

State of the Technology

On-site wastewater treatment (OWTS)

Harold W. Walker, Ph.D., P.E. NYS Center for Clean Water Technology

Josefin Hirst, P.E. and Stephen Cluff, P.E. Hazen and Sawyer

Objectives

 Provide an overview of existing technology options for nitrogen removal from on-site systems

Nacok

- Identify knowledge gaps and opportunities
- Rank technology to prioritize R&D efforts
- Summary of CCWT efforts

Methodology

- Reviewed manufacturer information, research literature, past technology reviews
- Met with practitioners, researchers in the field, other stakeholders
- Engaged Hazen and Sawyer to compile existing information and develop a technology assessment

Hazen

Technology Assessment for New York State Center for Clean Water Technology Final Report

May 17 2016

Conventional OWTS in Suffolk County

 Basic treatment for single-family homes (1972 standards) consist of septic tank and precast leaching pools

Source: http://104cliffroadeast.com/?page_id=955

Innovative/Advanced OWTS

Alternative and innovative systems add a component between the septic tank and drainfield.

Source: http://104cliffroadeast.com/?page_id=955

Onsite nitrogen reduction technologies

Single Sludge BNR: single reactor carries out nitrification & denitrification

Nitrified Effluent Recycle

Two sludge, two-stage BNR

Process: Two separate bacteria populations for nitrification and denitrification, requires electron donor from external source for denitrification

Biological process summary

Process	Single Sludge Sequential BNR	Single Sludge with Preanoxic Nitrified Effluent Recycle BNR	Two Sludge, Two-Stage BNR
Electron Donor	Organic carbon from bacterial cells	Organic carbon from influent wastewater	External electron donor (Organic carbon; Lignocellulose; Sulfur; Iron, Other)
Typical N Reductions	40 to 65%	45 to 75%	70 – 96%
Typical Technologies	 Extended aeration Pulse aeration Porous media biofilters Sequencing batch reactors Membrane bioreactor 	 Extended aeration with recycle back to septic tank Recirculating media biofilters with recycle back to septic tank Moving bed bioreactor 	 Nitrification followed by: Heterotrophic suspended growth denite Heterotrophic porous media fixed film denite Autotrophic porous media fixed film denite
Phase I - Suffolk Co. Demo Program	 Norweco Singulair TNT Busse 	 Norweco Hydro- Kinetic Hydro-Action AdvanTex AX 20 and AX-RT 	 CCWT pilot at MASSTC CCWT Phase II Suffolk County Demo Program

Future possibility, deammonification process

1/2 mol Nitrite (NO₂--N) nitritation 37.5% O₂ /2 mol Nitrogen gas (N₂) mol Ammonia (NH₃-N) & Small amount of Nitrate **Process:** Conversion of ~50% of the NH, NH,[†] influent ammonia into nitrite Nitritation NO₂. by ammonia oxidizing AOB bacteria using nitritation, Anammox followed by the Aerobic Simultaneous simultaneous removal of in biofilm Anoxic Media Conceptual Model of ammonia and nitrite by **Biofilm on Carrier** Source: Hazen (2016) anammox bacteria Cons: No OWTS experience Pros: Performance Lower energy use reliability FAR BEYOND

Soil, plant and wetland processes

Soil, plant and wetland processes - soil treatment unit (STU)

Pros: OWTS Experience Simple operation Lower energy use

<u>Cons:</u> Performance Footprint

Nitrogen removing biofilter (NRB)

-iniore

Total N, <10 mg/L

Process: Engineered media layers for nitrification and denitrification using external source for electron donor Pros: Performance Footprint Simple operation Lower energy

<u>Cons:</u> Experience Construction complexity

Constructed wetlands

Physical/chemical processes

Membrane bioreactors

<u>Pros:</u> Versatile Small footprint <u>Cons:</u> Fouling High energy use Membrane cost

Microbial fuel cells

Process: Application of an electrical potential between two electrodes causes an electric current to pass through the solution, which in turn causes a migration of cations toward the negative electrode and a migration of anions toward the positive electrode. lonic components are separated through the use of semipermeable ion-selective membranes.

Source separation

Urine separating toilets

Source: http://richearthinstitute.org

Domestic Wastewater: Domestic Wastewater: Nitrogen Load Volumetric Flow Urine = Urine = 1% 75% Aeration/Stripping **Direct Application** Sorption & Ion Exchange Precipitation Stripping Urine Air Unit Air, ammonia Sulfuric Absorber acid Unit fill reactor add magnesundry open valve & Air, ammonium sulfate filter struvite with urine sium & stir struvite Source: http://richearthinstitute.org Source: www.sswm.info Source: https://dspace.library.colostate.edu Nitrification & Electrolysis & **Membrane Filtration** Distillation **Microbial Fuel Cells** NO_3 NO₂ NH₃ NH Urea Microbial Fuel Cell Source: www.eawag.ch Source: www.rsc.org

Urine disposal options

Source: www.npr.org

Source: www.mdpi.com

Nitrogen Reduction Technology Ranking Assessment

 A simple numerical ranking system was developed to prioritize available nitrogen reduction systems based on twelve selected criteria

Effluent nitrogen concentration	Restoration of performance	
Performance consistency	Operation complexity	
Construction cost	Energy requirement	
CBOD/TSS effluent concentration	Construction complexity	
Mechanical reliability	Local resources	
Land area required	Climate resiliency	

• A weighting factor was applied to each criterion based on the results of a Technology Weighting Factor Workshop

Nitrogen reduction biological technology ranking summary

 Top ranked single sludge BNR = rotating biological contactor
 Effluent Dispersal

Source: www.klar-environnement.com

Top ranked two sludge, two-stage BNR

Septic tank

Nitrogen reduction soil, plant and wetland processes technology ranking summary

Top ranked = nitrogen removing biofilter (NRB)

Urine source separation approaches ranking summary

Source: www.no-mixtoilets.com

Source: http://richearthinstitute.org

Source: www.npr.org Direct land application

Transport to WWTF

	Natural Systems	Biological	Physical/ Chemical	Source Separation
Promising systems	Passive NRBs	Two sludge, two- stage BNR	Membrane bioreactor technology	Urine recovery
Opportunities	 low cost effective PRBs and wetlands 	 Effective media replacement novel pathways 	 novel materials resource recovery Novel pathways 	• resource recovery
Knowledge gaps	 media longevity, replacement design PPCPs 	 media longevity PPCPs design 	foulinglongevitynitrogen removal	 public acceptance beneficial use PPCPs
CCWT efforts	 white paper pilot-testing design guidance 	 white paper pilot-testing design guidance 	 cellulose MBR novel materials 	 Planning stage