi

f(z) = −h(z)+h(1−z)
πi

f(z) = f(1− z̄) f(z) = −f(1− z̄)

Table 2.6: Definitions of the (2.129) kernels in terms of h(z) in (2.128). These reality
properties are essential for finding a direct relation between f(z) and g(z).
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The proof of this comes from writing

ω[F±∆ (z)] = − 1

2πi

∫ 0

−∞
h(1− z)Disc

[
G∆(1− z)

(1− z)2∆φ

]
dz ± 1

2πi

∫ ∞

1

h(z)Disc

[
G∆(1− z)

(1− z)2∆φ

]
dz

(2.131)
and rotating so that all integration contours are z ∈ (1,∞). This yields

ω[F±∆ (z)] =

∫ ∞

1

z2∆φ−2g

(
z − 1

z

)
Ĝ∆(1− z)

(z − 1)2∆φ
dz

+
1

2πi

∫ ∞

1

[
e−iπ(∆−2∆φ)h(1− z − iε)− eiπ(∆−2∆φ)h(1− z + iε)

] Ĝ∆(1− z)

(z − 1)2∆φ
dz

± 1

2πi

∫ ∞

1

h(z)Disc

[
G∆(1− z)

(1− z)2∆φ

]
dz (2.132)

where g(z) is defined as in the table. One may try to simplify this further by writing

h(1− z − iε) = h(z + iε)− πif(z + iε)

h(1− z + iε) = h(z − iε) + πif(z + iε) . (2.133)

For the lower sign, this causes all integrals containing h(z) to cancel in (2.132), leaving
(2.129). Conversely, if we are interested in the upper sign, the way to make all h(z) terms
cancel is to perform

h(1− z − iε) = −h(z + iε)− πif(z + iε)

h(1− z + iε) = −h(z − iε) + πif(z + iε) . (2.134)

It is easy to see that (2.133) and (2.134) pick out the definitions for f(z) in the left and right
columns of the table respectively.

Once we are confident about how f(z) and g(z) are defined, we may write down the
so-called gluing condition. This is one of two necesssary ingredients in solving for useful
functionals. By referring to the table, we find the following.

<f(z) =

{
−g(z)− g(1− z) F = F−

+g(z)− g(1− z) F = F+
(2.135)

The action of any one of these functionals has infinitely many local minima. For bootstrap
applications, it helps to set things up so that these local minima are also zeros. This gives
us some hope of finding extremal functionals that pick out theories with equal spacing
between their operators – the generalized free fermion and the generalized free boson. The
simplest way forward is to make the choice f(z) = ±z2∆φ−2g

(
z−1
z

)
so that (2.129) becomes

52



proportional to either sin2
[
π
2
(∆− 2∆φ)

]
or cos2

[
π
2
(∆− 2∆φ)

]
. These are called extremality

conditions. Notice that for one of them, the zeros are at

∆ = ∆(ψ)
n ≡ 2∆φ + 2n+ 1 , (2.136)

while for the other one, the zeros are at

∆ = ∆(φ)
n ≡ 2∆φ + 2n . (2.137)

This is nice because (2.136) is the spectrum of the generalized free fermion while (2.137)
is the spectrum of the generalized free boson. The right extremality condition is controlled
by whether we want a functional that picks out a bosonic or fermionic spectrum. The right
gluing condition to use is controlled by whether we want functionals to do this on F−∆ or F+

∆ .
We summarize the coupled functional equations that must be solved in each case in Table
2.7.

Fermion Boson

F(z) = F−∆ (z)
<f(z) = −g(z)− g(1− z) <f(z) = −g(z)− g(1− z)
f(z) = −z2∆φ−2g

(
z−1
z

)
f(z) = z2∆φ−2g

(
z−1
z

)

F(z) = F+
∆ (z)

<f(z) = g(z)− g(1− z) <f(z) = g(z)− g(1− z)
f(z) = −z2∆φ−2g

(
z−1
z

)
f(z) = z2∆φ−2g

(
z−1
z

)

Table 2.7: Functional equations to solve for two types of blocks and two types of spectra.
Functionals in the top line can (and have been) used to prove numerical bootstrap bounds
rigorously. Functionals in the bottom line might be useful in 1D bounds that impose global
symmetry.

When solutions to these equations are found, the most singular power-law, as z → 0, will
tell us when one of the seemingly second-order zeros is really first-order. The functional is
finite on either side of this zero since the integral is interpreted as an analytic continuation.
It is quite useful to find the linear combination of solutions with the smallest first-order zero.
This tells us the bound on the gap if the functional is such that summation over a physical
spectrum can be swapped with the integration [120]. Other solutions in the basis have been
especially useful in other problems [118]. To actually find solutions, one general method has
been published so far [117].

1. Go to Mellin space.

2. Solve everything for some small integer or half-integer values of ∆φ.

3. Conjecture a general formula based on this (which would be harder in position space).

4. Compute the inverse Mellin transform.
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5. Show that the resulting expression is indeed a solution.

Instead of demonstrating this method, we will focus on ∆φ = 1 for which two of the four
cells in Table 2.7 can be solved by guesswork. Defining pn(x) = Pn−1(1− 2x), we may check
that

g(φ,−)
n (z) = − 2Γ(2n+ 2)2

π2Γ(4n+ 3)

[
p2n+2(z) + p2n+2

(
1

z

)]

g(ψ,+)
n (z) = − 2Γ(2n+ 3)2

π2Γ(4n+ 5)

[
p2n+3(z)− p2n+3

(
1

z

)]
(2.138)

yields the orthogonality relations

ω(φ,−)
m

[
F−

∆
(φ)
n

(z)
]

= 0 , ω′(φ,−)
m

[
F−

∆
(φ)
n

(z)
]

= δmn

ω(ψ,+)
m

[
F+

∆
(ψ)
n

(z)
]

= 0 , ω′(ψ,+)
m

[
F+

∆
(ψ)
n

(z)
]

= δmn (2.139)

which will be useful at the end of this thesis. It is worth noting that other integer values of
∆φ exhibit the same pattern — bosonic “−” functionals and fermionic “+” functionals are
easy. At half-integer values, the opposite is true — we get nice expressions for bosonic “+”
functionals and fermionic “−” functionals.

Since (non-convolved) 2D blocks are, in a sense, products of 1D blocks, it seems reason-
able to expect some mileage from the analytic functional approach in two dimensions. In
particular, it is possible to find a different family of functionals that satisfies

ωm

[
z−∆φG

∆
(φ)
n

(z)
]

= δmn , ωm

[
(1− z)−∆φG

∆
(φ)
n

(1− z)
]

= 0 (2.140)

instead of (2.139). This allows one to show that the generalized free boson scaling dimensions
uniquely fix the OPE coefficients to take on their generalized free boson values as well. It
would be interesting to explore other 2D applications of 1D extremal functionals.
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Chapter 3

Analytic continuation and unitarity

As soon as one has a proper algorithm for conformal blocks, an immediate consequence is
that she can run the numerical bootstrap in a fractional number of dimensions [79, 121–124].
In Figure 3.1, we show some of the resulting low resolution islands around the Ising models in
3 < d < 4. This is curious in view of the now standard fact that fractional dimensions abhor

Figure 3.1: Allowed regions carved out by crossing symmetry and unitarity in a Z2-symmetric
system of correlators involving σ and ε. Each value of d exhibits good agreement with the
perturbative critical exponents of the Wilson-Fisher fixed-point.
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unitarity. Consider a local operatorO[i1...in] whose indices furnish a non-trivial representation
of SO(d) or some other global symmetry. We have used [. . . ] to denote anti-symmetrization.
If the indices are taken to run over a finite set {1, . . . ,m}, these operators are null for n > m.
However, this restriction disappears as soon as we let m vary continuously. Analyticity then
dictates that

〈
O[i1...in](∞)O[j1...jn](0)

〉
, as a function of m, have zeros at all integers from 0

to n−1. Without an infinite amount of fine-tuning, we expect some of these zeros to be first
order, leading to negative norms in the theories that interpolate between those of greatest
physical interest. This was shown to be the case for the Wilson-Fisher fixed-point in [125].
The essential operator to consider was

δ
[µ1

[ν1
δµ2
ν2
δµ3
ν3
δµ4
ν4
δ
µ5]
ν5] ∂µ1∂

ν1φ∂µ2∂
ν2φ∂µ3∂

ν3φ∂µ4∂
ν4φ∂µ5∂

ν5φ (3.1)

which is not primary but has a negative norm below d = 4.
The fact that Wilson-Fisher fixed-points belong to the allowed region in Figure 3.1 is

usually attributed to the black-box nature of the numerics — norms are still positive for
operators of a reasonably low dimension so it is unclear how difficult it will be to exclude
these theories. There are several other analytic continuation procedures available if we wish
to see more examples of unitarity violation. One choice is to continue d in a fixed-point
that may be reached from a theory of free fermions. The end of this chapter presents a host
of surprising phenomena that can be seen in a fermionic version of [125]. Before returning
to this issue, it is worth analyzing a continuation that can be done in fixed dimension.
It is interesting focus on d = 2 and varry the parameter m that labels the well known
minimal models M(m + 1,m). Thanks to Virasoro symmetry, the unitarity violation can
be investigated non-perturbatively allowing us to arrive at an interesting conclusion: the
points corresponding to non-unitary values of m in the simplest numerical plots will never
disappear.

We begin by discussing the Virasoro algebra for central charge c

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m− 1)(m+ 1)δm+n,0 , (3.2)

which is ubiquitous for CFTs in two dimensions. The power of this infinite-dimensional sym-
metry was perhaps most famously demonstrated in [12] with the discovery of the minimal
models. In addition to providing an exact solution, representation theory of the Virasoro
algebra enabled [104, 105, 126, 127] to show that these models are the only unitary CFTs
in two dimensions with c < 1. However, one can also see hints of the special role played by
minimal models in a numerical bootstrap which uses only the global conformal transforma-
tions — two copies of sl(2). Exclusion plots, based on crossing symmetry and unitarity, are
shown in Figure 3.2 where a straight line containing the minimal models is clearly visible.
Specifically, the upper bound

∆ε =
1

3
(8∆σ + 2) , (3.3)
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(a) One correlator (b) Three correlators

Figure 3.2: Allowed regions for the dimensions of σ and ε — the Z2-odd scalar of smallest
dimension and the Z2-even scalar of smallest dimension respectively. The left plot follows
from the constraints of crossing symmetry and unitarity on the four-point function 〈σσσσ〉.
The right plot comes from the same constraints on 〈σσσσ〉, 〈σσεε〉 and 〈εεεε〉. In both cases,
all OPEs are restricted to contain only one relevant scalar.

is realized by the generalized minimal model four-point function 〈σσσσ〉 if we identify σ ≡
φ1,2 and ε ≡ φ1,3.1 The authors of [128] observed squared OPE coefficients of quasiprimaries
in this correlator that were all positive. If this conjecture is correct, we must conclude that
in an arbitrary M(m + 1,m) theory, the non-unitarity is mild enough that it cannot be
diagnosed from the correlator of four σ operators. Note that the kink present at the Ising
point, (∆σ,∆ε) =

(
1
8
, 1
)

is robust than the analogous kink in the three-dimensional case
[77, 78, 129]. It does not sharpen into an island when three correlators are used to restrict
the number of relevant operators.

Studying the 1
8
≤ ∆σ ≤ 1

2
part of the bound as in [128], we will put the one-correlator

upper bound on a more rigorous footing and explain why the three-correlator upper bound
is unchanged. Our results are summarized in Table 3.1 which shows that for 3 < m < 4,
〈σσσσ〉 is a unitary subsector meaning that other correlators are necessary for seeing the
negative norms manifest themselves in the squared OPE coefficients.2 It appears that the
generalized minimal models with m > 4 have larger unitary subsectors that include the other
two four-point functions. The last line shows a surprising tension with Figure 3.2. Despite

1This notation differs from the statistical physics literature in which it is natural to regard φ2,2 as the
spin-field.

2Looking ahead, the decompositions (3.37) and (3.40) are essential for the positivity proof. We have
learned that they were previously obtained, through a slightly different method, in unpublished work by
Mikhail Isachenkov and Volker Schomerus.
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Correlator 3 < m < 4 4 < m <∞
〈σσσσ〉 All coefficients ≥ 0 All coefficients ≥ 0
〈σσεε〉 One checked coefficient < 0 All checked coefficients ≥ 0
〈εεεε〉 Infinitely many coefficients < 0 All checked coefficients ≥ 0

Table 3.1: The status of three-correlator sl(2) block coefficients in the generalized minimal
models. Statements about 〈σσσσ〉 apply rigorously to the full set of coefficients. For the
other two correlators, we have manually decomposed them up to order 15.

the fact that 〈εεεε〉 displays significant unitarity violation for m < 4, the line (3.3) in the
three-correlator exclusion plot is uninterrupted. The numerics are telling us that there is
a partial solution to crossing, other than M(m + 1,m), which fills in this region. Using
the properties of minimal models, we will show that the existence of this solution can be
concluded from a simpler numerical setup. It would be nice to eventually find a fully analytic
construction.

3.1 Generalized minimal models

In order to have a unitary 2D CFT with c < 1, it is necessary that all primary operators have
conformal weights equal to Kac’s formula hr,s(c) for some (r, s). The Kac table of degenerate
weights is given by

c = 1− 6

m(m+ 1)
m > 2

hr,s =
[(m+ 1)r −ms]2 − 1

4m(m+ 1)
r, s ∈ Z>0 . (3.4)

Each of these Verma modules has a null state at level rs. In the operator product expansion
(OPE) of primary operators φr,s and φr′,s′ , the new conformal families that appear are
captured in the fusion rule

φr,s × φr′,s′ =

⌊
r+r′−|r−r′|−2

2

⌋
∑

k=0

⌊
s+s′−|s−s′|−2

2

⌋
∑

l=0

φ|r−r′|+2k+1,|s−s′|+2l+1 . (3.5)

For generic values of m, this leads to an infinite discrete spectrum. All OPEs are finite, but
as we raise the values of r and s, these sums become arbitrarily long. A special situation
occurs when m is an integer. This precisely describes a central charge for which hr,s(c) =
hm−r,m+1−s(c). The Kac table for these doubly degenerate weights can be shown to truncate,
allowing us to consider only 0 < r < m and 0 < s < m + 1. This leads to a finite number
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of primary operators and, as it turns out, a unitary theory. This theory, called a (unitary)
minimal model, is often denotedM(m+1,m). Since Figure 3.2 only shows a kink for m = 3,
it is evident that non-integer values of m are still important for the bootstrap. This is the
subject of the current section — the genericM(m+ 1,m), found to be a solvable consistent
theory and referred to as a generalized minimal model in [130, 131].3 It obeys the 2D CFT
axioms of associativity and Virasoro symmetry but not unitary [132].

The first null descendant of |hr,s〉, dual to a degenerate operator in a generalized minimal
model, will be denoted by |χr,s〉 which is also called a singular vector. Four-point functions
may be calculated once the necessary singular vectors are known. For the correlators of
interest to us, the rules for converting χr,s to a differential operator may be summarized by

L−n 7→ L−n =
∑

i 6=1

hi(n− 1)

(zi − z1)n
− ∂i

(zi − z1)n−1

L−1 7→ L−1 = ∂1 . (3.6)

After applying the Ward identities in this way, we use the fact that this operator must an-
nihilate any correlation function involving φr,s in the first position. The resulting equation,
known as a BPZ differential equation [12], has rs linearly independent solutions represent-
ing the exchanged multiplets. One may read off their dimensions by looking at the O(zh)
behaviour as z → 0. While expressions for singular vectors are generally non-trivial, with
some appearing only recently [133–135], the ones we need are relatively simple:

|χ1,s〉 =
∑

p1+···+pk=s

(−t)s−k[(s− 1)!]2∏k−1
i=1 (p1 + · · ·+ pi)(s− p1 − · · · − pi)

L−p1 . . . L−pk |h1,s〉

t ≡ m

m+ 1
. (3.7)

It is clear that we may confine ourselves to the border of the Kac table when studying
correlators of σ ≡ φ1,2 and ε ≡ φ1,3. The set of operators φ1,s which closes under fusion
is called the Verlinde subalgebra. We will continue to parametrize the generalized minimal
model by ∆σ — the horizontal axis of Figure 3.2. For convenience, Table 3.2 summarizes
the OPEs that are important for the simplest mixed correlator system.

Before deriving the results in Table 3.1 for the upper bound (3.3), it is instructive to
consider the lower bound

∆ε =
4

3
∆σ , (3.8)

which appears on the left side of Figure 3.2. This gives us a more straightforward opportunity
to use the techniques in [136, 137]. The explicit solution for 〈σσσσ〉 along this line was found

3This should not be confused with non-unitary minimal model, which describes a non-unitary c < 1
theory with finitely many primaries. This discrete set is denoted M(p, q) with p and q relatively prime.
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Fusion rules Weights
φ1,2 × φ1,2 = φ1,1 + φ1,3 h1,1 = 0
φ1,2 × φ1,3 = φ1,2 + φ1,4 h1,2 = ∆σ

2

φ1,3 × φ1,3 = φ1,1 + φ1,3 + φ1,5 h1,3 = 4∆σ+1
3
≡ ∆ε

2

h1,4 = 5∆σ+2
2

h1,5 = 4∆σ + 2

Table 3.2: Operators that can appear in 〈σσσσ〉, 〈σσεε〉, 〈εεεε〉 and their holomorphic
weights. The fusion rules would shorten e.g. in the Ising model m = 3 and tricritical
Ising model m = 4, but we are interested in M(m+ 1,m) for real m.

in [85], which focused on its special role in the non-unitary (severe truncation) bootstrap of
[138–140].4 This solution exhibits Virasoro symmetry with a central charge given by

c = 1 + 16∆σ (3.9)

but no Virasoro identity block. To find an analytic explanation for why this four-point
function appears in the unitary bootstrap, one must be able to show that this vacuum
decoupling is the only sign of non-unitarity that appears at the level of a single correlator.
In other words, one must be able to repeat the logic of [128] and find positive squared OPE
coefficients for all of the quasiprimaries that do appear. These will be seen as very large
coefficients by the numerics because the algorithm used for Figure 3.2 fixes λσσI = 1. This
is indeed what we find from the extremal functional method of [90].

3.1.1 The lower line: A warm-up

The four-point function along the line (3.8) consists of a single Virasoro block V (hi, h, c; z).
It was found in [85] via the Coulomb gas formalism which writes the central charge as
c = 1 − 24α2

0 and places a background charge of 2α0 at infinity. This allows a number of
four-point functions to be realized as correlators of vertex operators with additional insertions
of screening charges. The simplest of these is a correlator of four scalars that all have charge
α0

2
. Since the neutrality condition for this is satisfied without any screening charges, one

finds the manifestly crossing symmetric

〈σ(0)σ(z, z̄)σ(1)σ(∞)〉 = V

(
−3

4
α2

0,−α2
0, 1− 24α2

0; z

)
V

(
−3

4
α2

0,−α2
0, 1− 24α2

0; z̄

)

= |z(1− z)|α2
0 , (3.10)

4The fact that it also appears in the unitary bootstrap has not received much attention. In [14], it was
mentioned that the lower bound at ∆σ = 1

8 was somewhat close to ∆ε = 1
6 . Interestingly, the region below

the bound coincides with the region where standard OPE maximization techniques cannot constrain the
central charge [141].
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where we have used h = α(α− 2α0). Expressing (3.10) in terms of ∆σ,

〈σ(0)σ(z, z̄)σ(1)σ(∞)〉 =
g(z)g(z̄)

|z|2∆σ

g(z) = z
2
3

∆σ(1− z)−
1
3

∆σ . (3.11)

Our task now is to expand g(z) into sl(2) blocks:

g(z) =
∞∑

n=0

cnK 2
3

∆σ+n(z)

Kh(z) ≡ zh2F1(h, h; 2h; z) . (3.12)

This is guaranteed to be an expansion in even integers due to the Bose symmetry of the
σ×σ OPE. To proceed by the brute-force approach, we expand the hypergeometric function
and switch the order of two sums.

g(z) =
∞∑

n=0

∞∑

m=0

cn

(
2
3
∆σ + n

)2

m(
4
3
∆σ + 2n

)
m

z
2
3

∆σ+n+m

m!

=
∞∑

k=0

k∑

n=0

cn

(
2
3
∆σ + n

)2

k−n(
4
3
∆σ + 2n

)
k−n

z
2
3

∆σ+k

(k − n)!
(3.13)

We may now compare the inner finite sums to the Taylor coefficients of (3.11), given by

bk =
( 1

3
∆σ)k
k!

. Since the lower triangular system for cn yields to back-substitution,

c2k = b2k −
k−1∑

n=0

c2n

(
2
3
∆σ + 2n

)2

2(k−n)(
4
3
∆σ + 4n

)
2(k−n)

1

(2k − 2n)!
. (3.14)

Rather than using this recursive procedure, we will now review a method for computing
the cn directly. The blocks, defined in (3.12), are eigenfunctions of the conformal Casimir

DKh(z) = h(h− 1)Kh(z)

D = z2(1− z)
∂2

∂z2
− z2 ∂

∂z
. (3.15)

It is well known that D is self-adjoint on [0, 1] with respect to the measure z−2. The authors
of [136] used this fact to develop the Sturm-Liouville theory of this operator and construct
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the orthogonal eigenfunctions

Ψh(z) =
Γ(1− 2h)

Γ(1− h)2
Kh(z) + (h↔ 1− h) . (3.16)

It is convenient to set h = 1
2

+ α in which case (3.16) becomes a function Ψα(z) which is
even in α. In order for it to have a finite norm, α cannot be real. We must go to imaginary
dimension space and take α ∈ iR.5 The result is that to any four-point function f(z), we
may associate a density f̂(α) = f̂(−α) via the invertible transform

f(z) =
1

2πi

∫ i∞

−i∞
f̂(α)Ψα(z)

dα

N(α)

N(α) ≡ Γ(α)Γ(−α)

2πΓ(1
2

+ α)Γ(1
2
− α)

. (3.17)

It is now clear that OPE coefficients may be read off from the residues of f̂(α) whenever its
poles are on the real axis. A formula that [136, 137] derived using this method is

zp(1− z)−q =
∞∑

n=0

(p)2
n

(2p+ n− 1)nn!
3F2

(
−n, 2p+ n− 1, p− q

p, p
; 1

)
Kp+n(z) . (3.18)

We will use this in the current analysis and the next one.
Specializing (3.18) to the four-point function (3.11), we immediately find

cn =

(
2
3
∆σ

)2

n(
4
3
∆σ + n− 1

)
n
n!

3F2

(
−n, 4

3
∆σ + n− 1, 1

3
∆σ

2
3
∆σ,

2
3
∆σ

; 1

)
. (3.19)

There are two ways to assess the positivity of (3.19). The first is to recall the definition of
a continuous Hahn polynomial [142].

P̃n(a, b, c, d;x) = 3F2

(
−n, n+ a+ b+ c+ d− 1, a+ x

a+ c, a+ d
; 1

)
(3.20)

Clearly,

cn =

(
2
3
∆σ

)2

n(
4
3
∆σ + n− 1

)
n
n!
P̃n

(
2

3
∆σ,

2

3
∆σ, 0, 0;−1

3
∆σ

)
, (3.21)

is a valid rewriting of (3.19).6 Suppressing their parameters, the polynomials P̃n(a, b, c, d;x)

5There is another name for this space as evidenced by the title of [136].
6In the notation of [143], we would write cn = 2−n

n! Q
4
3 ∆σ+n
n,0

(
− 1

3∆σ

)
.
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satisfy the following recurrence relation:

(x+ a)P̃n(x) = AnP̃n+1(x)− (An +Bn)P̃n(x) +BnP̃n−1(x)

An ≡ −(n+ a+ b+ c+ d− 1)(n+ a+ c)(n+ a+ d)

(2n+ a+ b+ c+ d− 1)(2n+ a+ b+ c+ d)

Bn ≡
n(n+ b+ c− 1)(n+ b+ d− 1)

(2n+ a+ b+ c+ d− 2)(2n+ a+ b+ c+ d− 1)
. (3.22)

For our parameters, we may easily check that An+Bn+a+x = 0. It then follows by induction
that all c2k+1 vanish. Once we know this, (3.22) is effectively a two-term recursion. Seeing
a positive constant of proportionality in

P̃2k

(
−1

3
∆σ

)
= −B2k−1

A2k−1

P̃2k−2

(
−1

3
∆σ

)

=
3(2k − 1)(∆σ + 3k − 3)

(2∆σ + 3k − 3)(2∆σ + 6k − 3)
P̃2k−2

(
−1

3
∆σ

)
, (3.23)

we conclude that the sequence c2k decays to zero monotonically from above. It is therefore
imperative that the bootstrap single out a region that includes (3.8). To derive this without
referring to continuous Hahn polynomials, one may instead express cn in terms of gamma
functions. This is possible because Watson’s theorem [144],

3F2

(
a, b, c

a+b+1
2

, 2c
; 1

)
=

Γ(1
2
)Γ(1+a+b

2
)Γ(1

2
+ c)Γ(1−a−b

2
+ c)

Γ(1+a
2

)Γ(1+b
2

)Γ(1−a
2

+ c)Γ(1−b
2

+ c)
(3.24)

applies whenever p = 2q in (3.18). Although <(a + b − 2c) < 1 is usually needed for
convergence, we may drop this requirement for a hypergeometric function that terminates.

This analysis does not explain why (3.8) saturates the lower bound in the one-correlator
result of Figure 3.2. However, it is encouraging that bounds of this form in one dimension
have been proven in [116]. The Coulomb gas formalism does not yield an obvious way to
solve for the correlators 〈σσεε〉, 〈εεεε〉 or even to verify that they exist. Because the three-
correlator plot in Figure 3.2 excludes this line, any theory to which 〈σσσσ〉 could extend
would have to be highly non-unitary.

In this section, we have seen two methods for proving that global block coefficients in
(3.11) are positive. One uses Watson’s theorem and the other uses a recurrence relation
for orthogonal polynomials. We will need both of these methods when we prove positivity
in the generalized minimal models. Before moving on, there is an interesting way to check
our results in a spacetime with Minkowski signature. Even though (3.11) is not strictly a
correlation function in a unitary theory, it is still bounded in the Regge limit. Its sl(2) block
expansion should therefore be calculable with the conformal Froissart-Gribov formula [39]
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which in our case reads

c(∆, `) = κ∆+`

∫ 1

0

∫ 1

0

K∆+`
2

(z)K `−∆+2
2

(z̄)dDisc[|z|2∆σ 〈σ(0)σ(z, z̄)σ(1)σ(∞)〉]dz
z2

dz̄

z̄2

κβ ≡
Γ(β

2
)4

2π2Γ(β − 1)Γ(β)
. (3.25)

To define the double-discontinuity, we must treat z, z̄ as independent variables and rotate
around the z̄ = 1 branch point. Since this can be done in two ways, we subtract the average
from our four-point function to find

dDisc [g(z)g(z̄)] = 2 sin2

(
π∆σ

3

)
(zz̄)

2
3

∆σ [(1− z)(1− z̄)]−
1
3

∆σ . (3.26)

Performing the factored integrals yields a spectral density given by

c(∆, `)Γ(1− 1
3
∆σ)−2

2 sin2
(
π∆σ

3

)
κ∆+`

=
Γ(2

3
∆σ + `−∆

2
)

Γ(1
3
∆σ + `−∆+2

2
)

3F2

(
`−∆+2

2
, `−∆+2

2
, 2

3
∆σ + `−∆

2

`−∆ + 2, 1
3
∆σ + `−∆+2

2

; 1

)

Γ(2
3
∆σ + ∆+`−2

2
)

Γ(1
3
∆σ + ∆+`

2
)

3F2

(
∆+`

2
, ∆+`

2
, 2

3
∆σ + ∆+`−2

2

∆ + `, 1
3
∆σ + ∆+`

2

; 1

)
(3.27)

with poles at ∆− ` = 4
3
∆σ + 2n. As none of these are integers, the correct prescription for

finding OPE coefficients is to simply take the residue [39].

−Res (c(∆, `), n) =
(−1)n

n!

8 sin2
(
π∆σ

3

)
κ 4

3
∆σ+2`+2nΓ(1− 1

3
∆σ)2Γ(4

3
∆σ + n+ `− 1)

Γ(∆σ + `+ n)Γ(1− 1
3
∆σ − n)

3F2

(
4
3
∆σ + `+ n− 1, 2

3
∆σ + `+ n, 2

3
∆σ + `+ n

∆σ + `+ n, 4
3
∆σ + 2`+ 2n

; 1

)

3F2

(
−n, 1− n− 2

3
∆σ, 1− n− 2

3
∆σ

1− n− 1
3
∆σ, 2− 2n− 4

3
∆σ

; 1

)
(3.28)

Although it is not obvious, we have checked that (3.28) is equal to cncn+` by using Watson’s
theorem twice.

3.1.2 The upper line with one correlator

We will now derive new expressions for the squared OPE coefficients in 〈σσσσ〉 along (3.3).
Positivity, as predicted by [128], will then follow from methods analogous to those in the last
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section. Since this correlator solves a second-order BPZ equation, we may write it as

〈σ(z1, z̄1)σ(z2, z̄2)σ(z3, z̄3)σ(z4, z̄4)〉 =
G(z, z̄)

|z12z34|2∆σ

G(z, z̄) = Gσσσσ
(1,1) (z)Gσσσσ

(1,1) (z̄) + C
(1,3)
(1,2)(1,2)G

σσσσ
(1,3) (z)Gσσσσ

(1,3) (z̄) , (3.29)

where the functions of z are Virasoro blocks.7 The specific operator, read off from (3.7), is

3

2(∆σ + 1)
L2
−1 − L−2 . (3.30)

Acting on (3.29) with (3.30), we arrive at a PDE in terms of (z1, z2, z3, z4). To reduce it to
an ODE, we map these points to (0, z, 1,∞) by a global conformal transformation:

3

2
z(z − 1)2∂

2G

∂z2
+ (z − 1)[(2−∆σ)z + 2∆σ − 1]

∂G

∂z
− 1

2
∆σ(∆σ + 1)zG = 0 . (3.31)

Well known solutions, which have the expected asymptotic behaviour, are

Gσσσσ
(1,1) (z) = (1− z)−∆σ

2F1

(
−2∆σ,

1− 2∆σ

3
;
2− 4∆σ

3
; z

)

Gσσσσ
(1,3) (z) = z

1+4∆σ
3 (1− z)−∆σ

2F1

(
1− 2∆σ

3
,
2 + 2∆σ

3
;
4 + 4∆σ

3
; z

)
. (3.32)

First, let us look at the identity block. After a quadratic transformation, the hypergeo-
metric function becomes a series in z2

4z−4
. This makes the formula (3.18) applicable if we set

p = 2n and q = n.

Gσσσσ
(1,1) (z) = 2F1

(
−∆σ,

1 + ∆σ

3
;
5− 4∆σ

6
;
1

4

z2

z − 1

)
(3.33)

=
∞∑

n=0

(
−1

4

)n (−∆σ)n
(

1+∆σ

3

)
n(

5−4∆σ

6

)
n
n!

∞∑

m=0

(2n)2
m

(4n+m− 1)mm!
3F2

(
−m, 4n+m− 1, n

2n, 2n
; 1

)
K2n+m(z)

Exchanging the two sums, we find

c2k =
k∑

n=0

(
−1

4

)n (−∆σ)n
(

1+∆σ

3

)
n(

5−4∆σ

6

)
n
n!

(2n)2
2k−2n

(2n+ 2k − 1)2k−2n(2k − 2n)!
3F2

(
2n− 2k, 2n+ 2k − 1, n

2n, 2n
; 1

)

(3.34)

7For the moment, we will be concerned with the global OPE coefficients contained within each one. The

overall coefficients C
(r3,s3)
(r1,s1)(r2,s2) are the generalized minimal model structure constants that were obtained

with the Coulomb gas formalism in [107–109].
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for the non-vanishing global block coefficients.8 Since p = 2q, this hypergeometric is in a
form that can be treated with Watson’s theorem. When we apply this to the c2k, one pole
in the numerator cancels another in the denominator.9

3F2

(
2n− 2k, 2n+ 2k − 1, n

2n, 2n
; 1

)
=

(−1)n+kΓ(1
2
)Γ(n+ 1

2
)Γ(2n)

Γ(n)Γ(n− k + 1
2
)Γ(2n+ 2k − 1)

(k − 1)!

(n− 1)!
(3.35)

=
(−1)n+kΓ(2n)2

Γ(2n+ 2k − 1)

Γ(n+ k − 1
2
)Γ(1

2
)

Γ(n− k + 1
2
)Γ(k + 1

2
)

lim
δ→0

22k−1(k − 1)!

[Γ(δ)(δ)n]2

Above, we can easily see three gamma functions that will cancel when we multiply by
(2n)2

2k−2n

(2n+2k−1)2k−2n(2k−2n)!
. We have also written 1

Γ(n)2 in a limiting form for later convenience.

After substituting (3.35), one must use the identities

Γ(x+ n) = Γ(x)(x)n , Γ(x− n) = (−1)n
Γ(x)

(1− x)n
(3.36)

until each term of (3.34) only depends on n through the Pochhammer symbol. This leads to

c2k =

(
4k − 2

2k − 1

)−1

lim
δ→0

1

k(2k − 1)Γ(δ)2 4F3

(
−k, k − 1

2
,−∆σ,

1+∆σ

3

δ, δ, 5−4∆σ

6

; 1

)

=

(
4k − 2

2k − 1

)−1
∆σ(1 + ∆σ)

5− 4∆σ
4F3

(
1− k, k + 1

2
, 1−∆σ,

4+∆σ

3

1, 2, 11−4∆σ

6

; 1

)
. (3.37)

The ε block can be analyzed in the same way. Doing so will in fact be easier since we
will not have to pass to the δ → 0 limit. Starting from

Gσσσσ
(1,3) (z) = z

1+4∆σ
3 (1− z)−

1+4∆σ
6 2F1

(
1 + 2∆σ

2
,
1− 2∆σ

6
;
7 + 4∆σ

6
;
1

4

z2

z − 1

)
, (3.38)

we may use (3.18) with p = 1+4∆σ

3
+ 2n and q = 1+4∆σ

6
+ n. This leads to

c2k =
k∑

n=0

(
−1

4

)n (1+2∆σ

6

)
n

(
1+2∆σ

2

)
n(

7+4∆σ

6

)
n
n!

(
1+4∆σ

3
+ 2n

)2

2k−2n(
2+8∆σ

3
+ 2n+ 2k − 1

)
2k−2n

(2k − 2n)!

3F2

(
2n− 2k, 2+8∆σ

3
+ 2n+ 2k − 1, 1+4∆σ

6
+ n

1+4∆σ

3
+ 2n, 1+4∆σ

3
+ 2n

; 1

)
(3.39)

8We derived this by applying a quadratic transformation to (3.32) which makes the Bose symmetry
manifest. By leaving the function in its original form, or by applying Euler / Pfaff transformations, we can
derive other sums that are non-trivially equivalent to (3.34).

9Because we have not allowed for other poles, our expression for c2k will not be correct for k = 0. There
is no need to treat this case separately as it is already clear that c0 = 1.
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which again allows us to use Watson’s theorem. Employing (3.36) to perform the sum, we
arrive at

c2k =
1

4kk!

(
1+4∆σ

6

)2

k(
1+4∆σ

3
+ k − 1

2

)
k

4F3

(
−k, 1+4∆σ

3
+ k − 1

2
,∆σ + 1

2
, 1−2∆σ

6
1+4∆σ

6
, 1+4∆σ

6
, 7+4∆σ

6

; 1

)
. (3.40)

A useful observation about the hypergeometric functions in (3.37) and (3.40) is that they
both have a parameter excess of 1. This means that they are Wilson polynomials [142].10

Pn(a, b, c, d;x) = 4F3

(
−n, n+ a+ b+ c+ d− 1, a+ x, a− x

a+ b, a+ c, a+ d
; 1

)
(3.41)

Invoking this notation, our results are

c
σσ(1,1)σσ
2n =

(
4n− 2

2n− 1

)−1
∆σ(1 + ∆σ)

5− 4∆σ

Pn−1

(
7− 2∆σ

6
,
4− 2∆σ

6
,−1− 2∆σ

6
,
5 + 2∆σ

6
;
1 + 4∆σ

6

)

c
σσ(1,3)σσ
2n =

1

4nn!

(
1+4∆σ

6

)2

n(
1+4∆σ

3
+ n− 1

2

)
n

Pn

(
2 + 2∆σ

3
,
1

2
,−1

2
,−1

2
;
1 + 4∆σ

6

)
. (3.42)

As with continuous Hahn polynomials, there is a recurrence relation that the Wilson poly-
nomials satisfy.

(x2 − a2)Pn(x) = AnPn+1(x)− (An +Bn)Pn(x) +BnPn−1(x)

An ≡
(n+ a+ b+ c+ d− 1)(n+ a+ b)(n+ a+ c)(n+ a+ d)

(2n+ a+ b+ c+ d− 1)(2n+ a+ b+ c+ d)

Bn ≡
n(n+ b+ c− 1)(n+ b+ d− 1)(n+ c+ d− 1)

(2n+ a+ b+ c+ d− 2)(2n+ a+ b+ c+ d− 1)
(3.43)

In Appendix B, we use this recursion to solve for the asymptotic behaviour of Wilson poly-
nomials and prove that the ones in (3.42) are positive.

3.1.3 The upper line with three correlators

Given our success at explaining the one-correlator results, the next logical step is to find
the global block decompositions applicable to three correlators. We will start with 〈εεεε〉.
Although this is another four-point function of identical scalars, the main difference compared
to 〈σσσσ〉 is the lack of a closed-form Virasoro block. Because a generic ε only has a null
descendant at level 3, we will have to work with a third-order BPZ equation which does

10Note that we are using the normalization in [145]. There is another common normalization that makes
the Wilson polynomial symmetric in (a, b, c, d).
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not have simple solutions analogous to (3.32). This makes the formula (3.14) important for
finding low-lying OPE coefficients. The singular vector that must annihilate

〈ε(z1, z̄1)ε(z2, z̄2)ε(z3, z̄3)ε(z4, z̄4)〉 =
G(z, z̄)

|z12z34|2∆ε
(3.44)

G(z, z̄) = Gεεεε
(1,1)(z)Gεεεε

(1,1)(z̄) + C
(1,3)
(1,3)(1,3)G

εεεε
(1,3)(z)Gεεεε

(1,3)(z̄) + C
(1,5)
(1,3)(1,3)G

εεεε
(1,5)(z)Gεεεε

(1,5)(z̄)

has four terms that can be read off from (3.7). The Virasoro commutation relations reduce
it to the three term expression

4

∆ε(∆ε + 2)
L3
−1 −

4

∆ε

L−2L−1 + L−3 . (3.45)

The null state condition that follows from (3.44) and (3.45) is

4z2(z − 1)3∂
3G

∂z3
+ 4z(z − 1)2[(4−∆ε)z + 2∆ε − 2]

∂2G

∂z2

−(z − 1)[(∆2
ε + 10∆ε − 8)z2 + (3∆2

ε − 14∆ε + 8)z − 3∆ε(∆ε − 2)]
∂G

∂z
+∆2

ε(∆ε + 2)z(z − 2)G = 0 . (3.46)

To approximate the Virasoro blocks that solve this, it will be helpful to use the Frobenius
method.11 Inserting the ansatz G(z) =

∑∞
k=−∞ bkz

r+k, we may reindex the sum so that all
terms carry the same power of z. This gives a recurrence relation for the coefficients.

[−4(k + r)(k + r − 1) + 8(∆ε − 1)(k + r) + 3∆ε(2−∆ε)](k + r + 1)bk+1

+2[6(k + r − 1)(k + r − 2) + 2(8− 5∆ε)(k + r − 1) + 3∆2
ε − 10∆ε + 4](k + r)bk

−2 [6(k + r − 1)(k + r − 2)(k + r − 3)− 4(2∆ε − 5)(k + r − 1)(k + r − 2)

+(∆2
ε − 12∆ε + 8)(k + r − 1) + ∆2

ε(∆ε + 2)
]
bk−1

+ [4(k + r − 2)(k + r − 3)(k + r − 4) + 4(4−∆ε)(k + r − 2)(k + r − 3)

−(∆2
ε + 10∆ε − 8)(k + r − 2) + ∆2

ε(∆ε + 2)
]
bk−2 = 0 (3.47)

We will set b0 = 1 and bk = 0 for all k < 0. The values of r that make this consistent
(called roots of the indicial equation) are h1,1, h1,3 and h1,5 as expected. We find them by
demanding that b0 drop out of (3.47) when k = −1. For each value of r, it is straightforward
to iterate (3.47) and then feed the results into (3.14). Some of the OPE coefficients that
follow from this are written in Table 3.3. Due to the appearance of the upper bound (3.3)

11Even though they describe exchanged weights of h1,1 and h1,3, we cannot reuse either of the expressions
in (3.32). Unlike global blocks which only see dimension differences, Virasoro blocks depend on the external
weights individually [146].
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(a) c
εε(1,1)εε
2n (b) c

εε(1,3)εε
2n

(c) c
εε(1,5)εε
2n

(d) Legend

Figure 3.3: Log-scale plots of c
εε(1,s)εε
2n showing that the first five are all positive on the interval

1
8
≤ ∆σ ≤ 1

2
.

in the three-correlator bootstrap, we expect the coefficients to be positive when 1 ≤ ∆ε ≤ 2,
at least up to some high order. Figure 3.3 shows that this is indeed the case.

We should also be able to find positive squared OPE coefficients in the mixed correlator.

69



n c
εε(1,1)εε
2n

0 1

1 − ∆2
ε (∆ε+2)

(∆ε−4)(3∆ε−2)

2 ∆2
ε (∆ε+2)2[5∆ε+2]

30(∆ε−8)(∆ε−4)(3∆ε−2)

n c
εε(3,1)εε
2n

0 1

1 ∆2
ε (∆ε+2)[5∆ε+2]

16(∆ε−1)(∆ε+1)(∆ε+4)

2 ∆2
ε (∆ε+2)[25∆5

ε+167∆4
ε−66∆3

ε−1904∆2
ε−2752∆ε−384]

512(∆ε−3)(∆ε−1)(∆ε+3)(∆ε+4)(∆ε+5)(∆ε+8)

n c
εε(5,1)εε
2n

0 1

1 ∆ε(∆ε+2)[7∆ε+6]
48(∆ε+1)(∆ε+3)

2 ∆ε(∆ε+2)[441∆5
ε+5121∆4

ε+20732∆3
ε+37796∆2

ε+31056∆ε+8640]
1536(∆ε+3)(∆ε+5)(3∆ε+5)(3∆ε+7)(3∆ε+10)

Table 3.3: The first three global block coefficients in the (1, 1), (1, 3) and (1, 5) contributions
found by taking the ε× ε OPE twice.

The four-point function

〈σ(z1, z̄1)ε(z2, z̄2)σ(z3, z̄3)ε(z4, z̄4)〉 =

( |z24|
|z13|

)∆σε G(z, z̄)

|z12|∆σ+∆ε|z34|∆σ+∆ε

G(z, z̄) = C
(1,2)
(1,2)(1,3)G

σεσε
(1,2)(z)Gσεσε

(1,2)(z̄) + C
(1,4)
(1,2)(1,3)G

σεσε
(1,4)(z)Gσεσε

(1,4)(z̄) (3.48)

satisfies second-order and third-order BPZ equations.
For simplicity, we will consider the second-order equation

3

2
z2(z − 1)2∂

2G

∂z2
+

1

2
z(z − 1)[(2− 7∆σ)z + 9∆σ]

∂G

∂z

+
1

24
[3∆σ(11∆σ + 2)z2 − 2(5∆σ + 2)(11∆σ + 2)z + 9∆σ(5∆σ + 2)]G = 0 (3.49)

which has the recurrence relation

9[4(k + r + 1)(k + r)− 12∆σ(k + r + 1) + ∆σ(5∆σ + 2)]bk+1 (3.50)

−2[36(k + r)(k + r − 1)− 12(8∆σ − 1)(k + r) + (5∆σ + 2)(11∆σ + 2)]bk

+3[12(k + r − 1)(k + r − 2) + 4(2− 7∆σ)(k + r − 1) + ∆σ(11∆σ + 2)]bk−1 = 0 .

It is easily seen that r ∈ {h1,2, h1,4} is the solution of the indicial equation for (3.50).
Because the product σ× ε no longer has Bose symmetry, the procedure by which we extract
the conformal block expansion this time is somewhat different. We must include dimension
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differences in the hypergeometric function and sum over all integers whether even or odd.

G(z) =
∞∑

n=0

(−1)ncnz
r+n

2F1

(
r + n− 1

2
∆σε, r + n+

1

2
∆σε; 2(r + n); z

)

=
∞∑

n=0

∞∑

m=0

(−1)ncn

(
r + n− 1

2
∆σε

)
m

(
r + n+ 1

2
∆σε

)
m

(2r + 2n)m

zr+n+m

m!

=
∞∑

k=0

k∑

n=0

(−1)ncn

(
r + n− 1

2
∆σε

)
k−n

(
r + n+ 1

2
∆σε

)
k−n

(2r + 2n)k−n

zr+k

(k − n)!
(3.51)

The lower triangular system from this leads to the recursion

(−1)kck = bk −
k−1∑

n=0

(−1)ncn

(
r + n− 1

2
∆σε

)
k−n

(
r + n+ 1

2
∆σε

)
k−n

(2r + 2n)k−n(k − n)!
. (3.52)

Some low-lying global block coefficients found with (3.52) are listed in Table 3.4. While
all of them are non-negative above the tricritical Ising value ∆σ = 1

5
, there is actually one

that takes on negative values for 1
8
< ∆σ < 1

5
as shown in Figure 3.4. We may explain

this by noticing that φ1,4 is also φ3,1 in the minimal model M(5, 4). This field has exactly
one quasiprimary descendant at level 3. The presence of a null state is therefore enough to
conclude that c

σε(1,4)σε
3 = 0.

(a) c
σε(1,2)σε
n (b) c

σε(1,4)σε
n

Figure 3.4: Log-scale plots of the c
σε(1,s)σε
n that are non-zero. The legend is the same as that

of Figure 3.3.
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n c
σε(1,2)σε
n

0 1
1 0
2 0

3 − (∆σ+1)(4∆σ+1)2

729∆σ(∆σ−1)(∆σ+2)
(5∆σ + 2)

4 − 4(∆σ+1)2(4∆σ+1)2

729∆σ(∆σ+3)(∆σ+6)(2∆σ−3)
(8∆σ − 1)

n c
σε(1,4)σε
n

0 1
1 0
2 ∆σ+1

9(2∆σ+3)(5∆σ+3)
(2∆σ + 1)(10∆σ + 1)

3 4(∆σ+1)(5∆σ+2)
729(∆σ+2)(5∆σ+4)(5∆σ+6)

(5∆σ − 1)(7∆σ + 4)

4 (∆σ+1)2(5∆σ+2)
81(5∆σ+7)(5∆σ+8)

(10∆σ + 1)

Table 3.4: The first five global block coefficients in the (1, 2) and (1, 4) contributions found
by taking the σ × ε OPE twice.

Alternatively, we can take the OPE in the other channel by permuting operator positions
in (3.48). This yields the global block coefficients in Table 3.5 which are related to the
λσσOλεεO CFT data. There is no reason for these numbers to be positive, but we expect

c
σσ(1,s)σσ
2n c

εε(1,s)εε
2n ≥

(
c
σσ(1,s)εε
2n

)2

(3.53)

to be obeyed.12 When σ × σ and ε × ε share a set of operators S with the same quantum
numbers, the left-hand side is a product of sums. The right-hand side is a sum of products
and therefore smaller by the arithmetic-geometric mean inequality. A departure from (3.53)
would be a violation of unitarity since the matrix

∑

O∈S

[λσσO λεεO]

[
λσσO
λεεO

]
=

[
c
σσ(1,s)σσ
2n c

σσ(1,s)εε
2n

c
σσ(1,s)εε
2n c

εε(1,s)εε
2n

]
(3.54)

would not be positive-definite.

3.1.4 Virasoro block coefficients

Our analysis so far has been focused on c
σσ(1,s)σσ
2n , c

εε(1,s)εε
2n and c

σε(1,s)σε
n , which encode the

decomposition of a Virasoro block into sl(2) blocks. With the sole exception of c
σε(1,4)σε
3 ,

12For another quick check of our results, ∆2
εc
σσ(1,1)σσ
0 c

σσ(1,1)σσ
2 = ∆2

σc
εε(1,1)εε
0 c

εε(1,1)εε
2 holds as it must by

the Ward identity.

72



n c
σσ(1,1)εε
2n

0 1

1 (∆σ+1)(4∆σ+1)
3(5−4∆σ)

2 2(∆σ+1)2(4∆σ+1)[5∆σ+2]
45(5−4∆σ)(11−4∆σ)

n c
σσ(1,3)εε
2n

0 1

1 2(∆σ+1)(4∆σ+1)[5∆σ+2]
3(7+4∆σ)(5+8∆σ)

2 (∆σ+1)2(4∆σ+1)[400∆3
σ+1548∆2

σ+1644∆σ+361]
18(7+4∆σ)(13+4∆σ)(11+8∆σ)(17+8∆σ)

Table 3.5: The first three global block coefficients in the (1, 1) and (1, 3) contributions found
by taking the σ × σ and ε× ε OPEs.

which we could imagine to have a small effect, we have found that these coefficients are non-
negative when 1

8
≤ ∆σ ≤ 1

2
. However, this is only meaningful if the same property holds for

the structure constants that unite holomorphic and anti-holomorphic halves of a four-point
function. A single C

(r3,s3)
(r1,s1)(r2,s2) < 0 for instance would give rise to an infintie number of

negative contributions in 〈φr1,s1φr2,s2φr1,s1φr2,s2〉, severely complicating the interpretation of
Figure 3.2.

In a given correlation function, the Virasoro block coefficients that appear must be com-
patible with crossing symmetry and single-valuedness. By briefly reviewing the method of
[107–109], we will show that this condition is enough to fix them uniquely. For definiteness,
consider the 〈εεεε〉 correlator in the generalized minimal model with central charge 13

21
. The

holomorphic part of this function comes from the kernel of the operator (3.45), which is
three-dimensional. Solving (3.47) has given us a basis for this kernel in which each function
vanishes at z = 0. We could equally well have chosen any of the regular singular points 0,
1 and ∞, corresponding to the s, t and u channels for Virasoro blocks. When going from
z = 0 to z = 1, there is a special matrix F called the crossing matrix (or fusion matrix )
that accomplishes Ga(z) = F a

bG
b(1 − z). It is a special case of the crossing kernel which

applies to theories with a continuous spectrum.13 Since it represents a change of basis, the
expression for F is unique. In this case, it is given by

F =




0.7422 0.3124 −0.1563
2.3762 −1.8795 1.4405
1.8760 −2.2733 2.1372


 , (3.55)

13Several interchangeable terms have proliferated over the years. When replacing the z 7→ 1−z map with
z 7→ 1

z , the words crossing and fusion become exchange and braiding. Outside the CFT context, one says
that a linear ODE has a monodromy matrix or connection matrix. For ODEs that have less structure than
a BPZ equation, finding this matrix is often a difficult problem.

73



which was obtained in [147] via the Coulomb gas formalism. Later reviews are [85, 148]. In
the following, we will use G1, G2 and G3 to denote Gεεεε

(1,1), G
εεεε
(1,3) and Gεεεε

(1,5) respectively.

The constraints from (3.55) are best phrased in terms of a metric on the space of conformal
blocks; G(z, z̄) = WabG

a(z)Gb(z̄). We have three conditions that Wab must satisfy:

1. W11 = 1

2. Wcd = WabF
a
cF

b
d

3. Wab = 0 for a 6= b

The first of these is an obvious consequence of having unit-normalized operators. The second
comes from writing G(1 − z, 1 − z̄) = WabG

a(1 − z)Gb(1 − z̄) in terms of s-channel blocks
and setting it equal to G(z, z̄). The third ensures that the four-point function has trivial
monodromy under z 7→ e2πiz, z̄ 7→ e−2πiz̄. This would appear to rule out a non-diagonal
metric since we only find hr,s weights that differ by integers at special values of m.14 See
however [149]. We build solutions out of the left eigenvectors of F ,

v1 =




0.9537
−0.1157
0.2776


 , v2 =




0.9805
0.1758
−0.0879


 , v3 =




0.5938
−0.7196
0.3600


 , (3.56)

which have eigenvalues of 1, 1 and −1 respectively. Clearly F 2 = 1, which follows from
z ↔ 1 − z being an involution, requires all eigenvalues to be ±1. The following form is
invariant under two multiplications by F :

Wab = c11v
1
av

1
b + c12v

1
av

2
b + c21v

2
av

1
b + c22v

2
av

2
b + c33v

3
av

3
b . (3.57)

There are six off-diagonal components of W that need to vanish. If we set c21 = c12, (3.57)
becomes manifestly symmetric and we can use three more parameters, c11, c12 and c22, to
make W diagonal. As the single remaining parameter, c33 is used to rescale W so that its
leading component is 1.

We may summarize this discussion by stating that there is no freedom in the three-
correlator bootstrap equations once the Virasoro blocks involving σ and ε are specified.
Knowledge of these blocks fully determines 〈σσσσ〉, 〈σσεε〉 and 〈εεεε〉, whether or not we
demand consistency conditions for other correlators. This means that the generalized mini-
mal model structure constants are the only valid choices for the coefficients in (3.29), (3.44)

14It is well known that this happens in discrete minimal models. Some of the non-diagonal theories so
constructed also satisfy the stronger requirement of modular invariance.
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Figure 3.5: Low-lying squared OPE coefficients for Virasoro primaries in the generalized
minimal models. Between the Ising model at m = 3 (∆σ = 1

8
) and the tricritical Ising model

at m = 4 (∆σ = 1
5
), there is one that becomes negative.

and (3.48). Defining γ(x) = Γ(x)/Γ(1− x) and t = m
m+1

, the expressions we need are

C
(1,3)
(1,3)(1,3) = γ(t)3γ(4t− 1)2γ(1− 2t)3γ(2− 2t)γ(2− 3t)

C
(1,5)
(1,3)(1,3) = γ(t)γ(2t)γ(4t− 1)γ(5t− 1)γ(1− 3t)γ(1− 4t)γ(2− 2t)γ(2− 3t)

C
(1,4)
(1,2)(1,3) = γ(t)γ(4t− 1)γ(1− 3t)γ(2− 2t)

C
(1,2)
(1,2)(1,3) = C

(1,3)
(1,2)(1,2) = γ(t)γ(3t− 1)γ(1− 2t)γ(2− 2t) . (3.58)

The last coefficient in (3.58) is clearly the one that was rederived in [128]. Plotting these in

Figure 3.5, we see that C
(1,5)
(1,3)(1,3) < 0 for the generalized minimal models between M(4, 3)

and M(5, 4). This reveals a problem with our strategy for proving that the allowed region
in Figure 3.2 must be large enough to include (3.3). Constructing the generalized minimal
model solution to crossing symmetry only accomplishes this in the one-correlator case. We
must therefore conclude that there is at least one other way to extend the unitary subsector
〈σσσσ〉 into a consistent three-correlator system. This solution to crossing should have
positive squared OPE coefficients wherever it exists, not just in 1

5
≤ ∆σ ≤ 1

2
. As the

solution might be very different from the theories discussed above, it is worth using the
numerical bootstrap to see what else can be learned about it.
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3.2 Lessons for the bootstrap

We saw in the last section that above central charge 7
10

, the generalized minimal models
exhibit the restricted notion of unitarity that allows them to appear in Figure 3.2. On the
other hand, for 1

2
< c < 7

10
, they are highly non-unitary at the level of three correlators;

the global coefficient c
σε(1,4)σε
3 and the Virasoro coefficient C

(1,5)
(1,3)(1,3) both become negative in

this region. Working around this problem, the machinery of the bootstrap has filled in this
region with another solution whose σ × σ OPE agrees with that of a generalized minimal
model. In this section, we will give an intuitive argument for why this should be possible.
Beyond this, we will discuss two issues related to the replacement solution.

This first is whether it can be found uniquely. A technique called the extremal functional
method is often used to extract a unique solution to crossing symmetry and unitarity when-
ever a dimension gap or OPE coefficient is extremized [90, 94, 95, 150–153]. Based on this,
we might expect to find a single line of exotic solutions that smoothly joins theM(m+1,m)
line at ∆σ = 1

5
. We will actually find the opposite — a boundary of Figure 3.2 that has many

possible choices for the local CFT data outside σ × σ. To reconcile this with the standard
lore about extremality, one has to remember that the bootstrap equations take on a more
intricate form when there are multiple correlators.

The second is the prospect of excluding the above solution with further numerics. One
reason for doing this with global conformal blocks is simply the technical challenge posed by
Virasoro conformal blocks. There has indeed been recent progress in using the full Virasoro
symmetry to carve out c > 1 CFTs [154]. However, tractable four-point functions with
extended supersymmetry appear to be limited to those of BPS operators [155, 156]. Global
blocks were therefore a necessary ingredient of [157], a program which aims to constrain the
space of superconformal theories using external operators in long multiplets. There has also
been recent interest in conformal theories that have no locality and therefore no Virasoro
algebra [158–160]. These provide a different motivation for shrinking the regions in Figure
3.2.

3.2.1 Reduction to one correlator

The well known bootstrap constraints for three correlators with Z2 symmetry take the form
of five crossing equations. The vector of equations has one component for 〈σσσσ〉, one
component for 〈εεεε〉 and three components for 〈σσεε〉. Given a generic solution to crossing,
it is easy to see that four (three) sum rules will break when an even (odd) operator is removed
from the theory. However, there is a pleasing non-generic property that holds for generalized
minimal models; ε× ε contains more operators than σ×σ. Because of this, only one crossing
equation is disturbed when we remove the φ1,5 conformal family. This is the source of almost

all unitarity violation in the system built from φ1,2 and φ1,3. Since negativity of c
σε(1,4)σε
3 only

affects spinning operators with ∆ > 45
8

, it is possible that the numerics are largely insensitive
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to it [161]. Assuming that problems with the mixed correlator are negligible, we will focus
on

∑

O

λ2
εεOF

εε;εε
−,O (u, v) = 0

F εε;εε
−,∆,`(u, v) ≡ v∆εg0,0

∆,`(u, v)− u∆εg0,0
∆,`(v, u) (3.59)

as the single condition that needs to be restored. Once a solution to (3.59) is found, one can
incorporate it into the three-correlator problem by choosing λσσO = 0 for new operators.15

Figure 3.6: Dimension bounds for irrelevant operators in (3.60). The dotted line shows the
dimension of the primary scalar φ1,5 whose multiplet needs to be replaced for 3 < m < 4.

Checking the solvability of (3.59) for real λεεO is the simplest numerical bootstrap prob-

15We are using four crossing equations to derive (3.3) analytically and then claiming that the fifth crossing
equation can be satisfied for free. This is different from what happens in three dimensions. We have checked
that the island in [78] merges with the rest of the allowed region once the fifth crossing equation is dropped.
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lem. Emphasizing the contributions of operators that are already present, we may write

∑

O

λ2
εεOF

εε;εε
−,O (u, v) = −F1,1(u, v)− C(1,3)

(1,3)(1,3)F1,3(u, v)

F1,1(u, v) ≡
∑

n,n̄

cεε(1,1)εε
n c

εε(1,1)εε
n̄ F εε;εε

−,n+n̄,|n−n̄|(u, v)

F1,3(u, v) ≡
∑

n,n̄

cεε(1,3)εε
n c

εε(1,3)εε
n̄ F εε;εε

−,∆ε+n+n̄,|n−n̄|(u, v) . (3.60)

Keeping operators with ∆ ≤ 30, we have used the results of the last section to approximate
the right-hand side of (3.60). In the sum over operators, there will be a continuum of
irrelevant scalars not in φ1,1 ∪ φ1,3 which begins at some gap ∆∗ > 2. If this is the only
set of scalars on the left-hand side of (3.60), we are dealing with the set S = {∆ > ∆∗}.
Alternatively, we could allow the dimension ∆ε to appear again and enlarge it to S = {∆ >
∆∗} ∪ {∆ = ∆ε}. The second choice is the one applicable to Figure 3.2. However, in Figure
3.6, we consider the first choice as well. This is because it is possible to rederive Figure 3.2
under the requirement that ε is non-degenerate [129]. As numerical accuracy is improved,
we expect the blue line to precisely meet the dotted line at m = 4.16

In Figure 3.6, the red curve tells us that (3.3) is admissible whenever we treat (∆σ,∆ε)
as allowed dimensions and perform a two-parameter scan. The blue curve tells us that (3.3)

will still be admissible when we fix ε as a single operator at angle θ = arctan
(
λσσε
λεεε

)
and scan

over (∆σ,∆ε, θ). Finally, one may contemplate the effect of imposing θ = π
2

which is one
consequence of Kramers-Wannier duality in the Ising model. Although this question cannot
be answered with Figure 3.6, we have found that (3.3) persists yet again. In all three cases,
(3.3) is not just an allowed line — it is the maximal allowed line. From this, we must conclude
that many solutions to crossing, labelled by values of ∆∗ between the red and blue lines, lie
along the bound on the left side of Figure 3.2. This signals the presence of a flat direction,
e.g. a bound in (∆σ,∆ε, θ) space which is independent of θ. A flat direction in the modular
bootstrap was previously seen in [162]. The main argument for unique extremal functionals
comes from [150], in which the multi-correlator bootstrap equations were augmented with
angles for each operator in OPE space. To extract a spectrum in this formulation, one would
have to look for zeros of these functionals on the entire (∆, θ) plane. We suspect that the
flat direction here corresponds to a zero being achieved on a codimension-one locus.

Because the generalized minimal model line (3.3) is allowed by the bootstrap, there
are several lines in the interior of Figure 3.2 that must be allowed as well. These can be
constructed through one or more tensor products. If we multiply two generalized minimal
models for instance, the only non-trivial operator whose dimension lies to the left of ∆σ = 1

2

16Varying the spatial dimension provides one indication that numerical errors have a large effect. Evalu-
ating conformal blocks at d = 2.01 instead of d = 2 results in a much smaller bound on ∆∗.
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Figure 3.7: Tensor product theories that are allowed in both sides of Figure 3.2. Since
we must have ∆ε ≥ 1, all other tensor products involving the free field vertex operators
necessarily lie to the right.

is σ ⊗ σ. Writing its OPE schematically,

(σ ⊗ σ)× (σ ⊗ σ) = (I ⊗ I) + (I ⊗ ε) + (ε⊗ I) + (ε⊗ ε) + . . . (3.61)

includes two relevant operators. In order for these to have the same scaling dimension, the
M(m+ 1,m)⊗M(m′+ 1,m′) product must have m = m′. Expanding the search to include
free theories and generalized free theories, it is a simple exercise to check that the lines in
Figure 3.7 all have one relevant Z2-odd scaling dimension and one relevant Z2-even scaling
dimension.

Evidently, it is not possible to isolate particular minimal models in a three-correlator
bootstrap by specifying the number of relevant operators. One has to consider more stringent
assumptions or add more correlators. The former approach was discussed already in [163],
where it was found that the one-correlator Ising kink sharpens considerably when scalars are
restricted to lie in S = {∆ > 3} ∪ {∆ = ∆ε}. This kink becomes an island when a similar
restriction is made for a three-correlator system. Following [164], it is likely that one can
obtain this island from a single correlator by imposing large gaps in the spin-0 and spin-2
sectors.

A more ambitious goal is to produce islands under minimal assumptions by introducing
a third external scalar. Taking this external scalar to be odd, plots along the lines of
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Coefficients Signs

C
(1,3)
(1,4)(1,4) Positive

C
(1,5)
(1,4)(1,4) Negative for m < 4

C
(1,7)
(1,4)(1,4) Negative for m < 6

C
(1,6)
(1,3)(1,4) Negative for m < 5

C
(1,5)
(1,2)(1,4) Negative for m < 4

Table 3.6: Virasoro block coefficients (other than the ones in Figure 3.5) appearing in four-
point functions made from σ, ε and σ′. Only one is non-negative for all m ≥ 3.

Figure 3.5 offer some preliminary insight.17 Regions where all C
(r3,s3)
(r1,s1)(r2,s2) > 0 are likely

to survive, but as Table 3.6 shows, there can be several negative structure constants with
more than three correlators. We have seen that the negative constant C

(1,5)
(1,3)(1,3) in the three-

correlator system was innocuous because it did not appear in any mixed correlators. It
is therefore encouraging that the coefficients C

(1,5)
(1,2)(1,4) and C

(1,6)
(1,3)(1,4), which have first-order

zeros, participate in 〈σσσ′σ′〉 and 〈εεσ′σ′〉 respectively. Lest we become too encouraged, it
is important to note that ∆σ′ is defined as the starting point for a continuum of irrelevant
operators. This represents a fundamental difference as compared to the one-correlator and
three-correlator analysis. It remains to be seen whether we can still derive strong bounds
from a scan over two isolated scaling dimensions and one non-isolated scaling dimension.

3.2.2 Supersymmetric minimal models

So far, we have been concerned with finding the necessary correlators to single out theories
that are minimal with respect to the Virasoro algebra. However, the unitary representations
of the N = 1 super-Virasoro algebra also admit a discrete series for central charges below
that of the free field. In analogy withM(m+1,m), we can continue them to SM(m+2,m)
where non-integerm breaks unitarity but preserves crossing symmetry. Studying these solved
theories offers another route toward understanding the systematics of the bootstrap. It could
also be interesting to compare results for the tricritical Ising model since this is the lowest
model of SM(m+ 2,m) but the second lowest model of M(m+ 1,m).

17The lightest Z2-odd scalar after σ is σ′ ≡ φ1,4. The lightest Z2-even scalar after ε is ε′ ≡ [L−2L̄−2, φ1,1].
We have made the choice in which all operator fusions are between Virasoro primaries.
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The super-Virasoro graded commutation relations

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m− 1)(m+ 1)δm+n,0

[Lm, Gr] =
(m

2
− r
)
Gm+r

{Gr, Gs} = 2Lr+s +
c

3

(
r − 1

2

)(
r +

1

2

)
δr+s,0 (3.62)

actually describe two algebras since fermions do not have to be periodic in radial quantiza-
tion. When the indices on Gr are integers, (3.62) is the Ramond superalgebra, otherwise
it is the Neveu-Schwarz superalgebra. The super-Virasoro minimal models, which contain
representations of each, have a Kac formula given by

c =
3

2
− 12

m(m+ 2)
m > 2

hr,s =
[(m+ 2)r −ms]2 − 4

8m(m+ 2)
+

1

32
[1− (−1)r−s] r, s ∈ Z>0 . (3.63)

If r − s is even (odd), this is a Neveu-Schwarz (Ramond) degenerate weight [165]. In either
case, it is degenerate at level rs/2. It is clear by inspection that G± 1

2
generate a subalgebra of

(3.62) that is independent of c. For integer indices, on the other hand, no global subalgebra
exists. A numerical bootstrap approach is therefore most readily accessible for the Neveu-
Schwarz sectors of N = (1, 1) theories.

In the global algebra, which is osp(2|1), primary operators may be written as superfields;
Φ(z, θ) = φ(z) + θψ(z). The superspace distance, which enters in correlation functions, is
Zij ≡ zi− zj − θiθj. Even though cross-ratios in Rd all involve at least four points, invariant
combinations in superspace may be built using three points as well. The quantity

η =
θ1Z23 + θ2Z31 + θ3Z12 + θ1θ2θ3√

Z12Z23Z31

(3.64)

is invariant under osp(2|1) [166]. As a result, the three-point function depends on more than
just an OPE coefficient. The general expression for the chiral half is

〈Φ1(z1, θ1)Φ2(z2, θ2)Φ3(z3, θ3)〉 =
λ123(1 + ζη)

Zh1+h2−h3
12 Zh2+h3−h1

23 Zh3+h1−h2
31

(3.65)

where ζ is an arbitrary Grassman number. Until recently, such extra parameters were
eliminated by restricting the superconformal bootstrap to correlators of BPS operators [31,
167]. We may indeed impose shortening conditions on (3.65), but due to the small amount of
supersymmetry, this would require us to give up a lot. To be annihilated by a supercharge,
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each external operator would have to be the identity in at least one of the osp(2|1) factors.
It is therefore preferable to leave (3.65) in its most general form and use superconformal
blocks that include unknown coefficients reflecting the presence of ζ.

The authors of [157] computed some of the necessary blocks and introduced a framework
that still allows the bootstrap to proceed. Their idea is to consider an entire multiplet at
once, with the external correlators involving all combinations of a primary and its super-
descendants. When this is carried out for N = (1, 1), the allowed regions will have to include
all points corresponding to the SM(m+ 2,m). The strongest statement we can make from
this is that the line

∆ε =
8

3
∆σ (3.66)

must be inside the bound for ∆σ <
1
8
. This comes from choosing the Neveu-Schwarz fields

σ ≡ φ2,2 and ε ≡ φ3,3. Right at ∆σ = 1
8
, we find ourselves in the c = 1 model where

φ3,3 = φ1,3 and the entire level-3
2

subspace decouples. To see this, we may check that

|χ〉 =

[
G− 3

2
− 2

2h+ 1
L−1G− 1

2

]
|h〉 (3.67)

is the unique quasiprimary state. Computing the norm and setting h 7→ h3,3, we find

〈χ|χ〉 =
2(2ch+ c+ 6h2 − 9h)

3(2h+ 1)

7→ (m− 4)(m+ 6)

m2 + 2m+ 8
(3.68)

with a first-order zero. This is the behaviour that we saw for m = 3 in the bosonic case, but
now it occurs for m = 4. The tricritical Ising model, which has no φ3,3 operator, lives at the
point (∆σ,∆ε) =

(
1
10
, 1

10

)
.

The above calculation shows that a global block coefficient in the supersymmetric gener-
alized minimal model line becomes negative for m < 4. If we are to see an associated kink,
this line must saturate the bound on operator dimensions from the long multiplet bootstrap.
This brings us to a crucial difference between M(m + 1,m) and the Neveu-Schwarz sector
of SM(m + 2,m). In the former case, we saw the correct saturation with (3.3). The same
cannot hold for (3.66) because it is strictly below the line for vertex operators. Writing a
CFT vertex operator as eiqφ(z) and an SCFT vertex operator as eiqΦ(z,θ), the two important
properties are ∆ ∝ q2 and additivity of q. These lead to ∆ε = 4∆σ which is allowed by
the one-correlator region of Figure 3.2. Due to the restriction on the number of relevant
operators, the three-correlator region omits this line until ∆σ = 2

9
. It is therefore clear that

treating four copies of the same multiplet with the methods of [157] is not enough. If our goal
is to see a minimal model kink, the N = (1, 1) bootstrap will require multiple correlators
at the superspace level. Since each of these must separately expand to a mixed correlator
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system, the resulting problem is likely to be numerically intensive.

3.3 Evanescent deformations in fermionic theories

While unitary subsectors of generalized minimal models have only been appreciated recently,
they share some features with older problems related to dimensional regularization. In
particular, methods for treating fermions in general dimension have been the subject of
considerable effort. For this discussion, we will focus on evanescent operators or those that
exist in fractional but not integer d. We previously saw that perturbative scalar CFTs lose
unitarity because of the evanescent operator (3.1), built out of five fields and ten derivatives.
This story becomes richer when we have gamma matrices that allow us to anti-symmetrize
Lorentz indices without increasing conformal dimension. This leads to an infinite degeneracy
of evanescent operators

On =
(
ψ̄iΓ

(n)
µ1...µn

ψi
) (
ψ̄jΓ

µ1...µn
(n) ψj

)
(3.69)

before any derivatives are included. These indeed lead to negative norms as well [168].
Moreover, their spectrum can become continuous at the fixed-point [169] — something that
is thought to be forbidden in unitary theories above d = 2. Since the On have a classical
scaling dimension of 2(d− 1), they can become arbitrarily weakly irrelevant as d→ 2. Our
goal is to focus on this regime in which the tower of evanescent operators affects the search
for a perturbative fixed-point itself and not just the subsequent analysis.

3.3.1 Basics of the generalized Thirring model

It will be helpful to review some widely studied 2D theories that are candidates for analytic
continuation. The generalized Thirring model is defined by the action

S =

∫
ψ̄ /∂ψ − 1

2
gS

(
ψ̄ψ
)2 − 1

2
gV

(
ψ̄γµψ

)2 − 1

2
gP

(
ψ̄γ5ψ

)2
d2x . (3.70)

The symmetry of (3.70) is generically U(N) but it may enhance for certain values of the
couplings. These can be identified by using the 2D Fierz identities




δαβ δ
γ
δ

(γµ)αβ(γµ)γδ
(γ5)αβ(γ5)γδ


 =




1
2

1
2
−1

2

1 0 −1
1
2
−1

2
1
2






δαδ δ
γ
β

(γµ)αδ(γµ)γβ
(γ5)αδ(γ5)γβ


 (3.71)

and demanding that (3.70) take the form of a current-current interaction.

1. In the SU(N) Thirring model, (gS, gV, gP) =
(
g, 1

N
g,−g

)
. This can be seen by starting

from
(
ψ̄iγ

µ(Ta)
i
jψ

j
) (
ψ̄kγµ(T a)klψ

l
)

and applying the completeness relation (Ta)
i
j(T

a)kl =
1
2

(
δilδ

k
j − 1

N
δijδ

k
l

)
.
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2. In the SO(2N) Thirring model, (gS, gV, gP) = (g, 0, 0). This time, we start from
(ψiC+γ

µ(Ta)ijψ
j)
(
ψkC+γµ(T a)klψ

l
)

where the ψ fields are Majorana fermions. As
long as we have an even number of them, (Ta)ij(T

a)kl = 2 (δilδjk − δikδjl) can be used
to express the interaction in Dirac notation. This is also known as the Gross-Neveu
model [170].

3. In the Sp(2N) Thirring model, (gS, gV, gP) = (0, 0, g). While the charge conjuga-
tion matrix C+ used above only permits a Majorana condition, we may invoke its
anti-symmetric cousin C− to define symplectic Majorana fermions. In terms of these
fields, the interaction is

(
ψΩiC−γ

µ(Ta)
i
jψ

j
) (
ψΩkC−γµ(T a)klψ

l
)

and the completeness

of generators is (Ta)
i
j(T

a)kl = 2
(
δilδ

j
k − ΩikΩjl

)
.

4. Thirring models for exceptional Lie groups would appear if we extended (3.70) to
include invariant tensors built from more than two indices.

This same structure is borne out by the renormalization of (3.70). Using d = 2+ε to regulate
divergences, [171, 172] obtained the following beta functions.

βS = εgS −
1

π

[
(N − 1)g2

S − gSgP − 2gV(gS + gP)
]

βP = εgP +
1

π

[
(N − 1)g2

P − gSgP + 2gV(gS + gP)
]

βV = εgV +
1

π
gSgP (3.72)

These vanish for

(g∗S, g
∗
V, g

∗
P) ∈

{(πε
N
,
πε

N2
,−πε

N

)
,

(
πε

N − 1
, 0, 0

)
,

(
0, 0,

πε

1−N

)}
(3.73)

in direct correspondence with the models above. Nevertheless, it would be wrong to refer
to these as UV fixed-points as we have not yet said anything about the couplings of higher
On deformations which are necessarily present for d = 2 + ε. Hence, we will consider the
generalized Thirring model for finite ε,

S =

∫
ψ̄ /∂ψ − 1

2

∞∑

n=0

gnOnd2+εx (3.74)

where gS = g0, gV = g1 and gP = −2g2. It appears that very little is known about the critical
properties of (3.74) at finite N . The one discussion we are aware of comes from a remarkable
series of papers [173–176] which defined the Gross-Neveu CFT as the fixed-point closest to
the g0 axis. Their result of g∗0 = O(ε) and g∗3, g

∗
4 = O(ε3), for the lowest order couplings, has

been extended in [177].
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k, γ

i, α

l, δ

j, β

Figure 3.8: The diagram for a vertex which contracts fermion lines with

gnδ
i
jδ
k
l

(
Γ

(n)
A

)α
β

(
Γ

(n)
A

)γ
δ
. Loop diagrams will of course introduce divergences which lead

to a running of gn.

We will use a common diagrammatic representation (Figure 3.8) in which a dotted line
separates the pairs of fermions that are contracted. Clearly, at higher orders, the number of
dotted lines will be one more than the number of loops. It will be convenient to work with
the redefined couplings un = gn/4π and leave Tr(1) unevaluated for now.

The diagrams contributing to the one-loop beta function are shown in Figure 3.9. They
have the same momentum integrals, namely

∫
/p⊗ (/k − /p)
p2(k − p)2

ddp

(2π)d
=

1

4πε
γµ ⊗ γµ +O(1) , (3.75)

but different Γ structures. The expressions for them are

+2 − +

Figure 3.9: The one-loop correction to Figure 3.8. The two vertices in each diagram above
should be summed over all gn.
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Γ
(m)
A ⊗ Γ

(n)
B Tr

(
γµΓ

(m)
A γµΓ

(n)
B

)
= An(ε)δmnTr(1)Γ

(n)
B ⊗ Γ

(n)
B(

Γ
(m)
A γµΓ

(n)
B γµΓ

(m)
A

)
⊗ Γ

(n)
B = Bm

n (ε)Γ
(n)
B ⊗ Γ

(n)
B (3.76)

(
Γ

(m)
A γµΓ

(n)
B

)
⊗
(

Γ
(m)
A γµΓ

(n)
B

)
=

∞∑

p=0

Lmnp (ε)Γ
(p)
C ⊗ Γ

(p)
C

(
Γ

(m)
A γµΓ

(n)
B

)
⊗
(

Γ
(n)
B γµΓ

(m)
A

)
=

∞∑

p=0

Rmn
p (ε)Γ

(p)
C ⊗ Γ

(p)
C

respectively. Clearly, the potential for physical couplings to generate evanescent couplings
comes solely from the last two diagrams. The appendix explains how to find the multivariate
generating functions associated with (3.76). More conveniently, the coefficients in this case
are simple enough to be found in closed form [174].

An(ε) = (−1)n+(n2)(d− 2n)n!

Bm
n (ε) = (−1)n+mn+(m2 )(d− 2n)∂mx

[
(1 + x)d−n(1− x)n

] ∣∣∣∣
x=0

= (−1)m+n+mn+(m2 )(d− 2n)
Γ(m+ n− d)

Γ(n− d)
2F1

(
−m,−n

d+ 1−m− n ;−1

)
(3.77)

Rmn
p (ε) =

(−1)q+(m2 )+(n2)+(p2)

p!
∂m1 ∂2∂

n
3

[
(1− x1x2 − x1x3 − x2x3)d−p(x1 + x2 + x3 − x1x2x3)p

] ∣∣∣∣
x=0

=
m!n!

q!

Γ(d− p+ 1)

Γ(d− p− q + 2)

q(p+ 1)(d− p− q + 1) + (d− p+ 1)(m− q + 1)(n− q + 1)

(m− q + 1)!(n− q + 1)!

Lmnp (ε) = (−1)mn+m+n+qRmn
p (ε)

In the last line, we have defined the integer q such that p = m + n + 1 − 2q. Adding these
contributions gives

Tmnp (ε) = −NTr(1)δpmδpnAp(ε) + δpmB
n
p (ε) + δpnB

m
p (ε)− Lmnp (ε) +Rmn

p (ε) , (3.78)

which is the object that appears naturally in the Green’s function given by Figures 3.8 and
3.9. The MS-renormalized four-point Green’s function is

GR(k) = µ−ε
∑

p

Γ
(p)
C ⊗ Γ

(p)
C

[
up +

1

ε

∑

m,n

umun

(∣∣∣∣
k

µ

∣∣∣∣
ε

Tmnp (ε)− Tmnp (0)

)]
+ . . .

= µ−ε
∑

p

Γ
(p)
C ⊗ Γ

(p)
C

[
up +

∑

m,n

umun

(
log

∣∣∣∣
k

µ

∣∣∣∣Tmnp (0) + Tmn′p (0)

)]
+ . . .(3.79)
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where we have written the counterterm in red. Its form allows us to conclude that the infinite
system of couplings runs according to

β(1)
p = εup + 2

∑

m,n

umunT
mn
p (0) . (3.80)

3.3.2 The projection scheme

Any attempt to use (3.80) must confront the fact that it describes an RG flow in an infinite-
dimensional space. Before we delve into this, notice that the first three beta functions have
the form

Tmn0 (0), Tmn1 (0), Tmn2 (0) =




∗ ∗ ∗ 0 . . .
∗ ∗ ∗ 0 . . .
∗ ∗ ∗ 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .




(3.81)

while higher Tmnp (0) have non-zero entries both inside and outside the 3× 3 physical block.
In other words, evanescent couplings only induce other evanescent couplings while physical
couplings induce both. This allows one to at least begin the epsilon expansion since anoma-
lous dimensions are particularly nice at one loop. The bilinear ψ̄Γ

(m)
A ψ is only corrected by

um which means that physical one-loop anomalous dimensions only depend on (u0, u1, u2).
Hence, it is possible obtain something that looks like a CFT at O(ε) by solving for the pro-
jection (u∗0, u

∗
1, u
∗
2) and imagining that the other couplings have been tuned to whatever the

necessary values are such that the true fixed-point is reached [178]. We are mainly interested
in the special cases that allow non-trivial fixed-points to be explored beyond the leading or-
der. However, we now explain the orthogonal approach of extending (3.80) order-by-order
for arbitrary couplings when ε is a regulator for a purely two-dimensional theory.

The idea is to choose a scheme such that (3.79)’s dependence on all up is repackaged in
terms of just three new coupling constants (u′0, u

′
1, u
′
2). These will differ from (u0, u1, u2) by

a finite renormalization. A non-unique choice for this redefinition is

u′p =

{
up +

∑
m,n umunT

mn′
p (0) p ≤ 2

up p > 2
. (3.82)
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Nice properties can be seen after inserting this into (3.79). To the given order,

GR(k) = µ−ε
∑

p≤2

Γ
(p)
C ⊗ Γ

(p)
C

[
u′p +

∑

m,n≤2

u′mu
′
n log

∣∣∣∣
k

µ

∣∣∣∣Tmnp (0)

]
(3.83)

+ µ−ε
∑

p>2

Γ
(p)
C ⊗ Γ

(p)
C

[
u′p +

∑

m,n

u′mu
′
n

(
log

∣∣∣∣
k

µ

∣∣∣∣Tmnp (0) + Tmn′p (0)

)]
+ . . . .

The new scheme and the rule (3.81) have ensured that the first line only involves a finite
sum. The second line drops out in two dimensions by the vanishing of the higher Γ structures
themselves. It is clear from the above that the definition of u′p could have been given extra
terms depending on (u0, u1, u2) without changing this decoupling. An explanation for the
ambiguity is given in [174] which also presents a few useful modifications of (3.82). Going
back to (3.80), the three physical beta functions stay restricted to the physical block if we
take ε→ 0:

β(1)′
p =

{
β

(1)
p

∣∣
u=u′
−ε∑m,n u

′
mu
′
nT

mn′
p (0) p ≤ 2

β
(1)
p

∣∣
u=u′

p > 2
. (3.84)

A more impressive statement is that two-loop quantities of interest, which depend on all
couplings in MS, become functions of the physical block in this limit as well. For instance,

β
(2)′
0 = 4[NTr(1)− 2]u3

0 + 8NTr(1)[u0u
2
1 + 2u0u

2
2 − 2u2

1u2]− 16u2
0u1 + 16u2

0u2 + 64u1u
2
2 +O(ε)

β
(2)′
1 = 4[NTr(1)− 2][u2

0u1 + 4u1u
2
2 − 4u0u1u2] + 16u2

0u2 + 32u0u
2
2 +O(ε) (3.85)

β
(2)′
2 = 16[NTr(1)− 2]u3

2 + 4NTr(1)[u2
0u2 + 2u2

1u2 − u0u
2
1] + 16u0u

2
2 + 8u2

0u1 − 32u1u
2
2 +O(ε)

in the unmodified (3.82). These beta functions are due to [172] while the result was general-
ized to anomalous dimensions in [174]. The latter requires a corresponding redefinition Z ′O
of the counterterm in

γO =
d logZO
d log µ

=
∑

p

βp
∂ logZO
∂up

. (3.86)

Two comments are in order. First, a scheme that removes evanescent couplings from
γO at ε = 0 cannot possibly remove them at finite ε. Indeed, by (3.86), γ′O contains a

leftover ε
∑

p u
′
p
∂
∂up

(
1− Z′O

ZO

)
from the classical scaling which cannot be ignored. Second, a

function like β3 which depends on infinitely many couplings in one scheme will still depend
on infinitely many couplings in another scheme. To actually remove a one-loop appearance
of some up, we would have to shift by an O

(
1
ε

)
amount which is an illegal operation.

Mixing between physical and evanescent four-fermi composites occurs in many theories
whether or not these operators are nearly marginal. An analogous scheme to the one just
described has been used in the d = 4 − ε context since [179, 180]. Again, infinite sums are
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only removed from anomalous dimensions if ε → 0 is taken at the end of the calculation.
The terms in γ′O, where coupling constants appear beside explicit factors of ε, are important
for applications to three-dimensional physics. They are also important for verifying that
anomalous dimensions are scheme-independent at the fixed-point [181]. Therefore, the results
we are after might as well be obtained in MS.

3.3.3 Consistent truncations in 2.01 dimensions

We are interested in deformations that can be turned on in d = 2 + ε without inducing all
of the other On vertices at the same order. We know there should be at least one example
based on the successful determination of higher-loop critical exponents in the Gross-Neveu
model [177]. We will now show that all other cases of the generalized Thirring model (3.74)
lead to infinitely many coupling constants that are O(ε). This is different from saying that
every coupling is present at this order. We will see that there are infinite towers of un that
may be set to zero based on the value of n modulo 4.

This one-loop analysis can be done by only looking at the Lmnp (0)−Rmn
p (0) part of (3.78).

For this to contribute, two necessary conditions are

m+ n− p+ 1 ∈ 2Z , mn+m+ n+
m+ n− p+ 1

2
∈ 2Z + 1 . (3.87)

The first permits Lmnp (0) and Rmn
p (0) to be non-vanishing on their own while the second

ensures that they do not cancel. It is now a simple matter to go through the four possible
cases and find

n−m ≡ 0 (mod 4) =⇒ p ≡ 3 (mod 4)

n−m ≡ 1 (mod 4) =⇒ p ≡ 2m+ 2, 2n (mod 4)

n−m ≡ 2 (mod 4) =⇒ p ≡ 1 (mod 4)

n−m ≡ 3 (mod 4) =⇒ p ≡ 2m, 2n+ 2 (mod 4) . (3.88)

These implications tell us when a product umun can appear in the one-loop beta function
β

(1)
p . They may be economically presented as a set of “fusion rules” for congruence classes

[3]× [0] = [0] [0]× [0] = [3] + [0] [0]× [1] = [2]

[3]× [1] = [1] [1]× [1] = [3] + [1] [1]× [2] = [0]

[3]× [2] = [2] [2]× [2] = [3] + [2] [2]× [0] = [1] (3.89)

with [3] playing the role of the identity. Note that each coupling clearly generates a running
of itself due to the other terms in (3.78). A consequence is that (3.80) can indeed be made to
vanish without turning on every four-fermi scalar. It is enough to take the identity [3] and
optionally one other class [0], [1] or [2]. There may be further truncations that allow [3] to be
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left out at one loop as in the case of Gross-Neveu. This is possible because Lmnp (0)−Rmn
p (0)

takes the form

± 1

p!
∂m1 ∂2∂

n
3

[
(1− x1x2 − x1x3 − x2x3)2−p(x1 + x2 + x3 − x1x2x3)p

] ∣∣∣∣
x=0

, (3.90)

which vanishes for sufficiently large p. Said another way, all rows in

Lmmp (0)−Rmm
p (0) =




0 0 0 0 . . .
0 0 0 ∗ 0 . . .
0 0 0 ∗ 0 . . .
0 0 0 ∗ 0 0 0 ∗ 0 . . .
0 0 0 ∗ 0 0 0 ∗ 0 . . .
...

...
...

...
...

...
...

...
...

. . .




(3.91)

must be zero after a certain point. The schematic expression (3.91) indicates that once O3

is present, we need to deal with the full tower O7,O11, . . . and so on. We can avoid this
runaway generation of vertices by looking at the one row of (3.91) that vanishes identically.
This is precisely the theory closest to the u0 axis in the approach that was advocated in
[176].

It is worth pointing out that higher-loop calculations retain the property that only finitely
many verties are generated by a given diagram. In view of this fact, solving an infinite system
of fixed-point equations will never be necessary to find the Gross-Neveu CFT. Consider an
order L diagram built from the couplings u(1), . . . u(L). If this generates a new vertex, its
coupling will be O

(
ε−1
∏

i u(i)

)
. For an infinite cascade to start, this vertex must help us

generate others whose powers of ε do not exceed those that have already been encountered.

(εa1 , . . . , εaL) 7→ ε
∑
a−1

(ε
∑
a−1, εb1 , . . . , εbM ) 7→ ε

∑
a+
∑
b−2 (3.92)

For the order not to grow, we need M = 1 and b1 = 1. But the only O(ε) coupling in the
Gross-Neveu model is the original u0 itself and we have already seen that the set

(u4k−1, u4k, u4k+1, u4k+2) (3.93)

closes among itself when considered in one-loop diagrams alongside u0.
We have shown that, although Gross-Neveu is not the only example of a generalized

Thirring model, it is the only one whose d = 2+ε fixed-point can be systematically analyzed
by the methods of finite-dimensional algebraic geometry. Next, we will show that this is a
special case of a more general theorem.
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3.3.4 Smaller symmetry groups

Interesting things happen when we consider interactions that break U(N) to a proper sub-
group. Such theories

S =

∫
ψ̄ /∂ψ +

∞∑

m=0

T (m)ikjl

(
ψ̄iΓ

(m)
A ψj

) (
ψ̄kΓ

A
(m)ψ

l
)

d2x (3.94)

involve a sequence of rank-4 tensors which do not need to be gmδ
i
jδ
k
l . We should look for

fixed-points that are well controlled in the same sense as Gross-Neveu. As shown above, only
a one-loop check is needed to see if finitely many couplings will turn on at each loop order.
The one-loop diagrams, which were all proportional to δijδ

k
l in (3.76), now need to have their

tensor structures written out explicitly. For reference, we collect the four expressions in
Table 3.7. As in [182, 183], an important role is played by the number of quartic invariants

Spinor index structure Global index structure

Γ
(m)
A ⊗ Γ

(n)
B Tr

(
γµΓ

(m)
A γµΓ

(n)
B

)
T (m)iajbT (n)bkal(

Γ
(m)
A γµΓ

(n)
B γµΓ

(m)
A

)
⊗ Γ

(n)
B T (m)iabjT (n)bkal + T (m)kablT (n)biaj(

Γ
(m)
A γµΓ

(n)
B

)
⊗
(

Γ
(m)
A γµΓ

(n)
B

)
T (m)ikabT (n)abjl(

Γ
(m)
A γµΓ

(n)
B

)
⊗
(

Γ
(n)
B γµΓ

(m)
A

)
T (m)ibalT (n)akjb

Table 3.7: The gamma matrix combinations that arise from the one-loop diagrams in Figure
3.9 along with their corresponding contractions of T (m)ikjl and T (n)ikjl. What was previously
written with a factor of 2 becomes a sum of two contractions in the general case.

for the symmetry group under consideration. The form of (3.94) allows us to take

T (m)ikjl = T (m)kilj (3.95)

but other permutations of indices should be considered distinct.
We previously showed that with the quartic invariant δijδ

k
l , gamma forms with at least

one index lead to a runaway evanescent tower. It turns out that when T (m)ikjl = gmT
ik
jl , the

maximal rank M of a gamma form can at most increase by one. The point is that the third
and fourth diagrams in Figure 3.9 produce Γ

(p)
C ⊗ Γ

(p)
C structures beyond p = M when gM is

inserted twice.
Looking at the sums

∑2M+1
p=0 LM,M

p Γ
(p)
C ⊗ Γ

(p)
C and

∑2M+1
p=0 RM,M

p Γ
(p)
C ⊗ Γ

(p)
C , the coefficient

of Γ
(2M+1)
C ⊗ Γ

(2M+1)
C is

g2
MR

M,M
2M+1

[
T ibalT

ak
jb − (−1)M

2

T ikabT
ab
jl

]
, (3.96)
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where we have used Table 3.7 and the basic relation in (3.77). There is always another

potential vertex that can be built in a unique way. If gM−1 = 0, it is Γ
(2M−1)
C ⊗ Γ

(2M−1)
C ,

otherwise it is Γ
(2M)
C ⊗ Γ

(2M)
C . The coefficients of these are

g2
MR

M,M
2M−1

[
T ibalT

ak
jb + (−1)M

2

T ikabT
ab
jl

]
,

gMgM−1R
M,M−1
2M

[
T ibalT

ak
jb − (−1)M

2+M−1T ikabT
ab
jl

]
. (3.97)

If M ≥ 2, (3.96) and (3.97) must vanish. For even M , this requires T ibalT
ak
jb = T ikabT

ab
jl = 0.

For odd M , there appears to be a way out until we realize that Γ
(2M−2)
C ⊗ Γ

(2M−2)
C must

now vanish as well. Looking at its three contributions, the O(gMgM−3) and O(gM−1gM−2)
coefficients are already being set to zero as they are proportional to (3.96) when M is odd.
The only remaining piece is

gMgM−1R
M,M−1
2M−2

[
T ibalT

ak
jb − (−1)M

2+MT ikabT
ab
jl

]
(3.98)

which has the precise form needed to ensure that T ikjl is nilpotent. The non-existence of such

a fixed-point follows from the fact that T ikjl = 0 is the only solution to the system

{
T ibalT

ak
jb = T ikabT

ab
jl = 0

T ikjl = c1T
ia
jbT

bk
al + c2

(
T iabjT

bk
al + T aibjT

kb
al

) (3.99)

of coupled quadratic equations. It would be interesting to generalize this theorem to fixed-
points with multiple quartic invariants. Some steps toward this are taken in Appendix D.

Without a theorem in hand for the more general case, we have nevertheless searched for
fixed-points with a separation of powers and found some examples. A family that can be
summarized nicely has SO(2)M × U(N) ⊂ U(2MN) symmetry. For an action consistent at
one loop, we may write

SM,N =

∫
ψ̄ /∂ψ − 1

2
g ψ̄I,i1,...iM δ

I
J(σ2)i1j1 . . . (σ2)iMjMψ

J,j1,...,jM

ψ̄K,k1,...kM δ
K
L (σ2)k1

l1
. . . (σ2)kMlMψ

L,l1,...,lM d2x , (3.100)

where uppercase indices transform in the fundamental of U(N) and σ2 is the generator of
SO(2). It is illuminating to look at the simplest member of this family (other than S0,N

which is Gross-Neveu):

S1,1 =

∫
ψ̄ /∂ψ − 1

2
g
[
(ψ̄iψ

j)(ψ̄jψ
i)− (ψ̄iψ

j)(ψ̄iψ
j)
]

d2x . (3.101)
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We emphasize that the interaction preserving U(2) in (3.101) cannot be constructed from
just O0, O1 and O2. We have had to use O′0 as well, defining O′n as in (3.69) except with
global indices and spinor indices contracted in opposite ways. In two dimensions, where it
is redundant to include both sets of operators, one may equivalently use the action

S ′1,1 =

∫
ψ̄ /∂ψ − 1

2
g

[
1

2
(ψ̄iψ

i)(ψ̄jψ
j) +

1

2
(ψ̄iγ

µψi)(ψ̄jγµψ
j)− 1

4
(ψ̄iγ

µνψi)(ψ̄jγµνψ
j)

]

+
1

2
g(ψ̄iψ

j)(ψ̄iψ
j)d2x (3.102)

but this is no longer true for d = 2 + ε. The point is that (3.71) is really a truncation of
the full Fierz identity which contains infinitely many O(1) coefficients. When the higher Γ
structures are non-vanishing, the full {On}∞n=1 basis is needed to remove the dependence on
O′0. Hence, for the purposes of analytic continuation, (3.101) and (3.102) should be regarded
as different theories.
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Chapter 4

The long-range Ising model

The 2D Ising model, solved exactly in [184], was the first theory observed to saturate numer-
ical bootstrap bounds. It was later seen that this also applies to the 3D Ising model and sub-
sequent work led to the most precise determination of its critical exponents [78, 95, 129, 185].
On the other hand, long-range Ising (LRI) models, defined by relaxing the requirement for
spins to interact with nearest neighbours, have not been solved in any dimension, despite
exhibiting critical behaviour in all 1 ≤ d < 4 [186]. The models we consider will have
ferromagnetic (J > 0) interactions that fall off as a power-law:

HLRI = −J
∑

i,j

σiσj
|i− j|d+s

. (4.1)

On the fixed line parameterized by s, two regimes are well understood. If s exceeds a certain
crossover value, which we call s∗, the critical exponents become those of the (short-range)
Ising model. For the critical exponents to become those of mean-field theory instead, we
must have s < d

2
. The most interesting range is therefore d

2
< s < s∗. Choosing several

such values of s and d = 3, it would be interesting to do, for (4.1), what [95, 185] did for its
short-range counterpart. We will now explain why long-range Ising models are indeed prime
candidates for a non-perturbative bootstrap study.

4.1 Conformality

Due to the work of [158], there is strong evidence that the second-order phase transition of the
LRI is described by a CFT. Perhaps unsurprisingly, this CFT is nonlocal and in particular
lacks a stress-energy tensor. This does not conflict with the Ward identity argument for
conformal invariance as the presence of a traceless stress-energy tensor is only a sufficient
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condition for having a CFT.1 On the other hand, nonlocality can certainly make conformal
invariance more difficult to check. Let us review the continuum description of the LRI
which, among other things, will give us a clearer indication that the bootstrap approach
should work.

The nonlocal action

S =

∫
−1

2
φ∂sφ+

λ

4!
φ4dx (4.2)

was first introduced by [188] to study the LRI with the renormalization group.2 The kinetic
term, with momentum space propagator |k|−s, is exactly the action for a generalized free
scalar of dimension d−s

2
. The φ4 perturbation drives the system to the LRI fixed point in the

spirit of Wilson-Fisher. When s > d
2
, this interaction is relevant which makes the fixed point

non-trivial. It is therefore natural to compute observables as an expansion in ε ≡ 2s− d. In
terms of this parameter, the beta function is

β(λ) = −ελ+
3λ2

Γ
(
d
2

)
(4π)

d
2

+O(λ3) . (4.3)

For future reference let us write down some relations between bare and renormalized quan-
tities in MS.3

λ0 =

(
λ+

3

Γ
(
d
2

)
(4π)

d
2

λ2

ε
+O(λ3)

)
µε

φn =

(
1− n(n− 1)

6

3λ

Γ
(
d
2

)
(4π)

d
2 ε

+O(λ2)

)
[φn] (4.4)

The first line is equivalent to (4.3) while the second is a simple exercise. Renormalizability
of (4.2) is on solid footing just like its local version [190].

1Without a stress-energy tensor, we can have a theory satisfying all of the usual conformal field theory
axioms except locality. Although we will continue to call this object a CFT, it is also commonly referred to
as a conformal theory or CT [5, 187].

2The fractional derivative is a shorthand for the nonlocal operator that acts as ∂sφ(x) ≡
∫ φ(y)
|x−y|d+s dy.

3Note that ε is finite for us so we are not obligated to subtract ε−1 terms. Nevertheless, it is helpful to do
so as this preserves the property that O(εn) accuracy can be achieved with an expansion up to O(λn). The
correlators we derive could in principle be obtained without any subtraction by resumming terms enhanced
by poles in ε. The RG technology is nothing but a systematic way to perform such resummations [189].
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4.1.1 Mixed two-point functions

A readily calculable quantity in the theory (4.2) is the two-point function of scalars, which
scale invariance only constrains as

〈O1(x1)O2(x2)〉 =
c12

|x12|∆1+∆2
. (4.5)

By computing some ∆1 6= ∆2 examples of (4.5) and seeing that they vanish, we arrive at a
hint that this scale invariance is enhanced to the full conformal group under which O1 and
O2 transform as primaries [158].

Figure 4.1: The first two diagrams that allow us to compute (4.9). The dot represents a φ3

operator with three legs.

Consider the correlator

F (µ, x, λ) =
〈
φ(0)[φ3](x)

〉
= f(µ|x|, λ)|x|−∆φ−3∆φ (4.6)

where [φ3] = Z3(λ, ε)−1φ3 is a renormalized operator. The Callan-Symanzik equation

[
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ γ3(λ)

]
F (µ, x, λ) = 0 , (4.7)

when converted into an equation for f , has a solution of

f(µ|x|, λ) ∼ C |µx|−γ3(λ∗) (4.8)

at large distances. Matching against perturbation theory is what will determine C = f(1, λ∗).
The first step is to evaluate the bare correlator using the diagrams in Figure 4.1. We arrive
at 〈

φ(x)φ3(0)
〉

= R1
λ0

|x|d−2ε
+R2

λ2
0

|x|d−3ε
+O(λ3

0) , (4.9)
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where the coefficients are

R1 = −εΓ
(
−d

4

)
Γ
(
d
2

)

(4π)
d
2 Γ
(

3d
4

) +O(ε2)

R2 = 9
Γ
(
−d

4

)

(4π)dΓ
(

3d
4

) +O(ε) . (4.10)

Next, we improve the correlator by substituting (4.4).

F (µ, x, g) = λR1|µx|ε|x|ε−d + λ2

[
R1

6

Γ
(
d
2

)
(4π)

d
2 ε
|µx|ε +R2|µx|2ε

]
|x|ε−d +O(λ3)

f(1, λ) = λR1 + λ2

[
R1

6

Γ
(
d
2

)
(4π)

d
2 ε

+R2

]
+O(λ3)

= −R1ε
−1β(λ) (4.11)

The overall factor of the beta function tells us that C = 0 at the fixed-point.

Figure 4.2: One of three two-loop diagrams that contributes to (4.12). Unlike the others,
this one has only been computed recently.

As we will see shortly, (4.6) is a very special two-point function. It is beneficial to check
a more complicated two-point function like

H(µ, x, λ) =
〈
[φ2](0)[φ4](x)

〉
= h(µ|x|, λ)|x|−2∆φ−4∆φ . (4.12)

The idea here completely echoes the previous calculation so we will only discuss the method
in [158] for evaluating the hardest diagram in (4.12). This is the one in Figure 4.2. The
method starts by writing

Υ

|x| 3d−7ε
2

=

∫∫
dydz

|x− y|2α|x− z|2α|y − z|2α|y|2β|z|2β

=

∫
1

|x− z|2α|z|2β I(x, z)dz (4.13)
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in position space. Here, β = 2α = d−ε
2

. A Mellin space version of the inner integral can be
written if we insert a factor of |y − w|−2ε and take w →∞ [191, 192].

I(x, z) =
π
d
2

|x− z|d−2ε

∫∫ M(s, t)

Γ(ε)Γ
(
d−ε

4

)2
Γ
(
d−ε

2

)
∣∣∣∣

x

x− z

∣∣∣∣
2s ∣∣∣∣

z

x− z

∣∣∣∣
2t

dsdt

(2πi)2
(4.14)

M(s, t) = Γ(−s)Γ(−t)Γ
(

3ε− d
4
− s
)

Γ

(
3ε− d

4
− t
)

Γ

(
s+ t+

d− ε
2

)
Γ

(
s+ t+

d− 2ε

2

)

For (4.14) to be valid, the contour must be of the form (s, t) = (s0 +iR, t0 +iR) where (s0, t0)
is chosen so that poles and shadow poles lie on opposite sides of the contour. If one of the
variables (say t) is moved out of this region, an extra term is encountered for each pole t∗
that we cross.

Υ

|x| 3d−7ε
2

=

∫
1

|x− z|2α|z|2β

[∫∫
dsdt

(2πi)2
−
∑

t∗

∫
ds

2πi
Rest=t∗

]

M(s, t)

Γ(ε)Γ
(
d−ε

4

)2
Γ
(
d−ε

2

)
∣∣∣∣

x

x− z

∣∣∣∣
2s ∣∣∣∣

z

x− z

∣∣∣∣
2t

dz (4.15)

Precisely such a shift, with t∗ ∈ {0, 3ε−d
4
}, is needed in order to make the z integral commute

with the others. This results in

Υ =
πd

Γ(ε)Γ
(
d−ε

4

)2
Γ
(
d−ε

2

)
[∫∫

dsdt

(2πi)2
−
∫

ds

2πi
Rest=0 −

∫
ds

2πi
Rest= 3ε−d

4

]
M̃(s, t)

M̃(s, t) = M(s, t)
Γ
(

3d−7ε
4

+ s
)

Γ
(
ε
2

+ t
)

Γ
(

5ε−d
4
− s− t

)

Γ
(
d−ε

2
− t
)

Γ
(

3d−5ε
4

+ s+ t
)

Γ
(

7ε−d
4
− s
) . (4.16)

Isolating the ε−1 poles in the three integrals that cancel the overall Γ(ε)−1, the leading
behaviour is found to be

Υ = 4πd
Γ
(
−d

4

)

Γ
(

3d
4

) +O(ε) . (4.17)

4.1.2 The Caffarelli-Silvestre trick

An idea in [193], which has some parallels with the AdS / CFT literature, is to realize gener-
alized free theory using a local theory in a higher number of dimensions. The nonlocal part
of (4.2) becomes the effective action for a defect obtained by integrating out the orthogonal
directions. The two-point function tells us that there should be 2 − s such co-ordinates, a
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number which is in general not an integer. Consider

S =

∫
(∂xΦ)2 + (∂yΦ)2dxdy (4.18)

which is a lift of
φ(x) = Φ(x, 0) . (4.19)

A solution of the equation of motion is just a spherical harmonic times a solution of the
radial equation

∂2
xΦ +

1− s
z

∂zΦ + ∂2
zΦ = 0 . (4.20)

Here, we have defined z = |y| and abused notation in order to work with Φ(x, z) instead
of Φ(x, y). The solution of (4.20) for the boundary condition (4.19) has the short-distance
expansion

Φ(p, z) =
[
1 + C|pz|s +O(z2)

]
φ(p) (4.21)

where we have only Fourier transformed in x. We may now substitute (4.21) into (4.18) to
obtain the pure boundary term

S ∝
∫
|p|sφ(p)φ(−p)dp . (4.22)

From the above, it is clear that the LRI may be reached from an interaction confined to
the defect;

S =

∫
1

2
∂MΦ∂MΦdX +

λ

4!

∫
Φ4dx (4.23)

where X = (x, y). This gives us the benefit of a local stress-energy tensor in the ambient
space.

TMN = ∂MΦ∂NΦ− 1

2
(∂Φ)2 − λ0

4!
Φ4δ(y)δMNθ(M,N ≤ d)

= ∂MΦ∂NΦ− 1

2
(∂Φ)2 + ε−1µε

β(λ)

4!
[φ4]δMNθ(M,N ≤ d) (4.24)

Computing divergences of the dilation and special conformal currents in the usual way (re-
taining terms proportional to the equation of motion), we arrive at the Ward identities

∑

i

[
Xi ·

∂

∂Xi

+ ∆φ

]〈∏

j

Φ(Xj)

〉
= β(λ)

µε

4!

∫ 〈∏

j

Φ(Xj)[φ
4](x)

〉
dx (4.25)

∑

i

[(
2XM

i X
λ
i − δMλX2

i

) ∂

∂XM
i

+ 2∆φX
λ
i

]〈∏

j

Φ(Xj)

〉
= 2β(λ)

µε

4!

∫
xλ

〈∏

j

Φ(Xj)[φ
4](x)

〉
dx .
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These may now be freely restricted to the defect. Conformal invariance, following from
β(λ∗) = 0, is often taken for granted once a Ward identity like (4.25). The main improvement
to the situation, offered in [158], is a proof that the integrals on the right-hand side do
not overpower the suppression from the beta function. These are the integrals to which
a pessimist would point as the source of a possible virial current due to non-perturbative
effects.

The Caffarelli-Silvestre trick, rewriting (4.2) as (4.23), has been instrumental in this proof
of conformal invariance to all orders in perturbation theory. However, it can (and should) be
further used to argue that a convergent OPE is inherited from the ambient space. The ability
to write higher-point correlators as sums of lower-point correlators is certainly important for
the non-perturbative study we have in mind. And yet, the standard proof of this in CFT
appeals to the notion of a Hilbert space — something that requires a local Hamiltonian. As
far as we are aware, “conformal invariance without OPE” and “conformal invariance with
OPE” should both be considered plausible properties for nonlocal theories a priori, with the
latter fortunately being realized in this case.

4.2 A theory for the crossover

The flow we have discussed above goes back to [188], with significant improvements in [194].
This enables perturbation theory around s = d

2
but we have yet to discuss s = s∗. If this

really caputres short-range behaviour, we should expect e.g. φ and φ2 to take on scaling
dimensions of ∆SRI

σ and ∆SRI
ε respectively for this value of s. An ideal scenario would explain

how these exactly known dimensions are approached perturbatively. A solution to this
problem, recently found in [159, 160], is what we now discuss.

Cardy and Sak [195, 196] proposed a nonlocal perturbation around the crossover given
by

S = SSRI +

∫
σ(x)σ(y)

|x− y|d+s
dxdy , (4.26)

where σ is the short-range spin operator. If s is just slightly below s∗, Sak’s perturbation
is weakly relevant, and in principle it should be possible to study the flow perturbatively.
However, it is unclear how to adapt the rules of conformal perturbation theory to this non-
local case. To the best of our knowledge this has not been done.4 This leaves us in a situation
analogous to the original Wilson-Fisher flow (Figure 4.3) where an expansion is known for
d = 4− ε but not d = 2 + δ.

This lack of computability may be dismissed as a technical problem, but there are related
conceptual puzzles. If the crossover is continuous, the spectrum of all operators should vary
continuously. In particular, the number of operators should be the same on both sides of the

4There has recently been a growing interest in deformations with similar position dependence in boundary
CFT [197].
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Figure 4.3: A standard RG flow diagram where long arrows are strongly coupled and short
arrows are weakly coupled. In this case, we show the standard approach to the short-range
Ising model where perturbation theory can only be done close to d = 4 despite the fact that
d = 2 is a solved case as well. This is what the long-range RG flow diagram looked like
before the work of [159, 160].

crossover. However, for some LRI operators no counterpart SRI operators appear to exist.
One such operator is φ3. As (4.2) has a nonlocal equation of motion rather than a local one,
φ3 is a primary in the LRI — one which we can easily show to be relevant. This is puzzling,
because the SRI contains, both in d = 2 and d = 3, a single relevant Z2 odd scalar.

Another puzzle involves the stress tensor operator. The SRI has a local conserved stress
tensor Tµν . Moving to the long-range regime, this operator is expected to acquire an anoma-
lous dimension so that it is no longer conserved. The divergence Vν = ∂µTµν is thus a
non-trivial operator in the LRI. At the crossover point the dimension of this vector operator
is exactly d+ 1. Is there such an operator in SRI? 2D Ising is a solvable minimal model and
it is easy to see by inspection that there is no such operator. For d close to 4 one can use
the weakly coupled Wilson-Fisher description, and again there is no such operator. While
in d = 3 its existence cannot be rigorously excluded at present, it seems very unlikely.5

The puzzle of the missing Vµ can be stated more formally in terms of “recombination
rules” of unitary representations of the so(d + 1, 1) conformal algebra. The standard stress
tensor of the SRI is the lowest weight state (conformal primary) of the shortened spin-2
representation Cd`=2, while the non-conserved spin-2 operator of the LRI is the conformal
primary of the long spin-two representation A∆

`=2, with ∆ ≥ d for unitarity. When the
unitarity bound is saturated, the long spin-2 representation decomposes into the semi-direct
sum Ad`=2 ' Cd`=2 ⊕ Ad+1

`=1 . In other terms, the shortened spin-2 representation can become
long only by recombining with (“eating”) an additional spin-one representation, Ad+1

`=1 , whose
conformal primary Vµ is however missing in the SRI.

5Z2-even operators of odd spin have not yet been probed by the numerical conformal bootstrap.
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4.2.1 Review of standard flow

k k

Figure 4.4: The first non-vanishing correction to the two-point function of φ.

We will first review some key features of the standard flow (4.2) that have not been
mentioned yet. The first is that the φ and φ3 operators are protected. We have already seen
from (4.4) that there is no anomalous dimension γφ at one-loop. However, it may be seen
more generally that γφ = 0 at any number of loops. The intuitive justification for this is that
a nonlocal kinetic term cannot be modified by local divergences. A useful test is evaluating
the first two-loop diagram that could potentially influence γφ. Using analytic regularization,
the diagram in Figure 4.4 yields

G(k) =
λ2

6(4π)d
Γ
(

3s
2
− d
)

Γ
(
d−s

2

)3

Γ
(

3d−3s
2

)
Γ
(
s
2

)3

∣∣∣∣
k

µ

∣∣∣∣
2d−3s

=
λ2

6(4π)d
Γ
(

3ε−d
4

)
Γ
(
d−ε

4

)3

Γ
(

3d−3ε
4

)
Γ
(
d+ε

4

)3

∣∣∣∣
k

µ

∣∣∣∣
d−3ε

2

. (4.27)

This requires no minimal subtraction as the ε → 0 limit is finite for all 1 ≤ d < 4. Indeed,
Γ
(
−d

4

)
is the only gamma function with a non-positive argument. We have already seen a

preference for such gamma functions in (4.10). It is reassuring that a pole appears for d = 4,
which is precisely the value that turns (4.2) into a local theory.6 The upshot is that the
dimension of φ has the exact expression

∆φ =
d− s

2
, (4.28)

a relation which has been proven rigorously in [202].7 By demanding that the short-range
scaling dimensions are approached continuously, we can take ∆SRI

σ = d−s∗
2

as the definition
of s∗. This is a correction to [188] which initially predicted s∗ = 2. The correct behaviour
at the crossover was explicitly demonstrated in [194] by taking d → 4 to make the entire

6Because (4.27) is a two-loop contribution, we must be careful when using it to solve for γφ in the Wilson-
Fisher fixed point. Setting d = 4 in the second line is not valid. We must instead set (s, d) = (2, 4− ε) in the
first line. This diagram therefore provides a counter-example to the widely discussed “effective dimension”
idea [198–201], which we do not find convincing.

7Earlier work had rigorously proven that the anomalous dimension must be non-negative [203]. The
vanishing can be established for any nonlocal theory that can be realized as a defect where the bulk is free
(such as the LRI, given (4.23)). This comes from writing the bulk field in terms of the defect OPE and
demanding that the Laplacian still kill the right-hand side [140].
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flow perturbative. When this is done, one sees that the weakly irrelevant operator φ∂2φ is
responsible for the breakdown of (4.28).

The second operator with an exactly known scaling dimension is φ3. This is obvious in
the Wilson-Fisher fixed point as the equation of motion ∂2φ = λ

3!
φ3 places φ3 squarely in the

φ multiplet.8 In the LRI, this protected dimension is instead a consequence of the nonlocal
equation of motion

∂sφ =
λ

3!
φ3 , (4.29)

with φ3 remaining an independent primary. From (4.29), we read off

∆φ3 =
d+ s

2
. (4.30)

These operators, satisfying ∆φ + ∆φ3 = d, are often said to form a shadow pair [158].
Although this relation will come out of many integrals that will be evaluated soon, we now
give another proof which demonstrates the role of the Callan-Symanzik equation.

In perturbation theory, the nonlocal equation of motion simply means that the diagrams
contributing to correlation functions of φ3 are the diagrams of φ amputated by one propa-
gator.9 In other words correlators of φ3 are related to those of φ by (in momentum space)

λ0

3!
〈φ3(p) . . .〉 = |p|s〈φ(p) . . .〉

µελ

3!
〈[φ3](p) . . .〉 = |p|s〈φ(p) . . .〉 . (4.31)

Now, (4.31) implies that the correlation functions of the so defined [φ3] are free of poles in
ε. Since Zλ = Z−1

3 , a short computation allows us to express γφ3 via the beta function all
along the flow:

γφ3(λ) = ε+ β(λ)λ−1 . (4.32)

In particular in the IR we have γφ3 → ε, which given the dimension of φ, is equivalent to
the shadow relation. This argument proves the shadow relation to all orders in perturbation
theory.

4.2.2 An infrared duality

We will now explain how the situation of Figure 4.3 is improved to that of Figure 4.5. Where
this differs from standard (incorrect) lore is that the LRI does not crossover to the SRI, but

8The implications of this for anomalous dimensions were explored in [204].
9This amputation relation is true for the diagrams which connect φ to an interaction vertex. Diagrams

which connect φ directly to another φ in the correlator do not have a counterpart for the correlators of φ3.
The equation of motion maps such diagrams into local terms, and is thus valid modulo such local terms.
These local terms are not important for the present discussion.
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to a larger theory which consists of the SRI and a decoupled mean-field which we call χ.
Assuming this, we can construct the flow from the larger theory to the LRI by turning on
the perturbation

S = SSRI +

∫
−1

2
χ∂−sχ+ g0σχdx (4.33)

The sign of g0 is arbitrary since it can be flipped by the symmetry χ → −χ. In fact the
decoupled theory has an enlarged Z2 × Z2 symmetry which is broken to the diagonal when
the perturbation σχ is turned on. This is as it should be, since the LRI has only a single
Z2 symmetry σ → −σ. The enlarged symmetry leads to selection rules, which will appear
many times in the RG calculations below.

Connection to the standard picture is established by integrating out χ, which should
generate precisely Sak’s non-local perturbation (4.26).10 This fixes the dimension ∆χ = d+s

2
,

so that the local deforming operator O satisfies

∆O = ∆χ + ∆σ = d− δ , δ =
s∗ − s

2
. (4.34)

This crosses from relevant to irrelevant at the same location as before. We emphasize however
that χ is not simply a theoretical construct but a physical field.

Figure 4.5: The RG flow diagram showing the two flows to the LRI where one is weakly
coupled precisely when the other is strongly coupled.

The existence of χ allows us to resolve the difficulties concerning the crossover description.
First of all, since χ and φ satisfy the shadow relation, χ can be identified with φ3 at the
crossover point. This identification and its consequences will be discussed in detail below. We
will also see that using χ one can construct a vector operator playing the role of Vµ. Finally,

10Notice that for real g0, the generated operator has ferromagnetic, negative, sign, as it should.
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since O is a local operator, we will be able to use the well-developed framework of conformal
perturbation theory to compute the long-range critical exponents near the crossover point.

We have a situation predicting that two flows (one perturbative for ε → 0, the other
for δ → 0) have the same IR endpoint. In quantum field theoretic parlance, this is referred
to as “infrared duality”. A famous example is the Seiberg duality which establishes the IR
equivalence of UV-distinct N = 1 supersymmetric gauge theories [205]. Another example is
the particle / vortex duality between the XY model and the U(1) Abelian Higgs model in
3D, both flowing to the same O(2) Wilson-Fisher critical point [206, 207]. The novelty of
our example is that the IR fixed-point does not have a local stress tensor.

4.2.3 All-order predictions

Something to see right away is that γχ(g) = 0 all along the flow. This is motivated in the
same way as for φ in the φ4 flow. Namely, that poles in δ correspond to short-distances
divergences of the integral for δ = 0, the divergences are local, and the action of χ is non-
local, so it cannot be renormalized. We then obtain that the anomalous dimension of χ at
the fixed-point is identically zero.

We can argue that the IR fixed-point of the σχ-flow should be conformally invariant.
Indeed, we can derive the broken conformal Ward identities for the σχ-flow by the same
Caffarelli-Silvestre trick. We can then show that these Ward identities imply the conformal
invariance in the IR.

We also have the nonlocal equation of motion

∂−sχ = gσ , (4.35)

and therefore all the same shadow relation consequences.
We now see that the both the φ4 and σχ flows have a conformally invariant IR fixed-

point. The dimensions of two operators at the fixed-point are exactly known (one by non-
renormalization, another by the shadow relation):

∆φ = d−s
2

= ∆σ

∆φ3 = d+s
2

= ∆χ . (4.36)

The φ4 statements have been proven to all orders while the analogous σχ statements hold
as well under the reasonable assumption of renormalizability.

The most natural interpretation of these results is that there is only one CFTs for each s,
which describes the fixed points of both flows (infrared duality). The fields φ and φ3 for the
first flow have to be identified in the IR with σ and χ for the second flow (up to proportionality
coefficients). As such, we will often use the two notations interchangeably. Finally, the
above equations for the IR field dimensions are valid exactly and not just in perturbation
theory. Indeed, if there were nonperturbative corrections to one set of equations, they would
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presumably become largest near the short-range crossover, but this is where the other set of
equations becomes accurate and shows that there are no corrections.

�

1
2d 2 � ⌘SR

s

[�] = 1
4d

�

[�] = d � [�]
[�3] = 3

4d

[�2] = 1
2d d = 2

d = 3
"

[�4] = d

[�@µ@⌫�]

= 2 + 1
2d

Tµ⌫

��

Figure 4.6: The dependence of dimensions of several important operators on s. The main
text uses [O] to denote the renormalized version of O but here it is a shorthand for ∆O.

Figure 4.6 predicts the dependence of the most important LRI operator dimensions on s
between the s = d

2
and s = s∗ points. The solid lines joining φ to σ and χ to φ3 are straight

lines. The other lines are known only approximately in the ε and δ expansions. The shown
shape of the lines is the simplest consistent with these asymptotics. The line joining φ2 to ε
will be shown to have a vanishing first derivative at s∗ in d = 2 but not d = 3 momentarily.

After the section that deals with anomalous dimensions, we include a section that focuses
on OPE coefficients. These allow a non-trivial check of the duality which we will now explore.
First, we can scale the coupling out of the nonlocal equation of motion to write

φ3(x) =

∫
φ(y)

|x− y|2∆φ3
dy . (4.37)

Since two-point functions change with s, we can use this to relate the normalization of φ3 to
the normalization of φ. We will act twice on

〈φ(x)φ(0)〉 =
1 + ρ(ε)

|x|2∆φ
(4.38)
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where ρ(ε) > −1 is expected from unitarity. The result is

〈
φ3(x)φ3(0)

〉
=

ρ(ε)M2

|x|2∆φ3

M2 = πd
Γ
(
∆φ − d

2

)
Γ
(
∆φ3 − d

2

)

Γ(∆φ)Γ(∆φ3)
(4.39)

after properly handling the local terms. By complete analogy, we may start with

〈χ(x)χ(0)〉 =
1 + κ(δ)

|x|2∆χ
(4.40)

and act with the dual version of (4.37). This yields

〈σ(x)σ(0)〉 =
κ(ε)M̂2

|x|2∆σ

M̂2 = πd
Γ
(
∆σ − d

2

)
Γ
(
∆χ − d

2

)

Γ(∆σ)Γ(∆χ)
. (4.41)

We would now like to divide OPE coefficients and consider φ, φ3, σ and χ to be unit-
normalized for the purposes of these ratios. Although we will eventually discuss more com-
plicated ratios, there is a remarkable comment to make about

λ12φ3

λ12φ

= M3

√
1 + ρ(ε)

ρ(ε)M2

λ12σ

λ12χ

= M̂3

√
1 + κ(δ)

κ(δ)M̂2

(4.42)

where M3 and its shadow M̂3 are combinations of gamma functions which we will compute.
This is the identity

M2 = M3M̂3 = M̂2 (4.43)

which guarantees that both lines of (4.42) depend on ∆1, ∆2, `1 and `2 in the same way. In
order to make both lines equal, not just in their quantum number dependence, we need

κ(δ)

1 + κ(δ)
=

1 + ρ(ε)

ρ(ε)
(4.44)

which is a non-trivial prediction.
Since κ(δ) = O(δ) for small δ, we conclude that the normalization of the two-point
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function of φ must vanish linearly in s close to the short-range crossover:

1 + ρ(ε) = O(s∗ − s) . (4.45)

This was previously argued by a different method in [208]. Analogously, we must have

1 + κ(δ) = O((2s− d)2) (4.46)

when approaching the mean-field regime. In this case the vanishing is expected to be
quadratic since ρ(ε) = O(ε2).

4.3 Running coupling from conformal perturbation the-

ory

According to our proposal, the LRI can be described as the IR fixed-point of (4.33) which
is weakly coupled for δ � 1, when the σχ perturbation is weakly relevant. This allows to
us compute the LRI critical exponents in terms of the SRI conformal data, known exactly
in d = 2 [12], and with an impressive precision in d = 3 thanks to the recent progress in the
numerical conformal bootstrap.

The standard framework to describe CFTs with weakly relevant local perturbations
turned on is conformal perturbation theory (see e.g. [209, 210] for d = 2 and [196, 211]
for general d). As usual in quantum field theory, we consider the perturbative expansion
of observables in the bare coupling constant in a regulated theory, and then add countert-
erms to cancel the dependence on the short-distance regulator. The order n perturbative
correction to an observable Ξ is given by

gn0
n!

∫
〈O(x1) . . .O(xn) Ξ〉 dx1 . . . dxn . (4.47)

In general, this integral is divergent when points xi collide. A convenient way to regulate is
by point splitting, restricting integration to the region where all |xi−xj| > a (short-distance
cutoff). If Ξ is a local operator, there will also be divergences where xi approach Ξ, but
those are associated not with the running of the coupling but with the renormalization of Ξ.
They will be discussed and interpreted separately below.

The first quantity we need is the beta function. Let g = aδg0 be the dimensionless
coupling at the cutoff scale. The beta function has the form

β(g) ≡ dg

d log(1/a)
= −δ g + . . . , (4.48)

where −δ g is the classical term and . . . are the quantum corrections.
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The order g2 correction to the beta function is proportional to the three-point function
coefficient λOOO. This is well known and sufficient for most applications [196, 209, 210].
However, in our case λOOO vanishes, because O is odd under the symmetry χ → −χ.
Analogously all even-order contributions to β(g) will vanish as well.

The lowest nonvanishing contribution will appear at order g3, and that is the only one
we will need. So we have:

β(g) = −δg + β3g
3 , (4.49)

neglecting the higher order terms. We will now review how one computes the coefficient β3.
We aim to discuss the fixed-point properties at the leading non-trivial order in δ. For this
we may neglect the dependence of β3 on δ, so we will compute it in the limit δ = 0.11 We
will also specialize to the case λOOO = 0 of interest to us, as this simplifies some details. See
[212, 213] for prior work involving third-order corrections. Our discussion owes a lot to [99],
which covers also the general case λOOO 6= 0.

For δ = 0 the coupling g is marginal and its running is related to the logarithmic short-
distance divergence of (4.47). At order g3, we are interested in the divergence where three
points come close together. In this region we can use the so called “triple OPE” which is
easily seen to be nothing but the four-point function.12

O(0)O(x2)O(x3) ∼ f(x2, x3)O(0)

= 〈O(0)O(x2)O(x3)O(∞)〉O(0) (4.50)

This is similar to the well-known relation between the usual OPE of two operators and the
three-point function.

Using (4.50), we see that the divergence of the integral with three O insertions is equal
to the integral with one O insertion times a divergent coefficient, computed by integrating
the four-point function:

∫

V

〈O(x1)O(x2)O(x3)O(∞)〉dx1dx2dx3 = AV log(1/a) + . . . (4.51)

Integration is over the region |xi − xj| > a with all three points belonging to a finite region
of volume V , which serves as an IR cutoff. The IR cutoff is needed since we are interested
only in the short-distance part of the divergence.

The divergence at O(g3) can thus be cancelled, and the cutoff dependence removed, by

a variation of the O(g) term, adjusting the bare coupling by −A log(1/a)g
3

3!
. Therefore, the

beta function can be specified to this order by β3 = −A
3!

. To isolate the coefficient A, we use
translational invariance to fix one of the points, say x3, to 0. The volume factor V cancels,

11To compute higher order corrections, we would have to keep δ nonzero and set up a minimal subtraction
scheme. This will not be carried out here.

12As usual O(∞) = limx→∞ |x|2∆OO(x).
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and we are left with an integral of the function f(x1, x2). We then separate the integration
over the overall “size” of the pair of points (x1, x2) and over their relative position. Rescaling
the pair by, e.g. |x1|, and using the fact that f has dimension 2d, we have

∫
f(x1, x2)dx1dx2 =

∫
1

|x1|2d
f

(
x1

|x1|
,
x2

|x1|

)
dx1dx2 = Sd

∫
1

|x1|

∫
f(ê, y)dyd|x1| (4.52)

where ê is an arbitrary unit length vector and Sd = 2πd/2/Γ(d/2). The log divergence
∼ log(L/a) now arises from integrating over a < |x1| < L, which is basically the pair size.
So we conclude

A = Sd

∫
[f(ê, y)− . . . ] dy (4.53)

where the implicit terms cancel whatever power-law divergences may have been present in
(4.51) without changing the log. These power divergences have nothing to do with the
running of g. Instead, they renormalize coefficient of the relevant operators appearing in
the OPE O × O. In our case there are two such operators, the unit operator and the SRI
energy density operator ε.13 The unit operator coefficient is unimportant, while that of ε
has to be anyway tuned to zero to reach the fixed point, as this corresponds to tuning the
temperature to the critical temperature. The bottom line is that the power divergences need
to be subtracted away.

There are two methods to do this, which give equivalent, although not manifestly iden-
tical, final results. Method 1 subtracts the divergent terms, given by the relevant operators,
from the integrand f . Method 2 computes the integral (4.53) with a cutoff and drop the
terms that diverge when the cutoff is sent to zero. In both case we are just dropping power
divergences of the integral (4.52) and we are not changing the coefficient of the logarithm
divergence. Once one of these methods has been employed, the integral is convergent.

Method 1. We subtract from the integrand f in (4.52) the singularities associated with
the two relevant operators in the limits x1 → 0, x2 → 0, x1 → x2. The subtraction terms
have to be chosen so that they fully subtract the power divergence but do not modify the
logarithmic divergence. The following simple choice satisfies these constraints:

f → f̃ = f − r1 − rε (4.54)

r1 =
1

|x1|2d
+

1

|x2|2d
+

1

|x1 − x2|2d

rε = λ2
σσε

(
1

|x1|2d−∆ε|x2|∆ε
+

1

|x2|2d−∆ε|x1|∆ε
+

1

|x1 − x2|∆ε|x1|2d−∆ε

)
.

Here λσσε is the SRFP OPE coefficient: σ × σ = I + λσσεε + . . . . The crucial point is that
these subtraction terms themselves only have power divergences. This is obvious for r1. For

13Another low-dimension scalar operator in the O ×O OPE is χ2, but this one is irrelevant since s > 0.
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rε, notice that the x1 and x2 integrals of each term factorize into a product of two integrals
each of which has only power divergences. So the logarithmic divergence is not modified by
the subtraction procedure.

The regulated expression for A is the obtained by changing f(ê, y) − · · · → f̃(ê, y) in
(4.53). This integral is now convergent, although not absolutely convergent. The lack of
absolute convergence is due to the presence of relevant or marginal operators with nonzero
spin in the O×O OPE. These are ∂µε and the stress tensor Tµν . Since these operators have
nonzero spin, their contributions vanish when integrated over the angular directions. So the
integral has to be understood in the sense of principal value, introducing and then removing
spherical cutoffs around 0, ê and ∞. These cutoffs are remnants of the original cutoffs on
|x2| and |x1 − x2|, since y is the rescaled x2.

Method 2. In this method we start by spliting the integration region of (4.51) into three
parts. We consider one region in which x12 is the shortest distance:

R12 = {x1, x2, x3 : |x12| < |x13|, |x12| < |x23|} , (4.55)

and the two other regions R23 and R13, given by permutations of the three points. It is clear
that these three regions contribute equally to the integral (4.51), so we can focus on R12. As
before, we set one of the points to zero and we rescale x1 and x2 by |x1|. The logarithmic
divergence arises when integrating over |x1|. We obtain

A = 3Sd

∫

R
〈O(0)O(y)O(ê)O(∞)〉 dy (4.56)

where
R = {y : |y| < 1, |y| < |y − ê|} (4.57)

which is a rescaled R12. Such an integral is not yet convergent when integrating y around
0 due to the presence of relevant operators being exchanged. These divergences may be
subtracted again by introducing a UV cutoff but now they have the advantage of only
appearing in one place.

Although these methods are not manifestly identical, the logic of their derivation shows
that they should give identical answers (and they do, in all cases we checked). In practical
computations, both ways of proceeding have advantages and disadvantages. Method 2 fully
takes advantage of the symmetry among 0, 1,∞, while the integrands in Method 1 do not
respect this symmetry (it is broken by the subtraction terms). Still, if one were to aim for
analytic expressions, Method 1 seems preferable. The shape of the integration region in
Method 2 makes it hard to compute the integral analytically. However, Method 2 will prove
useful and yield more precise results when the integral needs to be evaluated numerically.
Besides, in d = 3, where the correlation function is not known exactly but will be constructed
approximately from the bootstrap data, Method 2 allows to consider the conformal block
expansion in the s-channel only, without any need to deal with the other decompositions.
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We adopted Method 2 as the principal method for the beta function computation both in
d = 2 and d = 3, since as we will see the integrals have to be computed numerically. While
Method 1 is less precise for the numerical evaluation, we still checked that it gives the same
results within its reduced precision.

4.3.1 2D beta function

The 2D SRI is the minimal model CFT M(3, 4) and everything about it is known exactly
[12]. In particular, we have ∆σ = 1

8
, ∆ε = 1 and λσσε = 1

2
. The four-point function of σ is

given by

〈σ(0)σ(1)σ(z)σ(∞)〉 =
|1 +
√

1− z|+ |1−
√

1− z|
2|z|1/4|1− z|1/4 . (4.58)

Comparing the notation to our previous expression, we have fixed ê at 1 on the real axis,
while y = z runs over the full complex plane. In spite of the appearance the four-point
function is smooth across z ∈ (1,∞).

The four-point function of χ is Gaussian, given by the sum of three Wick contractions.
In the same kinematics,

〈χ(0)χ(1)χ(z)χ(∞)〉 = 1 +
1

|z|2∆χ
+

1

|1− z|2∆χ
, ∆χ = 2−∆σ =

15

8
. (4.59)

The four-point function of O is given by the product of (4.58) and (4.59):

F (z, z̄) =

[
1 +

1

|z| 15
4

+
1

|z − 1| 15
4

]
|1 +
√

1− z|+ |1−
√

1− z|
2|z| 14 |z − 1| 14

. (4.60)

We were not able to evaluate the integral of F (z) analytically, so we will report the results
of the numerical evaluation. We employ Method 2, so that we have to integrate over the
region R.

As discussed after (4.53), the integral is not convergent around 0. If we expand F (z, z̄)
around z = 0, we encounter several terms responsible for the non-convergence. The terms
|z|−4 and |z|−2 correspond to contributions of the identity operator and energy density ε
respectively. Other terms, such as z/|z|3 and z2/|z|4 (along with their conjugates), are the
contributions of ∂µε and Tµν in the O ×O OPE — these vanish upon angular integration.

To deal with the divergences, we remove from the region R a small disk |z| < a around
the origin, and divide the rest into two regions: the annulus A(a < |z| < r0) centered around
zero and its complement Ā, see Fig. 4.7. Here r0 is arbitrary subject to a < r0 < 1/2. In A
we expand F (z) functions as a series in z and z̄ up to some high order. We can then drop the
terms that vanish upon angular integration, and we integrate exactly the remaining terms.
The power-law divergent, as a → 0, part of the answer is dropped. In the complement of
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Figure 4.7: The integration region R.

the annulus we integrate F (z) numerically. The so regulated integral over R is then:

Id=2 =

∫

R
d2z F (z, z̄) = −0.403746 . . . (4.61)

All the shown digits are exact, and we checked that the result is stable against changes of
r0. This implies

β3 = −3(2π)Id=2
1

3!
= 1.268404 (d = 2). (4.62)

4.3.2 3D beta function

The 3D SRI is not yet exactly solved but high precision results are available thanks to
the progress of the numerical conformal bootstrap [77, 94, 95, 129, 185]. Recently, the
approximate critical 3D Ising four-point function extracted from the bootstrap data was
used in [99] to study the random-bond Ising critical point. It was also used in [100] to
qualify the non-Gaussianity of the 3D Ising model.

Here we proceed analogously and will use the OPE coefficients λσσO and dimensions ∆O
of the lowest lying operators (such that ∆O is smaller than some cutoff in the spectrum ∆∗)
to construct an approximate four-point function for the σ field:

〈σ(0)σ(ê)σ(y)σ(∞)〉 ' 1

|x|2∆σ

∑

O:∆O<∆∗

λ2
σσO g∆O,`O(z, z̄) , (4.63)

where g∆,` are the conformal blocks. Let us fix ê = (1, 0, . . . , 0). Then z is the complex
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coordinate related to y by

z = y1 + i|y⊥|, y⊥ = (y2, . . . , yd) . (4.64)

The four-point function only depends on |y⊥| because of rotation invariance around the x1

axis. The usual conformal cross ratios u, v are u = |z|2, v = |1− z|2. Instead of z, it will be
convenient to work with the radial coordinate of [84].

ρ(z) =
z

(
1 +
√

1− z
)2 (4.65)

In three dimensions, the conformal blocks are not known exactly. However, they can be
computed efficiently as a series in r and η = cos θ, where ρ = reiθ, using a recursion relation
[24, 214]. The conformal block expansion converges for r < 1 [40], while in the integration
region R the maximum value of r is 2−

√
3 ' 0.27 < 1, so our series expansion will converge

exponentially fast.
When approximating the four-point function, we have to take into account three different

sources of error:

1. We do not know the OPE coefficients and the operator dimensions exactly, as they are
obtained through the numerical conformal bootstrap. The uncertainty due to this will
turn out to be subleading;

2. We compute the conformal blocks as a series expansion in r. Here we did it up to order
O(r12), which provided sufficient accuracy, but it would be straightforward to compute
them to a higher order;

3. We know the dimensions and the OPE coefficients of primary operators only up to
a dimension ∆∗. The error introduced is of order r∆∗ [40]. We use data from the
numerical conformal bootstrap on operators up to dimension ∆∗ = 8.

We will focus on the last source of error, since it will be the dominant one. The error
one introduces when truncating the conformal block expansions of a four-point function of
identical scalars σ to some dimension ∆∗ was estimated in [40, 41] to be

∣∣∣∣∣
∑

O:∆O≥∆∗

λ2
σσO g∆O,`O(z, z̄)

∣∣∣∣∣ .
24∆σ

Γ(4∆σ + 1)
∆4∆σ
∗ |ρ(z)|∆∗ . (4.66)

This error estimate is essentially optimal for real 0 < z < 1, when the four-point function is in
a reflection positive configuration, and all conformal blocks are positive. This corresponds to
the configuration with η = 1 in the ρ plane. For configurations with η < 1, conformal blocks
decrease in absolute value by unitarity, and hence the same estimate (4.66) applies, although
it is no longer optimal. When we integrate the 4pt function over the η coordinate, we will
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not be in a reflection positive configuration, but we will nonetheless bound the truncated
operators contribution by its largest possible value, obtained for η = 1. Clearly, the obtained
error estimate will be overly conservative, since it does not take into account cancelations
due to the varying sign of contributions of operators with spin.

Once we have constructed the approximated four-point function, we integrate it in the
region R.14 We follow the procedure outlined in Appendix C of [99]: this consists in ex-
panding the four-point function as a power series in r and η, then integrating over r and
dropping the diverging contributions of the identity and the energy operator. Finally we
series-expand again with respect to η and we integrate the result exactly.

The data concerning the operator dimensions up to ∆∗ = 8 and their OPE coefficients
can be found in Table 2 of [94] (our λσσO is fσσO given in that table). The OPE coefficients
given there are in the normalization for which the small r limit of the conformal block is
g∆,` ' `!

(ν)`
(−1)`Cν

` (η)(4r)∆ + . . ., where Cν
` is a Gegenbauer polynomial, ν = d−2

2
and (ν)` is

the Pochhammer symbol. Using these values, we obtain Id=3 = −1.950± 0.005. The error is
dominated by the truncation error, which we estimate by integrating (4.66).15 The g3 term
of the beta function is then

β3 = 12.26± 0.03 (d = 3). (4.67)

4.3.3 Fixed-point existence

The last two calculations have shown us that for d = 2 and d = 3, we get a δ � 1 fixed
point at

g2 = g2
∗ = δ/β3 (4.68)

for a real value of the coupling. The sign of β3 was not manifest in the above calculations,
since the regulated integrals are not sign-definite.16 Still, we have seen that β3 is positive in
both 2D and 3D. This provides a non-trivial check on our picture and allows us to proceed
to the calculation of anomalous dimensions.

4.4 Anomalous dimensions

When deforming a CFT with a local perturbation, operators renormalize and acquire anoma-
lous dimensions. Let us recall how these are computed in conformal perturbation theory. As
usual, we require observables to be cutoff independent. To find the anomalous dimension of

14In r and η coordinates, the region R is given by 0 < r < r∗(|η|) and −1 < η < 1, with r∗(η) =

2 + η −
√
η2 + 4η + 3.

15For comparison, if we only use operators up to ∆∗ = 6, we obtain the same central value but with a
much larger error estimate: Id=3 = −1.95±0.08. This confirms that the error estimate is overly conservative.

16As a curiosity we notice that if it were not for the subtraction terms which had to be introduced in the
process of disentangling short-distance divergences, then A would be positive, and β3 negative.
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a local operator Φ(x), assumed unit-normalized, we look at an observable with one insertion
of Φ, 〈Φ(0)Ξ〉. Perturbative corrections will be given by

gn

n!

∫
〈Φ(0)O(x1) . . .O(xn)Ξ〉 dx1 . . . dxn. (4.69)

We regulate the integral by point splitting, with a short distance cutoff a, like in the previous
section. There we dealt with the divergences and cutoff dependence which appear when op-
erators O approach each other. Those were taken care of by renormalization of the coupling,
leading to the nontrivial beta function. We are interested in the additional divergences, in
particular the logarithmic ones, which appear when the positions of O collide with those of
Φ.

We define a renormalized operator [Φ], whose correlation functions remain finite in the
a→ 0 limit. This is related to the bare operator by

Φ = ZΦ(g, a)[Φ] . (4.70)

The anomalous dimension of Φ will then be given by

γΦ = − 1

ZΦ

∂ZΦ

∂ log(1/a)
. (4.71)

The above discussion was general, but now let us specialize to the flow which interests us,
namely (4.33). We are ultimately interested in δ > 0 small, but at the leading order we can
compute the anomalous dimension for δ = 0, when it is related to the log divergence as above.
Moreover, order g corrections will vanish thanks to the Z2 symmetry of the unperturbed
theory, since ΦOΦ will be odd under flipping χ regardless of whether Φ is even or odd. We
will therefore be interested in the anomalous dimension to order g2. The computation of this
anomalous dimension parallels the beta function computation. To extract the short-distance
divergence giving rise to the cutoff dependence of Φ, we consider the “triple OPE”

Φ(0)O(x1)O(x2) ∼ h(x1, x2)Φ(0)

= 〈Φ(0)O(x1)O(x2)Φ(∞)〉Φ(0) . (4.72)

If the short-distance logarithmic divergence is

∫

V

〈Φ(0)O(x1)O(x2)Φ(∞)〉dx1dx2 = B log
1

a
+ . . . (4.73)

the renormalized operator will be made cutoff-independent by the choice

ZΦ = 1 +
g2

2
B log

1

a
+O(g3) . (4.74)
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It follows that at the fixed point, where g = g∗, the operator Φ will acquire an anomalous
dimension of

γΦ = −g
2
∗
2
B +O(g3

∗) . (4.75)

As before, we rescale the two integration points x1 and x2 by |x1|. The logarithmic
divergence of the integral (4.73) is then

B = Sd

∫
[h(ê, y)− . . . ]dy (4.76)

where we have again prepared for necessary subtractions. Excluding the case Φ = O, the
OPE Φ × O does not contain the unit operator or the stress tensor. Nor does it contain
Φ since λΦΦO = 0. Assuming all other operators in the OPE have dimension larger than
that of Φ, the above integral is convergent near 0 and ∞. Let us proceed under the above
assumptions, otherwise minor obvious modifications will be required.

The integral presents power-law divergences for y close to ê. These divergences are due
to the unit operator and ε in the O × O OPE. As already mentioned in the beta function
discussion, they do not have anything to do with the critical point physics. We have to drop
these divergences, but in a way which does not modify the log divergence influencing the
anomalous dimension of the operator Φ. We have again two different ways to proceed, with
minor modifications compared to the beta function computation.

Method 1. We subtract the contributions of the relevant operators at the level of (4.73),
so that the logarithmic divergences are unchanged. Since all divergences come from x1 → x2,
we may write

h→ h̃ = h− s1 − sε (4.77)

s1 =
1

|x1 − x2|2d

sε = λΦΦελOOε
1

|x1 − x2|2d−∆ε|x1|∆ε

knowing the relevant operators. It is then a matter of taking h(ê, y) − · · · → h̃(ê, y) to
compute the value of B.

Method 2. We split again the integration region of (4.73) into three smaller subregion.
This will make the numerical evaluation of the integral simpler. Clearly, the contribution of
the integration region with x1 close to zero, |x1| < |x2| and |x1| < |x1 − x2|, is the same as
that of the region with x2 close to zero. However, the contribution of the region where x1

and x2 are close together will be different. By the same logic as before, we obtain a regulated
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expression for (4.76):

B = Sd

∫

R
2〈Φ(0)O(y)O(ê)Φ(∞)〉+ 〈O(0)O(y)Φ(ê)Φ(∞)〉dy . (4.78)

The integration region R is the same as in the previous section. The first term is finite since
y is separated from ê. The second term has a power-law divergences, but no log divergences
for small y — we make it finite by dropping the divergent terms.

4.4.1 Protected operator dimensions

Let us keep d general and consider the field χ. This is described by a nonlocal action in
the UV. As a consequence, we expect that χ does not get an anomalous dimension to all
orders in δ. This is similar to what happens for the φ field in the 4.2. Here we will check
this expectation at leading non-trivial order. Observe that the integral (4.73), with Φ = χ
and O = σχ, only has power-law divergences, and no logarithmic divergences. Indeed its
integrand is

1

|x1 − x2|2∆σ

(
1

|x1|2∆χ
+

1

|x1|2∆χ
+

1

|x1 − x2|2∆χ

)
. (4.79)

The integral only has power divergences by the same argument as that given for the beta
function subtraction terms (4.54). If we were to apply Method 1 to this integral, we would
end up with an identically vanishing integrand. Notice that in this case the OPE Φ × O
contains an operator σ with dimension ∆σ < ∆Φ, So more subtraction terms are needed
than the ones given before. After these subtractions, the integrand is identically zero.

Next we consider the field σ. It is also special, because it acts as a source for χ, and so
the classical equation of motion sets a linear nonlocal relation between the two. As we have
mentioned, non-renormalization of the type (4.30) is a direct consequence. To check this at
leading order, the anomalous dimension of σ can be reduced by a trick to the g3 term of
the beta function, which we already computed. Let us consider the original integral (4.73)
for Φ = σ. It is easy to see that this integral (multiplied by the overall volume) is exactly
one third of the integral (4.51) in the beta function calculation. Indeed, the integrand in
both cases involves the four-point function of σ multiplied by a correlation function of χ,
which has one term in the first case and three terms in the second one. These three terms all
contribute equally, and so we obtain B = A/3. This fact is not manifest in the expressions
provided by Methods 1 and 2, but we checked it numerically. The anomalous dimension of
σ is now found to be:

γσ = δ +O(δ2) . (4.80)

Note that the classic RG result that reads γO(g) = β′(g), for the deforming operator
itself, follows here from the fact that B = A for the renormalization of O.
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4.4.2 Unprotected operator dimensions

Let us now compute the anomalous dimension of ε in two and three dimensions. For d = 2,
we should use the result from the Ising minimal model [215]

〈ε(0)σ(z)σ(1)ε(∞)〉 =
|1 + z|2

4|z||1− z|1/4 . (4.81)

To obtain the correlation function 〈εOOε〉 we multiply (4.81) by 〈χ(z)χ(1)〉. This time we
will use Method 1, and we will be able to carry out the integration analytically. We need
to subtract the divergent terms due to the relevant operators, as shown in (4.77). The ε
subtraction term is absent since λεεε = 0, which is part of Kramers-Wannier duality in two
dimensions. We obtain the integral

∫

C
f(z, z̄)dz ≡

∫

C

1

|1− z|4
( |1 + z|2

4|z| − 1

)
dz = 0 (4.82)

as a principal value with circular cutoffs around 0, 1 and ∞. The fact that this integral
vanishes was noticed numerically in [99]. We have obtained the following proof which still
makes it seem like an accident.

We divide the complex plane into the three regions in Figure 4.8.

R1 = {z : a < |z| < 1− b} , (4.83)

A = {z : 1− b < |z| < 1 + b, |z − 1| > a} , (4.84)

R2 =
{
z : 1 + b < |z| < a−1

}
. (4.85)

We need to compute the integral for small but finite values of a and then take a→ 0 limit.

Rez

Imz

z = 1

R1

A R2

Figure 4.8: The three integration regions (4.85).

The quantity b is introduced for convenience since all three integrals simplify for b� 1. We
take the b→ 0 after a→ 0. It will turn out that the contribution of the region A approaches
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a nonzero constant. It is easy to forget about this contribution and get a wrong answer. The

Rez

L1

L2

AR

Figure 4.9: Deformation of the region A, which yields the same result in the δ → 0 limit.

integrals over R1 and R2 can be computed via

∫
f(reiθ, reiθ)rdrdθ =

∫ ∮
f(rρ, r/ρ)

dρ

iρ
rdr (4.86)

and doing the ρ integrals by residues. This way one obtains

lim
a→0

∫

R1

f(z, z̄)dz =
π

8
+O(b) , (4.87)

lim
a→0

∫

R2

f(z, z̄)dz =
π

8
+O(b) . (4.88)

We are left with computing the integral over the region A. When b → 0 is taken, and
the annulus shrinks, the integral gives a nonzero contribution because of the singularity
at z = 1. We can restrict the integration region A to a rectangle around z = 1, as the
regions where the integrand is regular yield a zero contribution in this limit. We consider
therefore the region in Figure 4.9. Let us perform a z 7→ z + 1 shift and call this region
AR =

{
z : −L1

2
< Re z < L1

2
,−L2

2
< Im z < L2

2
, |z| > a

}
. We expand the integrand around

z = 0, keeping only divergent terms, to find

lim
b→0

lim
a→0

∫

A

f(z, z̄)dz = lim
b→0

lim
a→0

∫

AR

(
1

8z2
+

1

8z̄2

)
dz

= lim
b→0

1

4

[
π − 4 arctan

(
L2

L1

)]
. (4.89)

By inspection, L1 ∼ δ while L2 ∼
√
δ, telling us that the arctangent approaches π

2
. This

gives us a −π
4

value for (4.89) exactly cancelling (4.88).
Going back to (4.82), the anomalous dimension of ε in d = 2 vanishes at order g2

∗, while
order g3

∗ will be zero by the Z2 selection rules. Therefore

γε = O(g4
∗) = O(δ2) (d = 2) . (4.90)
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Moving onto d = 3, we set up a numerical computation for this anomalous dimension
using the CFT data from the numerical conformal bootstrap. In order to compute the four-
point function 〈εσσε〉, we will need the operator dimensions and the OPE coefficients of the
operators appearing in the σ × σ, σ × ε and ε× ε OPEs. For operators up to ∆∗ = 8, these
can be found in [94], with a clear preference for Method 2. We construct the four-point
function in the region where one ε is close to one O and the region where the two copies of
O are close together:

〈ε(0)σ(z)σ(1)ε(∞)〉 =
1

|z|∆σ+∆ε

∑

O:∆O<∆∗

λ2
σεOg

∆εσ ,∆σε

∆O,lO
(z, z̄) ,

〈σ(0)σ(z)ε(1)ε(∞)〉 =
1

|z|2∆σ

∑

O:∆O<∆∗

λσσOλεεOg
0,0
∆O,lO

(z, z̄) . (4.91)

Here g∆O,lO with upper indices are the conformal blocks for the external scalars with unequal
dimensions, which we compute via recursion relations from [78]. The operators entering the
sum in the first (second) equation are Z2 odd (even). In both cases, we will be integrating
over the now familiar region R.

Once again, the largest error contribution when approximating the four-point function
will come from the truncation of the spectrum at dimension ∆∗. The same line of reasoning
used to obtain the truncation error for four identical scalar in [40] will go through in the first
line of (4.91). Analyzing the proof in [40], it is possible to see that the truncation error will
be given by (4.66) with the change ∆σ → (∆σ + ∆ε)/2 in all occurrences in the right-hand
side.

For the second line, on the other hand, we cannot map the four-point function onto a
reflection positive configuration, and therefore we cannot find a bound on the contribution
of the truncated operators in the same way. We need to first use Cauchy’s inequality so that
the tail of 〈σσεε〉 can be bounded by the tails of 〈σσσσ〉 and 〈εεεε〉. At this point we can
use again the result of [40], and we obtain

∣∣∣∣∣
∑

O:∆O>∆∗

λσσOλεεOg
0,0
∆O,lO

(z, z̄)

∣∣∣∣∣ .
22∆σ+2∆ε

√
Γ(4∆σ + 1)Γ(4∆ε + 1)

∆2∆σ+2∆ε
∗ |ρ(z)|∆∗ . (4.92)

Truncating the CFT data up to ∆∗ = 8 and carrying out the integration in the region
R, we obtain a nonzero value, unlike in d = 2. The order g2

∗ anomalous dimension is

γε ≈ 3.3g2
∗ +O(g4

∗) ≈ 0.27 δ +O(δ2) (d = 3), (4.93)

where in the second equality we plugged in the fixed-point. The total truncation error on
the coefficient 3.3, estimated as above, is ±0.5. So we are confident that ε gets a nonzero
anomalous dimension in d = 3 already at the lowest order allowed by the Z2 selection rules.
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4.4.3 Broken currents

We now come to a discussion of the stress tensor operator, the source of a long-standing
paradox. The UV theory contains an Ising subsector and a χ subsector, where only the first
contains a Tµν . When we perturb the UV theory with the operator σχ, the two sectors are no
longer decoupled and locality is lost. This implies that, at the IR fixed-point, the operator
Tµν will acquire an anomalous dimension. We will still call it Tµν and will sometimes refer to
it as the “stress tensor”, but it has to be kept in mind that this operator is non-conserved. We
will first compute γT directly in the 2D case. We will then exhibit an alternative method,
involving multiplet recombination, which clarifies our understanding of the crossover and
makes the 3D answer apparent as well.

For the direct computation, it is sufficient to consider only one tensor component, say
T ≡ Tzz, as all the components will acquire the same anomalous dimension. The stress
tensor in the UV is conventionally normalized as

〈T (z, z̄)T (0)〉 =
c

2

1

z4
. (4.94)

In the case of the two dimensional Ising model, the central charge is c = 1
2
. The 4pt function

〈T (0)σ(z)σ(1)T (∞)〉 is then recovered in the standard way using the Ward identity twice
on the two-point function of σ. For the four-point function involving two O insertions we
obtain:

〈T (0)σχ(z)σχ(1)T (∞)〉 =
1

|1− z|4
(

1

4
+

(1− z)2(z2 + 30z + 1)

256z2

)
. (4.95)

Although the stress tensor is not a scalar operator, our discussion pertaining to anomalous
dimensions still applies. We aim for an analytic result and use Method 1. Since λTTε = 0 in
d = 2, we only need to subtract the contribution of the identity. Note that, since the stress
tensor is not unit-normalized, subtracting the contribution of the identity means subtracting
(4|z − 1|4)−1. The resulting integral can be evaluated exactly:

∫

C

1

(1− z̄)2

(z2 + 30z + 1)

256z2
dz = − 15

128
π (4.96)

where we have again accounted for the finite contribution of a vanishingly small annulus that
contains z = 1. To apply (4.75), we recall that it is valid for the unit-normalized operators.
To make up for the fact that T is not, we need to multiply by an extra factor of 2

c
.

γT =
15

32
π2g2

∗ +O(g4
∗) ≈ 3.65 δ +O(δ2) (d = 2) . (4.97)

We will now recompute the same anomalous dimension using the recombination of mul-
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tiplets.17 As we will see, this method requires only the integration of a three-point function
fixed by a Ward identity, and gives γT as a function of ∆σ and of the central charge c for
arbitrary d.

The stress tensor in the UV satisfies the conservation equation ∂µTµν = 0, meaning that
some of its descendants are zero. As we say, it belongs to a short multiplet. The same
operator taken to the nonlocal IR fixed-point, is not expected to be conserved: ∂µTµν ∝
Vν 6= 0. In other words, the stress tensor multiplet becomes long by eating the Vν multiplet.
The vector Vν must exist in the UV theory as well; this was puzzling in the standard picture.
The puzzle is neatly resolved in our picture, since this multiplet can be easily constructed
with the help of the χ field. Namely, we have:

Vν = σ(∂νχ)− ∆χ

∆σ

(∂νσ)χ . (4.98)

This is clearly a vector field and of dimension d + 1 at the crossover point. The relative
coefficient between the two terms is fixed by requiring that Vν be a (non-unit normalized)
vector primary at the crossover. For this it is sufficient to check that the two-point function
of Vν and of the descendant ∂ν(σχ) vanishes.

Since Vµ given above is the only candidate to be eaten, at the IR fixed-point we expect

∂µTµν = b(g)Vν , (4.99)

where b(g) → 0 as g → 0. We will be interested in the first nontrivial order: b(g) =
b1g + O(g2). The value of b1 can be determined by studying the two-point function of Vµ
with Tµν , computed at first-order in perturbation theory. It will be more convenient to utilise
the descendant ∂µTµν , as this will allow us to use the Ward identity. On the one hand from
multiplet recombination (4.99) we expect at the lowest order in g∗:

〈∂µTµν(x)Vρ(y)〉g ≈ b1g∗〈Vν(x)Vρ(y)〉0 . (4.100)

Here and below we mark with subscript g the IR fixed-point correlators, while the subscript
0 corresponds to the UV theory. The two-point function of Vµ entering this equation can be
computed explicitly given its definition:

〈Vµ(x)Vν(0)〉0 = 2d
∆χ

∆σ

Iµν(x)

|x|2d+2
, Iµν(x) = δµν − 2

xµxν
x2

. (4.101)

Notice that this functional form is consistent with the conformal primary nature of Vµ.
On the other hand perturbation theory predicts for the correlator in the left-hand side

17For recent discussions of multiplet recombination in various CFT contexts see e.g. [204, 216–218].
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of (4.100)

〈∂µTµν(x)Vρ(y)〉g = g∗

∫
〈∂µTµν(x)Vρ(y)O(z)〉0dz . (4.102)

The three-point function that we need to integrate is the sum of two factorized terms:

〈∂µTµν(x)Vρ(y)O(z)〉0 = 〈∂µTµν(x)σ(y)σ(z)〉〈∂ρχ(y)χ(z)〉0
− ∆χ

∆σ

〈∂µTµν(x)∂ρσ(y)σ(z)〉〈χ(y)χ(z)〉0 . (4.103)

When the three-point functions in the right-hand side are expressed using the Ward identity
of the unperturbed theory, we get terms proportional to δ(x−y) and to δ(x−z).18 We assume
that x 6= y, so only ∝ δ(x−z) terms are important. They yield a nonzero contribution when
we integrate over z. We obtain

∫
〈∂µTµν(x)Vρ(0)O(z)〉0dz (4.104)

= −〈σ(x)∂νσ(0)〉〈∂ρχ(x)χ(0)〉+
∆χ

∆σ

〈∂νσ(x)∂ρσ(0)〉〈χ(x)χ(0)〉 = 2∆χ
Iνρ(x)

|x|2d+2
.(4.105)

Using (4.100), (4.101), (4.102), we fix the value b1 = ∆σ

d
.

Now let us compute the anomalous dimension of Tµν . The two-point function normaliza-
tion customary for d-dimensional CFT is [20, 219]:

〈Tµν(x)Tρσ(0)〉 =
cT
2S2

d

1

|x|2∆T

[
Iµρ(x)Iνσ(x) + (µ↔ ν)− 2

d
δµνδλσ

]
. (4.106)

In this normalization, and assuming the Ward identities are normalized as in note 18, the
free massless scalar has cT = d

d−1
.

To specify (4.106), we used only conformal invariance and the fact that Tµν transforms
as a rank 2 symmetric traceless primary. It is therefore valid both at the UV and IR.19 In
the UV we have cT = cSRI

T and ∆T = d, corresponding to the conserved local stress tensor.
In the IR both cT and ∆T receive O(g2

∗) corrections.
The quantity of interest is the two-point function of the divergence of Tµν at the fixed-

point which can be found by an explicit differentiation of (4.106). This vanishes for γT = 0,

18In this general d argument we normalize the stress tensor so that the Ward identity takes the form
〈∂µTµν(x)O1(x1) . . .On(xn)〉 = −∑i δ (x− xi) ∂xiν 〈O1(x1) . . .On(xn)〉 . Notice that it is not the same as
the normalization usually used in 2D.

19It is also possible to see without invoking conformal invariance that the tensor structure of the 2pt
function is preserved along the RG flow. This follows from the fact that the rescaling needed to make the
operator finite depends only on the indices of the operator and not on any other insertions in the correlation
function. It is part of the same argument which shows that all tensor components get the same anomalous
dimension.
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consistent with the fact that Tµν is conserved in the UV. For nonzero γT , it is given by:

〈∂µTµν(x)∂ρTρσ(0)〉g ≈
cT
S2
d

γT

(
d+ 1− 2

d

)
Iνσ
|x|2d+2

, (4.107)

In (4.107) we dropped terms higher order in g2
∗. One such higher order term is the correction

to cT which will not play any role, so in all subsequent equations cT = cSRI
T .

At the same order, using the recombination of multiplets equation (4.99), we have:

〈∂µTµν(x)∂ρTρσ(0)〉g ≈ b2
1g

2
∗〈Vν(x)Vσ(0)〉0 . (4.108)

From the last two equations, the two-point function of Vµ and the value of b1, we find the
lowest-order anomalous dimension of the stress tensor:

γT =
2S2

d

cT

∆σ(d−∆σ)

d2 + d− 2
g2
∗ +O(g4

∗) . (4.109)

In d = 2, this agrees with (4.97). In d = 3, it gives

γT = 28.60555(6)g2
∗ +O(g4

∗) ≈ 2.33 δ +O(δ2) (d = 3) (4.110)

where we have used ∆σ = 0.5181489(10) from [129] and cT/c
free
T = 0.946539(1) from [99].

4.4.4 Standard flow

These results for unprotected operators in the σχ flow should be compared to corresponding
calculations in the φ4 flow. The partner of ∆ε has been computed, with [188] finding

∆φ2 =
d− ε

2
+
ε

3
+

[
ψ(1)− 2ψ

(
d

4

)
+ ψ

(
d

2

)](ε
3

)2

+O(ε3) , (4.111)

but the partner for ∆T has not. We would therefore like to compute the dimension of the
leading spin-2 double-twist operator in φ× φ, also called Tµν . We can use ∆T to distinguish
between different long-range Ising models since it gives a rough measure of how nonlocal
a theory is. This makes it important for the bootstrap which is agnostic to microscopic
parameters like s. Constructing the operator

Tµν =

(
φ∂µ∂νφ−

1

d
δµνφ∂

2φ

)
+ y

(
∂µφ∂νφ−

1

d
δµν(∂φ)2

)
, (4.112)
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we choose y = −∆φ+1

∆φ
in order to make it a conformal primary.20 The one-loop diagram that

one might expect to give anomalous scaling to 〈φ(−k1 − k2)φ(k1)Tµν(k2)〉 is shown in Figure
4.10.

k1 k1 + k2

k2 + pp

Figure 4.10: The Tµν operator, represented by a dot at the top with momentum flowing in,
has its legs saturated by φ.

After Feynman parameters are first invoked, the integral takes the form

G(k1, k2) = λµε
Γ(s)

Γ
(
s
2

)2

∫ 1

0

∫

Rd

x
s
2
−1(1− x)

s
2
−1

[(k2 + p)2x+ p2(1− x)]s
(4.113)

[(k2 + p)ν((k2 + p)µ − ypµ) + pν(pµ − y(k2 + p)µ)− trace]
dp

(2π)d
dx .

After making the denominator spherically symmetric in p, the piece in brackets becomes
(p + (1− x)k2)ν [(p + (1− x)k2)− y(p− xk2)µ] + (p− xk2)ν [(p− xk2)µ − y(p + (1− x)k2)µ]
with the trace subtracted. Expanding this, all parts that are odd in a given component of
pµ must vanish. This reveals an overall factor of k2µk2ν − 1

d
δµνk

2
2 which we omit in what

follows. The other parts of (4.113) become

G(k1, k2) ∝ λ

(4π)
d
2

Γ
(
s− d

2

)

Γ
(
s
2

)2

[
Γ
(
d−s

2

)2

Γ(d− s) − 2(1− y)
Γ
(
d−s

2
+ 1
)2

Γ(d− s+ 2)

] ∣∣∣∣
k2

µ

∣∣∣∣
−ε

=
1

ε

λ

(4π)
d
2 Γ
(
d
2

)
[
2− (1− y)

d

d+ 2

] ∣∣∣∣
k2

µ

∣∣∣∣
−ε

+O(1) . (4.114)

After inserting the leading order value of y, it becomes clear that (4.114) is completely
regular. This vanishing one-loop anomalous dimension, which had to be the case in d = 4,
is actually true for all other values of d as well.21 A two-loop diagram is therefore necessary
to see perturbative corrections in ∆T .

20It is easy to check that for (∆φ, d) = (1, 4), (4.112) is the improved stress-energy tensor of a free scalar
up to a constant factor.

21This is in fact reassuring given that k1µk1ν + (k1 + k2)µ(k1 + k2)ν − yk1µ(k1 + k2)ν − yk1ν(k1 + k2)µ
is the tree level contribution to 〈φ(−k1 − k2)φ(k1)Tµν(k2)〉. This cannot be produced by Figure 4.10 whose
tensor structure only involves k2.
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qk1

k1 − p− q

k2 + pp

k1 + k2

Figure 4.11: The most interesting two-loop contribution to 〈φφT 〉.

The two-loop γT comes from the diagram in Figure 4.11. All other candidates either
involve a scaleless loop or have Figure 4.10 as a subdiagram. While standard methods are
not enough to evaluate this integral in general, it is sufficient to set k2 = 0 if we are only
interested in the pole term. Starting with the q integral already evaluated,

G(k1, 0) =
λ2µ2ε

(4π)
d
2

Γ
(
s− d

2

)
Γ
(
s−ε

2

)2

Γ(s− ε)Γ
(
s
2

)2

∫

Rd

1

|p|2s|p− k1|ε

[2(1− y)pµpν − trace]
dp

(2π)d

∝ λ2µ2ε

(4π)
d
2

Γ
(
s− d

2

)
Γ
(
s−ε

2

)2
Γ
(
s+ ε

2

)

Γ(s− ε)Γ
(
s
2

)2
Γ(s)Γ

(
ε
2

)
∫ 1

0

∫

Rd

x
ε
2
−1(1− x)s−1

[p2 + x(1− x)k2
1]s+

ε
2

[x2]
dp

(2π)d
dx . (4.115)

Once there is only a Feynman paremeter left to deal with, its integral can be expanded as
a series in ε. The first term vanishes, as it must by consistency, but the second term does
not. This gives the correlator an overall 1

ε
dependence.22

G(k1, 0) ∝ λ2

(4π)d
Γ
(
s− d

2

)
Γ
(
s−ε

2

)2
Γ
(
s+ ε−d

2

)

Γ(s− ε)Γ
(
s
2

)2
Γ(s)Γ

(
ε
2

)
∣∣∣∣
k1

µ

∣∣∣∣
−2ε

∫ 1

0

x
ε
2

+1(1− x)s−1dx

=
1

ε

λ2

(4π)dΓ
(
d
2

)2

4

d(d+ 2)

∣∣∣∣
k1

µ

∣∣∣∣
−2ε

+O(1) . (4.116)

22At d = 4, it is actually γT + 2γφ that appears in the Callan-Symanzik equation, explaining why (4.116)
still has a pole in this limit.
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From this expression, γT can easily be read off. Substituting the fixed point, we have

∆T =
d+ 4− ε

2
− 8

d(d+ 2)

(ε
3

)2

+O(ε3) . (4.117)

Our choice to set k2 = 0, imparting zero change in momentum to the composite opera-
tor, was very convenient. It allowed derivatives on the left leg to produce the same effect as
derivatives on the right leg, thereby yielding an answer proportional to the tree-level contri-
bution of 2(1−y). Had we set k1 = 0 instead, as in [220], the integral would still be tractable,
but only after accounting for the precise value of y. Encouraged by this simplification, we
will calculate the same anomalous dimension for the general leading double-twist operator
[φφ]0,`. Expressing this operator as

[φ1φ2]n,` =
∑

u1+u2+m=n
k1+k2=`

a(k1, k2, u1, u2,m)T (k1, k2, u1, u2,m)

T (k, `− k, u1, u2, n− u1 − u2)α1...α` ≡ Pα1 . . . PαkPµ1 . . . Pµn−u1−u2
P 2u1φ1

Pαk+1
. . . Pα`Pµ1 . . . Pµn−u1−u2

P 2u2φ2 , (4.118)

a recursion algorithm for computing the coefficients may be found in [221]. In fact in our
case,

a(k, `− k, u1, u2, n− u1 − u2) = sn,`(k)b(u1, u2)

s0,`(k) =
(−1)k

k!(`− k)!

1

Γ(∆φ + k)Γ(∆φ + `+ k)
, b(0, 0) = 1 (4.119)

but we will not need this expression directly.23 All that matters is that the extra momenta
with indices bring in extra factors of the Feynman parameter, leading to

∆[φφ]0,` =
d+ 2`− ε

2
− 2Γ(`)

Γ
(
d
2

)
Γ
(
d
2

+ `
)
(ε

3

)2

+O(ε3) . (4.120)

The singularity at ` = 0 is sensible because this results in an integral with a 1
ε2

term which
has to be handled differently. Proceeding to the subleading double-twist operators [φφ]n,`
using this approach would be quite cumbersome. However, we can make a useful statement
about them in d = 2 from the inversion formula (3.25).

To see how this gains us an order of perturbation theory, consider the conformal block
expansion of the reduced correlator G(z, z̄) = |z|2∆φ 〈φ(0)φ(z, z̄)φ(1)φ(∞)〉 with corrections

23In our previous notation, 2y =
s0,2(1)
s0,2(0) . The factor of 2 comes from the fact that (4.118) allows the two

free fields to be different.
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to ∆n,` ≡ ∆[φφ]n,` and an,` ≡ λ2
φφ[φφ]n,`

plugged in.

G(z, z̄) = 1 +
∑

n,`

(
a

(0)
n,` + a

(1)
n,` + . . .

)
g

∆n,`+γ
(1)
n,`+...,`

(z, z̄) (4.121)

= 1 +
∑

n,`

a
(0)
n,`g∆n,`,`(z, z̄) +

∑

n,`

a
(1)
n,`g∆n,`,`(z, z̄) + γ

(1)
n,`a

(0)
n,`g

′
∆n,`,`

(z, z̄)

+
∑

n,`

[
a

(2)
n,`g∆n,`,`(z, z̄) + 2γ

(1)
n,`a

(1)
n,`g

′
∆n,`,`

(z, z̄)

+γ
(2)
n,`a

(0)
n,`g

′
∆n,`,`

(z, z̄) +
1

2

(
γ

(1)
n,`

)2

a
(0)
n,`g

′′
∆n,`,`

(z, z̄)

]
+ . . .

As conformal blocks have |z|∆n,` asymptotics close to the origin, they produce one logarithm
for each differentiation. Hence, there is precisely one double-log in (4.121), found by taking
g′′∆n,`,`

(z, z̄) 7→ g∆n,`,`(z, z̄) log2 |z| in the last term. Furthermore, we may identify the terms

that lead to a log2 |1−z|, which must be present by crossing symmetry [222]. Each conformal

block that contributes must be differentiated at least once but all sums involving γ
(1)
n,` are

sums with a single term. This leaves us with

∑

n,`

a
(0)
n,`γ

(2)
n,`g

′
∆n,`,`

(z, z̄)

∣∣∣∣
log2 |1−z|

=

∣∣∣∣
z

1− z

∣∣∣∣
d
2 ε2

9
g d

2
,0(1− z, 1− z̄) (4.122)

as the only possibility. The remarkable fact, which allows us to extract the spectral density
c(∆, `), is that the left-hand side of (4.122) is 1

2π2 times the double-discontinuity! Just as the
coefficients of conformal blocks are residues for the simple poles of c(∆, `), the coefficients of
conformal block derivatives are residues associated with double poles. The inversion integral

c(∆, `) =
ε2

9

Γ
(

∆+`
2

)4

Γ(∆ + `− 1)Γ(∆ + `)

∫ 1

0

z
∆+`+1

2 2F1

(
∆+`

2
, ∆+`

2

∆ + `
; z

)
2F1

(
1
2
, 1

2

1
; 1− z

)
dz

z2

∫ 1

0

z̄
`−∆+3

2 2F1

(
`−∆+2

2
, `−∆+2

2

`−∆ + 2
; z̄

)
2F1

(
1
2
, 1

2

1
; 1− z̄

)
dz̄

z̄2
(4.123)

may be evaluated after noticing that the crossed channel block (with the kinematic prefac-
tors) is special enough to be a Casimir eigenfunction in the direct channel.24 In other words,
hypergeometric identities ensure that

f(z) ≡ z
1
2 2F1

(
1
2
, 1

2

1
; 1− z

)
= 2F1

(
1
2
, 1

2

1
;
z − 1

z

)
, (4.124)

24This observation is due to Dalimil Mazáč.
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which is part of the basis found in [136] with eigenvalue −1
4
. Each integral in (4.123) is now

an inner product of (4.124) with some SL(2;R) block. The weight of the latter — which is
either ∆+`

2
or `−∆+2

2
— will be denoted by h.

〈f, g〉 =
1

h(h− 1) + 1
4

[〈Df, g〉 − 〈f,Dg〉]

=
1

h(h− 1) + 1
4

[
(1− z)

(
f̄ ′g − f̄ g′

)] ∣∣∣∣
1

0

=
h

2h(h− 1) + 1
2

Γ(2h+ 1)

Γ(h+ 1)2
(4.125)

With this trick in mind, we arrive at the spectral density which reveals a nice surprise.

c(∆, `) =
ε2

9

(∆ + `)2(`−∆ + 2)2

(∆− `− 1)2(∆ + `− 1)2

Γ
(

∆+`
2

)4
Γ(`−∆ + 2)

Γ(∆ + `− 1)Γ
(

∆+`
2

+ 1
)2

Γ
(
`−∆+2

2
+ 1
)2 (4.126)

Evidently, there is only a single second-order pole for each spin, namely ∆ = ∆0,` = ` + 1.
Subleading double-twist operators fail to renormalize in d = 2 even at two-loops. This is the
second mysterious zero for an anomalous dimension we have seen after (4.90).

4.5 Exploiting the shadow relation

A fundamental result which makes the LRI bootstrap worthwhile is the nonlocal equation
of motion. The most general analytic constraint that has been extracted from it so far is a
quadratic OPE coefficient relation with four traceless symmetric primaries Oi. It takes the
form

λ
(m)
12χλ

(n)
34σ

λ
(m)
12σλ

(n)
34χ

=
R

(m)
12

R
(n)
34

. (4.127)

We will derive this and then use it to understand the correlator 〈σσχχ〉. Rich constraints
on it will come from setting O1 = σ, O2 = O, O3 = χ and O4 = O (which together imply
m = n = 0).

4.5.1 Exact OPE coefficient ratios

In addition to the non-renormalization theorems we have discussed, the nonlocal equation of
motion can be used to derive an infinite family of ratios between OPE coefficients. Equations
like (4.29) are statements about fields in a Lagrangian rather than unit-normalized operators
in a CFT. We will therefore equip them with s-dependent prefactors which we call nσ and
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nχ. Writing the integral expression for (4.29) yields

nχ(s)χ(x) =

∫
nσ(s)σ(y)

|x− y|d+s
dy , (4.128)

which is recognizable as the shadow transform. The idea is to use (4.128) in three-point
functions containing σ and χ in order to find

λ12χ

λ12σ

=
nσ(s)

nχ(s)
R12 , (4.129)

where R12 is a known function of the quantum numbers. If we repeat this for a second pair
of operators, we can arrange to have the normalizations cancel out, leaving us with

λ12χλ34σ

λ12σλ34χ

=
R12

R34

. (4.130)

The explicit Rij was computed for scalars in [158]. In Appendix F, we use it to test the
IR duality between the flows that generate the ε-expansion and the δ-expansion. In what
follows, we aim to generalize this result to the case of spinning operators.

A natural language for this is the embedding formalism [223] which associates to each
xµ ∈ Rd a null ray XM ∼ λXM ∈ Rd+1,1. If one chooses representatives such that X+ =
1 (the Poincaré section of the null cone), a Lorentz transformation on XM = (1, x2, xµ)
precisely implements a conformal transformation on xµ. Conformally invariant quantities
can therefore be built out of the Lorentz scalars

Xij ≡ −2Xi ·Xj = x2
ij . (4.131)

An especially useful incarnation of the embedding space was developed in [224, 225] which
used polarization vectors to make the formalism index-free. One such vector Z, in addition
to being null, must satisfy a transversaity condition with X:

Xii = 0 , Xi · Zi = 0 , Zii = 0 . (4.132)

This is because tracelessness in Rd+1,1 is stronger than tracelessness in Rd. An important
result is that correlation functions may only depend on polarization vectors through the
combinations

Hij ≡ −2[(Zi · Zj)(Xi ·Xj)− (X1 · Z2)(X2 · Z1)]

Vi,jk ≡
(Zi ·Xj)Xik − (Zi ·Xk)Xij

Xjk

. (4.133)

We will begin with the three-point function 〈φ1(x1)Oµ1,...,µ`
2 (x2)σ(x3)〉, which has a single
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tensor structure. The most straightforward extension of it to the projective null cone is

〈Φ1(X1)O2(X2, Z2)σ(X3)〉 =
λ12σV

`
2,13

X
∆σ+∆12−`

2
13 X

∆σ−∆12+`
2

23 X
∆1+∆2−∆σ+`

2
12

. (4.134)

As a check, this is a degree-` polynomial in Z2 which is invariant under Z2 7→ Z2 + X2. It
also transforms with the correct weights when X1, X2 and X3 are scaled individually. Lifting
the equation of motion to the embedding space as well,

〈Φ1(X1)O2(X2, Z2)χ(X3)〉 =
nσ(s)

nχ(s)

λ12σ

X
∆1+∆2−∆σ+`

2
12

∫
V `

2,10DX0

X
∆σ+∆12−`

2
01 X

∆σ−∆12+`
2

02 Xd−∆σ
03

. (4.135)

This type of object, which has exponents adding up to d, is called a conformal integral.
Suitable technology for treating conformal integrals in the embedding space, including the
formula ∫

XA1 . . . XAn

(−2X · Y )d+n
DX =

π
d
2 Γ
(
d
2

+ n
)

Γ(d+ n)

Y A1 . . . Y An

(−Y 2)
d
2

+n
− traces , (4.136)

was developed in [226]. For similar integrals with a slight excess in the exponents, see [227].
Before returning to (4.135), it is worth expanding the tensor structure as

V `
2,10 = X−`01

∞∑

n=0

(
`

n

)
(Z2 ·X1)n(Z2 ·X0)`−nXn

02X
`−n
12 . (4.137)

The result of (4.135) will contain V `
2,13 and in particular (Z2 · X3)`, which can only come

from the first term of (4.137). It is therefore enough to focus on the n = 0 term and infer
the others from conformal invariance. Introducing Schwinger parameters and using (4.136),
we have

〈Φ1(X1)O2(X2, Z2)χ(X3)〉 =
nσ(s)

nχ(s)

λ12σZ
A1
2 . . . ZA`

2

X
∆1+∆2−∆σ−`

2
12

π
d
2 Γ
(
d
2

+ `
)

Γ(d−∆σ)Γ
(

∆σ+∆12+`
2

)
Γ
(

∆σ−∆12+`
2

)

∫ ∞

0

∫ ∞

0

(X3 + αX1 + βX2)A1 . . . (X3 + αX1 + βX2)A`

α−
∆σ+∆12+`

2 β−
∆σ−∆12+`

2 [αX13 + βX23 + αβX12]
d
2

+`

dα

α

dβ

β

+O(Z2 ·X1) . (4.138)

If we again discard Z2 ·X1 terms, we can evaluate the integral to arrive at

R12 = π
d
2

Γ
(
∆σ − d

2

)
Γ
(
d−∆σ+∆12+`

2

)
Γ
(
d−∆σ−∆12+`

2

)

Γ(d−∆σ)Γ
(

∆σ+∆12+`
2

)
Γ
(

∆σ−∆12+`
2

) . (4.139)

132



This logic can be repeated for correlators that have arbitrary spin in both positions. The
difference here is that there is no longer a unique tensor structure:

〈O1(X1, Z1)O2(X2, Z2)σ(X3)〉 =

min(`1,`2)∑

m=0

λ
(m)
12σ

V `1−m
1,23 V `2−m

2,13 Hm
12

X
∆σ+τ12

2
13 X

∆σ−τ12
2

23 X
τ1+τ2−∆σ

2
12

. (4.140)

However, the factor of Hm
12 is untouched by the integration. This means that λ

(m)
12χ is propor-

tional to λ
(m)
12σ and Rij acquires one extra index instead of two. Carrying out the computation,

we find

R
(m)
12 = π

d
2

Γ
(
∆σ − d

2

)
Γ
(
d−∆σ+∆12+`1+`2−2m

2

)
Γ
(
d−∆σ−∆12+`1+`2−2m

2

)

Γ(d−∆σ)Γ
(

∆σ+∆12+`1+`2−2m
2

)
Γ
(

∆σ−∆12+`1+`2−2m
2

) . (4.141)

As a further generalization, one could consider mixed-symmetry tensors using the formalism
of [228]. Note that (4.43) is clearly true from the way ∆σ and ∆χ appear in (4.141). This
can be seen as a manifestation of the fact that fractional derivatives still satisfy ∂−sA =
B ⇔ A = ∂sB.

4.5.2 A tower of protected operators

We now specialize to an important four-point function of relevant operators. Let us choose
three-point functions that involve the two shadow operators and a traceless symmetric pri-
mary O. The quadratic equality

λ2
σχO =

RσO

RχO
λσσOλχχO (4.142)

immediately follows. Two results related to (4.142) are worth fleshing out in detail as both
of them provide useful input to the numerical bootstrap.

We will first consider a primary O whose spin is odd. In this case, the OPE coefficients
on the right-hand side of (4.142) vanish by Bose symmetry. For the left-hand side to be
nonzero, the dimension of O must be a pole of the following expression.

RσO

RχO
=

Γ
(
d−∆+`

2

)2
Γ
(
d−2∆σ+∆+`

2

)
Γ
(

2∆σ−d+∆+`
2

)

Γ
(

∆+`
2

)2
Γ
(

2∆σ−∆+`
2

)
Γ
(

2d−2∆σ−∆+`
2

) (4.143)

The poles above the unitarity bound, which come entirely from the squared gamma function
in the numerator, are

∆ = d+ `+ 2n = ∆σ + ∆χ + `+ 2n . (4.144)

These are nothing but the dimensions of the double-twist operators [σχ]n,` ∼ χ∂µ1 . . . ∂µ`∂
2nσ
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at s = s∗. The first element of this list, [σχ]0,1, is known to renormalize upon lowering the
value of s. As its dimension leaves the pole (4.144), the left-hand side of (4.142) is able to
remain nonzero. This is because [σχ]0,1 recombines with the stress-energy tensor and Bose
symmetric OPEs are allowed to contain odd-spin descendants. All of the other double-twist
operators stay primary (at least in three dimensions) and thus face a radically different
situation. Bose symmetry continues to enforce λσσO = λχχO = 0 which means that ∆ can
only change continuously if λ2

σχO jumps to zero discontinuously. We therefore arrive at the
following proposal.

In the long-range Ising model given by a generic d
2
< s < s∗, all odd-spin primaries in

σ × χ (the double-twist operators other than the first one) have a scaling dimension that is
independent of s.

This result, which should strictly be called a conjecture, would represent the most natural
scenario even if we did not have continuity in s. It also follows from the earlier form of the
OPE ratio (4.129) after a simple check that the normalizations nσ(s) and nχ(s) are nonzero.
One possibility that we cannot rule out is that these odd-spin primaries are only protected
within a finite interval starting at s = s∗. This is because we used the fact that λ2

σχO was
strictly positive. If this coefficient were to smoothly approach zero at some value of s, we
would have to worry about the behaviour in Figure 4.12.

0

s*

∆(s)

λσχΟ(s)

Figure 4.12: A possible way out of our non-renormalization theorem for odd-spin primary
operators in σ × χ. The strongest statement we can make is that their dimensions are
protected in an open neighbourhood of any point where λ2

σχO > 0. It could be the case that
at least one renormalizes after decoupling at an intermediate value of s.

Running this argument around the other side of the duality is more subtle since φ and φ3
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cannot be treated as independent fields. At small values of the spin, however, it is clear how
the protected operators in φ× φ3 match up with those in σ × χ. Taking n = 0 for example,

Tµν 3 χ∂µσ φ3∂µφ ∈ φ4

χ∂µ∂ν∂ρσ ↔ φ3∂µ∂ν∂ρφ

χ∂µ∂ν∂ρ∂σ∂τσ ↔ φ3∂µ∂ν∂ρ∂σ∂τφ

. . . (4.145)

Starting at ` = 7, the conformal primary where four copies of φ are saturated by derivatives
is not unique. A generating function counting the number of such primaries for all ` can be
found in [218]. Looking at one example, the primary subspace for operators of the form

O7 = c0φ
3∂7φ+ c1φ

2∂φ∂6φ+ c2φ
2∂2φ∂5φ+ c3φ∂φ∂φ∂

5φ

+c4φ
2∂3φ∂4φ+ c5φ∂φ∂

2φ∂4φ+ c6∂φ∂φ∂φ∂
4φ+ c7φ∂φ∂

3φ∂3φ

+c8φ∂
2φ∂2φ∂3φ+ c9∂φ∂φ∂

2φ∂3φ+ c10∂φ∂
2φ∂2φ∂2φ (4.146)

is two-dimensional. We should therefore only expect one linear combination to be protected.

Given a basis consisting of
{
O(1)

7 ,O(2)
7

}
, we may choose t such that tO(1)

7 +O(2)
7 decouples

from φ × φ3. This gives an operator that is free to renormalize since it has vanishing OPE
coefficients on either side of (4.142). It is only the orthogonal operator that maintains its
exact double-twist dimension. More generally, when the subspace is N -dimensional, the
solutions to

t1

〈
φ(x1)φ3(x2)O(1)

`

〉
+ · · ·+ tN−1

〈
φ(x1)φ3(x2)O(N−1)

`

〉
+
〈
φ(x1)φ3(x2)O(N)

`

〉
= 0 (4.147)

are (N − 1)-dimensional, pointing us to a unique protected operator once again. It is not
surprising that φ × φ3 contains only one leading-twist operator of each spin in a suitable
basis. Indeed if the degeneracy could not be removed, one would be able to repeat our
non-renormalization argument based on the nonlocal equation of motion ∂sφ ∝ φ3 in the
local fixed point governed by ∂2φ ∝ φ3. It is clear that the Wilson-Fisher fixed point
does not have an odd-spin protected tower. Instead, the odd-spin operators which have the
dimensions (4.144) in d = 4 are able to avoid the Bose symmetry constraints for primaries
by recombining with higher spin currents. It would be interesting to see how this structure
is reproduced in perturbation theory.

The 2D case would also be very interesting to study further. This describes a fixed line
obtained by deforming a Virasoro symmetric theory. As a result, the definition of [σχ]n,`
is ambiguous just like the double-twist operator [φφ3]n,`. This time, rotating the bases to
remove the maximal number of operators from σ × χ is probably not the right solution to
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the mixing problem. Consider the operators with (h, h̄) = (4, 1) where

O(1)
3 = σL3

−1χ− 93L−1σL
2
−1χ+

713

3
L2
−1σL−1χ−

3565

51
L3
−1σχ

O(2)
3 = L−3σχ−

128

153
L3
−1σχ (4.148)

is a valid basis.25 The previous logic would suggest splitting these into one combination
with λσχO = 0 and another combination with λσχO 6= 0. This presents a problem as both
operators in such a splitting would have nonzero overlap with

Λ =

(
L−4 −

5

3
L2
−2

)
I . (4.149)

There is only room for a higher spin current to recombine with one multiplet so we must de-
mand that the protected spin-3 operator is the one that fails to give an anomalous dimension
to (4.149). To solve for this operator, we have evaluated the three-point functions

〈
Λ(z1, z̄1)O(1)

3 (z2, z̄2)σχ(z3, z̄3)
〉

=
124775/544

z7
12z13z23z̄2

23〈
Λ(z1, z̄1)O(2)

3 (z2, z̄2)σχ(z3, z̄3)
〉

=
1225/3264

z7
12z13z23z̄2

23

(4.150)

using the Virasoro Ward identity.26 This allows us to repeat the calculation that [159] did
for the stress-energy tensor and say that

∫ 〈
∂̄1Λ(z1, z̄1)

[
544

124775
O(1)

3 −
3264

1225
O(2)

3

]
(z2, z̄2)σχ(z3, z̄3)

〉
dz3dz̄3 = 0

∫ 〈
∂̄1Λ(z1, z̄1)

[
713

1513
O(1)

3 +
3422400

10591
O(2)

3

]
(z2, z̄2)σχ(z3, z̄3)

〉
dz3dz̄3 ∝ γΛ .(4.151)

Based on this, one might hope that all σ×χ operators in the 2D theory are either protected
or eaten. The first counter-example to this appears at the next level which has three ` = 5
operators built from σ and χ but only one ` = 6 current that needs to be broken.

25We have implicitly used the null state condition to write L−2σ as a multiple of L2
−1σ. Similarly, we do

not have any higher Virasoro generators acting on χ since the theory it comes from is already nonlocal at
s = s∗.

26The form 〈L−mI(z1)L−nσ(z2)σ(z3)〉 =
∮
z1

∮
z2

(y1 − z1)1−m(y2 − z2)1−n 〈T (y1)T (y2)σ(z2)σ(z3)〉 dy2
2πi

dy1
2πi

is the one most useful for our purposes.
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4.5.3 Consequences for crossing

We will now discuss the treatment of [σχ]n,` operators with even spin. Looking at (4.142)
for s = s∗, we again have a removable singularity since O has a dimension given by (4.144)
while decoupling from the σ × σ and χ × χ OPEs. The difference is that the coefficients
λσσO and λχχO turn on for s < s∗ as they are not constrained by any kinematic principle.
This allows the right-hand side of (4.142) to become a ratio of finite numbers. The shadow
relation then becomes a statement about operators of an unknown dimension still having
constrained OPE coefficients.

This situation is ubiquitous in the superconformal bootstrap. It allows four-point func-
tions to be decomposed into blocks that include the contributions of many conformal pri-
maries. These superconformal blocks have been computed in [229] and many subsequent
works. In the long-range Ising model which is non-supersymmetric, it is the nonlocal op-
erator in (4.29) rather than a supercharge, which allows certain conformal blocks to be
combined.

To make this precise, consider the general form of the four-point function for scalar
primaries

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 =

( |x24|
|x14|

)∆ij
( |x14|
|x13|

)∆kl Gijkl(u, v)

|x12|∆i+∆j |x34|∆k+∆l
. (4.152)

The unknown function, depending on the cross-ratios u =
x2

12x
2
34

x2
13x

2
24

and v =
x2

14x
2
23

x2
13x

2
24

, has the

conformal block expansion

Gijkl(u, v) =
∑

O

λijOλklOg
∆ij ,∆kl

O (u, v) . (4.153)

By demanding crossing symmetry for the 〈σσχχ〉 correlator, we derive the crossing equations

∑

O+
2|`

λσσOλχχOF
σσ;χχ
−,∆,` (u, v) +

∑

O+
2|`

λ2
σχOF

χσ;σχ
−,∆,` (u, v)−

∑

O+
2-`

λ2
σχOF

χσ;σχ
−,∆,` (u, v) = 0(4.154)

∑

O+
2|`

λσσOλχχOF
σσ;χχ
+,∆,` (u, v)−

∑

O+
2|`

λ2
σχOF

χσ;σχ
+,∆,` (u, v) +

∑

O+
2-`

λ2
σχOF

χσ;σχ
+,∆,` (u, v) = 0 ,

where we have used the (2.66) shorthand

F ij;kl
±,∆,`(u, v) = v

∆j+∆k
2 g

∆ij ,∆kl

∆,` (u, v)± u
∆j+∆k

2 g
∆ij ,∆kl

∆,` (v, u) . (4.155)
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We can modify (4.154) to account for the protected operators

∑

O+
2|`

λσσOλχχOF
σσ;χχ
−,∆,` (u, v) +

∑

O+
2|`

λ2
σχOF

χσ;σχ
−,∆,` (u, v)−

∑

`=1,3,...

∞∑

n=0

λ2
σχOF

χσ;σχ
−,d+`+2n,`(u, v) = 0

∑

O+
2|`

λσσOλχχOF
σσ;χχ
+,∆,` (u, v)−

∑

O+
2|`

λ2
σχOF

χσ;σχ
+,∆,` (u, v) +

∑

`=1,3,...

∞∑

n=0

λ2
σχOF

χσ;σχ
+,d+`+2n,`(u, v) = 0 ,

(4.156)

but this only imposes the odd-spin case of the shadow relation. Imposing the even-spin case
as well leads to

∑

O+
2|`

λσσOλχχOF−,∆,`(u, v)−
∑

`=1,3,...

∞∑

n=0

λ2
σχOF

χσ;σχ
−,d+`+2n,`(u, v) = 0

∑

O+
2|`

λσσOλχχOF+,∆,`(u, v) +
∑

`=1,3,...

∞∑

n=0

λ2
σχOF

χσ;σχ
+,d+`+2n,`(u, v) = 0 , (4.157)

where we have defined the convolved superblocks

F±,O(u, v) = F σσ;χχ
±,∆,` (u, v)∓ RσO

RχO
F χσ;σχ
±,∆,` (u, v) . (4.158)

It is easy to read off what the non-convolved superblocks are.
In contrast to other known superblocks, e.g. the 4D N = 1 classification in [230], the

relative coefficient in (4.158) is not a rational function of ∆. Indeed (4.143) has infinitely
many poles. It may therefore be of interest to compute rational approximations for the
coefficient, similar to what is already standard practice for the conformal blocks themselves.
We discuss this problem in Appendix E.

4.6 Numerical results

We are now ready to combine our exact results with the numerical bootstrap in three di-
mensions. For perspective, it is interesting that the 3D LRI is still considered prohibitive
for a Monte Carlo simulation. Even the 2D LRI has only been simulated relatively recently
[200, 201, 231–233]. By contrast, d is a parameter in the conformal bootstrap that can be
varied without changing the difficulty of the problem. Let us look at the crossing equations
that come into play.

We have already written two of the crossing equations which take the form (4.154),
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(4.156) or (4.157) depending on how much non-perturbative information is imposed. These
are part of a larger system, given in Appendix E, which has the schematic form

∑

O+
2|`

(λσσO λεεO λχχO)V
(0)

∆,`




λσσO
λεεO
λχχO


+

∑

O−
λ2
σεOV

(1)
∆,`+λ

2
εχOV

(3)
∆,`+

∑

O+

λ2
σχOV

(2)
∆,` = 0 . (4.159)

The components of V (1), V (2) and V (3) live in R, while the components of V (0) live in R3×3.
To rule out potential solutions, the numerical bootstrap searches for a functional that gives
a positive-definite matrix when acting on V (0) and a positive number when acting on the
other vectors. Finding such a functional becomes easier when we only demand positivity on
specific linear combinations of the vectors above. To this end, we have three options for how
to proceed.

1. If we do not impose (4.142) at all, we use (4.159) where the dimensions exchanged by
σ × χ run over all values consistent with unitarity and the presence of three relevant
scalar primaries.

2. If we demand the existence of the protected tower discussed in the last section, the
last sum in (4.159) for odd spin is modified so that it only contains the dimensions of
(4.156).

3. If we use superblocks, we only demand positivity on the linear combinations (4.158)
instead of their individual components. This means that the last sum in (4.159) for
even spin is removed altogether and replaced by additional terms in the upper-right
and lower-left corners of the matrices in V (0).

In all cases, we impose the basic relations

∆σ + ∆χ = d

λ2
σχε =

Rσε

Rχε

λσσελχχε (4.160)

which means that the isolated operator ε appears in a superblock. When combined with
permutation symmetry, this allows σ, ε and χ to be accounted for with a single entry to the
first sum of (4.159). Denoting the m,n component of a matrix by [M ]mn, this entry is




[
V

(0)
ε

]
11

+ V
(1)
σ

[
V

(0)
ε

]
12

[
V

(0)
ε

]
13

+ 1
2
Rσε
Rχε

(
V

(1)
χ + V

(2)
ε + V

(3)
σ

)
[
V

(0)
ε

]
21

[
V

(0)
ε

]
22

[
V

(0)
ε

]
23[

V
(0)
ε

]
31

+ 1
2
Rσε
Rχε

(
V

(1)
χ + V

(2)
ε + V

(3)
σ

) [
V

(0)
ε

]
32

[
V

(0)
ε

]
33

+ V
(3)
χ


 .

(4.161)
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The upper-right and lower-left corners account for (4.160), while the upper-left and lower-
right corners guarantee λσσε = λσεσ and λχχε = λεχχ respectively. Treating ε this way leads
to interesting bounds on LRIs but it requires all three relevant deformations to be external
operators. As we will see shortly, the standard system for the 3D Ising bootstrap — 〈σσσσ〉,
〈σσεε〉 and 〈εεεε〉 — is not enough.

Scanning over the dimensions of the lightest scalars, our results rely on the unreasonable
effectiveness of the bootstrap — the assumption that an interesting theory will lie on the
boundary of an excluded region. To carry out the computations, we approximate conformal
blocks G

∆ij ,∆kl

∆,` (u, v) using the methods of [24, 84, 89]. While the full details were given in
chapter 2, it is useful to repeat that these special functions are written as a certain double
power series in two variables near the crossing symmetric point u = v = 1

4
. Truncating this

expansion requires two cutoffs (mmax, nmax). The values chosen in this work are (3, 5), (5, 7)
and (7, 9) which correspond to 54, 104 and 170 components respectively. Other choices made
here are kmax = 40 and `max = 20.

Since their initial exploration in [78], matrix crossing equations like (4.159) have played
an increasingly central role in the numerical bootstrap [77, 79, 80, 129, 234–238]. They
appear whenever there are operators of differing dimension in the four-point functions being
analyzed. They have also appeared in the single correlator problem of [239] which had
enough global symmetry for the same representation to be exchanged multiple times.27 We
believe that this is the first time a six-correlator system has been bootstrapped.

4.6.1 One correlator

It is easiest to start with the results that can be obtained from the 〈σσσσ〉 correlator alone.
In this case, there is no compelling reason to restrict our analysis to three dimensions. Our
bound on the spin-2 gap ∆T , which we plot for 2D and 3D, has been known since the early
work in [185].

From Figure 4.13, it appears that the ∆T bound is saturated by generalized free field
theory. This gives us an idea of how the allowed region in (∆σ,∆ε) space must behave. Not
only must it become more restrictive as ∆T is increased — its boundary must move from
left to right at a known rate.

It is straightforward to derive an upper bound of this type. In Figure 4.14, we have done
this for six different values of the spin-2 gap. In 2D, the minimum ∆T values we sample
are {2, 2.2, 2.4, 2.6, 2.8, 3}, while in 3D they are {3, 3.1, 3.2, 3.3, 3.4, 3.5}. If the previously
observed saturation is correct, the edges of these plots must continue moving left as our
computational power is incresaed. For instance, we expect a 5% change for the 2D red
region and a 3% change for the 3D red region.

27Another interesting situation is the long multiplet bootstrap [157]. In this case, a mixed system of
conformal primaries looks like a single correlator when all parts are combined into superfields. The recent
progress [240, 241] for the superconformal bootstrap in three dimensions appears to be a partial implemen-
tation of this idea.

140



(a) 2D (b) 3D

Figure 4.13: The allowed region for the first spin-2 operator dimension ∆T as a function
of ∆σ. In both 2D and 3D, the bound appears to be converging to ∆T = 2∆σ + 2. The
blue region was obtained with (mmax, nmax) = (7, 9) while (5, 7) and (3, 5) are shown for
comparison.

Once we disallow ∆T at the unitarity boumd, the kink corresponding to the SRI quickly
disappears. The point (∆σ,∆ε) =

(
d
4
, d

2

)
, marking the first LRI to be described by mean-

field theory, does not display any feature. We may therefore conclude that a single correlator
gives very little information about the spectrum of non-trivial long-range Ising models.

Before proceeding to our multi-correlator results in three dimensions, we should comment
on the fact that some theories can saturate numerical bootstrap bounds even when there is
no kink. For a judiciously chosen quantity, there is some evidence that this is the case for the
LRI in two dimensions.28 Instead of bounding a gap, one can maximize the OPE coefficient
of an operator in the spectrum. From Monte Carlo data [201], it is clear that in every 2D
long-range Ising model, one such operator has a dimension close to 1. In some sense, this
is explained by the perturbative calculation (4.97) around s = s∗, since the leading order
anomalous dimension of ε happens to vanish. By setting ∆ε = 1 and maximizing λ2

σσε, we
have extracted the low-lying spectrum using the extremal functional method of [90, 150, 242].
At ∆σ = 1

8
, this is guaranteed to agree with the spectrum of the SRI. However, Figure 4.15

also shows very interesting behaviour at ∆σ = 1
2

as we now explain.29

Here, the leading spin-0 and spin-2 dimensions are both close to 3. We can see that
this is exactly what happens in a generalized free field theory if we write the operators as

28This idea is due to Sheer El-Showk.
29For this step, we have used the spectrum.py script of [94] with parameters (mmax, nmax) = (5, 7).

The original version of [220] contained a footnote which said that values smaller than (mmax, nmax) = (5, 7)
produce solutions where the OPE coefficients are nowhere near converged. We expect this to no longer be
the case after an SDPB bug fix by Walter Landry and Ning Su.
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(a) 2D (b) 3D

Figure 4.14: The upper bound on ∆ε as a function of ∆σ. Our spin-2 constraint goes from
∆T ≥ d (blue) to ∆T ≥ d

2
+ 2 (red) in evenly spaced steps. Again, our main plots have

(mmax, nmax) = (7, 9) with dotted lines for (5, 7) and (3, 5). As expected, the convergence of
the red region is slower than that of the blue region.

σ∂2σ and σ∂µ∂νσ respectively. The dimensions of the next double-twist operators, found by
inserting extra powers of ∂2, appear somewhat too high but this could easily be an effect
of the numerics. This makes it tempting to conjecture that given a long-range Ising model
with dimensions (∆σ,∆ε), all other crossing symmetric four-point functions 〈σσσσ〉 have a
smaller value of λ2

σσε. This approach to studying the LRI is ultimately perturbative since
it requires the dimension of ε as input. Nevertheless, it could be useful for reducing the
number of Feynman diagrams one encounters. Instead of computing separate diagrams for
each anomalous dimension, the conjecture would enable us to compute only diagrams for γε
and then feed these into the bootstrap machinery to learn about other observables.

The sparseness of the spectrum in Figure 4.15 hints at another significant limitation.
By perturbing around s = s∗ or s = d

2
, it becomes clear that several additional families

of operators enter the σ × σ OPE in a generic LRI. In particular, the number of scalars
having ∆ < 9 should be much more than 4. Table 4.1 shows 16 such operators that can be
constructed with the deformation of [159, 160].

The tendency for the extremal functional method to miss several operators was discussed
in [94], which noticed that the numerical spectrum is dominated by double-twist families.
These happen to be the families required to match the crossed channel singularity produced
by a unique minimal-twist operator in the analytic bootstrap of [36, 37]. A loose conjecture
arising from this is that in any crossing equation with a twist gap, several multi-twist oper-
ators with significant OPE coefficients will nevertheless provide a negligible contribution in
the numerical boostrap. This is supported, for instance, by the test of the extremal func-
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(a) Spin-0 (b) Spin-2

Figure 4.15: A few scaling dimensions in the extremal spectrum having maximal λ2
σσε with

∆ε = 1. These are zeros of the functional that is found during the maximization procedure.
For all of the spins that we have tested, it is plausible that these could approximate primary
operators in the LRI.

tional method in [98], showing essential differences between the 2D and 3D Ising models.
So far, the most reliable numerical bootstrap spectra all come from special cases involving a
higher spin symmetry. It is worth mentioning that the analytic bootstrap has recently been
extended to handle these cases as well in [38, 39]. What this means for the present case is
that we only get a clear picture of the low-lying operators at ∆σ = 1

8
i.e. the 2D Ising spec-

trum. As soon as we raise ∆σ, the theory maximizing λ2
σσε becomes nonlocal. Even though

the nonlocality is small, we never see operators involving χ because their contributions in
the σ × σ OPE are small as well.

4.6.2 Three correlators

In order to improve upon our single correlator results, the next logical step is to bootstrap
the correlators 〈σσσσ〉, 〈σσεε〉 and 〈εεεε〉. For this system, it makes a difference whether
there are two relevant primary operators or three. Even if we did not know about the shadow
relation (4.30), we would be able to infer the existence of a third relevant primary from the
well known island of [78]. The assumptions that lead to an island are incompatible with the
LRI because there must be a continuous line of fixed points that lead away from the SRI.

Imposing the existence of three relevant primaries, as we should, we find a reassuring
exclusion plot in which all regions are connected. Figure 4.17 shows how they change as a
function of ∆T ∈ {3, 3.1, 3.2, 3.3, 3.4, 3.5}. Because 3 − ∆σ is different from 3∆σ, many of
the generalized free theory solutions from Figure 4.14 are excluded this time.
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Operator Dimension
ε 1
σχ 2
χ2 15

4

ε′ 4
εχ2 19

4

σχ3 23
4

χ∂2χ 23
4

σ′χ 6

Operator Dimension
εχ∂2χ 27

4

χ4 15
2

ε′χ2 31
4

σχ2∂2χ 31
4

χ∂4χ 31
4

ε′′ 8
εχ4 17

2

εχ∂4χ 35
4

Table 4.1: Some operators having ∆ < 9 in the CFT obtained by coupling the 2D SRI to a
generalized free field of dimension 15

8
. We only show the ones where both parts are scalars.

Anything involving χ decouples from σ × σ at s = s∗ where the quoted dimensions hold
exactly. At slightly smaller values of s however, these operators acquire a nonzero OPE
coefficient as long as they are even with respect to the diagonal Z2 from the two theories.

The boundary of each region has an upper branch and a lower branch. For the inter-
mediate values ∆T ∈ {3.1, 3.2, 3.3, 3.4}, we do not observe any evidence that either branch
contains a point corresponding to an LRI. If intermediate LRI models do saturate one of
the branches, existing estimates for the critical exponents suggest that this should be the
upper one. Lower branches for these values of ∆T all have ∆ε < 1.4. While there is no
candidate LRI kink in Figure 4.17, there is a “concave kink” for some of the lower branches
at ∆σ ≈ 0.58. It appears to be a coincidence that the leftmost edge of the ∆T ≥ 3.1 region
of Figure 4.16 is also near this value of ∆σ. If any bound in Figure 4.17 were to intersect
the region where CFTs can exist without χ, a vanishing λ2

σεχ would signal the presence of a
kink. Instead, we have found that this OPE coefficient decreases slightly at the special point
without going to zero. In Figure 4.18, we maximize λ2

σεχ for ∆T ∈ {3, 3.05, 3.1, 3.15}.30 The
fact that χ decouples at a single point in the local case supports the proposal in [159]. It also
agrees with the expectation that there is only one irreducible CFT with the same critical
exponents as the Ising model.

4.6.3 Six correlators

In order to gain non-perturbative information about the LRI critical exponents, we will need
to examine the minimal system of four-point functions that allows access to (4.160). This
consists of 〈σσεε〉, 〈σσχχ〉, 〈εεχχ〉 and the three identical correlators. This system yields a
much more restrictive region than Figure 4.17 and it will turn out to have interesting features.

30Maximizing an OPE coefficient helps to reduce any error that might have been introduced by our 10−4

bisection threshold. Once the boundary is found with sufficient precision, the spectrum is already uniquely
fixed and extremization procedures are superfluous.
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Figure 4.16: Constraints on the space of CFTs with one relevant primary operator of each
parity. The allowed region for ∆T ≥ 3 is blue, while the one for ∆T ≥ 3.1 is purple. In the
former case, an island around the 3D Ising model is separated from the rest of the region.
This excludes many long-range Ising models which require χ to be present.

In order to check that they are in the right place, we have summarized our perturbative data
about the LRI in Table 4.2. The last row resums the expansions around s = d

2
and s = s∗

using the [3, 3] Padé approximant. What this means is that we start with the ansatz

∆O(s) =
a0 + a1s+ a2s

2

1 + b1s+ b2s2
, (4.162)

and fix the coefficients by demanding that (4.162) have the correct Taylor expansion around
the two solvable points.

∆ε ∆T

ε-expansion 3
2
− 1

6
ε+ 0.18122ε2 7

2
− 1

2
ε− 0.05926ε2

δ-expansion 1.41263 + 0.269δ 3 + 2.333δ

[3, 3]-Padé 1.3759−1.7116s+0.4013s2

1−1.2086s+0.2758s2
4.7026−4.3183s+0.8191s2

1−0.7812s+0.0850s2

Table 4.2: Restating our perturbative results for unprotected operators in the LRI. These
expressions are specializations of (4.111) and (4.117), along with (4.93) and (4.97). To in-
terpolate between the two expansions, we have calculated the symmetric Padé approximant.

Excluding points for ∆T ∈ {3, 3.1, 3.2, 3.3, 3.4, 3.5} again reveals the boundaries in Figure
4.19. The lower branches are much more restrictive than those in Figure 4.17 even though
we have not made use of the superblocks yet. As an example, the plot for ∆T = 3 already
appears to single out the onset of mean-field theory — the blue region reaches a very narrow
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Figure 4.17: A multi-correlator version of Figure 4.14, computed with (mmax, nmax) = (3, 5).
The upper bounds are similar to the ones plotted before but the lower bounds are new. We
have plotted them using a simple bisection while also testing interior points to ensure that
there are no holes. Again, blue signifies ∆T ≥ 3 and red signifies ∆T ≥ 3.5.

throat at (∆σ,∆ε) =
(

3
4
, 3

2

)
. The lower branch for this plot also experiences a jump at

∆σ ≈ 0.65.31 These features persist for higher values of ∆T as well until the allowed region
splits into two lobes. The bottom lobe of the ∆T = 3.5 plot stays very narrow to the left of
the throat and ends at ∆σ ≈ 0.73. This leftmost edge continues to recede as the number of
derivatives is increased.

The regions shown here start to look more promising after we increase the number of
derivatives. The ∆T = 3.3 region, for instance, moves to the right of the jump and develops
two lobes that are connected by a narrow bridge. This makes it possible to plot a comparison
between the bottom lobes and the results of Table 4.2 for ∆T > 3.25. Instead of performing
this check ceteris paribus, we have removed the assumption that the [σχ]n,` operators are
protected. The main conjecture we have made can be tested after the fact by computing an
extremal spectrum at several points using the script in [94].

Allowing a continuum of odd-spin operators in the σ×χ OPE we have plotted the allowed

31The jump here would be less pronounced if we did not assume protected operators at dimensions given
by (4.144). To the left of ∆σ ≈ 0.65, it appears to make no difference whether we impose the existence of
this tower or not. We believe that most of the constraints here come from the OPE coefficient relations for
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Figure 4.18: The bound on λ2
σεχ as a function of ∆σ computed for (mmax, nmax) = (5, 7). The

minimum ∆T is 3 for the black line, 3.05 for the red line, 3.1 for the purple line and 3.15
for the blue line. The OPE coefficient is maximized along the upper and lower branches of
Figure 4.17. However, we have chosen not to go all the way to ∆σ = 0.6 along the upper
branch. Doing so would yield several intersecting lines that reduce visual clarity.

regions for ∆T ∈ {3.25, 3.3, 3.35, 3.4, 3.45} in Figure 4.20. Points on the edge, where we have
extracted the spectrum, have been highlighted if they exhibit one of the following interesting
properties.

1. A point is yellow if it contains a vector suitably close to [σχ]1,1. Our threshold is that
its dimension must be within 5% of 6.

2. A point is green if it additionally contains a symmetric tensor in σ×χ whose dimension
is within 5% of ∆T . Note that this is always true for the OPEs with Bose symmetry.

Points in the first set are likely to survive when we impose the non-renormalization of the
double-twist tower. Points in the second set are likely to survive when we use superblocks
or the full nine correlator system described in Appendix E.32 Further significance to these

ε that are captured in (4.161).
32Checking what survives by producing another exclusion plot is not always instructive. In many cases,

the change in a given bound is not visible to the naked eye.
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Figure 4.19: The allowed region in (∆σ,∆ε) space found by imposing crossing symmetry
and unitarity on the six correlator system that includes σ, ε and χ. As in Figure 4.17, the
most permissive region (the blue one) allows the first Z2-even spin-2 operator dimension ∆T

to be as low as 3, while the most restrictive region (the red one) forces it to be at least
3.5. The other regions have ∆T ∈ {3.1, 3.2, 3.3, 3.4}. Derivative orders are (mmax, nmax) =
(3, 5). These regions account for protected double-twist operators in σ×χ and use ordinary
conformal blocks which means that the 〈σσχχ〉 crossing equations are those of (4.156).

points can be seen by plotting the dimension of the first irrelevant scalar. In all long-range
Ising models, we expect a value reasonably close to 3 since σχ is marginally irrelevant at
s = s∗ and φ4 is marginally irrelevant at s = d

2
. Figure 4.21 shows that this is predominantly

achieved at the green and yellow points which cluster around the local minimum. Several
other exercises along these lines are possible, e.g. checking that the Z2-odd OPEs σ× ε and
ε × χ have low-lying operators in common as well.33 One could also imagine a comparison
involving OPE coefficients, in order to see that versions of (4.130) hold with multiple spinning
operators. In practice, we have found this difficult as some of the gamma functions are highly

33The validity of this has nothing to do with the LRI specifically. In any bootstrap problem that includes
several external scalars but not all of their mixed correlators, there are going to be OPEs that are not
constrained to exchange the same operators despite being identical in terms of representation theory. In
such a problem, the possibility of having two disjoint Z2-even OPEs, for instance, is generic but completely
unphysical.
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sensitive to small errors in the exchanged dimension.
Looking at the [3, 3] Padé approximant line in Figure 4.20, we see that it comes remark-

ably close to the green and yellow points. Even after a lobe becomes blunt enough that it
can no longer be considered a kink, it is apparently worthwhile to locate desirable features
in the extremal spectrum. This approach, advocated in [150], could perhaps reveal useful
information about the smooth ∆T < 3.25 boundaries in Figure 4.19. The crosses in Figure
4.20, being offset from the green and yellow points, simply reflect the fact that convergence
is noticeably slower near the (∆σ,∆ε) =

(
3
4
, 3

2

)
mean-field theory. They would appear very

close to the boundaries if we continued to plot them down to ∆T = 3.
It should come as no surprise that we have not seen any islands yet. If a point satisfies

crossing symmetry, unitarity and the shadow relation for some spin-2 gap ∆T , it clearly
continues to satisfy these criteria when ∆T is made less restrictive. To produce an island
in this situation, one must resort to imposing whichever additional gaps appear to be most
plausible [164]. It is natural to ask if an LRI island can be produced by applying this logic
in the spin-2 sector — i.e. by setting the continuum to begin at some ∆T ′ > ∆T so that the
leading spin-2 operator is isolated.

It turns out that this problem demonstrates the power of the superblocks (4.158). Spec-
tral plots analogous to Figure 4.21 tell us that the region carved out by ordinary conformal
blocks is perfectly compatible with a large spin-2 gap. It is only the extra OPE relations
encoded by the superblocks that ensure a more restrictive region as ∆T ′ is increased. Figure
4.22 shows our attempt to isolate the ∆T = 3.1 LRI by imposing ∆T ′ ≥ 4.5. The result is
a fairly large island in which the perturbative prediction from [159] can be found near the
bottom.34 There are most likely other allowed points outside this island that we have not
attempted to find. It would be interesting to check how small the spin-2 gap can be made
before the two regions reunite.

4.7 Other issues

4.7.1 Off-critical behaviour

Our discussion so far has focused on the phase transition where the relevant deformation
(T−Tc)φ

2 has had its coefficient tuned to zero. What about correlation functions at T 6= Tc?
More familiar statistical systems have exponentially damped two-point functions away from
criticality but this is no longer true in the presence of long-range forces. Indeed, we will
see that two-point functions of φ in the disordered phase (or two-point functions for the
fluctuations of φ in the ordered phase) have a power-law behaviour in the IR just like they

34The boundary obtained by using superblocks without any ∆T ′ gap is essentially the same as what we
would get from the ordinary blocks. This is no longer true for the higher values of ∆T that lead to lobed
regions in Figure 4.19 and Figure 4.20.
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do in the UV. As a result, the correlation length should be defined differently — it is a scale
at which one power-law becomes more important than the other.

Consider now the two-point function of φ in position space

〈φ(x)φ(0)〉 =

∫
eipx

|p|s + 1

dp

(2π)d
(4.163)

where we have normalized the “mass” to 1. This can be contrasted with the two-point
function of the short-range model in the disordered phase, which is obtained by setting
s = 2. In the short-range case, the propagator is an analytic function of momenta with poles
in the complex plane, leading to the exponential decay at long distances. On the other hand,
non-analyticity in the long-range case leads to power-law decay.

In fact at short distances x� 1 the integral is dominated by p� 1 where we can neglect
1 in the denominator and obtain

〈φ(x)φ(0)〉 ∼ 1

(2π)d
1

|x|d−s (x� 1) . (4.164)

consistently with ∆φ = d−s
2

. On the other hand, at long distances the integral is dominated
by p� 1 where we can take 1

|p|s+1
= 1− |p|s + . . . and find

〈φ(x)φ(0)〉 ∼ − 1

(2π)d
1

|x|d+s
(x� 1) , (4.165)

after dropping a purely local δ(x). This gives an IR dimension of φ in the disordered phase
as d+s

2
. Notice that the φ2 interaction is irrelevant for this value of the φ dimension, showing

the full IR stability of the disordered fixed point. Further interactions like φ4 are even more
irrelevant, justifying their neglect in the above discussion. The expansions of the integrand
we have used can be made rigorous with the asymptotic results of [243, 244].

4.7.2 Possibility of experimental observation

As the SRI is much more than a toy model, being realized in countless real-life phase transi-
tions [245], we would be remiss not to mention the possibility of studying the LRI in the lab
as well. First, it goes without saying that the validity of a V (r) ∼ θ(r − r0) potential relies
on universality. Observable potentials are always more complicated than a step-function.
Second, it should be just as obvious that the microscopic V (r) ∼ 1

r
is not the potential

that matters in a physical crystal either. Many-body screening effects modify the effective
potential being felt by a given atom when it is perturbed from its equilibrium position and
predicting one of these from first principles is often extremely difficult. In general, the only
claim we can make is that it will decay more rapidly than the Coulomb potential in a neutral
material. Depending on the details of the system, this could be a potential that we have
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called “short-range” — something that falls off at least as quickly as 1
rd+s∗

. Nevertheless, it
could easily be a power-law in which case the universality class should be regarded as an
s ≥ s∗ case of the LRI rather than the SRI. The difference between the two, as we have
shown, is the presence of the shadow field χ. Even though χ was decoupled at the crossover
in all of the calculations we performed, this statement relied on the continuum limit. An
experiment measuring an Ising-like phase transition that comes from a power-law potential
could very well see signatures of χ as long as it has enough sensitivity to lattice operators.
This would nicely complement the fact that different values of s above s∗ can already be
distinguished in materials that are taken to be continuous but finite in size [246].

A more tentative question is whether s < s∗ can be seen in the lab as well, signalling a
breakdown of universality in the continuum limit [247]. So far there is evidence that more
complicated theories (possibly outside the Ginzburg-Landau class) can be realized in this
way. Examples include some high-temperature magnetic and spin-ice materials [248, 249],
in which an anti-ferromagnetic short-range force is overcome by a ferromagnetic long-range
force, as well as magnetic thin films where the competition is reversed [250]. Realizations of
the long-range Ising model, on the other hand, currently appear to be limited to quantum
simulators. See [251, 252] which achieve tunable forces using trapped ions and [253, 254]
which do so using cold atoms. These experiments are useful for studying quantum phase
transitions close to zero temperature but it is likely that driving the system to a thermal phase
transition would introduce a radical departure from a Hamiltonian like (4.1).35 Why have
LRI physics not been seen in systems that are stable across a wide range of temperatures?
Although we do not have an answer to this question, we will spend the rest of this section
reviewing the force between two neutral hydrogenic atoms. This turns out to have two
important components — both of them short-ranged. Such a result cannot be extrapolated
to larger lattices without a severe amount of wishful thinking.

In the setup for this classic problem [259], we have protons at positions rA, rB and
electrons at positions r1, r2. The Hamiltonian H = H0 +Hint is given by

H0 =
p2

1

2m
+

p2
2

2m
− e2

r1A

− e2

r2B

Hint = e2

(
1

rAB
+

1

r12

− 1

r1B

− 1

r2A

)
. (4.166)

Corrections to the energy can be found perturbatively from the symmetric and anti-symmetric
ground-states of H0.

ψ±(r1, r2) =
1√

2± 2ζ2
[ψA(r1)ψB(r2)± ψA(r2)ψB(r1)] , ψI(ri) ≡

1√
πa3

e−
riI
a (4.167)

35A bootstrap approach with possible applications to this scenario was recently developed in [255–258].
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Expressing the inter-atomic distance in units of the Bohr radius, one can check that

ζ = e−ρ
(

1 + ρ+
1

3
ρ2

)
, ρ ≡ rAB

a
(4.168)

is the factor that appears in the normalization. Further integration reveals the following
first-order shift.

E
(1)
± = 〈ψ±|Hint |ψ±〉 =

e2

rAB
+
e2

a

I1 ± I2

1± ζ2
(4.169)

I1 = −1

ρ
+ e−2ρ

(
1

ρ
+

5

8
− 3

4
ρ− 1

6
ρ2

)

I2 = −2ζe−ρ(1 + ρ) + e−2ρ

(
5

8
− 23

20
ρ− 3

5
ρ2 − 1

15
ρ3

)

+
6

5ρ

[
ζ2(γ + log ρ)− 2

(
1− 1

3
ρ2 +

1

9
ρ4

)
Ei(−2ρ) + e2ρ

(
1− ρ+

1

3
ρ2

)2

Ei(−4ρ)

]

The sign of I2 tells us that E
(1)
+ < E

(1)
− . As the spatial wavefunction ψ+ must be paired

with an anti-symmetric spin part, this contribution to the potential is anti-ferromagnetic.
Another interesting property of (4.169) is its exponential decay for large ρ. This result, which
happens to be a 3D coincidence [260], is much stronger than what follows from dimensional
analysis.

For a less symmetric state, the αn term would decay as ρ−3n according to the multipole
expansion

Hint =
r1A · r2B − 3(r1A · r̂AB)(r2B · r̂AB)

r3
AB

+O

(
1

r4
AB

)
, (4.170)

and the first-order E(1) would always be dominant. The solution (4.169), on the other
hand, is special because the only surviving terms are non-perturbative in r−1

AB. It is therefore
necessary to compute E(2) to find the leading contribution at large distances. This potential,
called the van der Waals interaction, is proportional to α2/r6

AB. This is reminiscent of (4.1)
with s = 3, except for the fact that we are considering a two-site lattice rather than an
infinite one. We know that this is still not enough to get out of the short-range universality
class since

s∗ = d− 2∆SRI
σ (4.171)

is about 1.96 in three dimensions.
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Figure 4.20: Five allowed regions whose spin-2 restrictions increment from ∆T ≥ 3.25 on
the left to ∆T ≥ 3.45 on the right. They were found using ordinary conformal blocks with
(mmax, nmax) = (5, 7). Since no protected operators were assumed, the relevant crossing
equation for 〈σσχχ〉 is (4.154). Green points contain the operator (∆, `) = (∆T , 2) in all
Z2-even OPEs instead of just one of them. Green and yellow points contain a Z2-even vector
of dimension close to 6. All points that we have found to have neither property are marked
in black. The perturbative dotted line shows ∆ε as a function of ∆σ according to the Padé
approximant in Table 4.2. Points on this line that are predicted to have ∆T ∈ {3.3, 3.35, 3.4}
are denoted by crosses.

153



(a) ∆T = 3.3 (b) ∆T = 3.35

(c) ∆T = 3.4 (d) ∆T = 3.45

Figure 4.21: The dimension of the first irrelevant scalar in each of the four spectra extracted
at the points shown in Figure 4.20. These have been taken from the σ × σ, ε× ε and χ× χ
OPEs as the scalars in σ× χ do not show an interesting feature. Points that are yellow and
green respectively satisfy property 1 and property 2 as defined in the text. These points
have also been made larger.
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Figure 4.22: The island for the ∆T = 3.1 model computed with (mmax, nmax) = (3, 5).
Unlike Figure 4.19, which contains a much larger purple region for ∆T = 3.1, this uses
the full content of the shadow relation captured in the crossing equation (4.157) — i.e. it
was obtained by demanding crossing symmetry and unitarity for the ansatz built out of the
superblocks (4.158). An island only forms because of the superblocks and the fact that we
are imposing a spin-2 gap above ∆T . In this case, the gap is ∆T ′ ≥ 4.5. The old ∆T = 3.1
region that would be produced from a bootstrap with ordinary conformal blocks and / or
no ∆T ′ gap is shown with a dotted line for comparison.
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Chapter 5

Trajectories in a conformal manifold

In a d-dimensional conformal field theory, an exactly marginal operator is a primary scalar
of dimension d which does not pick up an anomalous dimension when it is added to the
CFT as a deformation. The space of CFTs that can be reached in this way is referred to
as a conformal manifold.1 When the points along it describe genuinely different theories,
not related by a relabelling of operators, we call a conformal manifold non-trivial. All non-
trivial conformal manifolds that have been discovered so far have some enhanced symmetry
beyond the conformal group SO(d + 1, 1). In particular, all known examples in d ≥ 3 are
supersymmetric. The reason for this could simply be better analytic control which makes
it easier to discover new theories, or there could be a fundamental obstruction to non-
supersymmetric conformal manifolds. It is therefore worthwhile to check if there are some
universal features of the operator algebra that we can associate with the presence of exactly
marginal operators. Just as the modern bootstrap [16] seeks to determine whether a putative
set of local operators can belong to a consistent conformal theory, there may be a test that
can narrow down the space of CFTs to the space of conformal manifolds.

The original references in this subject proved non-renormalization theorems to discover
conformal manifolds [261–265]. To some extent, they did so by making explicit reference to
a Lagrangian. Interestingly, some of these manifolds turn out to be strongly coupled at all
points. There is also a growing body of work developing the non-perturbative understanding
of these theories through the superconformal algebra [266–269]. The short multiplets to
which marginal operators must belong only exist in certain cases. Above 2D, these are
N = 1, 2 in 3D and N = 1, 2, 4 in 4D [270]. In these algebras, additional requirements
for finding a conformal manifold may be phrased in terms of representation theory and
recombination rules. Various aspects of superconformal manifolds have been deduced from
this line of reasoning including their dimensionality and the presence of complex structure.

1Continuous families of CFTs can arise in other ways as well. One example is the procedure in chapter
4 for constructing a line of nonlocal fixed points. Liouville theory may also be seen as a fixed line as one
varies the central charge. These do not fit the definition of a conformal manifold because the lines are not
traversed by deforming the CFT with a local operator.
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The orthogonal approach taken here and in [271] will use conformal perturbation theory
which does not rely on supersymmetry or the presence of a Lagrangian. The mnemonic

S 7→ S +

∫
ddxgiÔi (5.1)

is merely an abstract statement for how we deform correlation functions. Considering a
single direction on a conformal manifold that could be multi-dimensional, we will denote the
associated marginal operator and its coupling by Ô and g respectively. An infinite family
of constraints follows from setting β(g), the running of the coupling, to zero. The two-loop
term becomes a sum rule for even-spin CFT data analogous to the one in [16].

The local operators in a conformal manifold, even-spin or otherwise, obey many additional
restrictions that require more work to state. Although there is no known way to tell if a
set of scaling dimensions and OPE coefficients {∆i, λijk} is part of a conformal manifold,
the framework of conformal perturbation theory holds promise in telling us whether two
such sets can consistently be part of the same conformal manifold. The key is that when
there is a unique operator of each dimension, a set of differential equations exists for evolving
{∆i(g), λijk(g)} from one value of g to another. Subtleties arise when there is degeneracy and
especially when there is more than one marginal operator. In this case, there is a non-trivial
Zamolodchikov metric and the curvatures built up from it become interesting observables
that affect how the equations for d∆i

dg
and

dλijk
dg

must be defined [272, 273]. Even after we
limit ourselves to a single marginal operator, these equations can only be written down
once the appropriate conformal block expansions are known. This yields conformal block
requirements that are much steeper than those in other CFT techniques. For comparison, we
note that recent studies of the analytic bootstrap use conformal blocks with small external
spin that only need to be evaluated in certain limits [47, 274–276]. Bounds from spinning
correlators, recently found with the numerical bootstrap, use the full expressions, but again
the external spin is at most 2 [277–280]. The flow equations for conformal manifolds couple
blocks of all internal and external Lorentz representations. For this reason they seem to be
prohibitive in d ≥ 3.

Nevertheless, we will see shortly that the system can in fact be analyzed sensibly in d = 1.
The main result we have derived from this is that there is no level crossing for operators
of the same symmetry. The absence of level crossing has long been predicted on general
grounds but it remains a challenge to see how it is achieved. Because our argument assumes
no degeneracy, we have not answered whether level crossing can occur when there is more
than one marginal deformation. The program of applying our system to a known conformal
manifold is similar in spirit to an algorithm that was recently developed for the numerical
bootstrap. The authors of [150] saturated a dimension bound and then obtained all other
solutions to crossing on the edge of that bound through a set of evolution equations. We
envision an algorithm that accomplishes the same thing except in a setting where the spectra
belong to the same continuous line for a physical reason.
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5.1 Two-loop constraints

The standard framework for studying CFTs deformed by local operators is conformal per-
turbation theory [196, 209]. Defining O(∞) = limx→∞ x

2∆O(x), the order-n correction to
Ô(∞) is

gn0
n!

∫
ddx1 . . . d

dxn

〈
Ô(x1) . . . Ô(xn)Ô(∞)

〉
. (5.2)

Integrals of this form generically have logarithmic divergences which should be regulated by
a UV cutoff.2 Calling this cutoff Λ, it is enforced as a minimum distance between insertion
points in the integration region: |xij| < Λ−1. The divergences associated with shrinking this
circle are removed from renormalized correlators by expressing them in terms of the coupling
g = Λ∆̂−dg0. The beta function is

β(g) =
dg

d log Λ
= (∆̂− d)g + β2g

2 + β3g
3 + . . . , (5.3)

which should vanish for marginal Ô. Putting our theory in a box of volume V to handle an
IR divergence, the one-loop and two-loop terms involving log Λ may be read off from

1

V

∫
ddx1ddx2

〈
Ô(x1)Ô(x2)Ô(∞)

〉
∼ −2β2 log Λ

1

V

∫
ddx1ddx2ddx3

〈
Ô(x1)Ô(x2)Ô(x3)Ô(∞)

〉
∼ −6β3 log Λ + 6β2

2 log2 Λ . (5.4)

In the first integral, the OPE with x2 → x1 tells us that

β2 = −Sd−1

2
λÔÔÔ . (5.5)

The second integral is more interesting as it involves a four-point function. Recently, there
has been interest in approximating it using data from the numerical bootstrap [99, 159, 160].
A logarithmic divergence arises by letting x2 and x3 approach x1 while remaining of the
same order. Performing a conformal transformation, we may write β3 as a single integral of〈
Ô(0)Ô(x)Ô(ê)Ô(∞)

〉
where ê is an arbitrary unit vector. For each relevant operator in

the OPE Ô × Ô, there is a power-law singularity. Subtracting these,

β3 = −Sd−1

6

∫
ddx

[〈
Ô(0)Ô(x)Ô(ê)Ô(∞)

〉
−
∑

∆<d

λ2
ÔÔO

(
1

|x|∆ +
1

|x|2d−∆
+

1

|ê− x|2d−∆

)]

(5.6)

2An approach using dimensional regularization instead was developed in [281, 282].
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Figure 5.1: Once we send our four points to (0, z, 1,∞), R12, R23 and R13 map to the blue,
red and yellow z-plane regions respectively. We have used a change of variables to give all
integrals the blue domain, which we denote by R.

is the net result.3 There is a different form of (5.6) that will be more useful for our purposes
[99]. It comes from writing (5.4) as an integral over R12 ∪ R23 ∪ R13 where Rij means
that |xij| is smaller than the other two distances. These are precisely the regions of optimal
convergence for conformal block expansions in the s, t and u channels. Figure 5.1 plots them
for our desired kinematics. By covariance of the correlator, they can all be swapped for the
region R ≡ {|x| < 1, |ê− x|} where the only potential singularity is at the origin. With this
in mind,

β3 = −3
Sd−1

6

∑

O

λ2
ÔÔO

∫

R
ddx|x|−2dgO(u, v)

∣∣∣∣
reg

. (5.7)

The factor of 3 reflects the crossing symmetry of the four-point function. Later, when we
deal with mixed correlators, we will have to treat each permutation separately. By setting
the terms above to zero,

∆̂ = d

λÔÔÔ = 0
∑

O

λ2
ÔÔO

∫

R
ddx|x|−2dgO(u, v)

∣∣∣∣
reg

= 0 (5.8)

are the conditions that a conformal manifold imposes on the operator algebra. For the rest
of this section, we will focus on the non-trivial line of (5.8) and refer to it as the sum rule.
As a first step in understanding the ingredients of the sum rule, we may plot the conformal

3Equivalently, one could omit ∆ = 0 from the sum and then invoke some notation to change the four-point
function to the connected four-point function.
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Figure 5.2: Plots showing how a primary operator in Ô × Ô contributes to the beta func-
tion. These follow from a numerical integral but they may be obtained analytically in one
dimension.

block integrals as functions of the exchanged dimension ∆. Figure 5.2 does this for d = 2 but
the same basic features appear in all dimensions. Looking at the scalars, we see that relevant
and irrelevant operators contribute with opposite signs. The discontinuity at ∆ = d arises
because the counterterm 1

|x|∆ , introduced to cure a UV divergence, becomes IR divergent as
well at marginality. Higher spin operators, which exist for d ≥ 2, appear to have the same
sign for all ∆. However, they alternate with spin according to ` (mod 4). This phenomenon
was noted in [283] which also included plots for d = 4.

5.1.1 Ambiguities in the sum rule

An important feature of the scalar plot in Figure 5.2 is that it does not pass through the
origin. This means that in the sum rule derived from a connected four-point function in (5.6),
the identity term is finite. Although this might seem strange at first sight, it is an inevitable
consequence of using counterterms in bounded regions. There are different ways to do this
when crossing symmetry is not manifestly satisfied, leading to a freedom in how the sum rule
is presented. The point is that the minimal subtraction we have adopted for an integrated
conformal block is not the same as subtracting terms of the form 1

|x|∆ + 1
|x|2d−∆ + 1

|ê−x|2d−∆

given in (5.6). If we truly wanted to do the latter, our integrals of conformal blocks would
need to be regulated by subtracting finite terms as well. In this discussion, we will explore
the differences between these two choices. It should also be clear that the number of choices
is infinite since we are free to apply any linear combination of the two above. We should
emphasize that this is not a physical ambiguity. Data solving one version of the sum rule will
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(a) (b)

Figure 5.3: We represent Rd as a blob with the function to be integrated inside it. The left
and right choices both compute the two-loop beta function. Because Rd has no boundary,
the integrated power-laws being subtracted are equal to their divergent parts.

automatically solve another if it comes from a crossing symmetric theory. This reflects the
fact that the beta function is well defined within our scheme. It is even scheme independent
at two loops, as explained in [99]. Nevertheless, it represents an ambiguity in characterizing
the beta function term of an abstract conformal multiplet.

For simplicity, suppose that the only relevant scalar in Ô×Ô is the identity. In this case,
the right-hand side of Figure 5.3 is a cartoon that represents the integration done in (5.6).
To change prescriptions, it will be helpful to distinguish between a subtracted function and
its isolated divergence. We may consider a subtraction of 1

|z|2d from f(z), integrated over an
r-ball for instance.

∫

B(r)

ddzf(z)− 1

|z|2d =

∫

B(r)

ddzf(z)− Sd−1

d
(r−d − Λd)

∫

B(r)

ddzf(z)− 1

|z|2d
∣∣∣∣
div

=

∫

B(r)

ddzf(z) +
Sd−1

d
Λd (5.9)

The expression that subtracts the full power-law includes an extra Sd−1

d
r−d compared to

the expression that only subtracts the divergence. Clearly, r → ∞ makes these procedures
equivalent, explaining why both halves of Figure 5.3 are the same.
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(a) Equivalent to Figure 5.3 (a) (b) Equivalent to Figure 5.3 (b)

Figure 5.4: The cartoons obtained by splitting Figure 5.3 into s, t and u channel regions. In
both cases, the identity block is not annihilated. A divergence subtraction is now no longer
the same as a full subtraction. In particular, removing div everywhere in the left blob would
not compute a physical quantity.

As soon as we expand in conformal blocks, we must partition space into the blue, red and
yellow regions from Figure 5.1. These are represented in Figure 5.4 by the same colors. The
type of subtraction being performed on the left-hand side is the choice made in this chapter.
It makes use of the fact that divergences are localized around special points, allowing us to
keep only one in each region. It is now clear that power-laws present in the blocks for relevant
scalars will not be fully removed. After divergences are subtracted, finite boundary terms
will remain. Another choice that we could have made is the approach of the right-hand side
— subtracting the same original counterterm in all three channels. The equivalence between
the two choices relies on crossing symmetry. In this case, a power-law like 1

|z|2d is fully

cancelled but the additional appearances of 1 and 1
|1−z|2d mean that we are subtracting too

much. Finite parts will thus persist unless we find a natural way to pair these counterterms
with the blocks of irrelevant operators instead. In this regard, the lightcone bootstrap has
successfully matched crossed channel singularities to infinite towers of operators in the direct
channel [36, 37]. However, these are the well known towers of double-twist operators which
only exist asymptotically.

The observation that the two sides of Figure 5.4 are equivalent is not new. The divergence
subtraction on the left-hand side was referred to as “method 2” in [159]. “Method 1” was
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discussed in a context where the four-point function was known exactly, but it can also be
applied in cases where we have to use the conformal block expansion. This would make it
identical to the right-hand side of Figure 5.4.

5.1.2 The alternating sign

We now turn to the question of why the contributions plotted in Figure 5.2 have signs that
alternate with spin. Although a general proof eludes us, we may show that the correct sign
is predicted by the large-∆ limit. It is convenient to express everything in terms of the radial
co-ordinate

ρ =
z

(1 +
√

1− z)2

r = |ρ|
η = cos arg ρ . (5.10)

For the large-∆ block, we use

g∆,`(r, η) =
`!

(2ν)`

(4r)∆Cν
` (η)

(1− r2)ν
√

(1 + r2)2 − 4r2η2

(
1 +O

(
1

∆

))

ν =
d− 2

2
(5.11)

which is the entire part from the meromorphic expansion in [24]. It is easy to check that the
region C \ (1,∞) for z maps to the unit circle for ρ [84]. Therefore G∆,`(r, η) vanishes for
∆→∞ and so must an integral of it over a bounded region. Another thing to check is that
R, the region that looks like a cutoff circle, maps to {(r, η)| − 1 < η < 1, 0 < r < r∗(|η|)}
where r∗(|η|) is the smaller solution of r2 − 4r + 1 = 2r|η| [99]. With a little bit of work to
find the measure, our integral is

I =
`!

(2ν)`

∫ 1

−1

dη

∫ r∗(|η|)

0

dr
√

(1 + r2)2 − 4r2η2(4r)∆−d−1(1− r2)ν(1− η2)ν−
1
2Cν

` (η) . (5.12)

Everything in the integrand except the Gegenbauer polynomial is sign-definite and peaks at
η = 0. It therefore seems that the sign of I should be controlled by the sign of Cν

` (0). This is
indeed (−1)`/2 as can be seen in various ways. Perhaps most easily, we can just use the fact
that each Gegenbauer is an even polynomial with ` zeros on the unit interval. The fact that
Cν
` (±1) > 0 then gives us the right sign for Cν

` (0). To see why this sign persists, consider

∫ 1

−1

dη
Cν
` (η)

Cν
` (0)

f(|η|)(1− η2)ν−
1
2 . (5.13)
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If f is identically 1, then it is a special case of a Gegenbauer polynomial and (5.13) vanishes
by orthogonality. This means that the positive sign near η = 0 is exactly cancelling the
negative signs that appear elsewhere. The integral should then become more positive once
we change f to a positive function that peaks at zero and decays in either direction. We
may check that this holds for

f(|η|) =

∫ r∗(|η|)

0

dr
√

(1 + r2)2 − 4r2η2(4r)∆−d−1(1− r2)ν , (5.14)

but this only proves our suspicion when ` ≤ 2. For higher spins, we will need information
about f beyond monotonicity. A saddle point evaluation of (5.14) leads to

f(|η|) ≈ 4∆−d

∆− d− 1

√
1 + |η|(1− r∗(|η|)2)νr∗(|η|)∆−d+1 . (5.15)

For sufficiently large ∆, the increasing function
√

1 + |η|(1 − r∗(|η|)2)ν does not spoil the
decrease of r∗(|η|)∆−d+1. Therefore, we may consider the parts of (5.13) on either side of the
first zero of Cν

` (η). Call this point η0. For the η > η0 part of (5.13) which includes negative
contributions, the crudest underestimate is

I> ≥ − 4∆−d

∆− d− 1
K>r∗(η0)∆−d+1

K> = |minCν
` (η)/Cν

` (0)| (1− η0)
√

1 + η0(1− r∗(η0)2)ν . (5.16)

We may underestimate the positive contribution from η ∈ [0, η0] by just taking η ∈
[
0, η0

2

]
.

This yields

I< ≥ 4∆−d

∆− d− 1
K<r∗

(η0

2

)∆−d+1

K< =
∣∣∣Cν

`

(η0

2

)
/Cν

` (0)
∣∣∣ η0

2

√
1 +

η0

2

(
1− r∗

(η0

2

)2
)ν

. (5.17)

Since K> and K< are independent of ∆, it is easy to choose ∆ such that [r∗
(
η0

2

)
/r∗(η0)]∆−d+1

is larger than K>/K<.

5.1.3 Realizations

The simplest conformal manifold is probably the compactified free boson in two dimensions.4

While the absence of a beta function in a free theory hardly needs to be stated, it is instructive
to discuss this model from symmetry considerations alone. At a generic radius, the symmetry

4We use the term “manifold” loosely, as the moduli space is not smooth at the self-dual radius.
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is given by two copies of the affine U(1) algebra. The current J and its modes an satisfy

J(z)J(w) =
1

(z − w)2
+ . . .

[an, am] = nδm+n,0 . (5.18)

The object T =: J2 :, known as the Sugawara stress tensor, has all of its properties deter-
mined from (5.18). Specifically,

T (z)T (w) =
1

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w + . . .

Lm =
1

2

∑

n∈Z

: am−nan : (5.19)

which implies the Virasoro algebra for central charge 1. This leads to a simple relation
between the charges and conformal weights of primary operators; h = q2. We therefore see
that JJ̄ is a marginal deformation because the two pieces have charge ±1.

Cardy found this model through a bottom-up approach while searching for a fixed line
that did not require finely tuned OPE coefficients. In [284], he showed that

〈
Ô(0)Ô(z, z̄)Ô(1)Ô(∞)

〉
= |z|−4G(z, z̄) (5.20)

= 2<
[

1

z2
+

1

(1− z)2
+

1

z̄2(1− z)2

]
+

1

|z|4 +
1

|1− z|4 + 1

is the unique crossing symmetric four-point function with a vanishing regulated integral
whose singularities involve only the Virasoro identity block. We have separated the connected
and disconnected pieces above. The holomorphic factorization looks like

G(z, z̄) = g(z)g(z̄)

g(z) =

(
z2 − z + 1

1− z

)2

= 1 + 2z2 +
∞∑

k=2

kzk+1 . (5.21)

The expansion of (5.21) into SL(2;R) blocks is

g(z) = 1 +
∞∑

n=1

cnz
2n

2F1(2n, 2n; 4n; z)

cn =
2n− 1

4n−1

(2n)!

(4n− 3)!!
, (5.22)
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yielding explicit OPE coefficients in Ô × Ô.5 A spinning operator (labelled by non-negative
integers n, n̄) has λ2

ÔÔO = 2cncn̄, while a scalar operator has λ2
ÔÔO = c2

n. Using these OPE
coefficients, one can proceed to integrate the SL(2;C) blocks in (5.20). It should be no
surprise that this verifies the sum rule (5.8). The only scalar of ∆ < 2 in this Virasoro
identity block is the quasiprimary I itself. This would make it a dead-end CFT if we took
the unusual step of regarding this subsector of the free boson as a theory in its own right.
Because no relevant deformations contribute to the beta function, the model owes marginality
to the appearance of both signs in Figure 5.2.

The known examples of conformal manifolds above d = 2 are superconformal manifolds.
Let us discuss 4D theories in decreasing order of supersymmetry. The N = 4 theories
will have an exactly marginal operator whenever they have a stress-energy tensor. Both of
these are in a multiplet whose primary transforms in the 20′ representation of the SU(4)
R-symmetry. Reassuringly, there is no way for this to recombine with another multiplet.
There is a well known conjecture that all N = 4 SCFTs fall into the Super Yang-Mills class.
The situation in N = 2 is similar with classical marginality implying exact marginality again
due to recombination rules. The difference is that local N = 2 SCFTs do not automatically
require the multiplet for marginal operators to be present. Indeed, known N = 2 SCFTs
include conformal manifolds but also a large zoo of isolated fixed points [286]. Finally,
classically marginal operators are ubiquitous in N = 1 theories as descendants of scalar
chiral primaries. These primaries obey ∆ = 3

2
|r|, where we are interested in r-charge 2 to

get the multiplet of a superpotential. To prevent this from recombining with a conserved
current multiplet, one needs extra input such as the mechanism described in [266].

Since we must have a solved theory to fully apply (5.8), we are essentially limited to
examples like free N = 4 SYM or free N = 2 SQCD with the right matter content to make
it conformal. What might be more interesting is checking the contribution of particular
supermultiplets. BPS multiplets, which have fixed dimension whenever they appear, could be
treated once. When an unprotected multiplet has correlators of its descendants determined
by those of the primary, its contribution could be plotted as a function of ∆ analogously to
Figure 5.2. This is not the case for long multiplets with nilpotent superconformal invariants.
In these superconformal blocks, the coefficients of bosonic blocks that appear are theory
dependent [157, 230, 287]. Even before these exercises are done, it is clear that (5.8) will not
allow us to see individual cancellation within a given block. As stated earlier, our current
form of the sum rule is contaminated by counterterms such that even the identity — the
supermultiplet with no descendants at all — contributes a finite piece. This should be
addressed in any serious attempt to study the structure of the OPE applicable to the beta
function.

5We have guessed (5.22) with the help of OEIS [285]. However, a proof should be possible with the
technology of [136].
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5.2 Evolution equations

To begin exploring the landscape of conformal manifolds, the sum rule (5.8) is the most nat-
ural starting point. We would like to emphasize, however, that CFTs with exactly marginal
deformations obey a much larger set of constraints. If a continuous line of theories has a
solution at one point, these constraints are in principle enough to solve for local operators in
the theories at all other points. The idea is to flow along the manifold in a given direction
by applying the first-order shifts

δ∆i = −δgSd−1λiiÔ

δλijk = δg

∫

R
ddx

〈
Oi(0)Ô(x)Oj(ê)Ok(∞)

〉 ∣∣∣∣
reg

+ perms (5.23)

repeatedly.6 The permutations denote integrals over R with different (i, j, k) orderings. As
discussed in the last section, this is equivalent to integrating the first permutation over all
of space. Because the marginal operator takes us from one CFT to another, we will always
be able to use the conformal block expansion on the right-hand side of (5.23). This allows
us to write the results of conformal perturbation theory in exponentiated form:

d∆i

dg
= −Sd−1λiiÔ

dλijk
dg

=
∑

O

λiÔOλjkO

∫

R
ddx

gO(x)

|x|∆i+d

∣∣∣∣
reg

+ perms . (5.24)

The sum rule from the last section is the special case found by taking Oi, Oj and Ok to be

Ô itself.
Following OPE coefficients along the manifold is only meaningful if the deformation by

Ô preserves the starting normalization of all operators. In the absence of level crossing and
other non-generic behaviour, it is possible to achieve this, but only in a particular scheme.
This is, of course, the one we have been using which subtracts power-law divergences in the
OPE. As stated in [99], other schemes — which differ by a finite part — can be recast into
this language if we modify OPEs involving Ô to include a contact term:

Ô(x)Oi(0) ∼ αδ(x)Oi(0) . (5.25)

It is clear from this that operator norms will shift by an O(α) amount and therefore be
scheme dependent. Although we focus on non-degenerate spectra for simplicity, the situation

6Strictly speaking, the OPE coefficient λiiÔ should be summed over all tensor structures if Oi is not a
scalar.
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becomes more interesting when we are allowed to write contact terms of the form:

Ô(x)Oi(0) ∼ αji δ(x)Oj(0) . (5.26)

In this case, the field redefinitions needed to return to the initial normalization include
not only rescalings but linear combinations within a degenerate subspace. While it is still
possible to use a scheme that removes such mixing at a point, there is no guarantee that we
may do so globally [272, 273].

Clearly, the infinite coupled system (5.24) will need to be truncated if one hopes to use
it numerically. It is also unrealistic to expect a subset of the equations in (5.24) to close
among themselves. In particular, this means that one will have to compute the trajectories
of OPE coefficients λijk(g) even if she is only interested in the dimensions ∆i(g). It also
means that CFT data involving only scalars will still receive contributions from spinning
conformal blocks. For this reason, (5.24) is most readily accessible in d = 1.

5.2.1 One dimension

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

Figure 5.5: Continuing to complex z, our blocks have one branch cut from −∞ to 0 and
another from 1 to ∞. This differs from higher-dimensional blocks which are analytic on
C \ (1,∞). As an example, we may multiply two SL(2;R) blocks to get an SL(2;C) block.
This causes the left cut to cancel and the right cut to double.

Unlike in higher dimensions, there is only one cross-ratio on which 1D conformal blocks
can depend. We take this to be z = x12x34

x13x24
. The explicit functions

gO(z) = z∆
2F1(∆−∆12,∆ + ∆34, 2∆; z) , x1 < x2 < x3 < x4 (5.27)
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were found in [288, 289]. Because the region of validity does not cover all of R, we will need

g̃O(z) =

(
z

z − 1

)∆

2F1

(
∆ + ∆12,∆ + ∆34, 2∆;

z

z − 1

)
, x2 < x1 < x3 < x4 (5.28)

as well. Using (5.27) for z ∈ (0, 1
2
) and (5.28) for z ∈ (−1, 0) leads to six regions. These

correspond to the six possible orderings of x1, x2, x3 after fixing x4 = ∞.7 Putting back
kinematic factors, we have

dλijk
dg

=
∑

O

(λiÔOλjkOI1 + λÔiOλjkOI2) + perms

I1 =

∫ 1
2

0

dz
gO(z)

z∆i+1

I2 =

∫ 0

−1

dz
g̃O(z)(1− z)∆k−∆j

(−z)∆i+1
. (5.29)

A straightforward calculation yields

I1 =
z∆−∆i

∆−∆i
2F1(∆−∆i,∆ + ∆j −∆k, 2∆, z)

∣∣∣∣
1
2

0

→ 2∆i−∆

∆−∆i
2F1

(
∆−∆i,∆ + ∆j −∆k, 2∆,

1

2

)
(5.30)

where we have dropped finitely many terms in the last step. This amounts to renormalization
as the negative powers of z are precisely the divergences from ∆ < ∆i operators in Oi × Ô.
These are implicitly assumed to be subtracted in the naive integrals (5.29).

To proceed further, we will need some identities, namely the two Pfaff transformations
which combine to give an Euler transformation.

2F1(a, b, c, z) = (1− z)−a2F1

(
a, c− b, c; z

z − 1

)

= (1− z)−b2F1

(
c− a, b, c; z

z − 1

)

= (1− z)c−a−b2F1(c− a, c− b, c; z) (5.31)

7This phenomenon of the s-channel splitting into two pieces occurs because there is no continuous way
to move one operator around another. One consequence of this is that only cyclic permutations of (i, j, k)
leave λijk invariant [116].
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Using these on the second integral,

I2 =

∫ 0

−1

dz(−z)∆−∆i−1
2F1(∆−∆i + 1,∆ + ∆j −∆k, 2∆; z) . (5.32)

We now renormalize and use a Pfaff transformation to send the argument −1 back to 1
2
.

I2 →
2∆i−∆

∆−∆i
2F1

(
∆−∆i,∆−∆j + ∆k, 2∆;

1

2

)
(5.33)

We might have expected this form because the switch (x1,∆1) ↔ (x2,∆2) is the same as
(x3,∆3)↔ (x4,∆4). We arrive at our full coupled system by permuting labels in the results
above.

d∆i

dg
= −2λiiÔ

dλijk
dg

=
∑

O

2∆i−∆

∆−∆i

[
λiÔOλjkO2F1

(
∆−∆i,∆ + ∆jk

2∆
;
1

2

)
+ λÔiOλjkO2F1

(
∆−∆i,∆ + ∆kj

2∆
;
1

2

)]

+
∑

O

2∆j−∆

∆−∆j

[
λjÔOλikO2F1

(
∆−∆j,∆ + ∆ik

2∆
;
1

2

)
+ λÔjOλikO2F1

(
∆−∆j,∆ + ∆ki

2∆
;
1

2

)]

+
∑

O

2∆k−∆

∆−∆k

[
λkÔOλijO2F1

(
∆−∆k,∆ + ∆ij

2∆
;
1

2

)
+ λÔkOλijO2F1

(
∆−∆k,∆ + ∆ji

2∆
;
1

2

)]

(5.34)

When ∆ = ∆i is exchanged, it is helpful to use the formula

∂

∂γ
2−γ2F1

(
γ,∆ + ∆jk

2∆
;
1

2

) ∣∣∣∣
γ=0

= − log(2) +
∆ + ∆jk

4∆
3F2

(
1, 1,∆ + ∆jk + 1

2, 2∆ + 1
;
1

2

)
.

(5.35)
There are two pertinent comments to be made about these equations. The first is that, as
with the sum rule, we have made a choice for how to remove power-law divergences associated
with individual conformal blocks. Our previous discussion, regarding Figure 5.3 and Figure
5.4, is therefore applicable to the ODE system as well. We could, in principle, find other
expressions to replace (5.34) that are just as correct. The predictions of these equations
would only differ from those of (5.34) if they were used to evolve an initial condition that
did not correspond to a CFT with an exactly marginal coupling.

The second is that we have not yet assumed invariance under parity. As there is no other
dimension, we could just as well call it time-reversal. In a 1D parity-violating theory, it is
often said that the dynamical part of the four-point correlator is not only a function of the
cross-ratio z [290]. This means that even for identical operators, 〈O(x1)O(x2)O(x3)O(x4)〉
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with the points sent to (0, z, 1,∞) need not have any kinematical relation to the same
correlator with the points sent to (z, 0, 1,∞). In our derivation above, when we wrote each
integrand in terms of the position of Ô, we did not assume that these could be glued together
in a parity-preserving way. Doing so would amount to a restriction on the OPE coefficients.
Consider a partial wave in the expansion of 〈O1(x1)O2(x2)O3(x3)O4(x4)〉:

λ12Oλ34Oz
∆−∆1−∆2

2F1(∆−∆1 + ∆2,∆ + ∆3 −∆4; 2∆; z) . (5.36)

Under (12)(34), z maps to itself but (5.36) maps to

λ21Oλ43Oz
∆−∆1−∆2(1− z)∆1−∆2−∆3+∆4

2F1(∆ + ∆1 −∆2,∆−∆3 + ∆4; 2∆; z) . (5.37)

which suggests the Euler transformation. We see that (5.37) is only the same function if λijk
and λjik differ at most by a sign. More generally, parity-preserving four-point functions must
be invariant under {(), (12)(34), (13)(24), (14)(23)} = Z2 × Z2 — the set of transformations
that stabilize z. This reflects the fact that there are 6 channels, but 24 configurations of
four points. A non-trivial check is that, when OPE coefficients are restricted as above, our
differential equation for λijk has the S4/(Z2 × Z2) = S3 symmetry befitting three operators

that can couple to the parity-even Ô. Parity symmetry is common in defect CFTs, for
example, because it is inherited from the parent theory.

5.2.2 Avoided level crossing

Even if one does not have a concrete model of a non-trivial conformal manifold in one
dimension, a general prediction that can be distilled from (5.34) is a strong preference against
nearly degenerate operators. Consider two primaries O1 and O2 where, for some value of
the coupling g0, ∆1 − ∆2 is parametrically small. We take it to be positive without loss
of generality. By the von Neumann-Wigner non-crossing rule, we expect it to stay positive
for g > g0. For a demonstration of this occuring in maximally supersymmetric Yang-Mills
theory, see [33]. Also, [291] discussed this in the context of the 1

N
expansion where the

“distance of closest approach” is determined by the mixing matrix between planar and non-
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planar eigenstates. Taking the second derivative of one of the dimensions,

d2∆1

dg2
= −2

dλ11Ô
dg

= −4
∑

O

2∆1−∆

∆−∆1

λ2
1ÔO2F1

(
∆−∆1,∆ + ∆1 − 1

2∆
;
1

2

)

−4
∑

O

2∆1−∆

∆−∆1

λÔ1Oλ1ÔO2F1

(
∆−∆1,∆−∆1 + 1

2∆
;
1

2

)

−4
∑

O

21−∆

∆− 1
λÔÔOλ11O2F1

(
∆− 1,∆

2∆
;
1

2

)
. (5.38)

Our ability to quickly take the second derivative is only guaranteed because we are consider-
ing a manifold that has only one marginal operator and therefore a flat connection [272, 273].
Three values of ∆ lead to small denominators in (5.38) but the only one that can dominate
the sum is ∆ = ∆2. Indeed, ∆1 and 1 yield divergences whose renormalized versions are
O(1) numbers in view of (5.35). Knowing this, we can approximate the differential equation
as

d2∆1

dg2
≈ 4

λ2
12Ô2∆1−∆2

∆1 −∆2

[
2F1

(
−∆12,∆2 + ∆1 − 1

2∆2
;
1

2

)
+ 2F1

(
−∆12,∆2 −∆1 + 1

2∆2
;
1

2

)]

≈
8λ2

12Ô
∆1 −∆2

. (5.39)

In the first step, we have assumed that our theory has a parity symmetry. Since operators
with different quantum numbers are allowed to cross, we are interested in O1 and O2 which
have the same parity. This means that λ11Ô, λ22Ô and λ12Ô all exist and are independent

of the label ordering. After switching the labels to find d2∆2

dg2 , the differential equation for
y ≡ ∆1 −∆2 is

d2y

dg2
=

16λ2
12Ô
y

. (5.40)

It is not necessarily true that λ12Ô is slowly varrying compared to y. Therefore we will
compute its variation by going back to (5.34).

dλ12Ô
dg

≈ 2

∆2 −∆1

λ12Ôλ22Ô +
2

∆1 −∆2

λ12Ôλ11Ô

=
2λ12Ô
y

(λ11Ô − λ22Ô)

= −λ12Ô
y

dy

dg
. (5.41)
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Solving this separable equation yields

d2y

dg2
=

2c

y3
(5.42)

where c is a positive constant. The right-hand side is − d
dy
U(y) for the potential function

U(y) = c
y2 . Having turned this into a 1D classical scattering problem, we see that U(y) is

always a repulsive potential. In particular, U(0) = +∞ means that a shrinking y will always
reach a turning point.

This argument appears not to rely on one dimension. The crucial feature we have used
is that

dλijk
dg

contains a 1
∆−∆i

singularity for each dimension ∆ primary in Oi × Ô. To see
this appearing more generally, consider the regulated integral

∫

B(r)

ddx
〈
Oi(0)Ô(x)Oj(ê)Ok(∞)

〉
(5.43)

where r � 1. Even if we cannot evaluate (5.43) exactly, we know that one term of it will
come from inserting the pair of states |O〉 〈O|. It can then be argued that operators with
∆→ ∆i will dominate over all other choices. In the all-scalar case for instance, the O term
of the integral becomes ∫

B(r)

ddx
λiÔOλjkO
|x|d+∆i−∆

(5.44)

which leads to r∆−∆i

∆−∆i
. Depending on the sign of ∆−∆i, the boundary term is either manifestly

zero, or zero as a result of our regulating procedure.
Besides demonstrating agreement with [291], lack of level crossing may be seen as a

consistency check of the equations we have been using. If operator pairs with ∆1 ≈ ∆2 could
occur throughout the conformal manifold, the differential equation for λ11Ô would contain
terms that are large — possibly large enough to combat the suppression by powers of g in
conformal perturbation theory. From this point of view, it is encouraging that our system
abhors the regime y � 1.

5.2.3 The compact free boson

Despite our success in the previous calculation, the question of whether evolution equations
can be used to solve a conformal manifold is still open. We are therefore asking whether (5.24)
contains a full description of the operator algebra, including non-perturbative dynamics. As
a first indication that this is plausible, we will show that the compact free boson satisfies
the desired ODE system exactly.

If the free boson theory is written in terms of a fundamental field φ(z, z̄), we may use
the equation of motion to split it into holomorphic and anti-holomorphic parts; φ(z, z̄) =
X(z) + X̄(z̄). When the fields take values on a circle of radius r, this leads to the on-shell
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action

S = − 1

π

∫
dzdz̄ ∂X∂̄X̄ , X ∼ X + 2πr . (5.45)

The prefactor is chosen so that the U(1) current, J(z) ≡ i∂X(z), is unit normalized. We have
already seen that the marginal operator in this model is Ô = JJ̄ . Since this is proportional
to the Lagrangian density,

S + δg

∫
dzdz̄ Ô = (1 + πδg)S . (5.46)

To get back to the original action, we must rescale X and X̄ by
√

1 + πδg. This shifts the
compactification radius by δr = 1

2
πrδg, allowing us to solve

r = r0e
π
2
g . (5.47)

It is enough to check that (5.24) is satisfied for the U(1) primaries. These are the

Vq,q̄(z, z̄) =: ei
√

2qX(z)ei
√

2q̄X̄(z̄) : vertex operators. By periodicity and single-valuedness, the
charges are specified by two integers [292]

(
√

2q,
√

2q̄) ∈ Γ =
{(n

r
+
mr

2
,
n

r
− mr

2

) ∣∣∣ m,n ∈ Z
}
. (5.48)

Combining (5.47) with (5.48), we find

d∆(m,n)

dg
=

d

dg

(
q2 + q̄2

)

= −π
(
n2

r2
− m2r2

4

)
. (5.49)

To see if our equations predict this, we must evaluate
〈
Ô(z, z̄)V(m,n)(z1, z̄1)V ∗(m,n)(z2, z̄2)

〉
.

This is simple because the Virasoro primary Ô is in the identity multiplet of U(1). Using
the fact that J = a−1I, the Ward identities

J(z)Vq,q̄(w, w̄) =
q

z − wVq,q̄(w, w̄) + . . .

J̄(z̄)Vq,q̄(w, w̄) =
q̄

z̄ − w̄Vq,q̄(w, w̄) + . . . (5.50)
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are easy to derive. This leads to the OPE coefficient

λ(m,n)(m,n)Ô = qq̄

=
1

2

(
n2

r2
− m2r2

4

)
. (5.51)

The first equation in (5.24) is therefore verified.
Turning to the second equation, the left-hand side vanishes by the well known OPE of

vertex operators:
λ(m1,n1)(m2,n2)(m3,n3) = δq1+q2+q3,0δq̄1+q̄2+q̄3,0 . (5.52)

The right-hand side, while daunting for a general 2D theory, may be evaluated for the free
boson without the conformal block expansion. This is possible because of the Ward identity
and the formula ∫

d2z
1

z − zi
1

z̄ − z̄j

∣∣∣∣
reg

=

{
2π log |zij| i 6= j

0 i = j
(5.53)

understood as a principal value.8 We now follow the method of [293] to show that a first-order
insertion of Ô produces no shift in the highest-weight OPE coefficients.

∫
d2z

〈
J(z)J̄(z̄)Vq1,q̄1(z1, z̄1)Vq2,q̄2(z2, z̄2)Vq3,q̄3(z3, z̄3)

〉 ∣∣∣∣
reg

=

∫
d2z

(
q1

z − z1

+
q2

z − z2

+
q3

z − z3

)(
q̄1

z̄ − z̄1

+
q̄2

z̄ − z̄2

+
q̄3

z̄ − z̄3

) ∣∣∣∣
reg

(5.54)

〈Vq1,q̄1(z1, z̄1)Vq2,q̄2(z2, z̄2)Vq3,q̄3(z3, z̄3)〉
= 2π[(q1q̄2 + q2q̄1) log |z12| − (2q1q̄1 + q1q̄2 + q2q̄1) log |z13| − (2q2q̄2 + q1q̄2 + q2q̄1) log |z23|]
〈Vq1,q̄1(z1, z̄1)Vq2,q̄2(z2, z̄2)Vq3,q̄3(z3, z̄3)〉

In the last step, we have used the fact that q3 is a shorthand for −(q1 + q2) and similarly for
q̄3. This prefactor, with its log |zij| terms, is precisely what we would find if we applied d

dg

to the three-point function and allowed it to act on the charge lattice alone.
The derivation in [293] applies not only to the free boson, but to all WZW models

deformed by current-current terms. When the currents are non-abelian, the terms that gen-
erate the Cartan subalgebra stay exactly marginal. In other words, the conformal manifold
is multi-dimensional. As this is an interesting topic for the future, it is likely that the work
done on WZW models can serve as a guide for finding the appropriate generalization of
(5.24).

8One way to see that (5.53) holds is to check that both sides are Green’s functions of the operators ∂i∂̄i
and ∂j ∂̄j .
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5.3 Proving a bootstrap bound

Some first steps toward using the sum rule (5.8) with asymptotic results were given in [283].
As usual, we separate the identity, which is always present, from the other operators whose
dimensions should be constrained.

∑

O6=I

λ2
ÔÔO

∫

R
ddx|x|−2dGO(u, v)

∣∣∣∣
reg

= −
∫

R
ddx|x|−2d

∣∣∣∣
reg

(5.55)

The idea is to cut off the left-hand side at some value ∆∗ and replace the rest of the sum
with

Σ(∆∗) ≡
∫

R
ddx|x|−2d (2∆∗)

4d

Γ(4d+ 1)
|ρ(x · ê+ i|x− (x · ê)ê|)|∆∗ (5.56)

from (4.66), assuming that the known asymptotics have “kicked-in” by this point. By choos-
ing a ∆∗ which makes Σ(∆∗) less than the right-hand side of (5.55), we may conclude that
at least one ∆ < ∆∗ primary with a positive integrated block must exist in Ô × Ô. Setting
d = 4, [283] found that this happens for ∆∗ ≈ 16.3 in their scheme, suggesting the presence
of a spin 0, 4, 8 or 12 operator of lesser dimension.

Although such a bound is non-rigorous, it could potentially be improved by the results
of [42]. The problem with this bound in its current state is that even CFTs with classically
marginal Ô already obey stronger ones from crossing symmetry and unitarity. Taking ` = 4
for example, we already expect ∆ ≤ 12, saturated by the generalized free field, to come from
the numerical bootstrap. Despite the fairly slow convergence compared to Figure 4.13, it is
easy to confirm this. A natural next step is to re-derive numerical bounds by inputting (5.55)
as a crossing equation in its own right. This means searching for functionals that are positive
on N component vectors where the first component is an integrated conformal block and the
other N − 1 components are derivatives of a convolved conformal block.9 These functionals
give rigorous bounds when they exist.

In all dimensions d ≥ 2, we have found that the bounds arising this way are the same
as the ones from the usual numerical bootstrap — imposing the marginality sum rule does
nothing.10 On the other hand, d = 1 shows drastic improvement. The ∆ ≤ 3 bound,
saturated by the generalized free fermion, comes down to ∆ ≤ 2 which we may associate
with the generalized free boson. It is worth reminding ourselves at this point that (5.8) does
not necessarily single out conformal manifolds that are interesting. Although the linear term
in

S =

∫
dxφ∂−1φ+ gφ (5.57)

9This requires some massaging for SDPB which accepts rational functions multiplied by r∆
∗ where r∗ =

3− 2
√

2. After taking the appropriate integral of a conformal block, we also have R∆
∗ where R∗ = 2−

√
3.

This is solved by writing R∆
∗ = r∆

∗
∑∞
n=0

1
n!

(
∆ log R∗

r∗

)n
and cutting off the sum.

10We should not assume that this will still be the case with superconformal blocks.

176



is simply a field redefinition, it counts as a marginal operator with a vanishing beta function
according to everything we have described so far. As such, the above setup cannot hope to
do better than (5.57) which has ∆φ = 1 and ∆φ2 = 2. The rest of this section will explain
why (5.57) is not just allowed but extremal.

5.3.1 Polyakov blocks

Much of the work will be done if we can switch to a basis which cancels the finite part
from the regulated integral of the identity block. The main candidates we are aware of are
exchange Witten diagrams. Since these are manifestly crossing symmetric, it is clear that
the counterterm subtractions, shown in Figure 5.3, do not have to be split among infinitely
many multiplets. In particular, the identity block is

W0(z) = 1 +

(
1

1− z

)2∆φ

+ z2∆φ , (5.58)

which vanishes after we multiply by the kinematic prefactor and subtract the disconnected
four-point function. The validity of (5.58) is easy to see from the AdS2 perspective, where the
diagram is built solely from boundary-to-boundary propagators. As we will see, expressions
become quite non-trivial once the bulk is involved.

This approach has a long and unfinished history with crossing symmetric blocks first
being proposed by Polyakov in [10]. It was only pointed out in later reviews [294, 295]
that Polyakov and Witten had both discovered very similar functions. Mellin space versions
of these functions were successfully used in [143, 296, 297] to predict O(ε3) anomalous di-
mensions and OPE coefficients of all broken currents in the Wilson-Fisher fixed-point. The
central claim made in these papers is that a certain set of crossing symmetric W̃∆,` functions
is not just a basis, but a basis that can be used with the same OPE coefficients.

G(z, z̄) =
∑

O

λ12Oλ34Og
∆12,∆34

O (z, z̄)
∑

O

λ12Oλ34OW̃O(z, z̄) (5.59)

The problem of constructing these functions in d ≥ 2 is still open and it is remarkable that
such progress in the epsilon expansion was possible with functions that violate (5.59) at some
high order [298]. Indeed, the Witten blocks defined in AdS, the blocks used in [10, 143, 294–
297], and the true “Polyakov blocks” satisfying (5.59) are all different. When expressed in
Mellin space, they differ in their entire part which is a polynomial.11 What this means in

11The fact that there is no canonical vertex for coupling spinning fields in a Witten diagram is also
sometimes called a polynomial ambiguity. The ambiguity for how a Witten diagram needs to be modified
(in any one of these conventions) is completely separate and present for scalar fields as well.
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position space is that we may take

W∆(z) =
∞∑

j=0

[
αj(∆)g2∆φ+2j(z) + βj(∆)∂g2∆φ+2j(z)

]
(5.60)

and shift the double-twist coefficients arbitrarily as long as these shifts are mild enough so
as not to introduce a branch cut. Here ∂g∆(z) denotes differentiation with respect to ∆.

We know the values of α(0) and β(0) from the solution of the generalized free boson.
However, the special thing about 1D CFT is that the known analytic functionals dual to
the crossing equation allow us to solve for α(∆) and β(∆) in full generality [118]. The
orthogonality relations

ω′j

[
F−2∆φ+2k

]
= δjk for j, k ≥ 1 , ωj

[
F−2∆φ+2k

]
= 0 for j ≥ 1, k ≥ 0

ω̂j

[
F−2∆φ+2k

]
= δjk for j, k ≥ 0 , ω̂′j

[
F−2∆φ+2k

]
= 0 for j ≥ 0, k ≥ 1 (5.61)

make it clear that

αj(∆) = −ω̂j
[
F−∆
]
− β1(∆)ω̂′j

[
F−2∆φ

]
for j ≥ 0

βj(∆) = −ωj
[
F−∆
]
− β1(∆)ω′j

[
F−2∆φ

]
for j ≥ 1 . (5.62)

As shown in [118], we must subtract the last term in order to make the double-twist blocks
cancel out when W∆(z) is summed over a physical spectrum. In other words,

W̃∆(z) = W∆(z)− β1(∆)∂g2∆φ
(z)

+ β1(∆)
∞∑

j=1

ω′j

[
F−2∆φ

]
∂g2∆φ+2j(z) + β1(∆)

∞∑

j=0

ω̂′j

[
F−2∆φ

]
g2∆φ+2j(z)

= g∆(z)−
∞∑

j=0

ω̂j
[
F−∆
]
g2∆φ+2j(z)−

∞∑

j=1

ωj
[
F−∆
]
∂g2∆φ+2j(z) (5.63)

is a valid Polyakov block. Completeness of (5.61) guarantees crossing symmetry while the
swapping property [120] establishes (5.59).

We are now interested in the sum rule for 1D Polyakov blocks with ∆φ = 1.

∑

O

λ2
ÔÔO

∫

R
dx|x|−2W̃O(z)

∣∣∣∣
reg

= 0 (5.64)

Before specifying the action of each functional, the important properties are determined
by (5.61) and the behaviour in Figure 5.2. By inspection, the general term in (5.64) has
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Figure 5.6: The regulated integral of a Polyakov block as a function of ∆ for ∆φ = 1. Due
to the zeros at double-twist dimensions, which are mostly second-order, this function has
exactly the same form as the action of an extremal functional for the gap ∆ = 2. It would
be interesting to check that the numerical bootstrap is returning this functional multiplied
by −1.

zeros at all ∆ values that are even integers — the spectrum of the generalized free boson.
Moreover, the only first-order zero, apart from the identity, occurs at ∆ = 2 — the gap
picked out by the numerics. The proof of this bound now follows the logic of the extremal
functional method which states that any perturbation to this spectrum with a larger gap
would necessarily produce a functional which turns the sum rule into a contradiction. To
fully convince ourselves, we should plot the integrated Polyakov block, which we have done
in Figure 5.6. This has been done by evaluating the integral

ω
[
F−∆
]

= 2 sin2
[π

2
(∆− 2∆φ)

] ∫ 1

0

dzg(z)z−2∆φg0,0
∆ (z) (5.65)

using techniques similar to those in [299]. The kernel for the first type of functional satisfying
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(5.61) is given by

gj(z) = − 2Γ(2j + 2)2

π2Γ(4j + 3)

[
P2j+1(1− 2z) + P2j+1

(
z − 2

z

)
− P1(1− 2z)− P1

(
z − 2

z

)]
.

(5.66)
The P1 Legendre polynomials have been subtracted in order to satisfy swapping. The second
type of kernel is more involved but it can again be computed using the methods of [117].

ĝj(z) =
2Γ(2j + 2)2

π2Γ(4j + 3)

[
p̂2j+2(z) + p̂2j+2

(
1

z

)
− Γ(2j + 2)2

Γ(4j + 4)
g0,0

2j+2(1− z)

]

+

[
H(2j + 1)−H

(
2j +

1

2

)
− 2 log(2)

]
gj(z) (5.67)

Here, we have defined

p̂n(z) =
n−1∑

k=0

(n)k(1− n)k
(k!)2

[2H(k)− 2H(n+ k − 1)− log(z)] zk (5.68)

with H(x) denoting the harmonic number.

5.3.2 Superconformal line defects

Our previous use of Polyakov blocks was motivated by the fact that, in such a basis, the
identity block yields a vanishing contribution to the two-loop beta function. An immediate
consequence was that this also holds for any operator with a double-twist scaling dimension.
These operators clearly make an appearance in the free theory but it is also possible to see
them in interacting theories with supersymmetry. Protected operators that are fixed at these
dimensions occur in superconformal line defects that have exactly marginal operators [300].
The conformal manifolds obtained in this way are again trivial, in the sense that the scaling
dimensions and OPE coefficients are constants, but it is no longer possible to solve for these
constants explicitly.

We will discuss the theory in [301] which can be obtained from a Wilson-Maldacena
line of N = 4 super Yang-Mills. Its integrability properties were subsequently studied in
[302–304]. This theory has osp(4∗|4) symmetry whose bosonic part consists of the so(2, 1)
conformal group and an so(3) × sp(4) R-symmetry. The so(3) describes the three spatial
directions transverse to the line, while the remaining R-symmetry is what gives rise to
marginal operators. It can be seen as a remnant of the su(4) ' so(6) R-symmetry of the
parent theory. Once a scalar coupling to the line has been chosen, there is an so(5) ' sp(4)
worth of internal directions which are transverse. The multiplet of short primaries that
deform this internal space is exactly marginal. The displacement operator, associated with
deformations in the physical space, is a descendant at level one.
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OPEs with a universal form were studied from the abstract point of view in [238] which
described three important types of exchanged multiplets.

1. Short operators Bk with dimension k and R-symmetry Dynkin labels of [0, k].

2. Semi-short operators C[a,b] with dimension a+b and R-symmetry Dynkin labels of [a, b].

3. Long operators that are constrained to be so(3) singlets but otherwise unprotected.

The displacement OPE is B1×B1 — it contains B2, C[2,0] and infinitely many long operators
with ∆ ≥ 1. Notice that ∆B2 = 2∆B1 which means that the short exchanged primary is
a double-twist. We are therefore well on our way towards showing that the beta function
is insensitive to this operator. If the superconformal block for B1 contains only conformal
blocks with 2∆B1 +2n and not 2∆B1 +2n+1, regulated integrals will vanish once we promote
them to Polyakov blocks.

To see that this is the case, we may again follow [238] and contract the B1 operators with
yi polarization vectors to avoid writing indices in the fundamental of so(5). The four-point
function is then expressed in terms of three cross-ratios

〈B1B1B1B1〉 =
y2

12y
2
34

x2
12x

2
34

G(χ, ζ1, ζ2)

χ =
x12x34

x13x24

, ζ1ζ2 =
y2

12y
2
34

y2
13y

2
24

, (1− ζ1)(1− ζ2) =
y2

14y
2
23

y2
13y

2
24

. (5.69)

The Ward identity that must be imposed on G(χ, ζ1, ζ2) is

(
∂G
∂ζ1

+
1

2

∂G
∂χ

) ∣∣∣∣
ζ1=χ

=

(
∂G
∂ζ2

+
1

2

∂G
∂χ

) ∣∣∣∣
ζ2=χ

= 0 (5.70)

and its solutions are identified with the superconformal blocks. There is a special solution
with only three terms in its sl(2) block expansion and the right asymptotics to correspond
to B2. Stripping off the distances in position space, we find

y2
12y

2
34GB2(χ, ζ1, ζ2) = y2

12y
2
34

[
1

10

(
1− 1

ζ1

− 1

ζ2

)
g3(χ) +

3

350
g4(χ)

+

(
3

10
− 1

2ζ1

− 1

2ζ2

+
1

ζ1ζ2

)
g2(χ)

]

=
1

10

[
−2y2

12y
2
34 + 5y2

13y
2
24 + 5y2

14y
2
23

]
g2(χ)

+
1

10

[
y2

14y
2
23 − y2

13y
2
24

]
g3(χ) +

3

350
y2

12y
2
34g4(χ) . (5.71)

We now see that the g3(χ) block is absent when the yi polarization vectors are all the same.
This is certainly the case when we focus on the beta function of a single linear combination of
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the five marginal operators. Different yi vectors, leading to the appearance of g3(χ), appear
in mixed correlators that are relevant for anomalous dimensions.

So far, we have only discussed osp(4∗|4) as the blocks in the displacement OPE have
already been derived. Recently, a similar bootstrap problem was setup for osp(4∗|2), corre-
sponding to a line defect in an N = 2 SCFT [305]. It would be interesting to repeat this
analysis for the six other instances of a 1D superconformal algebra, one of which contains a
free parameter [306, 307].
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Chapter 6

Conclusion

We have uncovered new facts about the space of conformal field theories with a focus on
continuous families. Our results have relied heavily on conformal perturbation theory. In one
case it was combined with numerical bootstrap data in order to estimate critical exponents.
In another, it was used as a stepping stone to what is very likely a non-perturbative result.
Overall we are excited about conformal perturbation theory and its ability to translate a
wide range of conjectures into testable statements about CFT data.

The theory that has been studied most thoroughly in this thesis is the long-range Ising
model (LRI). Our compelling picture for understanding the crossover has taught us that
it involves not only the short-range Ising model (SRI) but a decoupled Gaussian field as
well. Flowing away from the decoupled limit, we advanced the quantitative study of LRI
critical exponents. An infrared duality between two flows, which we dubbed φ4 and σχ, was
what made this progress possible. Other infrared dualities are expected to arise by the same
basic mechanism — they lead to a non-renormalization theorem called the shadow relation,
summarized in our case by ∆σ + ∆χ = d.

After developing our duality, we saw that the shadow relation leads to a wealth of infor-
mation about OPE coefficients and infinitely many protected double-trace operators. The
result provides a tantalizing analogy with the superconformal bootstrap wherein conformal
blocks can be packaged together in known ways. Leveraging this fact and varrying ∆T , the
dimension of the leading spin-2 operator, we produced a number of rigorous bounds on the
3D LRI from a six correlator system. The allowed regions contain lobes with distinguished
points near the edge that exhibit various properties expected of the LRI. These can be
located with the help of the extremal functional method [90, 242].

6.1 Future directions

For interested readers, we list open problems relating to both the duality and the bootstrap
exploration of the LRI.
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• It would be interesting to establish a sharper connection with nonlocal theories that
live on a boundary. When the parent theory is defined in a fixed AdS background, the
boundary theory is necessarily conformal. A holographic dual of the long-range Ising
model would be most welcome.

• A description of the crossover for one dimension was neglected in this work. The
appearance of second-order phase transitions in one dimension was in fact one of the
original motivations for studying the LRI [186]. The ability to apply our result here is
doubtful since the order parameter for the “1D critical Ising model” should formally be
treated as a ∆σ = 0 field yielding a σχ deformation that does nothing. The situation
could perhaps be improved if we could go above one dimension but the appropriate
framework for CFTs in 1 < d < 2 appears to be poorly understood.

• Problems with the d → 1 limit not commuting with the crossover limit are mirrored
in another context. To perform the σχ flow at large N , we need to include 1

N
correc-

tions first. This could be worth pursuing since the vector generalization of the LRI is
exactly solvable at large N . Checking that we get the right one-loop exact anomalous
dimensions would yield a proof of our duality in this case.

• It would be interesting to return to the 2D bootstrap where we argued that the in-
teresting part of the bound stays the same as more scalar correlators are added. A
possible remedy is adding external (non-conserved) spin-2 operators to the system that
we have used for the LRI [308]. If this works, it could be used to resolve discrepancies
in the Monte Carlo community [200, 201].

• If external spin-2 operators are successful in the 2D case, the constraints that follow
from them might be worth exploring in 3D as well [279, 280]. Although this is a much
more demanding problem, it appears to be our best hope for finding kinks or islands
close to s = s∗.

• A minibootstrap (familiar from the supersymmetric examples [309]) will be possible
if we can solve for the OPE coefficient of a protected operator O = [σχ]n,`. For
integer spin, λσχO takes an indeterminate form. Analytically continuing the spin in
this expression gives us a point of contact with recent work on light-ray operators [310].

The part of our work with the greatest potential for future development is probably
the section on conformal manifolds. We have only scratched the surface of this borderline
case between two halves of the bootstrap community — isolated fixed points versus RG
flows. First, we have a two-loop equation coming from β(g) = 0 which is ripe for use in
the numerical bootstrap. We have argued that this sum rule is best formulated in terms of
Polyakov blocks and pointed to superconformal line defects as a suitable playground. There
are bound to be many others if the Polyakov blocks can be worked out in higher dimensions.
Second, the existence of a single perturbation that preserves conformal invariance implies
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an infinite system of coupled ODEs which can be used to evolve observables from one value
of the coupling to another. An important open problem is generalizing this to a system of
PDEs that can handle more realistic conformal manifolds with curvature. Another important
problem is using these equations to evolve the open string spectrum in a system with a D-
brane moduli space [311, 312]. These conformal manifolds are guaranteed to be nonlocal
but the challenges posed by local theories are more serious — free points are an infinite
Zamolodchikov distance away from interacting points.

On the one hand, it is physically clear from how we derived these equations that their
solutions must describe a conformal manifold. On the other hand, it is not mathematically
clear how such simple equations can know about the remarkable subtleties of an operator
algebra with a marginal coupling. We will close with a discussion of this tension which
provides a humbling perspective on why quantum field theory as a whole, despite our best
efforts, is still non-rigorous.

Clearly, the expression for ∂λijk/∂g can be written in many different ways by changing
the renormalization scheme. Indeed an invariant right-hand side would be wrong as the
coupling itself is unphysical. We cannot have scheme-independent equations because even
the solutions are scheme-dependent until we suitably reparameterize g. A proof of scheme-
independence up to a diffeomorphism would be most welcome but, like crossing symmetry,
it should only emerge from the equations when they are used to evolve very specific initial
conditions. A random initial condition should permit highly unphysical behaviour since a
generic choice for ∆i and λijk is not a conformal manifold or even a conformal field theory. A
very similar problem arises when using the Callan-Symanzik equation to compute anomalous
dimensions in isolated fixed points. Usually one chooses the simplest correlation function
that allows access to the operator of interest. But going rogue, there are infinitely many
complicated correlation functions that can be used, yielding increasingly useless identities
for renormalized integrals that most often look very difficult to prove with the mathemati-
cal literature. This appears to echo Hadamard’s satement that “the shortest path between
two truths in the real domain passes through the complex domain”. Whether computing
dimensions with the Callan-Symanzik equation or the conformal manifold system, we ar-
rive at a great number of truths found by passing through the domain of operator valued
distributions.
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Appendix A

Correlators on the two-sheeted cover

Twisted sector four-point functions in orbifolds of the compact free boson are traditionally
expressed as an infinite sum. We will evaluate several of them and find economical expressions
at R2 = 2M due to the doubling identities

ϑ2(2τ) =

√
ϑ3(τ)2 − ϑ4(τ)2

2
ϑ2

(
1

2
τ

)
=
√

2ϑ2(τ)ϑ3(τ)

ϑ3(2τ) =

√
ϑ3(τ)2 + ϑ4(τ)2

2
ϑ3

(
1

2
τ

)
=
√
ϑ3(τ)2 + ϑ2(τ)2

ϑ4(2τ) =
√
ϑ3(τ)ϑ4(τ) ϑ4

(
1

2
τ

)
=
√
ϑ3(τ)2 − ϑ2(τ)2 (A.1)

which preserve the homogeneity of K(z) in (2.110).
We will start with the middle row of Table 2.5 where the sums describe correlators in the

R =
√

2 theory. The first of these is evaluated in [55].

∑

m,n

q
1
2(m+n

2 )
2

q̄
1
2(m−n2 )

2

=
∑

m,n

[
q

1
2

(n+m)2

q̄
1
2

(n−m)2

+ q
1
2(n+m+ 1

2)
2

q̄
1
2(n−m+ 1

2)
2]

=
∑

m,n

[
q

1
2
m2

q̄
1
2
n2

+ q
1
2(m+ 1

2)
2

q̄
1
2(n+ 1

2)
2] 1 + (−1)m+n

2

=
1

2

(
|ϑ2(τ)|2 + |ϑ3(τ)|2 + |ϑ4(τ)|2

)
(A.2)

In the first step, the sum that includes all n
2

has been split into one sum over Z and another
over Z + 1

2
. In the second step, we have recognized that as m and n vary, (n + m,n −m)

runs over all pairs of integers whose sum is even. We can get the related sums through
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straightforward modifications of the trick in [55].

∑

m,n

q
1
2(m+n

2
+ 1

2)
2

q̄
1
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2)
2

=
∑

m,n

[
q

1
2(n+m+ 1

2)
2

q̄
1
2(n−m− 1
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]

=
∑
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2)
2

+ q
1
2
m2

q̄
1
2
n2
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2

=
1
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(
|ϑ2(τ)|2 + |ϑ3(τ)|2 − |ϑ4(τ)|2

)
(A.3)

Inserting factors of (−1)n has the effect of changing the sign between the Z and Z+ 1
2

sums.
Working this out, we find

∑

m,n

(−1)nq
1
2(m+n

2 )
2

q̄
1
2(m−n2 )

2

=
∑

m,n

[
q

1
2
m2

q̄
1
2
n2 − q 1

2(m+ 1
2)

2

q̄
1
2(n+ 1

2)
2] 1 + (−1)m+n

2

=
1

2

(
−|ϑ2(τ)|2 + |ϑ3(τ)|2 + |ϑ4(τ)|2

)
(A.4)

and

∑

m,n

(−1)nq
1
2(m+n

2
+ 1

2)
2

q̄
1
2(m−n2 + 1

2)
2

=
∑

m,n

[
q

1
2(m− 1

2)
2

q̄
1
2(n− 1

2)
2

− q 1
2
m2

q̄
1
2
n2
] 1− (−1)m+n

2

=
1

2

(
|ϑ2(τ)|2 − |ϑ3(τ)|2 + |ϑ4(τ)|2

)
. (A.5)

Moving on to R = 2, the first sum we need is even easier to obtain.

∑

m,n

q
1
4

(m+n)2

q̄
1
4

(m−n)2

=
1

2

(∣∣∣∣ϑ3

(
1

2
τ

)∣∣∣∣
2

+

∣∣∣∣ϑ4

(
1

2
τ

)∣∣∣∣
2
)

=
1

2

(
|ϑ3(τ)2 + ϑ2(τ)2|+ |ϑ3(τ)2 − ϑ2(τ)2|

)

=
1

2

(
|ϑ3(τ)2 + ϑ4(τ)2|+ |ϑ3(τ)2 − ϑ4(τ)2|

)
(A.6)

We have used the doubling identities in the second step and modular invariance in the third.
Going to half-integers similarly gives

∑

m,n

q
1
4(m+n+ 1

2)
2

q̄
1
4(m−n+ 1

2)
2

=
1

2

∣∣∣∣ϑ2

(
1

2
τ

)∣∣∣∣
2

= |ϑ2(τ)ϑ3(τ)| . (A.7)
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The alternating version of (A.6) is

∑

m,n

(−1)nq
1
4

(m+n)2

q̄
1
4

(m−n)2

=
∑

m,n

[
q

1
4

(2n+m)2

q̄
1
4

(2n−m)2 − q 1
4

(2n+1+m)2

q̄
1
4

(2n+1−m)2
]

=
∑

m,n

[
q(n+m

2 )
2

q̄(n−
m
2 )

2

− q(n+m
2

+ 1
2)

2

q̄(n−
m
2

+ 1
2)

2]

= |ϑ4(2τ)|2 = |ϑ3(τ)ϑ4(τ)| . (A.8)

For the alternating version of (A.7), we need some new machinery. Recall that the Jacobi

triple product reads
∏∞

n=1(1−qn)(1+qn−
1
2x)(1+qn+ 1

2x−1) =
∑

n q
1
2
n2
xn. We will be interested

in applying this with q 7→ q2 and x 7→ ±q 1
2 . Guided by our expectations for what the next

sum should be, we will start with product representations for the theta functions. While
none of |ϑ2|2, |ϑ3|2 or |ϑ4|2 are perfect squares on their own, we conveniently get perfect
squares once we multiply them.

|ϑ2(τ)ϑ3(τ)| =
√

2q
1
16

∞∏

n=1

(1− q2n)
(

1 + qn−
1
2

)
× (q ↔ q̄)

=
√

2q
1
16

∞∏

n=1

(1− q2n)
(

1 + q2n− 1
2

)(
1 + q2n− 3

2

)
× (q ↔ q̄)

=
√

2q
1
16

∞∏

n=1

[1− (q2)n]
[
1 + (q2)n−

1
2 q

1
2

] [
1 + (q2)n−

1
2 q−

1
2

]
× (q ↔ q̄)

= 2(qq̄)
1
16

∑

m,n

(q2)
1
2
m2

(q̄2)
1
2
n2

q
1
2
mq̄

1
2
n

= 2
∑

m,n

q(m+ 1
4)

2

q̄(n+ 1
4)

2

|ϑ2(τ)ϑ4(τ)| =
√

2q
1
16

∞∏

n=1

(1− q2n)
(

1− qn− 1
2

)
× (q ↔ q̄)

=
√

2q
1
16

∞∏

n=1

(1− q2n)
(

1− q2n− 1
2

)(
1− q2n− 3

2

)
× (q ↔ q̄)

=
√

2q
1
16

∞∏

n=1

[1− (q2)n]
[
1− (q2)n−

1
2 q

1
2

] [
1− (q2)n−

1
2 q−

1
2

]
× (q ↔ q̄)

= 2(qq̄)
1
16

∑

m,n

(−1)m+n(q2)
1
2
m2

(q̄2)
1
2
n2

q
1
2
mq̄

1
2
n

= 2
∑

m,n

(−1)m+nq(m+ 1
4)

2

q̄(n+ 1
4)

2
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By writing one product over n as a product over even and odd n, we have found an expression
for the sum that comes up next.

∑

m,n

(−1)nq
1
4(m+n+ 1

2)
2

q̄
1
4(m−n+ 1

2)
2

=
∑

m,n

[
q

1
4(2n+m+ 1

2)
2

q̄
1
4(2n−m− 1

2)
2

− q 1
4(2n+m+ 3

2)
2

q̄
1
4(2n−m+ 1

2)
2]

=
∑

m,n

[
q(n+m

2
+ 1

4)
2

q̄(n−
m
2
− 1

4)
2

− q(n+m
2

+ 3
4)

2

q̄(n−
m
2

+ 1
4)

2]

= 2
∑

m,n

[
q(m+n+ 1

4)
2

q̄(m−n+ 1
4)

2

− q(m+n+ 3
4)

2

q̄(m−n−
1
4)

2]

= 2
∑

m,n

q(m+ 1
4)

2

q̄(n+ 1
4)

2
[

1 + (−1)m+n

2
− 1− (−1)m+n

2

]

= 2
∑

m,n

(−1)m+nq(m+ 1
4)

2

q̄(n+ 1
4)

2

= |ϑ2(τ)ϑ4(τ)| (A.9)

We have repeatedly used the fact that there is no difference between an exponent shifted by
1
4

and an exponent shifted by 3
4
. This follows from reindexing.

As we have written Table 2.5, the same information about R = 2 correlators is contained
in another set of sums which should give linear combinations of the four above. Fortunately,
our formula derived from the Jacobi triple product continues to be applicable. Going through
them quickly, the first is

∑

m,n

q(m+n
4 )

2

q̄(m−
n
4 )

2

=
∑

m,n

[
q(n+m)2

q̄(n−m)2

+ q(n+m+ 1
2)

2

q̄(n−m+ 1
2)

2

+ 2q(n+m+ 1
4)

2

q̄(n−m+ 1
4)

2]

=
1

2

(
|ϑ2(2τ)|2 + |ϑ3(2τ)|2 + |ϑ4(2τ)|2 + |ϑ2(τ)ϑ3(τ)|+ |ϑ2(τ)ϑ4(τ)|

)

=
1

2
(|ϑ2(τ)ϑ3(τ)|+ |ϑ2(τ)ϑ4(τ)|+ |ϑ3(τ)ϑ4(τ)|)

+
1

4

(
|ϑ3(τ)2 + ϑ4(τ)2|+ |ϑ3(τ)2 − ϑ4(τ)2|

)
, (A.10)

the second is

∑

m,n

q(m+n
4

+ 1
2)

2

q̄(m−
n
4

+ 1
2)

2

=
∑

m,n

[
q(n+m+ 1

2
)2

q̄(n−m− 1
2

)2

+ q(n+m+1)2

q̄(n−m)2

+ 2q(n+m+ 3
4)

2

q̄(n−m−
1
4)

2]

=
1

2

(
|ϑ2(2τ)|2 + |ϑ3(2τ)|2 − |ϑ4(2τ)|2 + |ϑ2(τ)ϑ3(τ)| − |ϑ2(τ)ϑ4(τ)|

)

=
1

2
(|ϑ2(τ)ϑ3(τ)| − |ϑ2(τ)ϑ4(τ)| − |ϑ3(τ)ϑ4(τ)|)

+
1

4

(
|ϑ3(τ)2 + ϑ4(τ)2|+ |ϑ3(τ)2 − ϑ4(τ)2|

)
, (A.11)
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the third is

∑

m,n

(−1)nq(m+n
4 )

2

q̄(m−
n
4 )

2

=
∑

m,n

[
q(n+m)2

q̄(n−m)2

+ q(n+m+ 1
2)

2

q̄(n−m+ 1
2)

2

− 2q(n+m+ 1
4)

2

q̄(n−m+ 1
4)

2]

=
1

2

(
|ϑ2(2τ)|2 + |ϑ3(2τ)|2 + |ϑ4(2τ)|2 − |ϑ2(τ)ϑ3(τ)| − |ϑ2(τ)ϑ4(τ)|

)

=
1

2
(−|ϑ2(τ)ϑ3(τ)| − |ϑ2(τ)ϑ4(τ)|+ |ϑ3(τ)ϑ4(τ)|)

+
1

4

(
|ϑ3(τ)2 + ϑ4(τ)2|+ |ϑ3(τ)2 − ϑ4(τ)2|

)
(A.12)

and the fourth is

∑

m,n

(−1)nq(m+n
4

+ 1
2)

2

q̄(m−
n
4

+ 1
2)

2

=
∑

m,n

[
q(n+m+ 1

2
)2

q̄(n−m− 1
2

)2

+ q(n+m+1)2

q̄(n−m)2 − 2q(n+m+ 3
4)

2

q̄(n−m−
1
4)

2]

=
1

2

(
|ϑ2(2τ)|2 + |ϑ3(2τ)|2 − |ϑ4(2τ)|2 − |ϑ2(τ)ϑ3(τ)|+ |ϑ2(τ)ϑ4(τ)|

)

=
1

2
(−|ϑ2(τ)ϑ3(τ)|+ |ϑ2(τ)ϑ4(τ)| − |ϑ3(τ)ϑ4(τ)|)

+
1

4

(
|ϑ3(τ)2 + ϑ4(τ)2|+ |ϑ3(τ)2 − ϑ4(τ)2|

)
. (A.13)

There is one more set of calculations that yields to the brute force tools we have seen.
These are the ones at R = 2

√
2 — the “blue sums” in the row that has both red and blue.

The first actually coincides with the very first sum in this section.

∑

m,n

q
1
2(m+n

2 )
2

q̄
1
2(m−n2 )

2

=
1

2

(
|ϑ2(τ)|2 + |ϑ3(τ)|2 + |ϑ4(τ)|2

)
(A.14)

The next two require the boxed formula from the Jacobi triple product. They are

∑

m,n

q
1
2(m+n

2
+ 1

4)
2

q̄
1
2(m−n2−

1
4)

2

=
∑

m,n

[
q

1
2(n+m+ 1

4)
2

q̄
1
2(n−m+ 1

4)
2

+ q
1
2(n+m+ 3

4)
2

q̄
1
2(n−m+ 3

4)
2]

= 2
∑

m,n

q
1
2(m+ 1

4)
2

q̄
1
2(n+ 1

4)
2
[

1 + (−1)m+n

2

]

=
1

2

(∣∣∣∣ϑ2

(
1

2
τ

)
ϑ4

(
1

2
τ

)∣∣∣∣+

∣∣∣∣ϑ2

(
1

2
τ

)
ϑ4

(
1

2
τ

)∣∣∣∣
)

(A.15)

=

∣∣∣∣
1

2
ϑ2(τ)ϑ3(τ)[ϑ3(τ)2 + ϑ2(τ)2]

∣∣∣∣
1
2

+

∣∣∣∣
1

2
ϑ2(τ)ϑ3(τ)[ϑ3(τ)2 − ϑ2(τ)2]

∣∣∣∣
1
2
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and

∑

m,n

(−1)mq
1
2(m+n

2 )
2

q̄
1
2(m−n2 )

2

=
∑

m,n

(−1)m
[
q

1
2

(n+m)2

q̄
1
2

(n−m)2

+ q
1
2(n+m+ 1

2)
2

q̄
1
2(n−m+ 1

2)
2]

= |ϑ4(4τ)|2 + |ϑ2(2τ)ϑ4(2τ)| (A.16)

=

∣∣∣∣
1

2
ϑ3(τ)ϑ4(τ)[ϑ3(τ)2 + ϑ4(τ)2]

∣∣∣∣
1
2

+

∣∣∣∣
1

2
ϑ3(τ)ϑ4(τ)[ϑ3(τ)2 − ϑ4(τ)2]

∣∣∣∣
1
2

.

This last sum might be the only one where we have to relate it to the others by modular
transformation instead of computing it directly.

∑

m,n

(−1)mq
1
2(m+n

2
+ 1

4)
2

q̄
1
2(m−n2−

1
4)

2

=

∣∣∣∣
1

2
ϑ2(τ)ϑ4(τ)[ϑ2(τ)2 + ϑ4(τ)2]

∣∣∣∣
1
2

+

∣∣∣∣
1

2
ϑ2(τ)ϑ4(τ)[ϑ2(τ)2 − ϑ4(τ)2]

∣∣∣∣
1
2

(A.17)
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Appendix B

Linear difference equations

Asymptotic analysis of sequences obeying three term recurrence relations such as (3.22) and
(3.43) is a well understood subject, going by the name Birkhoff-Trjitzinsky theory. The
following theorem summarizes a number of results from it [313].

Theorem 1. Let y1(n) and y2(n) be the two linearly independent solutions of the difference
equation

y(n+ 2) + a(n)y(n+ 1) + b(n)y(n) = 0 (B.1)

where the coefficients have asymptotic expansions a(n) ∼∑∞s=0
as
ns

and b(n) ∼∑∞s=0
bs
ns

.

1. If the characteristic equation ρ2 + a0ρ + b0 = 0 has two distinct roots ρ1 and ρ2, the
solutions satisfy yj(n) ∼ ρnj n

αj
∑∞

s=0
cs,j
ns

where αj =
a1ρj+b1
a0ρj+2b0

.

2. Otherwise, consider the double root ρ. If the auxiliary equation a1ρ + b1 = 0 is not
satisfied, the solutions satisfy yj(n) ∼ ρne(−1)jβ

√
nnα

∑∞
s=0(−1)js cs

ns/2
where α = 1

4
+ b1

2b0

and β = 2
√

a0a1−2b1
2b0

.

3. Otherwise, consider the roots α1 and α2 of the indicial equation α(α − 1)ρ2 + (a1α +
a2)ρ+ b2 = 0, ordered according to <α2 ≥ <α1. If α2− α1 /∈ Z≥0, the solutions satisfy
yj(n) ∼ ρnnαj

∑∞
s=0

cs,j
ns

.

4. Otherwise, let m = α2 − α1. The asymptotic expansion for the first solution is un-
changed from the previous case but for the second solution we must use y2(n) ∼
ρnnα2

(∑∞
s=0

ds
ns
− dm

nm

)
+ c log(n)y1(n).

Taking (B.1) to be the recurrence relation for Wilson polynomials, we find the roots ρ = 1,
α1 = −2(a+x) and α2 = −2(a−x) in the third case of the theorem. Each coefficient in (3.42)
can then be written as a linear combination of two functions asymptotic to power-laws. As
seen in Table B.1, all of them decay to zero. When comparing to the results of [40, 41], one
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Coefficient Leading rates

c
σσ(1,1)σσ
2n n−

8+2∆σ
3 and n2∆σ−2

c
σσ(1,3)σσ
2n n−

5+8∆σ
3 and n−1

Table B.1: Decay rates of the fundamental solutions that comprise two of our main results.
We have not included the prefactors in (3.42). These will make the convergence much faster,
namely (1/16)n, which can be predicted from the growth rate of K2n(1).

must remember that c
σσ(1,1)σσ
2n and c

σσ(1,3)σσ
2n include many squared OPE coefficients due to

the increasing amount of degeneracy at each level of a Verma module.
Our main claim about c

σσ(1,1)σσ
2n and c

σσ(1,3)σσ
2n — that they are positive for finite n —

cannot be proven with asymptotics. Instead, we will use a theorem from [314] which bounds
the ratio between neighbouring terms in a sequence.

Theorem 2. Let x(n) be a solution of

x(n) ≥ a(n)

b(n)
x(n− 1)− c(n)

d(n)
x(n− 2) (B.2)

where a(n), b(n), c(n) and d(n) are degree-k polynomials with positive leading terms. Also
define f(n) = a(n+ 1)d(n+ 1)− 2bk

ak
b(n+ 1)c(n+ 1)− ak

2bk
b(n+ 1)d(n+ 1). Finally, let m be

an integer large enough to guarantee that b(n), c(n), d(n) and f(n) have positive values for

n ≥ m. If x(m)
x(m−1)

> ak
2bk

then x(n)
x(n−1)

> ak
2bk

for n ≥ m.

Proposition 1. The sequences y1(n) = Pn
(

7−2∆σ

6
, 4−2∆σ

6
,−1−2∆σ

6
, 5+2∆σ

6
; 1+4∆σ

6

)
and y2(n) =

Pn
(

2+2∆σ

3
, 1

2
,−1

2
,−1

2
; 1+4∆σ

6

)
of Wilson polynomials are positive for 1

8
≤ ∆σ ≤ 1

2
.

Proof. The theorem above is more effective at identifying increasing sequences than ruling
out changes of sign directly. Therefore, we will work with x1(n) = n2y1(n) and x2(n) =
n2y2(n) — expressions that have been guided by the asymptotics in Table B.1.

Looking at the more difficult case first, x1(n) satisfies (B.2) with

b(n) = (n− 1)2(n+ 1)(2n+ 1)(4n− 3)(6n− 4∆σ + 5)

c(n) = n(n− 1)(2n− 1)(2n− 3)(4n+ 1)(3n+ 2∆σ − 4)

d(n) = (n− 2)2(n+ 1)(2n+ 1)(4n− 3)(6n− 4∆σ + 5) . (B.3)

These are clearly positive for n > 2. Also, by writing out the polynomial for a(n), we
find a leading coefficient of a6 = 2b6 = 96. It remains to check f(n) or equivalently (n +
2)−1(2n+ 3)−1(4n+ 1)−1(6n− 4∆σ + 11)−1f(n). This is a sixth degree polynomial in which
64∆σ(∆σ + 1)n6 is followed immediately by negative coefficients. From this we see that the
critical value of n, beyond which f(n) > 0, increases without bound as ∆σ → 0. This reflects
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the fact that the n2 we introduced is only able to overpower n2∆σ−2 for strictly positive ∆σ.
Fortunately, the smallest value of ∆σ that we consider is 1

8
leading to a critical value of

n = 44. Since x1(44) > x1(43), we establish positivity of the entire sequence x1(n) by
checking its first 44 terms.

Things will be easier for x2(n) which satisfies (B.2) for

b(n) = (n− 1)2(6n+ 4∆σ − 11)(6n+ 4∆σ − 5)2(6n+ 4∆σ + 1)(12n+ 4∆σ − 23)

c(n) = 1296n2(n− 1)(n− 3)(12n+ 4∆σ − 11)

d(n) = (6n+ 4∆σ − 11)(6n+ 4∆σ − 5)2(6n+ 4∆σ + 1)(12n+ 4∆σ − 23) . (B.4)

Additionally, we find a6 = 2b6 = 31104 and an f(n) proportional to (6n + 4∆σ − 5)(6n +
4∆σ + 1)2(6n + 4∆σ + 7)(12n + 4∆σ − 11). The non-trivial factor of f(n) begins with
41472(∆σ − 1

8
)n5 which is potentially problematic, but the next coefficient that follows it

is positive for all real ∆σ. As a result, f(n) is positive for n > 3 just like the polynomials
above. Checking that x2(3) > x2(2) > x2(1) > 0, positivity of x2(n) has been proven as
well.

Although we do not have closed-form solutions for them, it is possible that c
εε(1,1)εε
2n ,

c
εε(1,3)εε
2n and c

εε(1,5)εε
2n are positive as well. The main hint of this, which we now prove, is that

the Virasoro blocks containing them have positive Taylor coefficients around z = 0. The fact
that this is a necessary condition follows trivially from expanding g(z) =

∑∞
n=0 c2nKr+2n(z).

The analogous statement in higher dimensions was proven in [315].

Proposition 2. Let bk be a sequence starting at b0 = 1 with the rest of the terms given by
(3.47). If ∆ε > 1, the sequence monotonically increases.

Proof. Defining K = k + r for brevity, we have

[4K3 + 8(1−∆ε)K
2 + (3∆2

ε − 14∆ε + 4)K + 3∆ε(∆ε − 2)]bk+1 = (B.5)

[12K2 − 4(5∆ε + 1)K + 6∆2
ε ]Kbk

−[12K3 − 16(∆ε + 2)K2 + 2(∆2
ε + 12∆ε + 14)K + 2(∆ε − 2)(∆ε + 1)(∆ε + 2)]bk−1

+[4K3 − 4(∆ε + 5)K2 − (∆2
ε − 10∆ε − 32)K + (∆ε − 2)(∆ε + 2)(∆ε + 4)]bk−2 .

Although this has four terms, we will convert it to a simpler recursion having only three.
We do this by assuming that the piece with bk−1 and bk−2 is bounded by some function of bk
and bk−1. Our ansatz for this function is [4K2− 12(∆ε + 1)K +M ]Kbk + 4K3bk−1. In other
words, we need to show that

[4K2 − 12(∆ε + 1)K +M ]Kbk > (B.6)

[8K3 − 16(∆ε + 2)K2 + 2(∆2
ε + 12∆ε + 14)K + 2(∆ε − 2)(∆ε + 1)(∆ε + 2)]bk−1

−[4K3 − 4(∆ε + 5)K2 − (∆2
ε − 10∆ε − 32)K + (∆ε − 2)(∆ε + 2)(∆ε + 4)]bk−2 .
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Using (B.6) in (B.5), we find an expression of the form R+(K)bk+1 > R0(K)bk +R−(K)bk−1.
We will perform a rescaling to instead write this as

S+(K)bk+1 > S0(K)bk + S−(K)bk−1 (B.7)

Si(K) ≡ [4(K + 1)2 − 12(∆ε + 1)(K + 1) +M ](K + 1)R+(K)−1Ri(K) .

For our assumption to be true, the fractional coefficients in (B.7) must exceed the K 7→ K+1
versions of the ones in (B.6). These two conditions each give one side of an inequality for
M . The result is 10∆2

ε + 20∆ε + 4 < M < 10∆2
ε + 29∆ε + 4 which may be satisfied for any

∆ε > 0. Having chosen M appropriately, we have moved the problem into the domain of
the theorem above. The monotonicity proof for bk is now identical to the one for n2c

σσ(1,1)σσ
2n

and n2c
σσ(1,3)σσ
2n .
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Appendix C

Spinor formalism

In chapter 3, we employ a useful framework for studying fractional d gamma matrices given
in [173]. The main idea is to realize the Clifford algebra by treating the matrices as free
fermionic fields themselves. Writing an antisymmetrized combination as

Γµ1...µn =
δ

δaµ1
. . .

δ

δaµn
exp (aµψ

µ)

∣∣∣∣
a=0

, (C.1)

the product of many such matrices can again be written as a differential operator acting on
an exponential via the Baker-Campbell-Hausdorff formula. By moving derivatives until all
contracted pairs appear beside eachother, we may show that the coefficients in

ΓA1 . . .ΓANΓBΓAs(1)
. . .ΓAs(N)

= RΓB

ΓA1 . . .ΓAN ⊗ ΓAs(1)
. . .ΓAs(N)

=
∞∑

m=0

1

m!
RmΓC ⊗ ΓC (C.2)

contain the signs

R ∝ η(−1)m(n1+···+nN )(−1)(
n1
2 )+···+(nN2 ) , Rm ∝ η(−1)(

n1
2 )+···+(nN2 ) . (C.3)

Here, η is the part that depends on the specific permutation given in (C.2). A contracted
pair of derivatives is then written as

(
δ

δaµ
δ

δa†µ

)ni
= ∂nixi exp

(
xi

δ

δaµ
δ

δa†µ

) ∣∣∣∣
x=0

(C.4)
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so that R and Rm both take the form of derivatives with respect to xi. Specifically,

R = η(−1)m(n1+···+nN )(−1)(
n1
2 )+···+(nN2 )∂n1

x1
. . . ∂nNxN

[
(A+ B)d−m(A− B)m

]
x=0

Rm = η(−1)(
n1
2 )+···+(nN2 )∂n1

x1
. . . ∂nNxN

[
Ad−mBm

]
x=0

(C.5)

in terms of expectation values

A =

〈
exp

[
−
∑

i<j

aiaj + a†s(i)a
†
s(j)

]〉

B = −
〈

exp

[
−
∑

i<j

aiaj + a†s(i)a
†
s(j)

]∑

i,j

aia
†
s(j)

〉
. (C.6)

that are computed with
〈
aia
†
i

〉
= −xi. This leads to Table C.1 for N = 3 which is the

highest value we need in the present analysis. We have corrected two typos in [173].

(s(1), s(2), s(3)) η A B
(3, 2, 1) 1 1 + x1x2 + x1x3 + x2x3 x1 + x2 + x3 + x1x2x3

(1, 2, 3) (−1)n1n2+n1n3+n2n3 1− x1x2 − x1x3 − x2x3 x1 + x2 + x3 − x1x2x3

(2, 1, 3) (−1)n1n3+n2n3 1 + x1x2 − x1x3 − x2x3 x1 + x2 + x3 + x1x2x3

(1, 3, 2) (−1)n1n2+n1n3 1− x1x2 − x1x3 + x2x3 x1 + x2 + x3 + x1x2x3

(3, 1, 2) (−1)n1n2 1− x1x2 + x1x3 + x2x3 x1 + x2 + x3 − x1x2x3

(2, 3, 1) (−1)n2n3 1 + x1x2 + x1x3 − x2x3 x1 + x2 + x3 − x1x2x3

Table C.1: Data for computing the N = 3 cases of (C.2). If N = 1 and N = 2 are desired,
they can be obtained by the appropriate substitutions of ni = 0.

One application of this approach is to show that the coefficients in

(
Γ

(n)
B

)α
β

(
Γ

(n)
B

)γ
δ

=
∞∑

p=0

Ωnp(0)
(

Γ
(p)
C

)α
δ

(
Γ

(p)
C

)γ
β

(C.7)

may be obtained from

Ωnp(x) =
(−1)np+(n2)+(p2)

Tr(1)p!
∂nx
[
(1 + x)d−p(1− x)p

]
. (C.8)

We have repeatedly referred to (C.7) as the Fierz identity. This term is also sometimes
used for more specialized identities that follow from (C.7) when the fermions in question are
identical. An example of this is the equivalence of all 2D Thirring models for N = 1 — a

197



statement that can be read off from the eigenvectors of Ω. The naive expression for Ω(0)2

involves a divergent sum [169, 316]. Therefore, the right condition to impose is that Ω(x)Ω(y)
have a continuation which yields the identity at x = y = 0. Performing this computation,
we find

Ωnm(x)Ωmk(y) = Tr(1)−2

∞∑

m=0

(−1)m(n+k)+(n2)+(k2)

m!k!
∂nx [(1 + x)d−m(1− x)m]∂my [(1 + y)d−k(1− y)k]

= Tr(1)−2 Γ(d+ 1− k)

Γ(d+ 1)Γ(k + 1)
(−1)(

n
2)+(k2)

∂nx∂
k
y

[
(1 + x)d(1 + y)d

(
1 + (−1)n+k 1− x

1 + x

1− y
1 + y

)]
. (C.9)

For n+ k even, the derivative is ∂nx∂
k
y (2 + 2xy)d

∣∣
x=y=0

= 2d Γ(d+1)Γ(k+1)
Γ(d+1−k)

δnk. This has the right

form for any d. For n+ k odd, on the other hand, we need ∂nx∂
k
y (2x+ 2y)d

∣∣
x=y=0

to vanish.

This happens whenever n + k 6= d which is to say that it always happens unless d is an
odd integer. The conclusion is that Tr(1) = 2

d
2 holds almost everywhere with only the odd

dimensions being special.
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Appendix D

Nilpotent invariant tensors

Here we show that (3.99) has only the trivial solution. This requires much more than a
counting argument since it is a nonlinear system for arbitrarily many variables. The first
line, which we call the nilpotence condition, guarantees that two Feynman diagrams are
identically zero. The second line, which we call the closure condition, asserts that the other
two Feynman diagrams generate the same type of vertex that is already being considered.
We will actually analyze a more general system where the nilpotence and closure conditions
are

S(p)ikabS(q)abjl = S(p)ibalS(q)akjb = 0 , 1 ≤ p, q ≤ Q (D.1)

and

S(p)ikjl = cp,0S(p)iajbS(p)bkal +

Q∑

q=1

cp,q
(
S(q)iabjS(p)bkal + S(p)aibjS(q)kbal

)
(D.2)

respectively. The result we have used in chapter 3 follows from setting Q = 1.
To derive a cubic constraint, we should plug (D.2) into S(p)ikjlS(p)lmkn in two different

ways. Setting the left substitution equal to the right substitution, we have

Q∑

q=1

cp,qS(q)iabjS(p)bkalS(p)lmkn =

Q∑

q=1

cp,qS(p)iajbS(p)bkalS(q)mlkn (D.3)

where the cp,0 terms have cancelled. Next, we will take
∑Q

q=1 cp,qS(q)jabiS(p)ikjlS(r)lmnk and
use (D.2) to expand the middle tensor. This expansion consists of a single term, rather than
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Q+ 1 terms, due to the nilpotence relation (D.1).

Q∑

q=1

cp,qS(q)jabiS(p)ikjlS(r)lmnk = cp,0

Q∑

q=1

cp,qS(q)jabiS(p)isjtS(p)tkslS(r)lmnk

= cp,0

Q∑

q=1

cp,qS(p)jaibS(p)isjtS(q)ktslS(r)lmnk

= 0 (D.4)

After applying (D.3) to reorder the factors, we have again used (D.1) to see that the whole
expression vanishes. We may also write

Q∑

r=1

cp,rS(q)jabiS(p)ikjlS(r)lmnk = 0 , (D.5)

as the same procedure clearly works when the sum runs over r instead of q.
We now have enough information to make sense of two contractions other than S(p)ikjlS(p)lmkn.

The first one is
S(p)ikjlS(q)lmnk = cp,0S(p)iajbS(p)bkalS(q)lmnk . (D.6)

To ensure vanishing of the higher cp,q terms, we have combined (D.1) with (D.4). Similarly,

S(q)ikljS(p)lmkn = cp,0S(q)ikljS(p)lakbS(p)bman (D.7)

after combining (D.1) with (D.5). Notice that after summing (D.6) and (D.7) over q, we
arrive at

Q∑

q=1

cp,qS(p)ikjlS(q)lmnk =

Q∑

q=1

cp,qS(q)ikljS(p)lmkn (D.8)

as a consequence of (D.3).
We will now define powers of our rank-4 tensors by

[S(p)n]ikjl ≡ S(p)ia1
jb1
S(p)b1a2

a1b2
. . . S(p)

bn−2an−1

an−2bn−1
S(p)

bn−1k
an−1l

. (D.9)

With this notation, it is helpful to contract (D.2) with S(p)n−2 and take traces as follows.

cp,0[S(p)n]ikki = [S(p)n−1]ikki − 2

Q∑

q=1

cp,qS(q)iabk[S(p)n−1]bkai

cp,0S(q)iabk[S(p)n]bkai = S(q)iabk[S(p)n−1]bkai (D.10)

We have used (D.8) to move all factors of S(p) to one side of S(q). Starting with S(p)ikki =
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S(q)iabkS(p)bkai = 0, it follows that the equations in (D.10) all vanish by induction. In

particular, our set of traceless matrices includes all powers of S̃(p), defined by S̃(p)
(ij)

(lk) ≡
S(p)ikjl. This implies that S̃(p) is nilpotent.

Given S̃(p)
(ij)

(lk), we can regard it as a linear map that acts on the right vector v(lk) ≡
S(r)lmnk for fixed (mn). By (D.5),

S̃(p)
(ij)

(lk)v
(lk) = cp,0S̃(p)

(ij)
(ab)S̃(p)

(ab)
(lk)v

(lk) . (D.11)

A similar statement with v playing the role of a left vector would follow from (D.4). If S̃(p)v
were non-zero, (D.11) would tell us that S̃(p) has an eigenvalue of c−1

p,0, contradicting the fact
that it is nilpotent. Therefore,

S(p)ikjlS(r)lmnk = 0 (D.12)

which kills all Q terms of the sum we have been using. Looking at (D.2) one more time, we
find S̃(p) = cp,0S̃(p)2. The tensor structures now have to vanish as only the zero matrix is
both nilpotent and idempotent.
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Appendix E

Numerical details

In this appendix, we list the crossing equations that are relevant to our numerical study of
the long-range Ising model in chapter 4. We also discuss some issues related to the effective
superblocks that arise in the LRI and other nonlocal theories with a shadow relation.

E.1 Crossing equations

Here, we write the statement of crossing symmetry that can be used to find kinks. Clearly,
〈σσσσ〉, 〈εεεε〉 and 〈χχχχ〉 each have one crossing equation. By repeating the analysis of
[78], one sees that the mixed correlators 〈σσεε〉, 〈σσχχ〉 and 〈εεχχ〉 each have three. The
full system is

∑

O+
2|`

(λσσO λεεO λχχO)V
(0)

∆,`




λσσO
λεεO
λχχO


+

∑

O−
λ2
σεOV

(1)
∆,` + λ2

εχOV
(3)

∆,` +
∑

O+

λ2
σχOV

(2)
∆,` = 0 (E.1)
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where each vector has twelve components. We first write these components for the sums
with no restriction on spin.

V
(1)

∆,` =




0
0
0

F σε;σε
−,∆,`
0
0

(−1)`F εσ;σε
−,∆,`

−(−1)`F εσ;σε
+,∆,`

0
0
0
0




, V
(2)

∆,` =




0
0
0
0

F σχ;σχ
−,∆,`
0
0
0

(−1)`F χσ;σχ
−,∆,`

−(−1)`F χσ;σχ
+,∆,`

0
0




, V
(3)

∆,` =




0
0
0
0
0

F εχ;εχ
−,∆,`
0
0
0
0

(−1)`F χε;εχ
−,∆,`

−(−1)`F χε;εχ
+,∆,`




(E.2)

The first sum, whose operators must have even spin, involves components that are 3 × 3
matrices. We write them individually as

V
(0)

1 =




F σσ;σσ
−,∆,` 0 0

0 0 0
0 0 0


 , V

(0)
7,8 =




0 1
2
F σσ;εε
∓,∆,` 0

1
2
F σσ;εε
∓,∆,` 0 0

0 0 0




V
(0)

2 =




0 0 0
0 F εε;εε

−,∆,` 0

0 0 0


 , V

(0)
9,10 =




0 0 1
2
F σσ;χχ
∓,∆,`

0 0 0
1
2
F σσ;χχ
∓,∆,` 0 0




V
(0)

3 =




0 0 0
0 0 0
0 0 F χχ;χχ

−,∆,`


 , V

(0)
11,12 =




0 0 0
0 0 1

2
F εε;χχ
∓,∆,`

0 1
2
F εε;χχ
∓,∆,` 0


 (E.3)

with the rest being zero.
As we have already mentioned, these crossing equations do not account for the correlators

〈σσσχ〉, 〈χχχσ〉 and 〈εεσχ〉. Even though (E.1) is enough to impose both constraints from
the nonlocal equation of motion, the more general system makes it clear that we do not need
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multiple sums for operators in the same representation. The sum rule

∑

O+
2|`

(λσσO λεεO λχχO λσχO) Ṽ
(0)

∆,`




λσσO
λεεO
λχχO
λσχO




+
∑

O−
(λσεO λεχO) Ṽ

(1)
∆,`

(
λσεO
λεχO

)
+
∑

O+
2-`

λ2
σχOṼ

(2)
∆,` = 0 (E.4)

now has sixteen rows. It is trivial to determine the first twelve by demanding that the
equations of (E.1) are captured in (E.4). Therefore, we will simply write

Ṽ
(0)

13 =




0 0 0 1
2
F σσ;σχ
−,∆,`

0 0 0 0
0 0 0 0

1
2
F σσ;σχ
−,∆,` 0 0 0


 , Ṽ

(0)
14 =




0 0 0 0
0 0 0 0
0 0 0 1

2
F χχ;σχ
−,∆,`

0 0 1
2
F χχ;σχ
−,∆,` 0




Ṽ
(0)

15 =




0 0 0 0
0 0 0 1

2
F εε;σχ
−,∆,`

0 0 0 0
0 1

2
F εε;σχ
−,∆,` 0 0


 , Ṽ

(0)
16 =




0 0 0 0
0 0 0 1

2
F εε;σχ

+,∆,`

0 0 0 0
0 1

2
F εε;σχ

+,∆,` 0 0


 (E.5)

for O+
2|`,

Ṽ
(1)

13,14 =

(
0 0
0 0

)
, Ṽ

(1)
15,16 =

(
0 1

2
F σε;εχ
∓,∆,`

1
2
F σε;εχ
∓,∆,` 0

)
(E.6)

for O− and Ṽ
(2)

13,14,15,16 = 0 for O+
2-`. The presence of extra equations and larger matrices

certainly increases the computation time when using the full system (E.4). However, the
main impact on performance comes from the fact that conformal blocks with vanishing
and non-vanishing dimension differences can now be found in the same matrix. In simpler
problems, the former blocks can be approximated with rational functions of a much lower
degree, owing to the fact that their residues vanish for half of the poles in the Table 2.3.
In the present case, this advantage is lost as all entries of the 4 × 4 matrix need to be
accompanied by a common denominator.

After trying a few examples, the bounds from (E.4) appear indistinguishable from those
obtained with (E.1). This is consistent with a piece of lore stating that additional four-
point functions only help if they increase the number of gaps / OPE constraints that can be
imposed. An earlier example of this was noticed in [78] which first studied the 3D Ising model
using three correlators. Without a constraint on the number of relevant Z2-odd operators,
the allowed region turned out to be the same as what was already known from a single
correlator.
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E.2 Implementing the superblocks

If we wish to combine conformal blocks according to (4.158), the correct rational approxima-
tions will include extra poles apart from those captured in Table 2.3. The coefficient R(∆, `)
in the superblock

G∆,`(u, v) = g0,0
∆,`(u, v) +R(∆, `)v∆σ− d2 g

∆χσ ,∆σχ

∆,` (u, v) (E.7)

can be written as an infinite product since the numerator and denominator of (4.143) have
the same sum of gamma function arguments.1

R(∆, `) =
∞∏

k=0

(∆ + `+ 2k)2(∆− 2∆σ − `− 2k)(∆ + 2∆σ − 2d− `− 2k)

(∆− d− `− 2k)2(∆− 2∆σ + d+ `+ 2k)(∆ + 2∆σ − d+ `+ 2k)
(E.8)

Step size Number of points
` = 0 0.01 1700
` = 2 0.01 1550
2 - ` 2 10

Table E.1: The grid spacing ∆N+1−∆N and number of points used for operators in σ×χ once
all consequences of the shadow relation are imposed. After the last point, we use rational
approximation to demand positivity on individual sum rule vectors in a continuum. In other
words, we no longer impose the shadow relation after a high enough cutoff in ∆.

To rule out solutions to crossing, we use the semidefinite program solver SDPB [77]. This
requires a “positive-times-polynomial” expression for the derivative of each conformal block,
or more precisely, convolved conformal block (4.155) as these are what enter in crossing
equations. The existence of a positive prefactor for each polynomial is usually attributed to
the fact that poles in Table 2.3 are below the unitarity bound. For the superblocks here, we
have poles on the whole real line coming from (E.8). This time, positivity is a consequence
of the fact that every pole above the unitarity bound is a double pole. Although this seems
forunate, numerical stability is an additional obstacle to using the rational approximation
(E.8).

For normal operation of SDPB, the user constructs a measure out of a given block’s poles
and then uses it to compute a basis of orthogonal polynomials [77]. These polynomials only
exist for the ordinary blocks because our superblocks are singular above the unitarity bound.
In other words, the double poles do not interfere with positivity but they lead to a measure

1Since these poles are completely different from those of homogeneous, or even inhomogeneous conformal
blocks, the degrees of the rational approximations used here are two times those of the simple ten correlator
system and four times those of the simple six correlator system. This is the first of two slowdowns caused
by superblocks that we will encounter.
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that is not normalizable. Because of this, we have been unable to complete a full run of
SDPB by applying kmax = 40 to the rational approximation (E.8). Instead, Figure 4.22 was
produced by evaluating superblocks on a discrete ∆ grid which allows us to use the exact
gamma functions. It would be interesting to see if alternative solvers are able to remove this
complication. Table E.1 shows our discretization choices for odd-spin operators (which are
protected) and even-spin operators (which should approximate a continuum) when using the
information in (4.157).

This results in file sizes of about 1GB. We have checked that shrinking the step size and
including superblocks for ` = 4 does not lead to a significant change in the allowed region of
Figure 4.22.
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Appendix F

Checks of the OPE coefficient ratio

In this appendix, we study the scalar version of the OPE coefficient ratios

R12 ≡
λ12φ

λ12φ3

= λ
Γ(

∆φ+∆12

2
)Γ(

∆φ−∆12

2
)

Γ(
∆φ3+∆12

2
)Γ(

∆φ3−∆12

2
)
A(λ) (F.1)

and

R12 ≡
λ12χ

λ12σ

= g
Γ(∆χ+∆12

2
)Γ(∆χ−∆12

2
)

Γ(∆σ+∆12

2
)Γ(∆σ−∆12

2
)
Ã(g) (F.2)

derived in chapter 4. While it would be hard to check all of the predictions that they
encode, we provide several non-trivial checks that the two flows (φ4 and σχ or “old and
new” respectively) are compatible.

F.1 Old flow

Scalar conformal primaries of the mean field theory schematically have the form:

O ∼ ∂2kφn, (F.3)

where derivatives have to be distributed and contracted to get a primary. We take two
primaries of this form, assuming n1 ≥ n2 without loss of generality. To get a possibility for
a nonzero three-point function, we assume that n1 − n2 is odd.

Genericaly (F.1) predicts R12 = O(λ). However, there are exceptions if

1. n1 = n2 + 1, k1 ≥ k2

2. n1 = n2 + 3, k1 ≥ k2

In case 1 (2), the second gamma function in the numerator (denominator) is near a pole.
Assuming that O1 and O2 get unequal anomalous dimensions O(λ) we expect Γ ∼ 1/λ. This
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predicts
case 1: R12 = O(1), case 2: R12 = O(λ2) . (F.4)

We would like to check, in several simple examples, how this agrees with the perturbation
theory.

First consider k1 = k2 = 0. Let us start with O1 = φn+1, O2 = φn (case 1). In
perturbation theory, the three-point functions 〈φφn+1φn〉 and 〈φ3φn+1φn〉 exist already in
the mean-field theory. Thus R12 = O(1), in agreement with the above prediction.

Next let us examine O1 = φn+3, O2 = φn (case 2). In perturbation theory, the three-
point function 〈φ3φn+3φn〉 appears at O(1), while 〈φφn+3φn〉 needs one coupling insertion.
Moreover, the integral over the position of this insertion gives an extra O(ε) suppression,
thanks to the formula: ∫

dx

|x+ y|2a|x|2b ∼
1

Γ(d− a− b) , (F.5)

where in the considered case a+ b = d+O(ε).1 So all in all we have R12 = O(ελ) = O(λ2),
in agreement with (F.4).

Now let us consider O2 = φn, O1 = φn+5+2r. In perturbation theory, both three-point
functions require coupling insertions:

〈φO1O2〉λ = O(λr+2),
〈
φ3O1O2

〉
λ

= O(λr+1) . (F.6)

Both have just one power of ε suppression so R12 = O(λ) as expected for the generic case.
Let us now examine a more complicated example. We would like to understand the origin

of the restriction k1 ≥ k2. We will only study n1 = n2 +1 but k1, k2 general. The three-point
function 〈φO1O2〉 is nonzero in the mean field theory if and only if O1 occurs in the OPE
φ(x)×O2(0). To pick up terms with n1 = n2 + 1 copies of φ in the OPE, we are not allowed
to take any Wick contractions, only to expand φ(x) around x = 0. This will produce terms
with a non-negative number of derivatives acting on φ, i.e. all O1 operators of this type
have k1 ≥ k2. Analogously it is easy to see that O1 ⊂ φ3 ×O2 is only possible if k1 ≥ k2.

Hence, we get the following picture. If k1 ≥ k2, then both three-point functions 〈φO1O2〉,
〈φ3O1O2〉 exist in the mean-field theory. We thus expect R12 = O(1) and this is what (F.4)
predicts in this case. On the other hand if k1 < k2, then we need coupling insertions to
generate the three-point functions. Generically we expect 〈φ3O1O2〉λ = O(λ). On the other
hand, 〈φO1O2〉λ = O(λ2), since the diagrams with just one coupling insertions will vanish,
being proportional to a vanishing mean-field correlator. So we indeed expect R12 = O(λ),
consistently with (F.4).

1The physical reason for this suppression is that the integral becomes conformal for ε = 0, and can
be interpreted as the leading correction to the two-point function

〈
φφ3

〉
, so it must vanish for ε = 0 since

conformal invariance forbids nonzero two-point functions of operators of unequal dimension.
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F.2 New flow

For generic O1 and O2, the χ OPE coefficient is suppressed by a power of g, reflecting
the factorization of the theory into the product of the SRI and of the Gaussian χ model as
s→ s∗. As we will see, there are however interesting cases where one of the gamma functions
develops a pole, corresponding to a non-vanishing χ correlator in the factorized theory (if
the pole is in one of the numerator gamma functions) or to a further suppression of the χ
correlator in conformal perturbation theory (if the pole is in one of the denominator gamma
functions).

Let {OSRI
∆i,`i,αi

} be the conformal primary operators of the SRI, where ∆i and `i are their
conformal dimensions and spins, and αi = ±1 their Z2 quantum numbers. The general scalar
primary of the factorized theory at s = s∗ takes the schematic form

∂`+2k[OSRI
∆,`,αχ

n] , (F.7)

where the derivatives are contracted to give a scalar and distributed in such a way to give
a primary. The χ parity β = (−1)n is an exact Z2 symmetry in the factorized theory.
The interaction preserves the diagonal Z2 symmetry, whose quantum number we denote by
ν = α·β. As we turn on g, two operators with different OSRI and different numbers of χ’s can
a priori mix, provided that they have the same conformal dimension and that α1β1 = α2β2.
In such a case, the correct dilation eigenstates will be linear combinations of states of the
form (F.7). This is however a very rare and perhaps impossible phenomenon, which we will
discuss at the end. In the bulk of the analysis, we will assume that both O1 and O2 take the
form (F.7),2

O1 = ∂`1+2k1 [OSRI
∆1,`1,α1

χn1 ] , O2 = ∂`2+2k2 [OSRI
∆2,`2,α2

χn2 ] . (F.8)

In order for the three-point functions 〈O1O2σ〉 and 〈O1O2χ〉 to have a chance of being non-
zero, the diagonal Z2’s of O1 and O2 must be opposite, ν1 = −ν2, and we will assume that
this is always the case.

In the factorized theory at s = s∗, σ and χ have different Z2 × Z2 quantum numbers,
respectively (−,+) and (+,−), so if 〈O1O2σ〉 is nonzero, 〈O1O2χ〉 is zero, and vice versa.
We then expect the ratio (F.2) to be either zero or infinite as g → 0.

With no loss of generality, we will assume that n1 ≥ n2. Let us enumerate the various
cases:

1. n1 = n2

In this case, the scaling in g as g → 0 expected from Z2 × Z2 selection rules is given,
generically, by3

〈O1O2σ〉g = O(1) , 〈O1O2χ〉g = O(g) . (F.9)

2A common phenomenon is the mixing of states of the form (F.7) with the same OSRI and the same n,
k and `, but different ways to distribute the derivatives.

3One exceptional case is O1 = OSRI
1 Oχ1 and O2 = OSRI

2 Oχ2 with Oχ1 and Oχ2 two different χ theory
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Indeed α1 = −α2, making 〈OSRI
1 OSRI

2 σ〉 6= 0 in the SRI. While 〈O1O2σ〉 is already
nonzero at g = 0, a nonzero 〈O1O2χ〉 requires one insertion of the interaction gσχ.
We have ∆12 = ∆SRI

1 − ∆SRI
2 + 2k1 − 2k2 at g = 0. In the generic case, there are no

poles coming from the gamma functions of (F.2), and the O(g) behavior of the ratio
expected from conformal perturbation theory is correctly reproduced. We have checked
in simple examples that the numerical coefficients are also correctly reproduced.

No two operators in the SRI have dimensions differing by ∆χ plus an integer, so for
n1 = n2 there are never poles from the numerator gamma functions. It is possible
however to have a pole from the denominator gamma functions, resulting in a zero in
R12, if ∆12 = ∆σ + 2k1 − 2k2 with k1 ≥ k2, or ∆12 = −∆σ + 2k1 − 2k2 with k1 ≤ k2.
Given that operators with given Z2×Z2 quantum numbers acquire an O(g2) anomalous
dimension, this zero should be interpreted as an additional factor of g2, so all in all
R12 = O(g3) in these cases. Let us see in an example how this can be compatible with
conformal perturbation theory. Take

O1 = σχn , O2 = χn . (F.10)

We still have 〈O1O2σ〉g = O(1), but we are going to argue that 〈O1O2χ〉g = O(g3).
Indeed, the O(g) contribution to 〈O1O2χ〉g arises from the integral

g

∫
〈σχn(x1) χn(x2) χ(x3) σχ(y)〉0dy , (F.11)

which needs to be regulated and renormalized. We claim that the renormalized integral
is actually O(δ), so that the net contribution is O(gδ) = O(g3). A quick and dirty way
to see this is to evaluate the integral in dimensional regularization, using (F.5). Proving
this for examples more complicated than (F.10) requires a version of (F.5) with an extra
(x+ z)2c in the numerator.

2. n1 = n2 + 1

Since we require ν1 = −ν2, in this case we have α1 = α2. In the generic case, OSRI
1 and

OSRI
2 are two different operators with the same short-range Z2 quantum number, and

then
〈O1O2σ〉g = O(g) , 〈O1O2χ〉g = O(g2) . (F.12)

Indeed, for the first correlator one needs a single insertion of the interaction, while the
second correlator vanishes at g = 0 (because OSRI

1 6= OSRI
2 ) and then selection rules

force the insertion of two interactions. We observe again the generic behavior O(g) for
the ratio of OPE coefficients, in agreement with (F.2).

primaries which contain χ the same number of times. In this case 〈O1O2σ〉 vanishes in the factorized theory,
and the analysis needs to be modified.

210



The more interesting case is when OSRI
1 = OSRI

2 . Then selection rules would predict

〈O1O2σ〉g = O(g) , 〈O1O2χ〉g = O(1) . (F.13)

In this case, ∆12 = ∆χ + 2k1 − 2k2 for g = 0. If k1 ≥ k2, we encounter in a pole
from the second gamma function in the numerator of (F.2). Operators with definite
Z2 × Z2 quantum numbers acquire anomalous dimension at order O(g2), so for small
g the pole is regulated to 1

g2 , and R12 ∼ 1
g
, in agreement with (F.13). On the other

hand, if k1 < k2, we seem to have a problem. There is no pole in the gamma function,
so (F.2) predicts R12 ∼ O(g), in contradiction with (F.13).

To understand the resolution of this puzzle, we consider the following example. Let

O1 = σχ3 , OA2 = σ(∂µχ∂
µχ+ aχ�χ) , OB2 = ∂µσ∂µχχ+ b�σχ2 , (F.14)

where the coefficients a and b are fixed such that OA2 and OB2 are conformal primaries.
It is important to realize that OA2 and OB2 mix in conformal perturbation theory, indeed
the O(g2) correction to the dilation operator contains an off-diagonal term arising from
the non-vanishing correlator 〈OA2 OB2 σχσχ〉0. The eigenstates of the dilation operator
take the form

OI2 = OA2 + cOB2 OII2 = OA2 + dOB2 , (F.15)

where the coefficients c and d have no g dependence. We claim that

〈O1O2σ〉 = O(g) , 〈O1O2χ〉 = O(g2) , (F.16)

where O2 is either one of the dilation eigenstates in (F.15), so that R12 = O(g) in
agreement with (F.2). Indeed

〈O1(x1)O2(x2)χ(x3)〉0 ∼ 〈χ(x1)χ(x3)〉0 〈σχ2(x1)O2(x2)〉0 = 0 , (F.17)

where in the last step we have used orthogonality of conformal primaries of different
dimension. We then need to go to O(g2) to find a non-zero contribution to 〈O1O2χ〉g.
On the other hand,

〈O1(x1)O2(x2)σ(x3)σχ(x4)〉0 ∼ 〈χ(x1)χ(x4)〉0 〈σχ2(x1)O2(x2)σ(x3)σ(x4)〉0 6= 0 ,
(F.18)

so 〈O1O2σ〉g = O(g). It is essential that the dilation eigenstate O2 6= OA2 , i.e. that
it does not factorize into σ times a primary of the χ theory, otherwise the correlator
(F.18) would vanish.

3. n1 = n2 + 2m, m ≥ 1 We must have α1 = −α2. Selection rules and the requirement
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that we have enough χ insertions would naively give

〈O1O2σ〉g = O(g2m) , 〈O1O2χ〉g = O(g2m−1) , (F.19)

but the actual behavior is

〈O1O2σ〉g = O(g2m) , 〈O1O2χ〉g = O(g2m+1) . (F.20)

One can convince oneself in examples that the O(g2m−1) contribution to 〈O1O2χ〉g van-
ishes – the corresponding renormalized correlator turns out to be O(δ), a phenomenon
we already encountered in (F.11). It would be nice to find a general argument. Con-
formal perturbation theory is then consistent with the generic behavior R12 = O(g)
predicted by (F.2).

4. n1 = n2 + 2m+ 1, m ≥ 1 Now α1 = α2. The naive scaling is

〈O1O2σ〉g = O(g2m+1) , 〈O1O2χ〉g = O(g2m) , (F.21)

and the correct one

〈O1O2σ〉g = O(g2m+1) , 〈O1O2χ〉g = O(g2m+2) , (F.22)

for the same reason as the previous case. Again, we find agreement with (F.2).

Finally, let us consider the possibility of mixing of states of the form (F.7) with different
Z2 × Z2 quantum numbers. This requires a conspiracy of quantum numbers that is hard to
arrange. A naive candidate is the following. Take d = 2 and consider

OA = (∂µχ∂µχ+ aχ�χ)χn−2 , OB = σχn+1 , (F.23)

where the coefficient a is fixed to make OA a conformal primary. Since ∆χ + ∆σ = 2, both
states have dimension 2 + n∆χ. At first sight, it might seem that the dilation operator has
an off-diagonal component at O(g) arising from

g

∫
〈OA(x1)OB(x2)χσ(y)〉dy . (F.24)

However, this correlator is O(δ) for the same reason as the correlator in (F.17). An off-
diagonal component would arise at O(g3), but there are diagonal anomalous dimensions
already at O(g2), which presumably lift the degeneracy between OA and OB. So it appears
that there is no mixing after all, barring some coincidence. It would be nice to decide this
one way or another by a detailed computation.

Let us consider the power counting in the scenario that the two states (F.24) do mix to
leading order (since maybe a more intricate example would actually work along these lines).
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Let O1 be one of the two dilation eigenstates, of the form

O1 = OA + bOB (F.25)

for some coefficient b = O(1), and choose

O2 = χnσ . (F.26)

Then we have
〈O1O2σ〉g = O(1) , 〈O1O2χ〉g = O(1) , (F.27)

so R12 would be finite in the g → 0 limit in this scenario. Note that ∆12 = ∆χ for g = 0,
which gives rise to a pole in (F.2). Now however the anomalous dimension of O1 is of order
O(g). The pole is regulated to 1

g
and (F.2) predicts R12 = O(1). So we win again.
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