
Particle injection and trapping 

One of the biggest challenges in the field is how to put particles inside the 
high-gradient accelerating field. It is useful to divide this discussion to the 
case of a beam driver and laser driver. This is because beam drivers are 
highly relativistic:













In contrast, a laser driver is modestly relativistic. We can get an estimate for 
the group velocity of a laser using our earlier study of linear plasma waves:
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Bal is satisfied to a very good approximation

In what follows we will look at motion of particles in wake

assuming that wake now moves w Vp 2g



Particle orbits 

Recall the constant of motion obtained from the co-moving coordinate in 
regular SI units:





This results was obtained with the co-moving coordinate defined as 





To investigate the dynamics of particles in a wakefield that is traveling at the 
phase velocity      , it is more useful to define





This is particularly useful in the case of a laser driven wakefield, since the 
phase velocity of wake is usually relatively small (typically,            )



Since the co-moving coordinate is keeping up with the wake, the quasi-static 
approximation is applied once again, and we obtain a constant of motion 
similar to the previous case, except that





This is the Hamiltonian for the system. This can be obtained by the canonical 
transformation of standard E&M Hamiltonian using a generating function
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We can use this relationship to study the possible trajectories in the phase 
space for the wake (Esirkepov, PRL 2008)



Consider the case of a laser wakefield accelerator in 1D:















Each unique (and not crossing!) particle trajectory is defined in phase space 
by a particular 
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Note several features of these results

The nonlinear plasma wavelength increases with laser strength
1.
In the region of the laser, density oscillates (zooming in, you can see that 2.
the density oscillations are at the second harmonic). 

For the wake function and the electric field in the region of the laser, the 3.
oscillations are only a small perturbation on these functions. 




Having obtained the wake functions, we can initialize a number of electrons 
with different Hamiltonians        , and using Eqn 7, look at their behavior in the 
phase space,
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The red curve represents the positive solutions and the blue curves represent 
the negative solutions for Eqn 7. Note the following features:


Trajectories that include                              , will consist of closed orbits in •
phase space. Note that particles with these hamiltonians do not “travel” in 
the wake. Mathematically, this is because the expression under the square 
root in equation 7 is negative for a range of     , and so there is no physical 
solution for particles in that range with a particular hamiltonian. The 
physical interpretation is that these particles are trapped in the wake, and 
they move forward along the red curve and go backwards along the blue 
curve in the co-moving coordinate. 

Other trajectories that not include        simply move forward (the red •
curves) or backwards (blue curves). The physical interpretation for these 
particles is that they either have too high a momentum or too low a 
momentum and simply move along the wake (forwards or backwards)

The curve separating the trapped trajectories and the traveling trajectories •
is called the separatrix, and represents the last “traveling particle” that isn’t 
trapped. This particle continually loses and gains energy but is just below 
the threshold of trapping. 

Note that the energy gain and loss is directly related to the electric field •
(the black dashed line in phase space image). Therefore, injection of prior 
electrons and beam loading, which modifies the electric field will distort the 
orbit for the electrons that haven’t been trapped yet. 




What happens for a more nonlinear situation?

Now with the increased value of     , 
higher and higher momentum values 
can be reached for the trapped 
electrons as the larger field creates a 
larger accelerating field. 
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Trapping Condition
















































































From the phase space discussion we know a particle is
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Trapping Mechanisms

There are two general classes of solutions to the problem of injecting a 
trailing beam on a trapped orbit. The first class is called “external injection”, 
where a trailing beam is prepared and sent together with the driver into the 
plasma. Once the plasma wake forms, the trailing beam finds itself on the 
trapped orbit and accelerates forward:
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The physical interpretation is that for               , the electron may not be able 
to get trapped if placed at the wrong phase of the wake. In that case, it will 
be placed on a traveling “blue trajectory”



The second solution is to get background plasma electrons to transition from 
their regular passing orbits in phase space to the trapped orbits. By the way 
from the previous figure, you can see that if the plasma is warm enough, 
some electrons with              will get trapped. In general, there are three 
strategies to facilitate this transition:
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Sudden change in Hamiltonian
2.
Drive wake to wave breaking or “self-injection” amplitude
3.
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The physical interpretation is that as the electric field amplitude increases, an 
electron initiated inside the wake with lowere and lower energy can gain 
enough energy from the wakefield to reach the phase velocity of the wake. 
From the trapping inequality, 
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This is the condition for ionization injection, where an electron is ionized 
inside a wakefield at correct phase leading to its trapping. This phenomenon 
was first observed in electron beam experiments by Oz, et al. PRL, 2006 and 
by A. Pak and C. McGuffy, PRL 2010 (two back to back articles). In these 
experiments an inner electron shell is ionized either at the peak of the laser 
pulse, or at the focused point of an oscillating drive electron beam. 
































































If the transverse momentum is small 8 Leroy
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Experimentally, the most recent effort in laser wakefield to produce this 
density down ramp profile has involved creating a density shock
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Rapid elongation of the wakefield can also naturally occur in an LWFA as a 
mismatched laser pulse focuses inside the plasma (see e.g. Kostyukov PRL 
2009):



































In general, any phenomenon that interferes with the ordinary trajectory of 
electrons forming the wake can lead to injection. The most commonly 
observed injection method in experiments is still the natural evolution of the 
high-amplitude plasma wake which leads to injection.
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In ID we already saw wavebreaking is the limit where fluid
velocity Vo approaches to
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