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Lensless X-ray nanoimaging provides 3D views of a wide 
range of materials with a spatial resolution better than 
10 nm. These advances are enabled in part by dramatic gains 

in coherent X-ray flux, but they also rely on advances in signal 
processing to obtain images from coherent diffraction data. We 
outline the scientific problems that can be addressed by X-ray 
nanoimaging, the various imaging approaches and their asso-
ciated reconstruction methods, and highlight opportunities for 
future advances.

Introduction
We are in an era of tremendous advances in methods for 3D 
nanoimaging. Electron tomography can be used to image 
nanoparticles at atomic resolution, but plural scattering effects 
begin to degrade the achievable spatial resolution as the sample 
thickness approaches 1 µm. In visible-light microscopy, sparse 
nanoparticles or switchable fluorophores can be localized to 
a few nanometers in sample layers approximately 1-µm thick, 
while confocal and multiphoton microscopy can be used for 
roughly 200-nm resolution on samples up to a few hundred-
micrometers thick. However, X-rays are unique in offering 
penetration through millimeter-sized samples combined with 
a relative lack of plural scattering and nanometer-scale wave-
lengths to enable high spatial resolution [1]. The development 
of ever-improving synchrotron light-source facilities means 
that the available quasi-time continuous-coherent X-ray flux 
has been increasing for decades at a rate similar to Moore’s law 
in electronics, as shown in Figure 1. High coherent flux has en-
abled a push in spatial resolution to below 10 nm [2] by provid-
ing sufficient photons for imaging fine, low-contrast features. 
Additional increases will allow for faster imaging, increased 
field of view, and the ability to go from imaging single-exam-
ple specimens to gaining statistically significant insights from 
multiple specimens.

Much excellent work in X-ray nanoimaging is done using 
lenses such as Fresnel zone plates [3] or grazing incidence 
mirrors with multilayer coatings [4]. However, although X-ray 
optics reach 10-nm spatial resolution in some examples, they 
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still have a very low numerical aperture, limited field of view, 
and poor efficiency (often below 10%). One can largely bypass 
these optics-imposed limits through imaging based on the col-
lection of far-field diffraction intensities, where one replaces 
the lens with a computer to form the image of the sample. In 
these coherent diffraction-imaging methods [5], the detector’s 
pixel size can be tens of micrometers so that one can use direct 
detection in semiconductors for high efficiency and frame rate. 
Together, these advances in lensless X-ray 
nanoimaging are creating unprecedented 
opportunities for nondestructive studies in 
a wide range of fields, as described in the 
“Imaging Challenges in Materials Science” 
section and with a few examples shown 
in Figure 2.

These advances come with challenges 
and therefore new opportunities in sig-
nal processing for image reconstruction. X-rays are ionizing 
radiation, and basic models of imaging [6] imply that 10-nm-
scale imaging involves imparting a radiation dose near 109 
Gray (Joules/kg); although this is tolerated by most materials 
science specimens and even by biological specimens when 
cryogenic imaging conditions are employed, it still means that 
image reconstruction must deal with limited photon statistics. 
The combination of fine transverse resolution and high thick-
ness demands 3D imaging, often with practical limits on the 
number of illumination directions when performing tomog-
raphy. High coherent flux provides the opportunity to study 
dynamic changes in radiation-tolerant specimens, such as the 
flow of lithium-ion battery charge cycles [2]. Most techniques 
require scanning and rotating the specimen in the coherent 
beam, both of which are challenging at the nanometer-length 
scale; therefore, image-reconstruction methods must account 
for errors between the assumed and actual scanned posi-
tions and angles. Both phase and absorption contrast must be 
accounted for, with phase contrast increasingly dominant as 
the photon energy increases above 1 keV. Energy tunability 
can be used to carry out imaging around X-ray absorption 
near-edge resonances, providing the ability to see changes in 
the chemical binding state of many elements. Most impor-
tantly, when collecting diffraction intensities, one has the 
magnitude but not the phase of the far-field wavefield, so 
phase-retrieval methods must be used to recover the wave-
field, and from that the object’s optical transmissivity and 
thus its structure.

Here we outline the opportunities for insights into mate-
rials that lensless X-ray nanoimaging can provide. Realizing 
these opportunities will require advances in signal processing 
for reconstructing 2D and 3D images using far-field coherent 
diffraction data. Our goal is to summarize some of the impor-
tant milestones rather than provide a comprehensive list of 
advances in the field. Although the original approaches were 
based on physics intuition, numerical optimization methods 
have been introduced, which now provide sufficient flexibil-
ity to handle the aforementioned complicating factors as well 
as incorporate a priori knowledge and assumptions regard-

ing the experiment and material under study. In fact, signal 
processing loops back to allow one to rethink the design of 
the experiment, creating revolutions and opportunities in 
nanoscale imaging.

Imaging challenges in materials science
The ability of X-rays to penetrate thick samples while also en-
abling high spatial resolution enables the study of hierarchical 

materials. A classic example is bone, which 
combines nanoscale arrangements of colla-
gen and mineralized tissue with macroscop-
ic changes in organization [10]. Integrated 
circuits offer another example [8], as depict-
ed in Figure 2(b), as they have nanoscale 
arrangements of oxide layers at transistor 
gates but an overall organization that can 
extend to millimeters. Multiscale imag-

ing is also required to study improved, low-carbon-emission 
types of cement [11]; improved alloys for strong, lightweight 
structural materials [12]; new materials for microelectronics 
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FIGURE 1. The coherent X-ray flux available from various multikeV sources 
over time. The green marker represents a standard X-ray rotating anode, 
the blue triangles represent dipole magnets at early synchrotron light 
sources, and the red squares are for undulators at synchrotron light sourc-
es (only a few representative facilities are shown; one can see a listing of 
all facilities worldwide at www.lightsources.org). The actual flux utilized 
is often considerably lower due to finer spectral filtering, beam-delivery 
optics inefficiencies, and other factors. Also shown is the trend of doubling 
every 18 months, which is the scaling of Moore’s law for integrated circuit 
transistor count. Not shown here is the coherent flux available from X-ray 
free-electron lasers, which offer even higher flux; however, due to high 
intensity and low duty cycle, they are often used for single-shot imaging 
methods where the sample ends up destroyed. SSRL: Stanford Synchro-
tron Radiation Lightsource; CESR: Cornell Electron-Positron Storage Ring; 
NSLS: National Synchrotron Lightsource; ESRF-EBS: European Synchro-
tron Radiation Facility-Extremely Brilliant Source; MAX-IV: Microtron 
accelerator for X-rays-IV; BW: bandwidth.
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[13]; and functional materials, such as for energy storage and 
conversion [14].

X-rays can also be used to provide important spectroscopic 
information within images. Outer-lying electron orbitals can 
be affected by the binding state of an element as well as by 
spin interactions in magnetism, so by tun-
ing onto a resonance for exciting inner-shell 
electrons to these orbitals, one can look 
at changes in iron atoms as lithium atoms 
move during battery cycling [2], changes 
in carbon binding in organic photovolta-
ics [15], and internal domains in magnetic 
materials with ptychographic tensor tomog-
raphy (where one obtains per-voxel mea-
surements not just of a single variable like 
electron density, but of multiple variables, such as magnetic 
domain strength and orientation) [16].

When studying beam-sensitive materials like biological 
cells and tissues, radiation damage is a significant consid-
eration. Especially for hydrated organic materials, cryo-
genic sample preparation and imaging conditions offer both 
the preservation of elemental content and structural detail 
in a close-to-living state, and sufficient radiation damage 
resistance to obtain high-resolution images, as shown in 
Figure  2(a). When the coherent beam is focused to a suf-
ficiently small spot, one can collect not just the far-field dif-
fraction pattern as required for ptychography but also X-ray 
fluorescent photons, allowing for simultaneous imaging of 
intrinsic elemental distributions [7].

The aforementioned examples involve absorption and 
phase modulation of the transmitted X-ray beam by the mate-
rial under study. However, ptychography can also be carried 
out on the beam that is Bragg diffracted from a crystalline 
domain [17], with an example presented in Figure 2(c). Appli-
cations include the study of strain distribution in semiconduc-
tors, which affects electron mobility.

Image-reconstruction models and algorithms
Regardless of the application area or material type, the imag-
ing process requires solving a set of inverse problems, such 
as phase retrieval or those that arise in tomography for recon-
structing the sample from raw measurements. Over the past 

few decades, both ptychographic phase-re-
trieval and tomographic image-reconstruc-
tion methods have advanced in parallel. 
However, today, we are seeing a merger of 
these two techniques for materials imag-
ing, especially for 3D applications. The 
image-reconstruction problem in this set-
ting boils down to reconstructing the sam-
ple from a set of detector intensities col-
lected at different scan positions and beam 

directions. This involves the phase-retrieval problem, which 
aims to recover the missing phases of the recorded data from 
diffraction-plane magnitudes, and the tomography problem, 
which seeks to regain the sample from its projections (usually 
represented by retrieved phases). Although there are numer-
ous methods used to solve these problems, here we mostly 
highlight the approaches that have demonstrated massive 
success in practical applications and in turn revolutionized 
materials science.

Classical methods in coherent diffraction imaging
Motivated by protein X-ray crystallography to determine 
the atomic structure of biomolecules, early techniques fo-
cused on recovering the phase of the wave from a single 
diffraction pattern measurement. When a small sample can 
be isolated on a transparent membrane and the forward-
scattered coherent diffraction pattern is collected [18], or 
when a small crystalline domain produces coherent diffrac-
tion about a Bragg peak [19], one has the most basic form 
of coherent diffraction imaging (CDI). The corresponding 
problem of recovering a signal from the magnitude of its 
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FIGURE 2. Lensless X-ray nanoimaging has an impact on a wide range of scientific disciplines. (a) A frozen hydrated alga cell imaged in 2D at an 18-nm 
resolution [7], including a single cup-shaped chloroplast (Ch) and a number of other organelles: pyrenoid (Py), nucleus (N), starch granule (Sg), and 
polyphosphate bodies (Ph). (b) The metallization layers from an integrated circuit imaged in 3D at a 19-nm resolution, with the ability to carry out a mul-
tiscale analysis [8] (Source: M. Holler, Paul Scherrer Institut, Switzerland; used with permission.) (c) An indium gallium arsenide nanowire imaged using 
multiangle Bragg projection ptychography with a 50-nm spatial resolution in 3D and a 2.6-nm resolution along the wire axis, where the stacking defects 
and strain can be mapped in 3D [9]. 
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Fourier transform requires solving nonlinear equations of 
the form ,d F}=  where d is the far-field diffraction mag-
nitude measurements, F  is the Fourier transform, and } 
is the unknown signal (complex wave) that represents the 
sample’s 2D transmission function (see Figure 3 for an il-
lustration of the measurement process).

A particularly successful approach to solving for } is based 
on the Gerchberg–Saxton algorithm [20], leading to derived 
methods known as the error reduction (ER) and hybrid input–
output (HIO) algorithms [21]. These schemes attempt to solve 
the following feasibility problem:

 find some ,O D+!}  (1)

where O and D are sets that satisfy specific signal con-
straints in object (sample) and data spaces, respectively. 
Because the phase information is missing in measurement 
data, additional constraints are necessary to pick the de-
sired solution among infinitely many solutions that agree 
with the measurement data. The approach requires alternat-
ing between feasible points in sets O and D until we reach a 
fixed point. In each iteration, we choose the locally optimal 
solution in each set among all locally optimal solutions. For 
example, the ER algorithm tries to solve the problem recur-
sively by computing

 ,P Pn
O D

n1 !} }+  (2)

where PO and PD are projection operators onto sets O and D, 
respectively, or

 D dF|} }= =" , (3)

 ,O 1 0S| $} }= =" ,  (4)

where ,B1 0 1S "| " , is an indicator (also known as the com-
pact support) function of subset S of B. Additional sets, 
such as positivity, can be used to appropriately constrain 
the solution space, depending on the problem. The advan-
tage of this approach is that new sets of constraints can be 
easily added to the problem so that it is practical. Also, 
its implementation in software is straightforward because 
of the modular flow imposed by independent projection 
operations. However, when one of the constraint sets is 
nonconvex, such as the magnitude constraint set in (3), the 
algorithm can stagnate to a local solution or may not con-
verge at all.

A more robust variant of the ER algorithm, the HIO one, 
provides a better convergence rate and can ameliorate some of 
the stagnation problems [see Figure 4(b) for a graphical illus-
tration]. The iterate sequence of HIO differs from ER in that 
it involves reflection operators of the form R P I2O O= -^ h 
or R P I2D D= -^ h to avoid getting stuck in a local solution. 
Although the sequence generated by HIO does not necessarily 
involve a feasible point in any of those sets, often it gradually 
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FIGURE 3. An illustration of the measurement process. A coherent beam of X-rays is modulated using the sample’s transmission function g as a result of 
the traversing through sample f. The modulated signal }  is then propagated in free space to the detector plane at the far field to measure signal ampli-
tudes, which can be expressed through .d F}=  When the sample is smaller than the beamwidth, one has the most basic form of CDI and no scanning 
is required; however, for imaging large or thick samples, one can collect data at multiple beam positions t and sample rotations .i  The scanning process 
can be expressed by ,Q gt} =  where Qt  is the beam at position t, and g R f= i  is the object’s 2D projection (or transmission function) along the beam 
path at rotation angle .i  
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reduces the distance to the solution and has a more robust con-
vergence behavior. The iterates of the HIO algorithm can be 
written as

 ,I R R
2
1n

O D
n1} }= ++ ^ h  (5)

where n is the iteration number. A generalized form of the 
HIO algorithm, also known as the difference map (DM) 
[22], allows one to control convergence through a relaxation 
parameter. Both HIO and the DM have been popularized 
in phase retrieval due to their scalability, superior perfor-
mance, and easy implementation. It is noteworthy that those 
types of methods share similarities with projection onto con-
vex sets (POCS) [23] or Douglas–Rachford algorithms [24]. 
They also have counterparts in convex optimization theory, 
especially with coordinate descent and other types of first-
order schemes.

2D imaging of extended samples through scanning
The imaging of extended samples beyond the size of the il-
luminating beam is possible through ptychography, which 
replaces the finite support constraint of the object in single-
particle CDI with finite support on a scanned coherent beam 
spot. Inspired by the success of ER and HIO algorithms, early 
studies focused on adapting those algorithms to ptychography 
by replacing the compact support constraint in CDI with the 
beam overlap constraint in ptychography. In ptychography, we 
can redefine sets D and O, respectively, as

 D dF|} }= =" , (6)

 gO Q gt| }= =" , (7)

and try to find g and a set of waves } that satisfy the con-
straints in both sets for all scan positions. Here Qt is the 
beam used to sample }  at positions t, and g is the object’s 

2D projection along the beam path. In this scenario, D is the 
Fourier-magnitude constraint set like in CDI, and O is the set 
that satisfies the overlap constraint from all scan positions. 
We can apply either the ER or HIO algorithm by defining PD 
as the Fourier-magnitude constraint (similar to the CDI prob-
lem), and PO as the minimizer for the least-squares problem, 
leading to min Q gg t 2

2
}-  for projection onto O in (7). In 

the context of ptychography, the ER implementation is of-
ten referred to as the ptychographic-iterative engine (PIE) 
[25], and the HIO implementation is called the DM (with a 
specific relaxation parameter) [26]. Both algorithms share 
a similar updating strategy, with the exception that in the 
PIE, set O is split into many subsets for each scan position, 
and the projection onto these subsets is done in a sequential 
fashion instead of simultaneously, as in the case of the DM.

Blind ptychography
Although one can measure the illumination (i.e., the probe) in 
ptychography beforehand, in practice, both the probe and the 
sample transmission function [Q and g, respectively, in (7)] 
can be recovered as a part of the reconstruction process. In 
this case, because } is dependent both on Q and g, there are 
many combinations that satisfy the constraint .Q gt }=  The 
common practice is to start the iterations with a probe function 
close to its solution (for example, from a previously measured 
probe); otherwise, the sequence often yields an undesired solu-
tion. Especially in CDI, because the measurements in the Fou-
rier domain are insensitive to shifts of the signals in the sample 
domain, a global drift in sample and probe locations can hap-
pen. To circumvent this, additional constraints can be enforced 
to maintain stability and convergence. For example, the mass 
of the probe function can be enforced to stay in the center of 
the recovered images. This problem of solving both the sample 
and the probe, also known as blind ptychography, can be ad-
dressed by adding a probe-retrieval step when satisfying the 
constraint set in (7). A similar alternating solution strategy, 
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FIGURE 4. (a) A block diagram of the Gerchberg–Saxton algorithm [20]. A complex wave is transformed back and forth between the two domains, alterna-
tively satisfying the constraints (e.g., simulated wave H is altered by replacing its amplitude with measured amplitude d while keeping its phase to satisfy 
the Fourier constraint). (b) The convergence behavior of the ER and HIO algorithms [21] is graphically illustrated. In both algorithms, a sequence (x0, x1, 
x2, …) is generated, applying projections onto set A (Fourier constraints) and set B (other constraints) alternatively until we reach a fixed point. The ER 
can be trapped in a local solution or may not converge, as shown. The HIO can escape from local solutions and overcome the stagnation issues of ER. 
Note that the update rule of HIO involves computing two consecutive reflections (rA and rB) across sets A and B. 
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where one sequentially updates the sample image followed by 
the probe function, can be used in the DM [26] or the PIE [27] 
[the latter is called extended PIE (ePIE)]. There are additional 
strategies based on using optimization theory [28].

Imaging of thick samples in 3D
With the advent of undulators to create high coherent flux at 
high X-ray energies, one can perform a series of ptychography 
experiments on a 3D sample, followed after 
each series by a rotation so as to collect data 
in a tomographic setting. This marriage 
of ptychography and tomography enabled 
imaging the 3D structure of thick samples 
without sectioning. Beginning with the first 
demonstration approximately a decade ago 
[10], ptychotomography has continued to 
broaden its application areas in numer-
ous materials research fields. The current 
mainstream approach includes solving a 
series of ptychographic phase-retrieval problems to find pro-
jection images at distinct angles, followed by a tomographic 
reconstruction to find the 3D structure of the sample. How-
ever, knowing that all the measurements are correlated and 
based on the 3D sample under study, jointly solving all prob-
lems at once can provide better stability or lead to compres-
sive sampling strategies to save the radiation dose or data-
acquisition time [29].

Separate solutions
Because ptychography and tomography problems are cascad-
ed, one can separately solve them in a sequential manner, as 
noted previously. However, one can change the order of cas-
caded solutions, or use a joint approach. The reconstruction 
of 3D optical modulation f (the sample) for a given g can be 
obtained by finding a feasible point in the following set:

 ,X f R f g|= =i" ,  (8)

where Ri  is the X-ray transform that maps the 3D sample to its 
2D projections at a given set of rotation angles .i  As an ana-
lytical inversion method with adequately sampled data, the fil-
tered-backprojection scheme is often the technique of choice, 
but computationally more demanding iterative-optimization 
approaches are also becoming popular by solving problems of 
the form min R f gf 2

2
-i  (often with additional regularization 

terms to avoid reconstruction artifacts due to undersampling 
and measurement noise). It is again worth noting that iterative 
approaches such as the widely known algebraic reconstruction 
technique (ART) and simultaneous iterative reconstruction 
technique (SIRT) in tomography are particular instances of the 
POCS algorithm and are related to the ER and HIO algorithms 
in ptychography. An ART is similar to the ER or PIE algorithm 
in the sense that it uses successive projections onto many sets, 
where each set is a hyperplane defined by the measurement 
at an angle. Unlike an ART, an SIRT performs projections in 
all sets simultaneously, and the average of these projections is 

used to update the point; it therefore shares similarities with 
the HIO or the DM algorithm.

Although regularization techniques can be employed to 
further constrain the solution set, the fundamental shortcom-
ing of any separated-solution approach to the ptychotomogra-
phy problem is that the resulting reconstruction errors in the 
phase-retrieval problem are propagated into the tomographic 
reconstruction problem. To avoid this propagation of errors, 

experiments are sometimes designed such 
that the ptychography data for each angle 
are relatively oversampled and the tomog-
raphy data are relatively undersampled. In 
other words, with the separated-solution 
approach, the imaging performance is 
bounded by the operation of the ptychog-
raphy problem, which is solved prior to 
the tomography problem. To overcome the 
shortcomings of this solution strategy, espe-
cially for the case of incomplete and noisy 

data, new approaches propose posing the problem as a joint 
optimization problem for extra robustness [29].

Joint solutions
The main advantage of a joint-solution approach [like the 
one demonstrated in Figure 5(a) and (b)] is that it requires 
less stringent data collection conditions by leveraging 
correlations among all measurements. As a result, data-
sampling requirements for individual ptychography and 
tomography problems can be chosen to be more balanced. 
This helps with effective use of the dose fractionation 
theory [31], which states that one can take the exposure 
required to see the feature of a specified size and contrast 
in a 2D image and divide that exposure up among the 
set of tomographic projections. This is especially impor-
tant for the X-ray ptychographic tomography of biological 
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FIGURE 5. The reconstructions of (a) g and (b) f of a macroporous zeolite 
particle and probe with marginal probe overlaps (see the zoomed-in 
image for probe reconstructions at consecutive locations) [30]. The joint 
solution is more robust to data undersampling compared to a separate-
solution approach, and it yields better quality reconstructions as the 
number of data points is reduced. Because the joint solution makes use 
of the angular-probe overlap inherent to tomographic acquisition, the 
lateral-probe overlap requirement in ptychography can be relaxed or 
almost completely lifted. (Source: M. Kahnt, Lund Universtiy, Sweden; 
used with permission.) 
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specimens, where cryogenic preparation and imaging con-
ditions are often used. 

One of the first implementations of a joint formulation [29] 
used an ER algorithm approach by iteratively projecting onto 
the following sets:

 D dF|} }= =" , (9)

 O g Q gt| }= =" , (10)

 X f R f g|= =i" , (11)

with an iterative scheme of

 .f P P P fn
X O D

n1 !+  (12)

Here PD is the standard magnitude projector that replaces 
the amplitude of F}  with d while keeping its phase, and 
PO and PX are often defined as the minimizers of the cor-
responding least-squares problems of min Q gg t 2

2
}-  and 

min gR ff 2
2

-i  respectively. Because generating this se-
quence requires solving two minimization problems for each 
iteration which is computationally demanding, approximate 
solutions (e.g., a few gradient descent iterations) are often 
sought, in practice, to improve performance. Splitting the pro-
jection operators also has some numerical benefits, by isolating 
the nonconvex set in (9) from convex sets in (10) and (11). For 
example, one can use different projection operators or algo-
rithms to better control the convergence rate or reconstruction  
accuracy. Instead of using a DM (or Douglas–Rachford) se-
quence, one can also use other types of variable-splitting 
techniques, such as alternating method of multipliers [32] or 
proximal algorithms [33], which can improve or provide more 
stability to convergence.

Experimental uncertainties and limitations
As the transverse spatial resolution is pushed further into the 
nanoscale, experimental challenges such as limited photon 
flux, limited depth of field, and limited coherence of the il-
lumination source, lead to problems with reconstructing the 
images. Furthermore, mechanical vibrations due to scanning 
become more apparent, limiting the achievable resolution in 
reconstructions. Therefore, we devote the following sections to 
highlighting the main solution approaches under realistic data-
acquisition conditions. 

Measurement noise
Although most studies use least squares as the projection oper-
ator onto sets (such as min Q gg t 2

2
}-  and min R f gf 2

2
-i ),  

a parameterized random model such as the Poisson process 
can be preferred to accurately model the photon-counting 
process in the detector. Porod’s law in small-angle scat-
tering explains how X-ray diffraction strength decreases 
roughly with the fourth power of the scattering angle, 
which means that the detector pixels far from the optical 
axis record very small numbers of photons [1]. Therefore, a 
Poisson model is often the method of choice to improve ac-
curacy of the model. This leads to a minimization problem 
in the form

 ,logmin u d uk k k
k

M

u
1

-
=

^ h) 3/  (13)

where u is the expected set of diffraction intensities. Machine 
learning (ML) estimators are used both for ptychography 
[35] and ptychotomography [36], leading to superior results, 
as shown in Figure 6. Note that similar operator-splitting 
approaches can be applied to break the minimization 
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FIGURE 6. As the cumulative number of illuminating photons per pixel (ph/pix) (fluence) is reduced, the error metric used for image reconstruction 
should be changed from the least-squares (LSQ) model to that of (13) for Poisson statistics. This is illustrated here with a simulated cell object with a 
contrast such that one would expect a signal-to-noise ratio of 5:1 with a fluence of 350 ph/pix (or 9.2 × 107) photons distributed among 72 × 72 diffrac-
tion patterns). At that fluence, there is little difference between the LSQ and Poisson models, but at lower fluences of 80 and 20 ph/pix, one can see that 
the Poisson metric yields a sharper image [34]. 
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problem in (13) into ptychography and tomography problems 
and solve alternatively, as previously explained, such as to 
parallelize the computations so as to shorten the time re-
quired for a solution.

Partial coherence of the illumination wave
The basic operation principle of ptychography relies heav-
ily on the coherence of the illumina-
tion wave. However, in practice, high-
frequency vibrations due to mechanical 
scanning or other experimental factors 
have the same effect as limiting the spa-
tial coherence. Also, in some cases when 
faster imaging is desired, broadband il-
lumination can be used to improve the 
fluence on the sample; this also leads to a 
degradation of the spectral coherence of 
the wave and eventually to worse results. 
In these cases where we have a partially coherent source, 
the reconstructed images are blurred proportionally to the 
loss of coherence, unless compensated by applying estab-
lished blind deconvolution methods. The process of decon-
volution of motion from the image requires joint estima-
tion of both the convolution kernels and the final image, 
and is often a data- and compute-intensive one. The cor-
responding problem can be defined by decomposing the 
probe function into multiple functions (also called states 
or probe modes) and requires solving a similar minimi-
zation problem as in (13). A common technique, known 
as mixed-state or multiprobe decomposition, employs this 
type of decomposition and models the measurement pro-
cess using a linear combination of probe and object modes, 
which can be solved all together with existing reconstruc-
tion methods [37].

Uncertainties in scan positions
Another important consideration is the presence of geo-
metrical alignment errors requiring position correction 
in ptychography, and refinement of the image acquisition 
geometry in tomography. In ptychography, the location of 
the probe with respect to the sample is often not certain 
at the level of the targeted resolution; as a result, inaccu-

rate scan locations induce artifacts and 
degrade quality in reconstructions [see 
Figure 7(a)]. A common approach is to 
treat probe locations t as unknowns and 
optimize those as a part of the image-
reconstruction problem. An update of 
the locations is often performed in sam-
ple space, aiming to improve the con-
sistency of locations or updated image 
patches. For example, when we consider 
the least-squares minimization problem 

,min Q g, ,Q t g t 2
2

}-  we can alternatively solve for Q, t, 
and g in an approach similar to a block-coordinate descent 
method. Once the updates for Q and g are done, we can 
update t based on the cross correlation (or any other reg-
istration scheme) between object estimates at neighboring 
probe locations [28]. Optimization methods such as steep-
est descent have also been used for solving the registration 
problem and perform the position update for given Q and g 
[38]. In some cases, it is also adequate to regularize t (e.g., 
Tikhonov regularization) such that the recovered positions 
do not deviate too much from their expected locations.

Uncertainties in rotation angles
A similar geometrical alignment is required in tomography. 
Although the rotation angles of sample stages are usually quite 
precise, subsequent transverse positions of the rotation stage 

1 µm 

(a) (b) (c)

1 µm 

Five Modes, Without Refinement Five Modes, With Refinement

100 nm

FIGURE 7. An example of the refinement of erroneous probe positions in ptychography. An X-ray ptychography data set was acquired with errone-
ous probe positions. (a) The ptychographic reconstruction obtained using the original, incorrect positions, (b) the image when the probe position 
refinement is applied, and (c) the change from incorrect (hollow black circles) to correct (solid blue circles) for a subset of the probe positions. This 
experiment also used a continuously moving probe, requiring the use of five probe modes to obtain a high-quality reconstruction [39]. The field of 
view of the ptychographic reconstruction extends beyond the original scanned illumination area, which is why image quality is low at the edges 
of the reconstructed images.

The process of 
deconvolution of motion 
from the image requires 
joint estimation of both 
the convolution kernels 
and the final image, 
and is often a data- and 
compute-intensive one.
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relative to the sample are not. In addition to random jitter in 
the rotation system, the stages may experience drift in time. 
Therefore, we need to align projections of the object for each 
angle such that all projections are consistent with each other 
around a common rotation axis. Mathematically speaking, we 
try to optimize the location of the image frames such that the 
following types of problems are solved:

 or ,min minR B f g B R f g
, ,f p

p
f p

p2
2

2
2

- -i i  (14)

where Bp is a generic type of translation operator parameter-
ized with p. The operators of this form can be applied either on 
the object [40] or the data [41] [the left- or right-hand problems 
in (14)]. However, when the sample is static, the right-hand 
problem is computationally favorable because each projection 
can be independently processed, and parallelization is more 
straightforward. Conversely, when the reconstructed object 
size is smaller than the data size (for example, in the case of 
undersampling), the size of the left-hand problem is potentially 
smaller. Similar to the position-correction problem in ptychog-
raphy, iterative reprojection [42] or other types of optimization 
methods can be applied to solve this problem.

Depth-of-field problem
In the “Imaging of Thick Samples in 3D” section, it was as-
sumed that the 2D projection g in (8) was sufficient to represent 
a 3D object when viewed from a particular angle. However, 
Frensel propagation effects within the object means that one 
loses the validity of this simple projection approximation when 
the object’s thickness extends beyond a thickness equivalent 
to an optic’s depth of focus DOF ( / . ) / . / ,2 0 61 5 4t t

2 2 2-d m d m=  
where td  is the achieved transverse spatial resolution and m  is 
the wavelength of the beam [1]. The reconstruction approaches 
based on nonlinear optimization require only that one calcu-
late from the present guess of the object the far-field intensities 
that one would measure (followed by minimization of the dif-
ference from the measured intensities) so that one can replace 
the simple projection model Ri  of (8) with a wave propagation 
model of how the illumination propagates through the guessed 
object and thus reconstruct objects that extend beyond the 
depth of focus, and that violate the first Born approximation. 
Although this approach has been demonstrated first in electron 
microscopy [43] and then in light and X-ray microscopy, the 
combination of the high penetrating power and short wave-
length of X-rays means that this problem becomes especially 
acute as one scales up X-ray nanoimaging to larger objects 
such as, eventually, entire tissues (such as mouse brains in con-
nectomics) [44].

Outlook and opportunities
A practical implementation of either ptychography or ptychoto-
mography is challenging because of demanding computational 
requirements. For example, in a point-by-point scan, it is com-
mon to collect gigabytes of measurement data to recover a sin-
gle megabyte image of the sample. Even for situations where 

the image quality is compromised in favor of a quick scan, the 
data size is still selected to be roughly 10–20-times larger than 
the final image size. The data-acquisition rate of several tens of 
gigabytes−1 is also high in ptychography with current photon-
counting detectors. To be able to process data of this scale, 
implementations of popular algorithms like ePIE and DM 
on multicore architectures have been well established. These 
developments have made ptychography a more approachable 
technique for routine use at synchrotron facilities around the 
world. The common adoption of open source Python software 
libraries such as TensorFlow, PyTorch, and CuPy has made 
it easier to develop and validate new algorithms, helping to 
close the gap between algorithm design and high-performance 
computing implementations. In addition, although the classi-
cal approach of the “download first, then process” paradigm 
is still the mainstream practice of today, new real-time image 
processing frameworks that can reconstruct images as data are 
collected are being explored to achieve online steering of dy-
namical imaging experiments.

Although there are ptychography applications that consider 
adding prior information to constrain the solution set, applying 
regularization is often considered an exception rather than the 
rule in current applications. We believe there are potentially 
two reasons for this. First, most of the current ptychography 
experiments practice oversampling. Therefore, noise or other 
artifacts are not a main concern in the reconstruction pro-
cess. However, this trend is changing with the emerging light 
sources. With the significantly improved spatial coherence 
of new sources, radiation dose is becoming the fundamental 
limit to achievable resolution; therefore, undersampling-based 
acquisition schemes and appropriate regularization strate-
gies will possibly be an active field for future applications. 
Second, modifying existing implementations of mainstream 
algorithms is difficult because extensible frameworks are not 
widespread. There are current development efforts to provide 
hardware-agnostic interfaces for flexible yet high-perfor-
mance implementations of reconstruction software on multiple 
compute resources.

Even though ptychography can provide very high spatial-
resolution images, the time required to acquire those images 
is still high due to the inherent scanning procedure. Improv-
ing data-acquisition time through compressive-sensing meth-
ods will enable a range of capabilities that are very critical for 
materials science studies, including capturing dynamic phe-
nomena under operando conditions or imaging larger sample 
volumes. All of the aforementioned procedures are now rou-
tinely done in electron microscopy and full-field X-ray micros-
copy but remain challenging for ptychography, which provides 
excellent opportunities for future development. For example, 
when capturing dynamic phenomena, the ability to study how 
materials respond to an external stimulus during processing or 
under operational conditions is critical to advance our under-
standing of nonequilibrium behaviors of materials. Moreover, 
imaging larger volumes is crucial not only for studying materi-
als with proper statistics, it also offers opportunities to study 
heterogeneous and hierarchical structures where the nanoscale 
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features need to be studied on a tens-of-micrometers or even 
millimeters-length scale. Enhancing time resolution is there-
fore crucial to enable higher-dimensional analysis, such as car-
rying out ptychography as a function of incident X-ray energy 
for spectroscopic imaging [2].

To fully utilize high coherent flux sources, one can change 
from a “move–settle–acquire” sequence to continuous velocity 
scanning. For further time gains, there are alternative paths 
to follow: either we need to scan faster, or scan less. In the 
past, the target has been rapid scanning, and there have been 
high-precision mechanical engineering efforts for designing 
accurate scanning stages that can reliably operate at high scan 
speeds. The main challenge is that rapid scanning introduces 
high-frequency vibrations, which limits the spatial coherence 
of the source and blurs the collected images. The solution for 
this motion-deblurring problem requires developing methods 
that deconvolve the unknown spatiotemporally varying kernel 
from measurements. Because the number of unknown param-
eters that describe the motion is much higher than the object 
parameters, it is both an algorithmically and computationally 
challenging problem.

Another way to perform rapid imaging is to scan less and 
use compressive-sensing techniques to complement sparse 
acquisition. Although tomography enjoys developments in 
compressive sensing that enable it to greatly reduce the number 
of projections of the object, compressive sensing in ptychog-
raphy is fundamentally difficult due to the necessary overlap 
constraint for solving the phase-retrieval problem. Also, in the 
case of continuous scanning, we cannot jump from one point 
to another point instantaneously; acceleration limits on optics 
and specimens demand continuous scanning. Therefore, it is 
difficult to design an acquisition scheme where we reduce the 
total length of the trajectory and acquire information uniformly 
across the whole image. In these conditions, sparse acquisition 
could be performed when we solve ptychography and tomog-
raphy problems together. We can leverage compressive sensing 
for both problems, especially when we solve those problems 
jointly. However, we need to design a separate sparse-sampling 
trajectory for each rotation angle such that they complement 
each other when reconstructing the sample in 3D.

In the past, ML has demonstrated that deep neural networks 
can replace or complement regularized solutions to problems 
for a range of imaging tasks like denoising, inpainting, super-
resolution, or deconvolution. In parallel, work on unsupervised 
methods showed how deep networks can outperform classi-
cal optimization techniques by constraining the reconstructed 
image to remain on a learned manifold. In addition to those 
studies, an ML-based approach can be used to constrain both/
either the likelihood and/or prior terms; these approaches can 
lead to a viable path to compressive sensing [45]. Although 
these types of joint-ML and physics-based solution approaches 
are getting more popular in tomography, ptychography appli-
cations are still in their infancy. This could be potentially 
related to the nonconvexity of the phase-retrieval problem in 
ptychography, which requires special attention in applying ML 
models. In addition, the training process grows proportion-

ally with the size of the degrees of freedom in the problem so 
that the application of ML methods to large-scale 3D imaging 
problems is still a challenge. Nevertheless, there are promising 
studies showing that ML-based regularization can allow for 
lifting the overlap constraint in ptychography. We believe that 
there are untapped potential uses of both trained and untrained 
deep networks for effectively constraining the solution set and 
enhancing the reconstructions. 
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