Loading particles into the wakefield absorbs energy from the wake. The
absorbed energy is manifest in the reduction of the electric field available for
accelerating the electrons. This effect is called beam loading. We have two
objectives in beam loading:

1. Load as much charge as possible to increase the accelerated beam
brightness

2. Minimize the energy spread of the accelerated beam. Since we are
intending to inject substantial amount of charge into the wakefield, these
charges are going to have a finite size both longitudinally and
transversely. Therefore we want these electrons to be loaded in a way
that the accelerating field felt by the entire beam is the same. Doing so
will ensure a small final energy spread for the beam.

We will treat the two cases of linear and nonlinear beam loading separately.

We start from the discussion of the linear theory. We will the provide a
physical picture of beam loading in the nonlinear regime and discuss the
advantages of this regime. The analytical calculations are presented and the
efficiency and beam quality are addressed.

Linear Theory

The impact of loading a trailing particle beam in the plasma wakefield in
linear theory can be calculated using the superposition principle; i.e. the
wakefield due to the driver and trailing beam is separately calculated and the
total wakefield is the sum of the fields of the individual beams.

We know that the wake function behind the driver in the 1D linear regime has

a sinusoidal form:
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We can find the maximum number of charge we can load in the field if the
wakefield generated by our loaded particles cancel the wake from the driver.
Consider an ultrashort beam of AJe electrons loaded at the minimum of the
accelerating wave, which we will require to create a wave equal in amplitude
to that of the initial wakefield, so they cancel, i.e. all the energy in the wake

behind the drive beam is absorbed by the trailing beam.

The wake of a thin sheet of charge with surface charge density = 4A was
derived at the end of the “laser and beam coupling to plasma” lecture and is

given by
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Recall that for a 1D wake, ‘A’ represent the cross sectional area of the wake
as well as the driver.

The result of 1D simulation showing the cancellation of the initial wakefield by
the wake due to the trailing beam is shown as Figure 1 in Katsouleas, particle
accelerators, 22, 81 (1987), reproduced below
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Unfortunately in this case, ideal beam loading is achieved at the cost of
100% energy spread. This is because the front of the beam experiences the
full field of the wake, while the back of the beam experiences zero field!

A ramped charge density can be used to flatten the wake, i.e. create a
constant electric field within the bunch. Particles within such a particle bunch
get accelerated uniformly, creating a very small energy spread. The
appropriate shape of the density profile, which happens to be a ramped
beam can be obtained from the superposition principle and the requirement
that the wake fields be constant inside the beam:
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Note that the amplitude of the wakefield behind the bunch is reduced to 5,
The beam loading efficiency is then given by how much of the energy of the
wake is absorbed by the trailing beam:
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It is clear that in the linear regime, you either have to choose to accelerate
your beam at high efficiency or at a large gradient.

Constraints on width: in finite width linear wave, acceleration field changes
with width. The focusing and defocusing forces are also nonlinear for the
small amplitude waves. This result in a non uniform beam quality for a trailing
beam with width>0. One solution is to use a matched beam, where the
focusing force is matched by the beam emittance
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Matching and the effect of linear focusing will be discussed in a future
lecture. Here, the important point is that we desire the beam to be narrow,
and from the previous lecture we know that the narrow beam interacts with
and absorbs the wake out to a skin depth, l.e. Aeff ~/ Cz/wpz

This value for the area allows us to estimate the number of particles in the

beam: <
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This is still clearly an overestimate, because we are assuming all the energy
is absorbed. Also, this amount of charge is still relatively small. For HEP
applications, we need nC of charge.

In order to increase the loaded charge, we need to increase &w o & Aepp
To non-linear territory.

We will show next that 3D nonlinear wakes have ideal properties for loading
and accelerating electrons.

Physical Picture, Tzoufras, Physics of Plasmas 16, 056705 (2009):

The ion channel of the blowout regime is described by the trajectory of the
innermost electron of the sheath, i.e. by r, 5D y g, c¥— z, where the
driver is moving towards positive “z”. This description works well except for
the very front and very back of the bubble, where electron trajectories cross.
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In the ultrarelativistic limit, where the maximum blowout radius greatly
exceeds the skin depth, the trajectory of the inner most electron is described
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Unlike linear theory, an ultrashort bunch cannot absorb all the energy in the
wake. This follows the relation between the sheath and the field. If an
ultrashort bunch is loaded at the position of the dashed line to absorb all the
energy of the wake, the field would have to become instantaneously zero.
This means that the sheath would almost have to follow the dashed line itself.
But such a large negative charge would actually repel sheath electrons and
delay their crossing of the field. The presence of negative charge will cause
the sheath to bend away from the axis, not towards it. Therefore such an
event (absorption of all wake energy by an ultrashort bunch) is not possible.

On the other hand, a bunch with finite length and charge per unit length
allows the electrons in the sheath to reach the axis while slowly decreasing
their transverse momentum. Ideally the electrons should arrive on axis with
no transverse momentum, which implies zero longitudinal momentum as well
(why? HW). This configuration leads to nearly 100% absorption of the energy
available in the bubble.



Energy Considerations in the blowout regime
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This expression allows us to understand the physical interpretation of Lo .
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This formalism was worked out by A. Golovanov, PPCF, 63. (2021).




Reminder on the properties of blowout:

+ Linear focusing force and constant accelerating field

« Beam’s self fields cancel to the order of 1/yz
 Forces for a cylindrically symmetric wake are
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Variation in accelerating force can cause significant energy spread for a
beam whose profile is not properly tailored. First we discuss the physical

picture of wake flattening this is accomplished.

Consider a trailing beam placed inside a wakefield
with initial maximum bubble radius of . To avoid
nonlinear focusing fields, we require that this beam
fit inside the bubble, i.e.

Tef p(Sp)=
Spot- size: vy {Tp

In presence of the trailing bunch, the trajectory is
modified to correspond to the black curve in the
region of the beam.

The sheath bends slightly upwards.
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The sheath after trailing beam feel only the ion column, but because energy
was absorbed, the trajectory in that segment corresponds to a bubble with

smaller maximum radius: @(Rb

Analytical solutions:
Start from the equation for the blowout radius:
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The idea is to find an expression for Ez by integrating this equation for a
bunch with arbitrary current profile. We then study a flat top (for which we
know 9\ ) and then find the & For which the field is constant.
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As the charge per unit length increases (starting from_L.=0) the bubble
elongates (Fig. a) and the wakefield within the bunch flattens (Fig. c). For the
largest bubble, for which C=0, the slope within the bunch is -1/4 as in Eq. 3
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As charge per unit length increases r/R,

r/R,
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Beam loading for a constant wakefield

The condition we seek is to have a current profile such that
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For the part before the trailing beam, the field is the same as the previous
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The shape of the bubble is described by parabola:
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This expression can be written only in terms of Et instead of rt by solving n*
in terms of Et from equation 29
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This is the equation for a trapezoid.

Maximum total charge

We can calculate the maximum total charge that corresponds to loading the
fields to Et by assuming that the charge extends all the way tot the back of
the bubble, where the sheath reaches the § axis.
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Simulation results
Here, we look at the simulation results using the parameters described in
Tzoufras 2009:
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For these latter cases the wakefield is not as flat. The reason for this is that
kpRb is not large enough for Eq. 11 to be completely accurate. This
illustrates the size of errors that may result if kpRb is not large enough. If the
charge of the bunch is increased/ decreased slightly for blue/green cases,
the wakes can then be made to be more flat. For very large blowout radii the

differences between theory and simulation are negligible.




Beam loading efficiency of nonlinear beam loading
Let us start by assuming that beam loading terminated at some 5F,

such that .
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By solving for this constant (Eb), we obtain the trajectory of the innermost
electron behind the bunch, which allows us to determine the energy
remaining in the wake. This constant can be found by using the continuity of
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represents the power of energy exchange between the field of the bubble

and the particle bunch. In other words, for the bubble before beamloading, Yo
represents the energy given to the wakefield by the driver per unit time.
Behind the trailing bunch, Ts drops to

> H
Iozfn/l{ Rb >

which is the energy left in the wakefield. Therefore, the efficiency of beam
loading, being the efficiency with which the trailing beam extracts energy is

given by
o ) o)

This equation in principle holds for any bunch shape. For a flattened field, we
can use equation 7 to find the efficiency of beam loading:
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This equation, which is for a trapzoidal beam can be generalized for arbitrary
electron bunches as the ratio of rate of energy gain by the arbitrary bunch
over the rate of energy gain by the optimal trapezoidal bunch:
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Therefore, a flat top beam in the optimal condition (C=0) also leads to near
100% efficiency. For smaller charge per unit length (C>0), the plasma
electrons reach the ¢ axis quickly and with large transverse velocity. As a
result they overshoot and continue to oscillate. For higher charge per unit
length (C<0), the innermost electron velocity changes sign and so they get
some potential energy from the trailing beam. In either case, some energy is
left in the plasma electrons behind the driver, which reduces efficiency.

Comparison of beam loading_in linear and nonlinear regimes
We can compare the linear and nonlinear beam loading by comparing the
energy absorbed per unit length on both cases in unnormalized units:
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In the blowout regime for a moderate radius, Ke R, ~ 3, total accelerating
force is orders of magnitude larger than that in the linear regime.



Physical picture: — woke cfoss sectiom
Total eney per amt legth o E2 A

Tn \linear ro-a.lme E behind He 'tfai(fuﬂ, beam s ru(a.eeci
wile A s\-a%s Ae same
Tn voulive ftaiwe bo‘”/] ElJc A scle as le — 'Tt;“a.i[ct&a,

beaun reduces both, Ieaéiw& ‘o  mere Aicionk aésorp+fon.

(o i no Joeom \oa&‘wa —

(o) : optimal %«fez.s«‘&«( buuch
(Y1 rapezaidal bunch in
)

Aot \ocationy

The size of the blowout behind the beam loading is dropped to around 1/2.
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Note that the similar Rb, and therefore efficiency for cases (b-d) confirms the
theoretical prediction that, in contrast to linear regime, the efficiency is
independent of the accelerating gradient.

Note 1: on experiencing_dephasing
If the wake is driven by an ultrarelativistic electron beam the accelerating
electron bunch can be assumed to be phase locked with the wake:
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In this case a bunch with optimal trapezoidal profile conserves its energy
spread throughout the acceleration process.

For a laser driver, however, the accelerating electron bunch moves faster
than the wake and it samples multiple phases of the accelerating field. As a
result, even if the current profile of the bunch is chosen so that the wake is
initially flat, this stops being the case as soon as the bunch moves to a
different phase.

To study this issue we use the theoretical solutions derived for flat-top
bunch:

Assume an initially optimal bunch 0.0
H . E./R,
C(5,)=0 =" Lon Pigore
-0.4{
As the trailing bunch outruns the wake, the
trailing beam density becomes too large for
optimum loading, l.e. 08 /
gt?—< ‘§£ 12
Ve, (¢

C(5.) < C(5¢)=0

As the bunch keeps approaching the center of the bubble, C continues to
decrease. We can see from the figure above that when C<0, there is a
minimum for Ez, which occurs within the electron bunch. As a result, there is
a region around this minimum for which AE;/Ag = o . Therefore, while the
energy spread for the whole bunch is not technically preserved, the energy
spread around this minimum is roughly preserved.

Moreover, as the bunch moves further forward, this plateau becomes longer
and as a result the entire bunch is in a region with nearly flat Ez. This can be
seen in the figure above as well.

Therefore, in this situation, while the wake initially has a negative slope, as
the bunch moves forward with respect to the wake, the wake becomes flat at
the front and (in some places) has a small positive slope at the back.



Note 2: on Gaussian beam profiles
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This indicates that Gaussian bunches can be

accelerated in the wake of a laser/beam with very high efficiency and nearly
constant wakefield. Additionally, if such bunches are extracted before they
reach the center of the bubble, their quality will not be significantly affected.
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For the simulations in previous page, the Gaussian beams are centered at a
distance of Ho@ from the edge of the corresponding flat-top profiles.

Numerical Example (from Tzoufras, PRL, 101, 145002, 2008)
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Dechirping

Over the last decade since Tzoufras proposed the ideal beam loading with a
trapezoidal-shaped beam, the creation of such a beam has remained an
unsolved research problem. Another solution has emerged based on the fact
that the beam loading of a flat-top or a Gaussian beam load results in a linear
accelerating field. The electrons accelerated thus have a spatial “linear chirp”
at the end of their acceleration length.

So rather than creating a situation for a flat electric field inside the bubble,
several simulation and experimental groups have investigated the idea of
dechirping, l.e. removing the linear chirp after the beam goes through its
acceleration length. Below | will describe two such ideas commonly
discussed in the community

1. Sending the resulting beam through low density plasma (see e.g. Wu, et
al., PRL, 204804, 2019)

The initially chirped beam is sent through a low density plasma and if the

parameters of the plasma are chosen properly, the self fields generated in

the plasma produce the opposite chirp resulting in a beam with almost no

energy spread. Simulations suggest a 10x reduction in energy spread down

to 0.1% is possible.

. (al> : Plasma dechirper (PD)

Schematic of the idea with the
self fields in the plasma Energy Energy

counteracting the initial energy
spread.
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2. Proper overloading of the wake by an escort beam (see e.g. Manahan, Et
al. Nature Communications 8, 15705, 2017)
The idea in this paper is to use a Gaussian and accelerate it until it has



reached the desire energy. At that point, a second bunch can be injected to
co-propagate with the initial beam, with its position and charge set such that
C<0 in the position of the original beam. The opposite slope that is generated
then will remove the energy spread from the initial beam.
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The figure above shows how the slope of the accelerating field changes for
different charges in the escort beam (all beams have Gaussian profiles). The
idea is to transition from a case where C=0, to where C<O0.



