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Abstract

We analyze the economic impact of process innovations where the innovator auctions

o� licenses to both potential entrants and incumbent �rms. It is shown that opening

the market to entrant licensees, the incentive to innovate is maximized in a monopoly

market as was envisioned by Schumpeter (1942). This is in contrast to previous liter-

ature on licensing of process innovations where entry is excluded. There the incentive

to innovate is maximized in oligopoly market if licenses are sold by auction (Sen and

Tauman (2007)) or in competitive market if licenses are sold by royalty (Arrow (1962)).

The post-innovation market structure, the di�usion of the innovation and the social

welfare are analyzed and compared with the case where entry is excluded.

Keywords. Innovation, Patent Licensing, Entry, Incentive to Innovate

∗Corresponding Author. Interdisciplinary Center (IDC) Herzliya, Israel. Tel: +972 9 9527984. Email
address: amty21@gmail.com
†Present Address: School of Mathematical Sciences, Tel Aviv University. Email address:

zhaochangtd@gmail.com

1



1 Introduction

The analysis of optimal licensing strategies of an innovator, the post innovation market

structure as well as the incentive to innovate has been extensively studied in the literature,

starting with Katz and Shapiro (1985), Katz (1986), Kamien and Tauman (1984), Kamien

and Tauman (1986), Kamien, Oren, and Tauman (1992). A review of the �rst decade

results on this topic is Kamien (1992). The literature on the optimal market structure

which provides the highest incentive to innovate starts with Arrow (1962) showing that the

revenue of an innovator who sells licenses by means of a per-unit royalty is maximized in

a competitive market. Kamien and Tauman (1986) and the extended analysis in Sen and

Tauman (2007) show that the revenue of an innovator who sells licenses by either an upfront

fee determined by an auction or by a per-unit royalty (or by a combination of the two) is

maximized in an oligopoly market of a size which depends on the magnitude of innovation,

demand intensity and the marginal cost of production. In these papers, as well as most other

papers on optimal licensing of new innovations, it is assumed that incumbent �rms are the

only potential licensees.

This paper analyzes the economic impact of process innovations where the buyers are not

symmetric. Namely, the innovator can sell licenses to both potential entrants and incumbent

�rms. Licenses in our model are sold by auction aiming to maximize the revenue of the

innovator. The post-innovation market structure, the di�usion of the innovation and the

incentive to innovate are compared with the case where licenses are sold only to incumbent

�rms and not to entrants.

In contrast to the literature on licensing of process innovation to incumbent �rms only, it is

shown, quite surprisingly, that opening the Cournot market to entrant licensees, the incentive

to innovate is maximized in a monopoly market rather than oligopoly or competitive markets

and this is true for drastic as well as non-drastic innovations. The total number of licensees

is no longer constrained by the number of incumbent �rms and each licensee's willingness

to pay for a license is higher the smaller is the pre-innovation market size. This result is
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consistent with the observation of Schumpeter (1942) that monopolistic industries, those in

which individual �rms have a measure of control over their products price, provide a more

hospitable atmosphere for innovation than purely competitive ones. This is also in line with

Chen and Schwartz (2013), who show that the gain of a innovator from the exclusive use

of a product innovation can be larger in a monopoly market than in a perfectly competitive

one.

It is further shown that the innovator sells licenses to entrants only if he also sells licenses

to all incumbent �rms. Although entrants are willing to pay for a license typically more than

incumbent �rms, the competition e�ect on the revenue of the innovator dominates his revenue

from additional entrant. Furthermore, the post-innovation market size is larger the smaller is

the magnitude of innovation. Namely less signi�cant innovations di�use more. To clarify this

point notice that the (negative) competition e�ect of an additional licensee on the innovator's

revenue is increasing in the magnitude of the innovation and as a result the innovator is more

reluctant to issue a large number of licenses for more signi�cant innovations. Consequently,

for innovations with su�ciently high magnitude the innovator chooses to sell licenses only

to incumbent �rms and not to entrants. In this case the di�usion of the innovation is the

same as in the case where entry is excluded. For less signi�cant innovations the innovator

sells licenses to some entrants and to all incumbent �rms. In this case opening the market

to entrants has positive e�ect on social welfare and it yields the innovator a higher revenue,

compare to the case where entry is excluded. The marginal e�ect of entry on the innovator's

revenue as well as on the social welfare is higher, the less signi�cant is the magnitude of

innovation.

We are aware of only few papers which deals with the licensing of innovations to both

incumbent �rms and potential entrants. The one closest to this paper is Hoppe, Jehiel,

and Moldovanu (2006), (HJM here after). In HJM the innovator sells licenses through a

uniform auction (UA). The innovator in UA chooses the number k of licenses to sell. The

auction welcomes bids from both incumbent �rms and entrants. Each one of the k highest
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bidders (whether incumbent �rm or entrant) obtains a license and all licensees pay the same

amount, the (k + 1)th highest bid. Externality plays an important role in UA. Incumbent

�rms and entrants have di�erent willingness to pay for a license and both of them depend

not only on the number of licensees but also on the distribution of entrants and incumbent

licensees. The problem however with UA is that it has not only multiple equilibrium points

but also multiple equilibrium payo�s for the innovator, even if weakly dominated strategies

are excluded. HJM in a general setup mostly deals with the sale of an exclusive license as

well as some special cases involving multiple licenses and focuses on whether entrants can

be winners of licenses. Our paper while provides a general analysis of the optimal licensing

strategy of the innovation it is done in a speci�c set-up: Cournot oligopoly market, linear

demand and a constant per-unit cost. We show that for any number of licenses, k ≥ 1,

every partition (k1, k2) of k (k1 + k2 = k) can be supported as an equilibrium outcome,

where k1 is the number of incumbent licensees and k2 is the number of entrant licensees.

The innovator only controls k and has no control over the partition of k into incumbent

and entrant licensees, making it di�cult if not impossible to predict the outcome of UA.

In particular, it is not clear what would be the innovator's choice of k. To have some UA

benchmark we compute the highest equilibrium payo� of the innovator in UA and compare

it with the equilibrium outcomes of two alternative types of auction. The �rst one is NUA

(non-uniform auction). The second one is SUA (semi-uniform auction) who has a weaker

asymmetry than NUA.

The innovator in NUA chooses in addition to k, the exact partition (k1, k2) of k. The

winners of the auctions are the k1 highest incumbent bidders and the k2 highest entrant

bidders (ties are resolved at random). Each incumbent licensee pays the (k1 + 1)th highest

bid among the incumbents' bids while each entrant licensee pays the (k2 + 1)th highest bid

among the entrants' bids1. In contrast to UA, externalities do not play a role in NUA since

1We will obtain the same equilibrium outcome if the license fee incumbents (entrants) pay is the k1-th
(k2-th) highest bid among the incumbent (entrant) bids. Setting the license fee to be the (k1+1)th highest bid
among incumbent bids guarantee that bidding truthfully (the true willingness to pay) is a weakly dominant
strategy of every incumbent �rm (similar for entrants).
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the post-innovation market structure is determined by (k1, k2) regardless of the bids. Given

(k1, k2), the equilibrium outcome in undominated strategies is uniquely determined.

In the �rst glance it seems that the ability to choose (k1, k2) and to di�erentiate the

license fee of entrants from incumbent �rms should yield the innovator in NUA a higher

payo� than in UA. But this may not be the case. On one hand every entrant licensee pays

in NUA her entire pro�t (assuming zero entrant's opportunity cost) while in UA it is (like

any incumbent licensee) only the incremental pro�t of an incumbent licensee. However, on

the other hand an incumbent licensee is willing to pay more in UA if he takes the place

of an entrant licensee and hence limit entry. In contrast every incumbent licensee in NUA

takes the place of another incumbent �rm and thus does not change the number of active

�rms. It is shown that the innovator's highest possible equilibrium payo� in UA is higher

than his unique equilibrium payo� in NUA if and only if the magnitude of the innovation is

su�ciently high.

In the semi-uniform auction (SUA), the innovator, like in NUA, chooses both k and

the exact partition (k1, k2) of k. The winners of the auctions are the k1 highest incumbent

bidders and the k2 highest entrant bidders (ties are resolved at random). But unlike NUA,

the license fee is the same across all licensees. To ensure the participation of incumbent �rms

in SUA the license fee is set to be the k-th highest bid2.

It is shown that irrespective of the market size and the magnitude of innovation the rev-

enue the innovator extracts in SUA does not exceed his revenue in NUA. Like in NUA, when

selling licenses by SUA, a monopoly market provides the highest incentive to innovate. For

relatively signi�cant innovation the total number of licenses the innovator sells is decreasing

in the magnitude of the innovation and the innovator sells licenses to entrants only if he also

sells licenses to all incumbent �rms. In contrast to NUA, for less signi�cant innovations the

innovator in SUA sells licenses only to new entrants and not to incumbent �rms. The reason

2If (as in UA) every licensee pays the highest losing bid, it may happen that the bids of all incumbent
licensees fall below the (k+1)th highest bid. This is the case if the (k+1)th highest bid is submitted by an
entrant who bids her entire industry pro�t. Such bid exceeds the willingness to pay of incumbent �rms and
incumbents are best o� not participating in this auction.
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is his ability to extract the entire industry pro�t of every entrant licensee, as opposed to the

case where he sells some licenses also to incumbent �rms. In the latter case the license fee

an entrant pays is equal to the willingness to pay of an incumbent licensee which decreases

to zero as the magnitude of innovation decreases to zero. In contrast, the innovator in NUA

can discriminate entrant licensees and he extracts their entire industry pro�t, whether or

not he sells licenses to incumbent �rms. Therefore even for less signi�cant innovations in

NUA the innovator sells licenses to both new entrants and incumbent �rms. Consequently,

for less signi�cant innovations, NUA results in a higher di�usion of technology. We conclude

that for less signi�cant innovations the ability to price discriminate new entrant licensees

has positive e�ect not only on the innovator's revenue but also on social welfare, as compare

to SUA.

Finally, a recent paper studying the innovator's optimal licensing strategy in the pres-

ence of potential entry is Tauman, Weiss, and Zhao (�Bargaining in Patent Licensing with

Ine�cient Outcomes�). This paper consider a process innovation in a monopoly industry.

The innovator bargains with the monopolist over the IP of the innovation. To induce the

monopolist to pay a higher fee, the innovator before approaching the monopolist can (and

sometimes does) sell a few licenses to new entrants. On one hand selling licenses to entrants

reduces the total industry pro�t (the �cake" to be allocated in bargaining) but serves as a

credible threat on the monopolist to sell even more licenses to new entrants if the bargaining

fails.

2 The Model

Consider an industry with a set N = {1, ..., n} of incumbent �rms who produce one

product with marginal cost c > 0. Potential entrants are unable to enter the market either

because of high �xed cost or since the current technology is protected by patent. An outside

innovator comes along with an innovation which eliminates the �xed cost and reduces the
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constant per unit cost from c to c − ε, 0 < ε ≤ c. The3 number of potential entrants is

assumed to be su�ciently large and it exceeds the optimal number of licenses sold by the

innovator.

The inverse demand function is linear, p = max(a − Q, 0). Denote by π1(m0,m1) and

π0(m0,m1) the Cournot pro�t of a licensee and a non-licensee, respectively, when there are

m0 �rms producing at a unit cost c and m1 �rms producing at a unit cost c − ε. It can be

veri�ed that

π0(m0,m1) =


(
(a−c)−εm1

m0+m1+1

)2
if m1 ≤ a−c

ε

0 if m1 >
a−c
ε

(1)

π1(m0,m1) =


( (a−c)+(m0+1)ε

m0+m1+1

)2
if m1 ≤ a−c

ε(
(a−c)+ε
m1+1

)2
if m1 >

a−c
ε

Without loss of generality we normalize a − c, the quantity demanded at the price c, to be

1. We make the following assumption throughout the paper.

Assumption 1. Training and installing the new technology is costly and paid only by the

innovator. This cost is su�ciently small and has no e�ect on the optimal number of li-

censes the innovator sells. The training cost is smaller for incumbent licensees than entrant

licensees.

This assumption simpli�es the tie breaking rule. If a tie involves both entrants and

incumbent �rms, the innovator prefers to sell a license to an incumbent �rm. If a tie involves

only one type of bidders, the tie is resolved at random.

In UA the players are engaged in a three-stage game, Gu. In the �rst stage the innovator

chooses and announces the number k of licenses to be auctioned o�, to both incumbent �rms

and new entrants. In the second stage the licenses are allocated to the winners of a uniform

auction where each one of the k highest bidders obtains a license and pays the (k + 1)th

3In principle even ε ≤ 0 may be valuable, and entrants may be willing to pay for ine�cient technology
if it allows them a pro�table entry. We con�ne in this paper to ε > 0.
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highest bid. In the third and last stage the �rms (incumbents and entrant licensees) compete

à la Cournot. Let Gu(k) be the subgame of Gu which starts after the announcement of k.

Let Gnu be the game associated with NUA. In the �rst stage the innovator chooses and

announces (k1, k2), where 0 ≤ k1 ≤ n−1 and k2 ≥ 0 are the number of licenses he auctions o�

to incumbent �rms and entrants, respectively. Let Gnu(k1, k2) be the subgame of Gnu which

starts in the second stage of Gnu. In Gnu(k1, k2), licenses are sold through a non-uniform

auction. Each of the k1 highest incumbent bidders obtains a license and pays the (k1 + 1)th

highest bid among the incumbents' bids. Similarly, each of the k2 highest entrant bidders

obtains a license and pays the (k2 + 1)th highest bid among the entrants' bids. In the third

stage the �rms in the industry (licensees and non-licensees) engage in Cournot competition.

Note that the auction is not well de�ne for k1 = n. Thus we limit k1 to n− 1.

In Gnu(k1, k2), the value of a license is uniquely determined for each bidder. This is

not the case in UA where the value of a license typically depends on the distribution of

incumbent and entrant licensees. Note that bidders do not usually have dominant strategies

in UA.

Proposition 1. Suppose bidders do not use dominated strategies. (i) If the innovator auc-

tions o� a total of 1
ε
licenses (using either UA or NUA), then the Cournot price is c, the

pre-innovation marginal cost, and every non-licensee �rm is driven out of the market. Each

licensee pays his entire pro�t and the innovator obtains the total industry pro�t. (ii) It is

never optimal for the innovator in both UA and NUA to auction o� more than 1
ε
licenses.

It will be shown (see Proposition 3 and Proposition 5, below) that for ε > 2
n+1

the optimal

number of licenses for the innovator is k = 1
ε
in both UA and NUA .

Proof. Part (i) is a straight forward consequence of (1). Part (i) asserts that when k = 1
ε

only licensees are active �rms in the market, and this is obviously true for all k ≥ 1
ε
. Since

the total industry pro�t is decreasing in k for k ≥ 1
ε
, part (ii) follows.

By Proposition 1, without loss of generality we only consider the case where in both UA
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and NUA the total number k of licenses does not exceed 1
ε
. In case ε ≥ 1 (drastic innovation)

even if the innovator sells an exclusive license, every non-licensee �rm is driven out of the

market and the innovator extracts the monopoly pro�t under the new technology. It is left

to analyze only the non-drastic innovation case, namely ε < 1.

2.1 Uniform Auction

Consider the subgame Gu(k) of Gu, for 1 ≤ k ≤ 1
ε
. Suppose (k1, k2) is an equilibrium

outcome of Gu(k), where k1, 0 ≤ k1 ≤ n, is the number of incumbent licensees and k2 = k−k1

is the number of entrant licensees. Let b(i) be the ith highest bid in UA (b(i) = b(i+1) if more

than one bidder bids b(i)).

The willingness to pay of an incumbent �rm, i, for a license is the di�erence between his

pro�t π1(n − k1, k) as a licensee and his pro�t as a non-licensee in case he drops out. The

latter depends on the type of licensee replacing i. If it is an entrant, the total number of

�rms increases by 1 and the willingness to pay of i is

wkih(k1) = π1(n− k1, k)− π0(n− k1 + 1, k). (2)

If i is replaced by another incumbent �rm, his willingness to pay is

wkil(k1) = π1(n− k1, k)− π0(n− k1, k). (3)

Note that wkih can be regarded as an incumbent's willingness to pay for limiting entry and

using the superior technology.

The willingness to pay of an entrant for a license is simply her Cournot pro�t,

wke (k1) = π1(n− k1, k). (4)

By Proposition 1, for any k1, 0 ≤ k1 ≤ min(k, n), if k ≥ 1
ε
wke (k1) = wkih(k1) = wkil(k1). If
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k < 1
ε
then π0(n− k1, k) > π0(n− k1 + 1, k) > 0 and wke (k1) > wkih(k1) > wkil(k1). Namely for

k < 1
ε
any entrant licensee is willing to pay for a license more than any incumbent licensee.

Nevertheless it is still possible that in equilibrium some incumbent �rm wins a license. To

clarify this point observe that an entrant with no license who outbids an incumbent licensee

not only increases the number of active �rms by 1 but also increases the license fee from

b(k+1) to b(k). This may reduce the pro�t of each licensee to a level below b(k), causing the

deviant entrant a loss.

By Proposition 1, when the innovator chooses k = 1
ε
(or actually k ≥ 1

ε
), the willingness

to pay of each bidder is independent of the distribution of licensees between entrants and

incumbent �rms and each bidder's willingness to pay in Gu(k) is his Cournot pro�t. If,

however, k < 1
ε
, each bidder's willingness to pay depends in addition to k on the distribution

of winners. We next analyze the innovator's equilibrium payo� in this case.

Proposition 2. Let 1 ≤ k < 1
ε
. Then (i) any (k1, k2), 0 ≤ k1 ≤ n and k2 ≥ 0 s.t.

k1 + k2 = k, is an equilibrium outcome of Gu(k). (ii) For k1 = 0, π is an equilibrium payo�

of the innovator in Gu(k) if and only if π ∈ [0, kwke (0)]. (iii) For 1 ≤ k1 ≤ n, π is an

equilibrium payo� of the innovator in Gu(k) if and only if π ∈ [0, kwkih(k1)].

Proof. (i) Let k ≥ 1 and let (k1, k2) s.t. 0 ≤ k1 ≤ n − 1 and k2 = k − k1 (the case

where k1 = n will be dealt separately). Let us show that (k1, k2) is an equilibrium outcome

of Gu(k). Denote b = π1(n − k1 − 1, k) (b is well de�ned since k1 ≤ n − 1) and b =

π1(n− k1, k)− π0(n− k1 + 1, k). Suppose that exactly k1 incumbent �rms and k2 entrants

bid b and only one entrant bids b. All other incumbents or entrants bid below b. Clearly

b(1) = ... = b(k) = b, b(k+1) = b and b ≤ b. We claim that these bid pro�le constitutes an

equilibrium of Gu(k). Any incumbent licensee, i, obtains

π1(n− k1, k)− b(k+1) = π0(n− k1 + 1, k).

If i lowers his bid below b the entrant who bids b will replace i. As a result there will be
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n − k1 + 1 �rms producing with the inferior technology and i will obtain π0(n − k1 + 1, k),

the same as his payo� as a licensee. Since the opportunity cost of any entrant is zero, an

entrant licensee (when k2 ≥ 1) has no incentive to lower her bid. Next let us show that a

non-licensee (incumbent or entrant) can not bene�t from outbidding a licensee. Suppose j

(incumbent or entrant) outbids a licensee i. Then he/she will increase the license fee from

b to b. We claim that the industry pro�t of j is at most b and hence he has no incentive to

become a licensee. Indeed, if both j and i are incumbent �rms the industry pro�t of j as a

licensee will be π1(n−k1, k) which is smaller than b = π1(n−k1−1, k). If j is an incumbent

�rm and i is an entrant, the number of �rms using the inferior technology will reduce to

n− k1 − 1. The gross pro�t of j as a licensee will be b and his payo�, net of the new license

fee, is zero. If j is an entrant, j will obtain an industry pro�t of π1(n − k1 + 1, k) < b if i

is an incumbent �rm and π1(n − k1, k) < b if i is an entrant. In both cases j's net payo�

is negative. To complete the proof of part (i) suppose that k1 = n and hence k2 = k − n.

Suppose every incumbent �rm and exactly k2 entrants bid b = π1(0, k), one entrant only

bids b = π1(0, k) − π0(1, k) and every other bidder bids below b. The license fee is b and it

is easy to verify that these bids constitute an equilibrium of Gu(k).

(ii) Let k1 = 0, b̃ ∈ [0, π1(n, k)] and b = π1(n − 1, k). Suppose exactly k entrants bid b,

one entrant only bids b̃ and every other bidder bids below b̃. The license fee is b(k+1) = b̃.

Since π1(n, k)− b̃ ≥ 0, no (entrant) licensee bene�ts from lowering his bid below b̃. Suppose

next that a non-licensee j (incumbent or entrant), bids above b. Then the new license fee

will increase to b = π1(n − 1, k) and j's industry pro�t is π1(n − 1, k) if j is an incumbent

�rm, and π1(n, k) if j is an entrant. In both cases the industry pro�t does not exceed the

license fee. Finally, there is no equilibrium of Gu(k) with k1 = 0 and s.t. b(k+1) > π1(n, k).

Otherwise, the industry pro�t of a licensee does not cover the license fee.

(iii) Suppose 1 ≤ k1 ≤ n− 1 and let b̃ ∈ [0, wkih(k1)], where by (2) wkih = π1(n− k1, k)−

π0(n− k1 + 1, k). Denote b = π1(n− k1 − 1, k). Suppose exactly k1 incumbent �rms and k2

entrants bid b, one entrant only bids b̃ and every other bidder bids below b̃. Then b(k+1) = b̃
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is the license fee. An incumbent licensee obtains

π1(n− k1, k)− b̃ ≥ π0(n− k1 + 1, k). (5)

If he lowers his bid below b̃ he will obtain π0(n− k1 + 1, k). By (5) this will not bene�t him.

A non-licensee j (incumbent or entrant) who outbids a licensee i (incumbent or entrant) will

increase the license fee from b̃ to b = π1(n−k1−1, k). It is easy to verify that independently

of the identity of j and i, j's industry pro�t will not exceed π1(n− k1 − 1, k).

Next suppose k1 = n. Let b̃ ∈ [0, π1(0, k)− π0(1, k)] and let b = π1(0, k). Suppose every

incumbent �rm and exactly k2 = k − n entrants bid b. Suppose also that only one entrant

bids b̃ and all other bidders bid below b̃. Then the license fee is b(k+1) = b̃. A licensee obtains

π1(0.k)− b̃ ≥ π0(1, k) ≥ 0. (6)

If an incumbent licensee lowers his bid below b̃ he will obtain π0(1, k) and by (6) he will not

improve his payo�. If a non-licensee entrant j outbids a licensee i the new license fee will

be b = π1(0, k) and again, independently of the identity of i, the industry pro�t of j will not

exceed π1(0, k).

Finally, for k ≥ 1 the willingness of an incumbent �rm to pay for a license is at most

wkih(k1). Thus there is no equilibrium b∗ of Gu(k) s.t. 1 ≤ k1 ≤ n and b∗(k+1) > wkih(k1).

Proposition 2 asserts that there are multiple equilibrium points in Gu(k) (1 ≤ k < 1
ε
).

There are two types of multiplicity. First, any (k1, k2) s.t. k1 + k2 = k is an equilibrium

outcome of Gu(k). Second, every (k1, k2) generates continuum of equilibrium payo�s of the

innovator. In fact, if in equilibrium the highest k + 1 bids are
(
b∗(1), ..., b

∗
(k), b

∗
(k+1)

)
then for

every b, 0 ≤ b ≤ b∗(k+1), changing only the (k + 1)th highest bid from b∗(k+1) to b will also

constitute an equilibrium outcome.

The multiplicity of equilibrium outcomes is a problem even if (weakly) dominated strate-
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gies are eliminated. HJM dealt with the game Gu with this restriction. The equilibrium

analysis of Gu is very complicated. HJM analyzed only the case where k = 1 and some other

special cases. They too found multiple equilibrium points. The conclusion is that there is

no obvious way to predict the outcome of Gu nor the choice k of the innovator. To provide

some comparison between the innovator's payo� in UA and in either NUA or SUA, we focus

here on a speci�c type of equilibrium in UA, the one that for any k yields the innovator the

highest payo� in Gu(k). Namely, we focus in UA on the payo� of the "luckiest" innovator.

We next analyze the optimal number of licenses of the "luckiest" innovator in Gu.

Lemma 1. For any 1 ≤ k ≤ 1
ε
, the innovator's highest equilibrium payo� in Gu(k) is

obtained when either k1 = 0 or k1 = min(k, n).

Proof. By Proposition 2, given an arbitrary 1 ≤ k ≤ 1
ε
, any 0 ≤ k1 ≤ min(k, n) can emerge

as an equilibrium outcome. In addition the highest payo� of the innovator is kπ1(n, k) if

k1 = 0 and kwkih(k1) if 1 ≤ k1 ≤ n. It is shown in the Appendix (see A.2) that wkih(k1) is

increasing in k1. Thus kw
k
ih(k1) is maximized when k1 = min(k, n).

Proposition 3. Suppose the innovator obtains for every k the highest equilibrium payo� in

Gu(k). (i) The corresponding equilibrium number of licensees in Gu is

k∗u(n, ε) =



n+ 1 if 0 < ε < g(n)

n if g(n) ≤ ε ≤ f(n)

k̃(n, ε) if f(n) < ε < 2
n+1

1
ε

if 2
n+1
≤ ε < 1.

(ii) If 0 < ε < g(n), all licensees are entrants and if g(n) < ε < 1, all licensees are incumbent

�rms.

Here 1
ε
≤ k̃(n, ε) ≤ n for f(n) ≤ ε ≤ 2

n+1
and k̃(n, ε) is decreasing in ε. The exact

formulas of f(n), g(n) and k̃(n, ε) are quite complicated and not revealing any insights. This

is the reason they all appear in (A.1) of the Appendix.
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Remark: Let 2
n+1
≤ ε < 1 and suppose bidders do not use dominated strategies. Then

the unique optimal strategy of the innovator is to auction o� k = 1
ε
licenses. The Cournot

price reduces to the pre-innovation marginal cost c, and every non-licensee �rm is driven out

of the market. Consequently, the multiplicity of equilibrium points of UA occurs only when

ε < 2
n+1

.

Proof. See A.3 of the Appendix.

Proposition 3 shows that for less signi�cant innovations the innovator obtains the highest

equilibrium payo� when all licensees are entrants. Indeed an entrant licensee increases the

number of active �rms by 1 causing the Cournot pro�t of each �rm to shrink. However when

selling licenses only to entrants each licensee pays her entire Cournot pro�t for a license as

opposed to the case where the innovator sells some licenses to incumbent �rms (in the later

case every licensee pays only the incremental pro�t of an incumbent licensee). When the

magnitude of the innovation is relatively small the willingness to pay of an incumbent �rm

for a license is small and the negative e�ect of additional entry is o�set by the incremental

willingness to pay of entrants, as compared with incumbent �rms. When, however, the inno-

vation is relatively large, the bene�t from having only entrant licensees cannot compensate

for the loss of a stronger competition and the innovator is best o� when all licensees are

incumbent �rms.

Corollary 1. The highest equilibrium payo� of the innovator in Gu is

π∗u(n, ε) =



(n+ 1)π1(n, n+ 1) if 0 < ε < g(n)

n
(
π1(0, n)− π0(1, n)

)
if g(n) ≤ ε ≤ f(n)

k̃
(
π1
(
n− k̃, k̃

)
− π0

(
n− k̃ + 1, k̃

))
if f(n) < ε < 2

n+1

ε if 2
n+1
≤ ε < 1.

where k̃ = k̃(n, ε).

Proof. Follows immediately from Proposition 3.
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We use π∗u(n, ε) as a benchmark to compare the innovator's equilibrium payo� in UA

with that obtained in NUA or SUA.

2.2 Non-Uniform Auction

In this section the innovator can choose and announce the number of licenses to be sold to

incumbent �rms (0 ≤ k1 ≤ n−1) and the number of licenses to be sold to potential entrants

(k2 ≥ 0). Each incumbent licensee pays the (k1 + 1)th highest bid among the incumbents'

bids. Each entrant licensee pays the (k2 + 1)th highest bid among the entrants' bids. In

Gnu(k1, k2) the willingness to pay of each incumbent �rm is π1(n − k1, k1 + k2) − π0(n −

k1, k1 +k2) and the willingness to pay of each entrant is π1(n−k1, k1 +k2). Since bidding the

true valuation is a (weakly) dominant strategy for each bidder, it is assumed that bidders

bid truthfully in NUA. The innovator's equilibrium payo� in Gnu(k1, k2) is then uniquely

determined and it is given by

πnu(k1, k2) = k1
(
π1(n− k1, k1 + k2)− π0(n− k1, k1 + k2)

)
+ k2π1(n− k1, k1 + k2). (7)

The analysis of the highest incentive to innovate does not require the characterization of

the equilibrium licensing strategy of the innovator in NUA.

Proposition 4. A monopoly industry maximizes the revenue of the innovator if he sells

licenses by NUA.

Proposition 4 asserts that a monopoly industry provides the highest incentive to innovate

if licenses are sold by NUA. The proof does not make use of the linear structure of our demand

and it applies to any demand function.

Proof. Suppose there are n, n ≥ 2 incumbent �rms. Denote by (k∗1, k
∗
2) the optimal licensing

strategy in Gnu. Let K
∗
nu = k∗1 + k∗2. The innovator's highest payo� is

α ≡ k∗1
(
π1(n− k∗1, K∗nu)− π0(n− k∗1, K∗nu)

)
+ k∗2π1(n− k∗1, K∗nu). (8)
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Suppose one of the incumbent �rms drops out and only (n− 1) incumbent �rms remain.

Case 1. k∗1 ≥ 1. Using the licensing strategy (k∗1 − 1, k∗2 + 1), the innovator obtains

β ≡ (k∗1 − 1)
(
π1(n− k∗1, K∗nu)− π0(n− k∗1, K∗nu)

)
+ (k∗2 + 1)π1(n− k∗1, K∗nu). (9)

Clearly for K∗nu = 1
ε
, π0(n− k∗1, K∗nu) = 0 and α = β. For K∗nu <

1
ε
, β > α.

Case 2. Suppose k∗1 = 0. Using the licensing strategy (0, k∗2), the innovator obtains

γ ≡ k∗2π1(n− 1, k∗2) ≥ k∗2π1(n, k
∗
2) ≡ α. (10)

Again for k∗2 = 1
ε
, γ = α. For k∗2 <

1
ε
, γ > α

Combining Cases 1 and 2, if K∗nu <
1
ε
the innovator extracts strictly higher revenue with

n−1 than with n incumbent �rms. For K∗nu = 1
ε
, when the market size is n−1 the innovator

obtains a payo� which is at least as high as in case where the market size is n. Since this is

true for all n ≥ 2, the proof is complete.

We next characterize the equilibrium of Gnu. Since k1 ≤ n − 1 the case n = 1 is trivial

to analyze. The equilibrium analysis of Gnu therefore focuses only on cases n ≥ 2.

Remark: We could extend our de�nition to k1 = n if we allow the innovator to charge a

�xed fee in this case. For n = 1 this fee should be π1(0, k2)− π0(1, k2). With this de�nition

it is easy to verify that the optimal (k1, k2) in case n = 1 is k1 = 1 and k2 = 0. The analysis

of NUA with this extension is tedious (see Sen and Tauman (2007)) and it will not change

the basic results of this paper.

Proposition 5. The unique equilibrium licensing strategy of the innovator in Gnu is

(i) For n ≥ 3

kn∗1 (n, ε) =


n− 1 if 0 < ε ≤ 2

3n−5

n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1

1
ε

if 2
n+1
≤ ε < 1,
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kn∗2 (n, ε) =


2(n+2ε)
2nε+1

− (n− 1) if 0 < ε ≤ 1
2n−4

0 if 1
2n−4 ≤ ε < 1.

(ii) For n = 2

kn∗1 (2, ε) = 1,

kn∗2 (2, ε) =


3

4ε+1
if 0 < ε ≤ 1

2

1
ε
− 1 if 1

2
≤ ε < 1.

Proof. See A.4 of the Appendix.

Corollary 2. Let ε, 0 < ε < c, be �xed and suppose that the market is competitive (n

su�ciently large). Then kn∗1 = 1
ε
and kn∗2 = 0. That is all licensees are incumbent �rms, the

market price is c and every non-licensee �rm drops out of the market.

Proof. Immediate from Proposition 5 part (i).

Corollary 3. In equilibrium of Gnu the innovator sells licenses to entrants only if he also

sells licenses to all (but one) incumbent �rms.

Proof. For n ≥ 3, the claims follow from Proposition 5 part (i), the inequality 1
2n−4 ≤

2
3n−5 ,

and from k∗1(n, ε) being decreasing in ε. If n = 1 or n = 2 the claim is an immediate

consequence of part (ii) of Proposition 5.

Let K∗nu be the total number of licenses the innovator sells (K∗nu = kn∗1 + kn∗2 ). Corollary

3 asserts that if 0 < ε < 1
2n−4 the innovator sells n − 1 licenses to incumbent �rms and

the remaining K∗nu − (n − 1) licenses he sells to entrants. If ε ≥ 1
2n−4 all K∗nu licensees are

incumbent �rms. On one hand each entrant is willing to pay all her pro�t for a license, but

on the other hand an entrant licensee increases the number of active �rms by 1 causing the

Cournot pro�t of each �rm to shrink. The e�ect of a weaker competition on the revenue of

the innovator is larger and the innovator prefers incumbent �rms on entrants.
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Corollary 4. For n ≥ 3

K∗nu(n, ε) =



2(n+2ε)
2nε+1

if 0 < ε ≤ 1
2n−4

n− 1 if 1
2n−4 ≤ ε ≤ 2

3n−5

n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1

1
ε

if 2
n+1
≤ ε < 1,

For n = 2

K∗nu(n, ε) =


3

4ε+1
+ 1 if 0 < ε ≤ 1

2

1
ε

if 1
2
≤ ε < 1

Proof. Follows immediately by Proposition 5.

Corollary 4 asserts that the di�usion of technology is smaller for more signi�cant inno-

vations. In particular, for n ≥ 3 and for relatively small ε the innovator sells 2n licenses

(n − 1 licenses to incumbent �rms and n + 1 licenses to new entrants). As ε grows the

number of licenses decreases continuously to 1, as the innovation becomes closer to a drastic

innovation (ε → 1). To clarify this point notice that the (negative) competition e�ect of

additional licensee on the innovator's revenue is increasing in the magnitude of the inno-

vation and as a result the innovator is more reluctant to issue a larger number of licenses

for larger innovations. Observe that for relatively signi�cant innovations ( 2
n+1
≤ ε ≤ 1 for

n ≥ 3 and 1
2
≤ ε < 1 for n = 2) the optimal number of licenses for the innovator is the

minimum number needed to drive any non-licensee �rm out of the market. We next provide

the innovator's equilibrium payo� in NUA.

Proposition 6. The innovator's equilibrium payo� in Gnu is:

For n ≥ 3

π∗nu(n, ε) =



4ε2+4nε+1
4(n+1)

if 0 < ε ≤ 1
2n−4

(n−1)
(
−(n−3)ε2+2ε

)
n+1

if 1
2n−4 < ε ≤ 2

3n−5

(nε+ε+2)2

8(n+1)
if 2

3n−5 ≤ ε ≤ 2
n+1

ε if 2
n+1
≤ ε < 1.

18



For n = 2

π∗nu(n, ε) =


4ε2+4nε+1
4(n+1)

if 0 < ε ≤ 1
2

ε if 1
2
≤ ε < 1.

Corollary 1 and Proposition 6 enable us to compare the innovator's revenue in UA and

NUA. In the �rst glance it seems that the ability to choose (k1, k2) and to di�erentiate the

license fee of entrants from incumbent �rms should yield the innovator in NUA a higher

payo� than in UA. But this may not be the case. On one hand every entrant licensee pays

in NUA her entire pro�t (assuming zero entrant's opportunity cost) while in UA it is (like

any incumbent licensee) only the incremental pro�t of an incumbent licensee. On the other

hand an incumbent licensee is willing to pay more in UA if he takes the place of an entrant

licensee and hence limit entry. In contrast, every incumbent licensee in NUA takes the

place of another incumbent �rm and thus does not change the number of active �rms. The

next proposition compares the payo� of the luckiest innovator in UA with the payo� of the

innovator in NUA.

Proposition 7. Let n ≥ 3. Then π∗nu(n, ε) > π∗u(n, ε) i� ε < h(n).

Here h(n) ≥ g(n) ≥ 0. The formula of h(n) is given in A.1 of the Appendix.

Proof. See A.6 of the Appendix.

Proposition 7 asserts that for less signi�cant innovations, NUA yields the innovator a

higher payo� compare to his highest equilibrium payo� in UA. When the magnitude of the

innovation is relatively small then, as shown in propositions 3 and 5, in both types of auctions

the innovator is best o� having a large number of entrant licensees. In this case the bene�t

from collecting the entire pro�t of entrant licensees exceeds the loss in revenue due to lower

willingness to pay of incumbent licensees. When, however, the magnitude of the innovation

is relatively high, the innovator in both types of auctions is best o� having small (or even 0)

number of entrant licensees. In this case the ability to price discriminate entrant licensees

contributes less to the innovator's revenue. Notice that because of the multiplicity problem
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in UA even if π∗u(n, ε) > π∗nu(n, ε), there may exists other equilibrium points in UA which

yields the innovator a lower payo� than in NUA. We illustrate this in the next example.

Example: Suppose ε = 0.2 and n = 5. In NUA, the innovator's unique equilibrium payo�

is 4
(
π1(1, 4) − π0(1, 4)

)
= 0.213 which is obtained when he auctions o� 4 licenses only to

incumbent �rms. In UA the innovator's highest equilibrium payo� is 4
(
π1(1, 4)−π0(2, 4)

)
=

0.214, which is obtained when he auctions o� 4 licenses and all winners happen also to be

incumbent �rms. Interestingly enough, to support this equilibrium in UA the 5th highest

bid of 0.214 has to be submitted by entrants only. In this case each of the 4 incumbent

licensees pays more in UA than in NUA in attempt to limit entry. However, there are other

equilibrium points in UA which yields the innovator a much lower payo�. For instance there

is an equilibrium in which all the 4 winners are entrants (follows by Proposition 2). In this

case the innovator obtains only 4π1(5, 4) = 0.1944.

3 Entry Vs. No Entry

Our next goal is to compare our results with the existing literature on optimal licensing

where entry is excluded. As shown in previous sections, UA has continuum of equilibrium

points and there is no obvious way to predict which equilibrium will emerge. Therefore

we base our study on the comparison between G0 and Gnu, where G0 is the game de�ned

similarly to Gnu, but where entry is excluded.

Suppose bidders do not use dominated strategies. The willingness to pay of each bidder

in G0(k), k ≥ 1, is uniquely determined and so is the innovator's equilibrium payo�. The

next proposition characterizes the innovator's optimal licensing strategy in G0.

Proposition 8. The unique equilibrium licensing strategy of the innovator in G0 is:

4This is the highest equilibrium payo� when all 4 winners are entrants. There are other equilibrium in
which the innovator ends up with zero equilibrium payo� (Proposition 2).
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(i) For n ≥ 3

k∗0(n, ε) =


n− 1 if 0 < ε < 2

3n−5

n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε < 2

n+1

1
ε

if 2
n+1
≤ ε < 1.

(11)

(ii) For n ≤ 2

k∗0(n, ε) = n− 1.

The proof follows from Kamien, Oren and Tauman (1992).

Observe that by Proposition 8, k∗0(n, ε) = kn∗1 (n, ε) where kn∗1 (n, ε), the optimal number

of incumbent licensees in Gnu, is given in Proposition 5. This is not very surprising in light

of Corollary 3. By propositions 5 and 8 for less signi�cant innovations (0 < ε ≤ 1
2n−4),

k∗0(n, ε) = k∗1(n, ε) and k∗2 > 0. In this case Gnu results in a higher di�usion of technology

and bigger post-innovation market size. The di�erence in post-innovation market size is

larger for less signi�cant magnitude of innovation.

The next proposition characterizes the innovator's revenue and the post-innovation mar-

ket price in G0.

Proposition 9. Consider the game G0. (i) the innovator's equilibrium payo� is

For n ≥ 3

π∗0(n, ε) =


(n−1)

(
−(n−3)ε2+2ε

)
n+1

if 0 < ε ≤ 2
3n−5

(nε+ε+2)2

8(n+1)
if 2

3n−5 ≤ ε ≤ 2
n+1

ε if 2
n+1
≤ ε < 1.

For n ≤ 2

π∗0(n, ε) =
(n− 1)

(
− (n− 3)ε2 + 2ε

)
n+ 1

.

(ii) The post-innovation market price is
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For n ≥ 3

p∗0(n, ε) =


c+ 1−(n−1)ε

n+1
if 0 ≤ ε ≤ 2

3n−5

c+ 2−(n+1)ε
4(n+1)

if 2
3n−5 ≤ ε ≤ 2

n+1

c if 2
n+1
≤ ε < 1.

For n ≤ 2

p∗0(n, ε) = c+
1− (n− 1)ε

n+ 1
.

Proof. Follows from Proposition 8

Corollary 5. Suppose n ≥ 3. π∗nu(n, ε)−π∗0(n, ε) and p∗0(n, ε)− p∗nu(n, ε) are both decreasing

in n and decreasing in ε.

Proof. See A.7 of the Appendix.

Corollary 5 asserts that the increment in the innovator's revenue from allowing entry

is smaller when there are larger number of incumbent �rms or when the magnitude of the

innovation is more signi�cant. The same result holds true for the di�erence in the post-

innovation market price. It is shown in Corollary 6 below that these di�erences vanishes if

either n or ε is su�ciently large.

Corollary 6. Allowing entry will not change the innovator's revenue nor the social welfare

if either (i) ε > 0 and n is su�ciently large, or (ii) n ≥ 3 and ε is su�ciently large.

Proof. By propositions 5 and 8 k∗0(n, ε) = kn∗1 (n, ε) for any n and ε, kn∗2 (n, ε) = 0 for n ≥ 3

and 1
2n−4 ≤ ε < 1.

Corollary 6 asserts that for any ε > 0 there is no di�erence in price nor in the innovator's

payo� between Gnu and G0, for su�ciently large n. This is because the innovator sells

licenses to entrants only if he sells licenses to all (but one) incumbent �rms (Corollary 3).

For a market with large number of incumbents the innovator will not sell licenses to entrants

even when entry is allowed. For any n ≥ 3, the same result holds for su�ciently large ε.
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Next we characterize the market structure that provides the highest incentive to innovate

in G0.

Proposition 10. An oligopoly industry with size n = max
(
3, 2
√

2 + 1
ε
− 1
)
maximizes the

revenue of the innovator in G0.

Proof. See A.8 of the Appendix.

Proposition 10 asserts that when entry is excluded, the incentive to innovate is maximized

when the market is oligopoly and the optimal size is decreasing in the magnitude of the

innovation (with at least 3 �rms). If however the market is open to entry the incentive to

innovate is maximized in a monopoly market (Proposition 4).

4 Semi-Uniform auction

Finally we introduce and analyze another auction mechanism, a semi-uniform auction

(SUA), with a weaker asymmetry requirement than NUA. In this auction the innovator

chooses (k1, k2), 1 ≤ k1 ≤ n − 1 and k2 ≥ 0. The k1 highest incumbent bidders and the k2

highest entrant bidders win the auction and all of them pay the same license fee which is the

lowest winning bid5. Note that the willingness to pay of an incumbent �rm is 0 if k1 = n.

This is the reason we restrict our analysis to k1 ≤ n−1. In SUA, like in NUA, the innovator

controls the number of incumbent and the number of entrant licensees, but unlike NUA the

innovator charges every licensee the fee.

Let Gsu be the game associated with SUA. In the subgame Gsu(k1, k2) of Gsu each

incumbent is willing to pay

wl(k1, k2) = π1(n− k1, k1 + k2)− π0(n− k1, k1 + k2).

5Note that in SUA the highest losing bid, if submitted by an entrant, may be higher than the willingness
to pay of an incumbent winner. To avoid this problem we de�ne the license fee as the lowest winning bid.
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Each entrant is willing to pay

we(k1, k2) = π1(n− k1, k1 + k2).

Clearly wl(k1, k2) ≤ we(k1, k2). In particular, for k1 + k2 <
1
ε
, π0(n − k1, k1 + k2) > 0

and wl(k1, k2) < we(k1, k2). It can be veri�ed that the innovator's equilibrium payo� in

Gsu(k1, k2) is uniquely determined and it is (k1 + k2)wl(k1, k2) for k1 > 0 and k2we(0, k2) for

k1 = 0.

Remark: Notice that some entrants may bid above the SUA license fee and still do not

obtain a license. Yet in equilibrium the innovator has no incentive to increase k2 since it will

increase competition and lower his total revenue.

Let π∗su(n, ε) be the innovator's equilibrium payo� in Gsu.

π∗su(n, ε) = max
(
π0
su(n, ε), π̂su(n, ε)

)
(12)

where

π0
su(n, ε) = max

k2≥1
k2we(0, k2)

and

π̂su(n, ε) = max
1≤k1≤n−1

0≤k2

(k1 + k2)wl(k1, k2). (13)

When k1 = 0 each entrant licensee pays her entire pro�t for a license. But when k1 > 0

each entrant licensee pays less, only the willingness to pay of an incumbent licensee.

Proposition 11. (i) π∗su(n, ε) ≤ π∗u(n, ε) and (ii) π∗su(n, ε) ≤ π∗nu(n, ε).

Proof. (i) In UA the highest equilibrium payo� of the innovator is

π∗u(n, ε) = max
(
π0
u(n, ε), π̂u(n, ε)

)
where π0

u(n, ε) = maxk≥1 kwe(0, k) and π̂u(n, ε) = max1≤k1≤n−1
0≤k2

(k1 + k2)wh(k1, k2). Part (i)

24



follows from wh(k1, k2) ≥ wl(k1, k2) for any (k1, k2).

(ii) Follows from the fact that for any (k1, k2), NUA yields the innovator a higher payo�

than SUA.

The innovator in UA can choose only k while in SUA he can choose in addition the

partition of k. In the �rst glance the innovator should always obtain a higher payo� in SUA

than in UA. But this is not necessarily the case. There are cases in which UA yields the

innovator a higher payo� than SUA since an incumbent licensee is willing to pay more in UA

for further entry prevention. As for the comparison between SUA and NUA, note that in

NUA, in addition to choosing the partition (k1, k2), the innovator can discriminate in price

entrants from incumbent licensees. Therefore for any (k1, k2) and k2 > 0, NUA yields the

innovator a higher payo� than SUA.

Next we characterize the market structure that provides the highest incentive to innovate

in Gsu. Like in NUA, in SUA the innovator obtains the highest payo� in a monopoly market.

Proposition 12. A monopoly industry maximizes the revenue of the innovator if he sells

licenses by SUA.

Proof. The proof is similar to that of Proposition 4, and hence omitted.

We next analyze for any industry size n the optimal licensing strategy of the innovator

in SUA as a function of ε. Unlike NUA, the equilibrium licensing strategy is discontinuous

for one value of ε (the equilibrium revenue of the innovator is however continuous for any ε).

We will discuss this point after stating the next proposition.

Proposition 13. Consider the equilibrium of Gsu. For n ≥ 3 there exists r(n), r(n) > 0,

such that (i) if r(n) < ε ≤ 1 then the innovator sells positive number of licenses to entrants

only if he sells n− 1 licenses to all (but 1) incumbent �rms. In this region the total number

of licensees is larger, the less signi�cant is the magnitude of innovation. (ii) At ε = r(n) the

innovator has two optimal licensing strategies: either selling n−1 licenses to incumbent �rms
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and some licenses to entrants, or selling n+1 licenses to only entrants. (iii) if 0 < ε < r(n),

the innovator sells n+ 1 licenses to entrants only.

The proof as well as the exact formula of the equilibrium strategy of the innovator in

SUA appears in A.10 of the Appendix.

The reason for selling licenses only to entrant in SUA for less signi�cant innovations is

the ability of the innovator to extract the entire industry pro�t of every entrant licensee.

This is in contrast to the case where he sells some licenses also to incumbent �rms. In the

latter case the license fee an entrant pays is equal to the willingness to pay of an incumbent

licensee which decreases to zero as ε → 0. To illustrate this point suppose that ε = 06. In

this case if the innovator sells some licenses to incumbent �rms, every licensee in SUA will

pay zero license fee to the innovator. If instead, the innovator sells licenses only to entrants,

he obtains the entire industry pro�t of all new entrant licensees (entrants wouldn't be able to

enter the market otherwise). If there are n incumbent �rms the linear demand assumption

implies that the innovator maximizes his revenue if the number of entrant licensees is n+ 1.

Let us compare the outcome of SUA with the outcome of NUA. First observe that for

ε > r(n) in both SUA and NUA the total number of licenses the innovator sells is decreasing

in the magnitude of the innovation and the innovator may sell licenses to entrants, only if

he also sells licenses to all (but 1) incumbent �rms. The main di�erence between SUA and

NUA is when ε < r(n). In this case, unlike NUA, the innovator in SUA sells licenses only

to new entrants and not to incumbent �rms. This shift in the innovator's optimal strategy

generates a discontinuity in the number of licenses at ε = r(n). In contrast, the innovator

in NUA can discriminate the entrant licensees and can extract their entire industry pro�t

whether or not he sells licenses to incumbent �rms. Therefore in NUA the innovator sells

licenses to both new entrants and incumbent �rms, even for small ε.

Let K∗su and K∗nu be the total number of licenses the innovator sells in SUA and NUA,

respectively.

6This is the case where the innovator provides no improvement in cost but his technology allows free
entry.
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Proposition 14. Suppose n ≥ 2. There exists l(n), 0 < l(n) < 1, such that if 0 < ε ≤ l(n),

K∗nu(n, ε) > K∗su(n, ε).

Proof. See A.13 of the Appendix.

Proposition 14 shows that comparing with SUA, NUA results in higher di�usion of tech-

nology for less signi�cant innovations. As shown in Proposition 13 for less signi�cant inno-

vations, the innovator in SUA does not sell licenses to incumbent �rms while in NUA he sells

licenses to entrants in addition to all (but 1) incumbent �rms. Therefore the ability to price

discriminate new entrant licensees has positive e�ect not only on the innovator's revenue but

also on social welfare, as compare to SUA7.
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A Appendix

A.1

f(n) =
n3 + n2 + 2n+ 4 +

√
n6 + 8n5 + 30n4 + 56n3 + 50n2 + 20n+ 4

3n4 + 8n3 + 10n2 + 4n− 4

k̃(n, ε) = 2n3ε+10n2ε+16nε+4n+8ε+6−
√
4n6ε2+34n5ε2+119n4ε2+4n4ε+220n3ε2+26n3ε+227n2ε2+62n2ε+124nε2+4n2+64nε+28ε2+12n+24ε+9

3(2n+3)ε

g(n) = max
(

0,
3n4 + 6n3 + 7n2 + 4n− 4− 2

√
n8 + 9n7 + 31n6 + 49n5 + 29n4 − 9n3 − 16n2 − 4n

5n5 + 15n4 + 19n3 + 9n2 + 4

)

h(n) = max
(

0,
n4 + n3 + 2n2 + 4n−

√
3n7 + 14n6 + 18n5 + 7n4 + 24n3 + 40n2 − 16

n5 + 2n4 + n3 + n2 + 4n+ 4

)

r(n) =

 e1(n) if n ≥ 17

f−11 (n) if 2 ≤ n ≤ 16

where

e1(n) =
3n− 5− 2

√
n2 − 4n+ 3

5n2 − 14n+ 13

and

f1(ε) = −8
√
1+2 εε3/2−11 ε2+2

√
−48
√
1+2 εε7/2−12

√
1+2 εε5/2+68 ε4+34 ε3+2 ε2−3 ε

ε2

Figure 1 shows that the inverse function of f1(ε) exists for 0 < ε < 1
2
.
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Figure 1: The value of f1(ε)

A.2 Proof of π1(n− k1, k)− π0(n− k1 + 1, k) being increasing in k1

Let m = n− k1, we will show that π1(m, k)− π0(m+ 1, k) is decreasing in m.

π1(m, k)− π0(m+ 1, k) =

(
1 + (m+ 1)ε

)2
(m+ k + 1)2

− (1− kε)2

(m+ k + 2)2

The �rst order condition (using Maple) is

∂
(
π1(m, k)− π0(m+ 1, k)

)
∂m

= Gε2 +Hε+ I

where

G = 2 k5+8 k4m+12 k3m2+8 k2m3+2 km4+8 k4+30 k3m+36 k2m2+14 km3+18 k3+54 k2m+36 km2+26 k2+40mk+16 k
(m+k+1)3(m+2+k)3

> 0

H = −2 k4−8 k3m−12 k2m2−8 km3−2m4−2 k3−18 k2m−30 km2−14m3−36mk−36m2−12 k−40m−16
(m+k+1)3(m+2+k)3

and

I = −6 k2−12mk−6m2−18 k−18m−14
(m+k+1)3(m+2+k)3

Therefore
∂
(
π1(m,k)−π0(m+1,k)

)
∂m

is in quadratic in ε with G > 0.
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The equation
∂
(
π1(m,k)−π0(m+1,k)

)
∂m

= 0 has two solutions in ε.

ε1 = − 3 k2+6mk+3m2+9 k+9m+7
k4+4 k3m+6 k2m2+4 km3+m4+4 k3+15 k2m+18 km2+7m3+9 k2+27mk+18m2+13 k+20m+8

< 0

and

ε2 =
1

k
> 0

Therefore for 0 < ε ≤ 1
k
,
∂
(
π1(m,k)−π0(m+1,k)

)
∂m

< 0 and π1(m, k) − π0(m + 1, k) is decreasing

in m. Since m = n− k1, π1(n− k1, k)− π0(n− k1 + 1, k) is increasing in k1.

A.3 Proof of Proposition 3

By Lemma 1 the highest equilibrium payo� of the innovator in Gu is

π∗u(n, ε) = max
(
π0(n, ε), π̂(n, ε)

)
where π0(n, ε) = maxk≥1 kπ1(n, k) and π̂(n, ε) = maxk≥1 k

(
π1
(
n − min(k, n), k

)
− π0

(
n −

min(k, n) + 1, k
))

.

Let k∗u(n, ε), k
0(n, ε) and k̂(n, ε) be maximizers of π∗u(n, ε), π

0(n, ε) and π̂(n, ε), respec-

tively. Clearly either k0(n, ε) or k̂(n, ε) is a maximizer of π∗u(n, ε).

Lemma 2. k(π1(0, k)− π0(1, k)) is decreasing in k.

Proof. Let

J = k
(
π1(0, k)− π0(1, k)

)
= k
(( 1 + ε

1 + k

)2 − (1− kε
2 + k

)2)
Then

∂J

∂k
= Aε2 +Bε+ C
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where A, B and C are functions of k. In particular,

A = −k
6 + 9 k5 + 22 k4 + 24 k3 + 12 k2 − 4 k − 8

(1 + k)3 (2 + k)3

B = −−6 k4 − 14 k3 − 12 k2 − 16 k − 16

(1 + k)3 (2 + k)3

C = −4 k3 + 9 k2 + k − 6

(1 + k)3 (2 + k)3

and

B2 − 4AC =
−16(k3 + k2 − 2k − 1)

(k + 2)4(1 + k)2

Clearly A < 0 for k ≥ 1 and B2 − 4AC < 0 for k ≥ 2. Therefore ∂J
∂k
< 0 for k ≥ 2 and J is

maximized either at k = 1 or at k = 2.

Since J |k=1 = 1
36

(ε+ 5)(5ε+ 1) and J |k=2 = − 1
72

(10ε+ 1)(2ε− 7), for every ε

J |k=1 − J |k=2 =
5

12
ε2 − 2

9
ε+

1

24
> 0

Thus J = k
(
π1(0, k)− π0(1, k)

)
is decreasing in k for k ≥ 1.

Lemma 3. (i) k0(n, ε) ≤ n+ 1 and (ii) k̂(n, ε) ≤ n.

Proof. (i) By (1) and Proposition 1

π0(n, ε) = max
1≤k≤ 1

ε

k
(
1 + (n+ 1)ε

)2
(n+ k + 1)2

and it is maximized at k = min(n+ 1, 1
ε
). Hence k0(n, ε) ≤ n+ 1.

(ii) Let

π̂1(n, ε) = max
1≤k<n

k
(
π1(n− k, k)− π0(n− k + 1, k)

)
and

π̂2(n, ε) = max
k≥n

k
(
π1(0, k)− π0(1, k)

)
32



Then π̂(n, ε) = max
(
π̂1(n, ε), π̂2(n, ε)

)
. But k

(
π1(0, k)−π0(1, k)

)
is decreasing in k (Lemma

2). This implies k̂(n, ε) ≤ n.

The next lemma characterizes both k0(n, ε) and k̂(n, ε).

Lemma 4.

k0(n, ε) =

 n+ 1 if 0 < ε < 1
n+1

1
ε

if 1
n+1
≤ ε < 1

(14)

and

k̂(n, ε) =


n if 0 < ε < f(n)

k̃(n, ε) if f(n) ≤ ε ≤ 2
n+1

1
ε

if 2
n+1

< ε < 1

(15)

where

f(n) =
n3 + n2 + 2n+ 4 +

√
n6 + 8n5 + 30n4 + 56n3 + 50n2 + 20n+ 4

3n4 + 8n3 + 10n2 + 4n− 4
,

k̃(n, ε) = 2n3ε+10n2ε+16nε+4n+8ε+6−
√
4n6ε2+34n5ε2+119n4ε2+4n4ε+220n3ε2+26n3ε+227n2ε2+62n2ε+124nε2+4n2+64nε+28ε2+12n+24ε+9

3(2n+3)ε
.

Here 1
ε
≤ k̃(n, ε) ≤ n for f(n) ≤ ε ≤ 2

n+1
and k̃(n, ε) is decreasing in ε.

Proof. (14) follows from the proof of part (i) of Lemma 3. We next analyze k̂(n, ε).

By part (ii) of Lemma 3, k̂(n, ε) ≤ n. Then

π̂(n, ε) = max
1≤k≤n

k
(
π1(n− k, k)− π0(n− k + 1, k)

)
= k
((1 + (n− k + 1)ε)2

(n+ 1)2
− (1− kε)2

(n+ 2)2

)
The �rst order condition is

∂π̂(n, ε)

∂k
= Dk2 + Ek + F (16)

where

D =
6nε2 + 9 ε2

(n+ 1)2 (n+ 2)2
> 0,
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E =
−4n3ε2 − 20n2ε2 − 32nε2 − 8nε− 16 ε2 − 12 ε

(n+ 1)2 (n+ 2)2
,

F =
n4ε2 + 6n3ε2 + 2n3ε+ 13n2ε2 + 10n2ε+ 12nε2 + 16nε+ 4 ε2 + 2n+ 8 ε+ 3

(n+ 1)2 (n+ 2)2

and

E2 − 4DF = 4
ε2(4n6ε2+34n5ε2+119n4ε2+4n4ε+220n3ε2+26n3ε+227n2ε2+62n2ε+124nε2+4n2+64nε+28 ε2+12n+24 ε+9)

(n+1)4(n+2)4
> 0

Let c1 and c2 be the solution in k of the quadratic function ∂π̂(n,ε)
∂k

= 0. Then

c1 = 2n3ε+10n2ε+16nε+4n+8ε+6−
√
4n6ε2+34n5ε2+119n4ε2+4n4ε+220n3ε2+26n3ε+227n2ε2+62n2ε+124nε2+4n2+64nε+28ε2+12n+24ε+9

3(2n+3)ε

c2 = 2n3ε+10n2ε+16nε+4n+8ε+6+
√
4n6ε2+34n5ε2+119n4ε2+4n4ε+220n3ε2+26n3ε+227n2ε2+62n2ε+124nε2+4n2+64nε+28ε2+12n+24ε+9

3(2n+3)ε

It can be easily veri�ed that when ε ≥ 0 and n ≥ 1, c1 > 0. Next we compare c1 with
1
ε
.

1

ε
− c1 =

s(n, ε)− t(n, ε)
3(2n+ 3)ε

(17)

where

s(n, ε) =
√

4n6ε2 + 34n5ε2 + 119n4ε2 + 4n4ε+ 220n3ε2 + 26n3ε+ 227n2ε2 + 62n2ε+ 124nε2 + 4n2 + 64nε+ 28ε2 + 12n+ 24ε+ 9

and

t(n, ε) = 2n3ε+ 10n2ε+ 16nε+ 8ε− 2n− 3 (18)

For ε ≥ 0, s(n, ε) > 0 and it can be easily veri�ed that t(n, ε) ≤ 0 i� ε ≤ 2n+3
2(n+1)(n+2)2

. By

(17) for ε ≤ 2n+3
2(n+1)(n+2)2

, c1 ≤ 1
ε
. If, however, ε > 2n+3

2(n+1)(n+2)2
by (18) t(n, ε) > 0. It can be

easily veri�ed that (
s(n, ε)

)2 ≥ (t(n, ε))2 i� 0 ≤ ε ≤ 2

n+ 1
(19)

and for all n ≥ 1, in which case, again, c1 ≤ 1
ε
. It can also be veri�ed that 2

n+1
> 2n+3

2(n+1)(n+2)2
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for n ≥ 1. Therefore c1 > 1
ε
i� ε > 2

n+1
. Since the optimal k is bounded above by 1

ε

(Proposition 1), for ε > 2
n+1

, k̂(n, ε) = 1
ε
. Next we analyze the case 0 ≤ ε ≤ 2

n+1
(or

equivalently c1 ≤ 1
ε
). We �rst compare the value of 1

ε
and c2.

1

ε
− c2 =

−s(n, ε)− t(n, ε)
3(2n+ 3)ε

as shown above, t(n, ε) ≥ 0 i� ε ≥ 2n+3
2(n+1)(n+2)2

. For 2n+3
2(n+1)(n+2)2

≤ ε ≤ 2
n+1

, c2 ≥ 1
ε
. Since(

s(n, ε)
)2 ≥ (t(n, ε))2 for 0 ≤ ε < 2n+3

2(n+1)(n+2)2
, again c2 ≥ 1

ε
. Thus for any ε ≤ 2

n+1
, c2 ≥ 1

ε
.

This together with (16) imply that π̂(n, ε) is maximized at k = c1.

Finally we compare the value of c1 with n.

n− c1 =
s(n, ε)− (2n3ε+ 4n2ε+ 7εn+ 4n+ 8ε+ 6)

3(2n+ 3)ε

It can be easily veri�ed that

(
s(n, ε)

)2 − (2n3ε+ 4n2ε+ 7εn+ 4n+ 8ε+ 6)2 =

(18n5 + 75n4 + 132n3 + 114n2 + 12n− 36)ε2 − (12n4 + 30n3 + 42n2 + 84n+ 72)ε− (12n2 + 36n+ 27)

Thus c1 ≥ n i� the last term ≤ 0. The solution of this quadratic inequality is

n3+n2+2n+4−
√
n6+8n5+30n4+56n3+50n2+20n+4

3n4+8n3+10n2+4n−4 ≤ ε ≤ n3+n2+2n+4+
√
n6+8n5+30n4+56n3+50n2+20n+4

3n4+8n3+10n2+4n−4 ≡ f(n)

It can be easily veri�ed that n3+n2+2n+4−
√
n6+8n5+30n4+56n3+50n2+20n+4

3n4+8n3+10n2+4n−4 < 0 for n ≥ 1. It can

also be veri�ed that f(n) ≤ 2
n+1

for n ≥ 1.

Consequently, for 0 ≤ ε ≤ f(n), n ≤ c1 ≤ 1
ε
and k̂(n, ε) = n; for f(n) < ε ≤ 2

n+1
, c1 < n,

c1 <
1
ε
and k̂(n, ε) = c1; for

2
n+1
≤ ε ≤ 1, 1

ε
< c1 < n and k̂(n, ε) = 1

ε
. It is left to show that

c1 is decreasing in ε. We �rst compute the �rst order derivative of c1 with respect to ε.

∂c1
∂ε

= n3ε+5n2ε+8 ε n−2
√
4n6ε2+34n5ε2+119n4ε2+4n4ε+220n3ε2+26n3ε+227n2ε2+62n2ε+124nε2+4n2+64 ε n+28 ε2+12n+24 ε+9+2n+4 ε+3

3ε2
√
4n6ε2+34n5ε2+119n4ε2+4n4ε+220n3ε2+26n3ε+227n2ε2+62n2ε+124nε2+4n2+64 ε n+28 ε2+12n+24 ε+9
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It can be easily veri�ed that ∂c1
∂ε

< 0 for n ≥ 1 and ε > 0. The proof of Lemma 4 is

complete.

We are now ready to characterize the equilibrium number of licensees in Gu, for the

"lucky" innovator.

Case 1: Suppose 0 ≤ ε ≤ min
(

1
n+1

, f(n)
)
, then k0(n, ε) = n+ 1 and k̂(n, ε) = n.

π0(n, ε)− π̂(n, ε) = (n+ 1)π1(n, n+ 1)− n
(
π1(0, k)− π0(1, k)

)
= (5n5+15n4+19n3+9n2+4)ε2−(6n4+12n3+14n2+8n−8)ε+n3−3n2−4n+4

4(n+1)2(n+2)2

(20)

It is easy to verify that π0(n, ε) ≤ π̂(n, ε) i�

3n4+6n3+7n2+4n−4−2
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4
≤ ε ≤ 3n4+6n3+7n2+4n−4+2

√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4

Let d1 = 3n4+6n3+7n2+4n−4−2
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4
and

d2 = 3n4+6n3+7n2+4n−4+2
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4
. We next show that d1 <

min
(

1
n+1

, f(n)
)
< d2. First observe that

d2 − 1
n+1

= (n+1)
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n−(n5+3n4+3n3+4−n2)

1
2
(5n5+15n4+19n3+9n2+4)(n+1)

It can be easily veri�ed that d2 >
1

n+1
for n ≥ 1. Thus d2 ≥ min

(
1

n+1
, f(n)

)
. Next observe

that

1
n+1
− d1 = (n+1)

√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n+(n5+3n4+3n3+4−n2)

1
2
(5n5+15n4+19n3+9n2+4)(n+1)

> 0

thus d1 <
1

n+1
. The analytical comparison between the value of d1 and f(n) is complicated.

The numerical comparison is shown in Figure 3. Form the �gure, d1 (blue) is less than f(n)

for 1 ≤ n ≤ 100.

Since d1 < min
(

1
n+1

, f(n)
)
< d2, for 0 ≤ ε < d1, π

0(n, ε) ≥ π̂(n, ε) and k∗2(n, ε) =

k0(n, ε) = n+ 1. For d1 ≤ ε ≤ min
(

1
n+1

, f(n)
)
, π0(n, ε) < π̂(n, ε) and k∗2(n, ε) = k̂(n, ε) = n.

Case 2: Suppose 2
n+1
≤ ε < 1, then k0(n, ε) = k̂(n, ε) = 1

ε
and π0(n, ε) = π̂(n, ε) = ε.
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Figure 2: Comparison between d1 and f(n)

Clearly k∗2(n, ε) = 1
ε
.

Case 3: Suppose min
(

1
n+1

, f(n)
)
< ε < 2

n+1
. Consider �rst the case 1

n+1
≤ f(n). By

Lemma 4 k̂(n, ε) < 1
ε
thus π̂(n, ε) > ε. Since k0(n, ε) = 1

ε
and π0(n, ε) = ε, π̂(n, ε) > π0(n, ε).

Consider next the case 1
n+1

> f(n). (i) Suppose 1
n+1
≤ ε < 2

n+1
, then the previous

argument applies and π̂(n, ε) > π0(n, ε). (ii) Suppose f(n) < ε < 1
n+1

, k0(n, ε) = n + 1

and k̂(n, ε) = k̃(n, ε). We next compare π0(n, ε) and π̂(n, ε) in this case. First observe that

k̃(n, ε) < n for f(n) < ε < 1
n+1

, thus π̂(n, ε) > n
(
π1(0, n)− π0(1, n)

)
. If we can show that

n
(
π1(0, n)− π0(1, n)

)
> (n+ 1)π1(n, n+ 1) (21)

then the proof is complete. This is indeed true since (21) holds i� d1 ≤ ε ≤ d2 and we have

shown that d1 ≤ f(n) and d2 ≥ 1
n+1

. Denote g(n) = max(d1, 0), Proposition 3 is complete.
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A.4 Proof of Proposition 5

By Proposition 1, we focus only on the case where k1 + k2 ≤ ε. The innovator solves

max
k1,k2

πD︷ ︸︸ ︷
k1
(
π1(n− k1, k1 + k2)− π0(n− k1, k1 + k2)

)
+ k2π1(n− k1, k1 + k2)

s.t.

0 ≤ k1 ≤ n− 1

0 ≤ k2

k1 + k2 ≤
1

ε

(22)

πD = − (k2ε2+2nε2+2ε2)k21
(n+k2+1)2

− (k22ε
2+2k2nε2−n2ε2+2k2ε2−2nε2−2nε−ε2−2ε)k1

(n+k2+1)2
+ k2n2ε2+2k2nε2+2k2nε+k2ε2+2k2ε+k2

(n+k2+1)2

Note �rst that πD is continuous on k1 and k2. Moreover, for any k2, πD is quadratic

in k1. Denote (k∗1, k
∗
2) the optimal choice of the innovator. Given any k2, let k1(k2) be the

maximizer of πD. Then

k1(k2) = min{−k
2
2ε+ (2nε+ 2ε)k2 − n2ε− 2nε− 2n− ε− 2

2ε(k2 + 2n+ 2)︸ ︷︷ ︸
ks1

, n− 1,
1

ε
− k2}

It can be easily veri�ed that

ks1 < n− 1 i� k2 >
−2nε+

√
ε(n2ε+ 2nε+ 2n+ 5ε+ 2)

ε︸ ︷︷ ︸
c1

and

ks1 <
1

ε
− k2 i� k2 <

2− nε− ε
ε︸ ︷︷ ︸
c2
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It can also be veri�ed that c1 ≤ c2 i� ε ≤ 1
2
. We �rst analyze the case 0 < ε ≤ 1

2
.

Case 1. 0 < ε < 1
2

Subcase 1.1: Suppose k2 ≤ c1, then n− 1 < ks1 <
1
ε
− k1 and k1(k2) = n− 1. Substituting

k1 in πD with n− 1,

π1
D = −(n− 1)ε2k22 + (2n2ε2 − 4nε2 − 2nε− 2ε2 − 2ε− 1)k2 + ε(n− 1)(n+ 1)(nε− 3ε− 2)

(n+ k2 + 1)2

It can be easily veri�ed that
∂π1
D

∂k2
is decreasing in k2. Let k̃2 be the solution of

∂π1
D

∂k2
= 0. Then

k̃2 =
2nε+ n+ 4ε+ 1− 2n2ε

2nε+ 1

It can be veri�ed that k̃2 ≤ c1 i� ε ≤ 1
2
thus πD is maximized at k2 = k̃2 for k2 ≤ c1.

Subcase 1.2: Suppose c1 ≤ k2 ≤ c2, then ks1 < n − 1, ks1 <
1
ε
− k2 and k1(k2) = ks1.

Substituting k1 in πD with ks1,

π2
D =

k22ε
2 + (2nε2 + 2ε2)k2 + n2ε2 + 2nε2 + 4nε+ ε2 + 4ε+ 4

4(k2 + 2n+ 2)

It can be veri�ed that π2
D is decreasing in k2 for 0 ≤ k2 ≤ c2, thus πD is maximized at k2 = c1

for c1 ≤ k2 ≤ c2.

Subcase 1.3: Suppose c2 ≤ k2, then
1
ε
− k2 < ks1 < n− 1 and k1(k2) = 1

ε
− k2. Since the

innovator's payo� is the same for all (k1, k2) s.t. k1 + k2 = 1
ε
, for any k2 ≥ c2 the innovator

obtains the same payo�. By Assumption 1 in this case πD is maximized at k2 = c2 in the

region k2 ≥ c2.

To summarize, for k2 ≤ c1, πD is maximized at (k1 = n− 1, k2 = k̃2); for k2 ∈ [c1, c2], πD

is maximized at (k1 = ks1, k2 = c1); for k2 ≥ c2, πD is maximized at (k1 = 1
ε
− c2, k2 = c2).

Since πD is continuous in k2, πD is maximized at k2 = max(k̃2, 0).
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For n ≥ 3, it can be easily veri�ed that k̃2 ≥ 0 i� ε ≤ 1
2n−4 . Then

k∗2(n, ε) =


2nε+n+4ε+1−2n2ε

2nε+1
if 0 < ε < 1

2n−4

0 if 1
2n−4 ≤ ε

Next we analyze k∗1. Suppose 0 < ε < 1
2n−4 . Since k

∗
2 = k̃2 and k̃2 < c1 (for 0 ≤ ε < 1

2
),

k∗2 < c1. Following the analysis in subcase 1.1, k1(k
∗
2) = n−1. Suppose next 1

2n−4 ≤ ε, k1(k
∗
2)

then depends on the relation between 0, c1 and c2. (i) If 0 ≤ c1 (
1

2n−4 ≤ ε ≤ 2
3n−5), following

the analysis of subcase 1.1, k1(k
∗
2) = n − 1. (ii) If c1 < 0 ≤ c2 ( 2

3n−5 ≤ ε ≤ 2
n+1

), following

the analysis of subcase 1.2, k1(k
∗
2) = ks1|k2=0 = n+1

4
+ 1

2ε
. (iii) If c2 < 0 ( 2

n+1
< ε), following

the analysis of subcase 1.3, k1(k
∗
2) = 1

ε
. Thus for n ≥ 3

k∗1(n, ε) =


n− 1 if 0 < ε < 2

3n−5

n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1

1
ε

if 2
n+1

< ε < 1
2

k∗2(n, ε) =


2nε+n+4ε+1−2n2ε

2nε+1
if 0 < ε < 1

2n−4

0 if 1
2n−4 ≤ ε < 1

2

Consider next n = 2. It can be easily veri�ed that k̃2 > 0. Therefore k∗2(2, ε) = k̃2

and k∗2(2, ε) < c1 (since k̃2 < c1 for 0 ≤ ε < 1
2
). Following subcase 1.1 k∗1(2, ε) = 1. The

innovator's optimal payo� is obtained for k∗1 = 1 and k∗2 = k̃2|n=2 = 3
4ε+1

.

Case 2. 1
2
≤ ε < 1

In this case c1 > c2, k̃2 >
1
2
and k̃2 > c1.

Subcase 2.1: Suppose k2 ≤ c2, then n − 1 < ks1 ≤ 1
ε
− k2 and k1(k2) = n − 1. Following

similar argument as in Subcase 1.1, πD is maximized at min(k̃2, c2). Since k̃2 > c1 and

c1 > c2, k̃2 > c2. Therefore πD is maximized at k1 = n− 1 and k2 = c2.

Subcase 2.2: Suppose c2 ≤ k2 ≤ c1, then ks1 ≥ n − 1, ks1 ≥ 1
ε
− k2 and k1(k2) =
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min(n − 1, 1
ε
− k2). It can be easily veri�ed that c2 ≤ 1

ε
− n + 1 ≤ c1 for ε ≥ 1

2
. (i)

Suppose �rst c2 ≤ k2 ≤ 1
ε
− n + 1 (or equivalently n − 1 ≤ 1

ε
− k2). Then k1(k2) = n − 1.

Following similar argument as in Subcase 1.1, πD is maximized at min(k̃2,
1
ε
− n+ 1). Since

k̃2 > c1 ≥ 1
ε
− n + 1, πD is maximized at (k1 = n − 1, k2 = 1

ε
− n + 1). (ii) Suppose next

1
ε
− n+ 1 ≤ k2 ≤ c1 (or equivalently n− 1 ≥ 1

ε
− k2) then k1(k2) = 1

ε
− k2. The innovator's

payo� is maximized at k1 + k2 = 1
ε
.

Subcase 2.3: Suppose k2 ≥ c1, then
1
ε
− k2 < ks1 < n − 1 and k1(k2) = 1

ε
− k2. The

innovator's payo� is maximized again at k1 + k2 = 1
ε
.

Consider �rst n ≥ 3. Since ε ≥ 1
2
, n − 1 ≥ 1

ε
holds. Therefore Subcase 2.1 and part (i)

of Subcase 2.2 are irrelevant. In this case πD is maximized at k1 + k2 = 1
ε
. By Assumption

1, k∗1 = 1
ε
and k∗2 = 0.

Consider next n = 2. Since 1
2
≤ ε ≤ 1, n − 1 ≤ 1

ε
holds. Therefore Part (ii) of Subcase

2.2 and Subcase 2.3 are irrelevant. Since πD is continuous on k2, combining Subcases 2.1

and Part (i) of Subcase 2.2 πD is maximized at (k1 = n− 1, k2 = 1
ε
− n+ 1). Proposition 5

follows.

A.5 Proof of Proposition 6

(i) Follows from (7) and Proposition 5.

(ii) Let q1(m0,m1) and q0(m0,m1) be the equilibrium quantity produced by a licensee

and a non-licensee, respectively, when there are m0 �rms producing at a unit cost c and m1

�rms producing at a unit cost c− ε. It can be veri�ed that

q0(m0,m1) =


1−εm1

m0+m1+1
if m1 ≤ a−c

ε

0 if m1 >
a−c
ε

(23)

q1(m0,m1) =


1+(m0+1)ε
m0+m1+1

if m1 ≤ a−c
ε

1+ε
m1+1

if m1 >
a−c
ε

(24)
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Since p∗nu(n, ε) = (c + 1) −
(

(n − k∗1)q0(n − k∗1, k∗1 + k∗2) + (k∗1 + k∗2)q1(n − k∗1, k∗1 + k∗2)
)
,

by (23), (24) and Proposition 5, part (ii) of Proposition 6 follows.

A.6 Proof of Proposition 7

Lemma 5. Consider the case n ≥ 3. (i) If ε ≤ g(n), π∗nu(n, ε) > π∗u(n, ε). (ii) If
1

2n−4 ≤ ε <

2
n+1

, π∗nu(n, ε) < π∗u(n, ε). (iii) If
2

n+1
≤ ε < 1, π∗nu(n, ε) = π∗u(n, ε).

Proof. (i) If ε < g(n), in UA the innovator's highest payo� is π̂ = (n+ 1)π1(n, n+ 1) which

is obtained when he auctions o� n + 1 licenses and all winners are entrants. In NUA if the

innovator chooses k1 = 0 and k2 = n+ 1 he obtains π̂. But he can obtain more by choosing

other combinations of (k1, k2). It can be shown that g(n) < 1
2n−4 for n ≥ 3 (the analytic

proof is di�cult, see Figure 3 for a numerical comparison). Thus by Proposition 5 when

ε < g(n), k∗1(n, ε) > 0 and π∗nu > π̂.

Figure 3: Comparison between 1
2n−4 and g(n)

(ii) If 1
2n−4 ≤ ε < 2

n+1
then in NUA k∗2(n, ε) = 0. Since the advantage of NUA on UA

lies only on the innovator's ability to charge for a license a higher price to entrants than to

incumbent �rms, this advantage disappears when k∗2(n, ε) = 0. Moreover, for any (k1, k2) an

incumbent's willingness to pay in NUA is π1(n−k1, k1 +k2)−π0(n−k1, k1 +k2) while it can
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be as high as π1(n− k1, k1 + k2)− π0(n− k1 + 1, k1 + k2) in UA (incumbent may be willing

to pay more to limit entry). Thus π∗nu(n, ε) ≤ π∗u(n, ε). Since K
∗
nu <

1
ε
, π∗nu(n, ε) < π∗u(n, ε).

(iii) If 2
n+1
≤ ε < 1 the innovator auctions o� in total 1

ε
licenses in both UA and NUA.

By Proposition 1, the innovator obtains the same payo� which is the total industry pro�t ε

in both auctions.

Next we focus on the analysis of g(n) < ε < 1
2n−4 . Clearly

1
2n−4 <

2
3n−5 <

2
n+1

for n ≥ 3.

Thus in Gnu, k
∗
1(n, ε) = n − 1 and k∗2(n, ε) = 2nε+n+4ε+1−2n2ε

2nε+1
. In Gu, π

∗
u(n, ε) depends on

whether ε ≤ f(n) or ε > f(n).

Case 1: Suppose f(n) ≤ 1
2n−4 (this inequality holds for n ≤ 8). Then

π∗u(n, ε) =

 n
(
π1(0, n)− π0(1, n)

)
if g(n) ≤ ε ≤ f(n)

k̃
(
π1
(
n− k̃, k̃

)
− π0

(
n− k̃ + 1, k̃

))
if f(n) < ε < 1

2n−4

We �rst analyze g(n) ≤ ε ≤ f(n).

π∗nu − π∗u = (4n5+8n4+4n3+4n2+16n+16)ε2

4(n+1)2(n+2)2
− (4n4+4n3+8n2+16n)ε

4(n+1)2(n+2)2
+ n3−3n2−4n+4

4(n+1)2(n+2)2

It can be easily veri�ed that π∗nu < π∗u i�

3n4+6n3+7n2+4n−4−2
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4
< ε < 3n4+6n3+7n2+4n−4+2

√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4

Let e1 = 3n4+6n3+7n2+4n−4−2
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4
and

e2 = 3n4+6n3+7n2+4n−4+2
√
n8+9n7+31n6+49n5+29n4−9n3−16n2−4n

5n5+15n4+19n3+9n2+4
. Figure 4 compare the value of

f(n), g(n), e1 and e2. Note that n ∈ [3, 8] since in this section we deal with n ≥ 3 and

f(n) ≤ 1
2n−4 .

It can be easily veri�ed that g(n) and e1 intersect at g(n) = e1 = 0. Thus π∗nu > π∗u for

g(n) ≤ ε < e1 and π
∗
nu ≤ π∗u for e1 ≤ ε ≤ f(n).

Next consider the case f(n) < ε < 1
2n−4 . Again, the analytic comparison between π∗u and
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Figure 4: Comparison between f(n), g(n), e1 and e2

π∗nu is di�cult and Figure 5 shows that π∗u(n, ε)− π∗nu(n, ε) ≥ 0 numerically.

Figure 5: The value of π∗u(n, ε)− π∗nu(n, ε)

To summarize, in case f(n) ≤ 1
2n−4 , π

∗
nu > π∗u for g(n) ≤ ε < e1 and π∗nu ≤ π∗u for

e1 ≤ ε ≤ 1
2n−4 .

Case 2: Suppose f(n) > 1
2n−4 (this inequality holds for n ≥ 9). Clearly for g(n) < ε <

1
2n−4 , π

∗
u(n, ε) = n

(
π1(0, n)− π0(1, n)

)
. Again π∗nu < π∗u i� e1 < ε < e2. Figure 6 shows that

e2 >
1

2n−4 > e1 > g(n) numerically. Clearly π∗nu > π∗u for g(n) ≤ ε < e1 and π∗nu ≤ π∗u for
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e1 ≤ ε < 1
2n−4 . Let h(n) = max(0, e1), Proposition 7 follows.

Figure 6: Comparison between 1
2n−4 , g(n), e1 and e2

A.7 Proof of Corollary 5

(i) For n ≥ 3

π∗nu(n, ε)− π∗(n, ε) =


(
1−(2n−4)ε

)2
4(n+1)

if 0 ≤ ε ≤ 1
2n−4

0 if 1
2n−4 ≤ ε < 1,

(25)

Let E =

(
1−(2n−4)ε

)2
4(n+1)

.

∂E

∂ε
=

(
(2n− 4)ε− 1

)
(n− 2)

n+ 1

Observe that (25) is continuous in ε and ∂E
∂ε
≤ 0 for 0 < ε ≤ 1

2n−4 . Thus for any n ≥ 3,

π∗nu − π∗ is non-increasing in ε for 0 < ε < 1.

Next observe that for 0 < ε < 1

π∗nu(n, ε)− π∗(n, ε) =


(
1−(2n−4)ε

)2
4(n+1)

if 3 ≤ n ≤ 1
2ε

+ 2

0 if 1
2ε

+ 2 ≤ n,

(26)
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and (26) is continuous in n. Since

∂E

∂n
=

(
(2n− 4)ε− 1

)
(2nε+ 8ε+ 1)

4(n+ 1)2
,

π∗nu − π∗ is non-increasing in n for n ≥ 3.

(ii) For n ≥ 3

p∗(n, ε)− p∗nu(n, ε) =


1−(2n−4)ε
2(n+1)

if 0 ≤ ε ≤ 1
2n−4

0 if 1
2n−4 ≤ ε < 1,

(27)

Clearly for any n ≥ 3, p∗(n, ε)− p∗nu(n, ε) is non-increasing in ε.

For 0 < ε < 1,

p∗(n, ε)− p∗nu(n, ε) =


1−(2n−4)ε
2(n+1)

if 3 ≤ n ≤ 1
2ε+2

0 if 1
2ε

+ 2 ≤ n,
(28)

Let F = 1−(2n−4)ε
2(n+1)

It can be easily veri�ed that

∂F

∂n
= − 6ε+ 1

(n+ 1)2

Since (28) is continuous in n and ∂F
∂n

< 0, (28) is non-increasing in n for n ≥ 3.

A.8 Proof of Proposition 10

By Proposition 9, for n ≥ 3

π∗0(n, ε) =


(n−1)

(
−(n−3)ε2+2ε

)
n+1

if 0 < ε ≤ 2
3n−5

(nε+ε+2)2

8(n+1)
if 2

3n−5 ≤ ε ≤ 2
n+1

ε if 2
n+1
≤ ε < 1.
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For n ≤ 2

π∗0(n, ε) =
(n− 1)

(
− (n− 3)ε2 + 2ε

)
n+ 1

. (29)

Consider �rst n ≥ 3. First note that for any ε ≥ 1
2
, π∗0 = ε regardless of the value of n.

We next focus on 0 < ε < 1
2
.

Subcase 1: Suppose n < 2
3ε

+ 5
3
(or equivalently 0 < ε < 2

3n−5). Denote

π∗10 =
ε(n− 1)(3ε+ 2− nε)

n+ 1
.

It can be easily veri�ed that

∂π∗10
∂n

=
ε(−n2ε− 2nε+ 7ε+ 4)

(n+ 1)2
,

∂π∗10
∂n

> 0 if 0 ≤ n < 2

√
2 +

1

ε
− 1

and

∂π∗1D
∂n
≤ 0 if n ≥ 2

√
2 +

1

ε
− 1

Denote n∗1 = 2
√

2 + 1
ε
− 1. It can be easily veri�ed that 3 < n∗1 < 2

3ε
+ 5

3
for 0 < ε < 1

2
.

Therefore 3 < n∗1 < 2
3ε

+ 5
3
for 0 < ε ≤ 1

3n−5 and n
∗1 is the maximizer of π∗0 for 3 < n < 2

3ε
+ 5

3
.

Subcase 2: Suppose 2
3ε

+ 5
3
≤ n ≤ 2

ε
− 1 (or equivalently 2

3n−5 ≤ ε ≤ 2
n+1

). Deonte

π∗20 =
(nε+ ε+ 2)2

8(n+ 1)
.

It can be easily veri�ed that

∂π∗20
∂n

=
ε2n2 + 2ε2n+ ε2 − 4

8(n+ 1)2

and

∂π∗20
∂n

< 0 for 0 ≤ n <
2

ε
− 1.
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Therefore n∗2 = 2
3ε

+ 5
3
is the maximizer of π∗20 for 2

3ε
+ 5

3
≤ n ≤ 2

ε
− 1.

Subcase 3: Suppose 2
ε
− 1 ≤ n ( 2

n+1
≤ ε ≤ 1

2
). Then π∗0(n, ε) = ε and the innovator's

payo� is the same for any 2
ε
− 1 ≤ n.

Combining subcases 1-3, for n ≥ 3, since π∗0 is continuous in n, n∗ = 2
√

2 + 1
ε
− 1 is the

maximizer of π∗0. Let π
∗
D be the innovator's equilibrium payo� when n = n∗.

π∗D =


2ε
(
2ε+1−

√
ε(2ε+1)

)(√
ε(2ε+1)−ε

)
√
ε(2ε+1)

if 0 < ε < 1
2

ε if 1
2
≤ ε < 1

Consider next n = 2. By (29), π∗0|n=2 = 1
3
ε2 + 2

3
ε. Finally consider the case n = 1. By

(29) the innovator obtains 0 since we restrict k ≤ n − 1. To provide a more reasonable

comparison we assume in this case that the innovator sells the license to the incumbent �rm

by �xed fee. The innovator's payo� is then π∗
′

0 |n=1 = π1(0, 1)− π1(1, 0) = 1
4
ε2 + 1

2
ε.

Figure 7 provides the comparison of the innovator's payo� when n∗ = 2
√

2 + 1
ε
−1, n = 2

and n = 1. Clearly in G0 the innovator obtains the highest payo� in an oligopoly market

with n∗ = 2
√

2 + 1
ε
− 1 �rms.

Figure 7: The innovator's payo� under di�erent n
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A.9 The maximizer of π∗su(n, ε)

Let (ks∗1 (n, ε), ks∗2 (n, ε)) be the maximizer of π∗su(n, ε).

For n ≥ 3

ks∗1 (n, ε) =



0 if 0 < ε < r(n)

n− 1 if r(n) ≤ ε ≤ 2
3n−5

n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1

1
ε

if 2
n+1
≤ ε < 1

and

ks∗2 (n, ε) =


n+ 1 if 0 < ε < r(n)

2
√

2 + 1
ε
− (n+ 1) if r(n) ≤ ε ≤ 4

n2+2n−7

0 if 4
n2+2n−7 ≤ ε < 1.

For n = 2

ks∗1 (2, ε) =

 0 if 0 < ε < r(2)

1 if r(2) ≤ ε ≤ 1

and

ks∗2 (2, ε) =


3 if 0 < ε < r(2)

2
√

2 + 1
ε
− 3 if r(2) ≤ ε ≤ 1

2

1
ε
− 1 if 1

2
≤ ε < 1.

For n = 1, ks∗1 (1, ε) = 0 and ks∗2 (1, ε) = 2.8

A.10 Proof of Proposition 13

Let (0, k02) and (k̂1, k̂2) be maximizers of π0
su(n, ε) and π̂su(n, ε), respectively. Clearly

either (0, k02) or (k̂1, k̂2) is a maximizer of π∗su(n, ε).

8In Gsu we restrict k1 ≤ n− 1 therefore ks∗1 (1, ε) = 0. If, instead, an auction with minimum reservation
price is conducted to the monopoly incumbent, there are parameters under which the innovator sells licenses
to the incumbent �rm in addition to entrants.
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Lemma 6.

k02(n, ε) =

 n+ 1 if 0 < ε < 1
n+1

1
ε

if 1
n+1
≤ ε < 1

Proof. Easy to verify.

Next we focus on the analysis of π̂su(n, ε). Note that n = 1 does not apply here since

k1 = 0 in this case.

Lemma 7. (i) For n ≥ 3

k̂1(n, ε) =


n− 1 if 0 < ε ≤ 2

3n−5

n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1

1
ε

if 2
n+1
≤ ε < 1

k̂2(n, ε) =

 2
√

2 + 1
ε
− (n+ 1) if 0 < ε ≤ 4

n2+2n−7

0 if 4
n2+2n−7 ≤ ε < 1

(ii) For n = 2

k̂1(2, ε) = n− 1

k̂2(2, ε) =

 2
√

2 + 1
ε
− (n+ 1) if 0 < ε ≤ 1

2

1
ε
− (n− 1) if 1

2
≤ ε < 1

Note that 4
n2+2n−7 ≤

2
3n−5 for n ≥ 3.

Proof. See A.11 of the Appendix.

To �nd the optimal licensing strategy of the innovator, we next compare π0
su(n, ε) and

π̂su(n, ε).

Lemma 8. For n ≥ 2, π0
su(n, ε) > π̂su(n, ε) i� ε < r(n).

The formula of r(n) is quite complicated and it appears in the Appendix (A.1).
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Proof. See A.12 of the Appendix.

We are now ready to characterize the optimal licensing strategy of the innovator.

Proposition 15. For n ≥ 2

k∗1(n, ε) =

 0 if 0 < ε < r(n)

k̂1(n, ε) if r(n) ≤ ε < 1

and

k∗2(n, ε) =

 n+ 1 if 0 < ε < r(n)

k̂2(n, ε) if r(n) ≤ ε < 1.

Proof. Follows immediately from lemmas 6, 7 and 8.

A.11 Proof of Lemma 7

We �rst shows that the innovator in SUA sells licenses to entrants i� he sells licenses to

all (but one) incumbent �rms.

Lemma 9. For any n ≥ 2 and 0 < ε < 1, k̂2(n, ε) > 0 i� k̂1(n, ε) = n− 1.

Proof. Denote k = k1 + k2. Suppose �rst k = 1
ε
. In this case each licensee (entrant or

incumbent �rm) pays the entire Cournot pro�t and by Assumption 1 the innovator sells

licenses to incumbent �rms and only when he exhausts all (but 1) incumbents will he sell

licenses to entrants. Suppose next 1 ≤ k < 1
ε
,

∂wl(k1, k − k1)
∂k1

= −2
ε (kε− 1)

(n− k1 + k + 1)2
> 0. (30)

For any k, 1 ≤ k < 1
ε
, the license fee paid by each licensee is increasing in the number of

incumbent licensees in k. Therefore the innovator in this case also sells licenses to incumbents

�rst. Lemma 9 follows.
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By Lemma 9, if k ≤ n − 1, k1 = k and k2 = 0. If, however, k > n − 1, k1 = n − 1 and

k2 = k − (n− 1). Therefore

π̂su(n, ε) = max
(

max
1≤k≤n−1

kwl(k, 0),max
k2

(
(n− 1 + k2)wl(n− 1, k2)

))
(31)

Suppose �rst n ≥ 3. It can be veri�ed that the maximizer of max1≤k≤n−1 kwl(k, 0) is

k̃1(n, ε) =


n− 1 if 0 < ε ≤ 2

3n−5

n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1

1
ε

if 2
n+1
≤ ε < 1

(32)

and the maximizer of (n− 1 + k2)wl(n− 1, k2) is

k̄2(n, ε) =

 2
√

2 + 1
ε
− (n+ 1) if 0 < ε ≤ 4

n2+2n−7

0 if 4
n2+2n−7 ≤ ε < 1

(33)

(33) states that for 4
n2+2n−7 ≤ ε < 1, the innovator is best o� selling 0 licenses to

entrants even if he sells n − 1 licenses to incumbent �rms. By Lemma 9 k̂1(n, ε) = k̃1(n, ε)

and k̂2(n, ε) = 0 in this case. As for 0 < ε ≤ 4
n2+2n−7 , the innovator is best o� selling

positive number of licenses to entrants if he sells n − 1 licenses to incumbent �rms. Since

4
n2+2n−7 ≤

2
3n−5 by (32) the innovator in this case is best o� selling n−1 licenses to incumbent

�rms even if k2 = 0. Therefore k̂1(n, ε) = n− 1 and k̂1(n, ε) = k̂2(n, ε) in this case. Part (i)

of Lemma 7 follows.

Suppose next n = 2. By Lemma 9, k̂1(2, ε) = 1. It can be easily veri�ed that k̂1(2, ε) =

min(2
√

2 + 1
ε
− 3, 1

ε
− 1).
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A.12 Proof of Lemma 8

By Proposition 6 it is easy to verify that

π0
su(n, ε) =


(ε(n+1)+1)2

4(n+1)
if 0 < ε < 1

n+1

ε if 1
n+1
≤ ε < 1

(34)

By Proposition 7 it is easy to verify that for n ≥ 3

π̂su(n, ε) =



2 ε
(√

1 + 2 ε−
√
ε
)2

if 0 < ε ≤ 4
n2+2n−7

(n−1)
(
−(n−3)ε2+2ε

)
n+1

if 4
n2+2n−7 < ε ≤ 2

3n−5

(nε+ε+2)2

8(n+1)
if 2

3n−5 ≤ ε ≤ 2
n+1

ε if 2
n+1
≤ ε < 1

For n = 2

π̂su(n, ε) =

 2 ε
(√

1 + 2 ε−
√
ε
)2

if 0 < ε ≤ 1
2

ε if 1
2
≤ ε < 1

Suppose ε ≥ 1
n+1

, then π0
su(n, ε) = ε and π̂su(n, ε) ≥ ε. In this case π̂su(n, ε) ≥ π0

su(n, ε).

We next focus on the case 0 < ε ≤ 1
n+1

.

Case 1: Consider �rst n ≥ 7. In this case 1
n+1
≥ 2

3n−5 .

Subcase 1.1: Suppose 2
3n−5 ≤ ε ≤ 1

n+1
.

π̂su(n, ε)− π0
su(n, ε) = −(n+ 1)2ε2 − 2

8(n+ 1)

where π̂su(n, ε) ≥ π0
su(n, ε) i� −

√
2

n+1
≤ ε ≤

√
2

n+1
. Therefore π̂su(n, ε) ≥ π0

su(n, ε) holds for

2
3n−5 ≤ ε ≤ 1

n+1
.

Subcase 1.2: Suppose 4
n2+2n−7 ≤ ε ≤ 2

3n−5 .

π0
su(n, ε)− π̂su(n, ε) =

(5n2 − 14n+ 13) ε2

4(n+ 1)
+

(−6n+ 10) ε

4(n+ 1)
+ (4n+ 4)−1
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Note that 5n2−14n+13
4(n+1)

> 0 for n ≥ 7. It can be easily veri�ed that π0
su(n, ε) > π̂su(n, ε) i�

ε < 3n−5−2
√
n2−4n+3

5n2−14n+13
or ε > 3n−5+2

√
n2−4n+3

5n2−14n+13
.

Denote e1 = 3n−5−2
√
n2−4n+3

5n2−14n+13
and e2 = 3n−5+2

√
n2−4n+3

5n2−14n+13
. Figure 8 compares the value of

e1, e2,
4

n2+2n−7 and
2

3n−5 numerically. Note that e1 and
4

n2+2n−7 intersects at n = 16.19. Thus

in case 4
n2+2n−7 ≤ ε ≤ 2

3n−5 , for 7 ≤ n ≤ 16.19, π̂su(n, ε) > π0
su(n, ε) holds. For n > 16.19,

π0
su(n, ε) > π̂su(n, ε) i�

4
n2+2n−7 ≤ ε < e1.

Figure 8: Comparison between e1, e2,
4

n2+2n−7 and 2
3n−5

Subcase 1.3: Suppose 0 < ε ≤ 4
n2+2n−7 .

π0
su(n, ε)− π̂su(n, ε) =

n2ε2+(16
√
1+2 εε3/2−22 ε2−6 ε)n+16

√
1+2 εε3/2−23 ε2−6 ε+1

4n+4

It can be easily veri�ed that π0
su(n, ε) ≤ π̂su(n, ε) i�

−8
√
1+2 εε3/2−11 ε2+2

√
−48
√
1+2 εε7/2−12

√
1+2 εε5/2+68 ε4+34 ε3+2 ε2−3 ε

ε2
≤ n ≤ −8

√
1+2 εε3/2+11 ε2+2

√
−48
√
1+2 εε7/2−12

√
1+2 εε5/2+68 ε4+34 ε3+2 ε2+3 ε

ε2

Denote f1 = −8
√
1+2 εε3/2−11 ε2+2

√
−48
√
1+2 εε7/2−12

√
1+2 εε5/2+68 ε4+34 ε3+2 ε2−3 ε

ε2

and f2 =
−8
√
1+2 εε3/2+11 ε2+2

√
−48
√
1+2 εε7/2−12

√
1+2 εε5/2+68 ε4+34 ε3+2 ε2+3 ε

ε2
.

Note that for n ≥ 7, 0 < ε ≤ 4
n2+2n−7 i� n ≤ 2

√
2 + 1

ε
− 1. Figure 9 shows that
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f2 > 2
√

2 + 1
ε
− 1 always holds. Note that ε is constraint to 1

14
since we are dealing in this

subcase ε ≤ 4
n2+2n−7 and n ≥ 7.

Figure 9: Comparison between f2 and 2
√

2 + 1
ε
− 1

Figure 10 compares the value of f1 and 2
√

2 + 1
ε
− 1. Note that f1 and 2

√
2 + 1

ε
− 1

intersects at ε = 0.0139 and n = 16.19. By Figure 10, π0
su(n, ε) > π̂su(n, ε) i� either

ε < 0.0139 or ε > 0.0139 and n < f1(ε). Or equivalently, when 0 < ε ≤ 4
n2+2n−7 , π

0
su(n, ε) >

π̂su(n, ε) i� either n > 16.19 or n ≤ 16.19 and ε < f−11 (n) (the existence of f−11 (n) is shown

in Figure 1).

Figure 10: Comparison between f1 and 2
√

2 + 1
ε
− 1

Combining subcases 1.1-1.3, for n ≥ 17, π0
su(n, ε) > π̂su(n, ε) i� 0 < ε < e1. For 7 ≤ n ≤
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16, π0
su(n, ε) > π̂su(n, ε) i� 0 < ε < f−11 (n).

Case 2: Consider next 1 + 2
√

3 ≤ n < 7. In this case 4
n2+2n−7 ≤

1
n+1

< 2
3n−5 .

Subcase 2.1: Suppose 4
n2+2n−7 ≤ ε ≤ 1

n+1
.

π0
su(n, ε)− π̂su(n, ε) =

(5n2 − 14n+ 13) ε2

4(n+ 1)
+

(−6n+ 10) ε

4(n+ 1)
+ (4n+ 4)−1

where 5n2 − 14n + 13 > 0 for 1 + 2
√

3 ≤ n < 7. By the same argument as in Subcase

1.2, π0
su(n, ε) ≤ π̂su(n, ε) i� e1 ≤ ε ≤ e2. Figure 11 shows that π0

su(n, ε) ≤ π̂su(n, ε) for

4
n2+2n−7 ≤ ε ≤ 1

n+1
.

Figure 11: Comparison between e1, e2,
4

n2+2n−7 and 1
n+1

Subcase 2.2: Suppose 0 < ε ≤ 4
n2+2n−7 , or equivalently 1+2

√
3 ≤ n ≤ min

(
7, −ε+2

√
2 ε2+ε
ε

)
.

Clearly ε ≤ 1
2(1+

√
3)
. By the same argument as in Subcase 1.3, π0

su(n, ε) ≤ π̂su(n, ε) i� f1 ≤

n ≤ f2. It can be easily veri�ed that f2 > 7 for 0 < ε ≤ 1
2(1+

√
3)
. Figure 12 compares the value

of f1 and
−ε+2

√
2 ε2+ε
ε

. Therefore for 1+2
√

3 ≤ n ≤ min
(

7, −ε+2
√
2 ε2+ε
ε

)
, π0

su(n, ε) > π̂su(n, ε)

i� either 0 < ε < f−11 (7) or f−11 (7) ≤ ε and n < f1. Or equivalently,π0
su(n, ε) > π̂su(n, ε) i�

ε < f−11 (n).

Combining subcases 2.1-2.2, for 1 + 2
√

3 ≤ n < 7, π0
su(n, ε) > π̂su(n, ε) i� ε < f−11 (n).

Case 3: Suppose 3 ≤ n ≤ 1 + 2
√

3. In this case 1
n+1
≤ 4

n2+2n−7 . Consider 0 < ε ≤ 1
n+1

(or equivalently, 3 ≤ n ≤ min
(
1 + 2

√
3, 1

ε
− 1
)
). Clearly ε ≤ 1

4
. By the same argument as
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Figure 12: Comparison between f1, f2 and
−ε+2

√
2 ε2+ε
ε

in Subcase 1.3, π0
su(n, ε) ≤ π̂su(n, ε) i� f1 ≤ n ≤ f2. Figure 13 compares the value of f1, f2

and 1
ε
− 1.

Figure 13: Comparison between f1, f2 and
1
ε
− 1

Figure 13 shows that for 3 ≤ n ≤ 1 + 2
√

3, π0
su(n, ε) > π̂su(n, ε) i� ε < f−11 (n).

Finally suppose n = 2. Clearly for 1
3
≤ ε < 1, π0

su(2, ε) ≤ π̂su(2, ε) since π
0
su(2, ε) = ε and

π̂su(2, ε) ≥ ε. For 0 < ε ≤ 1
3
, π0

su(2, ε) > π̂su(2, ε) i� either f1(ε) > 2 or f2(ε) < 2. It can

be easily veri�ed that f2(ε) > 2 for any 0 < ε ≤ 1
3
. Therefore π0

su(2, ε) > π̂su(2, ε) i� either

f1(ε) > 2. Or equivalently, π0
su(2, ε) > π̂su(2, ε) i� ε < f−11 (2).

To summarize, for any n ≥ 2, π0
su(n, ε) ≤ π̂su(n, ε) i� 0 < ε < r(n) where r(n) = e1 for
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n ≥ 16.19 and r(n) = f−11 (n) for 1 ≤ n < 16.19.

A.13 Proof of Proposition 14

For n ≥ 3,

K∗su(n, ε) =



n+ 1 if 0 < ε < r(n)

2
√

1 + 1
ε
− 2 if r(n) ≤ ε ≤ 4

n2+2n−7

n− 1 if 4
n2+2n−7 ≤ ε ≤ 2

3n−5

n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1

1
ε

if 2
n+1
≤ ε < 1

K∗nu(n, ε) =



2(n+2ε)
2nε+1

if 0 < ε ≤ 1
2n−4

n− 1 if 1
2n−4 ≤ ε ≤ 2

3n−5

n+1
4

+ 1
2ε

if 2
3n−5 ≤ ε ≤ 2

n+1

1
ε

if 2
n+1
≤ ε < 1

Observe that K∗nu(n, ε)
ε→0−−→ 2n > n+ 1. Since K∗nu(n, ε) is continuous on ε and K

∗
su(n, ε) =

n + 1 for 0 < ε < r(n), Proposition 14 follows. The same argument can be applied to case

n = 2.
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