
Loading particles into the wakefield absorbs energy from the wake. The 
absorbed energy is manifest in the reduction of the electric field available for 
accelerating the electrons. This effect is called beam loading. We have two 
objectives in beam loading:




Load as much charge as possible to increase the accelerated beam 1.
brightness

Minimize the energy spread of the accelerated beam. Since we are 2.
intending to inject substantial amount of charge into the wakefield, these 
charges are going to have a finite size both longitudinally and 
transversely. Therefore we want these electrons to be loaded in a way 
that the accelerating field felt by the entire beam is the same. Doing so 
will ensure a small final energy spread for the beam. 




We will treat the two cases of linear and nonlinear beam loading separately. 



We start from the discussion of the linear theory. We will the provide a 
physical picture of beam loading in the nonlinear regime and discuss the 
advantages of this regime. The analytical calculations are presented and the 
efficiency and beam quality are addressed.



Linear Theory 

The impact of loading a trailing particle beam in the plasma wakefield in 
linear theory can be calculated using the superposition principle; i.e. the 
wakefield due to the driver and trailing beam is separately calculated and the 
total wakefield is the sum of the fields of the individual beams.  



We know that the wake function behind the driver in the 1D linear regime has 
a sinusoidal form:
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We can find the maximum number of charge we can load in the field if the 
wakefield generated by our loaded particles cancel the wake from the driver. 
Consider an ultrashort beam of       electrons loaded at the minimum of the 
accelerating wave, which we will require to create a wave equal in amplitude 
to that of the initial wakefield, so they cancel, i.e. all the energy in the wake 
behind the drive beam is absorbed by the trailing beam.



The wake of a thin sheet of charge with surface charge density              was 
derived at the end of the “laser and beam coupling to plasma” lecture and is 
given by
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Recall that for a 1D wake, ‘A’ represent the cross sectional area of the wake 
as well as the driver. 

The result of 1D simulation showing the cancellation of the initial wakefield by 
the wake due to the trailing beam is shown as Figure 1 in Katsouleas, particle 
accelerators, 22, 81 (1987), reproduced below 



















Unfortunately in this case, ideal beam loading is achieved at the cost of 
100% energy spread. This is because the front of the beam experiences the 
full field of the wake, while the back of the beam experiences zero field! 



A ramped charge density can be used to flatten the wake, i.e. create a 
constant electric field within the bunch. Particles within such a particle bunch 
get accelerated uniformly, creating a very small energy spread. The 
appropriate shape of the density profile, which happens to be a ramped 
beam can be obtained from the superposition principle and the requirement 
that the wake fields be constant inside the beam:
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while this solutions, there is compromise between maximum charge, 
accelerating field, and efficiency


Et
toys

des 915 cos 5 51

intialwakecanu tedbybeam
where Bo is the frontof the beam Et is the fatal field at
the wake thebeam isconstant

Assuming that the bunch density fles has the form as tb
begining from 5 5 at the wave's minimum and solving for a t
b we get

lb s Eo Casso 5 Singo 5.65507 100

Recall that in normalized units Eo hi the density perturbation
The results were shown in Fig4cal of the
987 Katseleaus paper reproduced here If
The maximum charge is obtained by letting e

f go to zero we restrict f to have only É
ne sign

145Te beam's properties in normalized units are

peak beam density f s fax n sing

Max bunch length Imax tango

Accelerating field Et Eocosts

of particles N No i

g
where No is given by Ega 8

























Note that the amplitude of the wakefield behind the bunch is reduced to 

The beam loading efficiency is then given by how much of the energy of the 
wake is absorbed by the trailing beam:











It is clear that in the linear regime, you either have to choose to accelerate 
your beam at high efficiency or at a large gradient. 



Constraints on width: in finite width linear wave, acceleration field changes 
with width. The focusing and defocusing forces are also nonlinear for the 
small amplitude waves. This result in a non uniform beam quality for a trailing 
beam with width>0. One solution is to use a matched beam, where the 
focusing force is matched by the beam emittance









Matching and the effect of linear focusing will be discussed in a future 
lecture. Here, the important point is that we desire the beam to be narrow, 
and from the previous lecture we know that the narrow beam interacts with 
and absorbs the wake out to a skin depth, I.e.



This value for the area allows us to estimate the number of particles in the 
beam: 
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This is still clearly an overestimate, because we are assuming all the energy 
is absorbed. Also, this amount of charge is still relatively small. For HEP 
applications, we need nC of charge.  



In order to increase the loaded charge, we need to increase 

To non-linear territory. 

We will show next that 3D nonlinear wakes have ideal properties for loading 
and accelerating electrons. 



Physical Picture, Tzoufras, Physics of Plasmas 16, 056705 (2009): 

The ion channel of the blowout regime is described by the trajectory of the 
innermost electron of the sheath, i.e. by                                     , where the 
driver is moving towards positive “z”. This description works well except for 
the very front and very back of the bubble, where electron trajectories cross. 
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In the ultrarelativistic limit, where the maximum blowout radius greatly 
exceeds the skin depth, the trajectory of the inner most electron is described 
by

























Unlike linear theory, an ultrashort bunch cannot absorb all the energy in the 
wake. This follows the relation between the sheath and the field. If an 
ultrashort bunch is loaded at the position of the dashed line to absorb all the 
energy of the wake, the field would have to become instantaneously zero. 
This means that the sheath would almost have to follow the dashed line itself. 
But such a large negative charge would actually repel sheath electrons and 
delay their crossing of the field. The presence of negative charge will cause 
the sheath to bend away from the axis, not towards it. Therefore such an 
event (absorption of all wake energy by an ultrashort bunch) is not possible.     



On the other hand, a bunch with finite length and charge per unit length 
allows the electrons in the sheath to reach the axis while slowly decreasing 
their transverse momentum. Ideally the electrons should arrive on axis with 
no transverse momentum, which implies zero longitudinal momentum as well 
(why? HW). This configuration leads to nearly 100% absorption of the energy 
available in the bubble.
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Energy Considerations in the blowout regime 
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This expression allows us to understand the physical interpretation of      .

































Therefore,      serves as a measure of energy density in the bubble. 











































This formalism was worked out by A. Golovanov, PPCF, 63. (2021). 
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Reminder on the properties of blowout:

Linear focusing force and constant accelerating field
•
Beam’s self fields cancel to the order of 
•
Forces for a cylindrically symmetric wake are 
•

















Variation in accelerating force can cause significant energy spread for a 
beam whose profile is not properly tailored. First we discuss the physical 
picture of wake flattening this is accomplished. 



Consider a trailing beam placed inside a wakefield 
with initial maximum bubble radius of      . To avoid 
nonlinear focusing fields, we require that this beam 
fit inside the bubble, i.e.









In presence of the trailing bunch, the trajectory is 
modified to correspond to the black curve in the 
region of the beam. 

The sheath bends slightly upwards. 



The sheath after trailing beam feel only the ion column, but because energy 
was absorbed, the trajectory in that segment corresponds to a bubble with 
smaller maximum radius:



Analytical solutions: 

Start from the equation for the blowout radius:







This equation is valid for 
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The idea is to find an expression for Ez by integrating this equation for a 
bunch with arbitrary current profile. We then study a flat top (for which we 
know     ) and then find the      For which the field is constant.  























































Flat Top Profile 
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To find the trajectory of          , the differential equation 





needs to be solved using the expression derived above.  
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As the charge per unit length increases (starting from     =0) the bubble 
elongates (Fig. a) and the wakefield within the bunch flattens (Fig. c). For the 
largest bubble, for which C=0, the slope within the bunch is -1/4 as in Eq. 3
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As charge per unit length increases 
the electrons in the sheath do not 
return on axis, but instead turn 
around after they reach a minimum 
value (          ) at which point, the 
wakefield crosses zero. 



















Beam loading for a constant wakefield 

The condition we seek is to have a current profile such that







For the part before the trailing beam, the field is the same as the previous 
section:



















The shape of the bubble is described by parabola:
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This expression can be written only in terms of Et instead of rt by solving 

in terms of Et from equation 29







This is the equation for a trapezoid.

Maximum total charge 

We can calculate the maximum total charge that corresponds to loading the 
fields to Et by assuming that the charge extends all the way tot the back of 
the bubble, where the sheath reaches the    axis.  







































Simulation results

Here, we look at the simulation results using the parameters described in 
Tzoufras 2009:
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For these latter cases the wakefield is not as flat. The reason for this is that 
kpRb is not large enough for Eq. 11 to be completely accurate. This 
illustrates the size of errors that may result if kpRb is not large enough. If the 
charge of the bunch is increased/ decreased slightly for blue/green cases, 
the wakes can then be made to be more flat. For very large blowout radii the 
differences between theory and simulation are negligible.
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Beam loading efficiency of nonlinear beam loading 

Let us start by assuming that beam loading terminated at some 

such that 





























By solving for this constant (     ), we obtain the trajectory of the innermost 
electron behind the bunch, which allows us to determine the energy 
remaining in the wake. This constant can be found by using the continuity of 
the field at  

































From the discussions of energy consideration above, we know that 
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represents the power of energy exchange between the field of the bubble 
and the particle bunch. In other words, for the bubble before beamloading,     
represents the energy given to the wakefield by the driver per unit time. 
Behind the trailing bunch,     drops to





which is the energy left in the wakefield. Therefore, the efficiency of beam 
loading, being the efficiency with which the trailing beam extracts energy is 
given by







This equation in principle holds for any bunch shape. For a flattened field, we 
can use equation 7 to find the efficiency of beam loading: 









































This equation, which is for a trapzoidal beam can be generalized for arbitrary 
electron bunches as the ratio of rate of energy gain by the arbitrary bunch 
over the rate of energy gain by the optimal trapezoidal bunch:
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Therefore, a flat top beam in the optimal condition (C=0) also leads to near 
100% efficiency. For smaller charge per unit length (C>0), the plasma 
electrons reach the    axis quickly and with large transverse velocity. As a 
result they overshoot and continue to oscillate. For higher charge per unit 
length (C<0), the innermost electron velocity changes sign and so they get 
some potential energy from the trailing beam. In either case, some energy is 
left in the plasma electrons behind the driver, which reduces efficiency.  



Comparison of beam loading in linear and nonlinear regimes 

We can compare the linear and nonlinear beam loading by comparing the 
energy absorbed per unit length on both cases in unnormalized units: 























In the blowout regime for a moderate radius,                 , total accelerating 
force is orders of magnitude larger than that in the linear regime.  
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Physical picture:













































The size of the blowout behind the beam loading is dropped to around 1/2. 
So the efficiency is 













Note that the similar Rb, and therefore efficiency for cases (b-d) confirms the 
theoretical prediction that, in contrast to linear regime, the efficiency is 
independent of the accelerating gradient. 



Note 1: on experiencing dephasing

If the wake is driven by an ultrarelativistic electron beam the accelerating 
electron bunch can be assumed to be phase locked with the wake:
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In this case a bunch with optimal trapezoidal profile conserves its energy 
spread throughout the acceleration process.



For a laser driver, however, the accelerating electron bunch moves faster 
than the wake and it samples multiple phases of the accelerating field. As a 
result, even if the current profile of the bunch is chosen so that the wake is 
initially flat, this stops being the case as soon as the bunch moves to a 
different phase.



To study this issue we use the theoretical solutions derived for flat-top 
bunch:

Assume an initially optimal bunch







As the trailing bunch outruns the wake, the 
trailing beam density becomes too large for 
optimum loading, I.e.















As the bunch keeps approaching the center of the bubble, C continues to 
decrease. We can see from the figure above that when C<0, there is a 
minimum for Ez, which occurs within the electron bunch. As a result, there is 
a region around this minimum for which                         . Therefore, while the 
energy spread for the whole bunch is not technically preserved, the energy 
spread around this minimum is roughly preserved. 



Moreover, as the bunch moves further forward, this plateau becomes longer 
and as a result the entire bunch is in a region with nearly flat Ez. This can be 
seen in the figure above as well. 



Therefore, in this situation, while the wake initially has a negative slope, as 
the bunch moves forward with respect to the wake, the wake becomes flat at 
the front and (in some places) has a small positive slope at the back. 
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Note 2: on Gaussian beam profiles 

In 3D nonlinear regime, it appears that the 

behavior of a Gaussian electron bunch 
mimics that of the flat-top bunch, given















This indicates that Gaussian bunches can be 
accelerated in the wake of a laser/beam with very high efficiency and nearly 
constant wakefield. Additionally, if such bunches are extracted before they 
reach the center of the bubble, their quality will not be significantly affected.



For the simulations in previous page, the Gaussian beams are centered at a 
distance of              from the edge of the corresponding flat-top profiles. 



Numerical Example (from Tzoufras, PRL, 101, 145002, 2008)
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Dechirping 

Over the last decade since Tzoufras proposed the ideal beam loading with a 
trapezoidal-shaped beam, the creation of such a beam has remained an 
unsolved research problem. Another solution has emerged based on the fact 
that the beam loading of a flat-top or a Gaussian beam load results in a linear  
accelerating field. The electrons accelerated thus have a spatial “linear chirp” 
at the end of their acceleration length. 



So rather than creating a situation for a flat electric field inside the bubble, 
several simulation and experimental groups have investigated the idea of 
dechirping, I.e. removing the linear chirp after the beam goes through its 
acceleration length. Below I will describe two such ideas commonly 
discussed in the community




Sending the resulting beam through low density plasma (see e.g. Wu, et 1.
al., PRL, 204804, 2019) 


The initially chirped beam is sent through a low density plasma and if the 
parameters of the plasma are chosen properly, the self fields generated in 
the plasma produce the opposite chirp resulting in a beam with almost no 
energy spread. Simulations suggest a 10x reduction in energy spread down 
to 0.1% is possible. 



Schematic of the idea with the 
self fields in the plasma 
counteracting the initial energy 
spread. 







Experiments snd stimulants 
show that the energy spread 
can be significantly reduced.  









2. Proper overloading of the wake by an escort beam (see e.g. Manahan, Et 
al. Nature Communications 8, 15705, 2017)

The idea in this paper is to use a Gaussian and accelerate it until it has 



reached the desire energy. At that point, a second bunch can be injected to 
co-propagate with the initial beam, with its position and charge set such that 
C<0 in the position of the original beam. The opposite slope that is generated 
then will remove the energy spread from the initial beam. 

 



























The figure above shows how the slope of the accelerating field changes for 
different charges in the escort beam (all beams have Gaussian profiles). The 
idea is to transition from a case where C=0, to where C<0. 


