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Emittance and Phase Space 

In the study of conventional accelerators, emittance emerges as an invariant 
in the study of a particle’s transverse motion. In the simplest case of a 
particle in a linear focusing force (quadruples in conventional accelerators or 
blowout regime in plasma accelerators) the particle’s transverse trajectory 
from the axis is described by the Hill’s equation 













In a conventional accelerator, this describes for instance the transverse 
trajectory of a particle going off axis in a quadrupole 











































Like a quadrupole magnet, the blowout regime also has a linear force:
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First, consider the case with no acceleration (constant     ) 



























There are two methods of solution for Hill’s equation:


Consider where K is constant. Within each component, we use harmonic •
oscillator solution and piece them together at interfaces. 

We can get a closed form solution using the properties of Hill's equation. 
•



Piecewise method of solution

We can describe the motion of a particle by a 2x2 matrix. There are two 
cases to consider:

K=0: this case is the same as having a drift space L. In matrix form, 







This corresponds to a drift space, e.g. after the plasma accelerator. 
Incidentally, the other important linear transport matrix is that of a thin lens 
(both in accelerators as well as optics): 









K>0: over distance  , the equation of motion is just a simple harmonic 
oscillator, and in matrix term,
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Here,



















Now, consider the case where the betatron frequency is changing (for 
instance due to plasma density variation), but energy is still constant, 

In this case, we need a solution for Hill’s equation. This was a differential 
equation extensively studied in the nineteenth century and the result can be 
expressed in the form  











Note: w(s), and the phase will no longer be linear in ‘s’.
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Courant-Snyder Parameters

The constant in equation 2 was set to one arbitrarily. To remove this 
ambiguity, it is customary to define more fundamental variables as 
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Equation 7 shows that in the limit where     is constant, 







































Emittance 

It turns out that the constant “A” in equation 6 plays an important role in 
accelerator physics 
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Comparing this equation to the general equation of an ellipse:







One can observe that equation 1 describes an ellipse in x-x’ space. 
According to the analytic geometry, the area of an ellipse is given by 









Substituting the constants from equation 1,
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Therefore, for different location throughout an accelerator lattice, the ellipse 
will have a different orientation depending on the value of the amplitude 
function (    ) and its derivative (    ), but they will 
all have the same value “A”, corresponding to the 
area of the phase space. The phase space area 
occupied by the beam is called emittance and is 
denoted by        .  













An equivalent description of an ellipse may be given by matrix representation:





























Substituting these variables in equation 12 gives









Comparing equations 13 and 11, and using  
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The area of this matrix is given by









Emittance of Realistic Beams

In the ideal scenario, the beam would have zero cross sectional area, and 
all the particles would be headed in the same direction. In that case all the 
particles would occupy the same point in the phase space of this degree 
of freedom. 



For a distribution of particles, the motion of the individual particles will lie 
on the elliptical invariant curves. In 
the case of linear forces with no 
energy gain, the orientation of the 
ellipse will change as the Courant-
Snyder parameters evolve (see figure 
and Appendix 2), but the area stays 
the same.  

 











In Summary, if the beam in an accelerator has emittance epsilon, the 
phase space area is bounded by a curve





Often, we want to speak about the Emittance in terms of the RMS beam 
size:
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Here, both x and x’ space are assumed to have a Gaussian distributions. 
Using the trajectory of the rms spot size as the suitable trajectory to define 
the emittance, we have























The first two expressions can be confirmed 
from the ellipse profile shown in Figure 1. 
Comparing these expressions with equations 
14 and 15 results in the following expression for 
emittance: 





Also frequently used are the expressions for 
the maximum displacement and angle













Adiabatic damping of betatron oscillations

In the previous section, we considered motion with constant total 
momentum. We now want to show how the amplitude of motion changes as 
a function of the particle momentum, since the particle will continually gain 
energy as it is accelerated in the blowout regime. Here, we assume that the 
momentum is a slowly changing function of time, or equivalently, all g the 
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length of the accelerator. 























To solve this equation, we use a method known as the method of 
integrated phase 
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The amplitude of the betatron oscillations is therefore reduced by a factor of 

       , where     is the relativistic Lorentz factor. Since the beam Emittance is 
the phase space area bounded by the Courant Snyder invariant curve, and 
since this area is proportional to the square of the betatron amplitude, we see 
that the beam emittance varies inversely with the beam momentum. The use 
of normalized emittance, 





Permits comparisons of the phase space areas independent of the kinematic 
factors. This factor should stay constant in an ideal world, but it does not in 
practice due to nonlinear forces as well as energy spread. 





To preserve a beam normalized emittance under these circumstances, we 
use matched beams. A matched beam has little to no variation in its spot 
size.  



Recall a beam spot size is given by 






















Since momentum is changing slowly we can ignore secondorderterms
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Equation 18 allows us to calculate a matched spot size for any value of       . 











Also, note that from equation 9, this is synonymous with









Evolution of emittance for an unmatched case, physical picture

Consider a beam with a phase space represented by a vertical ellipse.  
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This physical picture provides a quick way to estimate the emittance growth 
of unmatched beams.  
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If there is any energy spread, after a time characterized by             , where

                         , so after            oscillations the entire phase space is filled 



This means that some particles are in

ellipse I and some are in ellipse II.
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Appendix: evolution of spot size  

We start from the definition of the spot size rms
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Appendix 2: evolution of Courant-Snyder parameters 

Consider the transport matrix:
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In Matrix representation,
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