

Cellulose Membrane Technology for Water Purification

A Breakthrough Innovation

Benjamin S. Hsiao Distinguished Professor Chemistry Department

FAR BEYOND

Classification of Membrane Filtration

Conventional Water Filtration Membranes (since 70's)

FAR BEYOND

Fiber Diameter and Pore Size in Non-woven Membranes

Fiber diameter ratio: 1 : 3 : 10; Porosity: 80 %

Smaller fiber diameter, smaller effective pore size

H. Y. Ma, C. Burger, B. S. Hsiao, B. Chu. J. Mater. Chem., 21(21), 7507 - 7510 (2011)

Hierarchical Structure of Plant Cellulose

Plant

New Concept: Nanofibrous Membranes with Hierarchical Fiber Diameters

~10 µm diameter fiber

0.02-1 µm thick 5 nm fiber diameter

1 µm

20 µm

FAR

Preparation of Cellulose Nanofibers

Carboxylate groups (negatively charges and chelation): 0.70 mmol/(g cellulose) Aldehyde groups (chemical reactivity): 0.25 mmol/(g cellulose) BEYOND 7 *Hydroxyl groups (chemical reactivity):* 2.0 mmol/(g cellulose)

Stony Brook University

FAR

BEYOND

Waterborne Diseases Caused by Bacteria, Viruses and Heavy Metals

http://www.hyfluxmembranes.com/ http://en.wikipedia.org/wiki/ * Stony Brook University

REYONI

Cellulose Nanofibers MF Membrane for Removal of E. Coli by Size Exclusion

A. Sato, R. Wang, H. Y. Ma, B. S. Hsiao, B. Chu, J. Electron Microsc., 60, 201-209 (2011)

* Stony Brook University

Cellulose Nanofibers MF Membrane for Removal of Virus and Toxic Metal by Adsorption

FAR BEYOND

H. Y. Ma, B. S. Hsiao, B. Chu, ACS Macro Lett., 1, 213-216 (2012)

www.liquico.com

Nanofibrous UF Membranes

- Permeation flux of nanofibrous UF membrane can be 10 X higher than conventional UF membranes (at the same rejection ratio) due to higher porosity (80%) of non-wovens
- Cellulose nanofibers barrier layer is anti-fouling and more chemical resistant

Stony Brook University

Nanofibrous NF/RO Membranes

The nanocomposite barrier layer (cellulose nanofibers + polyamide matrix)

- is stronger than the conventional barrier layer
- introduces "directed water channels" to increase the flux by 2-5 X for RO desalination

5 nm fiber diameter nanocomposite top layer

2 µm

150 nm fiber diameter nanofibrous scaffold

10 μm fiber diameter non-woven support

5 nm fiber diameter nanocomposite top layer:

with hydrophilic coating, directed water channels (blue), water micropores in matrix (blue).

> Increase water throughput, increase mechanical strength, reduce clogging.

Sources of Cellulose in Nature

- Higher plants (fibers, parenchyma etc.)
- Seaweeds (Valonia, etc.)
- Animals (Tunicates, Salpae etc.)
- Bacteria (Acetobacter, etc.)
- Fungi (Saprolegnia, etc.)
- Amoebae (Dictyostelium, etc.)

Our Goal

Sustainable membrane fabrication (MF, UF, NF RO, and <u>MBR</u>) using nanocelluloses from diverse biomass sources to treat a wide range of water problems.

15