ESE 440: Senior Design I Fall 2022

2022-2023 Catalog Description:

- 0	
	The senior design sequence (ESE 440 and ESE 441) is a two-semester,
	team based and independent capstone project with deliverables. The
	primary objective of the senior design course sequence is to provide a
	vehicle for students to transition from an academic environment to that
	of a commercial/ professional engineering environment. Students learn
	to work in teams to complete a project from concept, practical design
	based on multiple constraints, to creating a deliverable product meeting
	the design specifications. Students present written, oral and poster
	presentations of the project. While most of the project work is done
	outside the classroom, guest speakers provide insight into other related
	topics from resume preparation to program management, to team
	dynamics and to design methodologies used in industry. The project
	incorporates appropriate engineering standards and multiple realistic
	constraints. The final grade will be assigned at the end of the two-course
	sequence ESE 440-441. Not counted as a technical elective. This course
	has an associated fee. Please see www.stonybrook.edu/coursefees for
	more information.

Credit Hours:	3 credit hours (engineering design).
Course Designation:	Required
Text Books:	None
Prerequisites:	ESE or ECE major, U4 standing; ESE 300; For ESE majors: two ESE electives or for ECE majors: two ECE electives
Coordinator:	Harbans Dhadwal
Goals:	Introduce basic concepts and techniques in communication systems. Provide in-depth understanding of analog and digital communication systems, including their behavior in the presence of noise.

Course Learning Outcomes: Upon completing this course, students will achieve the following learning objectives:

- 1. Proficient in the procedures concerning engineering design.
- 2. Translate a concept into a deliverable project by the end of the 2^{nd} semester.
- 3. Proficient in organizational skills for long-term management of time.
- 4. Develop communication skills for working in group, deliver oral and written project updates.
- 5. Develop problem solving skills.

6. Develop methodology for independent learning outside the classroom.

Topics Covered:

This is an independent two-semester course which is done entirely outside the classroom, with consultation with the faculty project advisor. During scheduled class meetings, external speakers from a diverse background broaden the design experience for students through their in-person presentations.

Class/laboratory Schedule: Lecture: 1hr 20min/2 days per week as needed.

	Student Outcomes	contribution
1.	an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.	3
2.	an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.	3
3.	an ability to communicate effectively with a range of audiences.	3
4.	an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgements, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.	3
5.	an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.	3
6.	an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgement to draw conclusions.	3
7.	an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.	3

3-Strongly Supported; 2-Supported; 1-Minimally Supported

Document Prepared by: Harbans Dhadwal **Date:** August 2022