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Emittance and Phase Space

In the study of conventional accelerators, emittance emerges as an invariant
in the study of a particle’s transverse motion. In the simplest case of a
particle in a linear focusing force (quadruples in conventional accelerators or
blowout regime in plasma accelerators) the particle’s transverse trajectory
from the axis is described by the Hill’'s equation
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In a conventional accelerator, this describes for instance the transverse
trajectory of a particle going off axis in a quadrupole:
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Like a quadrupole magnet, the blowout regime also has a linear force:
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First, consider the case with no acceleration (constant ¥ )
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There are two methods of solution for Hill’s equation:

« Consider where K is constant. Within each component, we use harmonic
oscillator solution and piece them together at interfaces.

+ We can get a closed form solution using the properties of Hill's equation.

Piecewise method of solution

We can describe the motion of a particle by a 2x2 matrix. There are two
cases to consider:
K=0: this case is the same as having a drift space L. In matrix form,

This corresponds to a drift space, e.g. after the plasma accelerator.
Incidentally, the other important linear transport matrix is that of a thin lens
(both in accelerators as well as optics):

(2 (5 D),

K>0: over distance £, the equation of motion is just a simple harmonic
oscillator, and in matrix term,
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Now, consider the case where the betatron frequency is changing (for
instance due to plasma density variation), but energy is still constant, {Zzo
In this case, we need a solution for Hill’s equation. This was a differential
equation extensively studied in the nineteenth century and the result can be

expressed in the form Consyonts of indegrakion
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Note: w(s), and the phase will no longer be linear in ‘s’.
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Courant-Snyder Parameters
The constant in equation 2 was set to one arbitrarily. To remove this
ambiguity, it is customary to define more fundamental variables as
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Equation 7 shows that in the limit where /3 is constant,
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Emittance
It turns out that the constant “A” in equation 6 plays an important role in
accelerator physics

@"'X=Am cos (P51 +5)
/
1 = Ap’"l B/ co5 () +6) + AgE Sin(P6)¥5) ¥
2

—pl B\ L= -—Ll B/AWC"S (W(S)A—é)



Bes) o = A \{— 15 Cos(CP65)+6> AQF Sm(‘/’(S)—tﬁ)p cecall

o _ L
WW(QZE

Als) o + [505) a'= —A \J—fg Sin ( Y5 S) @
Sciu.afe ond AJ e.gl,u,c('Eo'\s(D @ :

o (5) + [« )% (5) + PLS) ¢ (sﬂ

VA
— AL [S'mz((VG)—t %) x Los (Pt ?ﬁ
= APV

1 [z % 1/]
AR L lﬁ(ﬁ) . A K (N & ﬁL% (9 * 20((53%(57

z /
o= (s) E%ﬂ + PR + 2oL (5 LS| L (9
l 2
1L

>

Lo AP XY AP + Lol B) w8 (5) 4 pesd %) -+ (1)

Comparing this equation to the general equation of an ellipse:
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One can observe that equation 1 describes an ellipse in x-x’ space.
According to the analytic geometry, the area of an ellipse is given by
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Substituting the constants from equation 1,
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Therefore, for different location throughout an accelerator lattice, the ellipse
will have a different orientation depending on the value of the amplitude
function ( B ) and its derivative (« ), but they will

all have the same value “A”, corresponding to the £
area of the phase space. The phase space area
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Figure 1, adiabatic invariant

An equivalent description of an ellipse may be given by matrix representation:
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Substituting these variables in equation 12 gives
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The area of this matrix is given by
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Emittance of Realistic Beams

In the ideal scenario, the beam would have zero cross sectional area, and
all the particles would be headed in the same direction. In that case all the
particles would occupy the same point in the phase space of this degree
of freedom.

For a distribution of particles, the motion of the individual particles will lie
on the elliptical invariant curves. In

the case of linear forces with no [_a\/g W_é]
energy gain, the orientation of the ) /7'
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Figure: C-S parameters and shape of
phase space

In Summary, if the beam in an accelerator has emittance epsilon, the
phase space area is bounded by a curve
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Often, we want to speak about the Emittance in terms of the RMS beam
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Here, both x and x’ space are assumed to have a Gaussian distributions.
Using the trajectory of the rms spot size as the suitable trajectory to define
the emittance, we have
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The first two expressions can be confirmed
from the ellipse profile shown in Figure 1.
Comparing these expressions with equations
14 and 15 results in the following expression for
emittance:
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Also frequently used are the expressions for i
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Adiabatic damping_of betatron oscillations

In the previous section, we considered motion with constant total
momentum. We now want to show how the amplitude of motion changes as
a function of the particle momentum, since the particle will continually gain
energy as it is accelerated in the blowout regime. Here, we assume that the
momentum is a slowly changing function of time, or equivalently, all g the




length of the accelerator.
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To solve this equation, we use a method known as the method of
integrated phase
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The amplitude of the betatron oscillations is therefore reduced by a factor of
\("4—, where ¥ is the relativistic Lorentz factor. Since the beam Emittance is
the phase space area bounded by the Courant Snyder invariant curve, and
since this area is proportional to the square of the betatron amplitude, we see
that the beam emittance varies inversely with the beam momentum. The use
of normalized emittance,
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Permits comparisons of the phase space areas independent of the kinematic
factors. This factor should stay constant in an ideal world, but it does not in
practice due to nonlinear forces as well as energy spread.

To preserve a beam normalized emittance under these circumstances, we
use matched beams. A matched beam has little to no variation in its spot
size.

Recall a beam spot size is given by
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Equation 18 allows us to calculate a matched spot size for any value of Kp.
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Also, note that from equation 9, this is synonymous with

B
Kg

Evolution of emittance for an unmatched case, physical picture
Consider a beam with a phase space represented by a vertical ellipse.
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This physical picture provides a quick way to estimate the emittance growth
of unmatched beams.
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If there is any energy spread, after a time characterized by Kg /scg , Where
Kg = "2 é% ke , so after &%/ oscillations the entire phase space is filled
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Appendix: evolution of spot size
We start from the definition of the spot size rms
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Appendix 2: evolution of Courant-Snyder parameters
Consider the transport matrix:
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