EEO470: Renewable Distributed Generation and Storage

Spring 2014

2013-2014 Catalog Description:

This course introduces a specific type of electric power system, the microgrid. With ongoing deregulation of the electrical utility industry and emergence of more renewable smaller generation sources advancement into the electrical power industry will be met by microgrids. Topics will include a historical global perspective of electrical systems, individual enabling technologies that comprise a microgrid will be presented. The class involves a design of a microgrid that incorporates and considers economic, environmental, sustainable, manufacturable, ethical, health and safety, social and political constraints. (3 credits)

Technical Elective

Text Book:	Renewable and Efficient Electric Power Systems by Gilbert M.
	Masters, John Wiley & Sons, 2004, ISBN: 0-471-28060-7
	Power Systems Analysis and Design, 5th Edition by Glover, Sarma
	and Overbye, Thomson learning 2012. ISBN 978-1-111-42577-7
	Sustainable Energy - Choosing Among Options, Tester, J. W., E. M.
	Drake, M. W. Golay, M. J. Driscoll, and W. A. Peters. Cambridge,
	MA: MIT Press, 2005. ISBN: 9780262201537.
	Various Journal Articles as directed in class.

- Prerequisites: EEO 271
- Instructor: Jennifer Zirnheld, Ph.D.
- Goals: The student will be able to propose and discuss ways engineers are contributing or might contribute to the solution of a specified regional, national, and global problem

Objectives: 1) The student will be able to examine a description of a problematic technology-related situation and identify ways that engineers might contribute to a solution. 2)The student will be able to model a prototype of a design and demonstrate that it meets performance specifications. 3)The student will be able to find relevant sources of information about a specified topic in the library and on the world wide web. 4)The student will be able to generate an oral presentation using electronic tools to disseminate their work.

Topics Covered:

Week 1. Electric Power Industry – History and Overview

Week 2.	Distributed Generation I – Fossil Fuels, Solar, BioMass, Micro-
	Hydro
Week 3.	Distributed Generation II – Fuel cells, historical development,
	thermodynamics basics, theoretical efficiency
Week 4.	Project Introduction
Week 5.	Economics of Distributed Resources
Week 6.	Wind Power Systems I (Distributed Generation)
Week 7.	Wind Power Systems II (Distributed Generation)
Week 8.	Exam and Exam Review
Week 9.	Solar Resources (Distributed Generation)
Week 10.	PV Systems (Distributed Generation)
Week 11.	dc Distribution Systems
Week 12.	Peak power Shaving Systems
Week 13.	Interconnection Technologies
Week 14	Project Presentations

Class/laboratory Schedule: 3 lecture hours

Program Outcomes and Assessment

% contribution

10
10
10
10
10
10
10
5
10
5
10

Document Prepared by: Jennifer Zirnheld, 3/17/14