ESE352: Electromechanical Energy Converters Fall 2017

Fall 2016-2017 Catalog Description:

Basic principles of energy conversion; DC, induction, and synchronous rotary converters; the three-phase system and symmetrical components; the relationships between voltage, current, flux, and m.m.f.; equivalent circuits and operating characteristics of rotary converters; and analysis of saturation.

Course Designation: Elective

Text Book:	Electric Machinery Fundamentals (5 th ed. McGraw Hill) Chapman
Prerequisite:	ESE 372
Credit Hours: Coordinator:	3 Timothy J. Driscoll
Goals:	Teach analysis and design techniques associated with the conversion of (1) mechanical energy to electrical energy (generators) and (2) electrical energy to mechanical energy (motors).
Objectives:	 Upon completion of this course, students will obtain an understanding of the following: 1. The interaction of magnetic fields, electric current, and moving conductors in the production of electromagnetic force and induced voltage. 2. The design and application of three phase AC synchronous generators, induction machines and synchronous motors. 3. The design and application of DC generators and motors. 4. The design and application of single-phase AC machines.
Topics Covered:	

Week 1.	Overview of electromechanical energy converter fundamentals:
	rotational motion, power, magnetic fields, Faraday's Law, induced
	force, induced voltage, linear DC machine.
Week 2.	Rotating loop in magnetic field, induced voltage in AC machines,
	induced torque, power flow, losses. Assign Team Model 1.
Week 3.	Real, Reactive, and Apparent Power flow in AC circuits.
	Discuss Team Model Assignment. Form class teams.
Week 4.	Synchronous generators including the following: construction,
	relationship between rotor mechanical speed and electrical
	frequency, internal generator voltage, equivalent circuit, phasor
	diagram representation, power and torque, operation, and ratings.
Week 5.	Synchronous motors including: rotating magnetic field, equivalent
	circuit, steady-state operation, starting issues, phasor diagrams,
	ratings. Team Presentations: Synchronous Machine Team Model 1

Week 6.	Review sessions 1 through 5.
Week 7.	First exam.
Week 8.	Review First Exam.
	Induction machines including: construction, slip and frequency,
	equivalent circuit, torque, torque-speed characteristics, induction
	motor design, starting challenges, speed control, induction
	generators, and induction machine ratings.
Week 9.	DC machinery fundamentals including: rotating coil between
	magnetic poles, commutation, induced voltage and torque,
	machine construction, power flow, losses. Assign Team Model 2.
Week 10.	DC motors and generators including: equivalent circuits for
	separately excited, shunt, permanent magnet, series and compound
	machines; starting circuits, and machine efficiency.
Week 10.	Team Presentations: DC Machine Team Model 2.
	Single phase motors including: universal motor, single phase
	induction motor, starting challenges, equivalent circuits.
Week 12.	Special-purpose motors including: split phase, capacitor start,
	capacitor start/capacitor run, shaded pole, and stepper motors.
	Assign Team Presentation for Practical Single Phase Applications.
Week 13.	Team Presentations for Practical Single Phase Applications
Week 14.	Review for final exam.
Week 15	Final Exam

Week 15 Final Exam

Class/laboratory Schedule: 3 lecture hours per week.

Student Outcomes	%
	contribution*
(a) an ability to apply knowledge of mathematics, science and engineering	20
(b1) an ability to design and conduct experiments	
(b2) an ability to analyze and interpret data	10
(c) an ability to design a system, component, or process to meet desired needs within	10
realistic constraints such as economic, environmental, social, political, ethical, health	
and safety, manufacturability, and sustainability	
(d) an ability to function on multi-disciplinary teams	10
(e) an ability to identify, formulate, and solve engineering problems	10
(f) an understanding of professional and ethical responsibility	5
(g) an ability to communicate effectively	5
(h) the broad education necessary to understand the impact of engineering solutions	5
in a global, economic, environmental, and societal context	
(i) a recognition of the need for, and an ability to engage in life-long learning	5
(j) a knowledge of contemporary issues	10
(k) an ability to use the techniques, skills, and modern engineering tools necessary	10
for engineering practice	
Any other outcomes and assessments?	

Document Prepared by: Timothy J, Driscoll on 5/27/2017