

Treatment Of Poly- and Perfluoroalkyl Substances: Feasibility and Challenges

Arjun K. Venkatesan, Ph.D.

Associate Director for Drinking Water Initiatives NYS Center for Clean Water Technology

> Clean Water Symposium June 17, 2022

Program to Address Contaminants of Emerging Concern

- 1,4-Dioxane, PFAS, PPCPs: Occurrence, fate and transport
- Develop and test treatment technologies
- Transformation of chemicals during water treatment
- Assess toxicity of chemicals and byproducts

Mass spectrometry

Flow-through systems

Widespread PFAS Occurrence in U.S.

Source: https://www.ewg.org/interactive-maps/pfas_contamination/map/

U.S. PFAS water regulations

- New U.S. EPA health advisory level (non-enforceable and non-regulatory): 4 parts per <u>quadrillion</u> for PFOA (0.004 ppt) and 20 ppq for PFOS (0.020 ppt).
- Two other PFAS: GenX 10 ppt; PFBS 2,000 ppt

NYS: 10 ng/L of PFOA and PFOS Other PFAS under consideration by NYS: PFNA, PFHpA, PFHxS, PFHxA, PFPeA, PFBA, and PFBS

Establish standards and guidance values for PFAS

Use old EPA health advisory (70 ppt)

PFAS treatment technologies: a summary

Treatment Type	Technology Category	Technology	HIGH COST
Sequestration Technologies	Sorption Membrane Filtration	Activated Carbon Anion Exchange Resin Biochar Zeolites/clay minerals Reverse Osmosis Nanofiltration	Ozone Electrochemical Nanofiltration (NF) Plasma COMPETITIVE Plasma Plasma COMPETITIVE EFFICACY Photo-Catalytic COMPETITIVE Photo-Catalytic In Echnologies In Exchange (X)
	Coagulation	Specialty Coagulants	ME/UF
Transformation or destruction technologies	Redox treatment	Electrochemical Electron beam Ozone	Biological Filtration Chlorine LOW COST Granular Activated Carbon (GAC)
	Other	Plasma Sonochemical Thermal Biological	MATURE TECHNOLOGIES EMERGING TECHNOLOGIES Neffective TECHNOLOGIES

1. Granular Activated Carbon (GAC)

Most common approach for PFAS treatment

Sorption Mechanism:

- Hydrophobic interactions dominant mechanism
- Long-chain PFAS with higher hydrophobicity show better removal compared to short-chain PFAS
- Electrostatic interactions minor but important for short-chain PFAS

Granular mean particle diameter (1mm) Powdered mean particle diameter (0.043 mm)

Perfluorooctanesulfonic acid (PFOS) (C8)

Yu et al, 2009

How can we improve GAC performance for hydrophilic PFASs?

- Modify GAC surface introduce more positive functional groups
- Hydrophobic ion pairing (HIB)

Rapid Small Scale Column Tests

Zhang et al., In Preparation

2. Foam fractionation (air bubbling) to remove PFAS

Schichtenberg et al., 2020

Sha et al., 2021

National Synchrotron Light Source II at BNL (Dr. Ben Ocko)

(Ebersbach et al., 2016)

PFAS air-bubbling experiment

Lee et al., In Preparation

Effect of cationic modifiers/additives

1 mg/L CTAC + 0.01 M salt

Lee et al., In Preparation

3. Treatment of PFAS using e-beam

- E-beam : Advanced <u>Oxidation/Reduction</u> process
- Generates reactive species such as H⁺_{aq}, e_{aq}- and OH[·] amongst others
- Collaboration with FermiLab to treat PFAS and 1,4-dioxane

$H_2O \longrightarrow H_2O^* \longrightarrow H + OH$				
\rightarrow H ₂ O ⁺ + e ⁻				
$e^- \longrightarrow e^{th} + n H_2 O \longrightarrow e^{aq}$ (solvated electron)				
$H_2O^+ + H_2O \longrightarrow H_3O^+(H^+_{aq}) + OH$				
$e_{aq}^{-} + OH \longrightarrow OH_{aq}$				
$e_{aq} + H_{aq}^+ \longrightarrow H$				
Primary products of water radiolysis :				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$1 \text{ kGy} = 6.344 \text{ x} 10^{-4} \text{ mol.dm}^{-3} (e_{aq}^{-} + \text{H} + \text{OH})$				
G-value = number of produced or decomposed Molecules per 100 eV absorbed energy				
For conversion into SI-units multiply the G-values by 0.10364 to obtain $G(x)$ in μ mol.J ⁻¹				

Source : Getoff, 2002

Accelerator Applications Development and Demonstration (A2D2) at FermiLab

Degradation of PFASs

Londhe et al., In Preparation.

Science

Incomplete Mass balance – A Challenge

- No fluoride was detected
- TOP assay of treated samples did not reveal oxidizable transformation products
- Polyfluorinated compounds and/or volatiles
- Non target screening can provide more insight into degradation mechanism

Londhe et al., In Preparation.

Ongoing Work and Next Steps

- Other technologies: electrochemical oxidation, ion exchange treatment, functionalized bio-adsorbents, enhanced coagulation
- Pilot testing: GAC, foam fractionation
- Mechanism of PFAS removal, degradation, and transformation products
- Toxicity of PFASs

Take homes

- Sequestration approaches are effective in the treatment of most PFASs
- Sequestration approaches do not degrade PFAS
 - Concentrated PFAS waste stream is created
- Destructive approaches are in development stages and more research is needed
- Short-chain compounds are difficult to treat
- Critical challenge: inability to close the PFAS mass balance
 - Production of unknown transformation products
 - How toxic are these products?
- Treatment train combining sequestration and destructive approaches are needed to remove and destroy PFAS

Acknowledgment

- NYS Center for Clean Water Technology Team
- Dr. Benjamin Hsiao (SBU), Dr. Ben Ocko (BNL) •
- Dr. Charles Cooper, Dr. Slavica Grdanovska ۲ (Fermilab)
- Dr. Scott Alderman, Dr. Roger Sokol (NY DOH) \bullet
- USEPA, Brookhaven National Lab, Industry Partners

