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Soils regulate the environmental impacts of trace elements, but direct

measurements of reaction mechanisms in these complex, multi-component

systems can be challenging. The objective of this work was to develop

approaches for assessing effects of co-localized geochemical matrix elements on

the accumulation and chemical speciation of arsenate applied to a soil matrix.

Synchrotron X-ray fluorescence microprobe (m-XRF) images collected across

100 mm � 100 mm and 10 mm � 10 mm regions of a naturally weathered soil

sand-grain coating before and after treatment with As(V) solution showed

strong positive partial correlations (r 0 = 0.77 and 0.64, respectively) between

accumulated As and soil Fe, with weaker partial correlations (r 0 > 0.1) between

As and Ca, and As and Zn in the larger image. Spatial and non-spatial regression

models revealed a dominant contribution of Fe and minor contributions of Ca

and Ti in predicting accumulated As, depending on the size of the sample area

analyzed. Time-of-flight secondary ion mass spectrometry analysis of an area of

the sand grain showed a significant correlation (r = 0.51) between Fe and Al, so

effects of Fe versus Al (hydr)oxides on accumulated As could not be separated.

Fitting results from 25 As K-edge microscale X-ray absorption near-edge

structure (m-XANES) spectra collected across a separate 10 mm � 10 mm

region showed �60% variation in proportions of Fe(III) and Al(III)-bound

As(V) standards, and fits to m-XANES spectra collected across the 100 mm �

100 mm region were more variable. Consistent with insights from studies on

model systems, the results obtained here indicate a dominance of Fe and

possibly Al (hydr)oxides in controlling As(V) accumulation within microsites of

the soil matrix analyzed, but the analyses inferred minor augmentation from co-

localized Ti, Ca and possibly Zn.

1. Introduction

Contamination of soils and water by toxic trace elements from

natural or anthropogenic sources threatens human and

ecosystem health. Soils regulate retention and mobilization of

trace elements mainly by pH- and redox-affected adsorption–

desorption and precipitation–dissolution reactions (Basta et

al., 2005; Borch et al., 2010; Cullen & Reimer, 1989; Fendorf et

al., 2010; Inskeep et al., 2001; McBride, 1989; Park et al., 2016).

However, directly measuring reaction mechanisms that are

important for preventing adverse environmental impacts of

trace elements is confounded by the association of minerals,

organic matter, non-crystalline inorganic solids and biota into

complex soil assemblages. Consequently, studies aimed at
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determining mechanisms of trace-element binding in soils and

other geochemical systems have often used model analogs of

isolated soil components, including synthesized minerals or

extracted humic substances (Adra et al., 2013; Brown &

Sturchio, 2002; Dixit & Hering, 2003; Ehlert et al., 2018;

Fritzsche et al., 2011; Grafe et al., 2001; Masue et al., 2007;

Mikutta & Kretzschmar, 2011; Otero-Fariña et al., 2017; Raven

et al., 1998; Silva et al., 2010; Violante & Pigna, 2002; Zeng et

al., 2008). The multicomponent complexity of soil makes it

difficult to discriminate bonding mechanisms at the level of

specificity that can be determined from model systems

(Kizewski et al., 2011).

Here we combined synchrotron m-XRF and m-XANES

analyses to study the retention of arsenic in a complex soil

matrix. Past research on As in natural geochemical matrices

such as soils, subsurface and sediments generally showed that

As retention is affected by oxidation state, with As(V) typi-

cally being sorbed to a greater extent than As(III) (Fendorf

& Kocar, 2009; Fendorf et al., 2010). Model-system studies

showed that As(V) (arsenate) is retained by inner-sphere

surface complexes on Fe-, Al- and Mn-oxides (Adra et al.,

2013; Arai et al., 2001; Di Iorio et al., 2018; Dzade & De Leeuw,

2018; Fendorf et al., 1997; Foster et al., 2003; Ladeira et al.,

2001; Manceau, 1995; Manning et al., 2002; Silva et al., 2010;

Waychunas et al., 1995; Zhu & Elzinga, 2015). Although one

can envision a direct connection between model systems

of individual geochemical components (minerals, etc.) and

natural geochemical systems containing similar components,

this connection is not straightforward. For example, research

on simple binary mixtures of model components of Fe and Al

(hydr)oxides (Antelo et al., 2015; Khare et al., 2005; Liu &

Hesterberg, 2011; Murray & Hesterberg, 2006), minerals and

organic matter (Alcacio et al., 2001; Chen & Sparks, 2018;

Davis, 1984; Hu et al., 2018; Mikutta & Kretzschmar, 2011;

Otero-Fariña et al., 2017; Sowers et al., 2018), and minerals and

microbes (Du et al., 2017; Gadd, 2010) all show non-additive

effects on the binding of phosphate or arsenate. Such non-

additive effects could limit the transferability of trace-element

binding mechanisms from model systems to soils and other

multicomponent geochemical matrices, and confound our

ability to measure specific matrix components that are

responsible for trace-element binding, redox transformations

and other reactions.

Here we present a unique combination of analytical and

statistical approaches for assessing whether retention of As

analyzed at the microscale is affected by multiple chemical

elements in soil solids that are co-localized at this analytical

scale. For example, elements in geochemical solids that are

known from model systems to affect As geochemical specia-

tion include Al in Al (hydr)oxides that adsorb As(V) or

As(III); Fe and Mn in (hydr)oxides that also adsorb As and

oxidize As(III) to As(V); C(0,�IV) in organic matter that can

reduce As(V) to As(III); and S(�II) in organic matter and

sulfide minerals that can reduce As or form As-sulfide

minerals (Anderson et al., 1976; Borch et al., 2010; Cullen &

Reimer, 1989; Fritzsche et al., 2011; Grafe et al., 2001; Jiang et

al., 2009; Manning et al., 2002; Mikutta & Kretzschmar, 2011;

Violante & Pigna, 2002). Synchrotron m-XRF imaging was

used to assess As co-localization with a suite of geochemical

matrix elements, and m-XANES was used to assess As

speciation within microscale volumes (microsites) of soil

material (Brown & Sturchio, 2002; Burton et al., 2014; Foster

& Kim, 2014; Gamble et al., 2018; Gräfe et al., 2008; Kim et al.,

2013; Kopittke et al., 2017; Langner et al., 2013; LeMonte et al.,

2017; Mikkonen et al., 2019; Serrano et al., 2015; Strawn et al.,

2002; Voegelin et al., 2007; Wovkulich et al., 2012).

Many studies have used simple, pairwise (Pearson) corre-

lation analysis of m-XRF images to infer bonding mechanisms

via co-localization of As with geochemical-matrix elements,

including Fe, Mn, S, Cu, Cr and Zn (Fan et al., 2014; Gillispie et

al., 2016; Gräfe et al., 2008; Landrot et al., 2012; Langner et al.,

2013; LeMonte et al., 2017; Mikkonen et al., 2019; Schwer

& McNear, 2011; Strawn et al., 2002; Voegelin et al., 2007).

However, simple correlations do not account for co-localiza-

tion of the matrix elements themselves, which occurs, for

example, at the molecular scale with Al and Fe in Al-substi-

tuted Fe (hydr)oxides and at the microscale when multiple

colloidal solids are physically associated. Moreover, simple

correlations do not account for spatial autocorrelation of each

element to itself as a function of distance from a given point in

the sample, e.g. moving across a concentrated ‘hotspot’ of an

element. Autocorrelation effects are expected to increase with

increasing spatial resolution of the imaging tool. In fact,

applying a simple correlation to spatially correlated imaging

data violates the assumption of independent data points across

space and can lead to unreliable significance tests and biased

parameter estimates (Beale et al., 2010). Therefore, more

advanced statistical approaches that account for the spatial

component of m-XRF data (Guinness et al., 2014; Terres et al.,

2018) should better discriminate As retention in relation to

individual geochemical matrix elements. Ultimately, inte-

grating such statistical approaches into complex-system

analyses using multiple spatio-analytical techniques, e.g.

imaging, spectroscopy, diffraction (Manceau et al., 2002),

should increase the power of such techniques in determining

trace-element binding mechanisms in complex, multi-compo-

nent geochemical systems.

Our overarching research goal is to determine how inter-

actions between multiple co-localized soil components affect

trace element reactivity. The specific objective of this research

was to develop synchrotron m-XRF and m-XANES approaches

for evaluating effects of co-localized soil matrix elements on

As retention within reactive microsites (Hesterberg et al.,

2011; Werner et al., 2017). To avoid historical effects of legacy

contaminants, we present a novel technique for directly

reacting a non-contaminated soil matrix coating on a quartz

sand grain with aqueous arsenate, and imaging the same

sample area before and after the treatment. Partial correlation

(Guinness et al., 2014) and spatial regression (Guinness, 2018;

Hoeting et al., 2006; Minasny & McBratney, 2005, 2007)

analyses were applied to multi-element images, and m-XANES

spectroscopy was used to determine chemical speciation.
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2. Materials and methods

2.1. Sand-grain collection and preparation

A sample was collected from the B horizon (40–50 cm

depth) of a forested Wagram soil (loamy, kaolinitic, thermic

Arenic Kandiudults) at the Central Crops Research Station in

Clayton, NC, USA. Soil material was scraped from a newly

exposed face of a soil pit using a glass rod to avoid metal

contamination. The sample was transported on ice and stored

in a refrigerator until used. Characterization data for the

sampled soil profile are reported elsewhere (National Coop-

erative Soil Survey Characterization Database, https://ncsslab

datamart.sc.egov.usda.gov/rptExecute.aspx?p=25542&r=1&).

The bulk soil sample had a pH of 5.5 and contained 1.2 �

0.1 g kg�1 of carbon in total and 0.1 cmol kg�1 of exchange-

able Ca. Oxalate extractable Fe and Al in this soil were 107 �

8 mg kg�1 (n = 2) and 188 � 4 (n = 2) mg kg�1, respectively.

A 30 g sub-sample was dispersed in deionized water (1:10

soil:water) by shaking on a reciprocating shaker at ambient

temperature for 0.5 h at a rate of 5.7 s�1. Sand grains collected

on a polypropylene mesh with 1 mm openings were repeatedly

rinsed with deionized water to remove fine particles, then

dried in an acrylic Petri dish under N2. All grains were handled

with plastic forceps to avoid metal contamination. For our

analyses, one quartz sand grain with an �2 mm � 1.5 mm face

containing areas of thin, reddish-colored Fe-oxide coatings on

a visibly flat surface was selected from among many grains

observed under a light microscope (see Fig. S1 of the

supporting information). The grain was physically fixed

(without glue) between two walls separated by 1.4 mm that

were machined into a polypropylene sample mount configured

for attachment to a kinematic sample holder for the Sub-

micron Resolution X-ray Spectroscopy (SRX) beamline (5-

ID) at the National Synchrotron Light Source II (NSLS-II),

Brookhaven National Laboratory in Upton, NY, USA (Chen-

Wiegart et al., 2016).

2.2. Micro-X-ray fluorescence imaging

Spatial distributions of chemical elements in the sand-grain

coating were imaged using m-XRF analysis at the SRX

beamline. Images were collected from the same 100 mm �

100 mm, reddish-colored region (ROI-100; Fig. S1) before and

after treatment with aqueous As(V). The�1 mm� 1 mm beam

of 13.5 keV incident energy was step scanned using a 0.5 s

dwell time. For data management, 25 m-XRF elemental images

of 20 mm � 20 mm sub-areas were collected in sequence and

batch-stitched into each composite image of ROI-100.

However, one sub-area image was inadvertently omitted

during data collection after As(V) treatment, giving a dataset

with a total of 38 400 voxels for the treated sample. Also,

because the images collected before and after the As(V)

treatment were misaligned in the vertical (by 9.5 mm), the

images collected before and after treatment were aligned

statistically by shifting one vertically in 0.5 mm steps so that

the absolute error of differences in Ti fluorescence signals

between images was minimized. This shift also decreased the

number of voxels for statistical analyses to 34 284. We also

collected a m-XRF image of a 10 mm� 10 mm subregion (ROI-

10a) of ROI-100 from the As(V)-treated sample at 12.1 eV

incident energy, the highest energy of a three-dimensional

(x, y, energy) m-XANES stack that we collected but have not

presented here. The aim of analyzing m-XRF data from ROI-

10a was to increase the likelihood of detecting any effects of

Ti, Ca, Mn, Ni, Zn and Cu on As accumulation, given that the

Fe fluorescence signal was less dominant than signals from

these other matrix elements. For all m-XRF images, the full

fluorescence spectrum from a multichannel analyzer (MCA)

for each voxel was fit using the PyXRF software (Li et al.,

2017) to extract element-specific fluorescence intensities.

Details can be found in the Additional Methods section of the

supporting information.

Our unique sampling approach provided a means to image

the effects of a chemical treatment on a thin layer of soil

matrix while avoiding the use of chemical resins.

HEPHAESTUS software (Ravel & Newville, 2005) calcula-

tions indicated that a 13.5 keV incident X-ray beam is atte-

nuated by 95% after passing through 1 mm of the quartz core

of a sand grain, so only the front-surface coating was imaged.

Effectively, the grain coating is a naturally thin section,

although it is likely to have microscale thickness variations

across the imaged area.

2.3. As(V) treatment

After imaging ROI-100 of the non-treated sand grain, the

kinematic sample holder was removed from the sample stage

to treat the sand grain with As(V) solution under ambient

conditions. The mounted grain was first covered with a 150 ml

drop of deionized water for 30 min to hydrate, then the excess

water was carefully removed via capillarity by touching the

side of the drop with a Kimwipe without touching the imaged

surface. The moistened grain was treated with a 150 ml drop of

0.1 mM KH2AsO4 in a 0.1 mM KCl background solution,

which was pre-adjusted to pH 5.0 to approximately match the

pH of the soil. Preliminary experiments showed that this As

concentration gave contrasting fluorescence signals across

such grains. After equilibrating for 35 min, the As(V)-treat-

ment solution and four subsequent 150 ml rinses with de-

ionized water were recovered with the pipet and combined for

analysis of any dissolved or weakly bound As using inductively

coupled plasma optical emission spectrometry (ICP-OES).

Based on a dissolved As concentration of 3.6 mM in the

recovered sub-sample of �600 ml of aqueous As(V) plus

rinsate solutions that was measured gravimetrically to the

nearest 0.0001 g, the total As accumulated on the sand grain

determined based on loss from solution was �0.0128 mmol or

�85% of applied As(V). The sand grain was dried in an N2-

purged glovebox chamber maintained for 1 h under a weak

vacuum of �20 kPa, which was applied incrementally to avoid

boiling. The kinematic holder with the dried grain was re-

mounted on the beamline stage, and re-aligned by coarse

mapping a small area around an Fe hotspot before collecting a

post-treatment m-XRF image across ROI-100.
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2.4. Micro-XANES spectroscopy and linear combination
fitting

As K-edge m-XANES spectra were collected from the

As(V)-treated sand grain using the NSLS-II X-ray Fluores-

cence Microprobe (XFM) beamline, with an �2 mm � 2 mm

spot size. The Si(111) monochromator was calibrated to

11875 eV at the white-line peak of As(V) imaged in a micro-

metre-sized inclusion in a topaz crystal. Details of the data

collection and analysis methods are summarized in the

supporting information.

Spectra were collected at each of six locations (spectra 1L–

6L) across a 200 mm� 200 mm region (ROI-200) that included

ROI-100 imaged at the SRX beamline (Fig. S2). The spectrum

for location 6L represents an average of 25 spectra collected

across a 10 mm � 10 mm area within ROI-200. Also, 25 indi-

vidual spectra were separately collected from a 10 mm �

10 mm subregion (ROI-10b) within ROI-200 (Fig. S3), which

showed a concentration gradient of elements, in particular

As and Fe. All m-XANES spectra were collected between

11767 eV and 12117 eV, with a minimum step size of 0.5 eV

across the edge region and 10 s dwell times.

The m-XANES spectra were analyzed using the ATHENA

software (Ravel & Newville, 2005) and established procedures

(Kelly et al., 2008). The spectra were baseline subtracted using

a linear function between �100 eV and �30 eV relative to the

first-derivative maximum (E0), normalized using a linear

function between 40 eV and 240 eV, and flattened to remove

quadrature. Linear combination fitting (LCF) analyses of m-

XANES spectra were performed across an energy range from

�10 eV to 25 eV relative to E0. Fitting standards that were

considered to be representative model analogs of possible

species found in soils included spectra from ten adsorbed

As(V) or As(III) standards that were collected previously at

unfocused beamlines – X11A, X11B or X18B (Lopez et

al., 2018) – and m-XANES spectra from scorodite and an

arsenate–ferrihydrite coprecipitate (co-ppt) collected at the

XFM beamline along with our sample spectra (Table S1 and

Fig. S4 of the supporting information). Spectra from the

unfocused beamlines were calibrated by simultaneously

collecting data from an As(0) powder reference (E0 =

11 867 eV) or an Au foil (E0 = 11 919 eV). Reported fits were

obtained using a modification of the standard-elimination

approach (Manceau et al., 2012), with combinatoric fitting

(Kelly et al., 2008) performed as a consistency check for fits to

spectra 1L–6L (details are given in the supporting informa-

tion).

2.4.1. Geochemical-based merging of As m-XANES spectra.

For LCF analysis of the 25 m-XANES spectra from ROI-10b,

we used a unique approach of grouping m-XANES spectra

according to microsite chemistry. Because As was largely

correlated with Fe accumulation across ROI-100 (discussed

below), and As(V) is known to have a high affinity for Fe(III)-

(hydr)oxides, we assumed that As speciation within our soil

microsites would vary with Fe content. Therefore, As spectra

were grouped into four quartiles based on Fe fluorescence

signals intensities: ‘high Fe’ (75–100% of the maximum Fe

signal), ‘medium high Fe’ (50–75% of maximum), ‘medium

low Fe’ (25–50% of maximum) and ‘low Fe’ (0–25% of

maximum); see Fig. S3. The six or seven As m-XANES spectra

from voxels grouped into each Fe quartile were merged before

normalizing to effectively yield a signal-weighted average

of diminished spectral noise, then normalized as described

above. The modified standard elimination procedure

described in the supporting information showed that these

four merged spectra could all be fit with combinations of two

standards: our arsenate-ferrihydrite coprecipitate and As(V)

adsorbed on boehmite. These two standards were subse-

quently used to fit the 25 individual m-XANES spectra.

2.5. TOF-SIMS analysis

Spatial distributions of Al and Fe were analyzed on the

As(V)-treated sand grain by time-of-flight secondary ion mass

spectrometry (TOF-SIMS) (TOF SIMS V instrument, ION

TOF, Inc. Chestnut Ridge, NY, USA), with a pixel size of

0.39 mm � 0.39 mm and estimated penetration depth of 3 nm.

Using an optical microscope, a 100 mm � 100 mm region was

selected, which, based on physical features, was visually

judged to be close to or overlapping the m-XRF-imaged region

ROI-100. Surface contamination was first removed by sput-

tering for 20 s with the Bi ion beam used in TOF-SIMS

analysis, then mass spectral images of Al+ and Fe+ were

collected (NCSU-AIF, 2018). Arsenic was not detected. Data

were collected as a 256 � 256 voxel image and the acquisition

time at each voxel was 60 ms.

2.6. Statistical analyses

The m-XRF intensity data normalized to the incoming X-ray

intensity (I0) at the SRX beamline were transformed using a

natural log to approximate a normal distribution, which is

a criterion for conducting linear correlation and regression

models. Natural log transformations also augmented visuali-

zation of data points in statistical plots, given the orders-of-

magnitude variations in m-XRF signals for many elements

in the images that we collected. Statistical relationships were

developed between natural log-transformed As accumulated

in ROI-100 or ROI-10a versus soil matrix elements imaged

before the As(V) treatment. We chose to analyze As accu-

mulation in relation to m-XRF signals of matrix elements

before treatment to obtain more reliable information about

the initial spatial distribution of native soil matrix elements

with which the applied As(V) first reacted. We observed minor

changes in spatial patterns of Ca, Cu, Cr and Zn after the

As(V) treatment (discussed below). Analyses included simple

(Pearson) correlation as has been conventionally used for

m-XRF data, partial correlation to remove effects of other

co-localized matrix elements and multivariate regression

modeling with or without spatial statistical analyses that

accounted for autocorrelation of elements. These approaches

were also used to evaluate the 25 m-XANES fitting results

from ROI-10b with respect to fluorescence signals of matrix

elements, which were only imaged after the As(V) treatment

at the XFM beamline.
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Four specific multivariate regression models were evaluated

for predicting m-XRF intensities of accumulated As from

intensities of soil matrix elements in ROI-100 and ROI-10a:

(i) a simple multiple linear regression model (independent

error model), (ii) a spatial-likelihood linear regression model

(spatially correlated error model) (Guinness, 2018; Guinness

et al., 2014; Minasny & McBratney, 2005, 2007), (iii) a non-

linear (second-order polynomial) regression model and (iv) a

spatial-likelihood non-linear (second-order polynomial)

regression model. All models were fit using R statistical soft-

ware. Unlike simple (‘non-spatial’) linear regression models,

the spatial-likelihood linear and non-linear models (‘spatial

models’) were used to account for the spatial autocorrelation

in the residuals (Beale et al., 2010). These residuals were

assumed to follow a Gaussian process and a Matérn isotropic

covariance function (Guinness, 2018), which induces spatial

correlation based on distance (Guinness, 2018; Minasny &

McBratney, 2005, 2007). The Matérn covariance function

describes the spatial covariance of a random variable process,

i.e. the covariance between measurements at two points

separated by a given distance. Three non-negative parameters

in the covariance function were variance, range and smooth-

ness. Variance measures the deviation of a random variable

from its mean, range represents the distance to which data are

correlated, and smoothness reflects the steepness of variations

with distance (Minasny & McBratney, 2005). The spatial

likelihood models were fit using a composite likelihood

approach (Guinness, 2018). Backward variable selection was

based on the Akaike Information Criteria (AIC), which esti-

mates the relative quality of each statistical model for a given

set of data (Snipes & Taylor, 2014), to parameterize linear

effects of matrix elements, and these mean parameters were

further tested for their significance at � = 0.05. Once the

significant matrix elements that described As accumulation

were selected from the linear spatial model, only these

elements were included in non-spatial linear models (with

or without interaction terms) and a non-linear model for

predicting As fluorescence intensities. Variable selection

procedures were conducted independently for non-spatial

and spatial models.

3. Results

3.1. Spatial patterns of soil matrix elements and accumulated
arsenic

Micro-XRF images of ROI-100 and ROI-10a on the sand

grain are shown in Figs. 1 and 2. TOF-SIMS images of Fe+ and
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Figure 1
Micro-XRF images of As [before and after a 0.1 mM As(V) treatment] and soil matrix elements (before treatment) collected on the SRX beamline,
along with TOF-SIMS images of Fe and Al collected on the As(V) treated sand grain. These images represent ROI-100, which had visible Fe-oxide
coatings (Fig. S1). In m-XRF images, scale bars show that brighter colors in the image represent greater natural log-transformed fluorescence signals for a
given element in imaged soil volumes (microsites), and the linear scale bar in TOF-SIMS images indicates greater ion counts. The red square in the As
image after treatment delineates ROI-10a, a 10 mm � 10 mm sub-region of ROI-100.



Al+ collected in or near ROI-100 are included in Fig. 1 for

comparison. Prior to the As(V) treatment, ROI-100 showed

a uniform distribution of background As m-XRF signals

[IAs /I0 � exp(22) counts s�1, or ln(IAs /I0) � 22]. In contrast,

heterogeneous spatial patterns and element-enriched

‘hotspots’ are seen for most of the soil-matrix elements imaged

before treatment, including Fe, Ti, Ca, Zn, Cu and Cr (Fig. 1).

The pattern for Si likely contains contributions from both the

quartz core of the sand grain and any Si associated with

minerals in the coating. After the As(V) treatment, m-XRF

signals for As increased by up to an order of magnitude or

more compared with those before treatment, but still

remained more than an order of magnitude lower than the

dominant Fe signals. For example, the maximum As K�
fluorescence signal in ROI-100 after treatment was

exp(24) counts s�1 compared with exp(27) counts s�1 for Fe.

Overall, the spatial pattern of accumulated As was similar to

those of Fe and Ti, and to a lesser extent Ca and Zn, in ROI-

100 (Fig. 1). For ROI-10a, the As spatial pattern was most

similar to those of Fe, Ca, Cu and Zn (Fig. 2). TOF-SIMS

images showed similar spatial patterns for Fe and Al (Fig. 1),

and these elements were significantly correlated (r = 0.51). It is

noteworthy that spatial patterns of Ca, Zn, Cu and Cr showed

minor visible changes after As(V) treatment, suggesting that

the treatment partially mobilizes these elements (Figs. S5 and

S6). Co-localization of matrix elements (e.g. Fe and Al, Fe and

Ti, or Zn and Cu) within soil microsites illustrates the chal-

lenge of identifying which specific soil components containing

these elements promoted, inhibited or had no effect on As

accumulation. We used more advanced statistical analyses

(partial correlation and spatial regression) of m-XRF image

data to address this challenge.

3.2. Correlations of arsenic and soil matrix elements

Consistent with visible similarities of spatial patterns,

accumulated As in ROI-100 showed the strongest simple

(Pearson) correlations with Fe, Ti and Ca (r = 0.85, 0.52 and

0.33, respectively, see Table 1; Fig. S7). However, such pairwise

correlations neglect effects of co-localization of these matrix

elements themselves on As accumulation (Guinness et al.,

2014; Terres et al., 2018). Partial correlations in Table 1 sepa-

rate confounding effects of all other elements in each pairwise

correlation (Guinness et al., 2014). For the most highly

correlated element pairs from ROI-100, partial correlation

coefficients (r 0) decreased relative to Pearson correlation

coefficients in the order As–Ti (r = 0.52, r 0 = 0.05) > As–Ca (r =

0.33, r 0 = 0.11) > As–Fe (r = 0.85, r 0 = 0.77), but also increased

for As–Zn (r = 0.05, r 0 = 0.11) (Table 1). Thus, the higher

Pearson correlations between As and Ca or Ti are largely due

to their shared correlation with Fe (e.g. r = 0.58 for Fe–Ti and

r = 0.31 for Fe–Ca; Fig. S7). Likewise, a decrease in the partial

correlation coefficient for As–Fe relative to its simple corre-

lation coefficient indicates that this pairwise relationship was

also significantly affected by other co-localized elements,

particularly Ti, Ca and Zn in ROI-100. However, an increase

in the partial correlation coefficient for As–Zn relative to the

simple correlation coefficient indicates that accounting for co-

localized element effects amplified the As–Zn correlation. In

fact, a strong linear trend between the natural-log transformed

As and Zn signals for moderate Fe signals is visible in the

middle cluster of the As–Zn correlation plot in Fig. S7. Partial

correlations between other element pairs in ROI-100 were

statistically significant (� = 0.05) because of the large number

of observations (n = 34 284, Table 1).

For ROI-10a, accumulated As was most highly correlated

with Fe, Ca, Zn and Cu; but partial correlations were only

significant between As and Fe (r = 0.97, r 0 = 0.64) and As

and Ca (r = 0.90, r 0 = 0.22; Table 1). The non-significant

partial correlation between As and Ti in ROI-10a compared

with ROI-100 is probably due to the order of magnitude
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Figure 2
Spatial patterns of m-XRF signals for As and selected soil matrix elements
collected on the SRX beamline from a 10 mm � 10 mm sub-region (ROI-
10a) of ROI-100 of the As(V) treated sand grain. Scale bars show that
brighter colors represent greater natural log-transformed elemental
fluorescence signals, generally corresponding to greater relative concen-
trations within imaged soil volumes (microsites).

Table 1
Pearson correlation and partial correlation coefficients between natural
log-transformed arsenic m-XRF signals and those of soil matrix elements
across a 100 mm � 100 mm region of a sand-grain coating (ROI-100) and
10 mm � 10 mm sub-region (ROI-10a).

ns: non-significant at � = 0.05. *: significant at � = 0.05.

ROI-100
(No. of observations = 34284)

ROI-10a
(No. of observations = 100)

Matrix
element

Correlation
(r)

Partial correlation
(r 0)

Correlation
(r)

Partial correlation
(r 0)

Fe 0.85* 0.77* 0.97* 0.64*
Ti 0.52* 0.05* 0.68* �0.03ns

Ca 0.33* 0.11* 0.9* 0.22*
Mn �0.11* �0.01ns 0.38* �0.05ns

Cr 0.11* 0.08* 0.23* �0.13ns

Si 0.09* �0.05* 0.58* 0.16ns

Cu �0.08* �0.07* 0.92* 0.14ns

Zn 0.05* 0.11* 0.85* 0.05ns

Ni �0.03* 0.07* 0.49* �0.06ns



lower maximum fluorescence signals for Ti in ROI-10a

(Figs. 1 and 2).

3.3. Regression models for predicting arsenic accumulation

Spatial regression models that account for autocorrelation

in predicting accumulated As in ROI-100 and ROI-10a based

on m-XRF signals of soil matrix elements in Figs. 1 and 2 are

compared with non-spatial models in Table 2. All eight spatial

and non-spatial regression models that we evaluated for ROI-

100 are parameterized in Table 2, and the predictive models

compared are shown in Figs. 3 and S8. Eight different

regression models were included: (1) a simple (non-spatial)

multiple linear regression model (full model); (2) and (3)

spatial likelihood linear models that included all predictors

from equation (1) (full model) and only significant predictors;

(4) a non-spatial model that included only significant predic-

tors selected from spatial model (2); (5) and (6) spatial and

non-spatial models – with and without interaction terms – that

included only significant predictors from model (2); (7) and (8)

spatial and non-spatial, non-linear (second-order polynomial)

models. Spatial models gave minimal (more negative) AIC

values but yielded a lower R2, whereas non-spatial models

gave greater AIC values relative to spatial models but

necessarily yielded greater R2 values (Table 2) and provided

better in-sample predictions (Figs. 3 and S8). The improve-

ment in R2 occurred in the non-spatial models because the

regression coefficients in these models minimize the sum of

squared errors, whereas the regression coefficients in the

spatial models do not minimize the sum of squared errors and

thus yielded lower R2 values.

A linear, non-spatial model [equation (1) in Table 2]

showed that m-XRF signal intensities for Fe, Ti, Ca, Cr, Si, Cu,

Zn and Ni were all significant predictors of As signal inten-

sities (R2 = 0.73) in ROI-100. It would be difficult to draw

physical inferences about possible soil components binding As

from a statistical model with so many predictors. However, the

number of significant predictors diminished to three (Fe, Ti

and Ca fluorescence intensities) in a linear spatial model

that accounted for autocorrelation [equations (2) and (3) in

Table 2], i.e. the decrease in correlation of the error to itself as

a function of distance from a given voxel (see variogram in

Fig. S9). Note that including or excluding non-significant

variables yielded essentially the same parameters in these

spatial models. Because these models account for auto-

correlation, they provide a more robust test for selecting

significant predictor variables (i.e. m-XRF signal intensities of

matrix elements) than is obtained using a non-spatial model

(Beale et al., 2010). The importance of accounting for spatial

autocorrelation to improve the selection of predictor variables
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Figure 3
Scatter plots of predicted versus measured natural log-transformed
arsenic m-XRF signals for selected spatial (plots 1, 3) and non-spatial
(plots 2, 4) predictive models developed for ROI-100 (plots 1, 2) and
ROI-10a (plots 3, 4). Plots 1 and 2 correspond with equations (3) and (4)
in Table 2 and plots 3 and 4 correspond with equations (10) and (9) in
Table 3; the 1:1 lines are plotted to compare predictions.

Table 2
Regression models developed for predicting As accumulation in ROI-100 based on m-XRF fluorescence signals of soil matrix elements.

ns: elements that are non-significant at � = 0.05.

Equation
number Models Comment AIC R2

(1) As =�5.69 + 0.84 Fe + 0.19 Zn + 0.1 Ca + 0.11 Ni – 0.1 Cu + 0.08 Cr� 0.07 Si +
0.04 Ti + error

Non-spatial model (all predictors) �23477.6 0.73

(2) As = 13.03 + 0.35 Fe + 0.02 Ti + 0.02 Zn(ns) + 0.01 Ca� 0.01 Si(ns)
� 0.003 Cu(ns)

+ 0.002 Cr(ns)
� 0.002 Ni(ns) + error

Spatial model (all predictors) �43551.3 0.47

(3) As = 13.27 + 0.35 Fe + 0.02 Ti + 0.01 Ca + error Spatial model (significant predictors) �43555.3 0.47
(4) As = �1.27 + 0.84 Fe + 0.12 Ca + 0.04 Ti + error Non-spatial model (significant predictors) �22453.1 0.72
(5) As = 83.78 � 2.57 Fe � 1.84 Ti – 1.38 Ca + 0.08 Fe*Ti + 0.06 Fe*Ca + error Spatial model (interaction terms) �43630.8 0.48
(6) As = 58.12 � 4.2 Ca � 1.6 Fe + 1.58 Ti + 0.18 Fe*Ca � 0.06 Fe*Ti + error Non-spatial model (interaction terms) �22695.7 0.73
(7) As = 132.58� 6.16 Fe + 0.13 Fe2

� 2.21 Ca + 0.05Ca2
� 1.47 Ti + 0.03 Ti2 + error Spatial model (polynomial) �43761.4 0.47

(8) As = 22.31 + 49.44 Fe� 0.08 Fe2 (ns) + 4.45 Ca + 1.12 Ca2 + 1.82 Ti + 0.10 Ti2 (ns)

+ error
Non-spatial model (polynomial) �22488.7 0.72



in spatial models is described by Hoeting et al. (2006).

However, the spatial model did not predict As as well as the

non-spatial model [Fig. 3 (plot 1) versus Fig. S8 (plot 1)].

Therefore, we used the signals of Fe, Ti and Ca that were

selected as significant predictors from equation (2) to derive

the non-spatial model for ROI-100 [equation (4) in Table 2;

Figs. 3 (plot 2)], which necessarily has a higher R2. Also note

that the inclusion of only three predictor elements in equation

(4) explained 72% of the variation in As fluorescence, whereas

the inclusion of eight predictors in equation (1) explained only

73% of the variation. This shows that the addition of more

variables in a model does not necessarily improve model

prediction and justifies accounting for autocorrelation via a

spatial model to select significant predictor variables for

inclusion in a non-spatial model.

Using the same predictor variables selected from equation

(2), we also developed spatial and non-spatial models that

included interaction terms for Fe*Ti and Fe*Ca, which were

significant [equations (5) and (6) in Table 2]. Finally, we

evaluated any nonlinear effects of Fe, Ti and Ca by developing

second-order polynomial models [equations (7) and (8) in

Table 2]. All three predictor variables were significant in the

non-linear spatial model, but only Ca was a significant

predictor of As in the non-linear, non-spatial model. Never-

theless, R2 values in Table 2 indicate that the linear model in

equation (4) gave equal or better predictions of As m-XRF

signals than linear models with interaction terms [equations

(5) and (6)] or non-linear models [equations (7) and (8)], and

equation (4) is the simplest model.

Similar to the approach described above, we used a linear

spatial regression model to determine the significant predic-

tors for a non-spatial model for m-XRF data from ROI-10a

[equations (9) and (10) in Table 3]. In this case, both non-

spatial [equation (9)] and spatial [equation (10) in Table 3]

linear models showed only Fe and Ca (not Ti or other

elements) as significant (� = 0.05; n = 100) predictors of As

accumulation based on m-XRF signal intensities. Both models

gave comparable predictions based on R2 values and visibly

consistent scatter plots of predicted versus measured m-XRF

signals for As (Fig. 3, plots 3 and 4; Fig. S10), which might

be due to the small spatial range. Like ROI-100, the inclusion

of a statistically significant Fe*Ca interaction term in the linear

spatial and non-spatial models [equations (11) and (12)] and

non-linear models [equations (13) and (14)] gave comparable

predictions as the simple linear model [equations (9) and

(10)], even though the inclusion of more predictor variables

in the models necessarily gave marginally greater R2 values

(Table 3). Overall, the significant regression coefficients on m-

XRF signals of matrix elements in our predictive non-spatial

models [equations (4) and (9)] inferred that Ca and Ti

augmented As retention in the sand-grain coating, but these

elements were only 15% and 5% as effective as Fe in

promoting As accumulation, respectively.

3.4. Spatial-dependent soil arsenic speciation

Fluctuations in As K-edge m-XANES spectra and LCF

results from six spots across ROI-200 (Fig. 4, Table 4) and 25

voxels within ROI-10b (Figs. 5 and 6, Table S2) indicated

variations in soil As speciation across imaged regions of the

sand-grain coating. Most of the m-XANES spectra had a

strong white line near 11875 eV, showing a dominance of

As(V). Although the spectra had only minor differences in

spectral features, variations in white-line intensities or

broadening of the white lines in Figs. 4(a) and 5 indicate

differences in As speciation between the soil microsites

analyzed. Consistent with the strong positive correlation of As

and Fe, the level of noise in individual spectra as shown in

ROI-10b increased with decreasing relative Fe (and As)

content (Fig. 5). Differences in As speciation between six

spots separated by up to �140 mm across ROI-200 (Fig. S2)

are indicated by variations of up to 31% in proportions of five

fitting standards (Fig. 4, Table 4). Three standards containing

As(V) bonded with Fe [As(V)-ferrihydrite coprecipitate,

As(V) adsorbed on goethite or As(V)–Fe(III)-peat complex]

accounted for 46–77% of the m-XANES spectral features

across these spots, and two standards of As(V) bonded with Al

[As(V) adsorbed on boehmite or in mansfieldite] accounted

for the remaining 23–54% of spectral features. It is important

to note that variations in proportions of fitting standards are

best interpreted as showing variations in relative (rather than

absolute) speciation of As. For example, it seems unlikely that

the mineral mansfieldite (AlAsO4�2H2O) formed during the

35 min contact time of our As(V) treatment, but perhaps this

standard has spectral features that are similar to other Al-

bonded As species in our sample that are not represented by

our selected fitting standards. Also, it is important to point out

that standards included in LCF analysis showed only minor

differences in spectral features [Figs. 4(b) and S4], thus

interpretations of fits in terms of definitive speciation should

be made with caution. Nevertheless, because different fitting

approaches always yielded similar LCF results, we have
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Table 3
Regression models developed for predicting As accumulation in ROI-10a based on m-XRF fluorescence signals of soil matrix elements.

Equation
number Models Comment AIC R2

(9) As = �30.71 + 1.87 Fe + 0.28 Ca + error Non-spatial model �77.01 0.94
(10) As = �26.49 + 1.79 Fe + 0.18 Ca + error Spatial model �100.58 0.93
(11) As = �431.28 + 17.82 Ca + 17.60 Fe � 0.69 Fe*Ca + error Spatial model �109.29 0.95
(12) As = �456.20 + 19.02 Ca + 18.45 Fe � 0.73 Fe*Ca + error Non-spatial model �104.71 0.96
(13) As = �221.20 + 16.79 Ca � 0.37 Ca2 + 2.13 Fe + error Spatial model �107.94 0.95
(14) As = �11.53 + 2.09 Fe + 0.68 Ca � 0.85 Ca2 + error Non-spatial model �105.052 0.96



confidence that the LCF fitting results reported are the most

suitable models based on the standards used and indicate the

existence of variability in As speciation across the imaged

region.

Results of LCF analysis of 25 As m-XANES spectra from

within ROI-10b, which were constrained to two standards,

showed means of 67 � 14% [coefficient of variation (CV) =

21%] of an As(V)-ferrihydrite (co-ppt) standard and 33 �

14% (CV = 42%) of a standard of As(V) adsorbed on boeh-

mite (Table S2). Images of the proportions of these two

standards in LCF results for microsites across ROI-10b (Fig. 6)

showed the most similar spatial patterns between the

proportions of the As(V)-ferrihydrite

(co-ppt) standard and m-XRF signals for

Ca and Zn. However, we found no

significant partial correlation between

the fitted proportions of either of the

two standards included in m-XANES fits

and m-XRF signals from Fe or other

elements imaged within ROI-10b. Also,

a non-spatial regression model that

included m-XRF signals of Ca as the

significant predictor yielded overall

poor predictions (R2 = 0.26) of fitting

results (data not shown). These results

indicate that speciation constrained to

the two selected standards was not tied

to any particular element in ROI-10b.

4. Discussion

4.1. Discriminating multiple-element
contributions to arsenic accumulation

Our approach of using synchrotron

m-XRF to image the same area of a soil

sand-grain coating before and after

treatment with As(V) solution provides

insights into short-term reactions that

can occur in soils. Arsenic species

formed in the short term can transform

into other, presumably more stable,

species over time (Arai et al., 2006;

Rahman et al., 2017). Partial-correlation

and spatial-regression analyses of m-

XRF image data effectively decoupled

correlations between co-localized

matrix elements within soil microsites,

and thereby provided a more robust

statistical analysis showing that Fe along

with Ca, Ti and Zn to a lesser extent

were most highly correlated with As

accumulation, depending on the sample

area analyzed [Table 1; equations (3)

and (4), and (9) and (10)]. In light of

model-system studies that showed high-

affinity, inner-sphere surface complexa-

tion of arsenate by Fe in Fe(III)

(hydr)oxides (Di Iorio et al., 2018; Dzade & De Leeuw, 2018;

Fendorf et al., 1997; Manceau, 1995; Waychunas et al., 1995), a

strong As–Fe correlation for our sand-grain coating infers (but

does not definitively show) that arsenate binding by Fe

(hydr)oxides is a likely mechanism of As retention. This

inference is corroborated by m-XANES LCF results showing

	50% of Fe-bonded standards contributing to fits in 5 of 6

spots analyzed across ROI-100 (Table 4) and 21 of 25 spots

within ROI-10b (Table S2). However, based on a significant (r

= 0.51) spatial correlation between Al and Fe from TOF-SIMS

analysis (Fig. 1) and m-XANES results showing that Al-

bonded standards accounted for the remaining 31–64% of fits
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Table 4
Linear combination fitting results showing best-fit combinations of standards for As m-XANES
spectra collected from six As-enriched spots across a 200 mm � 200 mm region of the sand grain
(ROI-200; fits are overlaid on data in Fig. 4).

Spot

Proportions of standards � uncertainty

R-factor

As(V)-
ferrihydrite
(co-ppt)

As(V)-
goethite

As(V)-
Fe-peat†

As(V)-
boehmite

Mansfieldite
(AlAsO4�2H2O)

1L 77 � 8 23 � 8 0.0141
2L 61 � 5 39 � 5 0.0046
3L 64 � 5 36 � 5 0.0047
4L 46 � 6 54 � 4 0.0113
5L 58 � 4 42 � 4 0.0042
6L 59 � 4 31 � 4 10 � 4 0.0027

† As(V) sorbed on peat that was pretreated with 2400 mmol Fe kg�1.

Figure 4
(a) Stacked As K-edge m-XANES spectra collected on the XFM beamline from individual As-
enriched spots across a 200 mm� 200 mm region (ROI-200, see Fig. S2) of the sand grain, along with
overlaid fits (points) as given in Table 4; and (b) arsenic standards that were included in best fits to
sample spectra from different spots.



(Tables 4 and S4), we deduced that Al (hydr)oxides also

contributed substantially to As(V) accumulation in soil

microsites. The significance of Al relative to Ca, Ti and Zn in

augmenting As accumulation could not be determined directly

from our statistical analyses because we could not detect Al

signals in our m-XRF imaging. Although Ca was also a

significant predictor of accumulated As, our single Ca-

arsenate standard [Ca3(AsO4)2; Table S1] was not identified

in m-XANES fits for any of the microsites analyzed (Tables 4

and S4).

Overall, our collective results suggest that up to five

elements (Fe, Al, Ca, Ti and Zn) augmented As accumulation

in the sand-grain coating analyzed. It is easy to infer from

model-system research that Fe and Al (hydroxides) in the

coatings adsorbed arsenate (Adra et al., 2016; Goldberg &

Johnston, 2001; Manning & Goldberg, 1996; Silva et al., 2010).

A significant (� = 0.05) pairwise Pearson correlation between

Fe and Al (r = 0.51) from TOF-SIMS analysis indicates that Fe

and Al (hydr)oxides were at least partially co-localized within

microsites. However, we cannot determine at the spatial scale

of our m-XRF data (�1 mm � 1 mm microsites of variable

thickness) whether Fe- and Al-bearing solids were in distinctly

separated phases within microsites versus associated into

complex, submicrometre-sized assemblages or if Al was co-

precipitated by atomic scale isomorphic substitution into Fe

(hydr)oxide phases (Schwertmann & Taylor, 1989). Moreover,

explaining possible mechanisms by which Ca, Ti or Zn

augmented As accumulation would require analyses that are

more targeted to these elements, e.g. m-XAS analyses at the

Ca, Ti and Zn K-edges. The partial correlation and multi-

variate spatial-regression modeling approach presented here

would help to focus such studies. Finally, it is important to

recognize that elements such as organic carbon that are not
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Figure 6
Spatial patterns of selected soil matrix elements and proportions of two
standards – As(V) co-precipitated with ferrihydrite and As(V) adsorbed
on boehmite – derived from linear combination fits to As m-XANES
spectra collected from each voxel in ROI-10b of the As(V) treated sand
grain. The top left image shows the voxels belonging to high, medium-
high, medium-low and low quartiles of Fe fluorescence signals. Brighter
colors in the elemental images indicate greater I0-normalized fluores-
cence intensities, with maximum intensities (arbitrary units) of 0.00882
(Fe), 0.00057 (As), 0.00018 (Ca), 0.00038 (Mn) and 0.00026 (Zn). Brighter
colors for linear combination fits indicate greater proportions of each
given standard, ranging from 5% to 95%.

Figure 5
Twenty-five As K-edge m-XANES spectra collected on the XFM beamline from ROI-10b and merged spectra from each quartile along with overlaid fits
(points) as given in Table S2, and spectra of As standards included in the final linear-combination fits. Stacked spectra are plotted in four groups
categorized according to the quartiles of Fe fluorescence signal.



detected by a given analysis might also affect As accumula-

tion, as we deduced for Al.

4.2. Using chemical-based imaging to enhance m-XANES
analysis

Within soils, more than 95% of strongly bound trace

elements typically occur in solid phases. However, minor

changes in aqueous concentrations can have a dispropor-

tionate effect on element toxicity (Hesterberg, 1998; McBride,

1989). Consequently, soil regions of lower trace-element

content, i.e. ‘coldspots’, could potentially be important in

terms of their contribution to element mobility. For example,

in a water-saturated soil of 50% porosity with an average

particle density of 2.7 g cm�3 and containing As at the world

median content of 6 mg kg�1 solids (Sparks, 2003), mobiliza-

tion of only 0.6% of the total soil As would contribute 100 mg

As l�1 to the soil solution. This level is one order of magnitude

greater than the World Health Organization (WHO) provi-

sional guideline value of 10 mg l�1 of As in drinking water

(https://www.who.Int/water_sanitation_health/publications/

arsenic/en/).

One challenge in m-XANES analyses of soil trace elements

is to obtain high-quality spectra from coldspots of lower-

element content. Consequently, selection of sample points

(microsites) for analyses are often biased toward more

concentrated ‘hotspots’ to obtain higher-quality (lower-noise)

spectra. It is difficult to know whether trace-element specia-

tion analyses from localized hotspots are representative of the

overall speciation in a geochemical matrix (Toner et al., 2014),

especially if contributions of species in coldspots collectively

contribute a significant amount of mobilizable trace elements.

Nicholas et al. (2017) addressed this issue by first performing

LCF analysis of m-XANES spectra from As hotspots in sedi-

ments to identify energies of unique features corresponding to

different As species [As-sulfides versus As(III) versus As(V)

species]. Then they performed speciation mapping at these

energies across hundreds of thousands of image pixels in

surrounding regions of lower As content, and applied corre-

lation-distance hierarchical clustering to assess similarities of

spectral features across these sample regions. Their results

showed that As speciation was spatially correlated, but also

varied with the localized geochemistry of sediment microsites,

including Fe speciation and relative proportions of As, Fe

and S.

In contrast to the analyses caried out by Nicholas et al.

(2017), whereby different As species produced unique m-

XANES spectral features that were separated in energy by

up to 7 eV, our data show a dominance of As(V) species with

only minor differences in spectral features (Table 4; Fig. S4).

To characterize As speciation in coldspots under these

constraints, we proposed, based on insights from spatial

statistical modeling, to first merge m-XANES spectra from soil

microsites of similar chemical composition to obtain higher-

quality spectra for selecting appropriate fitting standards.

Fitting of spectra from individual pixels across the imaged

region, including noisy spectra from cold spots, can then

be constrained to the selected standards. The underlying

assumption of this approach is that arsenate reacted with

geochemical microsites of similar composition will have

similar speciation (Nicholas et al., 2017; Toner et al., 2014).

Because our spatial statistical analyses showed that Fe was the

strongest predictor of As accumulation (Table 1, Fig. 3), we

applied this approach by grouping the 25 m-XANES spectra

from ROI-10b according to Fe m-XRF signal intensities (Figs. 5

and 6). We hypothesized that the proportion of Fe-associated

As species would change systematically with Fe content of

microsites, which is illustrated by the region of high As–Zn

fluorescence-signal correlation for moderate Fe signals in

Fig. S7. Because all of our spectra were confined within a

10 mm� 10 mm sample area of variable chemical composition,

we expected that chemical composition rather than spatial

proximity would have a stronger effect on As speciation.

However, a lack of significant partial correlation between the

proportion of As(V)-ferrihydrite and Fe fluorescence intensity

(r 0 = 0.22; p = 0.43), in addition to visible differences in spectra

within Fe quartiles (e.g. high-Fe spectra in Fig. 5), suggested

that microsite attributes other than Fe content affected the

proportion of Fe associated As species. Microsite Al content is

one potential complicating attribute, given that As(V)-boeh-

mite was the complementary standard fit to this dataset

(Fig. 6). Other possible factors include variations in Fe and Al

speciation, and effects of the other elements; however, we

found no significant partial correlation between speciation

by m-XANES and Ca, Ti or Zn. Although our data from 25

contiguous microsites did not support the hypothesis that As

speciation varies systematically with Fe content alone, we

convey this approach to illustrate that subsets of larger data-

sets of m-XANES spectra can be merged based on parameters

other than (or in addition to) spatial proximity (Muyskens,

2019) to improve spectral quality. We also contend that

chemical-compositional grouping of geochemical microsites

guided by partial correlation or multivariate spatial statistical

analyses is worthy of further evaluation to improve trace-

element speciation in geochemical microsites of low contents.

Ideally, these analyses would be done on larger spatial data-

sets than we collected here, which should allow parsing based

on microsite composition of multiple elements (Fe, Al, Ca,

etc.), and also include chemical speciation analysis of matrix

elements within microsites.

5. Conclusions

Synchrotron m-XRF and m-XANES analysis of a naturally

coated sand grain from a non-contaminated soil provided a

means to assess the chemical reactivity of As(V) in a soil

matrix by imaging matrix composition and As accumulation

from the same area before and after chemical treatment with

aqueous As(V). Partial correlation and multivariate spatial

regression analyses can serve as powerful data-analysis tools

to separate effects of matrix-element co-localization that

confound interpretation of simple Pearson correlation

analyses in terms of As binding mechanisms determined on

model systems. Including a spatial component in regression
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modeling to remove element autocorrelations provides a

statistically robust means to identify matrix elements that

were significant predictors of accumulated As, which helps

constrain the number of chemical elements used as predictors

in non-spatial regression modeling. However, the resulting

models also depend on the size of the image analyzed. For the

sand-grain coating analyzed here, (spatial) statistical modeling

of complementary data from m-XRF, m-XANES and TOF-

SIMS analyses suggested that Fe, Al, Ca and Ti (and possibly

Zn) all augmented accumulation of applied As(V) to varying

degrees. Including these analytical and statistical approaches

within a broader suite of complementary microscale and

macroscale analyses should further enhance our ability to

determine trace-element binding mechanisms in soils and

other complex, multi-component geochemical matrices.

6. Related literature

The following reference, not cited in the main body of

the paper, has been cited in the supporting information:

GitHub (2018).
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