ESE350 Syllabus Electric Power Systems

Professor:	Timothy J. Driscoll (<u>timothy.driscoll@stonybrook.edu</u>)
Text Book:	Power System Analysis and Design, J. Duncan Glover, Cengage 6 th Ed. (ISBN-13: 978-1-305-63213-4)
	(Reference: "Power System Analysis", Charles Gross, Wiley, 2nd Edition)
Goals:	Teach analysis and design techniques associated with the generation, transmission, and distribution of electric power.
Objectives:	Upon completion of this course, students will have an appreciation for the generation, transmission, and distribution of electric power. Students will demonstrate techniques for single phase and three phase electric power systems including: 1) characterization of voltage, current, and complex power, 2) AC circuit analysis, 3) function of time, phasor, symmetrical component, and per unit system analysis, 4) three phase transformers and transmission lines, 5) three-phase synchronous generators and economic dispatch, 6) balanced and unbalanced short-circuit analysis.

Topics Covered:

-		
Week 1.	Overview: Generation, Transmission, Distribution, and	
	Utilization. Historical perspective of electric power systems	
	development. Single phase AC circuit analysis (function of time	
	and phasor analysis), impedance, real and reactive power, power	
	factor correction.	
Week 2.	Balanced three phase systems analysis: phase and line voltage,	
	current, complex power, delta-wye conversion.	
Week 3.	Power system representation: system modeling, per-phase	
	analysis, per-unit system, one line diagram.	
Week 4.	Three Phase Power Transformers: equivalent circuit, impedance,	

		t
	lab measurement circuitry, delta –wye phase shift.	
Week 5.	Overhead and Underground Transmission Line Modeling: series	
	resistance, series inductance, shunt capacitance, shunt	
	conductance, line compensation, insulation, lightning, surge	
	arresters, corona, shielding, radio/ TV interference.	
Week 6.	Review: Week 1 – Week 5	
Week 7.	First Exam	
Week 8.	Review First Exam	
	Balanced Three Phase Faults. Symmetrical Components.	
Week 9.	Unbalanced Faults: Analysis of line to ground, line to line, and double	
	line to ground faults.	
Week 10.	Operating and Controlling Power Systems: economic dispatch.	
	Form teams for class field trip to operating power plant. Discuss	
	individual team assignments	
Week 11.	Field Trip to Operating Power Plant	
Week 12.	Team presentations: production of electricity; environmental	
	impacts, reliability and maintenance; economics and fuel use;	
	federal, state and local regulations; community impact.	
	Electric Power System Environmental Impacts and Mitigation,	
	UN Rights of Nature Discussion.	
	Renewable Resource Systems Team Assignment.	
W/ 1 10		
Week 13	Renewable Resource System Presentations	
Week 14.	Review for Second Exam.	
Week 15	Second Exam	

Notes:

- Homework assignments are due at next session.
- The weekly quiz will cover material discussed during the previous session.
- Final grade will be determined as follows:

0	
Homework, Weekly Quiz, Class Participation	17%
Team Projects	17%
First Exam	33%
Second Exam	<u>33%</u>
	100