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Abstract

We give examples of strategic interaction which are beneficial for players who

follow a "middle path" of balance between pure selfishness and pure altruism.
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1 Introduction

For the most part, game theory is silent about how payoffs of players are defined

in a game. Indeed, as a rule, payoffs are taken to be exogenous; and the focus

of the theory is on strategic behavior that emerges endogenously from the given

payoffs (mostly by invoking Nash Equilibrium (NE), but sometimes by means of

other solution concepts).

In this note, we shall commit the sacrilege of comparing different payoffs,

or more precisely different “standpoints” (in the jargon, “types”) of the players,

which in turn determine their payoffs.

Let us first think of two players named 1,2 whose interaction can be mod-

eled as if they are in one of several possible “games of money”, picked by nature

according to a common prior. Depending on the particular game-form at hand,

as well as the strategies chosen by the players, the outcome is a pair of numbers

(x1,x2) where xα denotes the dollars accruing to player α = 1,2.
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The payoff (ζ1,ζ2) that arises from the outcome (x1,x2) depends on the type

of the players. We focus on three types:

Selfish (S): each values only his own reward1, i.e., ζ1 = x1 and ζ2 = x2.

Altruistic (A): each values only his opponent’s reward, i.e., ζ1 = x2 and ζ2 =
x1

Balanced (B): each values both rewards equally, i.e., ζ1 = ζ2 = (x1+ x2)/2

For the time being, assume that both players are of the same type. This type,

moreover, is common knowledge among the players, as is the game form realized

by nature and the prior π. Thus both play the game of complete information that

occurs after nature’s move, and calculate their overall expected payoff in accor-

dance with π.
Our observation is that if the domain of game-forms is “unbiased” and “var-

ied” enough, there exists an NE selection for B-games whose expected payoff is

higher than those of any NE-selection for the other two games, not only if these

payoffs are calculated from the B-standpoint, but even if they are calculated from

the S-standpoint or the A-standpoint.
Later we shall consider prisoner’s dilemma, in which players have the strategic

freedom to program their computer to play according to one of the standpoints

S,A,B. We shall pinpoint conditions under which the B-program emerges as the

unique “trembling-hand perfect” NE.

All our observations are in the nature of examples rather than any general

theory and, once made, they are completely obvious. Nonetheless we think they

are worthy of being placed on record, in order to stimulate further inquiry.

1We may replace xi by u(xi) in defining ζi, where u is the utility of money. This does not

affect our analysis but just addes a layer of unnecessary notation. The important assumption we

are making is that the same u applies to both players. There is no interpersonal transfer of utilities

in our model, but there is interpersonal comparison of utilities. (The payoffs of the two players

cannot be subject to arbitrarily different affine transformations as in the standard model of cardinal

utilities, otherwise any notion of altruism or balance would become problematic.) We think that

people can, and often do, put themselves in “the other’s shoes” and have empathy (otherwise even

communication by language would be difficult). Thus interpersonal comparison of utilities is not

so unnatural.
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2 Identical Types: the General Setting

A game-form is a map from strategy-pairs to outcomes2. For ease of exposition,

we assume that the domain Γ of game-forms is finite and furthermore that, in

each γ ∈ Γ, players have finitely many pure strategies (though the number of these

strategies may well vary across Γ). Thus any game-form γ is given by a pair

(U,V ) of n× k matrices where player 1 has n pure strategies (the rows), 2 has

k pure strategies (the columns)3, and U = (ui j),V = (vi j) give respectively the

monetary payoffs of 1,2. In other words, if 1 picks row i and 2 picks column j,
their payoffs in γ = (U,V ) are ui j dollars and vi j dollars respectively. (As was

said, the integers n,k can depend on γ.)
There is a probability distribution π on Γ, indicating the likelihood of any

game-form coming into play.

For any γ = (U,V ) ∈ Γ, denote γ t = (V t ,U t) where V t (resp. U t) means the

transpose of the matrix V (resp. U). If the roles of the two players is interchanged,

the game-form γ is transformed to γ t ∈ Γ.

To rule out bias in favour of any player in our model, we postulate4

Axiom 1 (Unbiased Domain) If γ ∈ Γ, then γ t ∈ Γ; and, moreover, π(γ) = π(γ t).

A game-form will yield a game, once we map outcomes into payoffs in accor-

dance with one of the three standpoints S or A or B.
Actually it is just as easy to consider a continuum of standpoints or (player-)

types, parametrized by 0≤ c≤ 1, where S or A or B will correspond to c= 1 or 0

or 1/2 respectively.

For any γ = (U,V ) ∈ Γ, denote γc = (U∗,V∗) where U∗ is obtained by replac-

ing the i jth entry ui j of U by cui j+(1− c)vi j; and, similarly, V∗ is obtained by

replacing the i jth entry vi j of V by (1− c)ui j+ cvi j.
Then the game-form γ becomes the game γc, once we specify the type c of the

players.

Let Σ(γ) = Σ1(γ)×Σ2(γ) denote the Cartesian product of the mixed-strategy

sets Σ1(γ),Σ2(γ) of players 1,2 in the game-form γ ∈ Γ.

2Thus a game-form is one step short of a full-blown game. It will become such, once payoffs

of all the players are defined at every outcome.
3Throughout this note, the row player will be 1 (Rowina) and the column player will be 2

(Colin).
4An equivalent way to state Axiom 1 is that nature picks a game form γ in Γ according to some

common prior, and independently assigns the role of row or column player to 1,2 with equal prob-

ability. (In this language, given any game form γ, Rowina is the row player and Colin the column

player with probability 1/2, and their roles are reversed in γ with the remaining probability.)
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Definition 2 A strategy selection is a map f on the domain Γ such that, for all

γ ∈ Γ

f (γ) ∈ Σ(γ)

and

f (γ) = (p,q) =⇒ f (γ t) = (q, p)

The second display reiterates the absence of bias, not merely in the domain (as

in Axiom 1) but also in the strategy selection on the domain.

Next, for any 0≤ c≤ 1 and γ ∈ Γ , denote by Φ(γc)⊂ Σ(γ) the set of all mixed

strategy Nash Equilibria (NE) of the game γc.

Definition 3 A c-NE selection is a strategy selection f which satisfies

f (γ) ∈Φ(γc)

for all γ ∈ Γ.

By Axiom 1 and Nash’s theorem, c-NE selections exist for all c.
It will also be useful to formalize the payoff of a c-type player at any strategy

selection f .

Definition 4 For any 0≤ c≤ 1 and any strategy selection f , the c-payoff to player

α at f is

Exp ( f ,c,α) = ∑
γ∈Γ

π(γ)ζ ( f (γ) ,γ,c,α)

where ζ ( f (γ) ,γ,c,α) denotes the expected payoff to player α of type c in the

game-form γ when the mixed strategies f (γ) are played.5

Before we state our proposition, we need to also rule out domains which con-

sist exclusively of games of coordination. To this end, let us say that the pair

(i∗, j∗) of pure strategies in the game-form γ = (U,V ) is a maximizer if

ui∗ j∗+ vi∗ j∗ =max
i, j

(
ui j+ vi j

)
:=maxγ

Axiom 5 (Non-trivial Domain) There exist game-forms γ ∈ Γ, with π(γ) > 0,

such that no maximizer of γ is a Nash Equilibrium of the (selfish) game γ1.

5i.e., when α = 1, we have ζ ( f (γ) ,γ,c,α) =∑i, j piq j (cui j+(1− c)vi j) where f (γ) = (p,q)
and γ = (U,V ); and the payoff when α = 2 is exactly the same, except that we must switch c and

1− c.
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We ready to state

Proposition 6 Suppose Axiom 1 holds. There exists a (1/2)-NE selection f ∗ (i.e.,

NE for the balanced type) such that, for α = 1,2:

Exp ( f ∗,c,α) =M :=
1

2
∑
γ∈Γ

π(γ)maxγ , for all 0≤ c≤ 1

Furthermore, for any strategy selection f , and any player α = 1,2 we have:

M ≥ Exp ( f ,c,α), for all 0≤ c≤ 1

Finally, if Axiom 5 is also satisfied, then at any (selfish) 1-NE selection f and

α = 1,2 we have

M > Exp ( f ,c,α), for all 0≤ c≤ 1;

(and the same strict inequality holds for (altruistic) 0-NE selections f , provided

we postulate the variant of Axiom 5 with γ0 in place of γ1.).

Proof. (As the reader will have surely anticipated), define f ∗ by selecting

a pure strategy maximizer (i∗, j∗) in each game γ , ensuring that ( j∗, i∗) is then

selected in γ t . (This is feasible on account of Axiom 1.) Then f ∗ is clearly a

(1/2)-NE-selection6. Now, for any 0 ≤ c ≤ 1, the c-payoff of player 1 at f ∗ —

across the two games γ and γ t — is

π(γ)
[
cui∗ j∗+(1− c)vi∗ j∗

]
+π(γ)

[
(1− c)ui∗ j∗+ cvi∗ j∗

]
=(1/2)

[
π(γ)maxγ+π(γ t)maxγ

t
]

since π(γ) = π(γ t) and ui∗ j∗ + vi∗ j∗ = maxγ = maxγ t . Player 2 gets the same

by symmetry. Adding across all pairs γ,γ t in the domain Γ establishes the first

display of the proposition.

Next let f be any strategy selection which assigns mixed strategies f (γ) =
(p,q) to γ, and hence f (γ t) = (q, p) to γ t . Then 1 will get the payoff cui j+(1−
c)vi j in γ with probability π(γ)piq j, and he will get (1−c)ui j+cvi j in γ t with the

same probability. But ui j+ vi j ≤maxγ =maxγ t . Adding this inequality over all

strategy pairs (prescribed by f ) across all the games in Γ establishes the second

display.

The third display follows by the same argument, in light of Axiom 5.

6Needless to say, there may be other (1/2)-NE-selections which give much lower expected

payoffs to balanced types.
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Remark 7 We could have considered abstract strategy sets S1 and S2 and mon-

etary payoffs on their Cartesian product, with enough convexity assumptions to

guarantee existence of NE. The same results may then be established mutatis mu-

tandis.

Remark 8 Also with n players, define c-type to be a player who puts weight c

on his own reward and weight 1− c on the average of others’ rewards. Then our

analysis can be extended straightforwardly.

Remark 9 The second display implies in particular that f ∗, generated by the

balanced standpoint 1/2, is as good as any c-NE selection (not just selections for

the selfish c= 1 or altruistic c= 0), and that this is so no matter which standpoint

in the interval [0,1] is used to compare the two.

Remark 10 The third display of the proposition is silent on the “percentage drop”

in efficiency of NE payoffs of S or A games (compared to the “benign” NE selec-

tion f ∗of B-games, and always using the standpoint 1,0 when talking of the S,A
games respectively). This is a delicate question and will depend very much on the

domain Γ. See Powers et al (2016) for a detailed analysis of various domains of

2×2 games.

3 Mixed Types: Prisoner’s Dilemma

So far, we have compared three starkly different standpoints S,A,B from which

players may approach a game, and shown that the B-standpoint (that of the “mid-

dle path”) will be most successful, achieving the highest average payoffs for its

adherents. The question was not raised as to what might happen when adherents

with different standpoints come face-to-face. Let us examine this possibility in

the context of the well-known “prisoners’ dilemma”.

With κ for “cooperate” and δ for “defect”, consider the game-form:

κ δ

κ −3,−3 −12,−1

δ −1,−12 −5,−5

(The only “non-ordinal” constraint on the monetary rewards, that we shall be

invoking here, is that when player 1 unilaterally deviates from (δ ,δ ) to (κ,δ ),
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what he loses is greater than what 2 gains; the remaining constraints are purely

ordinal, as in the standard prisoners’ dilemma7.)

The best response map in the above 2× 2 game-form for each of the three

types S,A,B is given in the tables below, where the first row shows the opponent’s

strategy and the second row shows the corresponding best response:

S-type:

κ δ

δ δ

A-type:

κ δ

κ κ

B-type:

κ δ

κ δ

Notice that both S and A have strictly dominant strategies, namely δ and κ

respectively; whereas B plays “tit-for-tat”.

Now let us think of a related game where each player chooses one of three

possible programs for his computer or automaton, namely: “play according to S

(or A, or B”).When any two automata meet, they converge to the unique NE of the

ensuing 2×2 game. This gives rise to the overall 3×3 symmetric game below:

S A B

S −5,−5 −1,−12 −5,−5

A −12,−1 −3,−3 −3,−3

B −5,−5 −3,−3 −3,−3

Here (B,B) is an NE, and so is (S,S). However B dominates8 A; and once we

delete A, then B dominates S in the remaining subgame, hence (B,B) is — in this

sense — the more “stable” of the two.

7To be explicit, replace −3,−12,−1,−9 by a,b,c,d. Then the standard prisoners’ dilemma

requires c > a and d > b. We introduce the additional constraint: d− b > c− d. (Our analysis

holds for any such a,b,c,d.)

8By “B dominates A” we mean that that B does better than A against some strategy of the

opponent ( in the game at hand, against S), and does no worse against any other strategy. (This is

also called “weak domination” sometimes.)
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