Problem Setup:

Suppose we have a particle beam or a laser. The laser ponderomotive force
or the electron beam’s Lorentz force pushes electrons forward, but also
sideways. If you look at “streamlines” of electrons,
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The electrons bunch up in a narrow sheath, creating an ion column. This is a
very important regime because a majority of experiments that have been
conducted have occurred in this regime.

Even though this structure is nonlinear, it can be very stable and has a
number of properties that makes this structure very desirable for accelerating
electrons. This “blowout” was first discovered by Rosenzweig, Breizman,
Katsouleas, and Su (PRA, 44, R6189, 1991) at UCLA when looking at
computer simulations of the interaction between an intense electron beam
and plasma. The intention in this section is not to talk about how to excited,
but about the properties of this structure, which is an azimuthally symmetric
ion column surrounded by a narrow sheath around it. This was described by
Wei Lu in 2006 in two papers(PRL 96, 165002 & PoP 13,056709), and
expanded in 2021 (PPCF) with some interesting ideas and we are going to go
through these in this class.

Setting up the problem: since most of the time we are interested on the
forces of the wakefield on a trailing beam that is being accelerated, we can
look at the forces of the wakefield on this trailing beam:
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In conventional accelerator cavities, for which the original Panofsky-Wenzel
theorem was written, multiple modes are supported. In contrast, the plasma
wakefield is single mode, so there is no need to integrate over multiple
modes to prove this relationship.

Properties of the wakefield:
As usual, we start by writing the the fields in terms of the static and vector

potentials: Ez=- 9z @ - gA“/ﬂf
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Note that the relation we just derived is gauge invariant.
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Equations 4 and 5 state that the forces are resulting from the same wake
potential! Incidentally in this case, the Panofsky-Wenzel theorem is
automatically implied. In deriving this relationship we used nothing more than
the knowledge of Maxwell’s equations and the quasi-static approximation for
a wake moving at the speed of light, so it applies to all wakefields whether
linear or nonlinear, driven by a beam or laser, whether structured or uniform.

Now the problem becomes how can we find (¢? What we are going to do is
to use a phenomenological model of the wakefield based on the

observations in simulations: —mqa&ocj
There are a lot of complicated physics Crossing
details in the sheath such as trajectory 1
crossing, etc. but the basics of the problem a— “A

A

are simpler: we have an ion column, and
can define a bubble radius %



Our goal is to get an expression for the wake potential as a function of the
structure of the ion column and the sheath. This will allow us to get the
structure of the forces. To get these forces, we will concentrate on the
trajectory of a “particle” along the inner radius of the sheath trajectory. We

start with potentials in the Lorentz Gauge
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Equation 7 says that the electrodynamic potentials in the co-moving
coordinate follow the form of a 2D Poisson equation, and in reaching the
answer, we can borrow all of our intuition from 2D electrostatic by pretending
that the source term is a charge distribution in 2D with a uniform third

dimension.



From here on, we are going to work in normalized units. The two source
terms in equation 7 are related through the continuity equation:
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Because of the 2D Poisson equations, we can imagine that what happens in
each slice is somehow independent than the other slices. Eqgn 10 is the
continuity equation in that world. So if we integrate over all space in this
equation (i.e. in 2D), the second term drops out from Gauss’s law evaluated
over the boundary of infinite space, leaving the first term as a new conserved

quantity, l.e.
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This is analogous to total charge in a regular problem, which is conserved. In
this problem now, it is the j(P« d=2)dx_ that is conserved from one slice to
the next.

So now because this quantity is conserved, we can develop a model that has
this quantity as its source term, and we do so by combining the two terms
from equation 7, which in normalized units are expressed as:
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To solve for the potential, we are going to need to know the source term

70, d- - Note than even the potential inside the ion column depends on
these terms outside because from Egn 11, it is the whole integrated term that
is conserved. So now, let’s talk about the model for these source terms.

If it was the charge in a slice that was conserved, we could make a model
where the electrons from the ion column would have been blown out all the
way to the edge and piled up at the sheath, i.e. f,

We might even simplify this model by Jpo To
considering a narrow sheath plus a plateau

. >r
as shown in green:
In that case, the integral under the green and

black curve would be the same and would
equal to the displaced charge in the ion
column.

In an analogous way, we can construct a model for f. gz
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So now, to solve our 2D Poisson equations, we could use our electrostatic
intuition. Suppose we have the following situation
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Now, let’s look at the two terms in Egn 15. The first term is integrated over all
transverse space, so it could only be a function of £. Let’s call it fo (5)

The beauty of the second term is that the integral only goes up to point “r”
the point of observation. This means that for r¢ry, , the blowout radius, we
only need the source term within the ion column, which has a simple form.

So, let’s see what Egn 15 implies about each of the potentials:
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Note that the equations 20-22 are dependent on our choice of sheath model.
Here, we discuss a very simple model, which can be refined to give even
more accurate results as needed (see e.g. T.N. Dalichaouch, PoP 28, 063103
(2021)).

From the potentials, we can now proceed to find the fields and the forces
within the wakefield. We still don’t know 1,05, so we will have to get to that
later as well. In regular coordinates,
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Note that this is the field inside the wake. For a particle traveling at the speed
of light, e.g. that of an electron being accelerated,
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Note that the focusing force in this cavity is radially inward and linear and
does not depend on § . From the Panofsky-Wenzel the accelerating force in
this cavity does not depend on ‘r’. These are great properties for accelerating
electrons. Now that we have the transverse force, we can write the
transverse equation of motion for a particle in the sheath and derive an
expression for Y}, on which the expressions for the potentials depend. In
regular coordinates,
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These expressions derived by Wei Lu in 2006 describe the fields with the
simplest phenomenological model as we could conjure up!

Consider the case of very strong blowout, which occurs when the energy

density of the driver is very high ( a.>>\ for a laser & _A_>>\ for a particle
beam). In that case,
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Two insights for this regime come from simulations:

1. &/ry, is relatively constant & on the order of 0.3 or smaller.

2. The sheath is not a uniform section as we assumed. In fact it has a
narrow high density part and a larger lower density part, where the
motion of electrons is weakly nonlinear. Nevertheless, we make the
assumption that we can lump -3 T
them into a single section:
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Now that we have an equation for the blowout radius, we can find an
expression for ¢ and for £
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Equation 43 implies that near the top of the bubble, where “"—rh = © the
slope of the accelerating field is linear and near -1/2

The full field looks something like this:  « -
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Now, to find the maximum blowout radius, 1, ..., Wei Lu’s paper in 2006
used a source term for the differential equation in terms of beam charge per
unit length, %, but for a large range of parameter, you can estimate what size
blowout you have using a back of the envelope calculation. The great insight
in this paper was to realize that it is the trajectory of the innermost electron
along with some phenomelogical model that determines many of the
properties of the wake.

We can estimate the size of the bubble by looking for an equilibrium radius,
here the field of the drive beam balances that of the ion column
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