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Machine learning approaches 
for intentional materials engineering
Yu‑chen Karen Chen‑Wiegart,*  Norbert Huber,  and Kevin G. Yager 

The development of nanoporous metals and metallic composites through dealloying 
processes presents significant opportunities in materials engineering. However, designing 
multicomponent precursor alloys and establishing corresponding processing methods 
that yield predictable compositions and nanostructures remain a complex challenge. This 
article explores how machine learning (ML)-augmented computational and experimental 
methodologies can tackle these challenges by predicting precursor alloy compositions, final 
nanoporous structures, and mechanical properties, while integrating ML-enabled autonomous 
experimentation for material design and quantification. We highlight recent advancements in 
applying ML to nanostructured materials design via dealloying and discuss how techniques 
from other nanomaterial designs can be adapted for improved control over morphological 
and compositional outcomes in nanoporous and nanocomposite materials. Furthermore, we 
explore the role of ML in autonomous synchrotron x-ray experimentation, enabling real-time 
feedback between modeling and experimental setups. ML-driven approaches to microstructure 
characterization and mechanical property prediction are also examined, with a focus on 
modeling and advanced imaging techniques such as three-dimensional nanotomography. 
Finally, this article outlines future directions for ML-enhanced materials science, emphasizing 
the exploration of high-dimensional parameter spaces and the incorporation of materials 
kinetics into processing and property evaluation, ultimately advancing the design of 
nanoporous structures and materials science.

Introduction
Dealloying, as a phenomenon, refers to the selective dissolu-
tion of one or more components from an alloy.1–3 In mod-
ern times, it has been reinvented as an innovative processing 
method to create nanoporous metals and metallic nanocom-
posites for a wide range of applications, including catalysis, 
sensors, actuators, batteries, fuel cells, and separation materi-
als.4–9 More specific applications, such as surface-enhanced 
Raman  scattering10,11 and radiation shielding,12 have also been 
demonstrated. This is because the remaining component can 
self-organize into a connected network, forming an intricate, 
so-called “bicontinuous” nanostructure.

The term “bicontinuous” refers to two phases, each forming 
a continuous network, while the two phases are interlocking, 
as shown in Figure 1a. For nanoporous metals, these phases 
are the metal ligaments and pores, whereas for metallic nano-
composites, they consist of two different metals or alloys. 
Nanoporous metals can also be further infiltrated to create a 

broader range of composites for applications, such as artifi-
cial bones.13,14 To initiate the selective dissolution process, a 
variety of solvents can be used, including aqueous solutions, 
ionic liquids, molten metals, molten salts, organic electrolytes, 
and solid metals, provided there is a driving force to remove 
one of the components from the precursor alloy.15–17 For 
nonmetal solvents, the process can be applied under an elec-
trochemical potential, utilizing the differing redox potentials 
of the elements to control the dealloying process.18,19 Vari-
ous types, shapes, and forms can be produced and integrated 
into the dealloying workflow, including three-dimensional 
(3D) printed hierarchical structures, thin films, microcrystal-
line or amorphous alloys, shells, and microspheres.20,21

Despite its potential in materials science and engineering, 
creating nanoporous metals and metallic nanocomposites via 
dealloying has often relied on intuition-driven, “trial-and-
error” discovery processes. To overcome these challenges, 
machine learning (ML)-augmented data-driven approaches 
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can be applied throughout the materials design, processing, 
and characterization cycle. Its potential to revolutionize the 
field is exciting, with impacts including materials discovery, 
property prediction, computational modeling, simulation 
enhancement, and image processing.25

ML-augmented materials discovery has been explored across 
various systems. Generally, ML applications in materials discov-
ery have focused on predicting compositions to achieve target 
properties. Examples include high-entropy alloys, photovoltaic 
materials, thin-film metallic glasses, shape-memory alloys, 
energy-storage materials, and catalysts.26–31 Promising devel-
opments in processing optimization have also emerged, such as 
ML for chemical vapor deposition of thin films,32 nanoparticle 
synthesis control,33 3D printing structural design,34 and stabil-
ity assessments in solid-state synthesis.35 Text-mined literature 
recipes have shown promise for areas such as battery materials, 
 nanotubes36,37 and metal–organic frameworks synthesis.38,39

This article includes three parts to cover how ML-aug-
mented computational and experimental methods can be 
applied to address challenges in predicting precursor alloy 
compositions, nanoporous structures, and mechanical prop-
erties, while incorporating ML-driven autonomous experi-
mentation for material design and analysis. The first section 
highlights recent progress in applying ML to the design of 
nanostructured materials through dealloying and explores how 
techniques from other nanomaterial designs can be adapted for 
better control of morphology and composition in nanoporous 
and nanocomposite materials. The second section focuses on 
characterization, discussing the role of ML in autonomous 
synchrotron x-ray experimentation, enabling real-time feed-
back between modeling and experiments. The third section 
then expands to understand the structure–property relationship 
where the ML-based approaches for microstructure charac-
terization and mechanical property prediction are reviewed, 
focusing on modeling and advanced imaging techniques 
such as 3D nanotomography. Finally, based on the review 
of these three areas, the article suggests future directions for 
ML-enhanced materials science, emphasizing the exploration 
of high-dimensional parameter spaces and the integration of 
materials kinetics in processing and property assessments, 
advancing the design of nanoporous structures.

Materials discovery and design with dealloying
While a wide range of materials and structures have been cre-
ated through dealloying, along with a growing list of applica-
tions, the design and development of dealloyed nanomaterials 
with bicontinuous structures and their derived architectures 
face similar challenges to those of other complex engineering 
materials. Most of these materials were developed through trial-
and-error approaches, with slow iteration processes to improve 
materials properties. Key challenges include determining stable 
phases during dissolution and phase separation, creating spe-
cific bicontinuous morphologies with designated nanofeatures, 
and designing practical engineering processing protocols. The 

design space is vast, involving a range of engineering parameters 
related to the underlying physical and chemical properties of 
the materials and environmental conditions. On a fundamental 
level, the mechanisms involved are often too complex to be fully 
understood through experiments and computational modeling 
alone, as they involve various forms of mass transport processes 
(long-range and surface diffusion) and chemical/electrochemi-
cal reactions (Figure 1b). The key design concepts in dealloying 
include phase selection, morphology, and processability. These 
complexities, coupled with various types of dealloying processes 
with different dealloying agents, make it challenging to rationally 
design materials created through dealloying.

Recent developments on ML‑augmented materials 
design in dealloying materials
This section focuses primarily on ML-augmented materials 
design and discovery, with relevance to dealloying materials, 
while other related topics will be addressed in subsequent sec-
tions. In the materials design cycle, both forward and reverse 
approaches are being considered. In the forward direction, 
processing creates structure, structure determines properties, 
and properties enable functionality—known as “forward pre-
dictability.” In the reverse, or “designability,” approach, one 
begins with a desired functionality that necessitates specific 
materials properties, structures, and processing methods to 
achieve the design goals. Both directions are challenging, 
typically requiring iterative processes to reach the desired 
outcome.

Specifically in dealloyed materials, data mining and auto-
mated image analysis have been applied to identify coarsening 
mechanisms in nanoporous gold.40 Zhao et al. presented an ML 
framework for predicting dealloying systems, using combinatorial 
thin-film deposition and autonomous synchrotron x-ray diffrac-
tion to explore nanoarchitectured materials; Figure 2c illustrates 
the workflow.24 However, validating these ML models and further 
refining them remain challenging. In follow-up work, Chung et al. 
attempted validation of a newly predicted system through a mul-
timodal synchrotron x-ray characterization;41 the work initially 
aimed to validate the ML model but instead discovered the sig-
nificant role of the oxidation-driven process, which had not been 
considered in prior studies. This finding highlights the importance 
of oxidation in controlling nanoscale phase separation, adding 
a new layer of understanding to dealloying processes and sug-
gesting additional factors for consideration in future ML models. 
Validation challenges, partly due to the complex parameter space, 
including kinetics (e.g., dealloying time and temperature), have 
driven recent efforts such as gradient sample creation via laser 
heating, showing promise in parameter exploration.42

Potential opportunities for developing ML‑related 
methods in dealloying materials

• Incorporating microstructures, morphology, and kinet-
ics in ML-augmented design: Materials discovery and 
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design currently focus on predicting compositions or 
basic forms/shapes. For dealloyed materials, it is essen-
tial to shift toward designing complex 3D microstructures 
with intricate morphology. Considering materials kinet-
ics is equally important, especially for dealloying, where 
phase transformation or dissolution is often kinetically 
controlled. ML models that incorporate specific structural 
features and kinetics can optimize real processing condi-
tions, advancing beyond composition alone to create func-
tional nanomaterials.

• Developing robust models for small data sets: Dealloying 
experiments typically yield small data sets, so ML methods 
that work effectively with limited data are crucial. Given 
the variety of dealloying conditions, ensuring ML models 
perform consistently across different materials and envi-
ronments, such as aqueous solutions, molten metals, and 
amorphous versus crystalline precursors, is key. Addition-
ally, the field would benefit from coherently addressing the 
lack of “failed but useful” experimental data. For instance, 

reporting systems that do not form bicontinuous structures 
during dealloying can still provide valuable insights.

• Enhancing model interpretability: ML models should 
not merely rely on trial-and-error but be designed to enable 
hypothesis-driven autonomous search and decision-mak-
ing. Interpretable ML models that incorporate underlying 
physical and chemical principles are crucial. Techniques 
such as explainable artificial intelligence (XAI) and phys-
ics-informed neural networks (PINNs) could offer deeper 
insights into the physical and chemical processes underpin-
ning material formation.

• Integrating ML-augmented experiments with computa-
tional modeling: Integrated ML frameworks that connect 
experimental data with predictive models are essential, ide-
ally enabling real-time feedback. Such frameworks could 
enhance the ability to design complex materials, such as 
those produced by dealloying, where diverse engineering 
processing conditions and underlying physical and chemi-
cal parameters of materials are involved.

a b

c

Figure 1.  Dealloying concept overview: (a) Dealloyed materials with bicontinuous structures were characterized by transmission electron 
microscopy (left)22 and x-ray nanotomography (right).23 (b) Mechanisms involved, such as long-range diffusion, surface diffusion, and 
chemical/electrochemical reactions, are illustrated using molten salt dealloying as an example. (c) Machine learning-augmented materials 
design for dealloying processes remains in its infancy with great future opportunities.24 Reprinted with permission from References 22, 23. 
© 2008 AIP Publishing; © 2010 AIP Publishing.
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• Synchronizing data utilization across characterization 
platforms for autonomous experiments: Autonomous 
experiments currently operate at various scales. In the future, 
driving autonomous experiments at large-scale facilities 
(e.g., synchrotrons and nano-centers) as well as in individual 
research laboratories could accelerate discovery and manufac-
turing for dealloying materials and beyond. Further discussion 
on autonomous experiments will follow in the next section.

Autonomous experimentation
Autonomous experimentation (AE) is a powerful paradigm 
for accelerating scientific measurements, leveraging artificial 
intelligence (AI)/ML to automate an entire experimental loop, 
notably the decision-making step.44 AE quantitatively acceler-
ates measurements through automation, but more importantly 
it qualitatively changes scientific discovery, by liberating the 
researcher to focus on higher-level scientific thinking, and 
thereby pursuing more challenging scientific problems.44,45

Progress in AE has been rapid. Early work focused on 
optimal experiment design using statistical and applied 
mathematical methods.46–53 Simultaneously, experimental 
methods have seen improvements in combinatorial synthe-
sis  methods54–57 and automated synthesis platforms.58–63 
The merging of advanced experimental control with instru-
ment automation enabled autonomous loops, whereby 
experimental decisions are determined on-the-fly, based 
on the data collected to date. Decisions typically involve 
a combination of sample selection, synthesis/processing 
conditions, measurement to perform, and instrumentation 
parameters.44,45,64,65

The control algorithm is of course crucial to AE. Reinforce-
ment learning approaches that often exploit artificial neural net-
works for modeling,66,67 and Bayesian methods, which provide 
statistical quantification of signals and uncertainties,68 have 
been pursued. Statistical methods offer the advantage of pro-
viding rigorous uncertainty quantification (important for many 

science applications) and making very 
few assumptions (allowing them to be 
used on new problems with minimal 
configuration). On the other hand, ML 
methods pretrained on relevant data can 
be more tuned and thus optimized, at the 
expense of generality. Among Bayesian 
methods, Gaussian process (GP)69,70 
modeling is popular; conceptually, a 
GP model trained on experimental data 
provides a surrogate model that fits and 
interpolates the data while accounting for 
uncertainty, and provides a correspond-
ing uncertainty model. Both the surrogate 
and uncertainty models are valuable in 
autonomous control. In particular, a 
common AE approach is, on every loop, 
to select the region in the search-space 
with the highest model uncertainty. This 
maximizes the rate of knowledge gain. 
Because the GP model and uncertainty 
are recalculated on every loop, this adap-
tively samples the relevant experimental 
space in a way that optimally accounts 
for uncertainty. More sophisticated meth-
ods can also exploit the surrogate model. 
For instance, one can preferentially 
search parts of the space that maximize a 
quantity-of-interest, while balancing this 
“exploitation” optimization with “explo-
ration” searching of the total space. As 
another example, one can use the gradi-
ent of the surrogate model to focus atten-
tion on parts of the parameter space with 
meaningful changes (e.g., boundaries in 
a phase diagram).

a b

c

Figure 2.  Autonomous experimentation: (a) Workflow for an autonomous experiment at an 
x-ray scattering beamline. A combinatorial sample’s (x, y) coordinates are explored by an 
artificial intelligence/machine learning (AI/ML) algorithm. At every position, a small-angle 
x-ray scattering image is collected and analyzed. The algorithm builds a Bayesian model 
of how the selected signal varies over the exploration space, and optimally selects new 
high-value points for measurement. (b) Examples of three new block copolymer nanoscale 
morphologies discovered using this autonomous approach. Adapted with permission from 
Reference 43. (c) ML-driven, iterative workflow for thin-film solid-state metal dealloying: 
From guided selection and combinatorial synthesis, with a photothermal annealing platform 
for gradient heating, to high-throughput characterization and local verification. Reprinted 
with permission from Reference 42. © 2025 Wiley.
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Autonomous experimentation with synchrotron x‑ray 
scattering
Autonomous experimentation has been applied productively 
to synchrotron x-ray scattering.71–75 In x-ray scattering or dif-
fraction, a collimated x-ray beam is directed through a sample 
of interest. The far-field scattering pattern, collected on an area 
detector, provides detailed information about atomic/molecu-
lar scale ordering (for wide-angle scattering) and nano-/mes-
oscale ordering (for small-angle scattering), including size/
shape of entities, packing motifs, unit-cell dimensions, grain 
size, and orientation distribution. The rapid, nondestructive 
measurement of x-ray scattering makes it amenable to a vari-
ety of AE schemes. AE was used for imaging heterogeneous 
materials (e.g., nanoparticle thin films),69,76 wherein the new 
(x, y) imaging coordinate can be selected adaptively; in con-
junction with combinatorial synthesis,43 wherein measure-
ments in the combinatorial space are selected; and to control 
real-time/in situ material processing,75 wherein synthesis/pro-
cessing conditions can be tuned during material formation/
transformation. Figure 2a illustrates the workflow for autono-
mous experiments.

As an instructive example, consider AE exploration of 
self-assembled morphologies in block copolymers. Although 
belonging to a different category of materials, the various 
nanoscale morphologies of block copolymers and their asso-
ciated self-assembly processes could be intriguing cases for 
future AE studies of dealloying, as their morphology not only 
resembles, but also involves a spontaneous self-organizing 
process. Block copolymers are polymer chains where chemi-
cal incompatibility of different chain regions drives toward 
phase separation, which is frustrated by the covalent links of 
the polymer backbone; the result is local phase separation, regu-
lated by chain length and architecture and thus the spontane-
ous formation of a nanoscale morphology.77,78 This ordering 
can be responsive to local  conditions79,80 (so-called directed 
self-assembly), such as chemical templates patterned onto the 
substrate.81,82 In studying blends of different block copolymers, 
Yager et al. discovered unexpected coexistence  phases83,84 
whose ordering was responsive to chemical templates.85 How-
ever, the large number of control parameters, such as polymer 
blend composition, chemical template pitch, and duty cycle, 
makes it challenging to explore this responsive ordering. Noack, 
Doerk et al. used autonomous x-ray scattering to search through 
combinatorial  samples43,69 using a GP control method with a 
succession of objective functions designed to explore broadly, 
then focus on regions with strong scattering intensity, and finally 
focus on regions with unexpected ordering. This process was 
able to rediscover previously known motifs, as well as uncover 
several previously unknown nanoscale morphologies that form 
owing to the local repartitioning of block copolymer chains in 
response to the chemical pattern. This demonstrates the power 
of AE to efficiently explore experimental problems, and to dis-
cover new materials.

AE methods have recently been applied to solid-state metal 
dealloying. Automated crystallographic  classification86 was 

combined with Bayesian  control69 to explore combinatorial 
samples. More recently, a photothermal annealing platform 
was used to create temperature gradients on thin-film samples 
to explore a continuous thermal space, allowing observation 
of dealloying transitions and the resulting nanostructures of 
interest (See Figure 2c).42 Ongoing efforts include combin-
ing autonomous x-ray scattering with GP control with this 
photothermal annealing platform in order to study metal 
dealloying processes in real time during thermal annealing; 
wherein the AE algorithm selects temperatures for study, 
within a steady-state thermal gradient, during the anneal-
ing. The parameter spaces for metal dealloying, high-entropy 
alloys,87 and other multicomponent inorganic systems are ideal 
candidates for study by AE, as the associated combinatorial 
spaces are too vast to explore using exhaustive searches or 
other naive exploration methods. The simultaneous evolu-
tion of phases and nanoscale morphology in these systems 
also makes them particularly compelling cases to study using 
a combination of wide-angle x-ray scattering (WAXS) and 
small-angle x-ray scattering (SAXS). WAXS, with its sensitiv-
ity to different phases through crystalline structure identifica-
tion, complements SAXS, which can probe distinct nanoscale 
morphologies.

Autonomous experimentations for dealloying 
materials and beyond
An interesting avenue for future AE studies is to develop 
“interdisciplinary learning” schemes, wherein a model trained 
on one class of materials is used to direct experiments in a dif-
ferent class of materials. This is most obviously useful among 
closely related materials, for example, the GP parameter-
space modeling performed for one set of alloys is likely to be 
a reasonable prior when beginning studies of a new class of 
alloys (e.g., with partially overlapping compositions). More 
ambitiously, one can imagine performing transfer learning 
across disparate classes of materials that exhibit some kind 
of analogies. Famously, Pierre-Gilles de Gennes was able to 
make progress in soft material physics by drawing rigorous 
analogies to alignment of magnetic domains.88 The deal-
loying process gives rise to a locally phase-separated nano-
morphology, which exhibits some conceptual similarities to 
phase separation in polymer blends and block copolymers, 
as previously discussed, shown in Figure 2b. It would thus be 
exciting to train an ML model on block copolymer ordering, 
and then use it as a prior to guide exploration of dealloying 
problems. Such transfer learning would likely benefit from a 
set of learnable parameters describing the unknown mapping 
between the spaces. In addition to providing a reasonable prior 
to guide initial data collection, such an approach would hold 
the promise of uncovering (were it to exist) deep and quantita-
tive analogies between different domains.

Even more ambitiously, this interdisciplinary learning 
approach would lay the groundwork for integration among the 
studied domains. Continuing our thought experiment, one can 
imagine a hybrid metal/polymer nanomaterial exploiting both 
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dealloying and polymer self-assembly, and thereby exploiting 
multiple aspects of a trained ML model. For instance, allowing 
block copolymer self-assembly to proceed is in line within 
the 3D confinement volume obtained from dealloying (after 
removal of one of the phases) would be an interesting case of 
hierarchical assembly.

The future of autonomous methods for physical science is 
exciting, as both control algorithms and automated platforms 
increase in sophistication. Parallel advancements in generative 
AI, such as the training of large language models (LLMs), could 
soon become integrated into these efforts. While LLMs are often 
thought of as text-generators such as chatbots,89 they can also 
be used as the decision locus for AI agents that execute sophis-
ticated workflows in response to imprecise objectives. Efforts 
to use LLMs for instrument control are already underway.90–92 
These LLMs can also be incorporated into autonomous syn-
thesis and processing laboratories,93 and further coupled with 
the AE of characterization. Overall, AI agents hold enormous 
promise as a higher-level abstraction built on top of existing 
AE instruments,94 allowing researchers to phrase their scientific 
goals more naturally, and relying on the AI to translate this into 
concrete experimental objectives and AE execution plans.

Experimentally informed micromechanical 
modeling of nanoporous metals
ML has been increasingly utilized to support microstruc-
ture characterization and predict mechanical properties.95,96 
A successful ML model typically requires a comprehensive 
understanding of existing knowledge, expertise in translating 
this knowledge into meaningful input features, an effective 
ML architecture, and robust validation of the trained model. 
Despite the rapid growth in publications incorporating ML 
methods in recent years, there is limited literature specifically 
addressing nanoporous metals. Richert and  Huber97 provide an 
overview of deriving structural descriptors from imaging data 
and discuss perspectives for data-driven development of struc-
ture–property relationships. A physics-based ML approach 
with sophisticated feature engineering can incorporate exist-
ing knowledge, enabling reasonable training accuracy even 
with sparse data.

Although commonly used for predicting Young’s modulus 
and strength, the Gibson–Ashby (GA) scaling laws do not 
fully capture the relevant physics of dealloying-made nanop-
orous metals.98 Based on numerical simulations using leveled 
wave structures with varying solid fractions, Soyarslan et al. 
proposed rewriting the GA scaling law as a Roberts–Gar-
boczi scaling law: E∗/EB = C2[

[
φB − φP

B
]/[1− φP

B

]
]m  , 

which showed good agreement with available literature 
data for samples in their initial state before coarsening. 
This approach uses a one-to-one relationship between solid 
fraction ( ϕ ) and scaled genus ( g  ), along with a percolation 
threshold ( φP

B
≃ 0.159 ) at which the structure loses connec-

tivity.99 Samples with ϕ � 0.3 show a decrease in connec-
tivity density at constant solid fraction, which has similar 
impact on the Young’s modulus.100,101 Hence, a more general 

form of the GA scaling law is required (e.g., of the form 
E = Ê0(ϕ)Êc(ζ)).102 This multiplicative decomposition of 
the dependency of Young’s modulus E allows for decou-
pling the effects of solid fraction, modeled by Ê0 , and the 
connectivity represented by Êc(ζ) , providing a more gen-
eral framework. It is in line with a GA scaling law, where 
the leading constant CY = (g/g0)

m depends on the scaled 
genus density. Xiang et al. proposed a g4/3 relationship based 
on strength and Young’s modulus data of dealloyed porous 
 Fe0.80Cr0.20.103 Sohn et al.104 found a g2 scaling law to be 
fundamental for predicting the load-bearing solid fraction 
property based on leveled wave model and finite element 
simulation data. Although all these approaches considered 
a decay in stiffness with ongoing reduction in connectivity 
due to coarsening, it became evident that differences in the 
underlying microstructure lead to different structure–prop-
erty relationships. Detailed statistical analysis revealed dif-
ferences in ligament cross sections and free ligament lengths 
by comparing artificial microstructures and tomography data 
from experiments.105 Therefore, for a predictive ML model, a 
more detailed description and representation of microstruc-
tural details at the local scale are needed, emphasizing the 
importance of high-resolution tomography and reliable seg-
mentation of larger experimental data sets.

Mechanical properties under uniaxial loading 
conditions
Workflows for property prediction using ML are illustrated 
in Figure 3. The starting point is structural data obtained 
from experiments or computer generation. Uncertain-
ties in the segmentation of image data, as discussed else-
where,106 can lead to unacceptable biases in the prediction of 
mechanical properties. To improve segmentation, Sardhara 
et al. presented a convolutional neural network (CNN) to 
reconstruct nanoporous structures from focused ion beam 
(FIB) tomography images using synthetic training data.107 
They produced data similar to experimental images by blur-
ring the synthetic data and adding noise. Additional depth 
information was included to compensate for uncertainty 
by presenting a group of three adjacent slices to the CNN. 
Similar issues arise in subsequent image processing steps, 
depending on the chosen algorithm for ligament thickness 
computation.108 Voxel resolution and the choice of thick-
ness algorithm were found to introduce significant biases.109 
Therefore, ML offers powerful tools for correcting thick-
ness information in postprocessing steps, as demonstrated 
for parabolic-shaped ligaments.109

By integrating existing knowledge through feature engi-
neering in a physics-based approach, an ML model can sig-
nificantly improve its prediction accuracy, robustness, and 
generalization capability. Such models can achieve reliable 
results, also when only a relatively small amount of train-
ing data are available, which is often the case for data sets 
available for nanoporous metals. The key question is whether 
all this information, available in the voxelized structure 
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representation, can be directly used to predict macroscopic 
stiffness via a deep learning approach. In this scenario, the 
absence of a physics-based foundation must be compen-
sated by a substantially larger data set. Liu et al.112 demon-
strated this approach using a 3D CNN trained and validated 
on 4186 microstructures, labeled with mechanical stiffness 
data from finite element simulations. Compared to the scal-
ing law proposed by Soyarslan et al.,99 the well-trained CNN 
architecture reduced the prediction error from 17.22 to 0.53, 
clearly illustrating the potential of deep learning to provide 
highly reliable and robust predictions of effective stiffness 
for given microstructures. Additionally, by comparing neu-
ron maps with Gaussian curvature maps, it was shown that 
the CNN learned hierarchical features of the input micro-
structures, such as edges, corners, and surfaces (see Figure 
4a). These learned hierarchical features can, in principle, 
be transferred to study other materials, such as composite 
materials or porous nanomembranes, thereby accelerating 
research on structure–property linkages for various materi-
als.112 In terms of intentional materials engineering, the work 
by Wang et al.113 uses a CNN to predict and tune the struc-
ture generation for establishing a desired elastic anisotropy. 
In this work, the CNN was used to speed up the structure 
generation for optimization (Figure 4b). Here, the predic-
tion of the anisotropic elasticity tensor was realized via a 

fast Fourier transform approach that is accurate as well as 
computationally efficient.

Plasticity under multiaxial loading conditions 
as a consequence of hierarchy
When considering plastic deformation behavior under uniaxial 
loading, the situation is similar to that of elasticity. As dem-
onstrated in several studies,100,102 similar scaling laws exist, 
allowing elasticity and plasticity to be connected via a one-to-
one relationship. This makes plasticity seemingly straightfor-
ward once the structure–property relationship for elastic prop-
erties is established. Additionally, due to the random nature of 
the network structure, the yield behavior can be assumed to 
be isotropic, eliminating the need to consider anisotropy when 
predicting yield strength. However, when large deformations 
are applied, the deformation mechanisms of porous materi-
als change significantly depending on the loading direction. 
Notable differences between tension and compression lead 
to tension–compression asymmetry in plastic flow, including 
ligament stretching during tension and the establishment of 
internal contacts up to pore compaction during compression, 
as observed in simulations.116,117 Beyond these specific obser-
vations, there is limited literature addressing these aspects on 
a more general level.

The inelastic deformation of open-cell foams was inves-
tigated using periodic representative volume elements in the 

Figure 3.  Workflow for data-driven prediction of mechanical properties. Structure data can be obtained from imaging or computational methods 
for structure generation (left). A carefully segmented set of voxel data forms the core of the property prediction, providing input for mechani-
cal simulations, morphological analysis as input for a physics-based artificial neural network (ANN) (blue) or, alternatively, direct feeding into a 
convolutional neural network (CNN) (golden) for the prediction of mechanical properties (green). FIB, focused ion beam; LW, leveled wave; KMC, 
kinetic Monte Carlo; SEM, scanning electron microscopy; ML, machine learning. Components of the figures are adapted from References 99, 
105, 107, 110, and 111. Reprinted with permission from References 99, 105, 110. © 2018 Elsevier; © 2023 Elsevier; © 2016 Elsevier.
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form of 2D and 3D Kelvin cells to provide training data for 
neural networks and implementation as a user material routine 
in ABAQUS.118 Initial yield surfaces exhibited significant ten-
sion–compression anisotropy and complex shapes that are not 
easily described by common phenomenological models for 
anisotropic plasticity. The authors demonstrated that both the 
initial yield surfaces and their evolution during plastic deforma-
tion could be predicted with a trained artificial neural network 
(ANN) for proportional loadings and small deformations. Their 
implementation in ABAQUS showed that computational effort 
could be reduced by a factor of more than 10,000 compared 
to a discretely resolved foam structure, with nearly identical 
solution quality. Several ML models for predicting yield sur-
faces under multiaxial loading with arbitrary combinations of 
normal and shear components where compared in Reference 
114. Yield surfaces were predicted for different representative 
volume elements (RVEs) (diamond cell, Kelvin cell) and at two 
plastic strain levels (1% and 10%). Comparing the performance 
of a data-driven ANN, a hybrid ANN combined with the Desh-
pande–Fleck model and a support vector machine (SVM) model 
revealed that for 3D and 6D stress spaces, the SVM provided 
the best results, allowing for good generalization and extrapola-
tion, likely due to its convex nature (Figure 4c). Surprisingly, 
the hybrid approach did not outperform the data-driven ANN, 
mainly because the required corrections to the Deshpande–Fleck 
model were too large for the 6D case, offering little advantage.

As a 3D extension of an efficient hybrid scale-bridging 
approach, Malik et al.115 proposed using a representative vol-
ume element realized as a 3D open-cell Weaire–Phelan struc-
ture in a periodic arrangement of 2 × 2 × 2 unit cells. Various 
macroscopic loading paths were applied in a stress-controlled 
manner. The trained ANN demonstrated that elastic–plastic 
stress–strain responses could be predicted with high efficiency 
and precision for arbitrary loading directions and histories, 
including partial unloading (Figure 4d). This approach has 
been used to simulate hierarchical nanoporous metals consist-
ing of multiple levels of hierarchy.119 Hierarchy implies that 
multiaxial loading becomes an issue at the lower hierarchy 
levels, even when the upper level is loaded uniaxially, as is 
commonly the case. Depending on the specific location of 
a material point and its interaction with its homogeneously 
deforming neighborhood, the lower-level porous structure will 
experience multiaxial loading. Due to the random nature of the 
material, all possible combinations of shear and normal strains 
can occur. Because the plastic deformation behavior of porous 
metals shows a strong dependence on multiaxial loading his-
tory,115 numerical prediction of hierarchical nanoporous metals 
requires fully resolved models of all hierarchy levels, leading 
to computationally demanding simulations. Implementing an 
ANN surrogate model in a multiscale simulation would signif-
icantly speed up the process, bringing simulation times closer 
to those of nanoporous metals with a single hierarchy level.

Figure 4.  Prediction of various mechanical properties and elastic–plastic deformation behavior of open-pore metallic foams for uniaxial and 
multiaxial loading: (a) Macroscopic elastic modulus via convolutional neural network (CNN).112 (b) Anisotropic porosity and elastic stiffness tensor 
via CNN and fast Fourier transform (FFT).113 PF, phase field; NN, neural network; RVE, representative volume element. (c) Anisotropic yield sur-
face for multiaxial loading predicted by support vector classification (SVC) and artificial neural network (ANN).114 (d) Loading history-dependent 
stress–strain behavior predicted by ANN.115 Reprinted with permission from References 112,114. © 2022 Elsevier, © 2023 Elsevier.
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Most ML models in the literature are developed by groups 
that generate their databases through computer simulations. 
Experimental data sets remain scarce and are often small 
enough to be analyzed using conventional visualization and 
fitting methods. However, these data sets are typically too 
small for effective machine learning, particularly for modeling 
relationships in intentional materials engineering. To collect 
data from across the community and make them available for 
this purpose, efforts should focus on the following directions:

• Provide data sets with proper metadata descriptions, ideally 
along with an ontology to ensure semantic interoperabil-
ity and machine readability,120,121 to establish the process–
structure–properties chain (or its elements, where neces-
sary) using ML models.

• Develop methods for extracting data from unstructured 
sources, mainly literature, where data are provided without 
semantic interoperability and machine readability.122

• In the long term, combine both approaches to establish 
a common database on nanoporous metals that can be 
data mined for specific problems. This approach could be 
extended by using deep learning models to guide materi-
als synthesis, targeting desired structures and properties,123 
without requiring too many intermediate steps that demand 
specialized expertise.

Conclusion and outlook
ML approaches hold the promise to accelerate the transition of 
fundamental research to scalable manufacturing by address-
ing the inherent complexities in designing and controlling the 
properties of advanced materials such as dealloying. By using 
ML-augmented computational and experimental methods, ML 
methods can be incorporated into the materials design loop 
with an enhanced understanding of processing-structure–prop-
erty–functionality relationship in nanoporous metals and com-
posites created by dealloying. This can enable a better predic-
tion of materials compositions and processing conditions for 
targeted microstructures and macroscopic structural design, 
achieving tailored properties and functionalities, including but 
not limited to the mechanical properties as illustrated in this 
article. This predictive capability has a potential to significantly 
reduce the time and energy currently taken in the traditional 
trial-and-error materials design cycles, streamlining the design 
process to reach targeted outcomes for designing nanomaterials 
more efficiently.

ML-enabled autonomous experimentation can allow real-
time feedback between modeling and experimental data, as seen 
with techniques such as synchrotron x-ray experimentation and 
autonomous synthesis laboratories. This real-time integration of 
an AI agent in the decision-making experimental control enables 
dynamic adjustments, advancing both microstructure characteri-
zation and property prediction. By exploring high-dimensional 
parameter spaces and incorporating materials thermodynamics 
and kinetics into ML models, the AI agent can ultimately search 

for processing conditions at scale, enabling faster and more 
precise scaling of complex materials systems from laboratory-
based studies to large-scale manufacturing. Moreover, ML can 
assist with the analysis of complex data sets from x-ray micros-
copy and tomography by performing tasks like noise reduction, 
3D reconstruction, feature recognition, image segmentation, 
and property prediction based on images. Advanced capabili-
ties, such as multimodal data fusion, 4D time-series analysis, 
sparse data recovery, and resolution enhancement (super resolu-
tion enabled by deep learning), show promise and also require 
further development and research. These tools enable detailed 
insights into structural and morphological characteristics essen-
tial for practical applications in the nanoporous metals and com-
posites created by dealloying.

ML approaches can help to establish structure–property 
relationships that reach beyond the capabilities of scaling laws, 
which are commonly limited to a few global descriptors, such 
as solid fraction and scaled genus density. They allow us to 
include much more detailed and quantitative 3D microstructure 
information, which at the same time emphasizes the require-
ment of an unbiased segmentation as a solid basis for extracting 
local features. This quantitative assessment serves for deriv-
ing engineered features as inputs for physics-based neural net-
works. At this level of detail, the experimental database is still 
scarce. So far, applications are limited within groups and their 
own data sets, usually of the same kind. A sound validation 
and demonstration of the applicability of ML methods trained 
with larger computer-generated data sets with experimental 
data sets need to be addressed in the future. Therefore, open 
data sets from 3D and 4D imaging as well as from computer-
generated 3D microstructures are needed, ideally along with 
their properties and further metadata provided in an interoper-
able and machine-readable data format. Beyond the Young’s 
modulus, the prediction of the stress–strain behavior shows 
great potential for the development of ML methods, especially 
toward hierarchical nanoporous materials. This is a direction 
of research that cannot adequately be addressed by any other 
method, due to the multiaxial and non-radial loading that is 
induced by the upper level to the lower level of hierarchy.

While ML-augmented methods show promise for design-
ing nanoarchitectured materials, including through dealloying 
processes for nanoporous metals and metallic composites, 
implementing a comprehensive approach that spans the entire 
design loop remains unrealized. This loop would include select-
ing an alloy system, setting dealloying processing parameters, 
characterizing structure and properties of dealloyed materi-
als, and then providing feedback to refine the initial dealloy-
ing material system and processing conditions to achieve the 
desired nanostructure and properties. Currently, only individual 
components of each step are in place or under study, with pre-
liminary efforts underway to develop proof-of-concept design 
workflows. Significant challenges remain, such as in integrat-
ing ML-enhanced predictions for nanostructures and incorpo-
rating advanced characterization techniques, including x-ray 
tomography and transmission electron microscopy, to facilitate 
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a feedback-driven design cycle in materials development. 
Despite these hurdles, the prospect of enabling a closed-loop 
design process presents substantial opportunities for advancing 
research and technological innovation within the dealloying 
community, as well as incorporating a broader range of pro-
cesses and functional applications. Another crucial aspect is the 
ongoing acquisition of scientific knowledge, particularly in the 
underlying thermodynamics and kinetics, which are essential 
for advancing this field. This context brings us to share our 
perspective on the outlook for future development:

AI/ML methods hold enormous promise for improving 
scientific discovery. At the same time, there are pitfalls, 
including researchers becoming over-reliant on automa-
tion they do not understand, the replacement of interpret-
able theory with black-box approximators, the biasing of 
research outcomes or models, and the extinguishing of crea-
tivity and serendipity. The ultimate goal in science is not 
raw data collection, reproduction of existing understanding 
nor even predictive power of methods, but rather intelligible 
insights that humans can use to advance understanding and 
pursue goals. AI/ML, if properly integrated into research, is 
not in conflict with this aim. For instance, treating research 
as a purely productivity-maximizing enterprise can lead to 
building full-automated workflows that eliminate the need 
for human researchers. However, this would diminish much 
of the true value of research. By contrast, AI methods that 
seek to empower the researcher—sometimes called intelli-
gence augmentation—keep humans in charge of high-level 
decisions and maintain the focus on interpretable discovery. 
Additionally, outlining materials design workflow and set-
ting experiments compatible with ML-augmentation often 
require deeper consideration of the hypotheses being tested, 
the specific design goals, and the costs involved, potentially 
enriching the research process. Moreover, properly deploying 
these methods can help to reduce the number of parameters 
to be measured to a small number of relevant inputs, mitigate 
experimental biases or outliers (by making them explicit), 
reveal systematic differences in data from different sources, 
discover new physical laws (e.g., via interpretable machine 
learning), or create new opportunities for serendipity (by 
lowering the barrier to exploration and playful science). 
Overall, AI/ML methods can excel at modeling and interpret-
ing vast complexities and high-dimensional data, enabling 
deeper insights that would be challenging to achieve manu-
ally. While they build upon existing information, they have 
the potential to enhance discovery by accelerating processes, 
uncovering hidden patterns, and freeing humans to focus on 
creative thinking and high-level scientific exploration.
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