
Decentralization of a Machine: Some Definitions

Pradeep Dubey∗

9 February 2015

Abstract

We define some notions of the decentralization of a deterministic input-
output machine. This opens the possibility for introducing game-theoretic
elements —such as strategic players – inside the machine, as part of its design.
Key Words: input-output machine, informational complexity, decentral-

ization, strategic players.

1 Introduction

A key feature of “decentralization” is that a complex system can be broken into
smaller constituents, each of which functions on the basis of information that is much
more limited than the total information prevalent in the system. Thus decentral-
ization is particularly useful when information is costly to disseminate or assimilate.
A prominent example (see, e.g., [1]) is that of a free market economy, where each
agent simply optimizes against prices, ignoring all his competitors; and yet an effi -
cient trade is achieved collectively in equilibrium. Another example (see, e.g., [2])
involves “local economic networks” in which each individual interacts with a small
set of neighbors, oblivious of the rest of the participants, but the ramifications of his
actions can be felt throughout the system.
The purpose of this note is to explore the possibility of decentralization, not in a

traditional economic context, but in the design of “machines”. We restrict attention
to a machine f which maps finitely many inputs to outputs. A design for f consists
of smaller machines α arranged in a hierarchy. Each α receives as input the outputs
produced by a subset of machines lower down in the hierarchy. Based upon its

∗Stony Brook Center for Game Theory; and Cowles Foundation for Research in Economics, Yale
University

1

input, α in turn decides what output to produce, and which machines higher up in
the hierarchy to transmit the output to. The design must, of course, implement f in
the following sense: for every initial input sent into the bottom level of the hierarchy,
the output at the top level is in accordance with f. Given any design, we consider
the costs of internal communication between its machines, as well as their operating
costs. An appropriate decentralization of the machine f is a design that minimizes
total cost among all designs that can implement f.
We also point out how certain designs can have game-theoretic structures em-

bedded in them.

2 The Design of a Machine

We restrict attention to a deterministic input-output machine.
A sequence of 0′s and 1′s will be called a 01-sequence, for short. W.l.o.g.1 the

inputs and outputs can be taken to be 01-sequences of length n. Denoting the set of
such sequences by Seq = {0, 1}n , the machine is specified by a function

f : D −→ Seq

on a domainD ⊂ Seq; which decomposes into its component functions, or elementary
machines

fi : D −→ {0, 1}
for 1 ≤ i ≤ n.
Our aim is to build up the machine f using smaller elementary machines α.

Each such α receives a 0 or a 1 from some subset of its predecessors, by way of
input. Conditional on its input, α decides whether to produce 0 or 1 as output;
and, furthermore, it decides which of its successors to transmit the output to. Thus,
looking back from α, the input of α can be 01-sequences of different lengths, indexed
by the subset of α’s predecessors that transmitted their outputs to α.
To be more explicit, consider nonempty, disjoint, finite sets Nt in “time periods”2

t ∈ Γ = {1, . . . , T}. The initial set N1 = {η1, . . . , ηn} and the terminal set NT =
{τ1, . . . , τn} are both of size n.. For 2 ≤ t ≤ T − 1, the intermediate sets Nt can be
of arbitrary size.
There is a directed graph G on the node set N = N1 ∪ . . . ∪ NT . If (α, β) is a

directed edge from α ∈ Nl to β ∈ Nt, we require l < t; i.e, the arrow of time points

1See remarks 5 and 6
2“Time”is just a metaphor for arranging machines in layers that are totally ordered.

2

forward. For any node α, denote its predecessor set by

Pα = {β : (β, α) ∈ G}

and its successor set by
Sα = {β : (α, β) ∈ G}

Clearly Pα is empty for α ∈ N1; and Sα is empty for α ∈ NT . Furthermore Pα
may be empty for some α ∈ NT . For each intermediate node α ∈ N2 ∪ . . . ∪ NT−1,
we require both Pα and Sα to be nonempty.

Notation 1 N = N1 ∪ . . . ∪NT and N− = N2 ∪ . . . ∪NT

Each element α ∈ N− corresponds to an elementary machine. Elements of N1, in
contrast, are “dummy”machines and will play the special role of “initializing”, or
starting off, the computational process.
As was said, an input ν of α ∈ N− consists of 0′s and 1′s indexed by the subset

V ⊂ Pα of α’s predecessors, from whence they came. Based upon ν, the elementary
machine α first produces an output of 0 or 1; and then transmits this output to a
subset W (ν) ⊂ Sα of its successors

Notation 2 .For any nonempty finite set A, let SeqA denote the set of all 01-
sequences whose elements are indexed by A (i.e., SeqA is the set of all maps from
A to {0, 1}); and when A is the empty set, SeqA denotes a singleton set, consisting
of the “empty sequence”∅ which signifies the absence of any input. Also denote
S(A) = ∪{SeqB : B ⊂ A} .

Given s = (s1, . . . , sn) ∈ D, the output of all α ∈ N is determined recursively as
follows. First, the output of ηi ∈ N1 is defined to be the component si of s ∈ D. Next,
suppose the output of every β ∈ ∪{Nl : 1 ≤ l ≤ t} has been determined. Consider
α ∈ Nt+1. Define Dα ⊂ S(Pα) to be the set of 01-sequences, including possibly the
empty sequence ∅, that can be received by α from Pα as we vary over all s ∈ D.
The output of α is determined from its input in accordance with a given function,
or program,

πα : Dα −→ {0, 1} ;

and, for v ∈ Dα, the output πα(v) is sent out to successor machines ϕα(v) ⊂ Sα in
accordance with a given transmission rule

ϕα : Dα −→ Pow(Sα)

3

where Pow(Sα) denotes the power set of Sα. If β ∈ Sα�ϕα(v), then it is understood
that the empty sequence ∅ has come to β from α, without incurring any cost of
transmission (i.e., without rendering the edge (α, β) “active” in the graph G. In
particular, if ϕα(v) is the empty set, then every β ∈ Sα gets ∅ from α at no cost
when α′s input happens to be ν.
We assume that Sα = ∪{ϕα(v) : v ∈ Dα} to rule out irrelevant elements from Sα.

Definition 3 N =
{
G, {πα, ϕα}α∈G

}
is called a design. We say that N implements

f if
fi(s) = output of τi

for every s = (s1, . . . , sn) ∈ D and τi ∈ NT .

3 Informational Complexity

3.1 Fixed Costs

The edges of G correspond to routes for transmitting information inside the design
N =

{
G, {πα, ϕα}α∈G

}
. Assuming that each route costs one unit of a “red”currency

to build, the (red) fixed cost of the design is given by

cF (N) = # of edges of G

Notice that, for any node α in G,

of edges of G leading into α = cardinality of Pα

is a measure of the extent of information Iα that is needed (as s varies over D) by α
in order to execute its program πα. By summing Iα over all the elementary machines
α, we get cF (N). Thus cF (N) represents the (fixed costs) informational complexity
of N ; and the smaller cF (N) is, the more decentralized N may be thought to be.
This leads us to define

κF (f) = min {cF (N) : the design N implements f}

For any given integer l, it would be interesting to catalogue machines f of informa-
tional complexity l, along with an accompanying design N that achieves κF (f) = l..

4

3.2 Variable Costs

After the fixed cost has been incurred to set up a design N =
{
G, {πα, ϕα}α∈G

}
to

implement f , there is a variable cost of operating N . Suppose it costs one unit of
a “blue”currency to transmit an “information bit”from one machine to another in
N ., i.e., to send output 1 or 0 from α to β via the directed edge (α, β) ∈ G. For ease
of notation, suppose further that all inputs s ∈ D arrive at N (i.e., at the initial
nodes N1 in N) with the same frequency3.
For any s ∈ D, let σs(G) denote the number of edges in G that are rendered active

when the initial input s ∈ D is fed intoN . The (blue) variable cost of communication
in N is then

cV (N) =
∑
s∈D

σs(G)

We shall refer to the pair cF (N), cV (N) as the full informational complexity of
N .

4 Programming Complexity

Fix a design N =
{
G, {πα, ϕα}α∈G

}
that implements f : D −→ Seq. For any initial

input s ∈ D into; N , denote by sα ∈ Dα the input that is received by α. Let us
think of an “algorithm”Γα for πα which inspects sα ∈ Dα term by term (according
to some rule intrinsic to Γα) and determines πα(sα) in βΓα(sα) inspections. (If sα
is the empty sequence ∅, then βΓα(sα) is taken to be 0, since the output πα(∅) is
predetermined independent of the initial input s, and so requires zero inspections of
s.) From our point of view, the algorithm for πα is completely characterized by the
integers {βΓα(sα) : s ∈ D} . We may therefore assume that there is a finite set Tα of
algorithms (reflecting the current state of knowledge) for πα from which to choose.in
the minimization problem displayed below.
The programming complexity (or, “green cost”) of the design N is given by (as-

suming again, for simplicity, that all s ∈ D are equally likely)

cp(N) = min

{∑
α∈G

∑
s∈D

βΓα(sα) : Γα ∈ Tα

}

It is worth noting that the minimizer in the above display will choose for πα not
an algorithm that does best in the worst case on Dα, but rather on average, putting

3Otherwise, consider cV (A) =
∑
s∈D

πsσs(G) where πs is the probability of the occurence of s.

5

more weight on those sequences sα in Dα that occur frequently as inputs at α when
s varies over D. Also note that cP is in the spirit of a variable cost.
One might ask how to define an analogue of fixed (or, set-up) costs for programs.

We are just being speculative, but here it would seem necessary to take into account
the fact that one might be able to go from one program πα to another π′α by a
modification costing m “yellow”dollars; so that if πα cost k such dollars to set up,
then one can set up both πα and π′α for k+m of those dollars. Thus the partial order
in which the programs are set up will be relevant to the total fixed cost of setting up
all the programs. However we do not have any clear ideas regarding the fundamental
cost or effort of setting up a program and leave this issue for future consideration.

5 Decentralization of a Machine

For non-negative numbers (weights) x, y, z with x + y + z = 1, define the combined
complexity (cost) of N by

c(N) = xcF (N) + ycV (N) + zcP (N)

Definition 4 For any given c, the complexity of a machine f is

κ(f) = min {c(N) : the design N implements f} ;

and the concommitant decentralization of f is a design which achieves the minimum
in the above display.

To check that the definition of complexity makes sense, and that the minimum
is achieved by at least one design, it suffi ces to display a design that implements f.
But this is obvious. Let there be just two time periods, so that

N = N1 ∪N2 = {η1, . . . , ηn} ∪ {τ1, . . . , τn}

Let G consist of all n2 edges (ηi, τj), where 1 ≤ i ≤ n and 1 ≤ j ≤ n; further let
πηj = fj and ϕηj(v) = N2.

6 Remarks

Remark 5 In place of {0, 1} , one may consider an arbitrary finite set S of symbols.
The entire foregoing (and, forthcoming) discussion holds mutatis mutandis. The
machine is now given by f : D −→ Sn where D ⊂ Sn; and S(Pα) means the set of
sequences in S indexed by elements of subsets of Pα; and each πα maps the relevant
domain Dα ⊂ S(Pα) into S.

6

Remark 6 Any machine M which maps a finite set of inputs into outputs can be
put into the format f : D −→ Seq for some D ⊂ Seq by coding, i.e, a one-to-one
map of the inputs and outputs into 01- sequences of suitable length n. Many different
functions f can now represent M , depending on the coding. Thus it makes sense to
define κX(M) = min {κX(f) : f represents M}; this also defines “optimal”coding.

Remark 7 It would be interesting to explore the connection between the algebraic
structure of f and the geometrical structure of its decentralized design(s).

Remark 8 If an output of α ∈ Nl is transmitted to β ∈ Nt for some t > l, one
might argue that the output has to be put in storage for fot t− l periods (at α or at
β or between the two). In this case storage costs, which we have ignored, might have
to be factored into the total cost.

Remark 9 Our notion of informational complexity is based on the worst case sce-
nario, since we try to implement f(s) for all s ∈ D. We could instead consider
approximate implementation, e.g., for 95% of the sequences in D. This might reduce
the complexity by a huge amount by getting rid of the few bad elements which were
very costly to handle.

Remark 10 There is no immediate tension between informational complexity and
programming complexity. Indeed as informational complexity reduces, the length of
inputs will fall for several Dα, which in turn will tend to make the programs πα less
complex. Inspite of this apparent complementarity, there may be trade-offs between
the two complexities. We leave this for future inquiry.

7 Game-theoretic Design

Suppose ϕα(v) = Sα for all v and consider the general context of remark 5. Each
elementary machine α in a design may be regarded as a “player” in a game who
is choosing a best reply to the actions of its rivals in Pα that it receives by way of
input. If two elementary machines α and β are identical (possibly after a relabeling of
strategies and players), then α and β may be regarded as the same player, provided
πα and πβ are both derivable from the same “payoff function”. Thus introducing
players into an design N places considerable structure on N . From the perspective
of this paper, there is no game given apriori, but only the machine f . We are at
liberty to invent players, along with their strategies and payoff functions – indeed to
invent the whole game – provided it leads to an effi cacious design for implementing

7

f . It is evident that many kinds of game-theoretic structures fit into what we have
called “design.”For instance, consider a finite normal form game. Given an n-tuple
of (pure) strategies, let each of the n players make a best reply to the n-tuple. This
yields a new n -tuple. Iterate the procedure k times. This conforms to a design.
In fact we could allow differential time lags of information, some players becoming
aware of their rivals’revisions earlier than others, or even each player observing his
different rivals with varying time lags. This ,too, is a design.
One might wonder which kinds of machines f are amenable to game-theoretic

designs, but this is a topic for future exploration.

References

[1] Debreu, G. (1959). Theory of Value. Yale University Press.

[2] Jackson, M.O. (2010). Social and Economic Networks. Princeton University
Press.

8

