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Abstract

We study the optimal capital budgeting policy of a �rm taking into
account the choice between internal and external �nancing. The manager
can dedicate e¤ort either to increase the short-term pro�tability of the
�rm, thus generating greater immediate cash-�ow, or to improve long-term
perspectives. When both types of e¤ort are observable, low return �rms
end up using internal funds, while high return �rms use external capital
markets. When e¤ort to boost short-term cash �ow is observable, while
e¤ort to boost long-term pro�tability is not, non-monotonic policies may
be optimal, that is. �nancing switches back and forth between internal
and external funds as the quality of the project increases.

1 Introduction

Capital budgeting, the allocation of capital to di¤erent projects, is one of the
most important activities inside a �rm. It is well-known that headquarters and
division managers may have di¤erent objectives and asymmetric information can
lead to an ine¢ cient allocation of capital. The literature on capital budgeting
has not paid much attention to the sources of the funds used to �nance projects.
In this paper we study the relationship between headquarters and a division.

Headquarters is interested in maximizing the value of the �rm, net of the com-
pensation paid to the division manager. The division manager derives utility
from compensation and from the capital allocated to the division and derives
disutility from exerting e¤ort.
One important assumption is that the manager can exert two types of e¤ort:

one aimed at improving the quality of new projects and the other at producing
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cash �ow generated by the assets in place. The cash �ow can be used to �nance
new projects. The pro�tability of the investment depends both on its quality,
an exogenous parameter observed only by the divisional manager, and by the
level of project-improving e¤ort selected by the manager. Managerial disutility
is a convex function of the sum of the two types of e¤ort, so that exerting higher
e¤ort in one dimension increases the marginal cost of exerting e¤ort in the other
dimension.
We �rst analyze the case of complete information, that is the quality of the

project and the levels of the two types of e¤ort are observed by headquarters.
In that case, low quality projects are �nanced only by internal funds and the
associated project-improving e¤ort is also low. The intuition is that low quality
projects require low investment. Since the marginal return on project improving
e¤ort is positively related to the amount of investment, project improving e¤ort
is also low. It is therefore optimal to allocate the division manager e¤ort to
generate internal funds. As the quality of the investment projects increases,
optimal investment increases. A higher quality of the investment also requires
a higher level of project-improving e¤ort. The e¤ect is to increase the marginal
cost of the e¤ort aimed at producing cash and thus the �rm will rely more on
external �nancing.
We next assume that the e¤ort to generate short-term cash can be easily

monitored, while e¤ort directed at project improvement cannot be observed,
so that eliciting a higher project-improving e¤ort implies higher incentive costs
than eliciting short-term cash generation. With incomplete information an addi-
tional e¤ect is at work. Whenever a positive project-improving e¤ort is required,
incentive rents have to be paid. As it is well known, it is particularly costly to
provide incentive rents for low realizations of the variable on which the agent
has private information (the quality of investment project) since this increases
the incentive rents for all the higher realizations of the variable. Since incentive
rents are related to the total cost of e¤ort, this incentive cost makes it more
costly to require both cash�generating and project�improving e¤ort when the
quality of the project is low.
Under incomplete information the optimal policy may imply non monotonic-

ity: �nancing switches back and forth between internal and external funds as
the quality of the project increases. At least under some con�guration of the
parameters, small �rms and large �rms will mostly rely on external �nance.
Only �rms of intermediate size rely on internal �nancing to a signi�cant extent.
The rest of the paper is organized as follows. Section 2 reviews the relevant

literature. Section 3 describes the general model. Section 4 discusses the op-
timal policy when information is complete. Section 5 contains the results for
the incomplete information case. Conclusions are in section 6. All proofs are
collected in the appendix.
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2 Literature

The distortions created by asymmetric information on capital budgeting have
been studied in a number of papers (see e.g. Harris, Kriebel and Raviv [10],
Harris and Raviv [11], and Harris and Raviv [12]). Bernardo, Cai and Luo [4]
and Bernardo, Cai and Luo [6] are the papers closest to ours. In particular,
Bernardo, Cai and Luo [6] discusses a model which has similar features: the
manager has two types of e¤ort, an �entrepreneurial�e¤ort intended to �nd in-
vestment projects of higher quality and a �managerial�e¤ort intended to improve
the cash �ow of a project once it has been selected. A crucial di¤erence is that
in their case the two types of e¤ort are taken sequentially and enter separately
into the utility function of the manager, thus eliminating most of the trade-o¤s
arising in the presence of multiple tasks. In our case the two types of e¤ort are
taken simultaneously and the disutility for the manager depends on total ef-
fort. Furthermore, while our project improving e¤ort plays the same role as the
�managerial e¤ort�in Bernardo, Cai and Luo [6], the role of the cash-generating
e¤ort is completely di¤erent from their �entrepreneurial�e¤ort. It is precisely
the presence of the cash-generating e¤ort that allows us to link the analysis of
the multiple tasks problem with the analysis of the choice between internal and
external capital markets.
Almazan, Chen and Titman [1] also consider the role of a project-improving

e¤ort that interacts with project quality. However they don�t have multiple
tasks for the manager and they restrict the set of compensation schemes allowed.
Begenau and Palazzo [3] analyze the interaction between internal and external
�nancing but, di¤erently from us, they do not consider the managerial e¤ort that
goes into the production of internal funds. In their paper the cost of internal
funds is that money kept inside the �rm has a rate of return inferior to the
risk-free rate.
Our paper is also related to the literature on internal capital markets. Var-

ious papers (see e.g. Stein [19] and Inderst and Klein [15]) have shown that
internal capital markets may be prone to lobbying by divisional managers and
thereby subject to a form of redistribution in favor of the divisions with the
weakest investment projects. Brusco and Panunzi [8] argue that even if capital
is allocated to the divisions with the best investment opportunities, internal cap-
ital markets can generate ine¢ ciencies, as the mere possibility of redistribution
of funds across division may hinder the e¤ort of divisional managers. In other
words, it is the competition among divisions for scarce funds that may hamper
the e¢ ciency of the allocation of capital inside �rms. This contrasts with our
paper where we study only the relationship between headquarters and one di-
vision. We preserve however an important feature of Brusco and Panunzi [8],
namely that the generation of internal funds requires costly managerial e¤ort,
while most of the literature takes the presence of internal funds as given.
Our model is also related to the literature on the pecking order of �nancial

sources. The classical paper by Myers and Majluf [14] shows that, with asym-
metric information between �rm and investors, it is optimal to use �rst internal
funds, then issue new debt, with equity being the last choice, given its high
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sensitivity to private information. In our model, in the case of complete infor-
mation, the optimal mix of internal and external funds depends on the project
quality. When quality is low, the investment is also low and the manager must
optimally spend little e¤ort on improving it. The manager should rather focus
on generating internal funds, as the cost of e¤ort is initially lower than the cost
of external funds. As the quality of the project improves, both the investment
and the project-improving e¤ort increase and less e¤ort is optimally devoted
to generate internal funds. Finally, very high-quality projects require a large
investment and are optimally �nanced only through external funds. While the
prediction is the same as the one in Myers and Majluf, we emphasize that the
mechanism is completely di¤erent. The preference for using internal funds �rst
does not come from asymmetric information but from the fact that at low levels
of e¤ort the marginal cost of producing internal funds is low.

3 The Model

The �rm has a two-period horizon. In period 1 the �rm has assets in place
which a risk-neutral manager can use to produce cash �ow. The amount of cash
�ow generated depends on the e¤ort exerted by the manager. Furthermore, it
is known that an investment opportunity of stochastic value will appear in the
second period. The intrinsic quality of the project is represented by a realization
of a random variable e� which is private information of the manager. The value
of e� is drawn from the interval ��; �� according to the density function f (�). Let
F (�) be the cumulative distribution function. We make the following standard
assumption.

Assumption 1 The density f (�) is everywhere di¤erentiable, the inverse haz-
ard rate � (�) = 1�F (�)

f(�) is decreasing in � and � (�) is �nite.

At t = 1, the manager can exert two types of e¤ort. The �rst is a �cash pro-
ducing� e¤ort, ec, leading to an increase in the amount of cash produced by
the assets already in place and available for investment or distribution to share-
holders at time 2. The cash �ow produced is C = ec, so that this type of e¤ort
ec is observable. The second is a �project improving�e¤ort ep, leading to an
increase in the pro�tability of the investment project available at time 2. Whene� takes value � and the manager exerts project improving e¤ort ep, the revenue
obtained in the second period investing an amount of capital k is

V (�; ep; k; eu) = �� + e�p � k
eu (1)

where eu is a noise term distributed on (0;+1) and such that E [eu] = 1. We will
assume that 
 2 (0; 1) and � 2 (0; 1) so that marginal returns to capital and
project improving e¤ort are both decreasing. Finally we assume that the two
random variables e� and eu are independent and the risk-free interest rate is zero.
This speci�cation of the function V preserves all the important features of the
functional form used in Bernardo, Cai and Luo [4] (henceforth, BCL): As in their
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model, capital and managerial e¤ort are complementary (the marginal product
of one input is increasing in the level of the other input) and the marginal
product of capital is increasing in the quality of the project �.
As in Harris and Raviv [11], Harris and Raviv [12] and BCL [4] we as-

sume that managers derive utility from monetary payments and from control-
ling larger (higher k) and more pro�table (higher �) projects. More precisely,
we assume that the utility for the manager is

U (w; ec; ep; �; k) = w + ��k �
1

2
(ec + ep)

2

where w is the monetary transfer, k is the capital allocated for investment
and ec + ep is the total amount of e¤ort. The parameter � � 0 captures the
manager�s preference for capital (empire building). Note that we assume that
the two types of e¤ort are perfect substitutes from the manager�s point of view.
The reservation utility is normalized to 0.
Capital can be obtained either through generation of cash �ow in the �rst

period (internal �nancing) or by obtaining funds in the capital markets (external
�nancing). We assume that the �rm has to pay an expected rate of return
r � 0 on external funds, which we take as given1 . If the total amount of capital
invested is k � ec then no external �nancing is necessary and the �rm can invest
the excess cash ec�k at the risk-free interest rate.2 Otherwise, the �rm obtains
an amount d = k � ec of external funds on which it pays the expected return
r. Thus, we can write the cost of capital in excess of the cost of generating the
amount ec internally as

c (k; ec) = max fk � ec; 0g (1 + r)�max fec � k; 0g :

In order to simplify the analysis, we will make the following assumptions on the
parameters.

Assumption 2 The parameters 
; �,�; � and � satisfy the following inequali-
ties:

1. (
 + �) � > 1

2. �� < 1 + r.

3. 
 + � < 1:

As we will see, inequality (1) implies that, absent incentive problems, the man-
ager is never asked to exert a positive e¤ort ec unless the resulting cash �ow
is reinvested in the �rm. Inequality (2) makes sure that the optimal amount

1We do not model explicitly the expected rate of return r paid by the �rm on external
capital markets. In our model the risk free rate is zero, so that r > 0 implies that the �rm is
paying a risk premium. However, we allow for the case r = 0; the conclusions in that case are
essentially the same as in the case r > 0.

2We do not consider the possibility that the internal funds generated in one division can
be allocated to a di¤erent division. This case is analyzed in [8]
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of capital is �nite. Since �� is the constant marginal bene�t of capital for the
manager, if 1+ r < �� then it would be optimal to borrow an in�nite amount of
capital. Inequality (3) is also needed to make sure that the problem has a �nite
solution, avoiding increasing returns when the �rm increases jointly ep and k.
For a given investment k, e¤ort ep and �nancing policy (ec; d) the gross

expected pro�t (before paying any managerial compensation) of the �rm is

� (�; ec; ep; k) =
�
� + e�p

�
k
 � c (k; ec) .

Headquarters can provide incentives through the compensation contract and the

investment and �nancing policy, designing an investment policy k
�b�� based on

the manager�s report about the project quality and a compensation schedule

w
�
V;b�� depending on the report and the outcome of the investment. Summing

up, the timing of the model is the following:
Period 1. The manager observes the value of � and headquarters o¤ers to the
manager a mechanismn

w
�
V;b�; ec� ; ec �b�� ; ep �b�� ; k �b��o :

If the manager does not accept then the game stops. In case of acceptance:

� The manager issues a report b�.
� Headquarters makes an e¤ort recommendation

�
ec

�b�� ; ep �b���.
� The manager chooses e¤ort (ec; ep).

Period 2. Headquarters observes ec. Knowing b� and ec headquarters:
� Borrows d

�b�� and invests k �b��, where d�b��+ ec � k �b��.
� After V is realized, it pays the compensation w

�
V;b�; ec� to the manager.

In the rest of the paper we will ignore the dependence of w on ec and we will
just assume that the manager always takes the prescribed cash-producing e¤ort.
Since ec is veri�able, this is easily obtained by setting a large punishment for
the manager if ec is not met.
A crucial di¤erence with BCL [4] and BCL [6] is that in our framework

the headquarters may ask the manager to generate internally the funds for
investment through a costly e¤ort. This provides a way to restrain the tendency
for the manager to overstate the quality of the project in order to obtain a higher
level of capital. We will �rst analyze the complete information problem, that is
the optimal policy obtained when �, ep and ec are observable. Next we will look
at the asymmetric information case, in which only ec and V are observable.
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4 Optimal Policy under Complete Information

The �rst best solution maximizes, for each �, the sum of the expected value of
the �rm V and private bene�ts to the manager ��k, net of the cost of e¤ort:

max
ec;ep;k

�
� + e�p

�
k
 + ��k � c (k; ec)�

1

2
(ec + ep)

2 (2)

s.t.
k � 0, ec � 0, ep � 0:

In order to characterize the �rst best, we �rst prove that it is never optimal to
choose ec > k.

Lemma 1 Let
�
e�c ; e

�
p; k

�� be a solution to problem (2). Then e�c � k�.

The intuition for the lemma is that the assumption (
 + �) � > 1 guarantees
that the marginal productivity of capital is su¢ ciently high at low levels of
capital, thus implying that at any solution capital is su¢ ciently large (more
precisely, k > 1). On the other hand, if ec > k then the marginal cost of e¤ort
at the optimum must be 1, and this in turn implies that ec, and therefore k,
must be small (i.e. k < ec � 1). But k cannot be too small, since in that case
its marginal productivity is higher than the marginal cost of e¤ort.
Lemma 1 implies that the headquarters will never ask the manager to pro-

duce funds which are not reinvested in the �rm.3 Thus, the amount of invest-
ment is always given by the full amount ec of internally generated funds plus
additional funds raised in the capital markets, if any. Thus, problem (2) can be
more conveniently written as

max
ec;ep;d

�
� + e�p

�
(ec + d)



+ �� (ec + d)� d (1 + r)�

1

2
(ec + ep)

2 (3)

s.t.
ec � 0, ep � 0, d � 0:

In order to examine the optimal policy under complete information, it is useful
to consider �rst the special case in which ep = 0, i.e. no project�improving
e¤ort is allowed. Under this assumption, the problem boils down to choosing
the optimal investment size and the �nancing mix.
When ep = 0, the marginal bene�t of increasing k is given by 
�k
�1 + ��.

The marginal cost of obtaining an additional unit of capital is ec whenever
internal funds are used and 1+r whenever external funds are used. Headquarters
will optimally choose the cheapest source of funds, which means that as long
as k < 1 + r the �rm will use internal funds and after that it will use external
funds. Thus, the marginal cost of capital is min fk; 1 + rg. Equating marginal
revenue and marginal cost we have


�

k1�

+ �� = min fk; 1 + rg : (4)

3This result would not hold in case headquarters can reallocate funds across divisions.
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Call k� (�) the unique implicit solution to this equation. Notice that, since
the left hand side is strictly increasing in � while the right hand side does not
depend on �, the function k� (�) is strictly increasing in �. The next proposition
describes the optimal policy for this case.

Proposition 1 Suppose ep = 0. Let k� (�) be the solution to equation (4) and
de�ne �+ as the value such that k�

�
�+
�
= 1 + r. The optimal policy can be

described as follows:

1. If � < �+ then e�c (�) = k
� (�) < 1 + r and d� (�) = 0.

2. If � � �+ then e�c (�) = 1 + r, d� (�) = k� (�)� (1 + r) > 0.

The solution is quite intuitive. When ep = 0 then the marginal cost of obtaining
internally generated funds is ec, while the marginal cost of obtaining external
funds is 1+ r. Thus the �rm uses internal funds up to 1+ r, and external funds
afterwards. Whether or not the �rm will use external funds depends on the
productivity of capital �.

k

1+r

1+rk*(θa) k*(θb)

θa

θb
θ+

The point at which the marginal cost crosses the marginal revenue gives the
optimal amount of capital k (�). For low values of � the productivity is low; in
this case the optimal amount of capital is less than 1+r and only internal funds
are used (this is the case labeled �a in the picture). Higher values of � shift
outward the marginal bene�t curve. Thus, the optimal investment increases
and the �rm uses both internal and external funds; speci�cally, internal cash
production is pushed up to the point where the marginal cost of internal cash
generation is equal to the constant marginal cost of external funds.
We now move to the case where the division manager can also improve the

quality of the project by exerting an e¤ort ep. When ep is increased, both the
marginal cost and the marginal bene�t of capital are a¤ected. The marginal
cost of internal fund generation increases, becoming ec + ep, while the cost of
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external funds remains constant at 1 + r. This means that increasing ep shifts
�nancing from internal to external capital. If we only consider the cost e¤ect,
an increase in ep in principle can decrease the optimal investment k. However,
an increase in ep also raises the marginal productivity of capital. This tends to
increase the optimal investment size.
Given our functional speci�cation, the optimal amount of ep must be strictly

positive whenever k > 0, since the marginal bene�t of ep (given by �e��1p k
)
goes to in�nity as ep goes to zero. Furthermore, investment and project improv-
ing e¤ort are complements: a higher level of k increases the marginal bene�t
of ep, and a higher level of ep increases the marginal bene�t of k. This means
that, compared to the situation in which ep is zero, investment will typically
be higher and �nancing will more frequently come from external sources. The
optimal policy is described in the following proposition.

Proposition 2 The �rst best policy ep (�) ; ec (�) and k (�) is as follows. The
functions ep (�) and k (�) are increasing. There are two threshold values �

a and
�b such that:

� If � < �a then ec (�) = k (�) and d (�) = 0. Total e¤ort ep (�) + ec (�) is
increasing in � and strictly less than 1 + r.

� If � 2
h
�a; �b

i
then the cash producing e¤ort is given by ec (�) = 1 + r �

ep (�) and debt is given by d (�) =
�
1+r
�

� 1

 [ep (�)]

1��

 � ec (�).

� If � > �b then the cash producing e¤ort is ec (�) = 0, debt is d (�) = k (�)
and ep (�) > 1 + r.

Under the optimal policy the interval
�
�; �
�
is partitioned in three sub-intervals.

In the �rst subinterval, [�; �a] ; the value of � is low and the optimal amount of
investment is low.

k

1+r

1+r

ep

k(θ)

Low θ

When the optimal investment is relatively low, the amount of project improving
e¤ort is also low. This makes sure that the cost of internal funds remains low.
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Thus, the �rm �nances entirely the investment with internal capital ec (�). As

� increases we move to the second interval
�
�a; �b

�
.

k

1+r

1+r

ep

Intermediate θ

k(θ)

In this interval the optimal investment is high enough to require external fund-
ing. Both internal and external funding are used and the total amount of e¤ort
is 1 + r. For higher values of � the amount of investment increases and this,
given the complementarity between investment and project improving e¤ort,
induces higher levels of ep. Since the total amount of e¤ort is constant, internal
funding decreases in �.

The third interval
h
�b; �

i
correspond to the set of values in which capital is

very productive.

k1+r k(θ)

High θ

In this case investment is very high and therefore the optimal ep is also high. In
fact, it is higher than 1+r, which makes the marginal cost of external �nancing
always smaller than the marginal cost of internal �nancing. Thus, when � is
very high the �nancing comes entirely from external sources and managerial
e¤ort is devoted exclusively to improving the pro�tability of the �rm.
After having characterized the optimal capital budgenting and �nancing

policies under complete information, we turn to the study of asymmetric infor-
mation.
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5 Optimal Policies under Incomplete Informa-
tion

We now analyze the optimal mechanism for the case in which headquarters does
not observe the project quality � and the e¤ort ep, while e¤ort ec is veri�able.
The manager reports about project quality, and we denote by b� the announce-
ment. Since the cash-producing e¤ort is veri�able, we can assume that, when-

ever b� is reported, the manager is forced to take e¤ort ec �b��; for example, the
contract may specify a large �ne4 if the manager does not produce an amount

of cash ec
�b��. The capital allocation policy is a function k �b�� determining

the amount of capital given to the manager as a function of the announcementb�. Let V be a realization of the revenue function V (�; ep; k; eu) de�ned by (1).
The compensation scheme is a function w

�
V;b��. We will make the following

assumption.

Assumption 3 The manager can destroy, without being observed, part of the
revenue. Thus, only compensation schemes w

�
V;b�� which are weakly increasing

in V can be incentive compatible.

This assumption is common in the literature, see e.g. Innes [13]. It is realistic if
the manager can manipulate the actual or observed revenue of the �rm through
cost overrun, window dressing and so on. Notice however that we assume that
revenue cannot be directly stolen by the manager.
Since the manager is risk neutral, the only thing that matters is the expected

value of the salary. Let

we
�
�; ep;b�� = Z +1

0

w
��
� + e�p

�
k

�b��u;b�� f (u) du

be the expected salary when the true state is �, project improving e¤ort ep
is undertaken and the manager has reported b�. Using the change of variable

4Given our assumption of risk neutrality it would be very easy to accomodate the case in
which the principal, instead of observing ec, is only able to observe a noisy signal of the cash
producing e¤ort, say es = ec + e", where e" is a random variable with �nite variance �2" and
mean 0, independent of e� and eu. The principal can make managerial compensation depend
on the realization s of es. As an example of how to induce a desired level of ec at basically no
cost, suppose that a quadratic function

h (s) = A�B (s� ec)2

is added to the compensation schedule, where B > 0 is large and A = B�2". When the agent
chooses the prescribed level of e¤ort ec then E [h (es)] = 0. If the agent chooses bec 6= ec then

E [h (es)] = �B (bec � ec)2
and for large values of B the cost of deviating from ec becomes very high. While the actual
compensation scheme will be more complicated, the main point is that our analysis will go
through as long some signal of ec, independent of � and ep, can be oserved. Of course this
will no longer be true if the agent is risk-averse.
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v =
�
� + e�p

�
k

�b��u, the expected salary can be written as
we
�
�; ep;b�� = Z +1

0

w
�
v;b�� f

�
v

(�+e�p )k
(b�)
�

�
� + e�p

�
k

�b�� dv: (5)

Notice that we may be smooth with respect to � and ep even if the function w
is not (the only requirement on w is that the integral de�ned in (5) exist). The
next lemma establishes that this is in fact the case.

Lemma 2 For each b� the function we ��; �;b�� is di¤erentiable with respect to �
and ep and

@we

@ep
=
@we

@�
�e��1p

whenever ep > 0. Furthermore, for every incentive-compatible mechanism we
have

@we
�
�; ep;b��
@�

������
(ep;b�)=(ep(�);�)

=
1

�
(ec (�) + ep (�)) e

1��
p (�) :

The lemma provides the �envelope condition�that can be used to determine the
rate of growth of expected utility in any truth-telling mechanism. Let

U��
�
�;b�; ep� � we ��; ep;b��+ ��k �b���

�
ec

�b��+ ep�2
2

denote the expected utility of the manager when she observes �, reports b� and
takes e¤ort pair

�
ec

�b�� ; ep�. An e¤ort function ep (�) is implementable if we
can �nd two functions k and w such that individual rationality and incentive
compatibility are satis�ed. Individual rationality requires

U�� (�; �; ep (�)) � 0 8� 2
�
�; �
�
;

while incentive compatibility requires

(�; ep (�)) 2 arg maxb�;ep U��
�
�;b�; ep� 8� 2

�
�; �
�
:

De�ne the optimal choice of e¤ort for the manager ep
�
�;b�� as

ep

�
�;b�� 2 argmax

ep
U��

�
�;b�; ep� ,

that is ep
�
�;b�� is the optimal e¤ort of a manager who has observed � and

announced b�. Now de�ne
U�
�
�;b�� � U�� ��;b�; ep ��;b��� and U (�) � U� (�; �) :

Lemma 2 has the following important implication.
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Proposition 3 The function U (�) is di¤erentiable and convex. The derivative
is

U 0 (�) =
ec (�) + ep (�)

�
e1��p (�) + �k (�) : (6)

The proposition gives a road-map for computing the optimal policy. Write the
problem as

max
w(�);k(�);ec(�);ep(�)

E
��
� + e�p (�)

�
k
 (�)� c (ec (�) ; k (�))� we (�; ep (�) ; �)

�
subject to:

� 2 argmaxb� U�
�
�;b�� 8� 2

�
�; �
�

(7)

U (�) � 0 8� 2
�
�; �
�

(8)

k (�) � 0, ec (�) � 0, ep (�) � 0 8� 2
�
�; �
�

(9)

Let
we (�) = we (�; ep (�) ; �) :

Since

U (�) = we (�) + ��k (�)� (ec (�) + ep (�))
2

2
;

we can write

we (�) = U (�)� ��k (�) + (ec (�) + ep (�))
2

2
:

Integrating by parts we have

E [U (�)] =

Z �

�

U (�) f (�) d� =

Z �

�

U 0 (�) (1� F (�)) d�:

Using Proposition 3 the problem for the headquarters can be written as

max
k(�);ec(�);ep(�)

E

"�
� + e�p (�)

�
k
 (�) + ��k (�)� c (ec (�) ; k (�))�

(ec (�) + ep (�))
2

2

#
(10)

�E
��
ec (�) + ep (�)

�
e1��p (�) + �k (�)

�
� (�)

�
subject to U (�) � 0 and U 0 (�) non-decreasing, where � (�) = 1�F (�)

f(�) is a
decreasing function of �.
The objective function in the optimization problem (10) is written to em-

phasize the incentive costs. The part inside the �rst expectation is exactly what
the problem would look like under complete information. The additional com-
ponent on the second row is E [U 0 (�)� (�)] and it represents the additional cost
that comes from the existence of incomplete information. The intuition is that a
type �0 > � can always pretend to be type �, so if we increase the attractiveness
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of reporting � for a type �0 then we have to increase the utility of type �0 in
order to maintain the incentives to truth-telling. As a consequence, whenever
the allocation gives an extra additional utility to a type � then it has to give
the same additional utility to all types above �, a mass 1 � F (�). Thus, the
incentive cost of changing the allocation in a way that increases by U 0 (�) the
utility of type � is U 0 (�) (1� F (�)). The inverse hazard rate 1�F (�)f(�) comes from
the fact that we want to write the expectation using the distribution f (�).

5.1 The Structure of Optimal Mechanisms

The structure of the optimal mechanism may vary depending on the parameters.
We will �rst establish some general facts and next we will present an example.
Let us consider the problem ignoring the constraint that U 0 (�) should be

increasing. When we do that the problem can be solved pointwise, so we have

max
ec;ep;k

�
� + e�p

�
k
+��k�c (ec; k)�

�
�k +

1

�
(ec + ep) e

1��
p

�
� (�)� (ec + ep)

2

2
(11)

subject to
ec � 0; ep � 0; k � 0

for each value of �. Since the marginal return on capital goes to +1 as k tends
to 0 and � (�) is �nite, any solution must have k > 0. Thus, the contraint k � 0
can be ignored. The Lagrangian associated to the problem is

L =
�
� + e�p

�
k
 + � (� � � (�)) k � c (ec; k)�

ec + ep
�

e1��p � (�)

� (ec + ep)
2

2
+ �cec + �pep:

Notice that the function c (ec; k) is not di¤erentiable at ec = k whenever r > 0.

Remark. Di¤erently from the complete information case, ep = 0 may be
part of an optimal solution. For this to happen it has to be the case that
limep#0

@L
@ep

� 0 when L is evaluated at the optimal policy. This is in principle
possible because, while the marginal return of a small increase in ep (given by
�e��1p k
) goes to in�nity as ep # 0 when k > 0, the marginal incentive cost
(given by 1��

� � (�) ece
��
p ) also goes to in�nity when ec > 0, which must be the

case when ep = 0. On the other hand, if

lim
ep#0

�
�e��1p k
 � 1

�
� (�) e1��p � 1� �

�
(ec + ep)� (�) e

��
p � (ec + ep)

�
> 0:

for each k > 0 and ec � 0 then the optimal policy must involve ep > 0. By
inspection, we observe that for each k > 0 the condition is satis�ed whenever
ec = 0. This is an intuitive result; if e¤ort is not spent generating cash it must
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be spent improving the project, since when ec = ep = 0 the marginal cost of
e¤ort is zero. When ec > 0 the condition is equivalent to

lim
ep#0

e��p

�
�e2��1p k
 �

�
1� �
�

ec� (�)

��
> 0:

If � < 1
2 the condition is always satis�ed, while for � >

1
2 it is never satis�ed.

The case � = 1
2 is knife-edge and it depends on the sign of

�
k


2 � � (�) ec
�
.

We start stating a result for the cases in which the optimal policy requires
only external �nancing.

Proposition 4 Suppose that on an interval
�
�a; �b

�
the optimal policy is such

that ec (�) = 0. Then the optimal policy is given by a strictly increasing function
ep (�) such that

ep (�) +
1

�
� (�) (ep (�))

1�� � 1 + r (12)

for each � 2
�
�a; �b

�
and by a strictly increasing capital function k (�) given by

k (�) =

�

 (� + (ep (�))

�
)

1 + r � � (� � � (�))

� 1
1�


: (13)

When the �rm is using only external �nancing the marginal cost of capital
is constant. A higher � both increases the marginal product of capital and
it decreases the agency cost of the project-improving e¤ort, given that � (�) is
decreasing. Since k and ep are complementary they must be both increasing with
�. The function ep (�) is implicitly de�ned as the unique solution to an equation
resulting from the �rst order conditions (see equation (47) in the appendix).
While in general we cannot say that the optimal �nancing policy will start

with internal �nancing at low values of � and end up with external �nancing at
high levels of �, we can provide some conditions for this to be true. These are
collected in the next Proposition.

Proposition 5 Suppose

ep (�) +
1

�
� (�) (ep (�))

1��
< 1 + r: (14)

Then there is an interval [�; �a) such that internal �nancing is used. Further-
more, suppose that under complete information the optimal policy prescribes

external �nancing only. Then there is an interval
�
�b; �

i
such that the optimal

policy under complete information prescribes external �nancing only.

When inequality (14) holds then ec = 0 cannot be part of the optimal policy
at �, as established by Proposition 4. Thus, internal �nancing must be used at
low values of �. Furthermore, if only external �nancing is used for high values
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of � when information is complete then the same must be true under incom-
plete information for su¢ ciently high values of �, since � (�) goes to zero and
the di¤erence between the complete information problem and the incomplete
information problem vanishes.
When inequality (14) does not hold then it is possible to have an optimal

policy using external �nancing only at low levels of �. In general, notice that
condition (12) requires either a high value of ep or a low value of � (implying a
high value of � (�)). This points out the possibility of non-monotonic policies,
i.e. policy in which the �rm uses exclusively external �nancing when � is low or
high but it uses both internal and external �nancing for intermediate values of
�. We provide below an example that illustrates this situation.
The intuition for the non-monotonicity of the use of external funds with

respect to project quality is the following. When � is low, the full information
level of project-improving e¤ort is low. But, on the other hand, �(�) is high so
that a high incentive rent must be paid to the division manager. In order to
reduce the rent, it may be optimal to use only external funds, without generating
cash �ow internally, as this reduce the marginal cost of the project-improving
e¤ort. As � increases, the full information level of project-improving e¤ort
increases, but �(�) decreases and thus the agency problem becomes less severe.
Then the use of internal funds may become optimal, as they may be initially
cheaper than external ones. Finally, for very high values of �, the full information
value of project-improving e¤ort becomes high and, to curb the disutility of
e¤ort of the division manager, it may be optimal to rely only on external funds.

5.2 Non-monotonicity. An Example.

Assume � = 0 and r = 0, so that the cost of capital function becomes

c (k; ec) = k � ec

and the objective function is everywhere di¤erentiable. Furthermore set 
 = 1
2

(so that k1�
 = k
) and � = 1
3 . Notice that, by the previous remark, this

implies that the optimal ep (�) is always strictly positive, so at an optimum we
must have @L

@ep
= 0.

The distribution of � has support on the interval [3;+1) and the density
function is given by

f (�) = c (4� � 11) e11��2�
2

where c is the normalization constant c = e�11�3+2�3
2

. The cumulative distri-
bution function and the inverse hazard rate function are given by

F (�) = 1� ce11��2�
2

� (�) =
1

4� � 11 .

In this case the optimal policy can be computed numerically. The results for
the interval [3; 7] are given in the following picture5 .

5On the interval (7;+1) the optimal policy has ec = 0 and ep increasing.
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The optimal policy always has ep > 0, since � < 1
2 . This implies that the

marginal cost of cash production is always strictly positive. The optimal policy
has three intervals. On the �rst interval � (�) is high and this leads to the
choice of ec = 0, since incentive costs are too high. However in the example
� (�) decreases very quickly, so it reaches low values when � is still relatively
low. At low levels of � the optimal capital allocation k (�) is relatively low and
the optimal level of ep (�) is also relatively low. This leaves room for a strictly
positive level ec. Finally, as � increases both k (�) and ep (�) increase, making
the marginal cost of e¤ort high. As � (�) fades, the optimal policy converges to
the one under complete information.

Remark. Notice that in this example the optimal policy ep (�) is notmonotonic.
Proposition 4 states that ep (�) must be increasing when ec = 0 but it does not
say that ep (�) should be increasing globally. In this example ep (�) decreases
around the point at which ec (�) becomes strictly positive, a consequence of the
fact that the marginal cost of e¤ort strongly increases.

5.3 Implementing the Second Best Policy

Let ec (�), ep (�) and k (�) be the optimal second best policy under incomplete
information. Let

� (�) =
ec (�) + ep (�)

�
e1��p (�) + �k (�) ;

which must be a non-decreasing function. We have the following result.

Proposition 6 The optimal policy under incomplete information can be imple-
mented by an a¢ ne compensation function, with coe¢ cients depending on the
announcement b�.
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The compensation function w
�
V;b�� yielding the optimal policy can be written

as
w
�
V;b�� = a�b��+ d�b��V

where

d
�b�� = �

�b��� �k �b���
k
�b���


and

a
�b�� =

1

2

�
ec

�b��+ ep �b���2 + �e�p �b�� k �b��� d�b���b� + e�p �b��� k
 �b��
+

Z b�
�

� (s) ds

The function a (�) is the �xed wage and it is chosen so that the manager is left
with exactly the incentive rents implied by the derivative in (6). Proposition 6
implies that Headquarters does not have to concede more than that amount to
the manager.
The sensitivity of managerial wage to �, given by d (�), need not be monotonic.

Even the expected total compensation linked to results E [d (�)V ] need not be
monotonic. When b� = � we have

E [d (�)V ] = (� (�)� �k (�))
�
� + e�p (�)

�
=

�
ec (�) + ep (�)

�
e1��p (�)

��
� + e�p (�)

�
:

The value of E [d (�)V ] may decrease in � at points in which an increase in � re-
quires a decrease in ep (�), i.e. at points at which the optimal policy requires the
manager to put more e¤ort in cash production and less in project improvement.

6 Conclusion

This paper studies the oprimal capital budgeting policy of a �rm where the
choice between internal and external �nancing is explicitly modeled. A division
manager can exercise di¤erent types of e¤ort, aimed either at immediate results
and therefore to ready-to-use funds, or to improve the long-run prospects of the
�rm. This second type of e¤ort is much more di¢ cult to observe than the �rst
one and therefore requires the payment of incentive rents.
We �rst characterize the optimal policy when both types of e¤ort are fully

observable. In this case what we observe is that �rms which already have a
high expected return on investment ask the manager to work to improve the
quality of the project rather than to generate cash and therefore rely more on
external �nancing rather than on internal �nancing. The reason is that a high
expected return implies a higher investment, and a higher investment increases
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the marginal return of the e¤ort put in improving the long run pro�tability of
the �rm. Thus, in the case in which all types of e¤ort are observable, �rms with
low ex ante returns have a low capital investment, a low level of e¤ort dedicated
to improving the productivity of capital and a low level of external �nancing, as
managerial e¤ort is dedicated mostly to generate fund internally. The opposite
occurs with �rms with high ex ante returns.
Things become more complicated when the di¤erent types of e¤ort have

di¤erent levels of observability. In particular, when e¤ort to generate cash is
observable but e¤ort to improve project quality is not, it is necessary to pay
incentive rents to the manager in order to increase the type of non-observable
e¤ort. In this case the optimal policy may not be monotonic, meaning that the
use of internal funds is not monotonically related to the ex ante pro�tability of
investment. We provide an example that illustrates this possibility. When the
�rm has low expected return it will be relatively small in size and it will have a
very high incentive cost of e¤ort. The �rm thus prefers to save on the marginal
cost of e¤ort by not generating internal funds and focusing managerial e¤ort on
improving productivity. When the expected return is very high we also have zero
cash production, as high e¤ort aimed at improving the quality of the project is
optimally required. Internal �nancing may instead occur at intermediate levels
of productivity, when the relatively low level of capital implies that project-
improving e¤ort is not very productive but incentive costs are not very high so
that the incentive cost of cash production is low.
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Appendix I

Proof of Lemma 1. First notice that, in general, we can ignore the positivity
constraint k � 0 since the marginal utility of capital at k = 0 tends to +1. If
the solution is e�c > k

� then the positivity constraint on ec can also be ignored.
Thus, if at the solution we have e�c > k

� then the solution should be obtained
solving the maximization problem:

max
ep;ec;k

�
� + e�p

�
k
 + ��k + ec � k �

1

2
(ec + ep)

2

s.t. ep � 0:
The �rst order conditions are



�
� + e�p

�
k1�


+ �� = 1 (15)

ec + ep = 1 (16)

�e��1p k
 + � = ec + ep (17)

� � 0; ep � 0; �ep = 0: (18)

If the solution is e�c > k�, then equation (16) implies k� < 1. However, the
right-hand side of equation (15) is decreasing in k, and at k = 1 we have



�
� + e�p

�
+ �� > 1:

The inequality follows from Assumption 2-1 and ep � 0. We conclude that
e�c > k

� implies k� > 1, a contradiction.

Proof of Proposition 1. The objective function is concave and the constraint
set is convex, so the �rst order conditions are necessary and su¢ cient for an
optimum. If ep = 0 then the Lagrangian of the problem is

L = � (ec + d)


+ �� (ec + d)� d (1 + r)�

1

2
e2c + �cec + �dd

and the �rst order conditions are


� (ec + d)

�1

+ �� + �c = ec (19)


� (ec + d)

�1

+ �� + �d = 1 + r (20)

�c � 0; �d � 0; ec � 0; d � 0; �cec = 0; �dd = 0: (21)

From (19) it follows that ec > 0, so that �c = 0. Furthermore, if �c = 0 then
subtracting (19) from (20) we obtain

�d = 1 + r � ec; (22)
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which implies ec � 1 + r. For each �, let k� (�) be the solution to equation (4).
There are two possibilities. First, we might have


� (1 + r)

�1

+ �� < 1 + r: (23)

In that case the total amount of capital ec + d must be strictly less than 1 + r;
if not, equation (20) requires �d > 0 and d = 0, but then equation (19) can�t
be satis�ed. Furthermore, it must be d = 0. If not, we would have �d = 0 and
ec < 1 + r, so that the two �rst order conditions would be incompatible. We
conclude that in this case the solution is e�c (�) = k

� (�) and d� (�) = 0.
The other case is when inequality (23) does not hold. In this case equation

(19) can only be satis�ed if ec + d � 1 + r and �d = 0. From (22) we have
ec = 1 + r, and both (19) and (20) become equivalent to (4). Thus in this case
the solution is e�c (�) = 1 + r and d

� (�) = k� (�) � (1 + r). Since �+ is de�ned
by the condition


�+ (1 + r)

�1

+ ��+ = 1 + r

then clearly the solution will be e�c (�) = k� (�), d� (�) = 0 when � < �+ and
e�c (�) = 1 + r, d

� (�) = k� (�)� (1 + r) when � � �+. Otherwise, we set �+ = �
when (23) is satis�ed for each � and �+ = � if (23) is never satis�ed.

Proof of Proposition 2. As in the previous case, the �rst order conditions
are necessary and su¢ cient for an optimum. The Lagrangian is

L =
�
� + e�p

�
(ec + d)



+�� (ec + d)�d (1 + r)�

1

2
(ec + ep)

2
+�cec+�dd+�pep

and the �rst order conditions are



�
� + e�p

�
(ec + d)


�1
+ �� + �c = ec + ep (24)

�e��1p (ec + d)


+ �p = ec + ep (25)



�
� + e�p

�
(ec + d)


�1
+ �� + �d = 1 + r: (26)

From (24) we conclude ec+d > 0, and this in turn implies from (25) that ep > 0
and �p = 0.
Consider �rst the case in which the positivity constraints do not bind, so

that �c = �d = 0. Equations (24) and (26) imply

ec + ep = 1 + r:

In turn this can be substituted in (25) to obtain

ec + d =

�
1 + r

�

� 1



e
1��



p ,

which can be substituted into (26) to get the equation

�e
(1��)(
�1)



p + e

�+
�1



p =
(1 + r � ��) (1 + r)

1�





�
1�




: (27)
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Since �+ 
 < 1, the left hand side is strictly decreasing in ep and it goes from
+1 to 0 as ep moves from 0 to +1; the right hand side is positive because of
Assumption 2�2. Therefore, for each � there is a unique solution, which we call
e�p (�). The function e

�
p (�) is increasing in �, since the left hand side is increasing

in � and the right hand side is decreasing.
This solution is feasible if

e�c (�) = 1 + r � e�p (�) � 0 (28)

and

d� (�) =

�
1 + r

�

� 1

 �
e�p (�)

� 1��

 + e�p (�)� (1 + r) � 0 (29)

Equation (28) requires e�p (�) < 1 + r, while equation (29) requires e
�
p (�) to be

su¢ ciently high (at ep = 1+ r inequality (29) is satis�ed, so the range of values
of ep that satis�es the two inequalities is non-empty).
If we now de�ne

�a = inf

(
�

�����
�
1 + r

�

� 1

 �
e�p (�)

� 1��

 + e�p (�) � (1 + r)

)
(30)

and
�b = sup

�
�
��1 + r � e�p (�)	 ; (31)

then we can conclude that for each value � 2
h
�a; �b

i
the solution is given

by the unique global unconstrained optimum of the objective function. More

precisely, when � 2
h
�a; �b

i
the solution is to set ep equal to e�p (�) (the solution

to equation (27)), e�c (�) as given by (28) and d
� (�) as given by (29).

Next assume that the positivity constraints bind, i.e. � < �a or � > �b.
Then, exactly one of the two positivity constraints will be binding. Consider
�rst the case ec = 0, d > 0. For this case the �rst order conditions are



�
� + e�p

�
d
�1 + �� + �c = ep (32)

�e��1p d
 = ep (33)



�
� + e�p

�
d
�1 + �� = 1 + r. (34)

Since �c � 0, equations (32) and (34) imply ep � 1 + r. From (33) we obtain

d = ��
1

 e

2��



p ;

and substituting back into (34) we obtain

�e
(2��)(
�1)



p + e

�+2
�2



p =
1 + r � ��

�

1�




: (35)

Equation (35) has a unique solution, call it ep (�), which is strictly increasing in
�. Remember that the solution is feasible only if ep � 1 + r, and observe that,

22



given the de�nition of �b, we have ep
�
�b
�
= 1+ r = e�

�
�b
�
. This implies that

the solution is feasible whenever � � �b and it is not feasible when � < �b. In
fact, if � > �b we have ep (�) > 1 + r.
Consider next the case ec > 0, d = 0. In this case the �rst order conditions

are


�
� + e�p

�
e
�1c + �� = ec + ep (36)

�e��1p e
c = ec + ep (37)



�
� + e�p

�
e
�1c + �� + �d = 1 + r: (38)

Since �d � 0, equations (36) and (38) imply ec + ep � 1 + r. Let E = ec + ep
be total e¤ort. Then, from (37) we have

ec =

�
E

�

� 1



e
1��



p (39)

and substituting in (36) we obtain

�e
(1��)(
�1)



p + e

�+
�1



p =
(E � ��)E

1�





�
1�




: (40)

For each � and E > �� there is a unique value ep (�; E) solving (40). Plugging
this solution into (39) we obtain a unique value for ec, call it ec (�; E). De�ne
the function

� (�; E) = ep (�; E) + ec (�; E) :

The function � is continuous in E and de�ned over the interval (��;+1). Fur-
thermore, for each E the function � is strictly increasing in �. This is because at
a �xed level of E the value ep (�; E) that solves (40) increases in � and ec (�; E)
depends on � only through ep.
Since feasibility requires E � 1 + r, a feasible solution exists if the equation

E = �(�; E) (41)

has a solution E� � 1 + r. The right hand side goes to +1 as E goes to ��.
If at E = 1 + r we have � (�; 1 + r) > 1 + r then no solution exists. This is
because in this case we would have at least two feasible solutions; this would
be equivalent to having two optima for a strictly concave function, which is
impossible. Thus, a necessary condition for a feasible solution to exist is that
� (�; 1 + r) � 1 + r. Given the continuity of � the condition is also su¢ cient.
Now observe that if a feasible solution to (41) exists for a given value of �0 then
it must exists for all values � < �0. This is because the function � is increasing
in �, so that �

�
�0; 1 + r

�
� 1+ r implies � (�; 1 + r) < 1+ r for each � < �0. At

last, observe that at the value �a de�ned by (30) we have that E (�a) = 1 + r
is a solution to (41). This implies that for � > �a any solution to (41) must
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involve E (�) > 1 + r, and it is therefore not feasible. On the other hand, if
� < �a then a feasible solution exists.

Proof of Lemma 2. Since we assumed that the density f is di¤erentiable,
using the expression of we

�
�; ep;b�� given in (5) it is immediate to see that

we
�
�; ep;b�� is di¤erentiable with respect to the �rst two arguments and that

@we

@ep
=
@we

@�
�e��1p (42)

for each ep > 0.
Suppose now that at � the project improving e¤ort is ep (�) > 0. A necessary

condition for implementability is that ep (�) maximizes the expected utility of
the manager when the true � is reported, i.e.

ep (�) 2 argmax
ep

we (�; ep; �) + ��k (�)�
(ec (�) + ep)

2

2

Since we is di¤erentiable, a necessary condition for optimality is

@we (�; ep; �)

@�
�e��1p = ec (�) + ep

where we have made use of (42). This implies

@we (�; ep; �)

@�
=
ec (�) + ep (�)

�
e1��p (�)

whenever ep (�) > 0.
If ep (�) = 0 then a necessary condition for ep = 0 to be optimal is that

@we (�; ep; �)

@�
�e��1p � ec (�) + ep (43)

for each ep > 0. Since e��1p goes to +1 as ep goes to zero and Assumption 3

implies that @we(�;ep;�)
@� � 0, it follows that the only way in which (43) can be

satis�ed is by setting @we(�;ep;�)
@� = 0. Summing up we have

@we (�; ep; �)

@�
=
ec (�) + ep (�)

�
e1��p (�) :

for each �.

Proof of Proposition 3. Let

U��
�
�;b�; ep� = we ��; ep;b��+ ��k �b���

�
ec

�b��+ ep�2
2
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By Lemma 2 the function we
�
�; ep;b�� is di¤erentiable with respect to �. It

follows that U��
�
�;b�; ep� is di¤erentiable with respect to �. The envelope

theorem then implies

U 0 (�) =
@U��

�
�;b�; ep�
@�

������
(ep;b�)=(ep(�);�)

=
@we

�
�; ep;b��
@�

������
(ep;b�)=(ep(�);�)

+�k (�) :

We now can use the expression for
@we(�;ep;b�)

@�

����
(ep;b�)=(ep(�);�) given in the state-

ment of Lemma 2 and conclude

U 0 (�) =
ec (�) + ep (�)

�
e1��p (�) + �k (�)

at each �. Convexity follows from standard arguments.

Proof of Proposition 4. When ec = 0 the objective function is everywhere
di¤erentiable. Suppose that the optimal policy is such that ec (�) = 0 on the

interval
�
�a; �b

�
. Then, on such interval, the optimal pair (ep (�) ; k (�)) must

solve

max
ep;k

�
� + e�p

�
k
 + ��k � (1 + r) k �

�
�k +

1

�
e2��p

�
� (�)�

e2p
2

The objective function is supermodular in (ep; k) and it satis�es increasing dif-
ferences in (ep; k; �), as it can be easily checked looking at the mixed second
derivatives. It follows that the solution is non-decreasing in �.
Further information on the function ep (�) is obtained observing that when

ec = 0 the objective function is strictly concave in (k; ep). The optimal point is
therefore given by the unique solution to the �rst order conditions.



�
� + e�p

�
k
�1 + � (� � � (�)) = 1 + r (44)

�e��1p k
 =
2� �
�

� (�) e1��p + ep (45)

From (44) we have

k =

 


�
� + e�p

�
1 + r � � (� � � (�))

! 1
1�


(46)

and substituting into (45) and manipulating we obtain

�

 


�
� + e�p

�
1 + r � � (� � � (�))

! 

1�


=
2� �
�

� (�) e2�2�p + e2��p (47)
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When � + 
 � 1 the LHS of (47) is strictly concave and strictly positive at
ep = 0, while the RHS is strictly convex and equal to zero at ep = 0. Thus the
equation has a unique solution ep (�) which is strictly increasing in �. Inserting
this expression into (46) we obtain the solution k (�).
Finally, notice that for ec (�) = 0 to be optimal the �rst order condition

w.r.t. ec requires

�c = ep +
1

�
� (�) e1��p � (1 + r) � 0; (48)

so the function ep (�) must satisfy

ep (�) +
1

�
� (�) (ep (�))

1�� � (1 + r) : (49)

Notice that the expression on the LHS of (49) may not be increasing, since � (�)
is decreasing.

Proof of Proposition 5. If inequality (14) is satis�ed then the �rst order
condition wrt to ec cannot be satis�ed at ec = 0 when � = �. Thus, the optimal
policy requires at least some internal �nancing at �. Given the continuity of
the objective function, the strict inequality implies that some internal �nancing
must be optimal for value of � su¢ ciently close to �.
The second part of the Proposition is a simple application of the �no dis-

tortion at the top�principle. Since �
�
�
�
= 0 the optimal policy at � under

incomplete information is the same as the optimal policy under complete in-
formation. Thus, if it is strictly optimal to adopt external �nancing only, the
continuity of the objective function implies that it is optimal to adopt external
�nancing only for � su¢ ciently close to �.

Proof of Proposition 6. Let

� (�) =
ec (�) + ep (�)

�
e1��p (�) + �k (�)

Consider a linear compensation rule of the form

w
�
V;b�� = a�b��� � �k �b���1�
 V + d�b��V

where

d
�b�� = ��b���k �b����


a
�b�� =

1

2

�
ec

�b��+ ep �b���2 + �e�p �b�� k �b��� d�b���b� + e�p �b��� k
 �b��
+

Z b�
�

� (s) ds
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Notice that

E
h
w
�b�; V �i+ ��k �b�� = a�b��� �e�p k �b��+ d�b�� �� + e�p � k
 �b��

The expected utility of an agent who observes �, reports b� and takes e¤ort�
ec

�b�� ; ep� can be written as:
U
�
�;b�; ep� = a�b��� �e�p k �b��+ d�b�� �� + e�p � k
 �b���

�
ec

�b��+ ep�2
2

:

Thus, after announcing b� the manager solves
max
ep

a
�b��� �e�p k �b��+ d�b�� �� + e�p � k
 �b���

�
ec

�b��+ ep�2
2

:

subject to ep � 0:

If b� is such that ep �b�� = 0 then d�b�� = �k1�
 �b�� and the optimal choice is
ep = 0 for each �.

If b� is such that ep �b�� > 0 then the �rst order condition for maximization
is �

d
�b�� k
 �b��� �k �b����e��1p = ec

�b��+ ep: (50)

Since

d
�b�� k
 �b��� �k �b�� = ec

�b��+ ep �b��
�

e1��p

�b�� > 0
the equation has a unique solution. In fact, using the de�nition of d

�b�� it can
be checked that ep

�b�� is a solution of (50), so we conclude
ep = ep

�b�� .
Thus, once the manager has announced b� she will take the prescribed action
ep

�b�� no matter what the true � is. Using this fact and the de�nition of a�b��,
we can write

U
�
�;b�� = Z b�

�

� (s) ds+
�
� � b����b�� :

If b� < � then
U
�
�;b��� U (�) = �Z �

b�
�
� (s)� �

�b��� ds � 0
since � is non-decreasing. If b� > � then we have

U
�
�;b��� U (�) = Z b�

�

�
� (s)� �

�b��� ds � 0
since � is non-decreasing. Thus, announcing the truth is optimal.
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Appendix II

In this appendix we describe how the optimal policy described in subsection 5.2
is computed.
When r = 0 the objective function is everywhere di¤erentiable and for each

pair (�; ep) the level of k that maximizes the value of the objective function is
given by the �rst order condition

k
1
2 =

1

2

�
� + e

1
3
p

�
where we used 
 = 1

2 , � =
1
3 . Using this fact, the objective function can be

written as a function of ep and ec only:

W (ep; ec; �) =
1

4

�
� + e

1
3
p

�2
+ ec � 3 (ec + ep) e

2
3
p � (�)�

(ec + ep)
2

2

Let x = e
1
3
p and y = ec. Then the objective function becomes

cW (x; y; �) =
1

4
(� + x)

2
+ y � 3

�
y + x3

�
x2� (�)�

�
y + x3

�2
2

Now notice that the function is strictly concave in y for each (x; �) and that the
optimal value of y for each given pair (x; �) is

by (x; �) = max�1� 3x2� (�)� x3; 0	 .
At this point we can look at the objective function

W � (x; �) =
1

4
(� + x)

2
+ by (x; �)� 3 �by (x; �) + x3�x2� (�)� �by (x; �) + x3�2

2

and compute numerically the optimal value x� (�) for each �. The optimal policy
is then given by

e�p (�) = (x� (�))
3

e�c (�) = by (x� (�) ; �)
k� (�) =

1

2
(� + x� (�))

It can also be checked numerically that the expression

U 0 (�) = 3
�
e�p (�) + e

�
c (�)

� �
e�p (�)

� 2
3
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is in fact increasing in �, as it is shown in the following picture.
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