
GRAPHICAL ANALYSIS 


A purpose of many experiments is to find the 
relationship between measured variables. A good 
way to accomplish this task is to plot a graph of 
the data and then analyze the graph. These guide­
lines should be followed in plotting your data: 

1. 	Use a sharp pencil or pen. A broad-tipped 
pencil or pen will introduce unnecessary inac­
curacies. 

2. 	Draw your graph on a full page of graph 
paper. A compressed graph will reduce the 
accuracy of your graphical analysis. 

3. Give the graph a concise title. 
4. The 	 dependent variable should be plotted 

along the vertical (y) axis and the independent 
variable should be plotted along the horizontal 
(x) axis. 

5. Label axes and include units. 
6. Select a scale for each axis and start each axis 

at zero, if possible. 
7. Use error bars to indicate errors in measure­

ments, for example, 

Data point ItError range 

8. Draw a smooth curve through the data points. 
If the errors are random, then about one-third 
of the points will not lie within their error 
range of the best curve. 

The microcomputer is a powerful tool for data 

analysis. Commercial software is available that 
handles data and instructs the microcomputer to 
carry out graphical analysis. See your instructor 
about the availability of this software for your 
laboratory . 

As an example consider the study of the speed 
of an object (dependent variable) as a function of 
time (independent variable). The data are as fol­
lows: 

Speed (m/s) Time (s) 

0.45 ± 0.06 I 

0.81 ±0.06 2 
0.91 ±0.06 3 
1.01 ± 0.06 4 

1.36 ±0.06 5 
1.56 ±0.06 6 
1.65 ± 0.06 7 
1.85 ± 0.06 8 
2.17 ±0.06 9 

Using the above guidelines, the data are graphed 
in Figure 1.7. 

The graphed data show that the speed v is a 
linear function of the time t. The general equation 
for a straight line is 

y=mx+b (22) 

where m is the slope of the line and b, the vertical 
intercept, is the value of y when x = O. Let v = y, 
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FIGURE L7 	Speed versus time. The graphed data. v 
versus t. show a linear relation. 

x = t, a =m, and Vo= b; then, 

v = at + Vo (m/s) (23) 

This is the form of the equation for the line drawn 
through the data, where Vo is the value of the 
velocity at t = 0 and a is the slope of the line that 
is the acceleration of the object. From the graph 
we see that Vo = 0.32 m/s. To determine the slope 
select two points on the line, but not data points, 
which are well separated, then 

_ I _ av _ 2.35 0.40 (m/s) 
a - s ope - At - 10.0 _ O.S (s) 

= 1.95 (m/s) =020 12 (24)9.5 (s) . m s 

The equation for the line is 

v = 0.20t + 0.32 (m/s) (25) 

The data plotted in Figure 1.7 are analyzed in 
the section on "Curve Fitting," page 23, as an 
example of linear regression. 

As a second example, let us consider the study 
of the distance traveled by an object as a function 
of time. The data are as follows: 

Distance (m) Time (s) 

0.20 ± 0.05 I 
0.43 ±0.05 2 

0.81 ± 0.05 3 
1.57 ± 0.10 4 

2.43 ± 0.10 5 
3.81 ±O.IO 6 

4.80± 0.20 7 

6.39±0.20 8 

The data are graphed, using the above guidelines, 
in Figure 1.8. 

In this instance a straight line through the data 
points would not be acceptable. An inspection of 
the graph suggests that d is proportional to t", 
where n> I; for example, d may be a quadratic 
function of time and, hence, n = 2. 

Suppose that we know the theoretical relation 
between d and t is 

(m) (26) 

where a is the object's acceleration. Often it is 
useful to know if the data agree with the theory. If 
the data follow the above theoretical relation, 

t 2then a graph of d versus should result in a 
straight line. 

o 4 6 
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FlGURE L8 	Distance versus time. The graphed data. d 
versus t. show a nonlinear relation. 
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FlGURE 1.9 Plotting d versus t2 yields a linear relation. 

The graph in Figure 1.9 indicates that d. is a 
linear function of t 2 and, hence, that the data 
agree with the theoretical relation. The equation 
for the straight line is 

(m) (27) 

where m is the slope and do is the vertical inter­
cept. 

PLOTrlNG DATA ON SEMlLOG PAPER 

Often the relationship between the measured vari­
ables is not linear. For example, consider the 
intensity of light I transmitted through a sample 
of thickness x, shown in Figure I.IO, where 10 is 
the incident intensity of the light. 

Lambert's law states the theoretical relation­
ship between the dependent variable I and the 
independent variable x: 

(28) 

~'"'---)-----'~ 
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FlGURE 1.10 10 is the incident light intensity, x is the 
sample thickness, and I is the transmitted 
intensity. 

INTRODUCTION 

where p. is the absorption coefficient, a constant 
that depends on the wavelength of light and the 
absorbing properties of the sample. Suppose I is 
measured as a function of x, and the data are 
plotted as is shown in Figure I.I 1. 

From the smooth curve it would be difficult to 
determine the relationship between I and x, that 
is, it would be difficult to conclude the data obey 
Lambert's law. 

A good way to determine the experimental 
relationship between I and x is to use semilog 
paper. Semilog paper has a logarithmic y axis (it 
automatically takes logarithms of data plotted) 
and a regularly spaced x axis. The data are plot­
ted on semilog paper in Figure 1.l2. Note that 
there is never a zero on the logarithmic axis, and 
that when reading values off of a logarithmic axis 
you read the logarithm of the value and not the 
value, for example, log 9 and not 9. 

The smooth curve drawn through the data is a 
straight line with a negative slope and the inten· 
sity at the point on the vertical axis intercepted by 
the curve is 10 , Lambert's law does agree with this 
result as can be seen by taking the logarithm of 
Lambert's law: 

log I = 10g(/o e-4 
= log e -J.'X + log 10 

= -p.x log e + log 10 

= -0.434p.x + log 10 (unitless) (29) 
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FlGURE 1.11 Ught intensity versus sample thickness, 
showing a nonlinear relation. From the 
graph it is not dear if the data obey lam­
bert's law or not. 
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FIGURE 1.12 Light intensity versus sample thickness. The linear 
relation obtained on semilog paper shows that the 
data obey Lambert's law. 

Again, the general equation of a straight line is 
of the form: 

y=mx+b (30) 

Now let y = log I, m = - 0.4341', and b = log 10 , 

Then, if log I is plotted vertically and x is plotted 
horizontally, the curve will be a straight line with 
slope -0.4341' and vertical intercept log 10 , Using 
semilog paper, I is plotted on the logarithmic axis; 
the vertical intercept on this axis is 10 , Note that 
the slope of the line drawn through the data 
points may be used to calculate 1': 

slope =L1(log I) log 10-log 100 _ 0.294 em-I 
L1x (3.80-0.40) em 

(31) 

From Lambert's law the theoretical slope is 

slope = - 0.4341' 

By equating theoretical and experimental slopes, 
we find that 

-0.4341' = -0.294 em-I 

and 

l' = +0,678 em-I 

EXERCISE 2 

Suppose the functional relation between the de­
pendent variable y and the independent variable x 
is given by 

where a and b are nonzero constants. Explain why 
a graph of y versus x on semilog paper would not 
give a straight line. 

PLO'ITING DATA ON LOG-LOG PAPER 

Log-log paper is used to obtain a straight line 
plot when y and x satisfy a power-law relation: 

Y =cx" (32) 

where c and n are constants. For example, the 
semimajor axis R of the orbit of a planet is related 
to its period (time for one revolution around the 
sun) T: 

where K is a constant. R is nonlinearly related to 
T. 

http:3.80-0.40
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FIGURE 1.13 Planets: Semimajor axis versus period. The linear relation 
on log-log paper indicates Rand r obey a power law of 
the form of equation 32. 

A straight-line plot is obtained in the following 
way. Take logarithms 

log R = log(K I/3J'2/3) 

= log T2/3 + log K I{3 

= 2/3 log T + log K I {3 (34) 

Let y =log R, x = log T, m =~, and b =log K1/3. 

Then a plot of log R versus log T would be a 
straight line. Log-log graph paper automatically 
takes the logarithm of the plotted data. A log-log 
graph is shown in Figure 1.13. 

The units used are years and astronomical 
units (AU), where 1 AU is the semimajor axis of 
earth's orbit. (The errors shown in the graph are 
fictitious.) The slope of the log-log plot is 

slo = &(log R) = log 102 
- log 10° 

pe &(log T) log 103 -log 10° 

2-0 2 
(35)=3-0=) 

Note that the slope of the log-log plot is the 
exponent of the power law relation. For example, 
the power law relation y = ex" plotted on log-log 
paper has a slope equal to n. Hence, a log-log 
plot is a good way to determine the exponent in a 
power law relation. 

Another way to obtain a straight-line plot is to 

plot y versus x" or R versus T2/3 on regular graph 
paper (see Figure 1.14). 

A problem with plotting R versus T2/3 is that 
values of R less than about 1 AU cannot be 
plotted with much accuracy. 

In units of years and astronomical units the 
constant K is one, and an inspection of the curve 
in the figure shows a slope of approximately one. 
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FIGURE 1.14 Planets: R versus r2/3. shOwing a linear 
relation. This graph requires knowing the 
exponent in the power-law relation. 



CURVE FITTING' 


Just as it is important to learn to use a microcom­
puter to do graphical analysis, it is also important 
to use the microcomputer to carry out curve 
fitting. Commercial software is available for curve 
fitting. See your instructor about the availability 
of this software for your use. 

Given n data points (XI' Y,), we want to find 
the equation for the "best" curve for this set of 
data. If the data points are linearly related, then 
the process is called linear regression. In general. 
data points are not linearly related and the pro­
cess of obtaining the equation for the best curve is 
called oonHnear regression. The technique to be 
used in determining the best-fitting curve is the 
method or least squares. 

Before we consider linear and nonlinear regres­
sion, we use the method of least ,squares to deter­
mine the best estimate of a quantity x. 

Suppose a physical quantity is measured n 
times. X,. i = 1. 2•...• n. An example is the mea­
surement of a single period of a pendulum n 
times. where for each measurement the length. 
mass, and amplitude are constant. The method of 
least squares states that the best estimate for the 
result of the n measurements is that which mini­
mizes the sum of the squares of the deviations of 
the measurements from their best estimate X, that 
is, we minimize 

(36) 

where X is the unknown best estimate. Minimizing 
expression 36 and solving for x. we find that 
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2nx -2 L
n 

xl=O (37) 
t= 1 

X = 
I 

L
n 

xt=i
n,=1 

Hence. the best estimate is the average or mean 
value, i. 

Note that minimizing the sum of the squared 
deviations is equivalent to maximizing the proba­
bility P(XI' X2" •• , xn) of obtaining our set of 
measurements Xl> X2.' •• , Xn • We assume that the 
data points (XI) are distributed according to the 
Gauss distribution; then the probability of obtain­
ing a measurement within an interval dx of Xi is 

where 

X =best estimate for XI (39) 

and 0' is the theoretical standard deviation. 
The probability of obtaining our set of mea­

surements is 

=C~Y 

x exp[-.t (X; ~i)2J (40) 

.=1 0' 
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If we minimize the exponent in equation 40, then 
P(XI' ... , Xn) will be a maximum. The sum in the 
exponent is called the least-squares sum, 

(41) 

and mmlmlzmg it is equivalent to mtrumtzmg 
1:: (x - Xi ~ since (I is (assumed) a constant. 

Note: We assume the. data points follow the 
Gauss distribution, and the method of least 
squares is used to find the most probable value. 

METHOD OF LEAST SQUARES AND 
UNEAR REGRESSION 

Given n data points (Xi,YI) (for example, Xi could 
be the time and Yt the average speed of a falling 
object), we would like to find the equation for the 
best straight line. Typical data points (XI. YI) and 
the equation of the line, which we want to deter­
mine, are shown in Figure LIS. We make the 
following assumptions: 

I. The measured 	 values (XI. Yt) are distributed 
according to the Gauss distribution ( this is 
usually so if the errors are random). 

2. 	The errors in Xi' /)Xi , are negligible in compari­
son to the errors in YI' /)y; (then we only con­
sider the distribution of the values y;). 

3. The 	 errors in yare all the same: 
/)Y1 = /)Y2 = ... = /)Yn (then the standard devia­
tion (ly is constant). 

We approximate the set of n measurements (XI' YI) 

FIGURE 1.15 	Minimizing the least-squares 
sum gives the equation for the 
best straight line. 
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by a linear relation: 

y(X) = llo +0IX (42) 

The probability of obtaining the observed 
value YI is 

(43) 

where 

Y(Xi ) = best estimate for YI =00 + 01 XI (44) 

and (Iy is the theoretical standard deviation. The 
probability P(YIo .•. ,Yn) of obtaining the set of 
measurements is 

P(YI' •.. , Yn) = P(YI )P(Y2) •.. P(Yn) 

oc-1-exp[- f. (Yi- O
O-

0I X;)2] (45) 
«(ly)n I_I 2(1; 

We want this probability to be a maximum; 
hence, the exponent (least-squares sum) must be a 
minimum. Minimizing the least-squares sum gives 
the equation for the best straight line. 

In Figure 1.15, dl is the vertical distance from 
each point (XI' Y/) to the line Y = llo + OtX. We 
wish to find values of llo and 01 such that we 
minimize the function M(oo, 01) defined to be 

which is the exponent in. equation 45. Expanding 
the squared term and ignoring the (assumed) con­
stant (IY' we find that 

M = 1:: (y/)2 - 20,1:: XIYI - 200 1:: YI 

+oi 1:: XT + 2ilo0t 1:: Xi + no~ (47) 

where 1:: is understood as a sum over the index i. 
Next we set 

dM =0 and dM =0 (48)
dao dOl 

to find 00 and a l corresponding to the minimum 
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value of M. This results in two simultaneous 
equations: 

dM 
- = - 21: Yi + 2at 1: Xi + 2nao = 0
dao 

dM = _ 2 1: XiYi + 2al 1: xi + 2ao 1: Xi = 0 ( 49) 
dal 

which when solved for ao (intercept) and a) 
( slope) yield 

(1: xi) 1: Yi - (1: x;)(1: XiYI) 
(50)

ao = n 1: xi - (1: X/)2 

n 1: X1Y/ (1: XI )(1: YI)
a - (51)

) - n 1: xi - (1: x;)2 

The equation for the best-fitting line is ob­
tained by substituting equations 50 and 51 into 
equation 42. 

We ask this question: "What are the uncertain­
ties in ao and a)?" Each Yi has an uncertainty 
(assumed the same for all Yi) and, hence, ao and 
al will both have uncertainties. These uncertain­
ties are the standard deviations of the means, smao 

and smal' To calculate smao and Sma 1 , we need the 
standard deviation sy-

We ask the question: "What is the statistical 
uncertainty in the measurements YI' Y2' •.. ,Yn ?" 
In this case the standard deviation Sy is 

(52)S = y 

The standard deviation of the mean Smy is 

(53) 

For each Yi the result to be reported is 

i = 1,2, ... ,n (54) 

The reason for the factor of n - 2 in the denomi­
nator of equation 52 is that the calculation of ao 
and a) reduces the number of independent data 
points (Xi' YI) from n to n - 2; the denominator in 
the equation for the standard deviation is the 
number of independent data points. 

RellUU'k: It is important to check whether the 
estimated errors, JyiO recorded during data taking 
are consistent with the calculated statistical error 
~my- A standard deviation of the mean Smy, which 

is much larger than the estimated errors, JYi' 
would indicate estimated errors that are unac­
counted for. Experimental errors, JYi' which are 
much larger than Smy suggest a too conservative 
error estimate, that is, the JYi should have been 
estimated as smaller values. 

EXERCISE 3 

A physicist plans to calibrate her equipment by 
determining an average value for some parameter 
x. She does this by measuring four values of X and 
estimates the error Jx. Suppose that the values of 
X + Jx are 2.741 +0.010, 2.832 ± 0.010, 2.678 ± 
0.0.0, 2.763 ± 0.010. Calculate the mean, i, and 
the standard deviation of the mean, Sm' Is her 
estimated error too large, too small, or reason­
able? Explain. 

We now consider the errors in ao and aI' smao 

and smal' Equations 50 and 51 give ao and al as 
functions of the measured values (Xi' YI) where the 
statistical error for each YI is given in equation 53. 
Since ao and a) are known functions of Yi and the 
errors in Yi are known, the errors in ao and a) may 
be determined by error propagation. The basic 
formula for error propagation, equation 12, may 
be written as 

n (OQ)2 2JQ = L - (Jbj ) (55) 
i_I obj 

where the measured values are b) ± {)b}, 

j = 1, 2, ... ,n, and {)Q is the error in the calcu­
lated quantity Q(b) , b2, ... ,bn). Replacing JQ 
and Jbj with standard deviations of the mean smQ 

and 5mb and squaring, we have 
'J 

(56) 

Applying equation 56, smao is 

(57) 

where the partial derivative oaoloy/ is calculated 
by using equation 50: 

oao 7xi - ( 7Xi )X) 
(58) 

oY} = n 7x; - (7XI )2 
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Then, after some algebra, equation 57 becomes 

(59) 

The result to be reported is 

(60) 

The calculation of S~1 is similar to the calcula­
tion of s~o' The result is 

and we report 

(62) 

Example 
The method of least squares and linear regression 
is applied to the speed versus time data given in 
the section on "Graphical Analysis," p. 18, and 
plotted in Figure 1.7. 

The vertical intercept ao is calculated using 
equation 50, where n = 9, and the result is 

00 =0.305 mjs 

The slope a1 is obtained from equation 51: 

When 00 and a1 are known, equations 52 and 53 
may be used to calculate Smy: 

Smy =0.025 mjs 

where, in this case, the dependent variable Y is the 
speed v. For each Vi the result to be reported is 

Vi ±Smv = Vi ±0.025 

Note that Smv is smaller than the estimated errors 
dVi =0.06 mjs (see data on p. 18), which suggests 
the estimated errors were too conservative or too 
large. 

When Smv is known, the uncertainties in ao 
(smao) and a1 (sma1) may be calculated by using 
equations 59 and 61. The results are 

INTRODUCTION 

Smao =0.018 mjs 

Sma 1 =0.003 mjs2 

Thus, 

00 ± smao = 0.305 ± 0.018 m/s 

al ± Sma 1 = 0.201 ± 0.003 m/s2 

METHOD OF LEAST SQUARES AND 
NONUNEAR REGRESSION 

Given n data points (Xi> Yi), i = I, 2, ... ,n, that 
are nonlinearly related, we want to determine the 
polynomial in X that gives the best fit to the set of 
n measurements: 

If a plot of the data or theoretical considerations 
suggest a quadratic function of x, then we con­
sider only the first three terms in equation 63. We 
make the same three assumptions as in the 
method of least squares and linear regression. 

As before, equation 43, the probability of ob­
taining the observed value YI is 

(64) 

where 

y(X;), = the best estimate for YI 

(65) 

and uy is the theoretical standard deviation. The 
probability of obtaining the set of measurements 
is 

Again we want the probability to be a maximum; 
hence, the exponent (least-squares sum) must be a 
minimum and minimizing the least-squares sum 
gives the equation for the best fitting curve. 

We wish to find the values of 00, ai' ... , am 
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such that we minimize the function M defined to or X2, test provides the answer to this question. X2 
be is a number, without units, defined by 

Taking the partial derivative of M with respect to 
ak and setting it equal to zero yields 

where k = 0, I, 2, ... ,m. Equation 68 is a set of 
m + 1 equations in the m + 1 variables 
tlo, al> ... ,am which determines the best-fitting 
curve. 

CHI-SQUARE TEST OF m 
If a measurement is repeated many times then the 
distribution of measured values is expected to 
follow a theoretical distribution precisely in the 
limit that the number of measurements ap­
proaches infinity. The Gauss and Poisson distri­
butions are two of many theoretical distributions 
used in physics, corresponding to different kinds 
of experiments. (The Poisson distribution is dis­
cussed in Experiment 6.) 

Suppose we have repeated a measurement n 
times. We ask the question, "How do we deter­
mine whether the measurements follow the ex­
pected theoretical distribution?" The chi-square, 

p(:c) 

(69) 


where m is the number of bins, Ok is the number 
of observed or measured values in the kth bin, and 
Ek is the number of expected values in the kth bin. 
The n measured values are divided into bins or 
ranges of values, where the bins must be chosen so 
that each bin contains several measured values. By 
assuming that the measurements follow an ex­
pected theoretical distribution, such as Gauss or 
Poisson distribution, we can calculate the expected 
number Ek of measurements in each bin k: 

(70) 

where Pk is the probability that any measurement 
falls in bin k. Figure 1.16 shows a Gauss dis­
tribution with 6 bins and probabilities PI -P6 , 

where PI = P6 =0.02, P2 = Ps =0.14, and 
P3 = P4 = 0.34 for the Gauss distribution. 

The interpretation of X2, calculated from equa­
tion 69, is as follows: 

1. 	If X2 = 0, then the measured values follow the 
theoretical distribution exactly. 

2. 	If X2 ~ m - c, then the agreement between the 
distribution of measured values and the theo­
retical distribution is good, where m is the 
number of bins and c is the number of parame­
ters that had to be calculated from the data to 

i- 2u i- u i+u i+ 2u x 

FIGURE 1.16 A Gauss distribution with six bins and probabilities PI 
through P6 0 
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compute the expected number Erc. In statistical 
calculations m - c is the number of degrees of 
freedom. 

3. If 1! ~ m - c, then the agreement is bad. 

A more precise interpretation of X2 is obtained 
from a table of values of X2. 

Example 

A distance is measured 20 times. The measured 
values of x (in em) are given in Table 1.1. The 
mean value, calculated from equation I, is 
x = 16.70 em. From equation 2 the standard devi­
ation is s =0.16 em. To simplify the detennina­
tion of Prc. we choose the bin boundaries at x - s, 
x, and x + s, giving four bins as shown in Table 
1.2. The probability Prc is shown in Figure 1.17 

TABLE 1.1 1WENTV MEASUREMENTS OF THE 
DISTANCE x 

16.7 16.9 16.8 16.7 16.8 16.7 16.6 
17.0 16.7 16.7 16.9 16.5 16.3 16.7 
16.8 16.7 16.6 16.4 16.7 16.7 

FIGURE 1.17 A Gauss distribution with four bins and 
probabilities PI through P4 • 

TABLE 1.2 DMDlNG THE 20 MEASURED 
CALCULATION 
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and the expected number Erc is calculated from 
equation 70 with n = 20. If a measured value falls 
on a bin boundary, then the observed number is 
detennined by alloting 0.5 to each bin. X2 is 
calculated from equation 69, where m =4. The 
result is X2 = 0.11. To calculate Erc , two parame­
ters, x and s, had to be detennined from the data. 
In addition, 

(71) 

is a constraint. Hence, c =3 and m - c = 1. Since 
X2 < 1, the agreement is good. 

The probability obtained from a table of X2 
values is that, on repeating the series of measure­
ments, larger deviations from the expected values 
would be observed. In this example the probabil­
ity, obtained from tables (see reference I), is 
between 0.90 and 0.95 that a set of measurements 
with two degrees of freedom will have X2 > O.ll. 
In other words, if the set of measurements was 
repeated 100 times then we would expect that 90 
to 95 cases would yield values of X2 greater than 
0.11. 

In interpreting the value of P obtained from 
tables, we may say that if 

0.1 <P <0.9 (72) 

then the assumed distribution very probably cor­
responds to the observed one, while if 

P < 0.02 or P > 0.98 (73) 

then the assumed distribution is very unlikely. 

VALUES OF x INTO FOUR BINS FOR A X2 

Bin Number, k 2 'J 4 

Range of x in each bin x <i-$ i-s<x<i i<x<i+s i+s<x 
or or or or 

x < 16.54 16.54 <x < 16.70 16.70 < x < 16.86 16.86 < x 
Probability Pk 0.16 0.34 0.34 0.16 
Expected number Ek = nPk 3.2 6.8 6.8 3.2 
Observed number q 3 6.5 7.5 3 


