EEO 331 SEMICONDUCTOR DEVICES Fall 2023

Stony Brook University Department of Electrical and Computer Engineering

Part 1: Course Information

COURSE DESCRIPTION

The course covers physical principles of operation of semiconductor devices. Energy bands, transport properties and generation recombination phenomena in bulk semiconductors are covered first. Junctions between semiconductors and metal-semiconductor will then be studied. Equipped with an understanding of the character of physical phenomena in semiconductors, students learn the principles of operation p-n junction diodes, metal-semiconductor contacts, bipolar junction transistors, field effect transistors. This course will provide general background for subsequent courses in electronics. *Prerequisites:* AMS 361 or MAT 303; PHY 127/134 or PHY 132/134 or PHY 142

Credits: 3

	Ridha Kamoua, 237 Light Engineering	
Instructor	ridha.kamoua@stonybrook.edu	
	(631) 632 8406	
Office Hours	Mondays 12:15pm – 2:15pm	
	Wednesdays 12:15pm – 2:15pm	

TEXTBOOK

"An Introduction to Semiconductor Devices" Donald Neamen, McGraw Hill, 2006, ISBN 9780072987560

OR

"Semiconductor Physics and Devices" Donald Neamen, McGraw Hill, 2011, ISBN

Course Delivery Mode and Structure:

This is an online course delivered in the <u>Brightspace</u> learning management system (LMS) at Stony Brook University. Students must be mindful of all course expectations, deliverables and due dates, especially because the online course requires significant time management. All assignments and course interactions will utilize internet technologies. See "Technical Requirements" section for more information. In Brightspace, you will access online lectures, course materials, and resources.

Homework assignments, homework and exam solutions, and other pertinent information will be posted on the course's Brightspace site. You can access Brightspace using your Net ID username and password. To look up or set your Net ID, you need to login to SOLAR.

How We Will Communicate:

Course-related questions should be posted in the General Questions Forum in the course Discussion board. For personal/private issues, email me directly. If you use Brightspace's email tool from the course site, it will automatically include your full name, course name and section when you send me an email. Please allow between 24-48 hours for an email reply. Your Stony Brook University email must be used for all University-related communications. You must have an active Stony Brook University email account and access to the Internet. All instructor correspondence will be sent to your SBU email account. Plan on checking your SBU email account regularly for course-related messages. To log in to Stony Brook Google Mail, go to http://www.stonybrook.edu/mycloud and sign in with your NetID and password.

Regular announcements will be sent from Brightspace. These will be posted in the course site and may or may not be sent by email.

Regular communication is essential in online classes. Logging in once a day, checking the discussion board and participating with your peers ensures that you are able to remain an active member of the class and earn full points for participation.

Office hours will be held using zoom.

Technical Requirements:

You are responsible for having a reliable computer and Internet connection throughout the term. **Caution!** You will be at a disadvantage if you attempt to complete all coursework on a smartphone or tablet. It may not be possible to submit the files required for your homework assignments.

Students should be able to use email, a word processor, spreadsheet program, and presentation software to complete this course successfully.

The following list details a minimum recommended computer set-up and the software packages you will need to have access to, and be able to use:

- PC with Windows 10 or higher (we recommend a 3-year Warranty)
- Macintosh with OS 10.11 or higher (we recommend a 3-year Warranty)

- Intel Core i5 or higher
- 250 GB Hard Drive
- 8 GB RAM
- Latest version of Chrome or Firefox; Mac users may use Chrome or Firefox.
- High speed internet connection
- Word processing software (Microsoft Word, Google Docs, etc.)
- Headphones/earbuds and a microphone
- Webcam (recommended)
- Printer (optional)
- Ability to download and install free software applications and plug-ins (note: you must have administrator access to install applications and plug-ins).

Part 2: Course Learning Objectives and Assessments

Course Objectives:

To teach properties, models, and concepts associated with semiconductor devices. Provides detailed insight into the internal workings of basic semiconductor devices such as the pn-junction diode, Bipolar Junction Transistor, and MOSFET. Systematically develops the analytical tools needed to solve practical device problems.

Student Outcomes (SO):

Course Learning Outcome	ABET Student	Assessment Method
	Outcome	
knowledge of semiconductor bonding and	(1)	Exams, final, and homework
energy band models		
knowledge of semiconductor carrier properties	(1)	Exams, final, and homework
and statistics		
knowledge of semiconductor carrier action	(1)	Exams, final, and homework
ability to apply standard device models to	(1)	Exams, final, and homework
explain/calculate critical internal parameters		
and standard characteristics of the pn-junction		
diode		
ability to apply standard device models to	(1)	Exams, final, and homework
explain/calculate critical internal parameters	. ,	
and standard characteristics of the Bipolar		
Junction Transistor		
ability to apply standard device models to	(1)	Exams, final, and homework
explain/calculate critical internal parameters	(1)	Estanto, mar, and nome work
and standard characteristics of the Metal-Oxide-		
Semiconductor Field Effect Transistor		

(1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.

How to Succeed in this Course:

• Complete all assigned readings in the course

- Start homework assignments early
- Take notes and prepare formula sheets to be used in exams
- Use the office hours for one-on-one help

Part 3: Course	Outline a	and Schedule
----------------	-----------	--------------

COURSE OUTLINE

1.	Introductory Physical Concepts	Chapters 1, 2, 3
	Crystal Structure of Semiconductors	_
	• Energy Band Model	
	Fermi Energy Level	
	Semiconductor Doping	
2.	Carrier Transport and Excess Carriers in Semiconductors	Chapters 4,8
	Carrier Drift	
	Carrier Diffusion	
	Generation and Recombination	
	Continuity Equation	
3.	Junction Diodes	Chapters 5,9
	• <i>p-n</i> Junction	
	Metal-Semiconductor Junction	
	I-V Characteristics	
4.	Bipolar Junction Transistors	Chapters 10
	Operating Principles	
	Minority Carrier Distribution	
	Ideal I-V Characteristics	
	Non-Ideal Effects	
	Small-Signal Models	
5.	MOS Transistors	Chapters 6,7
	Operation Principles	- <i>'</i>
	MOS Capacitor	
	• Metal Oxide Field Effect Transistor (MOSFET)	
	a) Enhancement Type	
	b) Depletion type	
	c) Current-Voltage Characteristics	
	MOSFET Fabrication	

Course Schedule: Please refer to Brightspace for the course schedule.

Part 4: Grading System and Exam Schedule

Your grade will be based on attendance and participation, homework assignments, two exams, and a final exam.

Attendance, Participation, Homework	10%	weekly
Exam 1	25%	October 11, 2:30pm EST
Exam 2	25%	November 15, 2:30pm EST
Final Exam	40%	December 12, 5:30pm – 8:00pm