So far, we have investigated the properties of plasma structures in 1D and
3D. In this section, we want to develop a self-consistent formalism for how a
driver, i.e. a laser or beam generates the plasma wave and how the plasma
wave in turn modifies the driver. There are some analogies between a laser
and particle beam driver and there are some important differences, as we will
investigate later in the context of linear theory.

We will see that the coupling between the laser and the wake is given by two
coupled differential equations, which constitute the most important equations
in short-pulse laser plasma interactions:
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We will start from the relativistic cold fluid plasma equations to derive these
equations and then make approximations to study them in the linear limit.
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Note that since we are in the cold fluid limit, the “fluid velocity” is the same
as the velocities of all the particles in the fluid element (since there is no
thermal spread), so that the total derivative can be interpreted as describing
the motion of a single particle.

Now, since the Euler’s equation is the same as the equation of motion of a
single particle in the E&M field, the equation for canonical momentum can be
derived in the same way, which gives:
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This equation is consistent with Hamiltonian mechanics, where we know that
if there is translational invariant in any direction (i.e. where the gradient term
is zero), then the canonical momentum in that direction is conserved.



Since the canonical momentum is not conserved in general, we are going to
look for another conservation condition for the canonical momentum in
plasma, and we find that by taking the curl of the Euler equation
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For example, consider a case where a laser pulse comes through a plasma.
Before the arrival of the laser pulse, the vorticity is zero, which implies its
initial time derivatives are zero =0 wlﬂdﬂj
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Now, we can use the knowledge of the value of vorticity to get a relationship
between the magnetic field and the curl of the fluid momentum in the plasma:
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This is an alternative form for Euler’s equation in an initially unmagnetized
plasma.

Note that the time derivative of the fluid momentum is a partial derivative.
The grad term on the right hand side is the term that allows the laser to put
radiation pressure on the plasma and is the source term in the fluid view of
the ponderomotive force. We will see that later in the linear limit, but it is also
possible to derive that in the nonlinear limit.

Where do we go from here? There are several ways of proceeding: we can
for example use these relations to find an expression for the wake function in
the plasma. But before then, it will be instructive for us to find a single
equation for the fluid momentum of the plasma. The vorticity then would give
the coupling between the vector potential of the driver (e.g. laser) and the
momentum.

Getting_a single equation for momentum:

We already know that we are looking for something like a wave response. So,
we take the time derivative of equation 9 to see if we can get a wave
equation for the plasma fluid momentum:
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Next is relating the magnetic field,n, and ¥ to the momentum. We already

know from vorticity: o
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Now, let’s consider our specific problem: the wake has a component that is
due to the laser and another that is given by the wake:
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Similarly the transverse field of the laser is larger than that of the wake by the
inverse of this number. So without going through a rigorous derivation, we
are making an ordering that the transverse momentum is dominated by the
force of the laser, while the longitudinal momentum is dominated by the
wake. With that in mind, we are going to split the momentum equation into



longitudinal and transverse equations and see if we can separate these two
effects:
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Now, we transition to normalized units and a co-moving coordinate
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Since we are focusing on a short-pulse laser and a wake both of which have
phase velocities near the speed of light, we use a co-moving coordinates.
Unlike the first class though, here we use



;1.-62-:43] ct-2=3% k S=2

Here, ‘s’ represents the distance that a
position ‘z’ of a point of constant

(E.g. the front of laser). Since the co-
moving coordinate travels at the speed
of light, this is equivalent to ‘ct’, where
‘1’ is time in the original frame.
Meanwhile, § is still the distance from
the front of the laser.

Recall that using ‘ct’ in § instead of Vgt introduces an error that is
proportional to '/:r(‘-

Additionally, we make the quasi-static approximation once again, which in

this case takes the form of % )
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Now, using the co-moving coordinate and in the normalized units, the
equations become
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Recalling that ¥- Pz is an important component of the constant of motion,
we gather these terms (multiply equation above by -1 first):
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This is the equation for the evolution of a fluid element. From the previous
lectures, we know that the wake potential (¢ = -Az) is an important
quantity from which all the important properties of the wake can be derived.
We therefore desire to get an equation for the wake potential. We can do so
using the constant of motion for our fluid element, which starts from rest in a
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Substituting Eqn 19 for the proper density in Egn 16 and substituting for ¥
and Pz as above, results in Egn 18. This is the alternate way of deriving this
equation.

Note that Eqn 18 is a fully nonlinear equation for the wake evolution. The Pr
is primarily provided by the driver, which is why we will leave it here as the
source term for ¥ . Alternatively, ¥ is primarily due to the wake. In this way,
Egn 18 gives us a direct method for coupling the energy of a drive beam to
the plasma wakefield.

To simplify the problem, we are going to consider the case of a transversely
uniform driver, or a wake with a small transverse gradient:
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Egn 19 describes how a wake is excited by the driver, since, as discussed
above, the transverse fluid momentum (the P term) is dominated by the
laser. Therefore, to examine the evolution of the laser, we need to look at the
equation in the 2 direction.
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This equation has contributions from wake and the laser. Since we know that
the transverse momentum is dominated by the laser, we use our knowledge
of the laser quantities to further simplify this equation:
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These equations describe how a wake is initiated by the laser, and how the
laser is in turn modified based on the feedback from the wake. Since we
made assumptions about the magnitude of various terms, if needed for the
physics under study, we can go back and add the relevant terms.

It is possible for us to analytically solve this system of equations in the linear
limit, i.e. where the quantities are small, Y&\ k Az \
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Similar to the single particle motion lecture, we define the vector potential of
the laser in terms of a fast oscillating component multiplied by a slowly
varying envelope of the laser:
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Substituting the equation for the vector potential, we get an equation for be
complex envelope of ‘a’
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Equation 26 implies that there is a wake response due to the slowly
oscillating envelope (first term on the RHS) and a wake response due to the
fast oscillating component (second harmonic term on the RHS).

One can show that the wake response to the second harmonic term is much
smaller than the wake response to the slowly varying envelope term (HW
problem!). Therefore we drop the second term on the RHS to get:
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Note that there are no derivatives with respect to ‘s’ in equation 27. One way
to think about the coupling between equations 25 and 27 is that equation 27
can be applied to the value of the laser profile at some particular ‘s’ to find
the wake. The wake then is used in equation 25 to allow you to propagate
laser profile in ‘s’. The essence of quasistatic approximation is that the wake
and the laser evolve on completely different scales, which means the wake
does not depend on how the laser evolves in ‘s’, but only on the profile of the
laser at that particular ‘s’.
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Now that we discussed how lasers generate a wakefield in plasma, we are
going to discuss how we can extend this discussion to particle beam drivers
in the context of a more generalized form of linear theory. Understanding of a
linear theory of beams in plasma is important even for those researching
laser wakefield acceleration because regardless of the drive, the beam is
going to be an electron beam.

We starting by looking at the laser again, and this time, we start from linear

fluid Maxwell equations: -AcZ
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So the plasma density perturbation is driven by the ponderomotive potential
and by the beam. One can immediately see a difference between a laser and



the particle beam driver. For the particle beam driver the wakefield is driven
by the value of the beam density at that location. The laser however does not
have fields that extend outside of it and so the density is driven by the
derivative and the gradient of the ponderomotive potential.

Next, we will look for an equation for E,-
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So equation 34 allows for the calculation of the density perturbation, and the
resulting electric field is calculated from equation 35.

This derivation was first done in a 1D analysis by Tom Katsouleas in a paper
titled “beam-loading in plasma accelerators”. The next part having to do with
the analysis of the wake potential was an insight courtesy of Julian
Schwinger when he was a professor at UCLA!

Now, since we are analyzing the accelerating field, we consider the Z
component of equation 35:
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Now, using the co-moving coordinates as above, we make the quasi-static

approximation: 9z = - ’(}S
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Physically, this means that to the first order, the beam charge density does
not contribute to the longitudinal electric field for the beam that moves at the
speed of light.
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Comparing equations 34 and 39, one can realize that equations 35 can be
written in co-moving coordinates in terms of the term on the right hand side
of equation 39. So we define
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Equations 39 and 41 represent two coupled equations for lasers and particle
beams. The beam and the laser create X . Once we know % , we can solve
for (&, We can then use # to calculate all the forces on the trailing bunch
we want to accelerate. We can also use % to determine the evolution of
drive laser or particle beams.




Let’s now go to normalized units and look for a procedure to solve these
equations. Recall the normalization for ¢ is
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Since the properties of the wake are determined by ¥ , | am going to
combine equations 42 and 43 into a single equation for ¥ -
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Equation 44 is linear wakefield theory in one equation. As an aside, we can
have a witness laser pulse, where we can analyze the photons comprising
the laser undergoing acceleration/deceleration depending on the derivative of
wake potential. We will come back to this in the “nonlinear optics of
plasmas” lecture.

To solve this linear equation, we use Green’s function. We also look at the
case of the laser and electron beam separately. We also note that since this
is a linear equation, if the particle beam and laser are simultaneously present,
the total wake will be the linear superposition of the wakes excited by each
source term. The physical interpretation is that within the confines of linear
theory, each source is going to generate its own wake response & it doesn’t
really matter that the wake was already perturbed by another source. This
fact will give us the framework for the study of beam loading later on.



Laser
In the regions where there is only laser and the beam term drops off, we
recover egn 27 by dropping the Lvi*-\") operator from both sides.
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We use Green’s function again, but now, we let the Green’s function have
transverse gradients to account for the transverse profile of the laser. From
Eqn 27/45, it is clear that the transverse gradient of the wake potential will
follow that of the laser (side there there is no transverse gradient in this
equation). Therefore, if you want the wake potential to have a certain
transverse profile (for example to achieve a certain focusing force, /’{N 6_’,_(;1 ),
you will need to have a laser with the same transverse profile.
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Note that the transverse component of ¥ is directly dictated by the
transverse profile of the ponderomotive potential as expected.

Particle Beam
The equations in this case are different, but the same logic will apply
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Note that while ke goes to infinity like the delta function, the physical
response is obtained through the integration of the Green’s function. So as
long as the integration gives a physically meaningful response, the behavior
of Green’s function itself is of little consequence.

For the wake function then, we get
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Now if the charge density is some complicated function with correlations,
etc, evaluating Eqn 55 is going to be nontrivial. For practical purposes, we
are often interested in the peak accelerating field, which occurs near the axis.
In this case, and assuming that beam charge density is separable,
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The function R(0) is what distinguishes a beam response from a laser
response. Consider the following cases for a beam that’s small compared to

a skin depth: A
VA

(a) a flat top profile:
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(b) a Gaussian profile: f,[_\

JD:, (- ¢ 2 o
Exp ( /20"() | = >

Rle) = o™ [0.05?77— ——LnCO"A} tu-’r« \

It can be observed that the answer is relatively insensitive to the shape of the
beam. Moreover, the answer is relatively insensitive to beam width & as we
already know from the single particle lecture, the fields of the drive beam
scale as charge per unit length. For the Gaussian beam for example
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So if you take a beam with fixed amount of charge and start making it
narrower and narrower, the wake is very insensitive to how narrow you make
it. This was not appreciated at the time of the beam loading paper by
Katsouleas.

If we do the full analysis and ask the question of how far beyond the beam
the effect of R(0) is felt, you will see that the beam wake extends roughly to a
skin depth, even when the beam is much narrower. Therefore when the beam
is absorbing wake’s energy, it can do so out to a skin depth. This latter fact
distinguishes the beam case from the laser, for which the wake exist only
where the laser is.

To analyze the first term, we consider again the case of a Gaussian profile
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With these new limits, this integral can be evaluated analytically (HW). The
electric field can then be calculated as
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Transformer ratio: transformer ratio is a measure of efficiency of an
accelerator. It is the peak accelerating field divided by the peak decelerating
field. The higher the transformer ratio, the faster the energy transfers from the
drive to trailing bunch. Consider a short (0% &« %) and wide (v » %) drive
bunch. This profile is essentially a delta function in §. In this case, the beam
density is represented by a surface charge density, o’= Q/Acen-

Note that for such a function, a laser and particle driver have the same effect
since the transverse gradients from equation 50 drop out making it the same
as equation 45, just with the particle beam drive term.
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Physically, the delta function excites a wake starting from the position of the
beam. Because of the discontinuity of the wake at the location of the beam,
the decelerating force felt by the wake is

Ew’b - E?ﬂw\\—i Emt - _Esiﬁ
X

On the other hand, the accelerating field is the full field of the wake, Ez

2. (‘q-\—io = R: E% = ‘;L
Ew-b

In fact, there is a fundamental theorem that states that for a symmetric beam
the transformer ratio is limited to less than two (see K. Bane and A. Chao
1985). Therefore to achieve a transformer ratio higher than 2, one has to use
an asymmetric bunch:
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Nonlinear plasma wake excitation
In general the case of nonlinear wake excitation is quite complex and simple
analytical formulas are not as extensively developed. In the case of the
blowout regime, the properties of the wake function are related to the
trajectory of the innermost electron.
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The addition of a driver (in particular a particle beam driver) modifies the
source terms inside the wakefield in the following way
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