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1 Introduction

The study of nonparametric identification in structural models is fundamentally important. It informs

us whether or not the model under consideration can be consistently estimated from an ideal data set

without introducing additional parametric or other restrictions. The model of interest in this paper

is a class of dynamic discrete choice games that generalizes the single agent Markov decision models

(Rust (1994)). Dynamic games provide a useful framework to study counterfactual experiments

involving multiple economic agents making decisions over time.1 Recent reviews of the identification

and estimation of these games, and other related issues such as computational aspects, can be found

in Aguirregabiria and Mira (2010) and Bajari, Hong and Nekipelov (2012). The primitives of the

games we consider consist of players’payoff functions, discount factor, and Markov transition law of

the variables in the model.

Most nonparametric identification results in this literature, following Magnac and Thesmar

(2002), focus on identifying the payoff functions while taking other primitives of the model as known

(Bajari, Chernozhukov, Hong and Nekipelov (2009), Pesendorfer and Schmidt-Dengler (2008)); also

see Section 6 in Bajari, Hong and Nekipelov (2012).2 These authors show that payoffs are generally

not identified nonparametrically. They are underidentified. Positive identification results are typi-

cally obtained by imposing generic linear restrictions on the payoffs (such as equality and exclusion

restrictions). The identification strategy along the line of Magnac and Thesmar is also constructive,

and is related to the development of several general estimation methodologies.3

A common feature in the aforementioned works (on identification) aims to identify the entire

payoff function for each player. However, the estimation strategies often employed in empirical work

do not treat all components of the payoff function in the same way. In particular the estimation of

dynamic games is considered a numerically demanding task, and the computational cost generally

increases nontrivially with the cardinality of the state space as well as number of parameters to

be estimated. Therefore, in the spirit of structural modeling, when possible empirical researchers

use economic theory to estimate components of the payoff function directly without appealing to

estimators developed specifically for dynamic games. In other words, some components of the payoff

1Examples of empirical applications include: Aguirregabiria and Mira (2007), Beresteanu, Ellickson and Misra

(2010), Collard-Wexler (2013), Dunne, Klimek, Roberts and Xu (2013), Fan and Xiao (2012), Gowrisankaran, Lucarelli,

Schmidt-Dengler and Town (2010), Lin (2012), Pesendorfer and Schmidt-Dengler (2003), Sanches, Silva Jr and Srisuma

(2014), and Suzuki (2013).
2A notable exception is Norets and Tang (2012), who show in a single agent setting that without the distribution

of the private values, generally payoff functions can only be partially identified.
3Examples of estimators in the literature include Aguirregabiria and Mira (2007), Bajari, Benkard and Levin (2007),

Bajari et al. (2009), Pakes, Ostrovsky and Berry (2007), Pesendorfer and Schmidt-Dengler (2008), and Sanches, Silva

and Srisuma (2013).
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functions are treated as reduced forms; they are structurally identified.4

A recurring feature of many dynamic game models employed in practice involves costs that arise

from players choosing different actions from the previous period (e.g. entry cost); see examples in

footnote 1. Switching costs are (at least, part of) what sometimes called dynamic parameters of the

model as they generally cannot be treated as reduced forms since economic theory rarely provides

guidance on how they are determined. Dynamic parameters are typically estimated using dynamic

game methods. Crucially, by definition, switching costs impose natural exclusion restrictions on the

payoff functions. This paper explores how natural economic restrictions from switching costs can be

exploited to improve the inference of dynamic games.

We show that, subject to a testable conditional independence assumption, and some normal-

ization, switching costs can generally be nonparametrically identified independently of the discount

factor and other components of the payoffs. Our identification strategy is also constructive and leads

to a more robust and simpler to construct estimator than previously. In order to be more explicit

about our contribution it will be helpful to introduce the main assumptions from the onset. In partic-

ular, let πi (ait, a−it, xt, wt) denote the per period payoff for player i at time t, where ait, a−it, xt and wt
denote her own action choice, actions of other players, observed state variables and actions from the

previous period respectively. We consider a payoff function that admits the following decomposition:

πi (ait, a−it, xt, wt) = µi (ait, a−it, xt) + φi (ait, xt, wt; ηi) · ηi (ait, xt, wt) . (1)

We offer one economic interpretation for the above equation as follows. µi captures the static payoff

from each period’s competition or participation from the game. φi represents player’s specific switch-

ing cost function. ηi is a known function that indicates whether a switch occurs (its purpose is solely

to determine the domain of φi, hence the notation φi (; ηi)). The key exclusion restrictions are: (i)

past actions do not directly affect static payoff (wt does not enter µi); and, (ii) only player i’s own

action determines whether a switching cost is incurred (a−it does not enter φi and ηi). Equation (1)

encompasses numerous payoff functions employed in practice. Some detailed examples will be given

below. In addition, the testable independence assumption we require is that xt+1 is independent of

wt conditional on xt and at. Such independence assumption is also implicitly assumed in numerous

empirical work.

We provide conditions when φi can be identified independent of µi and the discount factor, denoted

by β, and written in closed-form in terms of the transition and conditional choice probabilities
4For example, in an empirical model of an oligopolistic competition, firms’data on prices and quantities can be

used to construct the variable profits by building a demand system and solving a particular model of competition (see

Berry and Haile (2010,2012)). Another example is when bids data are available and the auction format is known so

the expected revenue can be estimated nonparametrically (Athey and Haile (2002,2007), Guerre, Perrigne and Vuong

(2000)).
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observed from the data. The implication of our results depends on the empirical problem at hand

and data availability.

1. The best case scenario arises when µi can be (structurally) identified directly from the data.

Our result on φi implies that πi can be identified independently of the discount factor. In this

case we also give a condition to identify the discount factor.

2. Otherwise the identification of µi will rely on existing methods in the literature, particularly

also assuming β, where the knowledge of φi can be used to reduce the dimensionality of the

nonparametric components in πi.

Our identification results can also be used directly to construct estimators. The numerical aspect

of estimating dynamic games can present a non-trivial challenge in practice (e.g. see Egesdal, Lai

and Su (2014) and Sanches, Silva and Srisuma (2013) for recent discussions). We propose a simple

estimator for φi that is invariant to the value of the discount factor and any specification of µi; based

on the closed-form expression of φi. Furthermore, if µi is also estimable directly from the data then

we can estimate πi independently of β without relying on existing methods to estimate games. In

any case, we offer a practical way to simplify the computational problem and reduce some sensitivity

to the specification of the payoff function.

The discount factor is a primitive of the model that is generally assumed to be known for the

purpose of identification in dynamic games. Perhaps relatedly, most estimation methodologies and

empirical applications in the literature do not estimate β but assign a fixed value for it. We provide a

suffi cient condition to identify the discount factor when µi can be identified independently of β. Our

result shares some similarities with Proposition 4 in Magnac and Thesmar (2002), who give conditions

for a positive identification result of the discount factor in a two-period model with a single decision

maker when the period payoff function satisfies a particular exclusion restriction.5 Our identification

result for the discount factor is also constructive and can lead to a natural estimator.

From the mathematical standpoint, our identification strategy (for φi) also differs from the earlier

results. The insight of Magnac and Thesmar (2002) reduces the identification problem to whether

the normalized expected payoffs identified from the data (Hotz and Miller (1993)) can be uniquely

generated by the model primitives. When all primitives apart from πi are known, the expected payoffs

can be written as a linear transform of the payoffs so the condition for identification is equivalent to

whether some linear equation in πi has a unique solution. However, if β is also part of the unknown

terms, then the expected payoffs are no longer linear in these primitives. We provide conditions

where a linear structure can be restored for the switching costs and used for identification.

5See Restriction R in Magnac and Thesmar (2002, page 809).
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The decomposition of payoff functions and imposing nonparametric structures have also been

used to identify other structural microeconomic models, e.g. see Berry and Haile (2010,2012) and

Lewbel and Tang (2013). The only other paper we are aware of that considers identification while

decomposing the payoff function for dynamic games is the recent work of Aguirregabiria and Suzuki

(2013) on entry games. However, the content and motivation of our work and theirs are substantially

different.6 Their main concern is on identifying and interpreting certain counterfactuals for the

purpose of policy analysis, rather than identifying and estimating the model primitives.

Throughout this paper we assume the most basic setup of a game with independent private

values under the usual conditional independence, and we anticipate the data to have been generated

from a single equilibrium.7 Our results can be extended to games with unobserved heterogeneity,

which has been used to accommodate a simple form of multiple equilibria, as long as nonparametric

choice and transition probabilities can be identified (see Aguirregabiria and Mira (2007), Kasahara

and Shimotsu (2009), Hu and Shum (2012)). The research on how to perform inference on a more

general data structure is an important area of future research, which is outside the scope of our work.

The remainder of the paper is organized as follows. Section 2 illustrates the mathematical idea

behind our identification strategy of the switching costs using a simple two-player entry game in Pe-

sendorfer and Schmidt-Dengler (2003,2008). We define the theoretical model and modeling assump-

tions in Section 3. We give our identification results in Section 4. Section 5 provides a discussion

on how our identification strategy can be used for estimation that we apply to data in Section 6.

Section 7 concludes.

2 Preview of Identification Strategy

Consider a two-player repeated entry game in Pesendorfer and Schmidt-Dengler (2003,2008). At

time t, each player i makes a decision, ait, to play 1 (enter the market) or 0 (not enter) based on

the status of market entrants from the previous period, wt = (ait−1, a−it−1), and a private shock

εit = (εit (0) , εit (1)). The expected payoff from choosing action ai is vi (ai, wt) + εit (ai), where

vi (ai, wt) = E [πi (ai, a−it, wt) |wt] + βE [mi (wt+1)|wt, ait = ai] , (2)

mi (wt) =
∞∑
τ=0

βτE

[
πi (ait+τ , a−it+τ , wt+τ )

+εit+τ (1) · 1 [ait+τ = 1] + εit+τ (0) · 1 [ait+τ = 0]

∣∣∣∣∣wt
]
.

6For example, Aguirregabiria and Suzuki (2013) assume the discount factor to be known throughout their paper;

see their second paragraph of Section 3.1 (page 10).
7The test of Otsu, Pesendorfer and Takahashi (2014) can be used to detect multiple equilibria in the data.
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In equilibrium ait = αi (wt, εit) for all i, t, where αi denotes the player’s Opt strategy, so that for any

wt, εit:

αi (wt, εit) = 1 [∆vi (wt) ≥ εit (0)− εit (1)] ,

where ∆vi (wt) = vi (1, wt) − vi (0, wt). Given the distribution of εit, ∆vi can be recovered directly

from the choice probabilities observable from the data. We can also relate ∆vi directly to the prim-

itives from (2), as mi can be written as some linear combination of πi, where the linear scalar

coeffi cients depend on the discount factor, conditional choice and transition probabilities; in par-

ticular, E[εit+τ (1) · 1 [ait+τ = 1] + εit+τ (0) · 1 [ait+τ = 0] |wt] can also be written in terms of choice
probabilities (Hotz and Miller (1993)). Since the action space is finite, then we can summarize

the relation between ∆vi and πi, as identified by the data and implied by the model, by a matrix

equation:

ri = Tiπi, (3)

where πi is a vector of {πi (ai, a−i, w)}ai,a−i,w, and both ri and Ti are known functions of β, and the

conditional choice and transition probabilities. Following Magnac and Thesmar (2002), the expected

discounted payoff represents the reduced form for this class of dynamic games. Bajari et al. (2009),

Pesendorfer and Schmidt-Dengler (2008) then show the identifiability of πi comes down to the ability

to find a unique solution to equation (3), which can be written down in terms of rank conditions.

Now we impose more structure on πi, in particular:

πi (ait, a−it, wt) = µi (ait, a−it) + ECi · ait (1− ait−1) + SVi · (1− ait) ait−1,

so that µi denotes the profit determines only by present period’s actions (e.g. takes value zero if

player i does not enter, otherwise it represents either a monopoly or duopoly profit depending on the

number of players in the market), and θi = (ECi, SVi) consists of the switching costs parameters.

From (2), it follows that

∆vi (wt) = E [µi (1, a−it) + βmi (1, a−it) |wt] + ECi · (1− ait−1)

− (E [µi (0, a−it) + βmi (0, a−it) |wt] + SVi · ait−1)

Let ∆µi (a−it) = µi (1, a−it) − µi (0, a−it), and define ∆mi (a−it) similarly. Note that mi itself also

depends on β as well as πi, therefore∆vi is clearly not linear in (β, πi). In order to restore the linearity

in β, using ∆µi and ∆mi, we define a nuisance function λi (a−it) = ∆µi (a−it) + β∆mi (a−it), so we

can write

∆vi (wt) = E [λi (a−it) |wt] + ECi · (1− ait−1)− SVi · ait−1. (4)

By construction λi is a composite function consisting of all primitives in the model. However, the

contribution of the entry cost from the present period is now additively separable from the other
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flow profits. Since the support of wt is finite, which is {(0, 0) , (0, 1) , (1, 0) , (1, 1)}, {∆vi (w)}w can
be represented by a matrix equation:

∆vi = Ziλi +Diθi, such that (5)
∆vi ((0, 0))

∆vi ((0, 1))

∆vi ((1, 0))

∆vi ((1, 1))

 =


P−i (0|0, 0) P−i (1|0, 0)

P−i (0|0, 1) P−i (1|0, 1)

P−i (0|1, 0) P−i (1|1, 0)

P−i (0|1, 1) P−i (1|1, 1)


[
λi (0)

λi (1)

]
+


1

1

0

0

0

0

−1

−1


[
ECi

SVi

]
,

where we use Pi (ai|w) to denote Pr [ait = ai|wt = w].

Let MZi be a projection matrix whose null space is CS (Zi), and Di = [d1
i : d2

i ]. Note that the

direction of projection does not matter. If dki /∈ CS (Zi) then

ECi =
(
d1>
i MZid

1
i

)−1
d1>
i MZi

(
∆vi − d2

iSVi
)
, (6)

SVi =
(
d2>
i MZid

2
i

)−1
d2>
i MZi

(
∆vi − d1

iECi
)
.

I.e., we can identify either the entry cost or scrap in terms of observables subjected to a normalization,

in closed-form. The need to normalize in this context is not unfamiliar in empirical work. We delay

a fuller discussion regarding normalization and other intuition in subsequent sections.

The sample counterparts of (6) provide a simple estimator for each θki that has a closed-form.

However, such estimator is ineffi cient. More generally, a class of closed-form estimators for θki can be

defined based on:

MZi∆vi = MZid
k
i θ
k
i , and

S
(
θki ;W

)
=

(
MZi∆vi −MZid

k
i θ
k
i

)>
W
(
MZi∆vi −MZid

k
i θ
k
i

)
,

θki =
(
dk>i M

>
Zi
WMZid

k
i

)−1
dk>i M

>
Zi
WMZi∆vi,

for some positive definite W, as an asymptotic least squares estimator (Gourieroux and Monfort

(1995)) in the spirit of Pesendorfer and Schmidt-Dengler (2008) and Sanches, Silva and Srisuma

(2013). Then the asymptotic variance of such estimator is determined by the weighting matrix.

The constructive identification strategy above can be generalized considerably. Our results are

applicable to non-entry games, for instance to games with multinomial actions (allocation or pricing

problems, e.g. Marshall (2013)), or sequential decision problems (dynamic auction or investment

games, e.g. Groeger (2013) and Ryan (2012)), as well as games with absorbing states (e.g. permanent

market exit).
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3 Model and Assumptions

We consider a game with I players, indexed by i ∈ I = {1, . . . , I}, over an infinite time horizon. The
variables of the game in each period are action and state variables. The action set of each player is

A = {0, 1, . . . , K}. Let at = (a1t, . . . , aIt) ∈ AI . We will also occasionally abuse the notation and
write at = (ait, a−it) where a−it = (a1t, . . . , ai−1t, ai+1t . . . , aIt) ∈ AI . Player i’s information set is

represented by the state variables sit ∈ S, where sit = (xt, wt, εit) such that (xt, wt) ∈ X × AI , for
some compact set X ⊆ RdX and for simplicity we let wt = at−1 and suppose xt does not contain other

past actions, are common knowledge to all players and εit = (εit (0) , . . . , εit (K)) ∈ RK+1 denotes

private information only observed by player i. For notational simplicity, we delay the discussion of

including lagged actions as state variables at the end of Section 4.1. We define st = (xt, wt) and

εt = (ε1t, . . . , εIt). Future states are uncertain. Players’actions and states today affect future states.

The evolution of the states is summarized by a Markov transition law P (st+1|st, at). Each player has
a payoff function, ui : AI × S → R, which is time separable. Future period’s payoffs are discounted
at the rate β ∈ (0, 1).

The setup described above, and the following assumptions, which we shall assume throughout

the paper, are standard in the modeling of dynamic discrete games.

Assumption M1 (Additive Separability): For all i, ai, a−i, x, w, εi:

ui (ai, a−i, x, w, εi) = πi (ai, a−i, x, w) +
∑
a′i∈A

εi (a
′
i) · 1 [ai = a′i] .

Assumption M2 (Conditional Independence I): The transition distribution of the states

has the following factorization for all x′, w′, ε′, x, w, ε, a:

P (x′, w′, ε′|x,w, ε, a) = Q (ε′)G (x′|x,w, a) ,

where Q is the cumulative distribution function of εt and G denotes the transition law of xt+1

conditioning on xt, wt, at.

Assumption M3 (Independent Private Values): The private information is independently

distributed across players, and each is absolutely continuous with respect to the Lebesgue measure

whose density is bounded on RK+1 with unbounded support.

Assumption M4 (Discrete Public Values): The support of xt is finite so that X ={
x1, . . . , xJ

}
for some J <∞.
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At time t every player observes sit, each then chooses ait simultaneously. We consider a Markovian

framework where players’behaviors are stationary across time and players are assumed to play pure

strategies. More specifically, for some αi : S → A, ait = αi (sit) for all i, t, so that whenever

sit = siτ then αi (sit) = αi (siτ ) for any τ . The beliefs are also time invariant. Player i′s beliefs, σi, is

a distribution of at = (α1 (s1t) , . . . , αI (sIt)) conditional on xt for some pure Markov strategy profile

(α1, . . . , αI). The decision problem for each player is to solve, for any si,

max
ai∈{0,1}

{E[ui (ait, a−it, si) |sit = si, ait = ai] + βE [Vi (sit+1) |sit = si, ait = ai]}, (7)

where Vi (si) =

∞∑
τ=0

βτE [ui (ait+τ , a−it+τ , wt+τ ) |sit = si] .

The expectation operators in the display above integrate out variables with respect to the probability

distribution induced by the equilibrium beliefs and Markov transition law. Vi denotes the value

function. Note that the transition law for future states is completely determined by the primitives

and the beliefs. Any strategy profile that solves the decision problems for all i and is consistent with

the beliefs satisfies is an equilibrium strategy. Pure strategies Markov perfect equilibria have been

shown to exist for such games (e.g. Aguirregabiria and Mira (2007), Pesendorfer and Schmidt-Dengler

(2008)).

We consider identification based on the joint distribution of the observables, namely (at, xt, wt, xt+1),

consistent with a single equilibrium play. The primitives of the game under this setting are ({πi}Ii=1 , β,Q,G).

Throughout the paper we shall also assume G and Q to be known (the former can be identified from

the data). Thus far, our framework is familiar from the literature (e.g. Aguirregabiria and Mira

(2007), Bajari, Benkard and Levin (2007), Pakes, Ostrovsky and Berry (2007), Pesendorfer and

Schmidt-Dengler (2008)).

We now formally introduce the specific structures for the purpose of identification using past

actions alluded in the introduction. In what follows, let W d
ηi

(ai, x) ≡
{
w ∈ AI : ηi (ai, x, w) = d

}
for

d = 0, 1. In addition to M1 - M4, we assume N1 - N2 hold for the remainder of this section.

Assumption N1 (Decomposition of Profits): For all i, ai, a−i, x, w:

πi (ai, a−i, x, w) = µi (ai, a−i, x) + φi (ai, x, w; ηi) · ηi (ai, x, w) ,

for some known function ηi : A ×X × AI → {0, 1} such that for any ai, φi (ai, x, w; ηi) = 0 for all

x when w ∈ W 0
ηi

(ai, x) .

Assumption N2 (Conditional Independence II): The distribution of xt+1 conditional on

at and xt is independent of wt.
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Assumption N1 assumes the period payoff function can be decomposed into two components with

distinct exclusion restrictions; as alluded in the Introduction. First is µi that does not depend on wt.

Since ηi is a function chosen by the researcher that indicates a switching cost, we normalize φi to

be zero whenever ηi takes value zero. When ηi takes value one, an exclusion restriction is imposed

so that a−it does not enter φi. Intuitively, N1 restricts us to consider payoffs that, for each player

in any single time period, come from two separate sources: one comes from the interaction with the

other players at the stage game, and the other is determined by her action relative to the previous

period. This does not mean, however, that variables from the past cannot affect µi since xt can

contain lagged values, including past actions. Although our method relies on the restriction that

other players’actions cannot contemporaneously affect φi when player i chooses ait.

N2 imposes that knowing actions from the past does not help predict future state variables when

the present actions are known. Note that N2 is not implied by M2. Therefore when xt contains lagged

actions N2 can be weakened to allow for dependence of other state variables with past actions. In

any case, N2 is a restriction made on the observables so it can be tested directly from the data.

Both N1 and N2 are quite general and are implicitly assumed in many empirical models used in

the literature. Here we provide detailed examples of φi · ηi and W d
ηi

(ai, x).

Example 1 (Entry Cost): Suppose K = 1, then the switching cost at time t is

φi (ait, xt, wt; ηi) · ηi(ait, xt, wt) = ECi (xt, a−it−1) · ait (1− ait−1) .

So that W 1
ηi

(1, x) =
{
w = (0, a−i) : a−i ∈ AI−1

}
and W 0

ηi
(1, x) =

{
w = (1, a−i) : a−i ∈ AI−1

}
, and

W d
ηi

(0, x) = ∅ for all x.

Example 2 (Scrap Value): Suppose K = 1, then the switching cost at time t is

φi (ait, xt, wt; ηi) · ηi(ait, xt, wt) = SVi (xt, a−it−1) · (1− ait) ait−1.

So thatW d
ηi

(1, x) = ∅ and,W 1
ηi

(0, x) =
{
w = (1, a−i) : a−i ∈ AI−1

}
andW 0

ηi
(0, x) =

{
w = (0, a−i) : a−i ∈ AI−1

}
for all x.

Example 3 (General Switching Costs): Suppose K ≥ 1, then the switching cost at time

t is

φi (ait, xt, wt; ηi) · ηi(ait, xt, wt) =
∑

a′i,a
′′
i ∈A

SCi (a
′
i, a
′′
i , xt, a−it−1) · 1 [ait = a′i, ait−1 = a′′i , a

′
i 6= a′′i ] .

So that, prior to imposing any normalizations,W 1
ηi

(ai, x) =
{
w = (a′i, a−i) : a′i ∈ A\ {ai} , a−i ∈ AI−1

}
and W 0

ηi
(ai, x) =

{
w = (ai, a−i) : a−i ∈ AI−1

}
for all x.
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Note that Examples 1 and 2 are just special cases of Example 3 when K = 1, with an additional

normalization of zero scrap value and entry cost respectively.

In order to provide an intuitive explanation behind why the assumptions above are useful for

identification, it will be useful to consider a single agent decision problem. Omitting the i subscript,

the expected payoff for choosing action a > 0 under M1 to M4 is, cf. (9),

v (a, x, w) = π (a, x, w) + βE [m (xt+1, wt+1) |at = a, xt = x,wt = w] ,

wherem (x,w) denotes the ex-ante (also known as integrated) value function, E [V (st) |xt = x,wt = w].

N1 imposes separability and exclusion restrictions so the contribution of the payoff related to the

past action can be isolated within a single period, as it has the following structure

π (a, x, w) = γ1 (a, x) + γ2 (a, x, w) .

Under N2, the past action is also excluded in the future expected payoff, asE [m (xt+1, wt+1) |at, xt, wt] =

E [m (xt+1, wt+1) |at, xt]. Therefore

v (a, x, w) = γ̃1 (a, x) + γ2 (a, x, w) ,

where γ̃1 (a, x) ≡ γ1 (a, x) + βE [mi (xt+1, wt+1) |ait = ai, xt = x]. It is now clear that variations in

expected payoff (net of the private shock) with respect to w for any given a, x can be traced only to

the contribution from γ2. Therefore {γ2 (a, x, w)− γ2 (0, x, w)}w∈A can be identified upto a location
normalization by differencing {v (a, x, w)− v (0, x, w)}w∈A over the support of w that eliminates the
free nuisance function γ̃1 (a, x)− γ̃1 (0, x) for a > 0, x.

The combination of exclusion and independence assumptions are classic tools in the study of

identification in econometrics; also see the recent works of Blevins (2013) and Chen (2013) who also

rely on somewhat similar conditions in order to identify the distribution of normalized unobserved

state variables in related single agent dynamic decision models. The idea above may first appear

less transparent in a game environment since the present and future expected payoffs for each player

are complicated by the beliefs formation of other players’actions that also depend on past actions.

However, we can define an analogous nuisance function that can still be differenced out by considering

a particular linear combination of the expected payoffs, which can be formalized by a projection, to

identify the switching costs upto some normalizations.8 We provide precise conditions for what can

be identified from φi in the next Section.

8Mathematically, for fixed a, x, our identification strategy in a single agent case leads to: g1 (w) = c + g2 (w). In

the case of a game we have g1 (w) =
∫
c (x)h (x|w) dx+ g2 (w). In a linear functional notation: g1 = Ac+ g2.
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4 Main Results

We first present our identification results first without assuming the discount factor, then the iden-

tification of the discount factor.

4.1 Identification without the Discount Factor

We begin by introducing some additional notations and representation lemmas. For any x,w, we

denote the ex-ante expected payoffs by mi (x,w) = E [Vi (xt, wt, εit) |xt = x,wt = w], where Vi is the

value function defined in (7), that can also be defined recursively through

mi (x,w) = E [πi (at, xt, wt) |xt = x,wt = w] + E[
∑
a′i∈A

εit (a′i) · 1 [ait = a′i] |xt = x,wt = w] (8)

+βE [mi (xt+1, wt+1) |xt = x,wt = w] ,

and the choice specific expected payoffs for choosing action ai prior to adding the period unobserved

state variable is

vi (ai, x, w) = E [πi (ait, a−it, xt, wt) |ait = ai, xt = x,wt = w] (9)

+βE [mi (xt+1, wt+1) |ait = ai, xt = x,wt = w] .

Bothmi and vi are familiar quantities in this literature. Under Assumption N2, E[mi (xt+1, wt+1) |ait, xt, wt]
can be simplified further to E[m̃i (ait, a−it, xt) |ait, xt, wt], where for all i, ai, a−i, x, m̃i (ai, a−i, x) is de-

fined as E [mi (xt+1, ait, a−it) |ait = ai, a−it = a−i, xt = x]. Then, for ai > 0, we define ∆vi (ai, x, w) ≡
vi (ai, x, w)−vi (0, x, w) ,∆µi (ai, a−i, x) ≡ µi (ai, a−i, x)−µi (0, a−i, x), and∆m̃i (ai, a−i, x) ≡ m̃i (ai, a−i, x)−
m̃i (0, a−i, x) for all i, a−i, x. Furthermore, since the action space is finite, the conditions imposed on

φi · ηi by N1 ensures for each ai > 0 we can always write the normalized switching cost as

φi (ai, x, w; ηi) · ηi (ai, x, w)−φi (0, x, w; ηi) · ηi (0, x, w) =
∑

w′∈W∆
ηi

(ai,x)

φi,ηi (ai, x, w
′) ·1 [w = w′] , (10)

for φi,ηi (ai, x, w) ≡ φi (ai, x, w; ηi)− φi (0, x, w; ηi) that is only defined only on the set W
∆
ηi

(ai, x) ≡
W 1
ηi

(ai, x) ∪W 1
ηi

(0, x). To illustrate, we briefly return to Examples 1 - 3.

Example 1 (Entry Cost, Cont.): Here the only ai > 0 is ai = 1. Since W 1
ηi

(0, x) is empty

W∆
ηi

(1, x) = W 1
ηi

(1, x), and for any w = (0, a−i), φi,ηi (1, x, w) = ECi (x, a−i) for all i, a−i, x.

Example 2 (Scrap Value, Cont.): Similarly to the above, W∆
ηi

(1, x) = W 1
ηi

(0, x), and for

any w = (1, a−i), φi,ηi (1, x, w) = −SVi (x, a−i) for all i, a−i, x.
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Example 3 (General Switching Costs, Cont.): For any ai > 0, prior to imposing any

additional normalizations, W 1
ηi

(ai, x) and W 1
ηi

(0, x) can both be non-empty, so for all i, a−i, x such

that a′i 6= ai:

φi,ηi (ai, x, w) = SCi (ai, 0, x, a−i) when w = (0, a−i) ,

φi,ηi (ai, x, w) = −SCi (0, ai, x, a−i) when w = (ai, a−i) ,

φi,ηi (ai, x, w) = SCi (ai, a
′
i, x, a−i)− SCi (0, a′i, x, a−i) when w = (a′i, a−i) for a

′
i 6= ai.

Note that SCi (a′i, a
′′
i , x, a−i) can be recovered for any ai 6= a′i by taking some linear combination from{

φi,ηi (ai, x, a
′
i, a−i)

}
ai,a′i∈A×A

.

The following lemmas generalize respectively equations (4) and (5) in Section 2.

Lemma 1: Under M1 - M4 and N1 - N2, we have for all i, ai > 0 and a−i, x, w:

∆vi (ai, x, w) = E [λi (ai, a−it, xt) |xt = x,wt = w] +
∑

w′∈W∆
ηi

(ai,x)

φi,ηi (ai, x, w
′) · 1 [w = w′] , (11)

where

λi (ai, a−i, x) ≡ ∆µi (ai, a−i, x) + β∆m̃i (ai, a−i, x) . (12)

Proof of Lemma 1: Using the law of iterated expectation, under M3E [Vi (sit+1) |ait = ai, xt, wt] =

E [mi (xt+1, wt+1) |ait = ai, xt, wt], which simplifies further, after another application of the law of it-

erated expectation and N2, to E [m̃i (ai, a−it, xt) |xt, wt]. The remainder of the proof of Lemma 1
then follows from the definitions of the terms defined in the text.�

Lemma 1 says that the normalized choice specific expected payoffs can be decomposed into a sum

of the fixed profits at time t and a conditional expectation of a nuisance function of λi consisting

of composite terms of the primitives. In particular the conditional law for the expectation in (11),

which is that of a−it given (xt, wt), is identifiable from the data. Since a conditional expectation

operator is a linear operator, and the support of wt is a finite set with (K + 1)I elements, we can

then represent (11) by a matrix equation.

Lemma 2: Under M1 - M4 and N1 - N2, we have for all i, ai > 0 and x:

∆vi (ai, x) = Zi (x)λi (ai, x) +Di (ai, x)φi,ηi (ai, x) , (13)

where ∆vi (ai, x) denotes a (K + 1)I −dimensional vector of normalized expected discounted pay-
offs, {∆vi (ai, x, w)}w∈AI , Zi (xt) is a (K + 1)I by (K + 1)I−1 matrix of conditional probabilities,
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{Pr [a−it = a−i|xt = x,wt = w]}(a−i,w)∈AI−1×AI , λi (ai, x) denotes a (K + 1)I−1 by 1 vector of {λi (ai, a−i, x)}a−i∈AI−1,

Di (ai, x) is a (K + 1)I by
∣∣∣W∆

ηi
(ai, x)

∣∣∣ matrix of ones and zeros, and φi,ηi (ai, x) is a
∣∣∣W 1

ηi
(ai, x)

∣∣∣
by 1 vector of

{
φi,ηi (ai, x, w)

}
w∈W∆

ηi
(ai,x)

.

Proof of Lemma 2: Immediate.�

Let ρ (Z) denote the rank of matrix Z, andMZ denotes a projection matrix whose null space is

the column space of Z. We can now state first result that generalizes equations (6) in Section 2.

Theorem 1: Under M1 - M4 and N1 - N2, for each i, ai > 0 and x, if (i) Di (ai, x) has full col-

umn rank, and, (ii) ρ (Zi (x))+ρ (Di (ai, x)) = ρ([Zi (x) : Di (ai, x)]), then Di (ai, x)>MZi(x)Di (ai, x)

is non-singular, and

φi,ηi (ai, x) = (Di (ai, x)> MZi(x)Di (ai, x))−1Di (ai, x)> MZi(x)∆vi (ai, x) . (14)

Proof: The full column rank condition of Di (ai, x) is a trivial assumption, the no perfect

collinearity condition makes sure there is no redundancy in the modeling of the switching costs. The

rank condition (ii) ensuresMZi(x)Di (ai, x) preserves the rank ofDi (ai, x), thereforeDi (ai, x)>MZi(x)Di (ai, x)

is non-singular.9 The proof can be completed by projecting the vectors on both sides of equation

(13) byMZi(x)and solve for φi,ηi (ai, x).�

In order for condition (ii) in Theorem 1 to hold, it is necessary to impose some normalizations on

the switching costs. Before commenting further, it will be informative to again revisit Examples 1 -

3. For notational simplicity we shall assume I = 2, so that wt ∈ {(0, 0) , (0, 1) , (1, 0) , (1, 1)}. And
since A = {0, 1} in Examples 1 and 2, we shall also drop ai from ∆vi (ai, x) = {∆vi (ai, x, w)}w∈AI
and λi (ai, x) = {λi (ai, a−i, x)}a−i∈AI−1 .

Example 1 (Entry Cost, Cont.): Equation (13) can be written as
∆vi (x, (0, 0))

∆vi (x, (0, 1))

∆vi (x, (1, 0))

∆vi (x, (1, 1))

 =


P−i (0|x, (0, 0))

P−i (0|x, (0, 1))

P−i (0|x, (1, 0))

P−i (0|x, (1, 1))

P−i (1|x, (0, 0))

P−i (1|x, (0, 1))

P−i (1|x, (1, 0))

P−i (1|x, (1, 1))


[
λi (0, x)

λi (1, x)

]

+


1

0

0

0

0

1

0

0


[
ECi (x, 0)

ECi (x, 1)

]
,

9Otherwise the columns of MZi (x)Di (ai) is linearly dependent, and some linear combination of the columns in

Di (ai) must lie in the column space of Zi (x), which violates the rank condition.
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where P−i (a−i|x,w) ≡ Pr [a−it = a−i|xt = x,wt = w]. A simple suffi cient condition that ensures

condition (ii) in Theorem 1 to hold is when the lower half of Zi (x) has full rank, i.e. when

P−i (0|x, (1, 0)) 6= P−i (0|x, (1, 1)).

Example 2 (Scrap Value, Cont.): Equation (13) can be written as
∆vi (x, (0, 0))

∆vi (x, (0, 1))

∆vi (x, (1, 0))

∆vi (x, (1, 1))

 =


P−i (0|x, (0, 0))

P−i (0|x, (0, 1))

P−i (0|x, (1, 0))

P−i (0|x, (1, 1))

P−i (1|x, (0, 0))

P−i (1|x, (0, 1))

P−i (1|x, (1, 0))

P−i (1|x, (1, 1))


[
λi (0, x)

λi (1, x)

]

+


0

0

1

0

0

0

0

1


[
−SVi (x, 0)

−SVi (x, 1)

]
.

An analogous suffi cient condition that ensures condition (ii) in Theorem 1 to hold in this case is

P−i (0|x, (0, 0)) 6= P−i (0|x, (0, 1)).

Example 3 (General Switching Costs, Cont.): Suppose K = 2, we consider ∆vi (2, x) =
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{∆vi (2, x, w)}w∈AI ,

∆vi (2, x, (0, 0))

∆vi (2, x, (0, 1))

∆vi (2, x, (0, 2))

∆vi (2, x, (1, 0))

∆vi (2, x, (1, 1))

∆vi (2, x, (1, 2))

∆vi (2, x, (2, 0))

∆vi (2, x, (2, 1))

∆vi (2, x, (2, 2))



=



P−i (0|x, (0, 0)) P−i (1|x, (0, 0)) P−i (2|x, (0, 0))

P−i (0|x, (0, 1)) P−i (1|x, (0, 1)) P−i (2|x, (0, 1))

P−i (0|x, (0, 2)) P−i (1|x, (0, 2)) P−i (2|x, (0, 2))

P−i (0|x, (1, 0)) P−i (1|x, (1, 0)) P−i (2|x, (1, 0))

P−i (0|x, (1, 1)) P−i (1|x, (1, 1)) P−i (2|x, (1, 1))

P−i (0|x, (1, 2)) P−i (1|x, (1, 2)) P−i (2|x, (1, 2))

P−i (0|x, (2, 0)) P−i (1|x, (2, 0)) P−i (2|x, (2, 0))

P−i (0|x, (2, 1)) P−i (1|x, (2, 1)) P−i (2|x, (2, 1))

P−i (0|x, (2, 2)) P−i (1|x, (2, 2)) P−i (2|x, (2, 2))




λi (2, 0, x)

λi (2, 1, x)

λi (2, 2, x)

(15)

+



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





SCi (2, 0, x, 0)

SCi (2, 0, x, 1)

SCi (2, 0, x, 2)

SCi (2, 1, x, 0)− SCi (0, 1, x, 0)

SCi (2, 1, x, 1)− SCi (0, 1, x, 1)

SCi (2, 1, x, 2)− SCi (0, 1, x, 2)

−SCi (0, 2, x, 0)

−SCi (0, 2, x, 1)

−SCi (0, 2, x, 2)



.

Clearly the required rank condition of Theorem 1 cannot hold without any normalization on the

switching costs. If ρ (Zi (x)) = 3, then the maximum number of elements in φi,ηi (2, x) that can be

identified using Lemma 2 is 6 given that we have 9 equations. Therefore we need to normalize three

parameters, which can naturally be interpreted as normalizing one type of switching costs. Ideally

available data or other prior knowledge can be used so known switching costs can be removed from

the right hand side (RHS) of equation (15), as done in Section 2 (see equation (6)). Otherwise

the most natural normalizations that can be employed include exclusions, e.g. zero switching cost

from action 2 to 0 (or vice versa), equality, e.g. same magnitude of switching to and from actions

0 and 2. More specifically, for any x suppose SCi (0, 2, x, a−i) = 0 for all a−i, then similar to

the two previous examples, a suffi cient condition for condition (ii) in Theorem 1 to hold can be

given in the form that ensures the lower third of Zi (x) to have full rank, which is equivalent to

the determinant of


P−i (0|x, (2, 0)) P−i (1|x, (2, 0)) P−i (2|x, (2, 0))

P−i (0|x, (2, 1)) P−i (1|x, (2, 1)) P−i (2|x, (2, 1))

P−i (0|x, (2, 2)) P−i (1|x, (2, 2)) P−i (2|x, (2, 2))

 is non-zero. Analogous

conditions and comments apply for ∆vi (1, x).
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Comments on Theorem 1:

Order Condition. Notice that our identification result is obtained pointwise for each i, ai > 0

and x. In order to apply Theorem 1 some necessary order condition must be met. Firstly, ρ (Zi (x))

always takes value between 1 and (K + 1)I−1; the latter is the number of columns in Zi (x) that

equals the cardinality of the action space of all other players other than i. A necessary order

condition based on the number of rows of the matrix equation in equation (13) can be obtained

from : ρ (Zi (x)) + ρ (Di (ai, x)) ≤ (K + 1)I , so that (the number of switching cost parameters one

wish to identify is
∣∣∣W∆

ηi
(ai, x)

∣∣∣ =) ρ (Di (ai, x)) ≤ (K + 1)I − 1. In the least favorable case, in terms

of applying Theorem 1, the previous inequality can be strengthened by using the maximal rank of

Zi (x), which is (K + 1)I−1, so ρ (Di (ai, x)) is bounded above by K (K + 1)I−1.

Underidentification. We argue that normalization of switching costs in this context is neces-

sary. In order to see this, for the moment suppose we also know β so that we can apply the

identification strategy along the line of Magnac and Thesmar (2002). Then for each x, without

any a priori restrictions, there are (K + 1)2I parameters from {πi (a, x, w)}a,w∈AI×AI that satisfy
K (K + 1)I equations from {∆vi (ai, x, w)}ai,w∈A\{0}×AI ; cf. equation (3) in Section 2. Therefore
πi is underidentified (cf. Proposition 2 in Pesendorfer and Schmidt-Dengler (2008)). Suppose πi
satisfies N1 with K2 (K + 1)I−1 of unknown switching cost parameters, which equals the maximum

number of switching costs we can identify from the least favorable necessary order condition from

Theorem 1 (there are K (K + 1)I−1 parameters for each ai > 0). Since the number of parame-

ters from {µi (a, x)}a∈AI for each x is (K + 1)I , the total number of payoff parameters under N1 is

(K + 1)I + K2 (K + 1)I−1 = K (K + 1)I + (K + 1)I−1, which is still more than the total number

of equations. Therefore πi remains underidentified under N1 even if the discount factor is known.

Since we treat µi nonparametrically, as well as unknown β, we cannot hope to identify more than

K (K + 1)I−1 switching costs parameters associated with ai > 0.

Notice that N1 does not impose a priori restrictions on πi beyond the implicit assumption that

there is no switching cost payoffs when actions do not change over time, namely πi (ai, a−i, x, wi, w−i) =

0 for all ai = wi. we impose only K + 1 restrictions on πi that is still underidentified.

Note that imposing switching cost structure alone still leads to underidentification of πi even

when β is known, in particular

f (a1, a2, w1, w2) = g (a1, a2) + h (a1 6= w1, w2)

(2)4 = (2)3

Normalization. Based on the above argument, concerning the identification of the switching

costs, the effective degree of underidentification is (K + 1)I−1 = (K + 1)I − K (K + 1)I−1. Note
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that (K + 1)I−1 equals also the cardinality of AI−1, so one reasonable (and effective) approach is to

normalize with respect to a particular action choice, or equality between two actions, generalizing

the description for Example 3 above. Notably it will be adequate to assume that cost of switching to

action 0 from other action is zero (or known), which is a weaker condition than a familiar normaliza-

tion of the outside option for the entire payoff function (e.g. Proposition 2 of Magnac and Thesmar

(2002) as well as Assumption 2 of Bajari et al. (2009)).

Interpretability. Recall that φi,ηi is a vector of primitives of the game that have structural

interpretations. Equation (13) gives the decomposition of the expected discounted payoffs in terms

of φi,ηi and other primitives of the game contained in λi (cf. (3)). If the rank conditions of Theorem

1 are satisfied, then φi,ηi can be written in terms of just the choice probabilities that are reduced form

parameters of the game, see (14). However, it is generally diffi cult to give a direct interpretation

describing the relation between the primitive and reduced form parameter (also see Magnac and

Thesmar (2002), Pesendorfer and Schmidt-Dengler (2008) and Bajari et al. (2009)).

Generally we can also formally impose prior knowledge restrictions on φi,ηi, then the rank re-

quirement on Di can be relaxed further. For instance, empirical work often assume firms’entry costs

or scrap values do not vary with other players’past entry decisions (e.g. see the example in Section

2), or in a general switching cost framework certain costs may be known to be equal. We next show

how to incorporate equality restrictions.

Assumption R1 (Equality Restrictions): For all i, x, there exists a matrix K (K + 1)I by

κ matrix D̃i (x) with full column rank and a κ by 1 vector of functions φ̃i,ηi (x) so that D̃i (x) φ̃i,ηi (x)

represents a vector of functions that satisfy some equality constraints imposed on {Di (ai, x)φi,ηi (ai, x)}ai∈A.

The matrix D̃i (x) can be constructed from diag{Di (1, x) , . . . ,Di (K, x)}, and merging the
columns of the latter matrix, by simply adding columns that satisfy the equality restriction together.

Redundant components of {φi,ηi (ai, x)}ai∈A are then removed to define φ̃i,ηi (x). One example for

D̃i (x) can be found in Section 2, where we consider a fixed cost function that does not depend

on other players’past actions, also see Example 4 below. The following lemma gives the matrix

representation of the expected payoffs in this case (cf. Lemma 2).

Lemma 3: Under M1 - M4, N1 - N2 and R1, we have for all i, x:

∆vi (x) = (IK ⊗ Zi (x))λi (x) + D̃i (x) φ̃i,ηi (x) , (16)

where ∆vi (x) denotes a K (K + 1)I −dimensional vector of normalized expected discounted pay-
offs, {∆vi (ai, x)}ai∈A\{0}, Zi (x) is a (K + 1)I by (K + 1)I−1 matrix of conditional probabilities,
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{Pr [a−it = a−i|x,wt = w]}(a−i,w)∈AI−1×AI , IK is an Idn matrix of size K, ⊗ denotes the Kronecker
product, λi (x) denotes a K (K + 1)I−1 by 1 vector of {λi (ai, x)}ai∈A\{0}, D̃i (x) and φ̃i,ηi (x) are

described in Assumption R1.

Proof of Lemma 3: Immediate.�

Using Lemma 3, our next result generalizes Theorem 1 by allowing for the equality restrictions

across actions.

Theorem 2: Under M1 - M4, N1 - N2 and R1, for each i, x, if (i) D̃i (x) has full column

rank and, (ii) ρ (IK ⊗ Zi (x)) + ρ(D̃i (x)) = ρ([IK ⊗Zi (x) : D̃i (x)]), then D̃>i (x)MIK⊗Zi(x)D̃i (x) is

non-singular, and

φ̃i,ηi (x) = (D̃>i (x)MIK⊗Zi(x)D̃i (x))−1D̃>i (x)MIK⊗Zi(x)∆vi (x) .

Proof of Theorem 2: Same as the proof of Theorem 1.�

Our previous comments on Theorem 1 are also relevant for Theorem 2. However, the ability to

relax the necessary order condition may not always be suffi cient for identification. In particular,

consider the following special case of Example 3 when K = 1.

Example 4 (Entry Game with Entry Cost and Scrap Value): The period payoff at

time t is

πi (ait, a−it, xt, wt) = µi (ait, a−it, xt) + ECi (xt) · ait (1− ait−1)

+SVi (xt) · (1− ait) ait−1.

I.e. we have imposed the equality restrictions on the entry costs and scrap values for each player

only depend on each her own actions. Then, for all i, x, the content of equation (16) (in Lemma 3) is
∆vi (x, (0, 0))

∆vi (x, (0, 1))

∆vi (x, (1, 0))

∆vi (x, (1, 1))

 =


P−i (0|x, (0, 0))

P−i (0|x, (0, 1))

P−i (0|x, (1, 0))

P−i (0|x, (1, 1))

P−i (1|x, (0, 0))

P−i (1|x, (0, 1))

P−i (1|x, (1, 0))

P−i (1|x, (1, 1))


[
λi (0, x)

λi (1, x)

]
(17)

+


1

1

0

0

0

0

1

1


[
ECi (x)

−SVi (x)

]
.

Note that the order condition is now satisfied. However, condition (ii) in Theorem 2 still does not

hold in this case since a vector of ones is contained in both CS (Zi (x)) and CS(D̃i (x)).
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The failure to apply our results in Example 4 is due to the fact that Zi (x) is a stochastic

matrix, whose rows each sums to one. Otherwise the finding itself may not be too surprising given

normalizations of switching costs are fairly common in empirical work. For instance Aguirregabiria

and Suzuki (2013) imply the nonidentification of entry cost and scrap value in a related decision

problem with entry, while Pesendorfer and Schmidt-Dengler (2008) assigned a particular value for

the scrap value. Thus, analogously, for our Example 4, if either ECi or SVi is normalized, and taken

to the LHS of equation (17), then we can apply our Theorem 2 analogous to equation (6)).

We emphasize that our Theorems 1 and 2 only provide suffi cient conditions for identification of

φi without assuming either β or µi. The failure to apply our theorems does not mean φi cannot be

identified with additional assumptions. For instance, if one assumes the knowledge of β then existing

results in Bajari et al. (2009) and Pesendorfer and Schmidt-Dengler (2008) can be used to identify

jointly both µi and φi if additional assumptions are imposed on πi.

We end this subsection by commenting that all of our results thus far hold without modification

if we re-define wt to be at−ς for any finite ς ≥ 1, and then replace xt by x̃t = (xt, at−1, . . . , at−ς+1).

The inclusion of such state variable does not violate assumption N2, and thus still allows us to define

analogous nuisance function that can be projected away as shown in Theorems 1 and 2. It is also in the

case of including lagged actions in the observed states that we naturally haveW d
ηi

(ai, x) 6= W d
ηi

(ai, x
′)

for x 6= x′ since the principal interpretation of switching costs generally will depend on at−1.

4.2 Discount Factor

If µi is assumed to be known then, using Theorems 1 or 2, πi can be identified without the knowledge

of β. We now consider the identification of β and take all other primitives of the model as known (i.e.

assume ({πi}Ii=1 , Q,G)). The result in this subsection is not specific to games involving switching

costs. Therefore we do not impose Assumptions N1 and N2 here, and henceforth we omit wt.

The parameter space for the model is now B ⊆ (0, 1) and we are interested in the discount

factor that is consistent with the data generating process, which we denote by β0. We begin with an

updated expression for the choice specific expected payoffs for choosing action ai prior to adding the

period unobserved state variable, where we now explicitly denote the dependence on the parameter

β, so that for any i, ai and x (cf. equation (9)):

vi (ai, x; β) = E [πi (ait, a−it, xt) |ait = ai, xt = x] + βgi (ai, x; β) , (18)

where, similar to previously, gi (ai, x; β) = E [Vi (sit+1; β) |ait = ai, xt = x], and Vi (si; β) =
∑∞

τ=t β
τ−tE [ui (aτ , siτ ) |sit = si].

Note that the expectations are taken with respect to the observed choice and transition probabilities

that are consistent with β0. We consider the relative payoffs in (18) with action 0 as the base, so
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that for all i, ai > 0 and x:

∆vi (ai, x; β) = E [∆πi (ai, a−it, xt) |xt = x] + β∆gi (ai, x; β) , (19)

where ∆vi (ai, x; β) = vi (ai, x; β) − vi (0, x; β) ,∆πi (ai, a−i, x) = πi (ai, a−i, x) − πi (0, a−i, xt) for all
a−i, and∆gi (ai, x; β) = gi (ai, x; β)−gi (0, x; β). Since∆vi (ai, x; β0) is identified from the data for all

ai, x, we take each β to be a structure of the (pseudo-)model and its implied expected payoffs, denoted

by Vβ = {∆vi (ai, x; β)}i,ai,x∈I×A×X , to be a reduced form.
10,11 We can then define identification using

the notion of observational equivalence in terms of the expected payoffs (cf. Magnac and Thesmar

(2002)).

Definition I1 (Observational Equivalence): Any distinct β and β′ inB are observationally

equivalent if and only if Vβ = Vβ′ .

Definition I2 (Identification): An element in B, say β, is identified if and only if β′ and β

are not observationally equivalent for all β′ 6= β in B.

By inspecting equation (19), since the term involving πi does not depend on β, identifica-

tion is determined by β∆gi (·, ·; β). The following lemma expresses {∆gi (ai, x; β)}ai,x∈A\{0}×X in

terms of β and other components that can be identified from the choice and transition proba-

bilities. In what follows, for any i, ai > 0 and x, we let: ∆Hai
i (x) denote a J by 1 vector of

{Pr [xt+1 = x′|xt = x, ait = ai]− Pr [xt+1 = x′|xt = x, ait = 0]}x′∈X , L be a J by J stochastic matrix
of transition probabilities of xt+1 conditioning on xt, R is a J by J matrix of conditional choice prob-

abilities such thatRπi represents a J by 1 vector of {E [πi (at, xt) |xt = x′]}x′∈X , and∆vi (ai, x; β0) =

∆Hai
i (x)×(I − βL)−1 ri where ri represents a J by 1 vector of

{
E
[∑

a′∈A εit (a′)1 [ait = a′] |xt = x′
]}

x′∈X .

Lemma 4: Under M1 - M4, we have for all i, ai > 0 and x:

∆gi (ai, x; β) = ∆Hai
i (x)× (I − βL)−1Rπi + ∆vi (ai, x; β0) . (20)

Proof of Lemma 4: Immediate.�

Note that ∆vi (ai, x; β0) and ∆vi (ai, x; β0) are identifiable from the observed data using Hotz and

Miller’s inversion. Therefore β0 is identifiable if for any β 6= β′, there exists some i and ai, x such that

β∆gi (ai, x; β) 6= β′∆gi (ai, x; β′). The relation in (20) can be written in a matrix for across possible

10This is a pseudo-model in the sense that we only work with the equilibrium beliefs that generate the data.
11It is equivalent to define the reduced forms in terms of expected payoffs is equivalent to defining them in terms of

conditional choice probabilities (Hotz and Miller (1993), Matzkin (1991), Norets and Takahashi (2013)).
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values of xt. Let ∆Hai
i denote

[
∆Hai

i (x1)>, . . . ,∆Hai
i (xJ)>

]>
, a J by J matrix, and ∆gaii (β) denote

{∆gi (ai, x; β)}x∈X , a J by 1 vector, and similarly ∆vaii (β) denotes {∆vi (ai, x; β)}x∈X .

Lemma 5: Under M1 - M4, we have for all i, ai > 0:

∆gaii (β) = ∆Hai
i (I − βL)−1Rπi + ∆vaii (β0) . (21)

Proof of Lemma 5: Immediate.�

Therefore β0 is identified if and only if there is no other β
′ inB such that β′∆Hai

i (I − β′L)
−1
Rπi

equals β0∆Hai
i (I − β0L)−1Rπi. Our next result gives one such suffi cient condition.

Theorem 3 (Identification of Discount Factor): Under M1 - M4, if Rπi 6= 0 and

∆Hai
i is invertible for some i, ai, then β0 is identified.

Proof of Theorem 3: Take any β, β′ ∈ (0, 1) such that β 6= β′, using equation (21) in Lemma

5 we obtain the following relation:

β∆gi (β)− β′∆gi (β′) =
(
β∆Hi × (I − βL)−1 − β′∆Hi × (I − β′L)

−1
)
Rπi.

We consider the terms in the parenthesis on the RHS of the equation above,

β∆Hi × (I − βL)−1 − β′∆Hi × (I − β′L)
−1

= (β − β′) ∆Hi × (I − βL)−1 + β′∆Hi

(
(I − βL)−1 − (I − β′L)

−1
)

= (β − β′) ∆Hi × (I − βL)−1 + β′ (β − β′) ∆Hi × (I − β′L)
−1
L (I − βL)−1

= (β − β′) ∆Hi ×
(
I + β′ (I − β′L)

−1
L
)

(I − βL)−1

= (β − β′) ∆Hi × (I − β′L)
−1

(I − βL)−1 ,

so that

β∆gi (β)− β′∆gi (β′) = (β − β′) ∆Hi × (I − β′L)
−1

(I − βL)−1Rπi.

If Rπi 6= 0, then (I − β′L)
−1

(I − βL)−1Rπi 6= 0 since both (I − β′L)
−1 and (I − βL)−1 are non-

singular by the dominant diagonal theorem. Therefore ∆Hi (I − β′L)
−1

(I − βL)−1Rπi cannot be

a zero vector if ∆Hi has full column rank, hence β∆gi (x; β) must differ from β′∆gi (x; β′) for some

x in X.�

The conditions in Theorem 3 are stated in terms of objects that are identified from the data

therefore they are easy to check. Note that it is also evident that our argument to identify the

discount factor allows for individual specific discount rate by simply replacing β by βi everywhere.
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5 Asymptotic Least Squares Estimation

Our identification results are constructive. For example, Theorems 1 and 2 provide closed-form ex-

pressions for φi that can be used for estimation by plugging in obvious empirical sample counterparts

without any numerical optimization. However, such estimator is generally not effi cient. This section

we provide a brief discussion for constructing a class of asymptotic least squares estimators for φi and

β. We shall consider the two cases separately since it is generally possible to construct a closed-form

estimator for φi but not for β. Our exposition in this section shall we brief. We refer the reader

to Sanches, Silva and Srisuma (2013) for further details regarding the estimation methodology and

asymptotic results.

Estimation of the Switching Cost

Under the conditions of Theorems 1 and 2, using Lemmas 2 and 3 we have respectively for all

x ∈ X:

MZi(x)∆vi (ai, x) = MZi(x)Di (ai)φi,ηi (ai, x) ,

MIK⊗Zi(x)∆vi (x) = MIK⊗Zi(x)D̃iφ̃i,ηi (x) .

since A and X are finite, we have a finite number of equality restrictions across i that can be

vectorized in the form of

Ysc = X scθ when θ = θ0.

So that θ0 is data generating parameter of interest, and X sc and Ysc are smooth functions of the
known model primitives that we denote by γ0 (such as choice and transition probabilities, and also

the payoff function in the case to estimate discount factor). Specifically, for any θ, X sc and Ysc equal
T scX (γsc0 ) and T scY (γsc0 ) respectively for some known functions T scX and T scY . Given a preliminary
consistent estimator of γsc0 , denoted by γ̂

sc, we can define an estimation criterion where X sc (θ) and

Ysc are replaced by X̂ sc = T scX (γ̂sc) and Ŷsc = T scY (γ̂sc) respectively, so that

Ŝsc(θ; Ŵsc) = (Ŷsc − X̂ scθ)>Ŵsc(Ŷsc − X̂ scθ),

where Ŵsc is a positive definite matrix. We define our estimator, θ̂(Ŵsc), to be the minimizer of

Ŝsc(θ; Ŵsc) that has a closed-form weighted least squares expression (subject to some rank condition):

θ̂(Ŵsc) = arg min
θ∈Θ
Ŝsc(θ; Ŵsc) (22)

= (X̂ sc>ŴscX̂ sc)−1X̂ sc>ŴscŶsc.

As usual, the choice of the weighting matrix will affect the relative effi ciency of θ̂(Wsc) in the class of

asymptotic least squares estimators indexed by the set of all positive definite matrices. In particular,
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the effi cient weighting matrix converges in probability to the inverse of the asymptotic variance of
√
N(Ŷsc − X̂ scθ0), which can be estimated using any preliminary estimator of θ0, such as (the Idn

weighted, ordinary least squares estimator) (X̂ sc>X̂ sc)−1X̂ sc>Ŷsc.

Estimation of the Discount Factor

Rearranging equation (21) in Lemma 5 yields

∆vi (β0) = ∆gaii (β)−∆Hai
i (I − βL)−1Rπi.

Similar quantities across players can be vectorized in the form of

Ydf = X df (β) when β = β0,

where X df (β) and Ydf are smooth functions of the known model primitives for every β. Similar to
the previous case, for any β, X df (β) and Ydf equal T dfX (γ0; β) and T dfY (γ0) respectively for some

known functions T dfX (·; β) and T dfY . Given a preliminary consistent estimator of γ
df
0 , denoted by γ̂

df ,

we can define an estimation criterion where X df (β) and Ydf are replaced by X̂ df (β) = T dfX (γ̂; β) and

Ŷdf = T dfY (γ̂) respectively, so that

Ŝdf (β; Ŵdf ) = (Ŷdf − X̂ df (β))>Ŵdf (Ŷdf − X̂ df (β)). (23)

where Ŵdf is a positive definite matrix. An asymptotic least square estimator can then be defined to

minimize Ŝdf (β; Ŵdf ). However, no closed-form estimator generally exists in this case. For effi cient

estimation, the weighting matrix needs to converge in probability to the inverse of the asymptotic

variance of
√
N(Ŷdf − X̂ df (β0)), which can be constructed from any consistent estimator of β0.

6 Numerical Section

We illustrate the use of our proposed estimators for the switching cost and discount factor as described

in the previous section.

We begin with a Monte Carlo study. Our simulation design is taken from Pesendorfer and

Schmidt-Dengler (2008, Section 7). Consider a two-firm dynamic entry game. In each period t, each

firm i has two possible choices, ait ∈ {0, 1}. Observed state variables are previous period’s actions,
wt = (a1t−1, a2t−1). Firm 1′s period payoffs are described as follows:

π1,θ (a1t, a2t, xt) = a1t (µ1 + µ2a2t) + a1t (1− a1t−1)F + (1− a1t) a1t−1W, (24)

where θ = (µ1, µ2, F,W ) denote respectively the monopoly profit, duopoly profit, entry cost and

scrap value. Each firm also receives additive private shocks that are i.i.d. N (0, 1). The game is

symmetric and Firm’s 2 payoffs are defined analogously.
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We generate the data with (µ1, µ2, F,W ) = (1.2,−1.2,−0.2, 0.1) and set β = 0.9. There are

three distinct equilibria for this game, one of which is symmetric. We generate the data using the

symmetric equilibrium. W is assumed to be known, as done in Pesendorfer and Schmidt-Dengler

(2008)W is assumed known as it cannot be identified jointly with F . We use equation (22) to estimate

F , which has closed-form without any optimization. In order to estimate β we need estimators for

µ1 and µ2 that do not depend on the discount factor. We denote the sample size by N . We use

µ1 + A1N/
√
N and µ2 + A2N/

√
N , where (A1N , A2N) are bivariate independent standard normal

variables, the
√
N−scaling ensures the (sampling) errors converge to zero at a parametric rate as

one would expect in empirical applications. We also report the estimates of F using the estimator

in Sanches, Silva and Srisuma (2013) that require an assumption on β, for a range of value of β, to

see the effect from assuming an incorrect discount factor and also to compare with our closed-form

estimator when the true discount factor is known. We compute each estimator with an Idn and Opt

weighting matrices. For each sample size N = 1000, 10000, 100000, using 1000 simulations. For the

sake of space we only report the mean and standard deviation and the mean squared error (as these

estimators are regular parametric estimators). Table 1 and Table 2 give the results for F and β

respectively.

[Tables 1 and 2 about here]

7 Concluding Remarks

We show components of the payoff functions that can be interpreted as switching costs can be

identified under weaker conditions than previously. Our identification strategy for the switching costs

can also be applied to different setups, such as games with absorbing states (such as permanent exits)

as well as switching costs from further periods into the past. When other components of the payoff

functions can be identified independently elsewhere, the discount factor can also be identified. Our

identification strategy also suggests a new way to estimate games, nonparametrically or otherwise,

with attractive features that mimic the identification results.

Our results also immediately accommodate more general models with unobserved heterogeneity

as long as the choice and transition probabilities can be nonparametrically identified (Kasahara and

Shimotsu (2009)). And we expect the idea behind our identification results to be valid more generally

when the observed state variables contains continuously distributed variables, by replacing various

matrices with linear operators. However, suffi cient conditions for identification become harder to
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check. Furthermore, the corresponding estimation problem also becomes more complicated as it

involves estimating infinite dimensional parameters (e.g. see Bajari et al. (2009), and Srisuma and

Linton (2012)).

Appendix

Absorbing States

Our strategy to identify switching costs also allows for models with absorbing states. For sim-

plicity consider an entry game such that, if a player (potential entrant or incumbent) chooses to not

enter a market at a particular time period she cannot enter ever after (i.e. model with an absorbing

state). In this case we can simplify the notation slightly, with an abuse of notation, by writing

µi (ait, a−it, xt) = ait · µi (a−it, xt). (We maintain assumptions M1 - M4 and N1 - N2.) Particularly
the value function for a potential entrant becomes,

Vi (x, (0, a−i) , εi) = max


E[µi (a−it, xt) |xt = x,wt = (0, a−i)] + EC (x, (0, a−i)) , if enter

+βE [Vi (xt+1, wt+1, εit+1) |xt = x,wt = (0, a−i) , ait = 1] + εi

0 , if not enter

,

and for an incumbent,

Vi (x, (1, a−i) , εi) = max


E[µi (a−it, xt) |xt = x,wt = (1, a−i)] , if stay in

+βE [Vi (xt+1, wt+1, εit+1) |xt = x,wt = (1, a−i) , ait = 1] + εi

SV (x, (1, a−i)) , if exit

.

The above specification of the value function allows our argument in the main to proceed with no

modification. Particularly, the corresponding Opt decision rule depends on whether the player has

already entered the market. So that, for a potential entrant,

vi (ai, x, (0, a−i)) = E [ait · µi (a−it, xt) |ait = ai, xt = x,wt = (0, a−i)] + ait · EC (x, (0, a−i))

+βE [m̃i (ait, a−it, xt) |ait = ai, xt = x,wt = (0, a−i)] ,

and analogously for the incumbent,

vi (ai, x, (1, a−i)) = E [ait · µi (a−it, xt) |ait = ai, xt = x,wt = (1, a−i)]− (1− ait) · SV (x, (1, a−i))

+βE [m̃i (ait, a−it, xt) |ait = ai, xt = x,wt = (1, a−i)] ,

where, in both cases, m̃i is defined as previously (see Section 4.1). So that

∆vi (x, (0, a−i)) = E [µi (a−it, xt) |xt = x,wt = (0, a−i)] + EC (x, (0, a−i))

+βE [∆m̃i (a−it, xt) |xt = x,wt = (0, a−i)] .
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Analogously, for an incumbent

∆vi (x, (1, a−i)) = E [µi (a−it, xt) |xt = x,wt = (1, a−i)]− SV (x, (0, a−i))

+βE [∆m̃i (a−it, xt) |xt = x,wt = (1, a−i)] .

Therefore we can define λi (a−i, x) = µi (a−i, x)+β∆m̃i (a−i, x), then vectorize, and form an identical

equation (17) in Example 4.
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